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Abstract

We introduce a model of random interlacements made of a countable collection
of doubly infinite paths on Zd , d � 3. A nonnegative parameter u measures how
many trajectories enter the picture. This model describes in the large N limit the
microscopic structure in the bulk, which arises when considering the disconnection
time of a discrete cylinder .Z=NZ/d�1 �Z by simple random walk, or the set of
points visited by simple random walk on the discrete torus .Z=NZ/d at times of
order uN d . In particular we study the percolative properties of the vacant set left
by the interlacement at level u, which is an infinite connected translation invariant
random subset of Zd . We introduce a critical value u� such that the vacant set
percolates for u < u� and does not percolate for u > u�. Our main results show
that u� is finite when d � 3 and strictly positive when d � 7.

0. Introduction

This article introduces a model of random interlacements consisting of a count-
able collection of doubly infinite trajectories on Zd , d � 3. A certain nonnegative
parameter u governs the amount of trajectories which enter the picture. The union
of the supports of these trajectories defines the interlacement at level u. It is an
infinite connected translation invariant random subset of Zd . Our main purpose is
to study whether this random “fabric” is “rainproof” or not, i.e. whether its com-
plement, the vacant set at level u, does not, or does contain an infinite connected
component. This issue is related to the broad question “how can random-walk paths
create interfaces in high dimension?”. The model we construct has a special interest
because in a heuristic sense it offers a microscopic description of the “texture in
the bulk” for two problems related to this broad question. One problem pertains to
the percolative properties in the large N limit of the vacant set left on the discrete
torus .Z=NZ/d , d � 3, by the trajectory of simple random walk with uniformly
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distributed starting point, up to times that are proportional to the number of sites
of the discrete torus; cf. [2]. The other problem pertains to the large N behavior
of the disconnection time of a discrete cylinder .Z=NZ/d�1 �Z, d � 3, by simple
random walk; cf. [6], [7], and also [19]. In this work we establish a phase transition:
for u < u�, the vacant set at level u does percolate, whereas for u > u�, it does not.
The critical value u� is shown to be nondegenerate (i.e. positive and finite), when
d � 7, and finite for all d � 3. The results presented here have triggered some
progress on the questions mentioned above; see in particular [15], [20], [21], [22],
and [25].

We now describe the model. We consider the spaces WC and W of infinite,
respectively doubly infinite, nearest neighbor paths on Zd , d � 3, that spend finite
time in bounded subsets of Zd . We denote with Px , x 2 Zd , the law on WC of
simple random walk starting at x. This is meaningful since the walk is transient
in view of the assumption d � 3. We write Xn; n � 0, or Xn; n 2 Z, for the
canonical coordinates on WC, or on W . We also consider the set of doubly infinite
trajectories modulo time-shifts

(0.1) W � DW=�, where w � w0, if w.�/D w0.� C k/, for some k 2 Z :

We denote with �� WW !W �, the canonical projection.
The random interlacements are governed by a Poisson point process ! DP

i�0 ı.w�i ;ui /
onW ��RC, with intensity measure �.dw�/du, where � is a certain

�-finite measure on W �, which we now describe. For any finite subset K of Zd ,
we denote with eK the equilibrium measure of K; see (1.6) for the definition, with
W 0
K the subset of W of trajectories entering K at time 0:

(0.2) W 0
K D fw 2W I w.0/ 2K and w.n/ …K, for all n < 0g ;

and with W �K D �
�.W 0

K/ the subset of W � of equivalence classes of trajectories
entering K. We show in Theorem 1.1 that there is a unique �-finite measure � on
W � such that

(0.3) 1W �K
� D �� ıQK , for any finite subset K of Zd ;

where QK is the finite measure supported on W 0
K such that

(0.4) i/ QK.X0 2 �/D eK.�/ ;

ii/ when eK.x/ > 0, conditionally on X0 D x, .Xn/n�0, and .X�n/n�0
are independent with respective distributions Px and Px conditioned
on fXn …K, for all n� 1g :

The motivation for such a requirement stems from Theorem 3.1 and (3.13) of [2],
where the large N limit of certain suitably defined excursions to a box of size
L � N , by simple random walk on .Z=NZ/d was investigated, and from the
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alternative characterization of QK given in (1.26); see also Remarks 1.2 (2) and
1.6 (3). Similar measures appear in [24] and [16, p. 61], following an outline
in [10]. The construction we give here bypasses projective limit arguments: we
instead glue together expressions for � read in “local charts”.

We denote with � the canonical space where ! varies, cf. (1.16), and with P

the law turning ! into a Poisson point process with intensity �.dw�/du. The law
P enjoys a number of remarkable properties. It is invariant under translation of
trajectories by a constant vector, and under time-reversal of trajectories; cf. Propo-
sition 1.3. Also when K is a finite subset of Zd , we introduce the random point
process on WC �RC:

(0.5) �K.!/D
P
i�0

ı.wi ;ui / 1fw
�
i 2W

�
Kg; if ! D

P
i�0

ı.w�
i
;ui /

;

where for w�i 2 WK , wi denotes the unique trajectory in WC starting at time 0,
where w�i enters K, and following from then on w�i step-by-step; cf. (1.18) for the
precise definition. We show in Proposition 1.3 that

(0.6) �K is a Poisson point process with intensity PeK .dw/du;

where PeK D
P
x eK.x/Px . Further the point processes �K , as K varies, satisfy

a compatibility condition; cf. (1.21), (1.46).
It may be worth pointing out that much of the above constructs, except for

the aspects related to translation invariance, can be carried out in the more general
set-up of a transient random walk attached to an infinite locally finite connected
graph with positive weights along its edges, in place of a simple random walk on
Zd , d � 3; cf. Remark 1.4.

The interlacement at level u is defined as

(0.7) Iu.!/D
[
ui�u

w�i .Z/; if ! D
P
i�0

ı.w�
i
;ui /
2� ;

where w�i .Z/ denotes the range of any w with ��.w/ D w�i . The vacant set at
level u is then

(0.8) Vu.!/D ZdnIu.!/ :

Clearly Iu increases with u, whereas Vu decreases with u. Also one can see that
the restriction of Iu to K is determined by �K0.dw � Œ0; u�/, when K � K 0 are
finite subsets of Zd ; cf. (1.54). Together with (0.6) one finds that the restriction of
Iu to K can be visualized as the trace on K of a Poisson cloud of finite trajectories.
Its intensity measure is proportional to the law of a simple random walk run up
to the last visit to K, with initial distribution the harmonic measure of K viewed
from infinity, i.e. eK normalized by its total mass cap.K/, the capacity of K, and
the proportionality factor equals u cap.K/; cf. Remark 1.6 (3). We also show in
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Corollary 2.3 and Proposition 1.5 that

P-a.s., Iu is an infinite connected subset, and(0.9)

PŒVu �K�D expf�u cap.K/g ;(0.10)

for u > 0, and K � Zd , finite. Formula (0.10) characterizes the law of V� ; see
Remark 2.2 (2). As a special case, cf. (1.58), (1.59), one finds that for x; y 2 Zd ,

(0.11) PŒx 2Vu�D exp
n
�

u

g.0/

o
; PŒfx; yg�Vu�D exp

n
�

2u

g.0/Cg.y � x/

o
;

where g.y � x/ denotes the Green function; cf. (1.5). The identities in (0.11)
are in essence formulas (2.26) and (3.6) of Brummelhuis-Hilhorst [4] in their the-
oretical physics article on the covering of a periodic lattice by a random walk;
see Remark 1.6 (5). They display the presence of long range dependence in the
random set Vu, with a correlation of the events fx 2 Vug and fy 2 Vug decaying
as c.u/jx�yj�.d�2/, when jx�yj tends to infinity.

As mentioned above, the main object of this work is to investigate the presence
or absence of an infinite connected component in Vu. We establish in Theorem 2.1
the ergodicity of the (properly defined) distribution of the random set Vu, from
which easily follows a zero-one law for the probability of occurrence of an infinite
connected component in Vu. It is then straightforward to see that this probability
equals one precisely when

(0.12) �.u/
def
D PŒ0 belongs to an infinite connected component of Vu� > 0 :

The function �.�/ is nonincreasing and just as in the case of Bernoulli percolation,
cf. [8], we can introduce the critical value:

(0.13) u� D inffu� 0; �.u/D 0g 2 Œ0;1� :

The main results of this article concern the nondegeneracy of u�. We show in
Theorem 3.5 that Vu does not percolate for large u; i.e.,

(0.14) u� <1; for d � 3 ;

and in Theorem 4.3 that when d � 7, Vu percolates for small u > 0; i.e.,

(0.15) u� > 0; when d � 7 :

Subsequent developments initiated by the present article respectively relating ran-
dom interlacements on ZdC1 and on Zd to the local picture left by simple random
walk on .Z=NZ/d�Z run up to times of orderN 2d , and random walk on .Z=NZ/d

run up to times of order N d can be found in [20], [25]. In this light the results
presented here with their proofs also have a bearing on the problems investigated
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in [6], [7], [2]. In particular (0.14) offers evidence that when d � 2 the laws of
TN =N

2d are tight, if TN denotes the disconnection time of .Z=NZ/d �Z studied
in [6], [7]. This signals that one should be able to remove the logarithmic terms
present in the (very general) upper bound of [19] and bypass the strategy based on
the domination of TN by the cover time of .Z=NZ/d � f0g, by relying instead on
the emergence of a nonpercolative local picture of the vacant set left by random
walk. These heuristic considerations can be made precise and lead to the above
claimed tightness; see [21]. Similarly (0.15) offers evidence that the lower bound
on TN in [7], which shows the tightness of N 2d=TN when d � 17, should hold
as soon as d � 6 (and in fact for all d � 2, in view of the recent work [15]).
Analogously in the context of [2], we see that (0.14), (0.15), and [15] give support
for the typical absence for large N of a giant component in the vacant set left by
simple random walk on .Z=NZ/d , d � 3, run up to time uN d , if u is large, and
for its typical presence when u is chosen small.

There are many natural questions left untouched by the present article. Is
there a unique infinite component when Vu percolates? (See Remark 2.2 (3).) The
answer is affirmative, as shown in [22]. Is u� > 0, when 3� d � 6, as suggested by
simulations? This is indeed the case; see [15]. However it is presently unknown
whether the vacant set percolates at criticality, i.e. when uD u�, or what the large
d behavior of u� is. We refer to Remark 4.4 (3) for further open problems.

We will now comment on the proofs of (0.14) and (0.15). Most of the work
goes into the proof of (0.14). This is due to the long range dependence in the model
and the fact highlighted by (0.10) that PŒVu�K� does not decay exponentially with
jKj. This feature creates a very serious obstruction to the Peierls-type argument
commonly met in Bernoulli percolation, see [8, p. 16], when one attempts to show
that Vu does not percolate for large u. We instead use a renormalization technique
to prove (0.14) and consider a sequence of functions on RC:

(0.16) pn.u/“D”P-probability that Vu contains a path from a given block
of side-length Ln to the complement of its Ln-neighborhood;

(cf. (3.8) for the precise definition), where Ln is a rapidly growing sequence of
length scales, cf. (3.1), (3.2),

(0.17) Ln � L
.1Ca/n

0 ; n� 0; with aD
1

100d
:

The key control appears in Proposition 3.1, where we prove that for L0 � c, u0 >
c.L0/, and an increasing but bounded sequence un depending on L0; u0, cf. (3.9),

(0.18) pn.un/ �!
n!1

0 :

This immediately implies that �.u/D 0, for u� u1 D supun.<1/, and proves
(0.14). The principal difficulty in proving (0.18) resides in the derivation of a
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suitable recurrence relation between pn.�/ and pnC1.�/, cf. (3.52), due to the long
range dependence in the model. In a suitable sense we use a “sprinkling tech-
nique”, where more independent paths are thrown in, so as to dominate long range
dependence. This is reflected in the fact that we evaluate pn.�/ at an increasing but
convergent sequence un in the key control (3.10), (a more quantitative version of
(0.18)). Incidentally, the sequence of length scales appearing in (0.17) corresponds
to the choice of a small a, so as to control the combinatorial complexity involved
in selecting boxes of scale Ln within a given box of scale LnC1, see (3.13), but
also to the choice of fast enough growth, so as to discard paths making more than
a certain finite number of excursions at distance of order LnC1; see below (3.25),
and (3.55), (3.65).

The proof of (0.15) in Theorem 4.3 employs a similar albeit simpler renor-
malization strategy. One can instead employ a Peierls-type argument to show that
Vu percolates for small u > 0, when d is sufficiently large, very much in the spirit
of Section 2 of [2], or Section 1 of [7]. It is based on an exponential bound on
PŒIu � A�, for A finite subset of Z2 (where Z2 is viewed as a subset of Zd );
cf. (2.37) in Theorem 2.4. This estimate mirrors the exponential controls derived
in Theorem 2.1 of [2] and Theorem 1.2 of [2]. This strategy leads to a proof of
(0.15) when:

(0.19) 7
� 2
d
C

�
1�

2

d

�
q.d � 2/

�
< 1 ;

with q.�/ the return probability to the origin of simple random walk on Z� . In
practice this means d � 18; cf. Remark 2.5 (3). The technique we use works
instead as soon as d � 7. It also shows, just as the Peierls-type argument does
when (0.19) holds, the existence of an infinite connected cluster in Vu \Z2, for
small u > 0.

Let us now describe the organization of the article.
In Section 1 we construct the model of random interlacements. The main

task lies in the construction of the �-finite measure � entering the intensity of the
Poisson point process we are after. This is done in Theorem 1.1. Basic properties of
the model appear in Proposition 1.3, whereas Proposition 1.5 shows (0.10), (0.11).

Section 2 shows the ergodicity of the law of Vu, and the zero-one law for the
probability that Vu percolates in Theorem 2.1. We also prove (0.9) in Corollary 2.3.
In Theorem 2.4 we derive exponential bounds that provide further links of the
present model to [2], [7].

Section 3 is devoted to the proof of (0.14) in Theorem 3.5. The main renor-
malization step is contained in Proposition 3.1.

Section 4 shows (0.15) in Theorem 4.3. The principal step appears in Propo-
sition 4.1.
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Finally let us state our convention regarding constants. Throughout the text c
and c0 denote positive constants which solely depend on d , with values changing
from place to place. The numbered constants c0; c1; : : : are fixed and refer to the
value at their first appearance in the text. Dependence of constants on additional
parameters appears in the notation. For instance c.L0; u0/ denotes a positive con-
stant depending on d;L0; u0.

1. Basic model and some first properties

The main object of this section is to introduce the basic model and present
some of its properties. As explained in the introduction the basic model comes
as a Poisson point process on a suitable state space. The main task resides in
the construction of the intensity measure of this point process. This is done in
Theorem 1.1. We then derive some of its properties in Proposition 1.3 as well as
some of the properties of the vacant set left by the interlacement at level u, cf. (0.9),
in Proposition 1.5. We first begin with some notation.

We write NDf0; 1; 2; : : : g for the set of natural numbers. Given a nonnegative
real number a, we write Œa� for the integer part of a, and for real numbers b; c,
we write b ^ c and b _ c for the respective minimum and maximum of b and
c. We denote with j � j and j � j1 the Euclidean and `1-distances on Zd . We
write B.x; r/ for the closed j � j1-ball with center x in Zd and radius r � 0, and
S.x; r/ for the corresponding j � j1-sphere with center x and radius r (it is empty
when r is not an integer). We say that x; y in Zd are neighbors, respectively
�-neighbors, when jx�yjD 1, respectively jx�yj1D 1. The notions of connected
and �-connected subsets are defined accordingly, and so are the notions of nearest
neighbor or �-nearest neighbor paths in Zd . For A;B subsets in Zd , we denote
by ACB the subset of elements of the form xC y, with x 2 A; y 2 B and with
d.A;B/ D inffjx � yj1; x 2 A; y 2 Bg, the j � j1-distance from A to B . When
U is a subset of Zd , we let jU j stand for the cardinality of U , @U for the exterior
boundary of U and @intU for the interior boundary of U :

(1.1) @U Dfx 2U c I 9y 2U; jx�yjD1g; @intU Dfx 2U I 9y 2U
c ; jx�yjD1g:

We write U �� Zd to express U as a finite subset of Zd . In what follows, unless
otherwise explicitly mentioned, we tacitly assume that d � 3.

We consider WC and W the spaces of trajectories:

(1.2) WC D
˚
w 2 .Zd /NI jw.nC 1/�w.n/j D 1; for all n� 0, and
lim
n
jw.n/j D1

	
;

W D
˚
w 2 .Zd /ZI jw.nC 1/�w.n/j D 1; for all n 2 Z, and

lim
jnj!1

jw.n/j D1
	
:
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We denote by Xn; n � 0, and Xn, n 2 Z, the respective canonical coordinates on
WC and W , and write �n, n� 0, and �n, n 2 Z, for the respective canonical shifts.
We let WC and W stand for the � -fields on WC and W generated by the canonical
coordinates.

Given U � Zd , w 2 WC, we denote with HU .w/, TU .w/, zHU .w/, the en-
trance time in U , the exit time from U , and the hitting time of U for the trajectoryw:

(1.3) HU .w/D inffn� 0IXn.w/ 2 U g; TU .w/D inffn� 0IXn.w/ … U g ;

zHU .w/D inffn� 1IXn.w/ 2 U g :

We often drop “w” from the notation and write Hx; Tx; zHx , when U D fxg. Also
when w 2W , we define HU .w/ and TU .w/ in a similar fashion replacing “n� 0”
with “n 2 Z” in (1.3), and zHU .w/ just as in (1.3). For K � U in Zd , w 2WC, we
consider Rk;Dk; k � 1, the successive returns to K and departures from U of the
trajectory w:

(1.4) R1 DHK ; D1 D TU ı �HK CHK ; and for k � 1 ;

RkC1 DR1 ı �Dk CDk; DkC1 DD1 ı �Dk CDk ;

so that 0�R1 �D1 � � � � �Rk �Dk � � � � �1.
When X is an integrable random variable and A an event, we routinely write

EŒX;A� in place of EŒX 1A� in what follows, with E referring here to the relevant
expectation. Given x 2 Zd , we write Px for the restriction to .WC;WC/ of the
canonical law of simple random walk on Zd starting at x. Recall that d � 3, and
WC has full measure under the canonical law. When � is a positive measure on
Zd , we write P� for the measure

P
x2Zd �.x/Px . We denote with g.�; �/ the Green

function of the walk:

(1.5) g.x; y/D
P
n�0

PxŒXn D y�; x; y 2 Zd ;

and g.y/ D g.0; y/ so that g.x; y/ D g.y � x/, thanks to translation invariance.
Given K �� Zd , we write eK for the equilibrium measure of K, cap.K/ for the
capacity of K, so that, cf. Chapter 2, Section 2 of [11]:

eK.x/DPxŒ zHK D1�; x 2K ;(1.6)

D 0; if x …K

(note that eK is supported on @intK/,

(1.7) cap.K/D eK.Z
d /
�
D

P
x2Zd

eK.x/
�
;
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and

(1.8) PxŒHK <1�D
Z
K

g.x; y/ eK.dy/
�
D
P
y2K

g.x; y/ eK.y/
�
; for x 2 Zd :

The following bounds on PxŒHK <1�, x 2 Zd , will be useful:

(1.9)
P
y2K

g.x; y/= sup
z2K

� P
y2K

g.z; y/
�

� PxŒHK <1��
P
y2K

g.x; y/= inf
z2K

� P
y2K

g.z; y/
�
:

They classically follow from the L1.Px/-convergence of the bounded martingale
Mn D

P
y2K g.Xn^HK ; y/, n� 0, towards 1fHK <1g

P
y2K g.XHK ; y/.

The state space of the Poisson point process we wish to define involves the
quotient space W � of equivalence classes of trajectories in W modulo time-shift;
cf. (0.2). We recall that �� stands for the canonical projection on W �. We endow
W � with the canonical � -field

(1.10) W� D fA�W �I .��/�1.A/ 2Wg ;

which is the largest �-algebra such that .W;W/
��

�! .W �;W�/ is measurable.
When K �� Zd , we consider

(1.11) WK D fw 2W I Xn.w/ 2K; for some n 2 Zg ;

the subset of W of trajectories entering K. We can write WK 2W as a countable
partition into measurable sets (see below (1.3) for the notation):

(1.12) WK D
[
n2Z

W n
K ; where W n

K D fw 2W I HK.w/D ng :

We then introduce

(1.13) W �K D �
�.WK/

�
D ��.W 0

K/
�
;

as well as the map
(1.14)
sK WW

�
K!W; with sK.w�/D w0 the unique element of W 0

K with ��.w0/D w�:

Note that sK.W �K /DW
0
K and sK is a section of �� over W �K ; i.e., �� ı sK is the

identity map on W �K . It is then straightforward to check that for any K �� Zd ,

(1.15) W �K 2W� and the trace of W� on W �K coincides with s�1K .W/ :

There is no natural way to globally identify W � � Z with W , but the maps sK
enable us to identify W �K with W 0

K and W �K �Z with WK . In a slightly pedantic
way �� W .W;W/! .W �;W�/ endowed with the transformations �n, n 2 Z, on
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the fiber of �� could be viewed as a “principal fiber-bundle with group Z”; cf. [18,
p. 346]. The construction of the key � -finite measure � in Theorem 1.1 will involve
checking compatibility and patching up expressions for � “read in the local chart
sK”, as K varies over finite subsets of Zd .

We further need to introduce several spaces of point measures routinely used
in what follows. In particular we consider � and M the spaces of point measures
on W � �RC and WC �RC:

(1.16) �D
n
! D

P
i�0

ı.w�
i
;ui /

, with .w�i ; ui / 2W
� �RC; i � 0, and

!.W �K � Œ0; u�/ <1, for any K �� Zd ; u� 0
o
I

(1.17)
M D

n
�D

P
i2I

ı.wi ;ui /, with I a variable finite or infinite subset of N,

.wi ; ui / 2WC �RC,for i 2 I , and �.WC � Œ0; u�/ <1, for u� 0
o
;

We endow � with the �-algebra A generated by the evaluation maps !! !.D/,
where D runs over W� ˝B.RC/, cf. (1.10). Likewise we endow M with the
�-algebra M generated by the evaluation maps �! �.D/, where D runs over
WC˝B.RC/; cf. below (1.2). Given K �� Zd , we then define the measurable
maps �K W�!M and ‚K WM !M via:

(1.18) �K.!/.f /D

Z
W �K�RC

f .sK.w
�/C; u/ !.dw

�; du/; for ! 2� ;

and f nonnegative measurable on WC �RC;

where for w 2W , wC 2WC denotes the restriction of w to N, so that sK.w�/C
starts at time 0 where w� 2W �K entersK, and follows from then on w� step-by-step,
as well as

(1.19) ‚K.�/.f /D

Z
fHK<1g�RC

f .�HK .w/; u/�.dw; du/; for � 2M ;

and f as in (1.18) :

In other words,

‚K.�/D
X
i2I

ı.�HK .wi /;ui /
1fHK.wi / <1g;

when � D
P
i2I ı.wi ;ui / 2 M . Given K �� Zd , u � 0, we will also consider

the measurable function on � with values in the set of finite point measures on
.WC;WC/:

(1.20) �K;u.!/.dw/D �K.!/.dw� Œ0; u�/; for ! 2� :
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We record for later use the straightforward identities valid for K �K 0 �� Zd :

(1.21) i/ ‚K ı�K0 D �K ;

ii/ ‚K ı‚K0 D‚K :

We are now going to construct the �-finite measure � on .W �;W�/ which enters
the intensity of the Poisson point process we wish to define. For K �� Zd , we
write TK for the countable set of finite nearest-neighbor trajectories starting and
ending in the support of eK :
(1.22)

TK D f� D
�
�.n/

�
0�n�N�

I N� � 0; j�.nC 1/� �.n/j D 1; for 0� n < N� ;

and �.0/; �.N� / 2 Supp eKg :

If x 2 Supp eK , we also denote with PKx the probability on WC governing the walk
conditioned not to hit K:

(1.23) PKx Œ��D PxŒ � j
zHK D1� :

We are now ready to state

THEOREM 1.1. For K �� Zd , denote with QK the finite measure on W ,
supported on W 0

K , such that for any A;B 2WC, x 2 Zd :

(1.24) QK
�
.X�n/n�0 2 A; X0 D x; .Xn/n�0 2 B�D P

K
x ŒA� eK.x/ PxŒB� :

There is a unique � -finite measure � on .W �;W�/ such that:

(1.25) 1W �K
� D �� ıQK ; for anyK �� Zd :

Further, letting LK.w/ D supfn � 0I Xn.w/ 2 Kg; w 2 W 0
K , stand for the time

of the last visit to K of w, one sees that the law under QK of .Xn/0�n�LK is
supported on TK , and for A;B 2WC, � 2 TK ,

QK
�
.X�n/n�0 2 A; .X/0�n�LK D �; .XnCLK /n�0 2 B

�(1.26)

D PK�.0/ŒA� eK
�
�.0/

�
P�.0/ŒXn D �.n/; 0� n�N� � eK

�
�.N� /

�
PK�.N� /ŒB� :

� is invariant under the time reversal involution on W �, w�! {w�,(1.27)

where {w� D ��. {w/, with ��.w/D w� and {w.n/D w.�n/, for n 2 Z :

� is invariant under the translations on W �: w�! w�C x, x 2 Zd ,(1.28)

where w�C x D ��.wC x/, with ��.w/D w� :

Proof. We begin with the proof of the existence and uniqueness of �. Since
W �D

S
m�0 W

�
Km

, where Km " Zd , with Km finite, for m� 0, the uniqueness of
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� satisfying (1.25) is immediate. As for the existence of �, denote for K �� Zd

with �K the finite measure supported on W �K D �
�.W 0

K/ on the right-hand side
of (1.25):

(1.29) �K D �
�
ıQK :

The existence of � will follow once we show that for K �K 0 �� Zd ,

1W �K
�K0 D �K :

This in turn will follow once we prove that:

(1.30) .sK ı s
�1
K0 / ı

�
1sK0 .W �K/

QK0
�
DQK ;

where s�1K0 denotes the restriction of �� to W 0
K0 . Indeed it suffices simply to take

the image of both sides under ��. We now write sK0.W �K / as the at most countable
partition into measurable sets:

(1.31) sK0.W
�
K /D

[
�2†

W 0
K0;� ;

where † denotes the set of finite nearest-neighbor trajectories � D
�
�.n/

�
0�n�N�

,
with �.0/ 2K 0, �.n/ …K for n < N� , and �.N� / 2K, and

(1.32) W 0
K0;� D fw 2W

0
K0 I Xn.w/D �.n/; for 0� n�N�g :

One then has the identity:

(1.33) sK ı s
�1
K0 .w/D w.� CN� /D �N� .w/; for w 2W 0

K0;� :

As a result, denoting with Q the left-hand side of (1.30), we find that

(1.34) QD
P
�2†

�N� ı
�
1W 0

K0;�

QK0
�
:

Thus given an arbitrary collection Ai , i 2 Z, of subsets of Zd , we see that

(1.35)

QŒXi 2 Ai ; i 2 Z�D
P
�2†

QK0 ŒXiCN� 2 Ai ; i 2 Z; Xn D �.n/; 0� n�N� �

D
P
�2†

QK0 ŒXi 2 Ai�N� ; i 2 Z; Xn D �.n/; 0� n�N� �

.1:6/;.1:24/
D

P
�2†

P
x2Supp.eK0 /

PK
0

x ŒXm 2 A�m�N� ; m� 0� PxŒ
zHK0 D1�

PxŒXn 2 An�N� ; n� 0;Xn D �.n/; 0� n�N� �

.1:23/;Markov
D

P
�2†

P
x2Supp.eK0 /

PxŒXm 2 A�m�N� ; m� 0;
zHK0 D1�

PxŒXn D �.n/ 2 An�N� ; 0� n�N� � P�.N� /ŒXn 2 An; n� 0� :
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It follows from the reversibility of the walk that for y 2K:

P
� W�.N� /Dy

P
x2Supp.eK0 /

PxŒXm 2 A�m�N� ; m� 0;
zHK0 D1�(1.36)

PxŒXn D �.n/ 2 An�N� ; 0� n�N� �

D
P

x2Supp.eK0 /

P
�W�.N�/Dy
�.0/Dx

PxŒXm 2 A�m�N� ; m� 0;
zHK0 D1�

Py ŒXn D �.N� �n/ 2 A�n; 0� n�N� �

Markov
D

P
x2Supp.eK0 /

P
�W�.N�/Dy
�.0/Dx

Py
�
Xn D �.N� �n/ 2 A�n; 0� n�N� ;

Xn 2 A�n; n�N� ; zHK0 ı �N� D1
�

D
P

x2Supp.eK0 /
Py Œ zHK D1; the last visit to K 0 occurs at x, and

Xn 2 A�n, for n� 0�

D Py Œ zHK D1; Xn 2 A�n; n� 0� :

Inserting this identity in the last line of (1.35) we find that:
(1.37)
QŒXi 2 Ai ; i 2 Z�D

P
y2K

Py Œ zHK D1; Xn 2 A�n; n� 0� Py ŒXn 2 An; n� 0�

D
P

y2Supp.eK/
PKy ŒXn 2 A�n; n� 0� eK.y/ Py ŒXn 2 An; n� 0�

.1:24/
D QK ŒXn 2 An; n 2 Z� :

This proves that (1.30) holds and thus concludes the proof of the existence of �
satisfying (1.25), which is automatically � -finite.

We now turn to the proof of (1.26). We consider �.n/; 0� n�N , some finite
sequence in Zd . Observe that QK Œ.Xn/0�n�LK D �� vanishes unless � is nearest
neighbor and �.N / 2K. Moreover when this is the case it follows from the use of
the Markov property at time N that:

(1.38) QK Œ.Xn/0�n�LK D ��DQK ŒXn D �.n/; 0� n�N;
zHK ı �N D1�

.1:24/;.1:6/
D

Markov
eK
�
�.0/

�
P�.0/ŒXn D �.n/; 0� n�N� eK

�
�.N /

�
:

This shows that the law of .Xn/0�n�LK under QK is supported by TK . Also
repeating the argument which yielded (1.38), we see that for A;B 2WC, � 2TK



2052 ALAIN-SOL SZNITMAN

the left-hand side of (1.26) equals (writing N in place of N� for simplicity):

QK
�
.X�n/n�0 2 A; Xn D �.n/; 0� n�N; �

�1
N

�
f zHK D1g\ fXn 2 B; n� 0g

��
.1:24/
D PK

�.0/
ŒA� eK

�
�.0/

�
P�.0/

�
Xn D �.n/; 0� n�N;

��1N
�
f zHK D1g\ fXn 2 B; n� 0g

��
Markov
D

.1:6/;.1:23/
PK
�.0/

ŒA� eK
�
�.0/

�
P�.0/ŒXn D �.n/; 0� n�N� eK

�
�.N /

�
PK
�.N/

ŒB� ;

and this proves (1.26).
To prove (1.27), observe that for K �� Zd , w�! {w� leaves W �K invariant

and Xn
�
sK. {w

�/
�
DXLK�n

�
sK.w

�/
�
, for n 2 Z, w� 2W �K . Denoting { the image

under w�! {w� of a measure  on W �, we find for C 2W

(1.39) sK ı .1W �K
L�/.C /D sK ı

�
.1W �K

�/L
�
.C /D sK ı .1W �K

�/
�
.XLK�:/ 2 C

�
.1:25/
D QK

�
.XLK�:/ 2 C

�
:

Hence with (1.26), A;B 2WC, � 2TK , and C denotes the event in the probability
in the first line of (1.26); writing N in place of N� , for simplicity, we find that
(1.40)
sK ı .1W �K

L�/.C /DQK
�
.X�n/n�0 2 B;

.Xn/0�n�LK D �.N � :/; .XnCLK /n�0 2 A
� .1:26/
D PK�.N/ŒB� eK

�
�.N /

�
P�.N/Œ.Xn/0�n�N D �.N �n/� eK

�
�.0/

�
PK�.0/ŒA�

reversibility
D PK�.0/ŒA� eK

�
�.0/

�
P�.0/ŒXn D �.n/; 0� n�N� eK

�
�.N /

�
PK�.N/ŒB�DQK.C /

.1:25/
D

sK ı .1W �K
�/.C / :

It now readily follows that sK ı .1W �K L�/D sK ı .1W �K�/ and hence 1W �K L� D 1W �K�
for any K �� Zd , whence L� D �. This proves (1.27).

Finally for the proof of (1.28), we note that for x 2 Zd , K �� Zd , w� !
w�C x maps W �K one-to-one onto W �KCx , and sK.w�C x/D sK�x.w�/C x, for
w� 2W �K�x . Denoting by x the image under w�! w�C x of a measure  on
W �, we see that for C 2W, we have
(1.41)
sK ı .1W �K

�x/.C / D sK ı
�
.1W �K�x

�/x
�
.C /DsK�x ı .1W �K�x

�/
�
.Xn/C x 2 C

�
.1:25/
D QK�x

�
.Xn/C x 2 C

�
:
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Hence with A;B 2WC, y 2 Zd and C denoting the event in the left-hand side of
(1.24), where x is replaced by y, we find that:

sK ı.1W ��
x/.C /DQK�x

�
.X�n/n�0 2 A� x; X0 D y � x; .Xn/n�0 2 B � x

�
.1:24/
D PK�xy�x ŒA� x� eK�x.y � x/Py�xŒB � x�DQK ŒC �

.1:25/
D sK ı.1W �K

�/.C / ;

using (1.24) and translation invariance in the third equality. This readily implies
that �x D � and concludes the proof of Theorem 1.1. �

Remark 1.2. 1) Let us say a few words on why the quotient space W � is better
suited for our purpose than W . One can of course use the sections sK , with K
growing along an increasing sequence of finite sets exhausting Zd to construct “by
patching” a � -finite measure on .W;W/ projecting down to � under ��. However
there is no measure on .W;W/ invariant under translation of trajectories by constant
vectors projecting down to �. Indeed if such a measure � existed then for any
K �� Zd we would have

cap.K/D �.W �K /D �.WK/� �.X0 2K/D �.X0 D 0/ jKj ;

using translation invariance in the last equality. However capacity grows more
slowly than volume when K is of the form B.0;L/, with L tending to infinity;
cf. below (3.24). This would imply that �.X0 D 0/D 0 and hence � D 0, due to
translation invariance, thus leading to a contradiction. More obstructions can be
brought to light, which make measures on .W;W/ projecting down to � definitely
less natural than �.

2) The expression in the right-hand member of (1.38) when K D B.0;L/

coincides up to a normalization factor with the expression (3.13) of [2] governing
the limit law of certain properly recentered excursions of a simple random walk on
.Z=NZ/d to a box of side-length 2L; see Theorem 3.1 of [2]. This limiting result
played a key role in the control of fluctuations of certain averages; cf. (4.43) and
Proposition 4.2. of [2]. �

We will now endow the space .�;A/, cf. (1.16), with a probability measure
and thereby complete the construction of the basic model of interlacements. To this
end we note that the infinite measure �.dw�/du on W � �RC gives finite mass to
the sets W �K � Œ0; u�, for K �� Zd and u � 0. We can thus construct on .�;A/
the law lP of a Poisson point measure with intensity �.dw�/du. We denote by lEŒ��
the corresponding expectation. The law P is for instance characterized by the fact
that, cf. [14, p. 129],
(1.42)

E

h
exp

n
�

Z
W ��RC

f !.dw�; du/
oi
Dexp

n
�

Z
W ��RC

.1� e�f / �.dw�/du
o
;

for any nonnegative W�˝B.RC/-measurable function f :



2054 ALAIN-SOL SZNITMAN

In a similar fashion we can also realize on .M;M/, cf. (1.17), the law of the Poisson
point measure on WC �RC with intensity PeK .dw/du, when K �� Zd . We call
it PK and write EK Œ�� for the corresponding expectation. It is characterized by the
fact that:
(1.43)

EK

h
exp

n
�

Z
WC�RC

f �.dw; du/
oi
Dexp

n
�

Z
WC�RC

.1� e�f / PeK .dw/du
o
;

for any nonnegative WC˝B.RC/-measurable function f :

We will now collect some straightforward properties of the laws P and PK . Given
! D

P
i�0 ı.w�i ;ui /

, we write

(1.44) {! D
P
i�0

ı. {wi� ;ui / 2� ;

�x ! D
P
i�0

ı.w�
i
�x;ui /

2�; for x 2 Zd :

We also recall the notation from (1.18), (1.19).

PROPOSITION 1.3 (K �K 0 �� Zd ).

PK is the law of �K under lP :(1.45)

‚K ıPK0 D PK :(1.46)

P is invariant under !! {! (time-reversal invariance) :(1.47)

P is invariant under �x for any x 2 Zd (translation invariance) :(1.48)

Proof. We begin with (1.45), and note that �K due to (1.18) is distributed as
a Poisson point process on WC �RC with intensity measure .dw du/ such that
for f as in (1.18)

(1.49)
Z
WC�RC

f .dw; du/D

Z
W �K�RC

f .sK.w
�/C; u/ �.dw

�/du

.1:25/;.1:24/
D

Z
WC�RC

f .w; u/PeK .dw/du :

This shows that the law of �K coincides with PK . Then (1.46) immediately follows
from (1.21) i) and (1.45), whereas (1.47), (1.48) respectively follow from (1.27),
(1.28). �

Remark 1.4. The constructions we have made here in the case of a simple
random walk on Zd , d � 3, can be straightforwardly generalized to the case of an
infinite locally finite connected graph � D .G;E/ with vertex setG and (undirected)
edge set E, endowed with positive weights

(1.50) �.e/ > 0; e 2 E ;
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so that the corresponding nearest-neighbor walk on G with transition probability

(1.51) px;y D
�.fx; yg/P

zWfx;zg2E

�.fx; zg/
; if fx; yg 2 E ;

D 0; otherwise ;

is transient. This walk is reversible with respect to the measure

(1.52) �x D
P

yWfx;yg2E

�.fx; yg/; x 2G:

In this set-up some of our definitions need to be modified. For instance if Px stands
for the law of the walk starting from x 2G, one divides the right-hand side of (1.5)
by �y , and multiplies the right-hand side of (1.6) by �x; cf. [23].

The results we stated in Theorem 1.1 and Proposition 1.3, except for (1.28),
(1.48), which explicitly refer to the additive structure of Zd , can easily be extended
to this set-up. We refrain from doing this here since the main results of this article
will pertain to percolation properties of the vacant set, which we introduce below,
and rely on the structure of Zd . �

We can now define for ! 2�, the interlacement at level u, as the subset of Zd :

(1.53) Iu.!/D
[
ui�u

range.w�i /; if ! D
P
i�0

ı.w�
i
;ui /
2�; u� 0 ;

.1:20/
D

[
K��Zd

[
w2Supp�K;u.!/

w.N/ ;

where for w� 2W �, range.w�/D w.Z/, for any w 2W with ��.w/D w�. Note
that in view of (1.18), (1.20), the following identity holds:

(1.54) Iu.!/\K D
[

w2Supp�K0;u.!/

w.N/\K; for anyK �K 0 �� Zd :

The vacant set at level u is then defined as

(1.55) Vu.!/D ZdnIu.!/; ! 2�; u� 0 :

Obviously with (1.53), (1.55), Iu.!/ increases with u, whereas Vu.!/ decreases
with u. In the next proposition we collect some simple properties of these random
subsets. Given K; zK �� Zd , we say that zK separates K from infinity when any
nearest neighbor path starting in K and tending to infinity enters zK.

PROPOSITION 1.5 (u� 0;K; zK �� Zd /).

(1.56) Iu.!/\K 6D∅”�K;u.!/ 6D 0;

for ! 2� ; and Iu;Vu depend measurably on ! :
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PŒK � Vu�D expf�u cap.K/g :(1.57)

PŒx 2 Vu�D exp
n
�

u

g.0/

o
; for x 2 Zd :(1.58)

PŒfx; yg � Vu�D exp
n
�

2u

g.0/Cg.y � x/

o
; for x; y 2 Zd :(1.59)

If zK separates K from infinity then the following inclusion holds:

(1.60) fVu � zKg � fVu �Kg; (screening effect) :

Proof. The claim (1.56) immediately follows from (1.54) when K 0 DK, and
(1.18), (1.20). The measurability of the sets Iu, Vu (understood as the measurabil-
ity of the maps 1fx 2 Iug and 1fx 2 Vug for all x 2 Zd ) is a direct consequence
of the above statement. With (1.56), we thus see that
(1.61)

PŒVu �K�D PŒ�K;u D 0�
.1:20/;.1:43/
D expf�uPeK .WC/g

.1:7/
D expf�u cap.K/g ;

and this proves (1.57). As a result of (1.6) or (1.8) one finds that

(1.62) cap.fxg/D g.0/�1; for x 2 Zd ;

and (1.58) follows from (1.57). As for (1.59), we can assume without loss of
generality that x 6D y, and note that for suitable �x; �y > 0, one has

(1.63) efx;yg D �xıxC �yıy ; cap.fx; yg/D �xC �y ;

so that with (1.8) one finds:

g.z; x/ �xCg.z; y/ �y D 1; for z D x; y :

Solving this system of equations we see that �x D �y D
�
g.0/C g.y � x/

��1,
and hence

(1.64) cap.fx; yg/D
2

g.0/Cg.y � x/
; for x; y 2 Zd :

The claim (1.59) now follows from (1.57).
Finally note that when zK separatesK from infinity,w�2W �K H)w�2W �

zK
, and

with (1.56) we see that Iu.!/\K 6D∅H) Iu.!/\ zK 6D∅, whence (1.60). �

Remark 1.6. 1) Using estimates on the capacity of a large cube, cf. for instance
(2.4) in Lemma 2.2 of [3] and [17, p. 341], one sees that for u� 0,

(1.65) PŒVu � B.0;L/�D exp
˚
� cuLd�2

�
1C o.1/

�	
; as L!1 :

In particular there is no general exponential decay with jAj of PŒVu � A�. This
feature is drastically different from what happens for Bernoulli site percolation; see
[8]. This creates very serious difficulties when trying to prove that for large u, Vu

does not percolate; see Section 3. Also (1.65) can be compared with (4.58), (4.62)
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of Benjamini-Sznitman [2], in the case of the vacant set left by simple random
walk on .Z=NZ/d up to time ŒuN d �.

Incidentally, in spite of the fact that Vu displays a tendency to contain bigger
boxes than Bernoulli site percolation, no matter how small u > 0, the law Qu of
1fx 2 Vug, x 2 Zd , on f0; 1gZ

d

, does not stochastically dominate Bernoulli site
percolation with parameter close to 1. Indeed the complement Iu of Vu always
percolates.

2) As a direct consequence of (1.57), and the inequality cap.K [ K 0/ �
cap.K/C cap.K 0/, we see that

(1.66) PŒK [K 0 � Vu�� PŒK � Vu�PŒK 0 � Vu�; forK;K 0 �� Zd ; u� 0 ;

i.e. the events fK � Vug, fK 0 � Vug are positively correlated. However we do not
know whether the FKG Inequality holds under the law Qu mentioned in 1).

3) As a direct consequence of (1.54) and (1.26), forK��Zd we can visualize
Iu \K as the trace left on K by a Poisson point process of finite trajectories
belonging to the space TK of (1.22). More precisely for any u� 0,

Iu\K has the same distribution under P as the trace on K of a(1.67)
Poisson point process of trajectories on TK with intensity measure
�uK.�/Du eK �.0/ P�.0/ŒXnD�.n/; 0�n�N� � eK

�
�.N� /

�
; for � 2 TK :

This has a very similar flavor to some of the results in Sections 3 and 4 of [2].
4) With standard estimates on the behavior of g.�/ at infinity, cf. [11, p. 31],

one sees that for any u� 0,

(1.68) covP

�
1fx2Vug; 1fy2Vug/�

2u

g.0/2
g.y � x/ e�

2u
g.0/

�
cu

jy � xjd�2
e�cu; as jy � xj !1 ;

where covP denotes the covariance under P. This displays the presence of long
range correlations in the random set Vu.

5) Formulas (1.58), (1.59) are in essence (2.26) and (3.6) in Brummelhuis-
Hilhorst [4], concerning the large N behavior of the probability that one or two
given points in .Z=NZ/d are not visited by simple random walk up to time t D
ŒuN d �. The prefactors present in formulas (2.26), (3.6) of [4] stem from the fact
that the walk under consideration starts at the origin and not with the uniform
distribution as in [2]. For a similar interpretation of (1.58) see also Aldous-Fill
[1, Ch. 3, Prop. 20, and Chap. 13, Prop. 8]. One can also compare (1.57) with
Propositions 20 and 37 in Chapter 3 of [1]. �
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2. A zero-one law and an exponential bound

In this section we exploit the translation invariance of the basic model in
a more substantial way. We prove that the probability that Vu, the vacant set at
level u, contains an infinite connected components, is either zero or one. This zero-
one law comes as a consequence of the ergodicity of the law of Vu, cf. Theorem 2.1.
We also show in Corollary 2.3 that with probability one Iu is connected. In Theo-
rem 2.4 we prove an exponential bound on the probability that Iu contains a given
subset of an m-dimensional discrete subspace of Zd , with m� d � 3. This result
has a similar flavor to Theorem 2.1 of [2], or Theorem 1.2 of [7], but has a more
algebraic proof due to the nature of our basic model. Combined with a Peierls-type
argument, cf. Remark 2.5, this can be used to show that when d is large enough,
Vu percolates when u is chosen sufficiently small. In Section 4 we will present
a more powerful method proving such a result as soon as d � 7. We begin with
some notation.

We denote with Qu, the law on f0; 1gZ
d

of .1fx 2 Vug/x2Zd , for u� 0. We
write Yx; x 2 Zd , for the canonical coordinates on f0; 1gZ

d

, Y for the canonical
�-algebra, and tx; x 2 Zd , for the canonical shift. We also consider for u� 0 the
event

Perc.u/D f! 2�I Vu.!/ contains an infinite connected componentg;(2.1)

as well as
�.u/D PŒ0 belongs to an infinite connected component of Vu� :(2.2)

The first main result of this section is:

THEOREM 2.1 (d � 3).

For any u� 0, .tx/x2Zd is a measure-preserving flow(2.3)

on .f0; 1gZ
d

;Y;Qu/ which is ergodic;

For any u� 0, PŒPerc.u/�D 0 or 1 :(2.4)

Proof. Beginning with the proof of (2.3), we denote by  u W�!f0; 1gZ
d

, the
map  u.!/D

�
1fx 2 Vu.!/g

�
x2Zd

, so that Qu D  u ıP. Note that with (1.44),
(1.53), (1.55), one has

(2.5) tx ı u D  u ı �x; for x 2 Zd :

Since P is invariant under .�x/, cf. (1.48), it follows that Qu is invariant under .tx/.
To prove the ergodicity of .tx/, we argue as follows. Consider u� 0, and note that
the claim will follow once we show that for any K �� Zd , and any Œ0; 1�-valued
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�.Yz; z 2K/-measurable function f on f0; 1gZ
d

, one has

(2.6) lim
jxj!1

EQu Œf f ı tx�DE
Qu Œf �2 :

Indeed the indicator function of any A 2Y invariant under .tx/x2Zd can be approx-
imated in L1.Qu/ by functions f as above. With (2.6) one classically deduces that
necessarily Qu.A/ D Qu.A/2, whence Qu.A/ 2 f0; 1g. In view of (1.54), with
KDK 0, and (2.5), the claim (2.6) will follow once we show that for any K ��Zd :

(2.7) lim
jxj!1

lEŒF .�K;u/ F.�K;u/ ı �x�D EŒF .�K;u/�
2 ;

for any Œ0; 1�-valued measurable function F on the set of finite point-measures
on WC, endowed with its canonical �-field. With (1.20), (1.44), we can find G
(depending on x), with properties similar to F , such that the expectation on the
left-hand side of (2.7) equals EŒF .�K;u/G.�KCx;u/�.

From now on we assume jxj large enough so that K \ .K C x/ D �. To
control the above expectation we are going to express both �K;u and �KCx;u in
terms of �K[.KCx/;u, with the help of (1.21) i), and extract the desired asymptotic
independence. We will recurrently use this type of decomposition in what follows.
Namely with V DK [ .KC x/ we write:

(2.8) �V;u D �1;1C�1;2C�2;1C�2;2; where

�1;1.dw/D 1fX0 2K; HxCK D1g�V;u.dw/ ;

�1;2.dw/D 1fX0 2K; HxCK <1g�V;u.dw/ ;

and similar formulas for �2;2 and �2;1 with the role of K and KC x exchanged.
It follows from (1.20), (1.45) that

(2.9) �i;j , 1� i; j � 2, are independent Poisson point processes on WC ;

and their respective intensity measures are:
(2.10)
1;1Du1fX0 2K;HKCx D1gPeV ; 1;2Du1fX0 2K;HKCx <1gPeV ;

2;1Du1fX0 2KC x;HK <1gPeV ; 2;2Du1fX0 2KC x;HK D1gPeV :

As a consequence of (1.20), (1.21) i), we see that

(2.11) �K;u D �1;1C�1;2C x�
K
2;1 ;

�KCx;u D �2;2C�2;1C x�
KCx
1;2 ;

where given U �� Zd , and �.dw/D
P
0�i�N ıwi a finite point measure on WC,

x�U .dw/ D
P
0�i�N ı�HU .wi /

1fHU .wi / <1g, and we have used in (2.11) the

fact that x�K2;2 D 0, and x�KCx1;1 D 0. Therefore introducing auxiliary independent
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Poisson point processes �01;2, �02;1, independent of �i;j , 1 � i; j � 2, with the
same distribution as �1;2; �2;1 respectively, we find that

(2.12) �0K;u
def
D �1;1C�1;2C�02;1

K ; �0KCx;u
def
D �2;2C�2;1C�01;2

KCx ;

are independent point processes respectively distributed as �K;u and �KCx;u. With
the same notation as in (1.68) we find that
(2.13)ˇ̌

covP

�
F.�K;u/;G.�KCx;u/

�ˇ̌
D

ˇ̌̌
EŒF .�K;u/G.�KCx;u/�F.�

0
K;u/G.�

0
KCx;u/�

ˇ̌̌
.2:11/;.2:12/
� PŒ�1;2 or �2;1 or �01;2 or �02;1 is different from 0�

.2:9/;.2:10/
� 2.1� expf�1;2.WC/g/C 2.1� expf�2;1.WC/g/

� 2u.PeV ŒX0 2K;HKCx <1�CPeV ŒX0 2KC x;HK <1�/ ;

where in the last step we have used the inequality 1�e�v � v, for v� 0, in addition
to (2.10). Observe now that

(2.14) PeV ŒX0 2K;HKCx <1�D
P
z2K

eV .z/ PzŒHKCx <1�

.1:8/
D

P
z2K;y2KCx

eV .z/ g.z; y/ eKCx.y/

.1:6/
�

P
z2K;y2KCx

eK.z/ g.z; y/ eKCx.y/� c
cap.K/2

d.K;KC x/d�2
;

with the notation introduced above (1.1), as well as standard bounds on the Green
function, cf. [11, p. 31], and translation invariance. A similar bound holds for
PeV ŒX0 2 K C x;HK <1�, and with (2.13) we see that for u � 0, K �� Zd ,
x 2 Zd , F;G-measurable functions on the set of finite point measures on WC with
values in Œ0; 1�,

(2.15)
ˇ̌
covP

�
F.�K;u/; G.�KCx;u/

�ˇ̌
� c u

cap.K/2

d.K;KC x/d�2
:

This implies (2.7) and thus concludes the proof of (2.3). As for (2.4), note that
Perc.u/ D  �1u .A/, where A 2 Y stands for the invariant event consisting of
configurations in f0; 1gZ

d

such that there is an infinite connected component in
the subset of Zd where the configuration takes the value 1. It now follows from
(2.3) that Qu.A/D PŒPerc.u/� is either 0 or 1. This proves (2.4). �

Remark 2.2. 1) Note that (2.15) has a similar flavor to (1.68), which mirrors
the long range dependence built into the basic model. Taming this effect will bring
some serious difficulties in Section 3.
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2) One can characterize Qu as the unique probability on .f0; 1gZ
d

;Y/ such
that

(2.16) Qu.Yz D 1; for z 2K/D expf�u cap.K/g; for anyK �� Zd :

Indeed the collection of events which appear in (2.16) is stable under finite inter-
section and generates Y. In a slightly more constructive fashion, we see with a
classical inclusion exclusion argument that for any disjoint finite subsets K;K 0 of
Zd , one has
(2.17) QuŒYz D 1; for z 2K; Yz D 0; for z 2K 0�

DEQu
h Y
z2K

Yz
Y
z2K0

.1�Yz/
i
D

P
A�K0

.�1/jAj expf�u cap.K [A/g :

3) The present work does not address the question of whether there is a unique
infinite connected component in Vu when it percolates and u is positive. The
answer to this question is affirmative, as proved in [22]. The classical results of
Burton-Keane [5], see also [9, pp. 326, 332], implying such a uniqueness do not
apply because, as one easily sees, Qu fails to fulfill the so-called finite energy
condition:

0 <Qu.Yx D 1jYz; z 6D x/ < 1, Qu-a.s., for all x 2 Zd :

Loosely speaking the problem stems from the fact that the set of sites w, where Yw
takes the value 0, has no bounded component, and on some configurations turning
a value 0 into a value 1, say at the origin, can lead to a forbidden configuration (see
also (1.67)). In Corollary 2.3 we are able to adapt the argument of Burton-Keane
in the case of Iu, and prove that with probability one, Iu is connected. In the case
of Vu the construction of so-called trifurcations is more delicate, and can be found
in [22].

4) Denote with Ed D
˚
fx; ygI x; y in Zd with jx � yj D 1

	
, the collection

of nearest neighbor edges on Zd . Given ! 2 � and u � 0, one can consider the
subset zIu.!/ of Ed consisting of the edges which are traversed by at least one of
the trajectories at level u entering !:

(2.18) zIu.!/D
˚
e 2 Ed I for some i � 0, with ui � u and n 2 Z,

e D fwi .n/; wi .nC 1/g
	
; if ! D

P
i�0 ı.w�i ;ui /

2� ;

and wi is any element of W with ��.wi /D w�i .

Connected components of Zd induced by zIu.!/ are either singletons in Iu.!/c

or infinite components partitioning Iu.!/. Denoting with z u: �! f0; 1gEd the
map z u.!/D .1fe 2 zIu.!/g/e2Ed , one can consider the image zQu on .f0; 1gEd ; zY/
of P under z u, where zY stands for the canonical �-algebra on f0; 1gEd . With Qtx ,
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x 2 Zd , the canonical shift on f0; 1gEd , one finds exactly as in (2.5) that Qtx ı z u D
z u ı �x , for x 2 Zd . The same proof as in (2.3), see in particular (2.7), now yields
(2.19) For any u� 0, .Qtx/x2Zd is a measure-preserving flow

on .f0; 1gEd ; zY; zQu/ which is ergodic. �

The first statement below is an immediate consequence of Theorem 2.1 and
(2.2).

COROLLARY 2.3 (d � 3). For u� 0, one has the equivalences

i/ PŒPerc.u/�D 1” �.u/ > 0 ;

ii/ PŒPerc.u/�D 0” �.u/D 0 :

(2.20)

For u > 0, P-a.s., Iu is an infinite connected subset of Zd :(2.21)

Proof. We begin with (2.20). One simply needs to observe that

�.u/�PŒPerc.u/��
P
x2Zd

P Œx belongs to an infinite connected component of Vu� ;

and in view of (1.48) all summands on the right-hand side equal �.u/. The claim
(2.20) now follows from the zero-one law (2.4).

We now turn to the proof of (2.21), which is an adaptation of the argument
of Burton-Keane [5]. The consideration of zIu, cf. Remark 2.2 (4), will be helpful;
see in particular the observation below (2.18). With the ergodicity property (2.19),
it follows that the total number Nu of infinite connected components determined
by zIu is P-a.s. equal to a positive, possibly infinite, constant. With the observation
below (2.18) our claim (2.21) will follow once we show that this constant equals 1.
The first step, see also [13], is to argue that

(2.22) for 2� k <1; PŒNu D k�D 0 :

Assume instead that for some 2� k <1, PŒNu D k�D 1. Then we can find K D
B.0;L/ such that PŒA� > 0, where A denotes the event fNu D k and K intersects
two distinct infinite components determined by zIu.!/g. Note that under P

!1K D 1W �K�RC
! and !0K D 1.W �K/c�RC

! are two independent Poisson(2.23)
point processes with respective intensity measures 1W �K�RC

d� du and
1.W �K/c�RC

d� du :

For each z 2 S.0; L/, the “surface of K”, we now pick a nearest neighbor loop in
K starting and ending at z, and passing through 0. We then define a map ' from
W �K into itself such that for w� 2W �K , '.w�/ is the trajectory (modulo time-shift)
obtained by “inserting in w�” just after the entrance in K, the loop attached to the
entrance point of w� in K. The map ' is in fact injective and one checks with
(1.25), (1.26) that the image measure ' ı .1W �K�/ is absolutely continuous with
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respect to 1W �K�. We extend ' to W �, by letting ' be the identity map on .W �K /
c .

It now follows from the above observations that the measurable map ˆ from �

into itself defined by:

ˆ.!/D
P
ui�u

ı.'.w�
i
/;ui /
C

P
ui>u

ı.w�
i
;ui /
; for ! D

P
i�1

ı.w�
i
;ui /

;

is such that

(2.24) ˆ ıP is absolutely continuous with respect to P :

By construction ˆ.!/ links together all infinite connected components of zIu.!/,
which intersect K, and hence ˆ.A/ � fNu < kg, where A appears below (2.22).
We thus find that

(2.25) ˆ ı .1AP/ŒNu < k�D PŒA\ˆ�1.Nu < k/�D PŒA� > 0 ;

and due to (2.24) we see that PŒNu < k� > 0, a contradiction. This proves (2.22).
The claim (2.21) will now follow once we show that

(2.26) PŒNu D1�D 0 :

The heart of the matter, cf. [8, p. 199], or [9, p. 297], is to show that with positive
P-probability there is a trifurcation in zIu, i.e. a site x 2 Iu.!/ with exactly three
zIu.!/-neighbors and the removal of x splits the infinite connected component of
x determined by zIu.!/ in exactly three infinite components.

Assume by contradiction that PŒNuD1�D 1, then for arbitrarily large L>0,
one has with K D B.0;L/,

PŒK intersects more than 4jB.0; 100/j(2.27)

infinite connected components of zIu.!/� > 0 :

We fix L large enough, such that (2.27) holds and for any three couples of points
.z1; z2/, .z3; z4/, .z5; z6/ on the j � j1-sphere S.0; L/, for which no point in a given
pair may be within j � j1-distance 100 from any other pair (but points within a pair
may be arbitrarily close or even coincide), we can construct �1; �2; �3 finite nearest
neighbor trajectories in K with respective starting points z1; z3; z5 and end points
z2; z4; z6, so that any two trajectories only meet in 0, each trajectory visits 0 only
once, and this occurs by crossing an edge touching 0 and immediately crossing the
same edge in the reverse direction. With (2.23) and (2.27) we see that

P˝ .1W �K
�/˝m

�
K intersects more than 4jB.0; 100/j infinite connected

components determined by zIu.!0K C
Pm
iD1 ı.w�i ;u/

/
�
> 0, for some

m> 4 jB.0; 100/j ,

where ! and w�i , 1� i �m, are the respective �- and W �K -valued coordinates on
the product space, by notation from (2.18) and (2.23). From the above event we
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can select three trajectories within the w�1 ; : : : ; w
�
m with supports lying in distinct

infinite connected components and corresponding pairs of entrance and last exit
points of K with mutual j � j1-distance bigger than 100. As a result we see that

(2.28) P˝ .1W �K
�/˝mŒCm� > 0, for some m� 3 ;

where Cm stands for the event˚
zIu.!0K C

Pm
iD1 ı.w�i ;u/

/ has at least three infinite connected compo-
nents meeting K respectively containing w�i1.Z/, w

�
i2
.Z/; w�i3.Z/ for some

distinct i1; i2; i3 in f1; : : : ; mg, and the three corresponding pairs of en-
trance and last exit points of K have mutual j � j1-distance bigger than
100

	
.

Observe now that without loss of generality we can assume mD 3 in (2.28).
We denote with  the map from .W �K /

3 into itself such that .w�1 ; w
�
2 ; w

�
3 /D

. xw �1 ; xw
�
2 ; xw

�
3 /, where  simply coincides with the identity if the three pairs of

entrance and last exit points for K for w�1 ; w
�
2 ; w

�
3 do not fulfill the condition

appearing below (2.27), and otherwise such that xw �1 ; xw
�
2 ; xw

�
3 are obtained from

w�1 ; w
�
2 ; w

�
3 by replacing the respective portions of trajectory between first entrance

in K and last exit from K by �1; �2; �3. With (1.25), (1.26) one checks that

(2.29)  ı .1W �K
�/˝3 is absolutely continuous with respect to .1W �K�/

˝3 :

Note that in the event C3, 0 is a trifurcation point for zIu
�
!0K C

P3
iD1 ı.x!

�
i ; u/

�
,

where the notation is the same as in the above paragraph. With a calculation similar
to (2.25) we see that

P˝ .1W �K
�/˝3

�
0 is a trifurcation point for zIu.!0K C

P3
iD1 ı.w�i ;u/

/
�
> 0 :

With (2.23) this readily implies that

(2.30) PŒ0 is a trifurcation point for zIu.!/� > 0 :

The proof of (2.26) now runs just as in [8, p. 200–202]. This concludes the proof
of (2.21). �

Just as in the case of Bernoulli percolation, cf. [8, p. 13], we can introduce
the critical value

(2.31) u� D inffu� 0; �.u/D 0g 2 Œ0;1� :

Is this critical value nondegenerate? We will see in Section 3 that u� <1, cf. The-
orem 3.5, and in fullrefsecfo that u� > 0, as soon as d � 7, cf. Theorem 4.3.

We are now going to discuss the exponential bound mentioned at the be-
ginning of this section. For 1 � m � d , we write Lm for the collection of m-
dimensional affine subspaces of Zd generated by m distinct vectors of the canonical
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basis .ei /1�i�d of Rd :
(2.32)

Lm D
˚
F � Zd I for some I � f1; : : : ; dg with jI j Dm and some y 2 Zd ;

F D yC
P
i2I

Z ei
	
;

and introduce

(2.33) Am D the collection of finite subsets A with A� F for some F 2 Lm :

We denote with q.�/ the return probability to the origin of simple random walk in
Z� , i.e. with (we hope) obvious notation:

(2.34) q.�/D P Z�

0 Œ zH0 <1�; for � � 1 :

The promised exponential estimate comes in the following:

THEOREM 2.4 (d � 4, 1�m� d � 3). Assume that � > 0 satisfies

(2.35) �.�/
def
D e�

�m
d
C

�
1�

m

d

�
q.d �m/

�
< 1 I

then for u� 0, A 2Am and A�K �� Zd , with the notation

fA.w/D
X
n�0

1fXn.w/2Ag;

for w 2WC, one has

(2.36) EŒexpf�h�K;u; fAig�� exp
n
u cap.A/

e�� 1

1��.�/

o
;

and the left-hand side does not depend on K as above.
Moreover there exists u1.d;m; �/ > 0, such that:

(2.37) PŒIu � A�� expf�� jAjg; for all A 2Am and u� u1 :

Proof. Consider A2Am, F 2Lm containing A; then for A�K �K 0��Zd ,
we find that

h�K;u; fAi
.1:21/i/
D h�K0;u; fA ı �HK1fHK <1gi D h�K0;u; fAi :

So the left-hand side of (2.36) does not depend on K �� Zd containing A. In
particular picking K D A, we find that it equals

(2.38) EŒexpf�h�A;u; fAig�
.1:20/;.1:43/
D expfuEeA Œe

�fA � 1�g :

Introducing the function

(2.39) �.x/DExŒe
�fA �; for x 2 Zd ;
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and writing RF
def
D TF CHF ı�TF , the return time to F , see (1.3) for notation, we

find:

e�fA � e�TF
�
1fRFD1gC 1fRF<1g e

�fA ı �RF
�

D e�TF
�
1C 1fRF<1g.e

�fA ı �RF � 1/
�
:

With the strong Markov property at times RF and then TF , we thus obtain:

(2.40) �.x/�ExŒe
�TF �CEx

�
e�TFPXTF ŒHF <1�

�
.k�k1� 1/

.2:34/
D ExŒe

�TF �
�
1C q.d �m/.k�k1� 1/

�
;

considering in the last step the motion of the walk in the components “transversal”
to F . Note that when z … F , TF D 0, Pz-a.s., whereas when z 2 F , TF has
geometric distribution with success probability 1� m

d
. Hence with � satisfying

(2.35) we find that:
(2.41)

EzŒexpf�TF g�D
P
k�1

�
1�

m

d

��
m

d

�k�1
e�k D e�

�
1�

m

d

��
1� e�

m

d

��1 def
D ˛ :

With a routine approximation argument of fA by a finite sum, to exclude the pos-
sibility that k�k1 is infinite, and (2.40) we see that:

k�k1 �
˛.1� q.d �m//

1� q.d �m/˛
;

and hence

(2.42) k�k1� 1�
˛� 1

1� q.d �m/˛
D

e� � 1

1��.�/
:

Coming back to (2.38), and using (1.7) we find (2.36). As for (2.37), note with
(1.6), (1.62) that

cap.A/�
P
x2A

cap.fxg/D
jAj

g.0/
:

Further, on the event fIu � Ag we have h�A;u; fAi � jAj. So choosing z�.d;m; �/
> �, such that 1��.z�/D 1

2
.1��.�//, we now see that for A 2Am:

(2.43) PŒIu � A�
.2:36/
� exp

n
� z� jAjC

jAj

g.0/
u
e
z�� 1

1��.z�/

o
� expf�� jAjg ;

if u� u1.d;m; �/. This proves (2.37). �
Remark 2.5. 1) The proof of Theorem 2.4 is very similar to the proofs of

Theorem 2.1 of [2] and Theorem 1.2 of [7]; however it has a somewhat more
algebraic character due to the nature of the basic model we work with.
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2) There is no bound of type (2.37) valid uniformly for Ad , the collection of
subsets of Zd . The argument is in essence the same as in Remark 2.4 (2) of [2].
One can for instance consider AL D B.0;L/ and note that for large L, when the
random walk starts in AL, conditionally on not leaving A2L up to time c Ld logL
(with c a large enough constant), it covers AL with probability at least 1

2
; cf. (2.33)

of [2]. From this it follows that for large L,

PŒIu � AL�� PŒ�AL;u 6D 0�
1

2
inf
x2AL

PxŒTA2L > c L
d logL�

� c.1� expf�u cap.AL/g/ expf�c Ld�2 logLg :

As a result no matter how small u > 0, one finds that

(2.44) lim
L!1

jALj
�1 log PŒIu � AL�D 0 :

3) One can combine (2.37) with a Peierls-type argument by considering the
collection of �-nearest neighbor circuits separating 0 from infinity in some F 2L2
containing 0; cf. Corollary 2.5 of [2] or Corollary 1.5 of [7]. Ones sees that when
d satisfies

(2.45) 7
�
2

d
C

�
1�

2

d

�
q.d � 2/

�
< 1 ;

then for small u > 0, Vu percolates; i.e.,

(2.46) PŒPerc.u/�D 1; for small u > 0 :

The factor 7 in (2.45) simply stems from the fact that there are at most eight 7n�1

�-nearest neighbor circuits with n steps in Z2 that start at the origin. It is known
that q.�/� .2�/�1, as �!1, cf. (5.4) of [12], and hence (2.45) holds for large d .
Clearly (2.45) forces d > 14, and with the help of tables of values for q.�/, one
can see that in effect (2.45) holds exactly when d � 18; cf. Remark 2.1 of [7]. In
section 4 we will show that (2.46) holds when d � 7. �

3. Absence of percolation for large u

The principal object of this section is to show in Theorem 3.5 that when d � 3,
for large enough u, P-almost surely all connected components of Vu are finite. We
know from Remark 1.6 (1) or (1.57) that in general PŒVu � A� does not decay
exponentially with jAj. This creates an obstruction to the classical Peierls-type
argument, which is used in the context of Bernoulli percolation. It substantially
complicates the matter. The strategy of the proof we present here is instead based
on a renormalization argument. We establish in Proposition 3.1 key estimates on
the probability of existence of certain crossings at scale Ln in Vun , cf. (3.7), (3.8),
on an increasing sequence of length scales Ln and an increasing but bounded se-
quence of values un. The proof of Proposition 3.1 uses a recurrence propagating
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certain controls, cf. (3.10), from one scale to the next along a sequence of level-
values as in (3.9). Once Proposition 3.1 is established it is a simple matter to deduce
Theorem 3.5. We will now introduce some notation.

We consider the positive number a and an integer L0:

(3.1) aD
1

100d
; L0 > 1 :

We then define an increasing sequence of length scales via

(3.2) LnC1 D `nLn; where `n D 100ŒLan�.� L
a
n/, for n� 0 ;

so that Ln; n� 0, quickly grows to infinity:

(3.3) Ln � L
.1Ca/n

0 ; for n� 0 :

We organize Zd in a hierarchical way with L0 corresponding to the bottom scale
and L1 <L2 < : : : representing coarser and coarser scales. For this purpose, given
n� 0, we consider the set of labels at level n:

(3.4) In D fng �Zd :

To each label at level n, mD .n; i/ 2 In, we associate the boxes:

(3.5) Cm D
�
iLnC Œ0; Ln/

d
�
\Zd ;

zCm D
[

m02InWd.Cm0 ;Cm/�1

Cm0 ;

where we refer to the notation above (1.1). It is straightforward to see that Cm; m 2
In, is a partition of Zd into boxes of side-length Ln� 1, and zCm simply stands for
the union of Cm and its “�-neighboring” boxes of level n. Also when m 2 InC1,
then Cm is the disjoint union of the `dn boxes C xm at level n it contains. We denote
with zSm the interior boundary of zCm:

(3.6) zSm D @int zCm, for m 2 In; n� 0 :

In what follows we investigate the probability of the existence of certain vacant
crossings defined for u� 0; n� 0;m 2 In, via:
(3.7)
Aum D f! 2�; there is a nearest neighbor path in Vu.!/\ zCm from Cm to zSmg :

It follows from translation invariance, cf. Theorem 2.1 or (1.48), that

(3.8) pn.u/D PŒAum�; u� 0; n� 0; withm 2 In ;

is well-defined, i.e. does not depend on which m 2 In enters the right-hand side.
Clearly the functions pn.�/ are nonincreasing on RC. Our main task consists in
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the derivation of recurrence relations on the functions pn.�/. The key control is
provided by the following

PROPOSITION 3.1 (d � 3). There exist positive constants c1; c2, cf. (3.34),
(3.52), such that defining for u0 > 0 and r � 1 integer

(3.9) un D u0
Y

0�n0<n

.1C c1 `
�.d�2/
n0 /rC1; for n� 0 ;

one has for L0 � c, u0 � c.L0/; r � c.L0; u0/,

(3.10) c2 `
2.d�1/
n pn.un/� L

�1
n ; for all n� 0 :

Proof. In the course of the proof of Proposition 3.1, we will use the expression
“for large L0”, in place of “for L0 � c”, with c a positive constant as explained at
the end of the introduction. We first consider n� 0, m2 InC1, as well as 0<u0<u.
We are first going to bound pnC1.u/ in terms of pn.u0/, when u0

u
is sufficiently

away from 1, cf. (3.45), (3.52).
We write H1 for the collection of labels at level n of boxes contained in Cm

touching @intCm:

(3.11) H1 D f xm 2 InI C xm � Cm and C xm\ @intCm 6D �g;

as well as

(3.12) H2 D

n
xm 2 InI C xm\

n
z 2 Zd W d.z; Cm/D

LnC1

2

o
6D �

o
;

for the collection of labels of n-level boxes containing some point at j � j1-distance
LnC1
2

from Cm (with similar notation as above (1.1)).
Observe that any nearest neighbor path in Vu originating in Cm and ending

in zSm must go through some C xm1 ; xm1 2H1, reach zS xm1 , and then go through some
C xm2 , xm2 2H2, and reach zS xm2 . Therefore we see that
(3.13)
pnC1.u/�

P
xm12H1; xm22H2

PŒAu
xm1
\Au

xm2
�� c `

2.d�1/
n sup

xm12H1; xm22H2

PŒAu
xm1
\Au

xm2
� ;

using a rough counting argument to bound jH1j and jH2j in the last step. We will
now focus our attention on the probability which appears in the last member of
(3.13). We write V D zC xm1 [ zC xm2 for given xm1 2H1, xm2 2H2, and just as in (2.8)
introduce the decomposition

(3.14) �V;u D �1;1C�1;2C�2;1C�2;2 ;

where zC xm1 , zC xm2 respectively play the role of K and KC x in (2.8). In particular
�i;j , 1� i; j � 2, are independent Poisson point processes on WC with intensity
measures i;j , 1� i; j � 2, as in (2.10). The following notation will be convenient.
When ƒ is a random point process on WC defined on �, i.e. a measurable map
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S̃m

C̃m

C̃m2

Cm2

Cm
C̃m1

Cm1

Figure 1. A schematic illustration of the event Aum. The path
drawn lies in Vu.

from � into the space of pure point measures on WC, we denote with A xm.ƒ/, for
xm 2 In, the event:

A xm.ƒ/D
˚
! 2�I there is a nearest neighbor path in zC xmn

� S
w2Supp.ƒ.!//

w.N/
�(3.15)

from C xm to zS xm
	
:

For instance with (1.54) we see that for any xm 2 In:

(3.16) Auxm D A xm.�K;u/; for any K � zC xm :

We can apply this identity to xm D xmi , i D 1; 2, with K D V . Noting that w 2
Supp�2;2 implies w.N/\ zC xm1 D �, we find that

Auxm1 \A
u
xm2
D A xm1.�V;u/\A xm2.�V;u/

D A xm1.�1;1C�1;2C�2;1/\A xm2.�V;u/

� A xm1.�1;1C�1;2C�2;1/\A xm2.�2;2/ :

With the help of the independence properties mentioned above we find that

(3.17) P
�
Auxm1 \A

u
xm2

�
� P

�
A xm1.�1;1C�1;2C�2;1/

�
P
�
A xm2.�2;2/

�
D pn.u/ P

�
A xm2.�2;2/

�
:
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Our next task is to bound PŒA xm2.�2;2/� from above. For this purpose we decom-
pose the �i;j , 1� i; j � 2, in (3.14) into

(3.18) �i;j D �
0
i;j C�

�
i;j ;

where the �0i;j , ��i;j , 1� i; j � 2, are independent Poisson point processes on WC,
with �0i;j defined as �i;j , with u0.< u/ replacing u in (3.14), and ��i;j defined anal-
ogously as in (3.14), but with the role of �V;u.dw/ replaced by �V .dw� .u0; u�/,
cf. (1.18), (1.20), (1.45), which is also a Poisson point process on WC. We write
 0i;j and �i;j , 1� i; j � 2, for the intensity measures of these point processes, and
note that

(3.19) �2;2.dw/D .u�u
0/ 1
˚
X0 2 zC xm2 ; H zC xm1

D1
	
PeV .dw/ :

Our aim is to bound from above PŒA xm2.�2;2/�DPŒA xm2.�
0
2;2C�

�
2;2/� in terms of

quantities involving pn.u0/D PŒA xm2.�
0
2;2C�

0
2;1C�

0
1;2/�. The rough idea is to

try to dominate the influence on zC xm2 of �02;1C�
0
1;2 by that of ��2;2. This is a kind

of “sprinkling technique” where the discrepancy between u and u0 in the form of
��2;2 is used to dominate the long range interaction reflected by �02;1C�

0
1;2.

With this in mind we introduce an integer r � 1, and further decompose �02;1,
�01;2 and ��2;2 into:

(3.20) �02;1 D
P

1�`�r

�`2;1C x�2;1; �
0
1;2 D

P
1�`�r

�`1;2C x�1;2 ;

��2;2 D
P

1�`�r

�`2;2C x�2;2 ;

where denoting with Rk;Dk; k � 1, the successive returns to zC xm2 and departures
from U D fz 2 Zd I d.z; zC xm2/�

1
10
LnC1g, cf. (1.4) and the notation above (1.1),

we have set for 1� i 6D j � 2, `� 1,

(3.21) �`i;j D 1fR` <D` <R`C1 D1g�
0
i;j ; x�i;j D 1fRrC1 <1g�

0
i;j

�`2;2 D 1fR` <D` <R`C1 D1g�
�
2;2; x�2;2 D 1fRrC1 <1g�

�
2;2 ;

(note that fR1 <D1 <1g has full measure under each of �02;1, �01;2 and ��2;2).
We then see that with the above definitions and the independence property

mentioned below (3.18),

(3.22) �02;2, �`i;j , 1� `� r , x�i;j , 1� i; j � 2, with i or j 6D 1,

are independent Poisson point processes on WC. Letting �2;1 and �1;2 stand for
the respective intensity measures on WC of x�2;1 and x�1;2, we have
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�2;1.WC/ D u0 PeV ŒX0 2
zC xm2 ; H zC xm1

<1; RrC1 <1�(3.23)
.1:6/;.1:7/
� u0 cap. zC xm2/ sup

x2 zC xm2

PxŒRrC1 <1�

� u0 cap. zC xm2/. sup
x2U c

PxŒH zC xm2
<1�/r ;

where we used the strong Markov property at times Dr ;Dr�1; : : : ;D1, in the last
step. With the right-hand inequality of (1.9) as well as [11, p. 31], we thus find that:

sup
x2U c

PxŒH zC xm2
<1�� c L

�.d�2/
nC1

Ldn
L2n

.3:2/
D c `�.d�2/n ;

and hence

(3.24) �2;1.WC/� u
0 cap. zC xm2/.c `

�.d�2/
n /r � u0 cr L.d�2/�a.d�2/rn :

In the last step we used (3.2) as well as the right-hand inequality of the standard
capacity estimate:

c L.d�2/ � cap.B.0; L//� c0L.d�2/; for L� 1 ;

(which follows from (1.8), (1.9) with K D B.0;L/, letting x tend to infinity in
(1.8) and using (1.9) to bound c jxj�.d�2/ cap.B.0; L//� PxŒHB.0;L/ <1�, for
jxj !1). In a similar way we find that

(3.25) �1;2.WC/D u
0 PeV ŒX0 2

zC xm1 ; H zC xm2
<1; RrC1 <1�

� u0 cr L.d�2/�a.d�2/rn :

We will now seek to show that the trace left on zC xm2 by paths in the supports of
�02;1� x�2;1 D

P
1�`�r �

`
2;1 and �01;2� x�1;2 D

P
1�`�r �

`
1;2 is dominated by the

corresponding trace of paths in the support of ��2;2. The point processes x�2;1 and
x�1;2 are then viewed as correction terms to be controlled with the help of (3.24),
(3.25).

With this perspective we consider the space Wf of finite nearest neighbor
paths on Zd , and for `� 1, the measurable map �` from fD` <R`C1D1g�WC
into the product space W �`

f
defined by:

(3.26) �`.w/D .w.RkC�/0�:�Dk�Rk /1�k�`2W
�`
f forw2fD`<R`C1D1g :

In other words �`.w/ for w in the above event keeps track of the ` portions of the
trajectory w corresponding to times going from the successive returns to zC xm2 up
to departure from U . We can view the various �`i;j , i or j 6D 1, with ` � 1 fixed
as point processes on fD` <R`C1 D1g.�WC/. We then denote with z� `i;j their
respective images under �`, which are Poisson point processes on W �`

f
. We write
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z�`i;j for their corresponding intensity measures. As a result of (3.22), we see that

(3.27) �02;2; z�
`
i;j ; 1� `� r; x�i;j ; 1� i; j � 2; i or j 6D 1

are independent Poisson point processes. We will see that when u0 < u are suffi-
ciently far apart, cf. (3.34), z� `2;2 has an intensity measure on W �`

f
which is bigger

than the intensity measure of z� `2;1C z�
`
1;2, for 1� `� r . The following lemma will

be helpful;we refer to (3.11), (3.12) and below (3.20) for the notation.

LEMMA 3.2. For large L0, for all n� 0;m 2 InC1; xm1 2H1; xm2 2H2; x 2

@U; y 2 @int zC xm2 , we have:

PxŒH zC xm1
<R1 <1; XR1 D y�� c `

�.d�2/
n PxŒH zC xm1

>R1; XR1 D y�;(3.28)

PxŒH zC xm1
<1; R1 D1�� c `

�.d�2/
n PxŒR1 D1DH zC xm1

� :(3.29)

Proof. We begin with the proof of (3.28). Recalling the notation introduced
below (1.4). For z 2 @U , y 2 @int zC xm2 we have
(3.30)
PzŒH zC xm1

<R1 <1; XR1 D y�

strong Markov
D Ez

�
H zC xm1

<R1; PXH zC xm1
ŒR1 <1; XR1 D y�

�
DEz

�
H zC xm1

<R1; EXH zC xm1
ŒH@U <1; PXH@U ŒR1 <1; XR1 D y�

��
;

where in the last step we used for z0 2 zC xm1 the Pz0 - almost sure identity R1 D
H@U CR1 ı �H@U , and the strong Markov property at time H@U . As a result we
see that:
(3.31)

sup
z2@U

PzŒH zC xm1
<R1 <1; XR1 D y�� sup

z2@U

PzŒH zC xm1
<1�

� sup
z2@U

PzŒR1 <1; XR1 D y�
.1:9/
� c `

�.d�2/
n sup

z2@U

PzŒR1 <1; XR1 D y�;

with a similar bound as above (3.24) in the last step. Note that

PzŒR1 <1; XR1 D y�D PzŒH zC xm2
<1; XH zC xm2

D y�; z 2 zC cxm2 ;

is a positive harmonic function, and using Harnack’s inequality, cf. Theorem 1.7.2
of [11], together with a standard covering argument, we see that:

(3.32) sup
z2@U

PzŒR1 <1; XR1 D y�� c inf
z2@U

Pz ŒR1 <1; XR1 D y� :
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Therefore coming back to (3.31) we see that

sup
z2@U

PzŒH zC xm1
<R1 <1; XR1 D y�� c

0 `�.d�2/n inf
z2@U

PzŒR1 <1; XR1 D y�

D c0 `�.d�2/n inf
z2@U

�
PzŒH zC xm1

<R1 <1; XR1 D y�

CPzŒR1 <1; XR1 D y;H zC xm1
>R1�

�
:

For large L0, we have c0 `�.d�2/n �
1
2

, for all n � 0, with c0 as in the last line of
(3.32), and thus we see that for x 2 @U ,

(3.33) PxŒH zC xm1
<R1<1; XR1 D y�� 2c

0 `�.d�2/n PxŒH zC xm1
>R1; XR1 D y�:

This proves (3.28). We now turn to the proof of (3.29) which is more elementary.
Indeed one has

inf
x2@U

PxŒR1 D1;H zC xm1
D1�� c ;

as follows from the invariance principle used to let the walk move at a distance
from V D zC xm1 [

zC xm2 , which is a multiple of LnC1, as well as (1.9) and standard
bounds on the Green function. On the other hand the left-hand side of (3.29) with a
similar inequality as above (3.24) is bounded by c `�.d�2/n . Our claim follows. �

The main control on the intensity measure z�`1;2Cz�
`
2;1 of z� `1;2C z�

`
2;1 in terms

of the intensity measure z�`2;2 of z� `2:2 is provided by the next

LEMMA 3.3. For large L0, one has

(3.34) z�`1;2C
z�`2;1 �

u0

u�u0

h�
1C

c1

`d�2n

�`C1
� 1

i
z�`2;2; for `� 1 :

Proof. The measure z�`2;1 on W �`
f

is the image under �` of the intensity mea-

sure �`2;1 on fD` <R`C1 D1g (�WC) of �`2;1, which in view of (3.21) equals

(3.35) �`2;1.dw/D u
0 PeV Œdw;X0 2

zC xm2 ; H zC xm1
<1; D` <R`C1 D1� :

As a result we hopefully find that with obvious notation

(3.36)
z�`2;1.dw1; : : : ; dw`/D u

0PeV
�
X0 2 zC xm2 ;H zC xm1

<1;D` <R`C1 D1;

.XRkC:/0�:�Dk�Rk 2 dwk; 1� k � `
�

D u0PeV
�
X0 2 zC xm2 ;

[̀
kD1

fH zC xm1
ı �Dk CDk <RkC1g;D` <R`C1 D1 ;

.XRkC:/0�:�Dk�Rk 2 dwk; 1� k � `
�
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D u0
P

� 6DB�f1;:::;`g

PeV
�
X0 2 zC xm2 ; H zC xm1

ı �Dk CDk <RkC1 exactly when

k 2 B , for 1� k � `;D` <R`C1 D1;
.XRkC:/0�:�Dk�Rk 2 dwk; 1� k � `

�
:

The generic term of the above sum evaluated on .w1; : : : ; w`/ 2W �`f
equals:

(3.37)

u0PeV
�
X0 2 zC xm2 ;H zC xm1

ı �Dk CDk <RkC1; exactly when k 2 B , 1� k � `;

D` <R`C1 D1; .XRkC:/0�:�Dk�Rk D wk.�/; 1� k � `
�

D u0EeV
�
X0 2 zC xm2 ;H zC xm1

ı �Dk CDk <RkC1; exactly when

k 2 B \f1; : : : ; `� 1g for 1� k � `� 1;D` <1;
.XRkC:/0�:�Dk�Rk D wk.�/; 1� k � `;

EXD` ŒR1 D1; 1f` … Bg 1fH zC xm1
D1gC 1f` 2 Bg 1fH zC xm1

<1g�
�
;

by the strong Markov property at time D` in the last step.
If we denote with ws

k
and we

k
the starting point and the end point of wk , for

1� k � `, the above expression vanishes unless ws
k
2 zC xm2 and we

k
2 @U for each

k 2 f1; : : : ; `g. If these conditions are fulfilled, using the strong Markov property re-
peatedly at times R`;D`�1; R`�1 : : :D1, we see that the last line of (3.37) equals:

u0PeV
�
X0 2 zC xm2 ; .X:/0�:�D1 D w1.�/� Ewe1

�
1f1 … Bg 1fH zC xm1

>R1g

C1f1 2 Bg 1fH zC xm1
<R1g; R1 <1; XR1 D w

s
2

�
Pws2 Œ.X:/0�:�D1 D w2.�/� : : :

Ewe
`

�
1f` … Bg 1fH zC xm1

D1gC 1f` 2 Bg 1fH zC xm1
<1g; R1 D1

�
:

We can use Lemma 3.2 for all terms in the above expression where k 2 B , and
repeatedly apply the Markov property to come back to an expression similar to
(3.37). In this fashion we see that the above expression is at most:
(3.38)
.c `�.d�2/n /jBju0PeV

�
X0 2 zC xm1 ;H zC xm1

ı�DkCDk �RkC1; for 1� k � `;

D` <R`C1D1; .XRkC:/0�:�Dk�RkDwk.�/; 1� k � `
�
:

Summing over the various nonempty subsets B of f1; : : : ; `g, we see by (3.36) that
(3.39)
z�`2;1.dw1; : : : ; dw`/� u

0
P

� 6DB�f1;:::;`g

.c `
�.d�2/
n /jBj PeV ŒX0 2

zC xm2 ;H zC xm1
D1;

D` <R`C1D1; .XRkC:/0�:�Dk�Rk 2 dwk; 1� k � `
�

D
u0

u�u0
Œ.1C c `�.d�2/n /`� 1� z� `2;2.dw1; : : : ; dw`/ ;

where we recall that z�`2;2 stands for the intensity measure of z� `2;2.
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We can proceed in a similar fashion to bound z�`1;2.dw1; : : : ; dw`/. The only
difference stems from the fact that under �`1;2.dw/ paths start in zC xm1 and B , cf. last
line of (3.36), can also be the empty set. In an analogous fashion to (3.38) we then
obtain the following bound:
(3.40)
u0PeV

�
X0 2 zC xm1 ;H zC xm1

ı �DkCDk <RkC1; exactly when k 2 B , for 1�k�`;

D` <R`C1 D1; .XRkC:/0�:�Dk�Rk 2 wk.�/; 1� k � `
�

� .c `
�.d�2/
n /jBj u0P�

�
X0 2 zC xm2 ;H zC xm1

ı �Dk CDk �RkC1; for 1� k � `;

D` <R`C1D1; .XRkC:/0�:�Dk�RkDwk.�/; 1� k � `
�
;

with � the measure

(3.41) �.y/D
P

x2 zC xm1

eV .x/ PxŒH zC xm2
<1; X zC xm2

D y�; for y 2 @int zC xm2 ;

D 0; otherwise :

We now see that for y 2 @int zC xm2 with a similar calculation as in (1.36)

(3.42) �.y/
.1:6/
D

P
x2 zC xm1 ;n�0

PxŒ zHV D1� PxŒ zH zC xm2
D n;Xn D y�

reversibility
D

P
x2 zC xm1 ;n�0

PxŒ zHV D1� Py Œ zH zC xm2
> n;Xn D x�

Markov
D

P
x2 zC xm1 ;n�0

Py Œ zH zC xm2
> n;Xn D x; zHV ı �n D1�

D Py Œ zH zC xm2
D1; H zC xm1

<1� ;

summing over the time n and location x of the last visit of the path to zC xm1 in the
last step. Using the strong Markov property at time TU , (recall that zC xm1 � U

c),
we thus find

(3.43) �.y/DEy
�
zH zC xm2

> TU ; PXTU ŒH zC xm1
<1; H zC xm2

D1�
�

.3:29/
� c `�.d�2/n Ey

�
zH zC xm2

> TU ; PXTU ŒH zC xm1
D1DH zC xm2

�
�

D c `�.d�2/n Ey
�
zHV > TU ; PXTU ŒHV D1�

�
D c `�.d�2/n eV .y/ ;

for y 2 @int zC xm2 , by the strong Markov property and (1.6) in the last step. Therefore
summing (3.40) over B � f1; : : : ; `g, we find that

(3.44) z�`1;2.dw1; : : : ; dw`/�
u0

u�u0
c

`d�2n

�
1C

c

`d�2n

�`
z�`2;2.dw1; : : : ; dw`/ :

Summing (3.39) and (3.44) we obtain the claim (3.34). �
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We now suppose L0 large enough so that Lemma 3.2 holds, and also that

(3.45) uD
�
1C

c1

`d�2n

�rC1
u0
�

hence
u0

u�u0

h�
1C

c1

`d�2n

�rC1
� 1

�
D 1

�
:

We will now derive the promised upper bound on PŒA xm2.�2;2/� in terms of pn.u0/
D PŒAu

0

xm2
�. Observe that the restriction of the interlacement at level u0 to zC xm2

satisfies:
(3.46)

Iu
0

\ zC xm2
.1:54/
D

[
w2Supp.¯V;u0 /

w.N/\ zC xm2 D
[

w2Supp.�02;2C�
0
2;1C�

0
1;2/

w.N/\ zC xm2

D I0[ zI[I;

where we have set
(3.47)

I0 D
[

w2Supp.�02;2/

w.N/\ zC xm2 ;

zID
[

1�`�r

[
.w1;:::;w`/2Supp z� `1;2Cz�

`
2;1

(range w1[ � � � [ range w`/\ zC xm2 ;

ID
[

w2Supp x�1;2Cx�2;1

w.N/\ zC xm2 ;

and we used (3.20) together with the fact that for any ` � 1, w 2 Supp �`1;2 [
Supp �`2;1, with �`.w/D .w1; : : : ; w`/ due to (3.26):

w.N/\ zC xm2 D (range w1[ � � � [ range w`/\ zC xm2 :

If we now define I� by replacing z� `1;2C z�
`
2;1 in the second line of (3.47) by z� `2;2,

we see from (3.27) that

(3.48) the random sets I0, zI, I, I� are independent under P :

We also see from (3.34), (3.27) and the choice (3.45) that for each 1� `� r , the
Poisson point process z� `1;2C z�

`
2;1 is stochastically dominated by z� `2;2 so that

(3.49) zI is stochastically dominated by I� :
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With (3.48), (3.49) we thus find in view of (3.15) that

(3.50) P

h
A xm2

�
�02;2C

P
1�`�r

�`2;2

�i
D P

�
there is a crossing in zC xm2n.I

0[I�/ from C xm2 to zS xm2
�

� P
�
there is a crossing in zC xm2n.I

0[ zI/ from C xm2 to zS xm2
�

D P

h
A xm2

�
�02;2C

P
1�`�r

�`2;1C �
`
1;2

�i
;

so that
(3.51)

PŒA xm2.�2;2/�
.3:18/
D PŒA xm2.�

0
2;2C�

�
2;2/�

.3:20/
� P

h
A xm2

�
�02;2C

P
1�`�r

�`2;2

�i
.3:50/
� P

h
A xm2

�
�02;2C

P
1�`�r

�`2;1C �
`
1;2

�i
.3:20/
� PŒA xm2.�

0
2;2C�

0
2;1C�

0
1;2/; x�2;1 D 0D x�1;2�

CPŒx�2;1 or x�1;2 6D 0�

D PŒA xm2.�V;u0/; x�2;1 D 0D x�1;2�CPŒx�2;1 or x�1;2 6D 0�

� pn.u
0/C 1� e��2;1.WC/C 1� e��1;2.WC/

.3:24/;.3:25/
� pn.u

0/C 2 u0 cr L.d�2/�a.d�2/rn :

This is the promised upper bound on PŒA xm2.�2;2/�. We can now come back to
(3.13), (3.17) and obtain that when L0 is large for n� 0, r � 1, 0<u0<u satisfying
(3.45) one has

(3.52) pnC1.u/� c2 `
2.d�1/
n pn.u/

�
pn.u

0/Cu0 cr3 L
.d�2/.1�ar/
n

�
:

Given u0 > 0, r � 1, we thus define the increasing sequence

(3.53) unC1 D
�
1C

c1

`
.d�2/
n

�rC1
un; for n� 0 ;

as well as the sequence

(3.54) an D c2 `
2.d�1/
n pn.un/; n� 0 :

We will now prove a lemma that uses inequality (3.52) to set-up an induction
scheme ensuring that an is at most L�1n for all n� 0. Note that (3.52) deteriorates
when u0 becomes large. This is compensated by picking r sufficiently big and
checking (3.56) ii) at each step. In the end, to be able to initiate the induction, we
will need to pick L0 large, then u0 � c.L0/ to check (3.56) i) for nD 0, and finally
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r � c.L0; u0/, see (3.65), thus influencing the whole sequence un, so as to ensure
that (3.56) ii) holds for nD 0.

LEMMA 3.4. If L0 � c, then for r such that

(3.55) .d � 2/ ar � 4d ;

and any u0 > 0, when for some n� 0,

(3.56) i/ an � L�1n ; and ii/ un � L
.d�2/ a r

2
n ;

then (3.56) holds as well with nC 1 in place of n.

Proof. Since pn.�/ is a nonincreasing function, we see from (3.52) that for
u0 > 0, r � 1, one has for n� 0,

anC1 � an

��`nC1
`n

�2.d�1/
anC c2 `

2.d�1/
nC1 un c

r
3 L

.d�2/.1�ar/
n

�
;

and since one also has

(3.57)
`nC1

`n

.3:2/
D

ŒLanC1�

ŒLan�
� c

�LnC1
Ln

�a .3:2/
D c `an � c L

a2

n ; for n� 0 ;

we find:
(3.58)
anC1 � c4 an

�
L2.d�1/a

2

n anCL
2.d�1/a.1Ca/
n un c

r
3 L

.d�2/.1�ar/
n

�
; for n� 0 :

We will now seek to propagate (3.56) i) from n to nC1. For this purpose it suffices
to show that the following two inequalities hold:

c4L
2.d�1/a2

n an �
1

2

Ln

LnC1
;(3.59)

and
c4 un c

r
3 L

2.d�1/a.1Ca/C.d�2/.1�ar/
n �

1

2

Ln

LnC1
:(3.60)

To check (3.59) observe that:
(3.61)

c4L
2.d�1/a2

n an
.3:56/i/
� c4L

2.d�1/a2�1
n

.3:1/
� c4L

a�1
n �

1

200
L�an

.3:2/
�

1

2

Ln

LnC1
;

with L0 � c and (3.1) in the next to last inequality.
We now turn to (3.60) and observe that when r satisfies (3.55) then

(3.62)

un c
r
3 L

.d�2/.1�ar/
n

.3:56/ .ii/
� cr3 L

.d�2/.1�a r
2
/

n

.3:55/
�

�
c3L

�.d�2/a
4

n

�r
L�2n

� L�2n ; if L0 � c :
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As a result we see that the left-hand side of (3.60) is smaller than

c4L
2.d�1/a.1Ca/�2
n

.3:1/
� c4L

�1
n �

1

200
L�an �

1

2

Ln

LnC1
; if L0 � c :

Recalling (3.61), we see that for large L0 we can propagate (3.56) i) from n to
nC 1. We now turn to (3.56) ii). We have with (3.53):
(3.63)

unC1 D
�
1C

c1

`d�2n

�rC1
un

.3:56/ .ii/
�

�
1C

c1

`d�2n

�rC1
L
.d�2/a r

2
n

D L
.d�2/a r

2

nC1 `
�.d�2/a r

2
n

�
1C

c1

`d�2n

�rC1
r�1
� L

.d�2/a r
2

nC1

h�
1C

c1

`d�2n

�2
`
�.d�2/a

2
n

ir
.3:2/
� L

.d�2/a r
2

nC1

�
.1C c1/

2.100ŒLa0�/
�.d�2/a

2

�r
� L

.d�2/a r
2

nC1 ; if L0 � c :

Hence for L0 � c, we can propagate (3.56) ii) from n to nC 1 as well, and this
concludes the proof of Lemma 3.4. �

We now choose L0 large so that for any u0 > 0 and r � 1 satisfying (3.55),
when (3.56) holds for n D 0, then it holds for all n � 0. If we now choose
u0 � c.L0/, we see that for any m 2 I0, (recall I0 is the set of labels at level 0),

(3.64) a0
.3:54/
D c2 `

2.d�1/
0 p0.u0/D c2 `

2.d�1/
0 PŒAu0m �

� c2 `
2.d�1/
0 PŒVu0 \ zSm 6D ��

.1:58/
� c2 `

2.d�1/
0 j zSmj e

�u0=g.0/

� c L
2.d�1/aCd�1
0 e�u0=g.0/ � L�10 ;

using u0 � c.L0/ in the last step. Similarly given L0 � c and u0 � c.L0/ as above,
we can pick r � c.L0; u0/ such that:

(3.65) u0 � L
.d�2/a r

2

0 :

With such choices, as noted above, it follows that an � L�1n , for all n� 0, and this
completes the proof of Proposition 3.1. �

This now brings us to the main result of this section. We recall the definition
of the critical value u� in (2.31).

THEOREM 3.5 (d � 3). For large u the vacant set Vu does not percolate, i.e.

(3.66) u� <1 ;

and for u > u�, PŒPerc.u/�D 0.
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Proof. With Corollary 2.3 we only need to prove (3.66). We choose L0; u0; r
as in Proposition 3.1, so that with un as in (3.9) we find:

(3.67) c2 `
2.d�1/
n PŒAunm �� L

�1
n ; for any n� 0 and m 2 In :

With (3.2) we know that Ln �L
.1Ca/n

0 , and hence
P
n `
�.d�2/
n <1, and we thus

see that

(3.68) u1 D u0
Y
n�0

�
1C

c1

`d�2n

�rC1
D u0

� Y
n�0

�
1C

c1

`d�2n

��rC1
<1 :

Consequently for any n� 0, andm2 In such that 02Cm, we find as a consequence
of (2.2) and (3.7) that

(3.69) �.u1/� PŒAu1m �� c L�1n :

Letting n tend to infinity we see that �.u1/D 0, and (3.66) follows. �

Remark 3.6. Once we know that Vu does not percolate for large u, it is nat-
ural to wonder how large the vacant cluster at the origin can be. An exponential
tail bound on the number of sites of the vacant cluster at the origin of subcritical
Bernoulli percolation is known to hold; cf. [8, pp. 132 and 350]. Such an estimate
cannot be true in the case of Vu due to (1.65). The exact nature of the tail of this
random variable is an interesting problem. �

4. Percolation for small u

The main objective of this section is to show that when d � 7, the vacant
set Vu percolates for small u > 0, or equivalently that u� > 0; see Theorem 4.3.
In spite of the fact that Vu tends to contain bigger boxes than what is the case
for Bernoulli percolation, cf. (1.65), it does not stochastically dominate Bernoulli
percolation in the highly percolative regime as noted in Remark 1.6 (1). This fact
precludes a strategy based on a direct comparison argument. We develop here a
similar but simpler renormalization procedure as in the previous section. It yields a
sharper result than the strategy based on the combination of the exponential bound
(2.37) and a Peierls-type argument, as outlined in Remark 3.5 (3). Such a proof
only works for d � 18.

We begin with some notation. We recall the definitions of a > 0 and Ln; n� 0,
in (3.1), (3.2). Throughout we identify Z2 with the subset of points zD .z1; : : : ; zd /
in Zd , such that z3 D z4 D � � � D zd D 0. For n� 0, we define the set Jn of labels
of level n just as in (3.4), but with d replaced by 2. For n � 0 and m 2 Jn we
attach the boxes in Z2, Dm � zDm, with a similar definition as in (3.5), but with d
replaced by 2, and In by Jn. We write zVm for the relative interior boundary in Z2

of zDm, i.e. the set of points of zDm neighboring Z2n zDm. In this section, parallel
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to (3.7), a crucial role is played by the “occupied crossing” events. Namely for
u� 0; n� 0;m 2 Jn, we define:
(4.1)
BumDf!2�; there is a �-nearest neighbor path in Iu.!/\ zDm from Dm to zVmg:

As a consequence of translation invariance, cf. Theorem 2.1 or (1.48),

(4.2) qn.u/D PŒBum�; u� 0; n� 0; withm 2 Jn ;

is well defined. It is also a nondecreasing function of u. Our main task consists
in showing that when u is chosen small qn.u/ tends sufficiently rapidly to 0. Our
key control stems from

PROPOSITION 4.1 (d � 7). There exists a positive constant c5, cf. (4.13), such
that for L0 � c, and u� c.L0/ one has

(4.3) c5 `
2
n qn.u/� L

� 1
2

n ; for all n� 0 :

Proof. In analogy with (3.11), (3.12), we define for n� 0 and m 2 JnC1 the
collection of labels of boxes at level n “at the boundary of Dm”:

(4.4) K1 D f xm 2 JnI D xm �Dm and some point of D xm neighbors Z2nDmg :

We also consider the collection of labels of boxes at level n containing some point
at j � j1-distance LnC1

2
from Dm:

(4.5) K2 D
n
xm 2 JnI D xm\

n
z 2 Z2I d.z;Dm/D

LnC1

2

o
6D �

o
:

The argument leading to (3.13) applies here as well and shows that

(4.6) qnC1.u/� c `
2
n sup
xm12K1; xm22K2

PŒBuxm1 \B
u
xm2
�; for u� 0 :

From now on we assume that

(4.7) u� 1 :

For xm1 2 K1, xm2 2 K2, we define V D zD xm1 [ zD xm2 and write

(4.8) �V;u D ı1;1C ı1;2C ı2;1C ı2;2 ;

with a similar definition as in (3.14) or (2.8), so that the ıi;j .dw/, 1 � i; j � 2,
are independent Poisson point processes on WC with respective intensity measures
�i;j ; 1� i; j � 2, given by analogous formulas as in (2.10), except thatK andKCx
are now respectively replaced by zD xm1 and zD xm2 . With notation similar to (3.15),
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when ƒ.dw/ is a random point process on WC, we write:
(4.9)
B xm.ƒ/D

˚
! 2�ID xm and zV xm are connected by a �-nearest-neighbor path

in zD xm\
� S
w2Supp.ƒ.!//

w.N/
�	
; xm 2 Jn :

For instance we now see with (1.54) that

(4.10) Buxm D B xm.�K;u/ for any K � zD xm; xm 2 Jn :

Specializing to K D V , and noting that

zD xmi \
� [
w2Supp.ıj;j /

w.N/
�
D �; when fi; j g D f1; 2g ;

we obtain the identities:

(4.11) Buxm1 D B xm1.�V;u/D B xm1.ı1;1C ı1;2C ı2;1/ ;

Buxm2 D B xm2.�V;u/D B xm2.ı2;2C ı2;1C ı1;2/ :

Due to the independence of the ıi;j , 1 � i; j � 2, it follows that for xmi 2 Ki ,
i D 1; 2, we have:
(4.12)

PŒBuxm1 \B
u
xm2
�D P

�
B xm1.ı1;1C ı1;2C ı2;1/\B xm2.ı2;2C ı2;1C ı1;2/

�
� P

�
B xm1.ı1;1/\B xm2.ı2;2/; ı1;2 D ı2;1 D 0

�
CPŒı1;2 or ı2;1 6D 0�

� PŒB xm1.ı1;1/�PŒB xm2.ı2;2/�CPŒı1;2 6D 0�CPŒı2;1 6D 0�

.4:2/;.4:11/
� qn.u/

2
C 1� e��1;2.WC/C 1� e��2;1.WC/

� qn.u/
2
Cu

�
PeV ŒX0 2

zD xm1 ;H zD xm2
<1�CPeV ŒX0 2

zD xm2 ;H zD xm1
<1�

�
.4:7/
� qn.u/

2
C c L2n

L2n

Ld�2nC1

;

where in the last step we used (1.6), (1.8) together with standard bounds on the
Green function, cf. [11, p. 31]. With (4.6), (4.12), we thus see that

(4.13) qnC1.u/� c5 `
2
n

�
q2n.u/CL

4
nL
�.d�2/
nC1

�
:

We thus define

(4.14) bn D c5 `
2
n qn.u/; for n� 0 ;

and see that

bnC1 �
�`nC1
`n

�2
b2nC c.`nC1`n/

2L4nL
�.d�2/
nC1 ; for n� 0 :
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With (3.2) we know that .`n`nC1/2 � c L2an L2anC1 � c L
4aC2a2

n , and with (3.57)

we know that `nC1
`n
� c La

2

n . As a result we obtain:

(4.15) bnC1 � c.L2a
2

n b2nCL
�.d�2/.1Ca/C4C4aC2a2

n /
d�7
� c6 L

2a2

n .b2nCL
�1
n / :

We will now use the following induction lemma.

LEMMA 4.2 (d � 7). If L0 � c, then for any u� 1, when for some n� 0,

(4.16) bn � L
� 1
2

n ;

then (4.16) holds as well with nC 1 in place of n.

Proof. With (4.15) we see that
(4.17)

bnC1 � 2c6L
2a2�1
n

.3:2/
� c L

� 1
2

nC1 L
1
2
.1Ca/C2a2�1

n

.3:1/
� c L

� 1
2

nC1 L
� 1
4

0 � L
� 1
2

nC1 ;

when L0 � c. This proves our claim. �

We now choose L0 � c, so that for any u � 1, when b0 � L
� 1
2

0 holds then

bn � L
� 1
2

n for all n� 0. Further picking u� c.L0/.� 1/, we see that for m 2 J0,

(4.18) b0
.4:14/
D c5 `

2
0 q0.u/� c5 `

2
0 PŒIu\ zDm 6D ��� c L

2.1Ca/
0 PŒ0 2 Iu�

.1:58/
D c L

2.1Ca/
0 .1� e�u=g.0//� L

� 1
2

0 :

With this choice of L0 and u we thus find that bn � L
� 1
2

n for all n � 0, and this
concludes the proof of Proposition 4.1. �

THEOREM 4.3. .d � 7/ For small u > 0 the vacant set Vu does percolate, i.e.

(4.19) u� > 0 ;

and for u < u�, PŒPerc.u/�D 1.

Proof. We only need to prove (4.19) thanks to Corollary 2.3. We choose
L0 large and u � c.L0/ so that (4.3) holds for all n � 0. Then for n0 � 0 and
M D Ln0 � 1, we can write:
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(4.20)
1� �.u/� PŒ0 does not belong to an infinite connected component of Vu\Z2�

� PŒIu\B.0;M/\Z2 6D ��CPŒIu\
�
Z2nB.0;M/

�
contains a

�-nearest neighbor circuit surrounding 0�
.1:58/
� c M 2.1� e�u=g.0//

C
P
n�n0

P
�
Iu\

�
Z2nB.0;M/

�
contains a �-nearest neighbor circuit

containing 0 and passing through a point in ŒLn; LnC1� 1� e1�

� c L2n0 uC
P
n�n0

P
m

PŒBum� ;

where m runs over the collection of labels at level n of boxes Dm intersecting the
segment ŒLn; LnC1� 1� e1, (.e1; : : : ; ed / stands for the canonical basis of Rd , and
recall we identified Z2 with Ze1CZe2). With (3.2) this collection has cardinality
at most `n � c Lan, and we thus find that

(4.21) 1� �.u/� c L2n0 uC
P
n�n0

c LanL
� 1
2

n

.3:1/
� c.L2n0 uC

P
n�n0

L
� 1
4

n / :

Choosing n0 large and then u � c.L0; n0/, we find that 1� �.u/ < 1, and this
proves (4.19). �

Remark 4.4. 1) Combining Theorems 3.5 and 4.3 we find that when d � 7,

(4.22) 0 < u� <1 ;

i.e. u� is a nondegenerate critical value. This has been extended to all d � 3 in [15].

2) As a matter of fact the above proof combined with an ergodicity argument,
cf. (2.6), shows that when d � 7, for small u > 0, Vu percolates in Z2 � Zd . This
feature remains true for all d � 3, see Theorem 3.4 of [15].

3) Some other very natural questions remain open. When u > u�, how large
is the vacant cluster at the origin? When u < u�, how large can a vacant cluster at
the origin be, if it does not meet the infinite cluster, (which is known to be unique
thanks to [22])? Is there percolation at criticality (i.e. is �.u�/ > 0)? What is the
asymptotic behavior of u� for large d? These are just a few examples of many
unresolved issues concerning percolative properties of the vacant set left by the
random interlacements model described in this work. �
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