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Abstract

We show that the values of entropies of multidimensional shifts of finite type
(SFTs) are characterized by a certain computation-theoretic property: a real num-
ber h � 0 is the entropy of such an SFT if and only if it is right recursively enu-
merable, i.e. there is a computable sequence of rational numbers converging to h
from above. The same characterization holds for the entropies of sofic shifts. On
the other hand, the entropy of strongly irreducible SFTs is computable.

1. Introduction

A shift of finite type (SFT) is an ensemble of colorings of Z (a one-dimensional
SFT) or Zd for d > 1 (a multidimensional SFT) defined by local rules. SFTs are
one of the fundamental objects of study in symbolic dynamics, and their most
significant invariant is their (topological) entropy, which measures the asymptotic
growth of the number of legal colorings of finite regions (see �2 for definitions).
Besides having been studied extensively from a dynamical perspective as topolog-
ical analogs of Markov chains [21], [28], [27], SFTs appear naturally in a wide
range of other disciplines. In information theory, SFTs were used by Shannon as
models for discrete communication channels [24], for which entropy describes the
capacity; similarly, SFTs model “two-dimensional” channels [8]. SFTs have been
used to study the dynamics of geodesic flows and have played an important role
in the classification of the dynamics of Anosov and Axiom A diffeomorphisms
[1], [3], where entropy is again a fundamental invariant. In mathematical physics
SFTs are often called hard-core models, and are used to model a wide variety of
physical systems; this is the thermodynamic formalism [23]. In this setup it is of
central importance to understand the equilibrium states of the system, which are
the invariant measures of maximal entropy.

It is well known that in the one-dimensional case the entropy of an SFT may
be effectively calculated, since it is the logarithm of the spectral radius of a certain
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positive integer matrix which is derived from the combinatorial description of the
system. D. Lind [16] has given an algebraic characterization of the numbers which
arise as entropies of one-dimensional SFTs. A Perron number is a real algebraic
integer greater than 1 and greater than the modulus of its algebraic conjugates. The
entropies of one-dimensional SFTs are precisely the nonnegative rational multiples
of logarithms of Perron numbers.

In higher dimensions the problem becomes much more difficult. The dy-
namics of multidimensional SFTs is vastly more complicated than their one-di-
mensional counterparts. For instance, strongly irreducible multidimensional SFTs
may have more than one measure of maximal entropy [4], and zero entropy can
coexist with rather complex dynamics [20]. In general it is undecidable whether a
given set of rules define a nonempty SFT [2], [22]. Regarding the entropy, even
when the rules defining an SFT enjoy good symmetry properties, calculating the
entropy is usually beyond current technology. As a result numerical methods have
been developed to approximate the entropy (e.g. [10]), but these usually apply to
restricted class systems.

One should note that for certain Zd -actions which arise as automorphisms
of compact groups (a class which includes some SFTs), explicit expressions for
the entropy have been obtained by D. Lind, K. Schmidt and T. Ward [18]. We
note however that while these expressions are explicit they do not provide much
information on the properties of the entropies, e.g. whether they are algebraic, well
approximable, etc.

In this paper we characterize those real numbers which can occur as entropies
of multidimensional SFTs in terms of their computation-theoretic properties. It is
natural to say that a real number h is computable if it can be calculated to any
desired accuracy. More precisely, h is computable if there is an algorithm which,
given input n 2 N, produces a rational number r.n/ with jh� r.n/j < 1=n. For
example, every algebraic number is computable (since there are numerical methods
for computing the roots of an integer polynomial), and so are e; � , since they can
be written as power series with computable coefficients and rate of convergence.

A weaker notion is the following. A real number h is right recursively enu-
merable (sometimes called upper semi recursive) if there exists a Turing machine
which, given n, computes a rational number r.n/� h such that r.n/! h (equiv-
alently, the right Dedekind cut fq 2Q W q > hg is a recursively enumerable set of
rationals).

The class of right recursively enumerable numbers is countable since algo-
rithms may be put in one-to-one correspondence with finite 0; 1-valued sequences,
and hence there are only countably many of them. If h is computable then there
is an algorithm computing r.n/ with jh� r.n/j< 1

n
, so the computable sequence

r.n/C 1
n

converges to h from above. This shows that the class of right recursively
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enumerable numbers contains the computable numbers, and it can be shown to
be strictly larger. For example, if we choose a recursive enumeration T1; T2; : : :
of all Turing machines, and let bn D 0 if Tn halts and D 1 otherwise, then x D
0:b1b2b3 : : : can be seen to be the decreasing limit of a recursive sequence, but one
cannot compute bn as a function of n, since this would solve the halting problem.
For more information, see [15].

THEOREM 1.1. For d � 2 the class of entropies of d -dimensional SFTs is the
class of nonnegative right recursively enumerable numbers.

The property of right recursive enumerability is a necessary condition for a
number to be the entropy of an SFT because the naive approximation algorithm,
which counts locally admissible patterns on cubes, converges from above to the
entropy. This follows from the work of Friedland [9]; we provide a different proof
below. The main novelty here is the sufficiency of the condition.

A sofic system is a subshift factor of an SFT, i.e. an ensemble of colorings
of Zd obtained from a fixed SFT X by applying a local transformation to each
coloring in X (for a definition, see �2). In the one dimensional case, Coven and
Paul [5] showed that every sofic system Y can be extended to an SFT X with
the same entropy as Y . In particular, this implies that the class of entropies of
sofic shifts is the same as that of SFTs. Whether the covering theorem is true in
the multidimensional case is still open and seems quite hard (see [7] for a partial
result). However some circumstantial evidence in favor of the covering theorem is
provided by the following:

THEOREM 1.2. For d � 2, the class of entropies of d -dimensional sofic shifts
is the same as that of d -dimensional SFTs.

This is a consequence of the fact that the entropy of sofic shifts is right recur-
sively enumerable (Corollary 3.3 below), and the fact that an SFT is in particular
a sofic system.

It is worth emphasizing that since there are noncomputable numbers which
are right recursively enumerable, it follows from Theorem 1.1 that there are SFTs
whose entropy cannot be computed effectively. (It is known that, for cellular au-
tomata [13] and general subshifts [25], entropy cannot be computed from the de-
scription of the system.) However, if one assumes strong enough mixing properties
of the system the situation improves. Recall that an SFT is strongly irreducible if
any two admissible patterns far enough apart may be extended admissibly to the
whole lattice (see �2).

THEOREM 1.3. The entropy of a strongly irreducible SFT is computable.

We do not know if computability characterizes the entropies of strongly irre-
ducible SFTs.
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The rest of this paper is organized as follows. In the next section we introduce
notation and background. In Section 3 we prove that the entropy of any SFT or
sofic shift is right recursively enumerable, and that of a strongly irreducible SFT is
computable. In Section 4 we outline the construction which constitutes the proof of
the other direction of Theorem 1.1. Sections 6–8 give the details of the construction.
In Section 9 we discuss some open problems.

Acknowledgement. This work was done during the authors’ graduate studies,
and we would like to thank our advisors, Benjamin Weiss and Jon Aaronson, for
their support and advice. We also thank Mike Boyle for his comments.

2. Preliminaries

In this section we provide some background from symbolic dynamics and
define SFTs and entropy. See [17], [14] for more information on these subjects.

2.1. Subshifts and SFTs. For a finite alphabet † let †Zd

be the space of †-
colorings of Zd (this is called the full shift on †). For a subset F � Zd we refer to
a function a 2†F as a coloring of F or an F -pattern. We say that patterns a 2†F

and b 2†FCu are congruent if a.v/D b.vCu/ for every v 2 F . We say that a
pattern a 2†F appears at u in a pattern b 2†E if bjFCu and a are congruent.

If E � F and a 2†F then a induces a coloring of E by restriction, namely
ajE . For a finite set F � Zd and pattern a 2†F the cylinder set defined by a is

Œa�D fx 2†Zd

W xjF D ag:

We endow †Zd

with the product topology, which is generated by the cylinder sets
and makes †Zd

into a compact metrizable space.
For u 2 Zd let �u W†Zd

!†Zd

be the homeomorphisms

.�u.x//.v/D x.vCu/; v 2 Zd :

This gives an action of Zd on †Zd

called the shift action. A subset X � †Zd

is
invariant under the shift action if �u.X/DX for every u 2 Zd . A closed invariant
set X �†Zd

is called a Zd -subshift.
A d -dimensional subshift of finite type (SFT) is defined by a finite alphabet

†, a finite set F � Zd , and a collection L�†F of †-colorings of F , called the
syntax. A †-coloring x 2†Zd

of Zd is admissible for L if the pattern induced by
x on every translate of F is congruent to a pattern in L. The SFT defined by L is
the set X �†Zd

of all admissible x. From the definition it is clear that an SFT is
closed and shift-invariant.

Given an SFT X defined by a syntax L � †F , we say that a finite pattern
is globally admissible for X if it appears in X . In contrast we say that a pattern
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a 2 †E is locally admissible if ajFCu is congruent to a pattern in L whenever
F C u � E. A globally admissible pattern is locally admissible, but the latter is
not true in general.

An SFT X �†Zd

is strongly irreducible if there is a constant r > 0, called a
gap, such that for every A;B � Zd satisfying ku� vk1 � r for u 2A ; v 2B , and
for every pair of globally admissible a 2†A and b 2†B , there is a point x 2 X
with xjE D a and xjB D b (in other words, a[ b is globally admissible).

2.2. Topological entropy of subshifts. For a subshift X �†Z
d

and F � Zd

we say that a pattern a 2†F appears in X if aD xjF for some x 2X . For a set
F let NX .F / denote the number of distinct †-colorings of F which appear in X .
Let

Fn D f1; : : : ; ng
d

denote the discrete d -dimensional cube of side n. The (topological) entropy h.X/
of X is defined by

h.X/D lim
n!1

1

jFnj
logNX .Fn/:

By convention the logarithm is to base 2. The limit above exists, and is in fact
equal to infn2N

1
jFnj

logNX .Fn/.

2.3. Products, factors and isomorphism. Let X �†Zd

and Y ��Zd

be two
Zd -subshifts. The product systemX�Y � .†��/Z

d

is then a symbolic Zd -system
also, and satisfies h.X �Y /D h.X/C h.Y /.

A continuous-onto map ' WX ! Y is called a factor map if it commutes with
the action; i.e. �u ı ' D ' ı �u for all u 2 Zd . An isomorphism is an invertible
factor map. Both entropy and the property of being an SFT are invariants of iso-
morphism (although isomorphic SFTs are usually not defined by the same syntax),
as is irreducibility.

A factor of an SFT is called a sofic system. In general a sofic system is not
an SFT.

Every factor map ' WX! Y arises from a so-called block code, which means
the following: There exist a finite set F � Zd and a function '0 W†F !� such
that

.'.x//.u/D '0..�
ux/jF /:

Conversely, given such a '0 we can define ' by this formula, and then ' is a factor
map from X onto its image.

A factor map � W X ! Y of symbolic systems X � †Zd

and Y � �Zd

is
called a one-block map if it is determined by a single symbol, i.e. it is induced by
a map '0 W†!�. We will always assume our factor maps are one-block maps.
There is no loss of generality in this since given a factor map ' WX ! Y there is
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a system X 0 isomorphic to X via an isomorphism  W X 0! X so that the factor
map  ' WX 0! Y is a one-block map.

Similarly, an SFT is called one-step if it is defined by a syntax L�†f0;1g
d

.
Every SFT is isomorphic to a one-step SFT. Note that for a one-step SFT one
can splice a pattern into a larger pattern as long as the boundary of the subpattern
agrees with the super-pattern. To be precise, for a subset F � Zd let

@F D fu 2 F W ku� vk1 D 1 for some v 2 Zd nF g:

Then, for a one-step SFT X , given x 2X and a 2†F such that aj@F D xj@F , the
point y obtained by setting y.u/D a.u/ for u 2 F and y.u/D x.u/ otherwise, is
globally admissible.

2.4. Invariant measures and entropy. Given a symbolic system X , a Borel
measure � on X is invariant under the shift action if �.�u.A//D �.A/ for every
Borel set A�X and every u 2 Zd . We denote the set of invariant Borel probabil-
ity measures by M.X/. The weak-* topology on M.X/ is the topology in which
�n! � if

R
fd�n!

R
fd� for every continuous function f on X . This makes

M.X/ into a compact metrizable space.
For � 2 M.X/ we denote its measure-theoretic entropy with respect to the

shift action by h.�/. We recall the following facts:

(1) The entropy function h WM.X/! RC is upper semi-continuous.
(2) The variational principle: h.X/Dmax�2M.X/ h.�/.

See [6] for definitions, proofs and a detailed discussion of the one-dimensional
case, or [19] for a proof of the variational principle in the multidimensional case.

3. Computability of entropies

In this section we show that the entropy of an SFT is right recursively enumer-
able. This follows from the work of Friedland [9], but for completeness we give a
short alternative proof and extend the result to sofic systems. We also prove that
the entropy of a strongly irreducible SFT is computable.

Let the syntax L�†F define a (possibly empty) SFT X . The definition of en-
tropy provides us with the sequence Nn DNX .Fn/ such that 1

nd logNn converges
to h.X/ from above, and if Nn is computable this sequence shows that h is upper-
semi recursive. However, Nn is not computable in general. Indeed, determining
whether Nn > 0 is equivalent to deciding if the SFT defined by L is nonempty, and
this is in general undecidable [22], [2].

Let us say that a finite pattern a 2 †Fn is locally admissible if ajFCu is
congruent to a pattern in L whenever F C u � Fn. Instead of Nn, consider the
sequence

zNn D #flocally admissible Fn-patternsg:
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Clearly zNn is computable. If x 2 X then xjFn
is one of the patterns counted by

zNn, so zNn �Nn. The inequality can be strict, because not all locally admissible
Fn-patterns need arise in this way: there can be locally admissible finite patterns
which do not extend to globally admissible coloring of Zd . Nonetheless,

THEOREM 3.1. For L;X and zNn as above, 1
nd log zNn! h.X/ from above.

Consequently, h.X/ is right recursively enumerable.

Proof. Denote

QhD lim sup
n!1

1

nd
log zNn:

Since zNn � Nn and 1
nd logNn � h.X/, we have 1

nd log zNn � h.X/, so that it
suffices to show Qh� h.X/.

Define a sequence of measures �n on †Zd

as follows. Let Wn �†Fn be the
set of locally admissible colorings of Fn. Let �n denote the probability measure
obtained by coloring each translate FnCu for u2nZd independently and uniformly
with patterns from Wn. Let �n D 1

jFnj

P
u2Fn

�u�n. Then �n is an invariant
probability measure and its entropy is easily shown to be

h.�n/D
1

nd
log zNn:

Let �n.k/ be a subsequence such that h.�n.k//! Qh and let � be a weak-* accu-
mulation point �n.k/; we may assume �n.k/ ! �. Since entropy is upper semi-
continuous in the weak-* topology, we have

h.�/� Qh:

On the other hand we claim that �.X/D 1, and so � can be regarded as an
invariant probability measure on X . To show this, we prove that �.Œa�/D 0 for any
a 2 †F nL , where Œa� is the cylinder set defined by a. Indeed, for every k and
u 2 Fk , if .F Cu/� FkC v for some v 2 kZd then �k.��u.Œa�//D 0 and so

�k.Œa�/�
1

kd
#fu 2 Fk W .F Cu/\ kZd ¤∅g �

kd � .k� 2 diamF /d

kd

where diamF is the diameter of F with respect to the norm

kuk1 D max
iD1:::d

jui j:

Therefore,
�.Œa�/D lim

k!1
�n.k/.Œa�/D 0:

Finally, the variational principle implies that h.�/� h.X/, and the theorem follows.
�
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With the same notation as above, let Y � �Zd

be a symbolic factor of X
arising from a one-block map '0 W †! � and its componentwise extension ' W
X ! Y . Write �Mn D #f'.a/ 2�Fn W a 2Wng

where as before, Wn is the set of locally admissible Fn-patterns for L.

THEOREM 3.2. With the above notation, 1
jFnj

log �Mn ! h.Y / from above.
Consequently h.Y / is right recursively enumerable.

Proof. Denote Qh.Y / D lim sup 1
nd log �Mn. Since ' is onto we have �Mn �

NY .Fn/, so that 1
nd log �Mn � h.Y /. Thus we only need to show Qh.Y /� h.Y /.

Let �k be measures on �Zd

defined by coloring each translate Fk C u for
u 2 kZd with patterns drawn uniformly from f'.a/ W a 2 Wkg. Then �k D
1
kd

P
u2Fk

�u�k is an invariant measure on �Zd

, and h.�k/ D 1
kd log �Mk . Let

�k be measures on †Zd

such that the pattern on FkCu for u 2 kZd is drawn from
Wk according to a distribution which projects under ' to the uniform distribution
on f'.a/ W a 2 Wkg. Thus �k D '.�k/. Let �k D 1

kd

P
u2Fk

�u�k , so that
�k D '.�k/. Choose a subsequence �n.k/ so that there is a measure � on Y with
�n.k/! � and there is a measure � on X with �n.k/! �; now, �D '.�/ satisfies
�n.k/! �. By upper semi-continuity, h.�/� lim h.�n.k//D Qh, and so we will be
done if we show that � is supported on Y . For this it is enough to show that � is
supported on X , i.e. that �.Œb�/ D 0 whenever b 2 †F nL. The proof of this is
identical to the proof of the same statement at the end of Theorem 3.1.

COROLLARY 3.3. The entropy of every sofic shift is right recursively enumer-
able.

Proof. As noted in Section 2, every sofic shift is a one-block factor of some
SFT. �

We turn now to strongly irreducible SFTs and the proof of Theorem 1.3. Let
Qn D f�n;�nC 1; : : : ; n; nC 1g

d denote the symmetric cube. Recall that the
boundary of the cubeQn is @QnDQnnQn�1. For n>k and patterns a2†Qk and
b 2†@Qn we say that a; b are compatible on Qn if there is a locally admissible pat-
tern c 2†Qn with cjQk

D a and cj@Qn
D b. Such a c is called a completion of a; b.

We state the following for 1-step SFTs, though it is easily adapted to the
general case.

LEMMA 3.4. Let X � †Zd

be a nonempty strongly irreducible 1-step SFT
and a 2†Qk . Given N , consider the following conditions:

(1) a¤ bjQk
for every locally admissible b 2†QN .

(2) a and bj@QN
are compatible on QN for every locally admissible b 2†QN .
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Then

(a) a fails to be globally admissible if and only if (1) holds for some N (equiva-
lently, all sufficiently large N ).

(b) a is globally admissible if and only if (2) holds for some N (equivalently, all
sufficiently large N ).

Proof. (a) is clear: If a appears in an infinite configuration then it appears at
the center of locally admissible patterns on cubes of all sizes. The converse follows
by compactness.

We turn to the proof of (b). First, note that if (2) holds for N then it holds
for all M >N . Indeed, if b 2†QM is locally admissible then so is bjQN

. Hence
a; bj@QN

are compatible on QN . Let c be a completion for them, so that cj@QN
D

bj@QN
. Since the SFT is 1-step we can define c0 2 †QM by c0.u/ D c.u/ for

u 2 QN and c0.u/ D c.u/ otherwise, and we get a locally admissible pattern c0

with c0jQk
D a and c0j@QM

D bj@QM
. Hence a; bj@QM

are compatible on QM .
Suppose (2) holds for some N , so that N > k. Choose any x 2 X and let

b D x jQN
. Then b is locally admissible, and so by assumption we can choose a

completion c for a; b. Since cj@QN
Dbj@QN

Dxj@QN
, we can redefine x.u/Dc.u/

for u 2QN and obtain a globally admissible pattern y with y jQN
D a. Thus a is

globally admissible.
Conversely, assume that a is globally admissible; we will establish (2) for all

sufficiently large N . Let r be a gap for X , so that for x 2X we have a; x j@QkCrC1

are compatible on QkCrC1. Thus, for every locally admissible b 2 †QkCrC1 , if
a; bj@QkCrC1

are not compatible on QkCrC1 then b is not globally admissible. By
(a) we see that for sufficiently large N every locally admissible b0 2†QN satisfies
b0jQkCrC1

¤ b. Since there are finitely many such b’s, it follows that if N is large
enough, then for every locally admissible b0 2†QN the patterns a; b0j@QkCrC1

are
compatible on QkCrC1. For such an N , this implies (by the splicing argument at
the beginning of the proof of (b)) that a; b0j@QN

are compatible on QN , as required.

COROLLARY 3.5. For a nonempty strongly irreducible SFT X it is decidable
whether a finite pattern a is globally admissible.

Proof. To decide if a is globally admissible, iterate over N D 1; 2; 3; : : : and
find the first N for which condition (1) or (2) in the lemma holds (for each N the
conditions are finitely checkable). If (2) holds then a is globally admissible; if (1)
holds it is not. The lemma guarantees this algorithm halts in finite time and gives
the correct answer. Note that to apply the lemma one does not need to know the
gap. �
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We remark that an old argument of Wang gives an algorithm that decides
global admissibility of a pattern in an SFT, assuming the SFT has dense periodic
points; see [22]. It is known that strong irreducibility implies dense periodic points
in dimension 2, so that in this case the corollary above does not give new informa-
tion. Whether strong irreducibility implies dense periodic points for d � 3 seems
to be open.

Returning to the question of computability of entropy, we say that a number
h is left recursively enumerable if there is an algorithm which, given n, produces a
rational number s.n/ with s.n/! h and s.n/� h. If h is both right and left recur-
sively enumerable then it is computable. To see this let r.n/; s.n/ be computable
sequences with s.n/� h� r.n/ and r.n/; s.n/! h. Now given n, we can calculate
r.k/; s.k/ for k D 1; 2; 3 : : : until such a k is reached that r.k/� s.k/ < 1

n
. Then

r.k/ satisfies jr.k/� hj< 1
n

. This algorithm shows that h is computable.
We can now prove Theorem 1.3, which we repeat here for convenience:

THEOREM. The entropy of a strongly irreducible SFT is computable.

Proof. Let X be a strongly irreducible SFT, and we may assume it is nonempty.
We already know that h.X/ is right recursively enumerable, so it suffices to show
that it is left recursively enumerable, i.e. to exhibit an algorithm which given n 2N

returns a rational number s.n/ such that s.n/! h.X/ and s.n/� h.
The algorithm is as follows. First, identify all the globally admissible patterns

a1; : : : ; ak.n/ 2†
Qn (this is computable by the corollary above). With this notation

we have k.n/DNX .Qn/DNX .F.2nC1/d /, and 1
jQnj

log k.n/! h.X/. Next, find
the smallest number r 0 so that each globally admissible pattern b 2 †QnCr0C1 is
compatible on QnCr 0C1 with ai for i D 1; : : : ; k.n/. Set

s.n/D
1

jQnCr 0 j
log k.n/:

Note that r 0 � r , where r is the gap for X . Hence

s.n/�
jQnj

jQnCr j
�
1

jQnj
log k.n/! h.X/:

On the other hand, consider a large Qm, and consider the collection of translates
of Qn by elements of the lattice 2.nC r 0/Zd which fall inside Qm. By choice of
r 0 we can color each of these translates in an arbitrary globally admissible way and
complete it to a globally admissible Qm pattern. Since the number of translates is

1
jQnCr0 j

jQmj (for convenience assume that m is a multiple of 2.nC r 0), we see that

k.m/� k.n/
1

jQnCr0 j
�jQmj

:
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Thus, letting m!1, we have

s.n/D
1

jQnCr 0 j
log k.n/�

1

jQmj
log k.m/! h.X/I

hence s.n/� h.X/, and also s.n/! h.X/, as desired. �

Note that the algorithm given in the proof does not require prior knowledge
of a gap for the X . It may of course be applied to a nonirreducible SFT, but in that
case may not halt on some inputs, and even if it does, the sequence s.n/ will not
necessarily behave as above.

4. Outline of the main construction

Let h be a right recursively enumerable number. To prove the remaining
direction of Theorem 1.1, we must construct for every d � 2 a d -dimensional SFT
with entropy h. We first make some simplifying assumptions. We may restrict
ourselves to dimension 2, since given an SFT X �†Zd

the system X 0 �†ZdC1

defined by

X 0 D fx0 2†ZdC1

W 8j 2 Z 9x 2X 8u 2 Zd x0.u; j /D x.u/g

is easily seen to be a d C 1-dimensional SFT and h.X 0/ D h.X/. Furthermore,
since (a) the product of SFTs is an SFT, (b) h.X �Y /D h.X/Ch.Y / and (c) n is
the entropy of the full shift on 2n symbols, it suffices to prove the statement under
the assumption that h 2 Œ0; 1�.

Our construction has three main steps:

Step 1: Constructing the base (§6). We construct an SFT X some of whose
symbols are marked 0; 1, and such that the density of 1’s in each point of X is very
uniform. It will be possible to estimate this density by observing any sufficiently
large and well-distributed set of coordinates.

Step 2: Pruning (§7). In this step we “kill” all points x 2 X such that the
frequency of 1’s in x is strictly greater than h. In this way we obtain an SFT Y such
that the symbol 1 appears in each y 2 Y with frequency at most h, and for some
points the frequency is h. Furthermore, Y will still have zero entropy. We achieve
this by superimposing another layer on top of X which represents calculations of
a certain Turing machine, using as input the underlying patterns from X . This
machine halts when it detects a density of 1’s greater than h. The result is that a
point x 2X with density of 1’s greater than h cannot be extended to a pattern in
Y ; otherwise, it can be.
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Step 3: Adding “Random” bits (§8). We extend Y to an SFT Z by allowing
two new symbols, say ”˛” and “ˇ”, to appear independently over every occurrence
of a 1 in Y . This system Z has entropy h.

For Steps 1 and 2 we utilize certain SFTs with special geometric and arith-
metic properties. The existence of such systems, and their use in representing
Turing machines in SFTs, appears first in Robinson’s paper [22]. However, we
will not refer directly to Robinson’s construction, which would in any case require
some modification to suit our needs. Instead we rely on a theorem of Mozes [20]
about the realization of substitution systems by SFTs. This theorem, which allows
us to easily construct variants of Robinson’s system, is presented in the next section
together with another technical definition. Following that, we give the details of
Steps 1, 2 and 3.

Before moving on, we note that our arguments give the following result, which
may be of independent interest:

THEOREM 4.1. A real number r � 0 is right recursively enumerable if and
only if there is an alphabet †, a symbol a 2† and an SFT X �†Zd

such that

sup
x2X

lim
n!1

1

jFnj
#fu 2 Fn W x.u/D ag D r

(and in particular the limit above exists for every x 2 X). Furthermore if r is
computable then one can find †; a and an SFT X so that limn!1 1

jFnj
#fu 2 Fn W

x.u/D ag D r for every x 2X .

5. Substitutions and superpositions

In this section we describe two technical devices for constructing SFTs.

5.1. Subshifts defined by substitution. Given a finite alphabet †, a substitu-
tion rule is a map s W†!†Fk for some integer k > 1, where Fk D f1; : : : ; kg �
f1; : : : ; kg (in the terminology of [20], this is a deterministic k � k substitution
system with property A). The map s extends naturally to a map sn W†Fn !†Fn�k

by identifying †Fn�k with .†Fk /Fn .
Starting from a single symbol located at .1; 1/ 2 Z2 and iterating the substi-

tution map, we obtain a sequence of colorings of Fkn for n D 0; 1; 2 : : : . Such
patterns are called s-blocks. A point x 2 †Z2

is admissible for s if every finite
subpattern of x appears in some s-block. The subshift W �†Z2

associated with s
is the set of admissible patterns; this is seen to be closed and shift invariant.

Define s1 W W ! W by applying s to each symbol of x; more precisely,
s1.x/.u/D s.x.u

0//.u00/, where u0 2 Z2 and u00 2 Fk are the unique vectors such
that uD ku0Cu00. Clearly s1 maps W into W . We say that x is derived from y if
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T vx D s1.y/ for some v 2 Fk . It is not hard to show that each x 2W is derived
from some y 2W ; if this y is unique, we say that s has unique derivation.

THEOREM 5.1 (Theorem 4.5 of [20]). Let s W†!†Fk be a substitution rule
with unique derivation and let W be the associated dynamical system. Then there
exists an alphabet �, an SFT eW ��Z2

, and a one-block factor map ' W eW !W .
Furthermore ' is an injection on a set having full measure with respect to every
invariant measure on eW .

Note that Theorem 5.1 is false in dimension d D 1.

PROPOSITION 5.2. If s;W and eW are as in Theorem 5.1, then h.eW /D 0.

Proof. For any � invariant on eW , the map ' is an isomorphism of dynamical
systems between .eW ;�/ and .W; '�/ where '� is the push-forward of � to eW .
Hence it suffices to show that the latter system has zero measure-theoretic entropy.
By the variational principle it suffices to show that h.W /D 0. Fix m. Since every
large enough s-block is composed of an array of smaller s-blocks of dimension
km � km arranged in a square, it follows that for n > km an admissible Fn-pattern
can decompose Fn into .Œ n

km ��2/
2 disjoint s-blocks of dimension km�km together

with a “small” remaining region near the boundary. Thus the number of Fn patterns
is at most

NFn
.W /� #fk � k s-blocksg.Œn=k

m��2/2
� j†j4nk

m

where the second term on the right-hand side is the number of ways to fill in the
region near the boundary of Fn not covered by the s-blocks. Since there are only
j†j different s-blocks of dimension km � km (because each is derived from one of
the original symbols), for all large enough n we have

1

n2
logNFn

.W /�
.Œ n
km �� 2/

2 log j†j
n2

C
4km log j†j

n
!

1

km
I

as m was arbitrary, h.W /D 0. �

We use Theorem 5.1, which is due to Mozes, to construct systems similar
in many respects to Robinson’s system from [22]. We remark that although this
allows a more economical exposition the gain is cosmetic. Indeed, the proof of
Theorem 5.1 relies on an elaborate extension of Robinson’s techniques. There has
recently been a revival of interest in substitutions and their realization using local
rules; see e.g. [11].

5.2. Superposition. Given an SFT X defined by a syntax L, superposition
is a syntactic process which gives an SFT X 0 which factors onto a subshift of X .
Informally, this is done by adding data to each symbol of X and enriching the
syntax with rules relating to the new data.
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More precisely, suppose X is an SFT defined by a syntax L�†F . A system
Y is superimposed over X if it is obtained by the following process. (a) For a finite
set �, we replace each symbol of � 2 † with one or more symbols of the form
.�; ı/ 2 †��. Let †0 be the set of these pairs. For the new symbol .�; ı/ 2 †0,
we say that ı is superimposed over � ; we also frequently refer to this pair as the
symbol � marked with ı. (b) We extend each pattern a 2 L�†F to one or more
patterns a0 2 .†0/F by superimposing new symbols over each symbol of a. Call
the new syntax L0. The SFT X 0 defined by L0 has the property that every pattern
appearing in X 0 consists of a �-pattern superimposed over a †-pattern, and the
†-pattern is admissible for X .

Note that the map � WX 0!†Z
2

which erases the superimposed layer of data
maps X 0 into a subsystem of X . We say that x 2 X is represented in X 0 if one
can turn x into a point of X 0 by superimposing a suitable �-pattern over x; i.e., if
x D �.x0/ for some x0 2X 0.

6. Step 1: Constructing the base

In this section we construct a two-dimensional SFT X whose symbols are
marked with the symbols 0; 1. The symbol 1 may appear with any density in
points of x, but for each fixed x 2X the density of 1’s will be extremely uniform.

6.1. An almost periodic SFT. Consider the substitution on the alphabet fı; �g
defined the rule

� 7!

�
ı �

� ı

�
ı 7!

�
ı ı

� ı

�
:

Let W denote the dynamical system defined by these rules. See Figure 6.1.
We say that a set E � Z2 is a 2-net if E D[1nD1In �Jn where each In and

Jn are translates of 2nZ, the In’s are pairwise disjoint, and the Jn’s are pairwise
disjoint. We refer to In � Jn as the n-th level associated with E. Note that if u
belongs to some level of E then the row and column to which u belongs do not
intersect any other level.

Figure 6.1. Three iterations of the substitution.
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PROPOSITION 6.1. Let w 2W and

E.w/D fu 2 Z2 W w.u/D �g:

Then E DE.w/ is a 2-net.

Proof. For nD 0; 1; 2; : : : let an be the sequence of F2n square patterns ob-
tained by applying the substitution rule to the initial symbol a0 D �. It is sufficient
to show that there is a 2-net E D[1nD1In�Jn such that fu 2 F2n W an.u/D �g D

E \F2n . To verify this, one proves by induction that the above holds for

In D Jn D 2
nZC 2n�1: �

We remark that the system W supports a unique invariant probability measure
and as a measure-preserving system this is an odometer, i.e. is isomorphic to a
zero-dimensional abelian group along with a free minimal Z2 action generated by
translation by two elements of the group.

This substitution rule has a unique derivation, since one may check that there
is a unique way to derive the central 6� 6 square of the 8� 8 pattern in Figure 6.1
from a 4� 4 pattern.

Let eW be the SFT associated to W by Theorem 5.1. Then to each point in eW
there is associated, via a one-block map, a fı; �g pattern defining a 2-net.

6.2. Marking the columns of eW . We now superimpose another layer on top
of eW . Begin by superimposing the symbols 0; 1 on top of the eW with the constraint
that the symbols 0; 1 cannot be placed vertically adjacent to each other. This forces
each column in the resulting system to be marked either entirely with 0’s or entirely
with 1’s.

For a point w 2 eW , the new coloring induces a f0; 1g-coloring of each level
I � J in the decomposition given by the proposition. This coloring is constant
on the intersection of I � J with columns; we now force it to be constant on
the intersection of the grid with rows. For this, superimpose two new symbols
“ !”,””” on top of the existing ones. We think of ! as transmitting a “0”
signal, and of” as transmitting a “1” signal. The rules are that over a symbol
marked �, the symbol ! appears always together with the symbol 0, and”
appears always together with the symbol 1. We also require that ! and”
cannot appear as horizontal neighbors, so the arrow type is constant on rows.

Call the resulting system X (it is of course an SFT) and let x 2 X be super-
imposed over a point w 2 eW 0. Let I � J be some level of the 2-net induced by
w, and suppose that w.u/ is marked 0 for some u 2 I �J . Since it is also marked
�, it bears the symbol ! (and not”); this forces the entire row to which u
belongs to be marked with !. Every other v 2 I �J belonging to the same row
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is thus marked � and !, and so it must be marked 0. A similar analysis holds if
w.u/ is marked 1.

In short, the 0; 1-coloring of each grid I �J is constant on rows and columns,
and thus is completely constant. If In �Jn are the levels of the 2-net induced by
a point x 2X then each In �Jn determines a collection of columns which is 2n-
periodic in the horizontal direction, and all these columns bear the same symbol 0
or 1.

For x 2X , let ı.x/ be the upper density of 1’s in x, i.e.

ı.x/D lim sup
n!1

jfu 2 Fn W x.u/D 1jg

jFnj

where as usual Fn D f1; : : : ; ng2. If In �Jn are the levels of the 2-net induced by
x; then a simple calculation shows that

ı.x/D

1X
nD1

�n � 2
�n

where �n is 0 or 1 according to the coloring x induces on In � Jn. Since the
In’s and Jn’s are pairwise disjoint the arrows transmitting information between
the points of each grid occupy different rows, and hence do not interact. Therefore,
we are free to color each level 0 or 1 independently of the coloring of the other
levels. Consequently, any sequence �n 2 f0; 1g may arise, and so there are points
x 2X with ı.x/ taking on any value in the range Œ0; 1�.

We will call a point in X exceptional if it is superimposed over an exceptional
point of eW . For an exceptional point x 2X there are complementary half-spaces
and/or quarter-spaces such that the restriction of x to each of them looks like a
nonexceptional point. Thus the above analysis applies to each of these regions
separately. This is not to say that we can glue admissible half- and quarter-spaces
together arbitrarily, and indeed for exceptional points the arrows from different
parts can interact; but this will not matter to us.

Finally, we claim that X has zero entropy. Indeed, W has zero entropy, and
it is simple to check that if a is a square pattern admissible for W then every
extension of a to a pattern b admissible for X is determined by the symbols of b
on the boundary of the square. It follows that X has entropy 0.

7. Step 2: Pruning

Let h be a fixed, right, recursively enumerable number. Let X be the system
constructed in the previous section. Our goal in this section is to construct an SFT
Y superimposed over X which “kills” points with density of 1’s greater than h.
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More precisely, we will want

supfı.y/ W y 2 Y g D h

(here ı is the natural extension of ı from X to Y ) and that the supremum will be
achieved.

7.1. Boards. We define a substitution system over the alphabet

†D fj;�; p; q; x; y;>;?;`;a;C;�;�g:

The substitution rules are described in Figure 7.1 together the symmetric rules
obtained by rotating by multiples of 90ı. Let us denote by bn the 5n � 5n-pattern
obtained by applying the substitution rule n times to the symbol �. It is not hard
to show that � appears with period 5 in every bn. Given k and n > k, since �
appear in bn�k with period 5 we see that bi appears in bn�kCi with period 5i , so
that bk appears in bn with period 5k .

As can be seen from Figure 7.1, this substitution rule produces patterns which
induce certain grid-like shapes on Z2. More precisely, define finite sets In � N

inductively by I1 D f1; 2; 4; 5g and

InC1 D In[ .InC 5
n/[ .InC 3 � 5

n/[ .InC 4 � 5
n/:

One sees by induction that min In D 1 and max In D 5n, so that the union above
is disjoint, and hence jInj D 4n for each n. Let

Bn D .In � f1; 2; : : : ; 5
n
g/[ .f1; 2; : : : ; 5ng � In/:

This is the set obtained by “filling in” the rows and columns between points of
In � In. The set Bn is called an n-board. An infinite board is any set B � Z2

which is the limit of a sequence of translates BnC un for some un 2 Zd , where
by limit we mean that u 2 B if and only if eventually u 2 BnC un. It is simple
to check that every infinite board B has density zero; i.e. for every " > 0 there is
an N so that jB\.FNCu/j

jFN j
< " for every u 2 Z2. This follows from the recursion

formula for In.
Consider the patterns bnjBn

. One shows by induction that these patterns do
not contain the symbols �;�. Also, for u 2 Bn the points v 2 Bn which are
adjacent to u – i.e., which differ from u by ˙e1 or ˙e2 – are determined by bn.u/
by interpreting the symbol bn.u/ as a collection of lines pointing to the neighbors
of u in Bn. Thus, ? indicates that there are neighbors left, right and above the
current symbol; � indicates neighbors to the left and right of it, etc. One can show
that if u 2 F5n D f1; : : : ; 5ng � f1; : : : ; 5ng and bn.u/ … f�;�g, then there are a
unique k and translate A of Bk so that u 2 A and bnjA is congruent to bkjBk

. In
the large square in Figure 7.1 there are two boards visible; a 1-board in the center,
and a 2-board surrounding it. If we iterate the substitution one more step, each �
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Figure 7.1. The substitution rules, up to rotation. The symbol�
is represented as an empty square. The large 25 � 25 pattern is
obtained by applying the substitution rules twice to�.
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will turn into a 1-board plus �’s; the 1-board will turn into a 2-board plus �’s, and
the 2-board will turn into a 3-board, plus �’s.

Let R denote the dynamical system defined by these rules. From the remarks
above it follows that each r 2R determines a pairwise disjoint collection of boards,
with n-boards appearing periodically with period 5n; and if u2 r and r.u/…f�;�g,
then u belongs to one of these boards and the neighbors of u in this board can be
determined from symbols r.u/. By compactness, there will exists points r 2R and
infinite boards B so that r jB is marked similarly to a finite board. Since infinite
boards cannot overlap and each occupies at least some quarter-space, there can be
at most four infinite boards in r , and since each has density 0, the density of points
belonging to infinite boards in r is zero.

R has unique derivation; indeed, the locations of the corner tiles determine
the derivation of a point. We denote by zR the SFT associated to R by Mozes’
theorem. We identify points in zR with the point in R they are mapped to by the
given one-block map; in general this identification is many-to-one.

7.2. Turing machines and their representations in SFTs. A Turing machine
is an automaton with a finite number of internal states which reads and writes
data on a one-sided infinite array of cells indexed by N, called the tape. Each cell
contains one symbol from the data alphabet (so in our model the input is an infinite
sequence). The computation begins with the machine located at the 0-th (leftmost)
cell and in a special initial state, and the tape contains some data which is the input
to the computation. The state of the data tape along with the location and internal
state of the machine are called a configuration; a configuration uniquely determines
all future configurations. The computation proceeds in discrete time steps. At each
iteration the machine is located at some cell, reads the symbol written there and
based on this data and on its internal state, performs three actions: (a) it replaces
the current data symbol with a new one, (b) it moves one cell to the left or to the
right, and (c) it updates its internal state. The computation may halt after a finite
number of steps if the machine either moves off the tape (steps left at cell 0) or
enters a designated state, called the halting state. Barring these occurrences, the
computation continues forever.

Although a very simple model, any algorithm written in a modern computer
programming language can be implemented as a Turing machine, and it is generally
accepted that any effective computation can be performed by a Turing machine; this
is Church’s thesis. For background and basic facts on this subject, see [12].

Let X be the SFT constructed in Section 6, let zR be the SFT described above
and let T be a Turing machine whose data alphabet includes symbols 0; 1. We
construct an SFT YT superimposed over X � zR such that when a point y 2 Y is
superimposed over .x; r/ 2 X � zR, each board induced by r has superimposed
over it a pattern representing the run of T on the input given by the sequence of
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0; 1’s appearing in x along the columns of the board. This construction, which we
describe next, is similar to the one used by Robinson in [22], except that Robinson’s
machines always ran on an “empty” input.

Let �; � be symbols in the alphabets of X; zR respectively. We superimpose
new symbols over .�; �/ only if � represents a point in a board (i.e. � ¤ �;�),
and the adjacency rules for the new symbols will only restrict pairs of neighbors
which belong to the same board (note that this can be determined locally). Thus
.x; r/ 2X � zR will be represented in YT if and only if for each (finite or infinite)
board B induced by r there exists a locally admissible pattern superimposed over
.x; r/jB .

For a board BnCu let us call the points In � InCu the nodes of the board.
Note that .�; �/ represents a node if and only if � 2 fp; q; x; y;>;?;`;a;Cg. The
data superimposed over a node will include a combination of data symbol (from
the machine’s data alphabet) and possibly also a machine state; this information
may be represented by the alphabet �1 [ .�1 ��2/ where the union is disjoint,
�1 is the machine’s data alphabet and �2 its state space.

Each row of nodes in a board is to represent a finite portion of the configuration
of the machine. More precisely, each node will contain either a data symbol or a
data symbol and a machine state; this is called the cell’s configuration. Suppose
x 2X and r 2 zR induces a board B . We can arrange things so that
(1) The data symbols in the nodes of the bottom row are the symbol 0 or 1 induced

by x on that node.
(2) The node at the lower left corner of B contains the initial state of the machine,

and no other node in the bottom row contains a machine state.
(3) Each row of nodes except the bottom one represents the configuration obtained

by iterating the computation one step from the configuration given in the row
below it. In particular, no row can appear admissibly above a row containing
a halting state.

Properties (1) and (2) are easily implemented by restricting the types of symbols
which may be superimposed over .�; �/ when � 2 fx;�;?; yg.

Implementing (3) with local rules requires a little more effort. First, note that
in the course of the operation of a Turing machine T , the configuration of a cell
i at a time t > 1 is a function of the configurations of the cells i � 1; i; i C 1 at
time t � 1; indeed the data on the cell is determined by the configuration at i , and
the presence and state of the machine depend on the configurations of the cells at
i �1; iC1 (in case i D 0, the dependence is on the cells at i; iC1 only). We write
T .u; v; w/ for the state of i at time tC1 given that at time t cells i�1; i; iC1 were
in states u; v;w respectively (we allow uD “null” in case i D 0). If we forget the
geometry of the boards and imagine configurations of the machine represented as
sequences of cell configurations stacked one on top of the other, this transition is
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“local” and can be enforced by a local rule that every pattern of the form v0

u v w

must satisfy v0 D T .u; v; w/.
However, when we represent cell configurations in nodes of a board the tran-

sition from row to row is no longer local, since in a board the nodes representing
successive cells are spread out in space and may be arbitrarily far apart. We can
overcome this by using the rows and columns between nodes (which belong to the
board, and therefore do not overlap for distinct boards) to “transmit information”.
In this way we can guarantee that the symbol superimposed over the immediate
neighbors of each node indicate the cell configuration at each of the neighboring
nodes. This can be implemented in a manner similar to the way in which we
synchronized the coloring of 2-nets in X in Section 6. Briefly, over each grid
point marked � we superimpose a pair of symbols .u; v/ where u; v are node
configurations. We require that each pair of horizontally adjacent �’s are marked
with the same pair, so all members of an uninterrupted horizontal sequence of �’s
carry the same pair. When a pairC� appears andC has configuration u we require
that over � there is a pair .u; v/ for some v; and similarly for pairs ?� and >�.
The symmetric condition is imposed for �C, � ? and �>. The result is that
every uninterrupted horizontal sequence of �’s carries the pair .u; v/ where u is
the configuration of the node at which the sequence ends on the left, and v the
configuration of the node ending the sequence on the right.

Next, over each symbol j we superimpose a triple .u; v; w/, where u; v;w
are cell configurations and u or w may also be “blank”. As for �’s, we require
that the marking is constant for each uninterrupted vertical sequence of j’s. The
markings are determined as follows. If a j is located immediately above a node with
configuration v, and the nodes to the left and right of that node have configurations
u;w respectively, then j carries .u; v; w/; u or w is “blank” in the case there is no
node to the left or right of the node below j (i.e. if it is at the edge of the board).
Note that by the previous discussion, u; v;w may be determined by looking at
the immediate neighbors of the node below the j. Thus the column of j’s above
each node represents the configuration of that node and its neighbors. Finally, we
require that when a nodeC;>; p or q in state v0 appears vertically above a j marked
.u; v; w/, then v0 D T .u; v; w/; this is the point where we encode the transition
rules of the Turing machine in the rules of the SFT. These conditions can be seen
to force property (3).

We summarize this construction and its properties in the following proposi-
tion:

PROPOSITION 7.1. Given the systems X; zR from Sections 6 and 7.1 respec-
tively, and given a Turing machine T , there exists an SFT YT superimposed over
X � zR such that the following are equivalent:
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(1) .x; r/ 2X � zR is represented in YT .
(2) For each finite or infinite board B induced by r and containing the symbol x,

when T is run on the sequence of 0; 1-s induced by x on the columns of B the
number of steps it runs without halting is at least equal to the number of rows
in B .

Furthermore, h.YT /D 0.

Proof. The equivalence follows from the discussion preceding the theorem.
We only note that if a board B induced by r does not contain the symbol x then it
can always be extended, e.g. by a pattern in which all rows are the same and contain
only data. Note that in general, there may be infinitely many ways to superimpose
a pattern over an infinite board which does not contain x. Thus the projection from
YT into X � zR is not an injection.

It remains to check that h.YT /D 0. Given an N �N pattern a appearing in
X � zR, if BnC u is a board induced by zR and contained in FN then there is a
unique way to extend a to a locally admissible YT pattern. This is true also for
symbols in a which do not lie in any board. Given " > 0, a simple estimate shows
that if N is large enough these points make up all but an "-fraction of the points in
FN , the remaining points coming from “boards” which intersect the boundary of
FN or infinite boards, all of which have density tending to zero as N !1. Hence
a can be completed in at most 2".N/�N

2

ways with ".N /! 0. It now follows that

NYT
.Fn/�NX� zR.Fn/ � 2

".n/n2

:

Therefore,

h.YT /�
1

n2
lim
n!1

N
X� zR

.Fn/C lim
n!1

".n/� h.X/C h. zR/D 0

as claimed.

7.3. Pruning. Our aim now is to find a Turing machine T so that .x; r/ 2
X � zR is represented in YT if and only if ı.x/� h.

Recall that this machine T will receive as its input sequences of 0; 1’s induced
by points x 2X on translates of In. Write I D[1nD1In, and enumerate the elements
of I as I D fi1 < i2 < : : :g, where i1 D 1. Note that the first 4n elements of this
sequence are precisely the elements of In; this follows easily from the recursion
relation defining the In’s. If .x; r/ 2 X � zR and Bn C u is an n-board induced
by r , then the 0; 1-coloring induced by x on In � f1gCu is the sequence .xj /4

n

jD1

such that xj is the symbol 0 or 1 appearing on the ij -th column in T ux. It follows
that for any k � n, the first 4k symbols of this sequence correspond to a pattern
induced by x on some translate of Ik .

LEMMA 7.2. There exists a sequence of finite sets Mn � Im�2n2 such that
fim W m 2 Mng is a complete set of residue classes modulo 2n; i.e., for every
0� j < 2n there exists a unique m 2Mn such that im � j mod 2n.
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Proof. By the recursion formula for Ik given, Section 7.1 and the fact that Ik
is an increasing sequence, for any k � q we have

IkC 5
q
� IqC 5

q
� IqC1:

In particular, since 1 2 I1, we may show by induction that for any r and t ,

1C 5qC 52qC � � �C 5tq � IqC2q:::CtqC1:

Given n, since gcd.2n; 5/D 1 we may choose q � 2n so that 5q � 1 mod 2n. Since
the set

f1C 5qC � � �C 5tqg2
n

tD1

is a complete set of residues modulo 2n and is contained in I23n , the existence of
Mn follows. �

It is clearly possible to compute a sequence of sets Mn � I23n with the above
properties. The proof above gives an algorithm for doing so, since the identity
5q D 1 mod 2n is solved by q D �.2n/ (here � is Euler’s function).

Let r.n/ be a computable sequence and h� r.n/! h. We can now describe
our algorithm:

ALGORITHM 7.3. Input: .xn/n2Z 2 f0; 1g
Z.

For N D 1; 2; 3 : : : do

(1) Calculate r.N /.

(2) Calculate the relative frequency ıN of 1’s in the sequence .xm W m 2MN /,
i.e.

ıN D
1

2N
#fm 2MN W xm D 1g:

(3) If ıN > r.N /C 2�N then halt.

PROPOSITION 7.4. Let x 2 X and let .xn/1nD1 be the 0; 1-valued sequence
with xn equal to the color of the in-th column of x. Then Algorithm 7.3 halts on
the input .xn/ if and only if ı.x/ > h, and if it halts, the number of steps it runs
before halting depends only on ı.x/ (not on x).

Proof. It suffices to show that ı.x/� 2�N � ıN � ı.x/C 2�N for every N .
Indeed, if ı.x/D hC " for some " > 0 then ıN � ı.x/� 2�N implies that ıN >
h� "=2 for large enough N , and since r.N /! h for large enough N we will have
ıN > r.N /C 2

�N and the algorithm will halt. On the other hand if ı.x/� h then
ıN � ı.x/C2

�N implies that ıN � hC2�N � r.N /C2�N , so that the algorithm
will run forever.

Fix N � 1 and let E D[1nD1Un �Vn be the 2-net induced by x. Note that

ı.x/D

1X
nD1

�n2
�n
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where �n 2 f0; 1g is the symbol induced by x on the grid Un �Vn.
Note that jMnj D 2

n. Let Jn D fj 2MN W ij 2 Ung. Since fij W j 2MN g is
a complete set of residues modulo 2N , for each n�N we have

jJnj D 2
N�n

and since the Un’s are pairwise disjoint so are the Jn’s, so that

jMN n

N[
nD1

Jnj D 1:

Let MN n [
N
nD1Jn D fig and let �0 2 f0; 1g be the symbol induced on the i-th

column of x. Then

ıN D
1

2N

X
j2MN

1fxjD1g D
1

2N

�
1fxiD1gC

NX
nD1

X
j2Jn

1fxjD1g

�

D
�0

2N
C

NX
nD1

�njJ.n/j

2N
D

�0

2N
C

NX
nD1

�n2
�n:

The desired inequality follows.
Regarding the number of steps the algorithm runs before halting, we see that

this depends only on N and ı.x/. �
Let T be a Turing machine implementing this algorithm and whose input is

the sequence of 0’s and 10s which is the input to the algorithm. We make one
important assumption about the implementation, namely that there are integers tN
such that the machine performs the first N iterations of the loop in at most tN
steps (or halts before that), independent of the input. Such an implementation
does not present any difficulty. Another thing to note is that as we have defined
it, the entire tape is taken up by input data. In order to provide the machine with
space to store its intermediate calculations one can allow it to superimpose another
layer of symbols over the input alphabet. Formally, this can be done by setting the
machine’s alphabet to be f0; 1g � f00; 10g, with the input represented by the first
coordinate and the machines modifying the second coordinate as it pleases.

Let Y D YT ; this is the system Y whose construction was the goal of the
second step in the outline given in Section 4.

PROPOSITION 7.5. If .x; r/ 2 X � zR then .x; r/ is represented in YT if and
only if ı.x/� h.

Proof. By 7.1 it suffices to show that the condition ı.x/� h is equivalent to
the fact that for any finite or infinite board B induced by r representing an N �N
grid (N 2 N [ f1g), if r jB contains the symbol x then the algorithm does not
halt after N steps when run on the input induced by x on the columns of B . The
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proposition now follows easily from Proposition 7.4 and the fact that r induces
boards of arbitrarily large size. �

Finally, we note that the topological entropy of Y D YT is zero by Proposi-
tion 7.1.

8. Step 3: Adding and calculating entropy

Let Y be the system constructed in the previous section. Let Z be the SFT
superimposed over Y by adding one of the symbols ˛; ˇ over each occurrence of
the symbol 1. We place no other restrictions on the configurations of ˛; ˇ’s which
may appear. In this section we estimate the entropy of Z and show that it is indeed
equal to hD supfı.y/ W y 2 Y g.

Write Fn D f1; : : : ; ng2 again and for y 2 Y denote

fn.y/D
1

jFnj
#fu 2 Z2 W y.u/ is marked “1”g

so that ı.y/ D lim supn!1 fn.y/. Since ı.y/ � h for every y 2 Y there is a
sequence "n! 0 such that

sup
y2Y

fn.y/ < hC "n

(such a sequence "n exists by general considerations, but in our case by the proof
of Proposition 7.4 one can choose "n D 2�nC1).

We now estimate the number of patterns induced by Z on the box Fn D
f1; : : : ; ng2. For each pattern induced on Fn by y 2 Y , the number of ways to
superimpose the symbols ˛; b and get an admissible pattern for Z is 2fn.y/jFnj D

2fn.y/n
2

. Summing over all patterns induced on Fn by Y and using the fact that
fn.y/� hC "n we have

NZ.Fn/�NY .Fn/ � 2
fn.y/n

2

�NY .Fn/ � 2
n2.hC"n/

so that

lim sup
n!1

1

jFnj
logNZ.Fn/� lim sup

n!1

1

jFnj
logNY .Fn/C lim sup

n!1
.hC "n/D h

because h.Y /D lim sup 1
jFnj

logNY .Fn/D 0.
On the other hand, if yn 2 Y satisfy fn.yn/! h then clearly the number of

ways to extend ynjFn
to a pattern in Z is 2fn.yn/jFnj and so

lim inf
n!1

1

jFnj
logNZ.Fn/� lim sup

n!1
fn.yn/D h:

The entropy estimate h.Z/D h follows.
This completes the proof of Theorem 1.1.
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9. Concluding remarks

Many questions remain about the relation between the dynamics, SFTs and
their entropies. Let us take a closer look at the system Z constructed above. We
can write Z as a disjoint union Z D [0�r�hZr where Zr is the (nonempty) set
of points z 2 Z with ı.z/ D r ; each Zr is a closed, shift-invariant set, so every
orbit closure in Z lies in some Zr . Hence Z is not transitive. Z also does not have
periodic points, since it factors onto the infinite, uniquely ergodic system W .

We remark that if h is computable instead of merely right recursively enumer-
able, then one can modify Algorithm 7.3 so as to also kill points whose density of
1’s is less than h (computability implies both right and left recursive enumerabil-
ity). For this algorithm the resulting system is essentially the system Zh above.
However, it is still not transitive, since there are many ways to extend an infinite
board which does not contain a bottom row; this does not affect entropy, since
infinite boards have density zero, but means that Zh has a transient part.

Problem 9.1. Is every right recursively enumerable number h the entropy of
a transitive SFT?

Conversely, we have seen that the entropy of strongly irreducible SFTs is com-
putable. This raises the following:

Problem 9.2. What is the class of entropies of multidimensional strongly ir-
reducible SFTs?

Another mechanism which may be related to entropy is the presence of periodic
points. For a two-dimensional SFT X denote by Pn the number of n�n patterns
which can be repeated to produce an admissible tiling of the lattice with period k in
both directions. Clearly Pn is computable, and in certain situations one can show
that lim 1

n2 logPn! h and 1
n2 logPn � hC "n for a sequence "n which decays to

0 at a computable rate. This implies that the entropy is computable, because for
zNn as in Section 3 we have h 2 .1

n
logPn� "n; 1n log zNn/, and so given n we can

examine the difference 1
n

log zNn� .1n logPn� "n/ for nD 1; 2; 3 : : :, stop the first
time it is less than 1

n
, and give 1

n
logPn� "n as our estimate.

Friedland [9] used this observation to deduce that if the syntax of an SFT
enjoys a certain spatial symmetry then the entropy is computable. We note also
that strongly irreducible SFTs in two dimensions have dense periodic points, but
whether this is so in higher dimensions seems to be open [26].

Problem 9.3. Do dense periodic points for an SFT imply that the entropy is
computable?

Finally, we repeat here an old question which we mentioned in the introduction:

Problem 9.4. Is every sofic shift a factor of an SFT with the same entropy?
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