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By THOMAS CASS and PETER FRIZ

Abstract

We consider stochastic differential equations dY D V .Y / dX driven by a mul-
tidimensional Gaussian process X in the rough path sense [T. Lyons, Rev. Mat.
Iberoamericana 14, (1998), 215–310]. Using Malliavin Calculus we show that Yt
admits a density for t 2 .0; T � provided (i) the vector fields V D .V1; : : : ; Vd / sat-
isfy Hörmander’s condition and (ii) the Gaussian driving signal X satisfies certain
conditions. Examples of driving signals include fractional Brownian motion with
Hurst parameter H > 1=4, the Brownian bridge returning to zero after time T and
the Ornstein-Uhlenbeck process.

1. Introduction
In the theory of stochastic processes, Hörmander’s theorem on hypoellipticity

of degenerate partial differential equations has always been an important tool to
see if a diffusion process with a given generator admits a density. This dependence
on PDE theory was removed when P. Malliavin devised a purely probabilistic ap-
proach to Hörmander’s theorem, which is perfectly adapted to prove existence and
smoothness of densities for diffusions given as strong solution to an Itô stochastic
differential equation driven by Brownian motion.

The key ingredients of Malliavin’s machinery, better known as Malliavin Cal-
culus or stochastic calculus of variations can be formulated in the setting of an
abstract Wiener space .W;H; �/. This concept is standard (e.g. [27] or any modern
book on stochastic analysis) as is the notion of weakly nondegenerate Re-valued
functional ' which has the desirable property that the image measure '�� is ab-
solutely continuous with respect to Lebesgue measure on Re. (Functionals which
are nondegenerate have a smooth density.) Precise definitions are given later on in
the text.

Given these abstract tools, we turn to the standard Wiener space C.Œ0; T �;Rd /
equipped with Wiener measure i.e. the standard model for Brownian motion B D
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B.!/. From Itô’s theory, we know how to solve the stochastic differential equation

dY D

dX
iD1

Vi .Y / ı dB
i
� V .Y / ı dB; Y .0/D y0 2 Re:

The Itô-map B 7! Y is notorious for its lack of strong regularity properties. On the
positive side, it is smooth in a weak Sobolev type sense (“smooth in Malliavin’s
sense”) and under Hörmander’s condition at y0 2 Re

(1.1) .H/ W Lie ŒV1; : : : ; Vd � jy0
D Ty0

Re Š Re

one can show (e.g. [27], [32], [2], [29]) that the solution map B 7! Yt is nonde-
generate for all t 2 .0; T �. This line of reasoning provides a direct probabilistic
approach to the study of transition densities of Y and has found applications from
stochastic fluid dynamics to interest rate theory, e.g. [11], [19]. The same range of
applications1 nowadays demand stochastic models of type

(1.2) dY D V .Y / dX

where X is a Gaussian process, such as fractional Brownian motion (short: fBm)
popularized by [28]. Differential equations of this type have also been used as
simple examples for the study of ergodicity of non-Markovian systems, [18]. (Al-
though one can add a drift term of form V0 .Y / dt in (1.2) our present focus is the
driftless case.)

Let us remark that in the example of fBM with Hurst parameter H > 1=2,
Kolmogorov’s criterion shows that B has nice sample paths (more precisely, Hölder
continuous sample paths of exponent greater 1=2) which has the great advantage
that (1.2) can be understood as integral equation for fixed ! based on Young
integrals (i.e. limits of Riemann-Stieltjes sums). In this setting of nice sample
paths, existence of a density was established in [30] assuming ellipticity. Using
deterministic estimates for the Jacobian of the flow this density was then shown to
be smooth [20]; building on the same estimates the Hörmander case was obtained
in [1]. For H � 1=2 the situation appears to be fundamentally different: first,
in view of Brownian (and worse) sample path regularity one needs Itô or rough
path ideas to make sense of (1.2) for H � 1=2. Secondly, the proof of [1] does
not extend to the rough path setting2 and relies somewhat delicately on specific
properties of fractional Brownian motion.

1 For instance, stochastic differential equations driven by fBM have applications to vortex fil-
aments; applications to finance include (geometric) fractional Brownian motion as paradigm of a
non-semimartingale which admits no arbitrage under transaction costs. The reader is referred to the
books [29, §5.3 and 5.4], [8, §8.1.] and the references therein.

2The estimates of [20] can be generalized [17] to (sharp) deterministic estimates on the Jacobian
of RDE solutions giving Lp-estimates on the flow of RDEs driven by fBM if and only if H > 1=2. In
particular, one sees that Lp-estimates on the flow of Stratonovich SDEs (H D 1=2) are fundamentally
probabilistic, i.e., rely on cancellations in stochastic integration. At present, the question of how to
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In a previous paper [3] we linked rough paths and Malliavin calculus by show-
ing that existence of a density for solutions of (1.2) holds true under ellipticity; i.e.,

.E/ W Span ŒV1; : : : ; Vd � jy0
D Ty0

Re Š Re

and generic nondegeneracy conditions on the multi-dimensional Gaussian processX ,
the differential equation (1.2) being understood in the rough path sense [23], [26],
a unified framework which covers at once Young and Stratonovich solutions (and
goes well beyond). The aim of this paper is to prove the existence of densities
under Hörmander’s condition (H) in the following form:

THEOREM 1. Let
�
X1t ; : : : ; X

d
t

�
D .Xt W t 2 Œ0; T �/ be a continuous, centered

Gaussian process with independent components X1; : : : ; Xd . Assume X satisfies
the conditions listed in Section 4. (In particular, X is assumed to lift to a geometric
rough path so that (1.2) makes sense as random rough differential equation.) Let
V D .V1; : : : ; Vd / a collection of smooth bounded vector fields on Re with bounded
derivatives which satisfies Hörmander’s condition (H) at y0. Then the random
RDE solution Yt D Yt .!/ 2 Re to (1.2) started at Y0 D y0 admits a density with
respect to Lebesgue measure on Re for all times t 2 .0; T �:

One should note that X , the Gaussian driving signal of (1.2), is fully described
by the covariance function of each component and, under the further assumption of
IID components, by the covariance of a single component, i.e., R.s; t/D E

�
X1s X

1
t

�
.

In principle all conditions on X are checkable from the covariance, in practice it
is convenient to have conditions available which involve the reproducing kernel
Hilbert or Cameron-Martin space associated to X as well as certain sample path
properties. Leaving these technical details to Section 4 we emphasize that our
conditions are readily checked in many cases including fractional Brownian motion
with Hurst parameter H > 1=4, the Brownian Bridge returning to zero after time
T and the Ornstein-Uhlenbeck process; details are found in Section 8.

It may be helpful to note that whenever X is a semi-martingale on Œ0; T � then
(1.2) can be understood as Stratonovich stochastic differential equation, i.e.,

dY D

dX
iD1

Vi .Y / ı dX
i :

In such cases, rough path theory appears as intermediate tool that is neither needed
to understand the assumptions nor the conclusions of Theorem 1. There may
be cases when X can be written in terms of Brownian motion so that ultimately
the techniques of [4], [33] are applicable. But in general Theorem 1 covers new
grounds.

obtain good integrability when H < 1=2 is open although one suspects that Gaussian isoperimetry
will ultimately play a role.
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The proof of Theorem 1 is based on the fact [3] that RDE solutions driven
by Gaussian signals are “H-differentiable,” i.e., differentiable in Cameron-Martin
directions. Existence of a density is then reduced to showing that the Malliavin
covariance matrix is weakly nondegenerate. The standard proof of this (e.g. [27],
[2] or [29, �2.3.2]) is based on Blumenthal’s 0-1 law and the Doob-Meyer de-
composition for semi-martingales. The main difficulty to overcome in the general
Gaussian context of this paper is that the Doob-Meyer decomposition is not avail-
able and we manage to bypass its use by suitable small time developments for RDEs,
obtained in [16], in conjunction with (Stroock-Varadhan type) support description
for certain Gaussian rough paths (as conjectured by Ledoux et al. [22] and carried
out independently in [10], [14] with some definite statements obtained in [12].)

The crucial induction step — which explains the appearance of higher brackets
— requires us to assume a “nonstandard” Hörmander condition which involves only
iterated Lie-brackets contracted against certain tensors arising from free nilpotent
Lie groups. Equivalence to the usual Hörmander condition (H) is then established
separately.

2. Preliminaries on ODE and RDEs

2.1. Controlled ordinary differential equations. Consider the controlled ordi-
nary differential equations, driven by a smooth Rd -valued signal f D f .t/ along
sufficiently smooth and bounded vector fields V D .V1; : : : ; Vd /,

(2.1) dy D V.y/df �

dX
iD1

Vi .y/ f
0 .t/ dt; y .t0/D y0 2 Re:

We call U ft t0 .y0/� yt the associated flow. Let J denote the Jacobian of U . It
satisfies the ODE obtain by formal differentiation w.r.t. y0. More specifically,

a 7!

�
d

d"
U
f
t t0

.y0C "a/

�
"D0

is a linear map from Re ! Re and we let J ft t0 .y0/ denote the corresponding
e� e matrix. It is immediate to see that

d

dt
J
f
t t0

.y0/D

�
d

dt
Mf

�
U
f
t t0

.y0/ ; t
��
�J
f
t t0

.y0/

where � denotes matrix multiplication and

d

dt
Mf .y; t/D

dX
iD1

V 0i .y/
d

dt
f it :
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Note that J ft2 t0 D J
f
t2 t1

�J
f
t1 t0

: We can also consider Gateaux derivatives in
the driving signal and define

DhU
f
t 0 D

�
d

d"
U
fC"h
t 0

�
"D0

:

One sees thatDhU
f
t 0 satisfies a linear ODE and the variation of constants formula

leads to

DhU
f
t 0 .y0/D

Z t

0

dX
iD1

J
f
t s

�
Vi

�
U
f
s 0

��
dhis:

Finally, given a smooth vector field W a straight-forward computation gives

(2.2) dJ
f
0 t

�
W
�
U
f
t 0

��
D

dX
iD1

J
f
0 t

�
ŒVi ; W �

�
U
f
t 0

��
df it :

2.2. Rough differential equations. Following [23], [26], and [12], a geomet-
ric p-rough path x over Rd is a continuous path on Œ0; T � with values in GŒp�

�
Rd
�
,

the step-Œp� nilpotent group over Rd , and of finite p-variation relative to the [12]
Carnot-Carathéodory metric d on GŒp�

�
Rd
�
, i.e.,

sup
n2N

sup
0<t1<���<tn<T

X
i

d
�
xti ; xtiC1

�p
<1:

As in [5], [23], we view GŒp�
�
Rd
�

as embedded in its enveloping tensor algebra;
i.e.,

GŒp�
�
Rd
�
� T Œp�

�
Rd
�
WD ˚kD0;:::;Œp�

�
Rd
�˝k .

One can then think of x as a path x W Œ0; T � ! Rd enhanced with its iterated
integrals although the later need not make classical sense3. The canonical projec-
tion to

�
Rd
�˝k is denoted �k .x/ or xk . Lyons’ theory of rough paths then gives

deterministic meaning to the rough differential equation (short: RDE)

(2.3) dy D V .y/ dx.

(One can think of RDE solutions as limit points of corresponding ODEs of form
(2.1) in which the smooth driving signals plus their iterated integrals up to order
Œp� converge to x in suitable p-variation distance.) The motivating example, e.g.,
[23], [26], is that almost every continuous joint realization of Brownian motion
and Lévy’s area process (equivalently: iterated Stratonovich integrals) gives rise to
a geometric p-rough path for p > 2, known as Brownian rough path or Enhanced

3In fact, GN
�
Rd
�

can realized as all points in the tensor algebra which arise from computing
iterated integrals up to order N of smooth paths over a fixed time interval. The group product then
corresponds to the concatenation of paths, the inverse corresponds to running a path backwards in
time etc.



2120 THOMAS CASS and PETER FRIZ

Brownian motion (cf. �8.1) which provides in particular a robust path-by-path view
of Stratonovich SDEs.

Back to the deterministic RDE (2.3) and assuming smoothness of the vector
fields V D .V1; : : : ; Vd /, the solution induces a flow y0 7! U x

t t0
.y0/. Following

[24], [25], the Jacobian J x
t t0

of the flow exists and satisfies a linear RDE, as does
the directional derivative

DhU
x
t 0 D

�
d

d"
U
T"hx
t 0

�
"D0

for a smooth path h. If x arises from a smooth path x together with its iterated
integrals the translated rough path Thx (cf. [24], [26]) is nothing but xCh together
with its iterated integrals. In the general case, we assume h 2 C q-var with 1=pC
1=q >1, the translation Thx can be written in terms of x and cross-integrals between
�1.x0;�/ DW x and the perturbation h. (These integrals are well-defined Young-
integrals.)

PROPOSITION 1. Let x be a geometric p-rough path over Rd and h 2

C q-var
�
Œ0; T �;Rd

�
such that 1=pC 1=q > 1. Then

DhU
x
t 0 .y0/D

Z t

0

X
i

J x
t s

�
Vi
�
U x
s 0

��
dhis

where the right-hand side is well-defined as Young integral.

Proof. J x
t 0;DhU

x
t 0 satisfy (at least jointly with U x

t 0) RDEs driven by x
which allows, in essence, to use Lyons’ limit theorem; this is discussed in detail in
[24], [25]. A little care is needed since the resulting vector fields are not bounded
anymore. However we can rule out explosion and then localize the problem: the
needed remark is that JX

t 0 also satisfy a linear RDE of form

dJ x
t 0 D dM

x �U x
t 0 .y0/ ; t

�
�J x
t 0 .y0/

and explosion can be ruled out by direct iterative expansion and estimates of the
Einstein sum as in [23]. �

3. RDEs driven by Gaussian signals

We consider a continuous, centered Gaussian process X D
�
X1; : : : ; Xd

�
with independent components started at zero. This gives rise to an abstract Wiener
space .W;H; �/ where W D NH � C0

�
Œ0; T �;Rd

�
. Note that H D ˚diD1H.i/ and

recall that element of H are of form ht D E.Xt�.h/t/ where �.h/ is a Gaussian
random variable. The (“reproducing kernel”) Hilbert-structure on H is given by
hh; h0iH WD E.�.h/�.h0//.
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Existence of a Gaussian geometric p-rough path above X is tantamount to the
existence of certain Lévy area integrals. The case of fractional Brownian motion is
well understood and several construction have been carried out [6], [26], [10], [31].
In particular, one requires H > 1=4 for the existence of stochastic areas (which
can be defined as L2.P/-limits as in Itô’s theory). As a result, one has to deal with
geometric p-rough paths for p < 4. (When p < 2 there is enough sample path
regularity to use Young integration and we avoid speaking of rough paths.)

CONDITION 1. Assume X admits a natural4 lift to a (random) geometric
p-rough path X and 9q W 1=pC 1=q > 1 such that

H ,! C q-var�Œ0; T �;Rd �:
The example to have in mind is Brownian motion for which the above condi-

tion is satisfied with pD 2C" and qD 1. (We shall say more about other Gaussian
examples in �4.)

If XD BH denotes the geometric p-rough path, p 2 .1=H; Œ1=H�C 1/, asso-
ciated to fractional Brownian motion then it satisfies a Stroock-Varadhan support
description in rough path topology. This was first conjectured by Ledoux et al.
[22] (who obtained it for the Brownian rough path) and carried out independently
in [10], [14] for H > 1=3. The more difficult5 case of H > 1=4 is covered by a
general support theorem for Gaussian rough path [12] of form

(3.1) supp .P�X/D
˚
SŒp� .H/

	
where support and closure are relative to the homogeneous p-variation topology
for geometric p-rough paths. We recall that SŒp�, for Œp�D 2; 3 given by

S2 W h 7! 1C

Z t

0

dhC

Z t

0

Z s

0

dh˝ dh

S3 W h 7! 1C

Z t

0

dhC

Z t

0

Z s

0

dh˝ dhC

Z t

0

Z s

0

Z r

0

dh˝ dh˝ dh

lifts Rd -valued paths canonically to GŒp�
�
Rd
�
-valued paths. In [12] it is seen

that X exists provided the covariance has finite �-variation with � < 2 and it is
also established that H ,! C �-var which guarantees that SŒp� .H/ is well-defined
via Young integration. Such support description will be important in checking
Condition 5.

4In the sense of [12]. This implies, for instance, that X is the (p-variation) limit (in probability)
of (lifted) piecewise linear approximations.

5The case H > 1=3 only involves stochastic area and can be handled by martingale arguments;
for H 2 .1=4; 1=3� one has to deal with third iterated integrals and additional arguments are needed;
cf [12].
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Definition 1 ([21], [29, §4.1.3], [34, §3.3]). Given an abstract Wiener space
.W;H; �/, a random variable (i.e. measurable map) F W W ! R is continuously
H-differentiable, in symbols F 2 C 1H, if for �-almost every !, the map

h 2H 7! F .!C h/

is continuously Fréchet differentiable. A vector-valued r.v. F D .F 1; : : : ; F e/ W
W ! Re is continuously H-differentiable if and only if each F i is continuously
H-differentiable. In particular, �-almost surely, DF.!/D .DF 1.!/; : : : ;DF e.!/
is a linear bounded map from H! Re . One then defines the Malliavin covariance
matrix as the random matrix

�.!/ WD
�˝
DF i ;DF j

˛
H

�
i;jD1;:::;e

2 Re�e:

We call F weakly nondegenerate if det .�/¤ 0 almost surely.

PROPOSITION 2. Assume Condition 1. Then, for fixed t � 0, the Re-valued
random variable

! 7! U
X.!/
t 0 .y0/

is continuously H-differentiable.

Proof. Let us recall for h 2H� C q-var, the translation ThX.!/ can be written
(for ! fixed!) in terms of X.!/ and cross-integrals between �1

�
X0;�

�
DWX 2Cp-var

and h. (These integrals are well-defined Young-integrals.) Thanks to the definition
of X .!/ as the limit in probability of piecewise linear approximations to X and
its iterated integrals (cf. [12]) and continuity properties of the translation operator
(e.g. [6], essentially inherited from continuity properties of Young integrals) we
see that the event

(3.2) f! W X .!C h/� ThX.!/ for all h 2Hg

has probability one. We show that h 2 H 7! U
X.!Ch/
t 0 .y0/ is continuously Fréchet

differentiable for every ! in the above set of full measure. By basic facts of Fréchet
theory, we must show (a) Gateaux differentiability and (b) continuity of the Gateaux
differential.

Ad (a). Using X .!CgC h/ � TgThX.!/ for g; h 2 H it suffices to show
Gateaux differentiability of U X.!C�/

t 0 .y0/ at 0 2H. For fixed t , define

Zi;s � J
X
t s

�
Vi
�
U X
s 0

��
:

Note that s 7! Zi;s is of finite p-variation. We have, with implicit summation
over i ,
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ˇ̌
DhU

X
t 0 .y0/

ˇ̌
D

ˇ̌̌̌Z t

0

JX
t s

�
Vi
�
U X
s 0

��
dhis

ˇ̌̌̌
D

ˇ̌̌̌Z t

0

Zidh
i

ˇ̌̌̌
� c

�
jZjp-varCjZ .0/j

�
� jhj�-var

� c
�
jZjp-varCjZ .0/j

�
� jhjH ;

where c varies from line to line: Hence, the linear map

DU X
t 0 .y0/ W h 7!DhU

X
t 0 .y0/ 2 Re

is bounded and each component is an element of H�. We just showed that

h 7!

�
d

d"
U
T"hX.!/
t 0 .y0/

�
"D0

D

D
DU

X.!/
t 0 .y0/ ; h

E
H

and hence

h 7!

�
d

d"
U

X.!C"h/
t 0 .y0/

�
"D0

D

D
DU

X.!/
t 0 .y0/ ; h

E
H

emphasizing again that X .!C h/� ThX.!/ almost surely for all h 2H simultane-
ously. Repeating the argument with TgX .!/D X .!Cg/ shows that the Gateaux
differential of U X.!C�/

t 0 at g 2H is given by

DU
X.!Cg/
t 0 DDU

TgX.!/
t 0 :

(b) It remains to be seen that g 2 H 7! DU
TgX.!/
t 0 2 L .H;Re/, the space

of linear bounded maps equipped with operator norm, is continuous. To this end,
assume gn!n!1 g in H (and hence in C �-var). Continuity properties of the Young
integral imply continuity of the translation operator viewed as map h 2 C �-var 7!

ThX.!/ as p-rough path (see [26]) and so

Tgn
X.!/! TgX .!/

in p-variation rough path metric. To point here is that

x 7! J x
t � and J x

t �

�
Vi
�
U x
� 0

��
2 Cp-var

depends continuously on x with respect to p-variation rough path metric: using
the fact that J x

t � and U x
� 0 both satisfy rough differential equations driven by x

this is just a consequence of Lyons’ limit theorem (the universal limit theorem of
rough path theory). We apply this with xD X.!/ where ! remains a fixed element
in (3.2). It follows that


DU Tgn X.!/

t 0 �DU
TgX.!/
t 0





op
D sup
hWjhjHD1

ˇ̌̌
DhU

Tgn X.!/
t 0 �DhU

TgX.!/
t 0

ˇ̌̌
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and defining Zgi .s/� J
TgX.!/
t s

�
Vi

�
U
TgX.!/
s 0

��
, and similarly Zgn

i .s/, the same
reasoning as in part (a) leads to the estimate


DU Tgn X.!/

t 0 �DU
TgX.!/
t 0





op
� c

�
jZgn �Zg jp-varCjZ

gn .0/�Zg.0/j
�
:

From the explanations just given this tends to zero as n!1 which establishes
continuity of the Gateaux differential, as required, and the proof is finished. �

4. Conditions on driving process

We now give a complete list of assumptions on the (d -dimensional) Gaussian
driving signal .Xt W t 2 Œ0; T �/. The first condition was already needed in the pre-
vious section to show H-differentiability of RDE solutions driven by X ; we repeat
it for completeness and to give some additional examples.

CONDITION 2. Assume that X admits a natural lift to a (random) geometric
p-rough path X and 9q W 1=pC 1=q > 1 such that

(4.1) H ,! C q-var�Œ0; T �;Rd �:
At the price of a deterministic time-change (cf. following remark) we can and
will assume that the p-variation of X is controlled by a (random) constant times
!.s; t/D t � s, i.e.

(4.2) kXs;tkp D d .Xs;Xt /p D (random const)�!.s; t/:

Remark 1. The natural lift constructed in [12, Prop. 16 applied with �D 1]
satisfies an estimate of form

jd .Xs;Xt /jLq.P/ . q1=2 jRj
1=2

�-var;Œs;t� , � 2 Œ1; 2/

from which finite p-variation (p > 2�) is readily deduced. Using jRj�
�-var;Œs;t� �

jRj
�

�-var;Œ0;t�� jRj
�

�-var;Œ0;s� we can define X0 .�/ by requiring that

X.t/� X0
�
jRj

�

�-var;Œ0;t�

�
so that jd.X0s;X0t /jLq.P/ . q1=2jt � sj1=.2�/. This implies (4.2) for X0.

In the Brownian motion case this holds, as already remarked earlier, with
p D 2C " and q D 1. The same is true for the Brownian bridge and the Ornstein-
Uhlenbeck examples discussed in the introduction; although case-by-case verifica-
tions are not difficult, there is general criterion on the covariance which implies
(4.1), see [12, Prop. 16 applied with �D 1], which also covers fBM. (In all these
examples, (4.2) is satisfied without need of time-change.) Let us give a direct
argument for case of fBM which covers any Hurst parameter H > 1=4. Writing
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HH for the Cameron-Martin space of fBM, the variation embedding in [15] gives

HH ,! C q-var for any q > .H C 1=2/�1 :

At the same time [6], [26], [10], [31] fBM lifts to a geometric p-rough path for
p > 1=H . By choosing p; q small enough 1=pC1=q can be made arbitrarily close
to H C .H C 1=2/D 2H C 1=2 > 1 and so (4.1) holds indeed for fBM with Hurst
parameter H > 1=4.

CONDITION 3. Fix T > 0. We assume nondegeneracy on Œ0; T � in the sense
that for any f D .f1; : : : ; fd / W Œ0; T �! Rd of finite p-variation6

(4.3)
�Z T

0

fdh�

dX
jD1

Z T

0

fjdh
j
D 08h 2H

�
H) f � 0 a.e.

Fractional Brownian motion, for instance, satisfies this nondegeneracy condi-
tion simply because C 10

�
Œ0; T �;Rd

�
�HH , cf. [14], which implies that any such

f is orthogonal to a dense subset of L2Œ0; T � and hence 0 almost everywhere on
Œ0; T �. Similar reasoning shows that an Ornstein-Uhlenbeck process, or a Brownian
bridge which returns to zero after time T , satisfies Condition 3; while a Brownian
bridge which returns to zero at time T is ruled out. Condition 3 already appeared in
[3] which is also where the reader can find some further remarks and ramifications.
Let us just note that (i) nondegeneracy on Œ0; T � implies nondegeneracy on Œ0; t � for
any t 2 .0; T �, (ii) for continuous f the conclusion reads f � 0; and (iii) that the
quantifies 8h 2H can be relaxed to the quantifier “for all h in some orthonormal
basis of H”, as is easily seen by continuity of the Young-integral

R T
0 fdh with

respect to h 2H ,! C q-var.

CONDITION 4 (“0-1 law”). The germ �-algebra \t>0� .Xs W s 2 Œ0; t �/ con-
tains only events of probability zero or one.

When X is Brownian motion, this is the well-known Blumenthal zero-one law.
More generally, it holds whenever X is an adapted functional of Brownian motion,
including all examples (such as fBM) in which X has a Volterra presentation [7]

Xt D

Z t

0

K .t; s/ dBs:

(Nothing is assumed on K other than having the above Wiener-Itô integral well-
defined.) The 0-1 law also holds when X is the strong solution of an SDE driven
by Brownian motion; this includes the Ornstein-Uhlenbeck and Brownian bridge
examples. An example where the 0-1 law fails is given by the random-ray X W t 7!

6This guarantees, together with Condition 2, that the integral in (4.3) is well-defined in Young
sense.
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tBT .!/ in which case the germ-event f! W dXt .!/ =dt jtD0C � 0g has probability
1=2. (In fact, sample path differentiability at 0C implies nontriviality of the germ
� -algebra see [9] and references therein.) We observe that the random ray example
is (a) already ruled out by Condition 3 and (b) should be ruled out anyway since it
does not trigger to the bracket phenomenon needed for a Hörmander statement.

The next condition expresses some sort of scaled support statement at t D 0C
and is precisely what is needed in the last part (Step 4) in the proof of Theorem 1
below. We give examples and easier-to-check conditions below. To state it, we
recall [23, Th. 2.2.1] that a geometric p-rough path x lifts uniquely lifts uniquely
and continuously (with respect to homogeneous p-variation distances) to a path in
the free step-N nilpotent group7, say

SN .x/ 2 C
p-var
0

�
Œ0; T � ; GN

�
Rd
��

for N � Œp� :

We also recall that GN
�
Rd
�

carries a dilation operator ı which generalizes scalar
multiplication on Rd .

CONDITION 5. Assume there existsH2.0; 1/ such that (i) for all fixedN�Œp�,
writing QXD SN .X/, all g 2 GN

�
Rd
�

and for all " > 0,

lim inf
n!1

P
�
d
�
ınH
QX1=n; g

�
< "

�
> 0:

(ii)Hp<1C 1
r

where r 2N is such that in Hörmander’s condition (1.1), full span is
achieved with fV1; : : : ; Vd g jy0

and bracket vector fields ŒVi1;ŒVi2;:::��jy0
involving

up to r brackets.

PROPOSITION 3. Let B denote d -dimensional fractional Brownian motion
with fixed Hurst parameter H 2 .1=4; 1/ and consider the lift to a (random) geo-
metric p-rough path, denoted by XD B, with p < 4. Then it satisfies Condition 5.

Remark 2. Brownian motion is covered with H D 1=2.

Proof. Write QB D SN .B/. From Section 3, and the references therein, the
support of the law of B w.r.t. homogeneous p-variation distance is

C
0;p-var
0

�
Œ0; T �; GŒp�

�
Rd
��
;

that is, the closure of lifted smooth path started at 0 with respect to homogeneous
p-variation distance [23], [12]. By continuity of SN [23, Th. 2.2.1] followed by
evaluation of the path at time 1 it follows that the support of the law of QB1 is full,
that is, equal to GN

�
Rd
�
. On the other hand, fractional scaling�
nHBt=n W t � 0

� D
D .Bt W t � 0/

7The 0 in Cp-var
0 indicates that X0 is started at the unit element in the group.
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implies ınH
QB1=n

D
D QB1 and so, thanks to full support of QB1 ;

lim inf
n!1

P
�
d
�
ınH
QB1=n; g

�
< "

�
D P

�
d
�
QB1; g

�
< "

�
> 0:

Part (ii) in Condition 5 is harmless to check: an immediate application of Kol-
mogorov’s criterion shows that 1=p; the Hölder-exponent of fractional Brownian
sample paths, can be taken to be anything strictly less than H . In particular, this
allows us to choose p.> 1=H/ small enough such that 1 < Hp � 1C 1=r . �

Although scaling was important in the previous proof, it is only used at times
near 0C. One thus suspects that every other Gaussian signal X which scales sim-
ilarly (on the level of N th iterated integrals!) also satisfies Condition 5. To make
this precise we need

THEOREM 2 ([12]). Let .X; Y /D
�
X1; Y 1; : : : ; Xd ; Y d

�
be a centered con-

tinuous Gaussian process on Œ0; 1� such that
�
X i ; Y i

�
are independent for i D

1; : : : ; d . Let � 2 Œ1; 2/ and assume the covariance of .X; Y /, as function on Œ0; 1�2,
is of finite �-variation (in 2D sense8). Then, for every p > 2�, X and Y can be
lifted to geometric p-rough paths denoted X and Y. Moreover, there exists positive
constants � D � .p; �/ and C D C .p; �;K/ with

ˇ̌
R.X;Y /

ˇ̌
�-var;Œ0;1�2 � K so that

for all q 2 Œ1;1/; ˇ̌
dp-var .X;Y/

ˇ̌
Lq.P/

� C
p
q jRX�Y j

�
1IŒ0;1�2

:

(Note that RX�Y .s; t/ is a diagonal matrix with entries depending on s; t .)

COROLLARY 1. Let .X;B/ satisfy the conditions of the previous theorem and
assume that B is a (d -dimensional) fractional Brownian motion with fixed Hurst
parameter H 2 .1=4; 1/. Assume in addition that

(4.4) n2H jRX�B j1IŒ0;1=n�2 ! 0:

Then Condition 5 holds.

Proof. With focus on one diagonal entry and with mild abuse of notation
(writing X;B instead of X i ; B i : : : )

n2H jRX�B j1IŒ0;1=n�2 D sup
s;t2Œ0;1�

E

h
nH

�
Xs=n�Bs=n

�
nH

�
Xt=n�Bt=n

�i
which can be rewritten in terms of the rescaled process X .n/ D nHX�=n, and simi-
larly for B , as

sup
s;t2Œ0;1�

E

h�
X .n/s �B

.n/
s

� �
X
.n/
t �B

.n/
t

�i
D jRX.n/�B.n/ j1IŒ0;1�2 :

8Given a function f from Œ0; 1�2 into some normed space, its variation (in the 2D sense!) is
an immediate generalization of the standard definition but based on “rectangular increments” over
Œa; b/� Œc; d/ of the form f .b; d/Cf .a; c/�f .a; d/�f .b; c/:
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By assumption and the previous theorem, this entails that

dp-var

�
X.n/;B.n/

�
! 0 in probability.

By continuity of SN , still writing QX.n/ D SN
�
X.n/

�
for fixed N , and similarly for

B.n/, we have

d
�
QX.n/1 ; QB.n/1

�
� dp-var;Œ0;1�

�
QX.n/; QB.n/

�
! 0 in probability.

But then

P
�
d
�
ınH
QX1=n; g

�
< "

�
D P

�
d
�
QX.n/1 ; g

�
< "

�
� P

�
d
�
QX.n/1 ; QB.n/1

�
C d

�
QB.n/1 ; g

�
< "

�
� P

�
d
�
QB.n/1 ; g

�
< "=2

�
�P

�
d
�
QX.n/1 ; QB.n/1

�
> "=2

�
and so

lim inf
n!1

P
�
d
�
ınH
QX1=n; g

�
< "

�
� lim inf

n!1
P

�
d
�
QB.n/1 ; g

�
< "=2

�
and this is positive by the example in which we discussed the case of B resp. QB.
The proof is finished. �

5. Taylor expansions for rough differential equations

Given a smooth vector field W and smooth driving signal x .�/ for the ODE
dy D V .y/ dx, it follows from (2.2) that

J x0 t
�
W
�
yxt
��
DW .y0/C

Z t

0

J x0 s
�
ŒVi ; W �

�
yxs
��
dxis;

where Einstein’s summation convention is used throughout. Iterated use of this
leads to the Taylor expansion

J x0 t
�
W
�
yxt
��
DW jy0

C ŒVi ; W � jy0
x1Ii0;t

C
�
Vi ;

�
Vj ; W

��
jy0

x2Ii;j0;t

C : : :

C ŒVi1 ; : : : ŒViN ; W �� jy0
xN Ii1;:::;iN0;t

C : : : ;

where x0;t denotes the signature of x .�/ jŒ0;t� in Rd ˚
�
Rd
�˝2
˚ � � � ˚

�
Rd
�˝N

˚ : : : (Note that such an expansion makes immediate sense when x is replaced by a
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weak geometric p-rough path x.)9 It will be convenient to express J x0 t
�
W
�
yxt
��

as solution of some ODE of form dz D yV .z/dx. This is accomplished by setting

z WD
�
z1; z2; z3

�
WD
�
yx; J x0 t ; J

x
0 t

�
W
�
yxt
���
2 Re˚Re�e˚Re:

Noting that J x0 t
�
W
�
yxt
��

is given by z2 �W
�
z1
�

in terms of matrix multiplication
we have

dz1 D Vi
�
z1
�
dxi

dz2 D�z2 �DVi
�
z1
�
dxi

dz3 D
�
dz2

�
�W

�
z1
�
C z2 � d

�
W
�
z1
��

D z2 �
�
�DVi

�
z1
�
�W

�
z1
�
CDW

�
z1
�
�Vi

�
z1
��
dxi

D z2 � ŒVi ; W � jz1dxi

started from .y0; I;W .y0// where I denotes the identity matrix in Re�e and we
see that yV is given by

(5.1) yVi
�
z1; z2; z3

�
D

0@ Vi
�
z1
�

�z2 �DVi
�
z1
�

z2 � ŒVi ; W � .z1/

1A ; i D 1; : : : ; d:

Let us now consider the corresponding rough differential equation, dz D OV .z/dx
where x is weak geometric p-rough path.

LEMMA 1. Assume V1; : : : ; Vd ; W are smooth vector fields, bounded with all
derivatives bounded. Then yV D

�
yV1; : : : ; yVd

�
is a collection of smooth (possibly

unbounded) vector fields but explosion does not occur. More precisely, there exists
a unique RDE solution to dz D yV .z/dx on any compact time interval Œ0; T �. In
fact, for some increasing function ' from RC into itself

jzj1IŒ0;t� � ' .M/ when kxkp-var;Œ0;t� �M .

Proof. Smoothness of yV is obvious and so the RDE dz D yV .z/dx has a
solution up to some possible explosion time. From the particular structure of yV
we now argue that explosion cannot occur in finite time: z1 does not explode as it
is a genuine RDE solution along bounded vector fields with bounded derivatives
of all orders (in fact, Lip
�1 in the sense of Stein; 
 > p would be sufficient for
nonexplosion of z1).

Secondly, z2 does not explode as it satisfies a linear RDE (cf. [23]) driven by
some rough path M x as already remarked in the proof of Proposition 1). Clearly
then, z3 D z2 �W

�
z1
�

where W is a bounded vector fields cannot explode. More

9By definition, such a p-rough path takes values in the step-Œp� tensor algebra but recall that there
is a unique lift to the step-N group for any N > Œp�.
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precisely, using the estimates for RDE solutions driven along Lip- respectively
linear vector fields (see [16] and [23]) it is clear that z remains in a ball of radius
only depending on M if kxkp-var;Œ0;t� �M . �

Let us make the following definitions: given .m� 1/-times differentiable vec-
tor fields V D .V1; : : : ; Vd / on Re, g 2 ˚m

kD0

�
Rd
�˝k and y 2 Re we write

E.V / .y; g/ WD
mX
kD1

X
i1;:::;ik
2f1;:::;dg

gk;i1;:::;ikVi1 : : : VikI .y/ :

(Here I denote the identity function on Re and vector fields identified with first
order differential operators.) In a similar spirit, given another sufficiently smooth
vector field W we first write

ŒVi1 ; Vi2 ; : : : Vik ; W � WD ŒVi1 ;
�
Vi2 ; : : :

�
Vik ; W � : : :

��
and then

(5.2) gk � ŒV; : : : ; V;W � jy0
WD

X
i1;:::;ik
2f1;:::;dg

gk;i1;:::;ik ŒVi1 ; Vi2 ; : : : Vik ; W � I .y0/

with the convention that g0 �Vk D Vk . The following result is an Euler-estimate for
the rough differential equation dy D V .y/ dx; a special case of [16, Th. 19] and
included for the reader’s convenience.

THEOREM 3 (Euler estimate for RDEs). Let p � 1 and fix Lip1-vector fields
V1; : : : ; Vd on Re. Let x be a weak geometric p-rough path whose p-variation is
controlled by !.s; t/D t � s so that

for all 0� s � t � 1 W kxs;tkp �M!.s; t/:

Then, for any integer m> p� 1 and all 0� s � t � 1,ˇ̌
ys;t �E.V /

�
ys; Sm .x/s;t

�ˇ̌
� C!.s; t/� with � D

mC 1

p
> 1

where C D C .M/, a constant which may also depend on N;p; y0 and V1; : : : ; Vd .

COROLLARY 2 (Localized Euler Estimates). With the assumptions of the pre-
vious theorem, consider

dz D yV .z/dx
where yV D

�
yV1; : : : ; yVd

�
is a collection of smooth (possibly unbounded) vector

fields, nonexplosive in the sense that jzj1IŒ0;1� � ' .M/ for some increasing func-
tion '. Then for all t 2 Œ0; 1�ˇ̌̌̌

z0;t �E�
yV
� �z0; Sm .x/0;t�ˇ̌̌̌� C .M/� t

mC1
p :
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Proof. We can replace yV by (compactly supported) vector fields zV such that
yV � zV on the ball B .0; ' .M//.

After this localization we apply the previous theorem. �

LEMMA 2. Let f be a smooth function on Re lifted to a smooth function on
Re˚Re�e˚Re by

Of
�
z1; z2; z3

�
D f

�
z3
�
:

Viewing vector fields as first order differential operators, we have

yVi1 : : :
yViN jz0

Of D ŒVi1 ; : : : ; ViN ; W � jy0
f:

As a consequence, for any element

Sm .x/0;t D
�

xk0;t W k 2 f0; 1; : : : ; mg
�
2Gm

�
Rd
�
;

we haveˇ̌̌̌
z3t �W jy0

�

mX
kD1

xk0;t � ŒV; : : : ; V;W �jy0

ˇ̌̌̌
�

ˇ̌̌̌
z0;t �E�

yV
� �z0; Sm .x/0;t�ˇ̌̌̌ :

Proof. Taylor expansion of the evolution equation of z3.t/ shows that

yVi1 : : :
yViN jz0

f D ŒVi1 ; : : : ; ViN ; W � jy0
f;

as required. �

COROLLARY 3. Fix a 2 Ty0
Re Š Re with jaj D 1. Let p > 1 and X be

a random geometric p-rough path whose p-variation is controlled by a (random)
constant times !.s; t/D t � s so that

kXk1=p-Höl;Œ0;1� � sup
0�s�t�1

kXs;tk = jt � sj1=p <1 a.s.

Assume that for some H 2 .0; 1/, we have Hp < 1C 1=m. Then, writing y for the
solution to the random RDE dy D V .y/ dX started at y0, and J for the Jacobian
of its flow, we have

P

�ˇ̌̌
aT J0 t .W .yt //�

mX
kD0

aT
�
Xk0;t � ŒV; : : : ; V;W �jy0

�ˇ̌̌
tD1=n

>
"

2
n�mH

�
! 0

with n!1.

Proof. From [14], Wiener’s characterization applies to geometric rough paths,
p > 1, and in particular

P
�
kXk1=p-Höl;Œ0;1=n� � 1

�
D o.1/ i.e.! 0 as n!1.
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We then bound

P

�ˇ̌̌
aT J0 t .W .yt //�

mX
kD0

aT
�
Xk0;t � ŒV; : : : ; V;W �jy0

�ˇ̌̌
tD1=n

>
"

2
n�mH

�
from above by

P

�ˇ̌̌
aT J0 t .W .yt //�

mX
kD0

aT
�

Xk0;t � ŒV; : : : ; V;W �jy0

�ˇ̌̌
tD1=n

>
"

2
n�mH I kXk1=p-Höl;Œ0;1=n� � 1

�
CPŒkXk1=p-Höl;Œ0;1=n� � 1� then, using jaj D 1 and the previous lemma,

� P

hˇ̌
z0;1=n�E

. yV /

�
z0; Sm.X/0;1=n

�ˇ̌
>
"

2
n�mH I kXk1=p-Höl;Œ0;1=n� � 1

i
C o.1/

� P

"
C.1/�

�
1

n

�mC1
p

>
"

2
n�mH

#
C o.1/ using the localized Euler estimates.

The probability of the (deterministic) event

C.1/

�
1

n

�mC1
p

>
"

2

�
1

n

�mH
will be zero for n large enough provided mC1

p
>mH which is what we assumed.

�

6. On Hörmander’s condition

Let V D .V1; : : : ; Vd / denote a collection of smooth vector fields defined in
a neighborhood of y0 2 Re. Given a multi-index I D .i1; : : : ; ik/ 2 f1; : : : ; dg

k ,
with length jI j D k, the vector field VI is defined by iterated Lie brackets

(6.1) VI WD ŒVi1 ; Vi2 ; : : : ; Vik �� ŒVi1 ; ŒVi2 ; : : : ; ŒVik�1
; Vik � : : : �:

If W is another smooth vector field defined in a neighborhood of y0 2 Re we
write10

a„ƒ‚…
2

�
Rd
�˝.k�1/

� ŒV; : : : ; V;W �„ ƒ‚ …
length k

WD

X
i1;:::;ik�1

2f1;:::;dg

ai1;:::;ik�1 ŒVi1 ; Vi2 ; : : : ; Vik�1
; W �:

Recall that the step-r free nilpotent group with d generators, Gr.Rd /, was realized
as a submanifold of the tensor algebra

T .r/
�
Rd
�
�˚

r
kD0

�
Rd
�˝k

:

10We introduced this notation already in the previous section; cf. (5.2).
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Definition 2. Given r 2 N we say that condition (H)r holds at y0 2 Re if

(6.2) span
˚
VI jy0

W jI j � r
	
D Ty0

Re Š Re:

Similarly, we say that (HT)r holds at y0 if the span of

(6.3)
�
�k�1 .g/ � ŒV; : : : ; V; Vi �„ ƒ‚ … jy0

length k

W k D 1; : : : ; r I i D 1; : : : ; d; g 2Gr�1.Rd /
�

equals Ty0
ReŠRe . Hörmander’s condition (H) is satisfied at y0 if and only if (H)r

holds for some r 2N. Similarly, we say that the Hörmander-type condition (HT)
is satisfied at y0 if and only if (HT)r holds for some r 2 N. (When no confusion
arises we omit reference to y0.)

PROPOSITION 4. For any fixed r 2N, the span of (6.2) equals the span of (6.3).
Consequently, Hörmander’s condition (H) at y0 is equivalent to the Hörmander-
type condition (HT) at y0.

Proof. We first make the trivial observation that (HT)r implies (H)r for any
r 2N. For the converse, fixing a multi-index I D .i1; : : : ; ik�1; ik/ of length k � r
and writing e1; : : : ed for the canonical basis of Rd define

gD g .t
1
; : : : ; tk�1/

D exp .t
1
ei1/˝ � � �˝ exp

�
tk�1eik�1

�
2 Gr�1.Rd /� T r�1

�
Rd
�
.

(Recall that T r�1
�
Rd
�

is a tensor algebra with multiplication ˝, exp is defined
by the usual series and the CBH formula shows that the so-defined g is indeed in
Gr�1.Rd / as claimed.) It follows that any

�k�1 .g/ �
�
V; : : : ; V; Vik

�„ ƒ‚ … jy0

length k

lies in the (HT)r -span i.e. the linear span of (6.3). Now, the (HT)r -span is a closed
linear subspace of Ty0

Re Š Re and so it is clear that any element of form

�k�1 .@˛g/ �
�
V; : : : ; V; Vik

�„ ƒ‚ … jy0

length k

where @˛ stands for any higher order partial derivative with respect to t1; : : : ; tk�1,
i.e.,

@˛ D

�
@

@t1

�˛1

: : :

�
@

@tk�1

�˛k�1

with ˛ 2 .N[f0g/k�1
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is also in the (HT)r -span for any t1; : : : ; tk�1 and, in particular, when evaluated at
t1 D � � � D tk�1 D 0. For the particular choice ˛ D .1; : : : ; 1/ we have

@k�1

@t1 : : : @tk�1

gjt1D0::::tk�1D0 D ei1 ˝ � � �˝ eik�1
DW h;

where h is an element of T r�1
�
Rd
�

with the only nonzero entry arising on the
.k� 1/th tensor level; i.e.,

�k�1 .h/D ei1 ˝ � � �˝ eik�1
:

Thus,
�k�1 .h/ �

�
V; : : : ; V; Vik

�„ ƒ‚ … jy0

length k

D
�
Vi1 ; : : : ; Vik�1

; Vik
�
jy0

is in our (HT)r - span. But this says precisely that, for any multi-index I of length
k � r , the bracket vector field evaluated at y0, i.e., VI jy0

is an element of our
(HT)r -span. �

7. Proof of main result

We are now in a position to give

Proof (of Theorem 1). We fix t 2 .0; T �. As usual it suffices to show a.s.
invertibility of

�t D
�D
DY it ;DY

j
t

E
H

�
i;jD1;:::;e

2 Re�e:

In terms of an ONB .hn/ of the Cameron-Martin space we can write

�t D
X
n

hDYt ; hniH˝hDYt ; hniH(7.1)

D

X
n

Z t

0

JX
t s .Vk .Ys// dh

k
n;s˝

Z t

0

JX
t s .Vl .Ys// dh

l
n;s:

(Summation over up-down indices is from here on tacitly assumed.) Invertibility
of � is equivalent to invertibility of the reduced covariance matrix

Ct WD
X
n

Z t

0

JX
0 s .Vk .Ys// dh

k
n;s˝

Z t

0

JX
0 s .Vl .Ys// dh

l
n;s

which has the advantage of being adapted, i.e. being � .Xs W s 2 Œ0; t �/-measurable.
We now assume that

P .detCt D 0/ > 0

and will see that this leads to a contradiction with Hörmander’s condition.
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Step 1. Let Ks be the random subspace of Ty0
Re Š Re. spanned by˚

JX
0 r .Vk .Yr// I r 2 Œ0; s� ; k D 1; : : : ; d

	
:

The subspace K0C D \s>0Ks is measurable with respect to the germ �-algebra
and by our “0-1 law” assumption, deterministic with probability one. A random
time is defined by

‚D inf fs 2 .0; t � W dimKs > dimK0Cg ^ t;

and we note that ‚> 0 a.s. For any vector v 2 Re we have

vTCtv D
X
n

ˇ̌̌̌Z t

0

vT JX
0 s

�
Vk.Ys//dh

k
n;s

ˇ̌̌̌2
:

Assuming vTCtv D 0 implies

8n W

Z t

0

vT JX
0 s .Vk .Ys// dh

k
n;s D 0

and hence, by our nondegeneracy condition on the Gaussian process

vT JX
0 s .Vk .Ys//D 0

for any s 2 Œ0; t � and any k D 1; : : : ; d which implies that v is orthogonal to Kt .
Therefore, K0C ¤ Re, otherwise Ks D Re for every s > 0 so that v must be zero,
which implies Ct is invertible a.s. in contradiction with our hypothesis.

Step 2. We saw that K0C is a deterministic and linear subspace of Re with
strict inclusion K0C ¤ Re In particular, there exists a deterministic vector z 2
Ren f0g which is orthogonal to K0C : We will show that z is orthogonal to all
vector fields and (suitable) brackets evaluated at y0, thereby contradicting the fact
that our vector fields satisfy Hörmander’s condition. By definition of ‚, K0C �Kt
for 0� t < ‚ and so for every k D 1; : : : d;

(7.2) zT JX
0 t .Vk .Yt //D 0 for t �‚:

Observe that, by evaluation at t D 0, this implies z ? spanfV1; : : : ; Vd g jy0
.

Step 3. We call an element g 2˚1
kD0

�
Rd
�˝k group-like if and only if for any

N 2 N,
.�0 .g/ ; : : : ; �N .g// 2GN

�
Rd
�
�˚

N
kD0

�
Rd
�˝k

:

We now keep k fixed and make induction hypothesis I.m� 1/:

for all g group-like, j �m� 1 W zT�j .g/ ŒV; : : : ; V; Vk�jy0
D 0:

To this end, take the shortest path 
n W Œ0; 1=n�! Rd such that Sm .
n/ equals
�1;:::;m .g/, the projection of g to the free step-m nilpotent group with d generators,
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denoted Gm
�
Rd
�
. Then

j
nj1-var;Œ0;1=n� D k�1;:::;m .g/kGm
�

Rd
� <1

and the scaled path

hn.t/D n�H
n.t/; H 2 .0; 1/

has length (over the interval Œ0; 1=n�) proportional to n�H which tends to 0 as
n!1. Our plan is to show that

(7.3) for all " > 0 W lim inf
n!1

P

�ˇ̌̌
zT J h

n

0 1=n

�
Vk

�
yh

n

1=n

��ˇ̌̌
< "=nmH

�
> 0

which, since the event involved is deterministic, really says thatˇ̌̌
nmH zT J h

n

0 1=n

�
Vk

�
yh

n

1=n

��ˇ̌̌
< "

holds true for all n� n0 ."/ large enough. Then, sending n!1, a Taylor expan-
sion and I .m� 1/ shows that the left-hand side converges toˇ̌̌̌

zT nmH�m
�
Sm

�
hn
��„ ƒ‚ …

D�m.g/

� ŒV; : : : ; V; Vk�jy0

ˇ̌̌̌
< "

and since " > 0 is arbitrary we showed I .m/ which completes the induction step.

Step 4. The only thing left to show is (7.3), that is, positivity of lim inf of

P

�ˇ̌̌
zT J h

n

0 1=n

�
Vk

�
yh

n

1=n

��ˇ̌̌
< "=nmH

�
� P

�ˇ̌̌
zT JX

0 � .Vk .y�//� z
T J h

n

0 �

�
Vk

�
yh

n

�

��ˇ̌̌
�D1=n

< "=nmH
�

�P .‚� 1=n/

and since ‚> 0 a.s. it is enough to show that

lim inf
n!1

P

�ˇ̌̌
zT JX

0 � .Vk .y�//� z
T J h

n

0 �

�
Vk

�
yh

n

�

��ˇ̌̌
�D1=n

< "=nmH
�
> 0:

Using I .m� 1/ + stochastic Taylor expansion (more precisely, Corollary 3) this
is equivalent to show positivity of lim inf of

P

�ˇ̌̌
zTXm0;� ŒV; : : : ; V; Vk�� z

T J h
n

0 �

�
Vk

�
yh

n

�

��ˇ̌̌
�D1=n

<
"

2
=nmH

�
:

(Let us remark that the assumptionHp<1C1=m needed to apply Corollary 3
is satisfied thanks to Condition 5, part (ii), and the remark that our induction stops
when m has reached r , the number of brackets needed in Hörmander’s condition.)
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Rewriting things, we need to show positivity of lim inf of

P

�
jnmH zT ŒV; : : : ; V; Vk�Xm0;1=n� z

T nmHJ h
n

0 1=n

�
Vk

�
yh

n

1=n

��
„ ƒ‚ …

!zT ŒV;:::;V;Vk��m.g/

j<
"

2

�

or, equivalently, that

lim inf
n!1

P

�ˇ̌̌
zT ŒV; : : : ; V; Vk�jy0

�
nmHXm0;1=n��m .g/

�ˇ̌̌
<
"

2

�
> 0:

But this is implied by Condition 5 and so the proof is finished. �

8. Examples

8.1. Brownian motion. For d -dimensional standard Brownian motion on Œ0;T �,
each component has covariance R.s; t/ D min.s; t/. As is well understood [26],
[13] one needs to add Lévy’s area process to obtain a geometric p-rough path,
any p > 2 (known in this context as Brownian rough path or Enhanced Brownian
motion). A solution to (1.2) in the rough path sense then precisely solves the
stochastic differential equation in Stratonovich form

dY D

dX
iD1

Vi .Y / ı dB
i :

Subject to Hörmander’s condition (H), Theorem 1 then shows that Yt D Yt .!/ has
a density for t > 0 which is of course well-known.

8.2. Fractional Brownian motion. The covariance of fractional Brownian mo-
tion with Hurst parameter H 2 .0; 1/ is given by

R.s; t/D
1

2

�
t2H C s2H � jt � sj2H

�
;

so that Brownian motion corresponds to H D 1=2. For H > 1=4 it admits a lift
to a Gaussian geometric p-rough path11, for any p > 1=H . Various constructions
are possible and references were already given in Section 3, see also the discussion
following Condition 2. As was detailed throughout Section 4, all conditions for-
mulated therein are satisfied for fBM and so Theorem 1 tells us that Yt D Yt .!/,
solution to the RDE driven by a multi-dimensional fBM with Hurst parameter
H > 1=4, has a density for all positive times provided the vector fields satisfy
Hörmander’s condition.

The novelty is of course the degenerate regime H < 1=2 with sample path
regularity worse than Brownian motion.

11As is well understood [26], for H � 1=4 fractional Brownian increments decorrelate too slowly
for stochastic area to exist and so there is no meaningful lift of fBM with H � 1=4 to a geometric
rough path.
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8.3. Ornstein-Uhlenbeck process. Let B be a standard d -dimensional Brow-
nian motion and define the centered Gaussian process X by Wiener-Itô integration,

X it D

Z t

0

e�.t�r/dB ir with i D 1; : : : ; d:

X satisfies the Itô differential equations, dXt D�Xtdt C dBt and is also a semi-
martingale. The conditions of Section 4 are readily checked (in essence, one uses
Xt � Bt at t ! 0C and the absence of Brownian bridge type degeneracy); only
Condition 5 deserves a detailed discussion which we present below. The conclusion
of Theorem 1 can then be stated by saying that the unique Stratonovich solution to
dY D

P
Vi .Y / ı dX

i admits a density for all positive times provided the vector
fields satisfy Hörmander’s condition (H).

To see that X satisfies Condition 5 we first remark that .X;B/ is easily seen to
satisfies the assumptions of Theorem 2. (In fact, one sees �D 1 and we are dealing
with geometric p-rough paths of Brownian regularity, i.e. p D 2C ".) Condition
(4.4) then holds with H D 1=2 W take s; t 2 Œ0; 1=n� and compute, with focus on
one nondiagonal entry,

RX�B.s; t/� EŒ .Xs �Bs/ .Xt �Bt /�

D

Z t

0

�
e�.s�r/� 1

� �
e�.t�r/� 1

�
dr DO

�
n�3

�
:

By Corollary 1 we see Condition 5 holds for the Ornstein-Uhlenbeck examples.

8.4. Brownian bridge. Let B be a d -dimensional standard Brownian motion.
Define the Brownian bridge returning to zero at time T by

XTt WD Bt �
t

T
BT for t 2 Œ0; T �:

Equivalently, one can define XT via the covariance

RT .s; t/Dmin.s; t/ .1�max .s; t/ =T / :

Clearly, XTt jtDT D 0 and trivially (take dY D dX) the conclusion of Theorem
1 cannot hold; this behavior is indeed ruled out by Condition 3 in Section 4. On
the other hand, we may consider XTC" restricted to Œ0; T � and in this case the
conditions in Section 4 are readily verified. (In particular, Condition 5 is checked
as in the Ornstein-Uhlenbeck example, by comparison of Xt with Bt for t !
0C.) It is worth remarking that Z WD XTC" stopped at time T is also a semi-
martingale; for instance, by writing

�
XTC"t W t � T

�
as strong solution to an Itô

differential equation with (well-behaved) drift (as long as t � T ). The conclusion
of Theorem 1 can then be stated by saying that the unique Stratonovich solution to
dY D

P
Vi .Y / ıdZ

i admits a density for all times t 2 .0; T � provided the vector
fields satisfy Hörmander’s condition (H).
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8.5. Further examples. Further examples (for instance, “fractional” versions
of the Brownian bridge and Ornstein-Uhlenbeck process) are readily constructed.
Generalizing Examples 8.2 and 8.3 one could consider Volterra processes [7], i.e.,
Gaussian process with representation Xt D

R t
0 K.t; s/dBs and derive sufficient

conditions on the kernel K which imply those of Section 4. Existence of a rough
path lift of X aside, one would need nondegeneracy of K and certain scaling
properties as t ! 0C but we shall not pursue this here. (In any case, there are
non-Volterra examples, such as the Brownian bridge returning to zero at .T C "/,
to which Theorem 1 applies.)
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