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Abstract

The results of Denisov-Rakhmanov, Szegő-Shohat-Nevai, and Killip-Simon are
extended from asymptotically constant orthogonal polynomials on the real line
(OPRL) and unit circle (OPUC) to asymptotically periodic OPRL and OPUC. The
key tool is a characterization of the isospectral torus that is well adapted to the
study of perturbations.

1. Introduction

This is a paper about the spectral theory of orthogonal polynomials on the
real line (OPRL) and orthogonal polynomials on the unit circle (OPUC), that is,
the connection of the underlying (spectral) measure and the recursion coefficients.

Specifically, given a probability measure, d�, on R with bounded but infinite
support, the orthonormal polynomials, pn.x/, obey a recursion relation

(1.1) xpn.x/D anC1pnC1.x/C bnC1pn.x/C anpn�1.x/

where the Jacobi parameters fan; bng1nD1 obey bj 2 R, aj 2 .0;1/. As is well
known (see, e.g., [103, �1.3]), (1.1) sets up a one-to-one correspondence between
uniformly bounded fan; bng1nD1 and such measures, d� (this is sometimes called
Favard’s theorem).

Similarly, probability measures, d�, on @D which are nontrivial (i.e., their sup-
port is not a finite set of points) are in one-to-one correspondence with sequences
f˛ng

1
nD0 of Verblunsky coefficients in D� fz W jzj< 1g via the recursion relation

of the orthonormal polynomials 'n.z/, namely,

(1.2) z'n.z/D �n'nC1.z/C N̨n'
�
n.z/
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where

(1.3) '�n.z/D z
n 'n.1= Nz/ �n D .1� j˛nj

2/1=2:

Underlying the association of measures and recursion coefficients are matrix
representations. For OPRL, we take the matrix for multiplication by x in the
fpng

1
nD0 basis of L2.R; d�/, which is the tridiagonal Jacobi matrix

(1.4) J D

0BBBBB@
b1 a1 0

a1 b2 a2
: : :

0 a2
: : :

: : :

: : :
: : :

: : :

1CCCCCA :

For OPUC, one takes the matrix, C, for multiplication by z in the basis obtained by
orthonormalizing f1; z; z�1; z2; z�2; : : : g in L2.@D; d�/. This CMV matrix (see
[103, �4.2]) has the form

CD LM;(1.5)

LD‚.˛0/˚‚.˛2/˚ � � � ;(1.6)

MD 11�1˚‚.˛1/˚‚.˛3/˚ � � � ;(1.7)

‚.˛/D

�
N̨ �

� �˛

�
;(1.8)

where �� .1� j˛j2/1=2. Note that C is unitary, while J is self-adjoint.
As a model for what we wish to prove, let us briefly survey some of the main

results relating to (slowly decaying) perturbations of the free case, that is, an � 1,
bn � 0 for OPRL and ˛n � 0 for OPUC.

(1) Weyl’s theorem [118], [13], [1], [45], [51]. If an ! 1, bn ! 0, then
�ess.d�/ D Œ�2; 2� and if ˛n ! 0, then �ess.d�/ D @D. Here �ess.d�/ is the
(topological) support of the measure, d�, with all isolated points removed.

(2) Denisov-Rakhmanov Theorem [90], [91], [78], [31], [86]. If �ess.d�/D

†ac.d�/D Œ�2; 2�, then an! 1 and bn! 0. If �ess.d�/D †ac.d�/D @D, then
˛n! 0. Here †ac.d�/ is defined as follows: let d�D d�acCd�s with d�s singular
and d�ac D f .x/dx, then †ac.d�/ D fx W f .x/ ¤ 0g as a measure class, that is,
modulo sets of Lebesgue measure zero.

(3) Szegő’s theorem [110], [111], [99], [83], [61]. In the OPUC case, define

(1.9) Z.d�/��

Z
log
�
d�ac

d�

�
d�

2�
:
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Then Z.d�/ <1 if and only if

(1.10)
1X
jD0

j j̨ .d�/j
2 <1:

In the OPRL case, define

(1.11) Z.d�/��

Z 2

�2

log
�
2�.4�E2/1=2

d�ac

dE

�
dE

2�.4�E2/1=2
:

Then, if we assume supp.d�/� Œ�2; 2�, we have

(1.12) Z.d�/ <1() lim sup
NX
jD1

log.aj / > �1

and if that holds, then
1X
nD1

.an� 1/
2
C b2n <1(1.13)

and X
.an� 1/ and

X
bn(1.14)

are conditionally convergent to finite numbers.

(4) Killip-Simon Theorem ([61]). For OPRL, define

(1.15) Q.d�/D�

Z 2

�2

log
�
�.4�E2/�1=2

d�ac

dE

�
.4�E2/1=2 dE

�

and let fEj g be the point masses of d� (eigenvalues of J ) outside Œ�2; 2�. Then
(1.13) holds if and only if �ess.d�/DŒ�2; 2�, Q.d�/<1, and

P
j .jEj j�2/

3=2<1.

(5) Nevai’s Conjecture [84], [61]. For OPRL, if
P1
nD1jan � 1j C jbnj <1,

then Z.d�/ <1 (Z given by (1.11)).

The five results listed above capture different aspects of the philosophy that
the measure is close to the free case if and only if the coefficients are asymptotic to
the free ones. In this paper, we study extensions of all these results to perturbations
of a periodic sequence of Jacobi or Verblunsky coefficients; that is,

(1.16) a
.0/
nCp D a

.0/
n b

.0/
nCp D b

.0/
n n� 1

or

(1.17) ˛
.0/
nCp D ˛

.0/
n n� 0

and some fixed p � 1. Note that p D 1 is the perturbation of the free case con-
sidered above. For simplicity in the OPUC case, we will normally suppose p is
even—indeed, the shape of a CMV matrix repeats itself only after shifting by two
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rows/columns. As explained in Section 15, the situation when p is odd can be
reduced to this using sieving. For OPRL, p is arbitrary.

The philosophy described above becomes more subtle when we move to the
periodic setting; rather than having a single ‘free operator’ we have a manifold
of them (the isospectral torus). Nevertheless—and this is the main thrust of the
paper—spectral measures that are close to those of the isospectral torus correspond
to coefficients that approach the isospectral torus. One of the key obstructions
here is that a sequence of coefficients may approach the isospectral torus without
converging to any particular point therein.

In order to make these heuristics precise, we need to make a few definitions.
To keep the presentation as coherent as possible, we will focus our attention on the
OPRL/Jacobi case for the remainder of the introduction.

To any pair of p-periodic sequences, fa.0/n ; b
.0/
n gn2Z, we can associate a two-

sided Jacobi matrix J0. Two such pairs of sequences are termed isospectral if the
corresponding Jacobi matrices have the same spectrum. We write TJ0 for the set
of p-periodic sequences that are isospectral to J0. Topologically, this is a torus as
explained in Section 2.14 below.

Given two bounded sequences fan; bng1nD1 and fa0n; b
0
ng
1
nD1, we define

(1.18) dm..a; b/; .a
0; b0//D

1X
kD0

e�kŒjamCk � a
0
mCkjC jbmCk � b

0
mCkj�

which is a metric for the product topology on �1m
�
.0; R�� Œ�R;R�

�
. The OPUC

analog is

(1.19) dm..˛/; .˛
0//D

1X
kD0

e�kj˛mCk �˛
0
mCkj

a metric for �1m D. The distance from a point to a set is defined in the usual way:

(1.20) dm..a; b/;T/D inffdm..a; b/; .a0; b0// W .a0; b0/ 2 Tg

and similarly in the OPUC case.
We begin with the periodic analog of Weyl’s Theorem.

THEOREM 1.1 (Last-Simon [70]). Let J0 be a two-sided periodic Jacobi ma-
trix and J a one-sided Jacobi matrix with Jacobi parameters fam; bmg1mD1. If

(1.21) dm..a; b/;TJ0/! 0

then1

(1.22) �ess.J /D �.J0/:

1Recall that �ess.J / is obtained from the spectrum of the Jacobi matrix J by removing all isolated
points.
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As indicated, this result first appeared in [70]. It is derived from a theorem
that had earlier been proven with different methods by others [43], [73], [89]. The
inclusion �ess.J /� �.J0/ follows easily using trial vectors; the reverse seems to
be more sophisticated. In Section 8, we prove this using the methods of this paper.
The OPUC version appears here as Theorem 15.1; it was also proved in [70].

Note that (1.21) does not imply that there is a sequence f.a0n; b
0
n/g 2TJ0 such

that
dm..a; b/; .a

0; b0//! 0:

It is much weaker. Equality of essential spectra under this stronger hypothesis
follows immediately from Weyl’s original theorem on compact perturbations.

Our first major new result is an analog of the Denisov-Rakhmanov Theorem.

THEOREM 1.2. Let J0 be a two-sided periodic Jacobi matrix and J a one-
sided Jacobi matrix with Jacobi parameters fam; bmg1mD1. If �ess.J /D �.J0/ and

(1.23) †ac.J /D �.J0/

then dm..a; b/;TJ0/! 0.

Remark. Using Theorem 1.4 below, we will show that the hypotheses of this
theorem can hold while .a; b/ only approaches TJ0 without actually having a limit.

A two-sided p-periodic Jacobi matrix is said to have all gaps open if the
spectrum has exactly p connected components—the largest number possible. As
explained in Section 2, this holds generically (indeed, on a dense open set).

Our next new result is

THEOREM 1.3. Let J0 be a two-sided periodic Jacobi matrix with all gaps
open and parameters fa.0/n ; b

.0/
n g
1
nD�1. Also, let J be a one-sided Jacobi matrix

with parameters fan; bng1nD1 and spectral measure d�. We assume that �ess.J /D

�.J0/ and

(1.24)
X
j

dist.Ej ; �ess.J //
1=2 <1

where fEj g enumerates the eigenvalues of J outside �.J0/. Then

(1.25) �

Z
�.J0/

log
�
d�ac

dx

�
dist.x;R n �.J0//�1=2 dx <1

implies

(1.26) lim
N!1

pNX
jD1

log
�
aj

a
.0/
j

�
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exists and lies in .�1;1/. Conversely, (1.25) holds so long as

(1.27) lim sup
N!1

NX
jD1

log
�
aj

a
.0/
j

�
> �1

and in this case, the limit in (1.26) exists and lies in .�1;1/.
Lastly, if (1.25) or (1.27) holds, then

(1.28)
1X
mD0

dm..a; b/;TJ0/
2 <1

and there exists J1 2 TJ0 , so that

(1.29) dm.J; J1/! 0:

Remarks. 1. Thus, when (1.24)–(1.27) hold, J has a limit J1 in TJ0 . In the
normal direction to TJ0 , the convergence is `2 (in the sense of (1.28)). But in
the tangential direction, we only prove it has a limit. It would be interesting to
know what can be said about how slowly (1.29) can occur and to know if there are
examples where (1.24)–(1.28) hold but

(1.30)
1X
mD0

dm.J; J1/
2
D1:

2. Notice that (1.27) will only fail if the partial sums converge to �1.

3. The final statement that there exists J1 2 TJ0 with (1.29) is not our result
but one of Peherstorfer-Yuditskii [88]. With our methods, we can prove that the
a’s and b’s approach a periodic limit only if we replace (1.24) with the stronger
assumption that the discrete spectrum is finite.

4. By (2.23), all a.0/j in (1.26) and (1.27) can be replaced by Cap.�.J0//, the
logarithmic capacity of the spectrum of J0.

Our third new result is

THEOREM 1.4. Let J0 be a two-sided periodic Jacobi matrix with all gaps
open and parameters fa.0/n ; b

.0/
n gn2Z. Let J be a Jacobi matrix with parameters

fan; bng
1
nD1 and spectral measure d�. Then

(1.31)
1X
mD0

dm..a; b/;TJ0/
2 <1

if and only if

(i) �ess.J /D �.J0/,
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(ii)
X
j

dist.Ej ; �ess.J //
3=2 <1, and

(iii) �
Z
�.J0/

log
�
d�ac

dx

�
dist.x;R n �.J0//1=2 dx <1.

Here fEj g enumerates the (discrete) spectrum of J outside �.J0/.

Remarks. 1. Since (i)–(iii) are equivalent to (1.31), one may easily construct
examples where (i)–(iii) hold, but there is no J1 with (1.29). This provides the
examples promised in the remark after Theorem 1.2. It also shows a stark differ-
ence between (1.24)–(1.25) and (ii)–(iii). In terms of the spectral measure, this
difference is reflected only in the behavior near the band edges.

2. As we will see (Section 12), there are results even if all gaps are not open,
but for Theorem 1.4 they are not so easy to express directly in terms of the a’s
and b’s.

3. A special case of part of Theorem 1.4 is known, namely, Killip [59] proved
that†ac.J /D�.J0/ for fan; bng1nD1 obeying

P1
nD1jan�a

.0/
n j

2Cjbn�b
.0/
n j

2<1

(which is a strictly stronger hypothesis than (1.31)).

THEOREM 1.5. Let J0 be a two-sided periodic Jacobi matrix and J a Jacobi
matrix with Jacobi parameters fan; bng1nD1 and spectral measure d�. Suppose

(1.32)
1X
nD1

jan� a
.0/
n jC jbn� b

.0/
n j<1:

Then (1.25) holds.

Remarks. 1. Condition (1.32) can be replaced by

(1.33)
1X
nD1

dn..a; b/;TJ0/ <1:

Indeed, if (1.33) holds, then (1.32) holds with fa.0/n ; b
.0/
n g replaced by some fixed

sequence in TJ0 .
2. As we will show (see Proposition 3.5), the theorems above continue to hold

if dm is replaced by

(1.34) Qdm..a; b/; .a
0; b0//D

p�1X
kD0

.jamCk � a
0
mCkjC jbmCk � b

0
mCkj/:

For OPUC, we need to sum k from 0 to p in order to get an equivalence; see the
discussion at the end of Section 4.

In Section 15, we prove an OPUC analog of each of these theorems. We need
to replace the all-gaps-open hypothesis with a stronger one (that holds generically).
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The deficiency is not so much with our method, but rather that an independent ques-
tion, which is known in the Jacobi case (independence of the Toda Hamiltonians),
is currently unresolved in the CMV case. Our results confirm Conjectures 12.2.3
and 12.2.4 of [104] as well as Conjectures 12.2.5 and 12.2.6 in the (generic) special
case that all gaps are open.

For the case of OPUC with a single gap, the analog of Theorem 1.2 is known
and motivated Simon’s conjectures in [104]. In that case, the isospectral tori are
labeled by a 2 .0; 1/ and consist of f˛.�/ W � 2 @Dg where ˛.�/n D �a. Then
dm.˛;T/! 0 is equivalent to j˛nj ! a and ˛nC1=˛n! 1. This is often called
the López condition. Bello-López [10] proved the OPUC analog of Theorem 1.2
for this case if �ess.J / D �.J0/ is strengthened to �.J / D �.J0/ (the analog of
Rakhmanov’s result). The full analog for this special case appears in Simon [104],
Alfaro et al. [2], and Barrios et al. [9].

Associated to each two-sided p-periodic Jacobi matrix, J0, is a polynomial,
�J0 , of degree p, known as the discriminant. This is a classical object described
in detail in the next section. It is usually defined as the trace of the one-period
transfer matrix. It is also the unique polynomial (with positive leading coefficient)
such that

�.J0/D fx W�J0.x/ 2 Œ�2; 2�g:

In particular, two sequences of coefficients are isospectral if and only if they give
rise to the same discriminant.

The key to the proofs of our results is what we call the magic formula. Let J
be a two-sided Jacobi matrix, then

(1.35) �J0.J /D S
p
CS�p

if and only if J 2 TJ0 . Here S is the right shift (cf. (2.31)). In particular, (1.35)
already implies that J is periodic! In the OPUC case, � is a polynomial in z and
z�1. It turns out that �.C/ is always self-adjoint; moreover,

(1.36) �C0.C/D S
p
CS�p

if and only if C 2 TC0 .
It has been previously noted that for periodic J0, one has

�J0.J0/D S
p
CS�p:

That this holds for some polynomial in J0 is in Naı̆man [80], [81]. That the poly-
nomial is the discriminant was found by Sebbar-Falliero [98]. After learning of
our results, L. Golinskii has kindly pointed out to us that Naı̆man [81] also has a
theorem which implies any J obeying (1.35) is periodic, the core of proving the
converse. We will discuss this further in Section 3.
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Nonetheless, the two facts that make (1.35) magical to us—that it character-
izes the isospectral torus and that it is ideal for the study of perturbations—seem
to have escaped prior notice.

While J may be tridiagonal and C five-diagonal, both �.J / and �.C/ are
2pC 1-diagonal, that is, vanishing except for the main diagonal and p diagonals
above and below. Thus, both will be tridiagonal if written as p �p blocks. The
key to our proofs will be to extend results from the an � 1, bn � 0 case to block
tridiagonal matrices, and then use (1.35) or (1.36) to study perturbations of the
periodic case. A slightly different approach to proving Theorem 1.4 is outlined in
[60].

The magic formula is very powerful and opens up many other avenues for
study:

(a) Szegő and Jost asymptotics for periodic perturbations and, in particular, the
analogs of Damanik-Simon [22].

(b) Periodic analogs of the results of Nevai-Totik [85] and its various recent ex-
tensions [23], [102], [106].

(c) Analogs of the Strong Szegő Theorem for the periodic case following Ryck-
man’s paper [96] for the Jacobi case.
We should point out a major limitation of our results. If B is a disjoint finite

union of closed intervals in R (or @D), one can construct an isospectral torus of
Jacobi (or CMV) matrices whose recursion coefficients are almost periodic. As dis-
cussed in Section 2, these are strictly periodic if and only if the harmonic measure
of each interval is rational. There are obvious potential extensions of Theorems 1.1–
1.5 to this setting, but except for Theorem 1.1 (where the method of [70] applies)
and Theorem 1.2 (where Section 9 has some extensions), we do not know how to
prove them (or even if they are true). There is no analog of � in the almost periodic
case, so our method does not work directly.

Here is the plan of this paper. Section 2 reviews the theory of the (unperturbed)
periodic problem. In Section 3, we prove the magic formula for OPRL, and in
Section 4, the magic formula for OPUC. While we will not discuss Schrödinger
operators in detail here, we discuss the magic formula for such operators in Sec-
tion 5. As we have mentioned, the magic formula brings block Jacobi matrices
into play, so Section 6 discusses matrix-valued OPRL and OPUC—mainly setting
up notation. Section 7 uses known results on Rakhmanov’s theorem for matrix-
valued orthogonal polynomials to prove a Denisov-type extension which we use
in Section 8 to prove Theorem 1.2; the section also proves half of Theorem 1.1.
Section 9 provides two results that go beyond the periodic case to prove Denisov-
Rakhmanov-type theorems for special almost periodic situations. Section 10, fol-
lowing [101], proves the P2 sum rule of Killip-Simon [61] and the C1 sum rule for
matrix-valued measures, and Section 11 uses these results to prove Theorems 1.3
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and 1.4. Section 12 explores what we can say if gaps are closed. Section 13 proves
analogs to the Lieb–Thirring bounds of Hundertmark-Simon [55] as preparation
for proving Theorem 1.5 in Section 14. Finally, Section 15 discusses the OPUC
results.

2. Review of the periodic problem

In this section, we collect some of the major elements in the strictly periodic
case. As this is textbook material, we forgo proofs and historical discussion. Full
details can be found, for example, in [20], [40], [72], [104], [107], [112], [113]
and the references therein.

To discuss the strictly periodic case, we need to extend our operators to be two-
sided, that is, to act on `2.Z/. In the Jacobi/OPRL case, we simply continue the
tridiagonal pattern with parameters fan; bngn2Z. Two-sided (or extended) CMV
matrices are formed as CD LM, where L and M are doubly infinite direct sums

LD � � �˚‚�2.˛�2/˚‚0.˛0/˚‚2.˛2/˚ � � �(2.1)

MD � � �˚‚�1.˛�1/˚‚1.˛1/˚ � � �(2.2)

that are misaligned by one row/column, just as in (1.5)–(1.8).
We adopt the convention of indexing the elements of matrices so that

(2.3) J11 D b1 L00 D N̨0 M00 D�˛�1

except M00 D 1 in the one-sided case.

2.1. Transfer matrices. Let J be a two-sided Jacobi matrix. A sequence fung
obeys .J � x/u� 0 if and only if

(2.4) anunC1C .bn� x/unC an�1un�1 D 0

or, what is equivalent,

(2.5)
�
unC1
anun

�
Dƒn

�
un

an�1un�1

�
with

(2.6) ƒn.x/D
1

an

�
x� bn �1

a2n 0

�
:

Note that the desire to have ƒn depend only on one pair .an; bn/ and have deter-
minant equal to one resulted in the factors an and an�1 appearing in (2.5). (The
same price is usually paid when writing Sturm-Liouville equations as first-order
systems.) The choice is not the most common one (although it is used in Pastur-
Figotin [87]), but we feel it is the ‘right’ one since, in particular, det.ƒn.x//D 1.
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In the OPUC case we define

(2.7) Mn.z/D �
�1
n

�
z � N̨n

�˛nz 1

�
which encodes the recurrence relation (1.2):

(2.8)
�
'nC1.z/

'�nC1.z/

�
DMn.z/

�
'n.z/

'�n.z/

�
:

We will now explain the link to formal (i.e., not necessarily `2) eigenvectors of a
two-sided CMV matrix, C. It is not as simple as (2.5).

LEMMA 2.1. Suppose .C� z/uD 0 with z ¤ 0 and let v D Z�1Mu where Z

denotes the diagonal matrix with entries

Zjj D

(
z W j odd

1 W j even

and M is as in (2.2). Then

(2.9) z

�
u2nC2
v2nC2

�
D zM2nC1.z/

�
v2nC1
u2nC1

�
DM2nC1.z/M2n.z/

�
u2n
v2n

�
:

Proof. The key observation used to verify (2.9) is

(2.10)
�
zy

y0

�
D‚.˛n/

�
x

x0

�
()

�
x0

y0

�
DMn.z/

�
y

x

�
:

This follows by simple algebraic manipulations:�
zy

y0

�
D‚.˛n/

�
x

x0

�
() N̨nxC �nx

0
D zy and �nx�˛nx

0
D y0

() x0 D ��1n .zy � N̨nx/ and y0 D �nx�˛nx
0

() x0 D ��1n .zy � N̨nx/ and y0 D ��1n .�˛nzyC x/

()

�
x0

y0

�
DMn.z/

�
y

x

�
:

With (2.10) now in hand, we may argue as follows:

.C� z/uD 0

() zuD LMu

() v WD Z�1Mu obeys zuD LZv

() Zv DMu and zuD LZv
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()

�
zv2n�1
v2n

�
D‚.˛2n�1/

�
u2n�1
u2n

�
and

�
zu2n
zu2nC1

�
D‚.˛2n/

�
v2n

zv2nC1

�
()

�
u2n
v2n

�
DM2n�1.z/

�
v2n�1
u2n�1

�
and

�
zv2nC1
zu2nC1

�
DM2n.z/

�
u2n
v2n

�
()

�
u2nC2
v2nC2

�
DM2nC1.z/

�
v2nC1
u2nC1

�
and z

�
v2nC1
u2nC1

�
DM2n.z/

�
u2n
v2n

�
;

which are the two parts of (2.9). �

2.2. The discriminant. As in Sturm-Liouville theory, the discriminant is de-
fined as the trace of the one-period transfer matrix:

(2.11) �.z/D Tr.T .z//;

where

(2.12) T .z/D

(
ƒp.z/ � � �ƒ2.z/ƒ1.z/ (OPRL)

z�p=2Mp�1.z/ � � �M1.z/M0.z/ (OPUC):

In the OPUC case, p is even. Also, the factor z�p=2 is there to cancel the extra
factor of z on the left-hand side of (2.9). From a strictly OPUC point of view,
it is more natural to omit this factor (as in [103], [104]); however, as the magic
formula is an operator identity, we have elected to use the definition best adapted
to this perspective. The only negative side effect of this choice is that our Lyapunov
exponent (defined below) differs by �1

2
log jzj from that in [103], [104].

For OPRL, the discriminant is a real polynomial of degree p with leading
behavior

�.x/D .a1 : : : ap/
�1

� pY
jD1

.x� bj /CO.x
p�2/

�
(2.13)

D .a1 � � � ap/
�1

�
xp �

� pX
jD1

bj

�
xp�1CO.xp�2/

�
:(2.14)

For OPUC, it is a Laurent polynomial of total degree p with

(2.15) �. Nz/D�.1=z/

so � is real-valued on @D. Moreover,

(2.16) �.z/D .�0�1 � � � �p�1/
�1.zp=2C � � �C z�p=2/:
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2.3. The Lyapunov exponent. On an exponential scale, the behavior of formal
eigenfunctions is determined by the Lyapunov exponent

.z/D lim
n!1

1

np
log kT n.z/k(2.17)

D
1

p
log (spectral radius of T .z/)

D
1

p
log j�C.z/j(2.18)

where �˙ are the eigenvalues of T .z/ with the convention j�Cj � j��j.
As det.T .z//� 1, these eigenvalues are the roots of

(2.19) �2��.z/�C 1D 0

which implies

(2.20) �˙.z/D
�.z/

2
˙

p
�2.z/� 4

2

and so

(2.21) .z/D 1
p

log
ˇ̌̌̌
1
2
�.z/C 1

2

q
�.z/2� 4

ˇ̌̌̌
:

2.4. Gaps and bands. Our recurrence relations admit bounded solutions for a
given z if and only if�.z/2 Œ�2; 2�. In the Jacobi/OPRL case, this is a collection of
intervals in R. For CMV/OPUC, it is a collection of arcs in @D. In either case, one
may partition this set into p bands. These are the closures of the (disjoint) regions
where �.z/ 2 .�2; 2/. These can only intersect at the ‘band edges’, ��1.f�2; 2g/.

The open gaps are the intervals/arcs that are complementary to the bands—
excluding the two semi-infinite intervals in the OPRL case. When two bands touch,
we refer to the common band edge as a closed gap.

�2� 4 has simple zeros at the edges of the open gaps and double zeros at the
closed gaps; indeed, this is a complete list of its zeros. It is possible to distinguish
whether these zeros correspond to �.z/D˙2 from the fact that there must be two
zeros of �˙2 between consecutive zeros of ��2 and the fact that � has positive
leading coefficient.

2.5. Spectrum. In both cases, the spectrum of the two-sided operator (acting
on `2.Z/) is the union of the bands: � D ��1.Œ�2; 2�/. It is purely absolutely
continuous and of multiplicity two.

The spectrum of a two-sided p-periodic operator uniquely determines its dis-
criminant; see Lemma 3.3. One consequence of this was noted already in the
introduction: isospectral tori are the classes of p-periodic recurrence coefficients
that lead to the same discriminant.
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For a one-sided operator, the essential spectrum remains ��1.Œ�2; 2�/; it is
absolutely continuous with multiplicity one. In addition, up to one eigenvalue may
appear in each open gap.

2.6. Potential theory. From the way it is defined, one can see that .z/ van-
ishes on the bands and is both positive and harmonic in the complement (in the
OPUC case one must also exclude zD 0). This leads to the solution of the Dirichlet
problem for a charge at infinity,

(2.22) gCn� .zI1/D

8̂̂<̂
:̂

1
p

log
ˇ̌̌̌
�
2
C

q
�2

4
� 1

ˇ̌̌̌
(OPRL)

1
2

logjzjC 1
p

log
ˇ̌̌̌
�
2
C

q
�2

4
� 1

ˇ̌̌̌
(OPUC)

and so to the logarithmic capacity of the spectrum,

(2.23) Cap.�/D

8<:
�Qp

jD1 aj
�1=p (OPRL)�Qp�1

jD0 �j
�1=p (OPUC):

2.7. Harmonic measure. Taking normal derivatives in (2.22) leads to a for-
mula for harmonic measure on � (aka equilibrium measure for the logarithmic
potential),

(2.24) d� D

8̂<̂
:
2
p

j�0.x/jp
4��2.x/

dx
2�

(OPRL)

2
p

j�0.ei� /jp
4��2.ei� /

d�
2�

(OPUC)

where supp.d�/ D � D fz W j�.z/j � 2g. (Note: [104] has 1=p rather than 2=p,
but that is an error.)

Recognizing

(2.25)
�0.x/p
4��2.x/

D
d

dx
arccos

�
�.x/

2

�
;

we see that the harmonic measure of each band is exactly 1=p. In particular, the
connected components of the union of the bands all have rational harmonic mea-
sure. This gives strong restrictions on sets that can be bands. In the OPRL case,
rational harmonic measure of connected components is also sufficient for a set to be
the spectrum of a periodic Jacobi matrix. In the OPUC case, there is an additional
condition needed: after breaking the bands into arcs of harmonic measure 1=p, the
harmonic midpoints f�j g

p
jD1 of these intervals must obey

Qp
jD1 �j D 1. Clearly,

the condition on the harmonic midpoints can be achieved by simply rotating � . Dis-
carding this condition gives rise to Verblunsky coefficients that are p-automorphic,
˛nCp D e

i�˛n, rather than p-periodic.
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2.8. Thouless formula. Harmonic measure appears naturally in the theory in
several other ways. It is the density of states measure:

(2.26) lim
N!1

1

2N

NX
nD�N

f .J /nn D

Z
f .x/ d�.x/

for every polynomial (or continuous function) f . The same formula holds with C

replacing J . This connection, or more precisely the resulting expression for .z/
in terms of Cap.�/ and the logarithmic potential of d�, is known as the Thouless
formula.

Two further characterizations of d� involve the orthogonal polynomials. d�
is the weak limit of 1

N

PN�1
nD0 p

2
n.x/ d�.x/ (resp. 1

N

PN�1
nD0 j'n.e

i� /j2d�.�/). It
is also the limiting density of zeros, that is, the weak limit of the probability mea-
sures, d�n, which give weight 1=n to each of the zeros of pn (resp. 'n). These
two characterizations are closely linked to (2.26); however, in the OPUC case one
should keep in mind that for each n, the zeros of 'n lie strictly inside D.

2.9. Floquet theory. Looking at the eigenvalues of T , one sees that when
�C ¤ ��, there is a basis of formal (i.e., non-`2) eigenfunctions obeying

(2.27) umCkp D �
k
˙um:

If �C D ��, which happens precisely at the band edges, then both are ˙1. If the
edge abuts an open gap, there is only one eigenfunction obeying (2.27) since T has
a Jordan block structure. At closed gaps, T D˙1 and so all solutions obey (2.27).

Solutions obeying

(2.28) umCkp D e
ik�um

are called Floquet solutions and ei� is called the Floquet index; they have much
the same role as plane waves in Fourier analysis. Since �� D ��1C , if (2.28) has a
solution, then e�i� is also a Floquet index.

In the OPRL case,

(2.29) (2.28) holds()�.x/D 2 cos �:

Thus, by the discussion above, for each � 2 .0; �/, (2.28) or (2.29) holds for exactly
p values of x: x1.�/ < x2.�/ < � � �< xp.�/. These xj .�/ are known as the band
functions.

The changes in the OPUC case are purely notational:

(2.30) (2.28) holds()�.z/D 2 cos �:

For � 2 .0; �/, this has p solutions all of which lie in @D.
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2.10. Direct integrals. Let S denote the right shift,

(2.31) .Su/n D un�1:

If the sequences of coefficients are p-periodic, then J (or C) commutes with Sp,
which means that the two operators can be ‘simultaneously diagonalized’. We
elaborate this point in the OPRL case; the OPUC is almost identical.

Let us write

Hp WD

Z ˚
`2�
d�

2�
D L2

�
Œ0; 2�/; d�

2�
ICp

�
where `2

�
is the p-dimensional Hilbert space

`2� D fujunCp D e
i�ung hujvi� D

pX
nD1

Nunvn:

From Fourier analysis, there is a unitary operator FW `2.Z/ ! Hp so that
FSpF�1 is multiplication by ei�1 and FJF�1 acts fiber-wise (i.e., on each `2

�
)

as a p �p matrix, J.�/. In particular, the eigenvalues of J.�/ are the solutions of
(2.29), that is, they are the band functions xj .�/.

2.11. Hyperelliptic Riemann surfaces. As
p
�2� 4 appears repeatedly in the

theory, it is natural that the associated Riemann surface should enter the analysis.
�2 � 4 has simple zeros at the edges of open gaps and at inf �.J / and sup �.J /.
It has double zeros at the closed gaps. Let ` denote the number of open gaps,
then
p
�2� 4 has square root singularities at 2.`C 1/ points, and so its natural

analyticity domain is the genus ` Riemann surface, S, obtained by taking two
copies of C n �.J /, gluing at the bands and adding points at1. There is a natural
projection � WS!C[f1g which is 2 to 1 except at the branch points of

p
�2� 4.

A similar analysis works for OPUC, but now there are ` gaps and the genus is `�1.

2.12. Minimal Herglotz and Carathéodory functions. For a half-line periodic
Jacobi matrix, the m function is defined by

(2.32) m.z/D hı0; .J � z/
�1ı0i 8z 2 C n �.J /:

This can be shown to obey a quadratic equation with polynomial coefficients

(2.33) A.z/m.z/2CB.z/m.z/CC.z/D 0:

Moreover, these coefficients can be chosen to obey

(2.34) B2� 4AC D�2� 4:

This implies that m.z/ has meromorphic continuation to S. Indeed, m has minimal
degree (i.e., degree `C 1 in the OPRL case and ` in the OPUC case) among all
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meromorphic functions on S that are not of the form g ı� with g meromorphic
on the Riemann sphere. It can be shown that there is a one-to-one correspondence
between minimal meromorphic functions obeying Imm.z/ > 0 if Im z > 0 and
m.z/D�z�1CO.z�2/ on the top sheet of S and all periodic Jacobi parameters
with the same �. (We call these minimal Herglotz functions.)

There is a similar description for OPUC, but now one uses

(2.35) F.z/D hı0; .CC z/.C� z/
�1ı0i

which obeys ReF.z/ > 0 if jzj < 1 and F.0/ D 1. Again F obeys a quadratic
equation, showing that F has a meromorphic continuation to S of minimal degree,
and again there is a one-to-one correspondence between all f˛ng

p�1
nD0 with the same

� and all minimal Carathéodory functions.

2.13. Dirichlet data. One can describe the set of minimal Herglotz functions
in terms of their poles. For each open gap, fGj g`jD1, ��1.Gj / � Tj is a circle
since � is 2 to 1 on Gj and one-to-one on Gj nGj . A meromorphic Herglotz
function has `C 1 simple poles, one at1 on the second sheet and the other `, one
in each Tj . Thus, the set of meromorphic Herglotz functions is homeomorphic
to �`jD1 Tj under the bijective map from such functions to its poles. A similar
analysis holds for OPUC but now there is no pole at infinity, there are ` gaps,
and �`jD1 Tj describes the possible poles. The difference is that for OPRL, the
dimension of the torus is `, and for OPUC it is `� 1.

2.14. Isospectral tori. By combining the bijective maps from periodic OPRL
to minimal Herglotz functions and of such functions to Dirichlet data, we see for
a � of period p with ` gaps,

f.an; bn/
p
nD1 W the discriminant is �g

is an `-dimensional torus in R2p. Generically, ` D p � 1. In the OPUC case,
generically ` D p and the torus is naturally embedded in Cp. This torus is the
isospectral torus which we will denote by T or TJ0 if a given periodic J0 underlies
our construction. For clarity of exposition, we will typically blur the distinction be-
tween p-tuples .an; bn/

p
nD1 and the corresponding infinite sequences fan; bngn2Z

of period p. Because of our perturbation theory viewpoint, we use J0 to label the
torus, but we emphasize that from another point of view, the torus is associated to
the set �ess.J0/ and not to J0.

2.15. Isospectral flows. The fact that spaces of p-periodic coefficients foliate
into tori suggests that there is some kind of completely integrable system in the
background. That is true: it is the Toda flow in the OPRL case and the defocus-
ing Ablowitz-Ladik flow in the OPUC case. Since we will not need these below,
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we say no more about them, but see Chapter 6 of [107] for the OPRL case and
Section 11.11 of [104] for OPUC.

3. The magic formula for Jacobi matrices

Our goal in this section is to prove

THEOREM 3.1. Let J0 be a two-sided p-periodic Jacobi matrix with discrimi-
nant �J0.x/ and isospectral torus TJ0 . Let J be a two-sided (not a priori periodic)
Jacobi matrix. Then

(3.1) �J0.J /D S
p
CS�p() J 2 TJ0

where S is the right shift, (2.31), on `2.Z/.

We provide two proofs of the ‘harder’ direction) or rather of

(3.2) �J0.J /D S
p
CS�p) J is periodic

which is the key step. Our first proof is immediately below; the second, suggested
to us by L. Golinskii, appears after Lemma 3.4.

LEMMA 3.2. Let `D 1; 2; : : : . Then
(3.3)

.J `/m;mCk D

8̂<̂
:
0 k > `

amamC1 � � � amCk�1 k D `

amamC1 � � � amC`�2.bmC bmC1C � � �C bmC`�1/ k D `� 1:

Proof. Writing

(3.4) .J `/m;mCk D
X

i1;:::;i`�1

Jm;i1Ji1;i2 � � �Ji`�1;mCk;

we see that since J is tridiagonal, all terms are zero if k > `, that we must have
(with i0 �m, i` DmC k) that iq � iq�1 D 1 for q D 1; : : : ; ` if k D `, and that if
k D `� 1, iq � iq�1 D 1 for all but one q 2 f1; : : : ; `g and it is zero for that q. �

LEMMA 3.3. If J and J0 are periodic, then �.J / D �.J0/ if and only if
�J D�J0 .

Remark. This lemma says that the spectrum determines the discriminant and
vice versa. That the discriminant determines the spectrum is elementary: � D
fx W �.x/ 2 Œ�2; 2�g. Therefore we only prove the other direction—indeed, we
give two proofs.

First Proof. Harmonic measure d� is intrinsic to the set � ; it is the solution
of an electrostatic problem there. But then d� determines � via (2.24). �
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Second Proof. � determines the gaps—even closed gaps—via harmonic mea-
sure. The gap edges determine the zeros of �� 2 and so �� 2 up to a constant.
The zeros of �C 2 then determine the constant. �

Proof of Theorem 3.1. For all � 2 Œ0; 2�/, J0.�/ is self-adjoint and so diag-
onalizable. Moreover, the eigenvalues of J0.�/ are precisely the roots of �.x/D
2 cos.�/. Thus

(3.5) �J0.J0.�//D .2 cos �/1:

But then �J0.J0/ and Sp C S�p both have direct integral decomposition with
fibers .2 cos �/1, so

(3.6) �J0.J0/D S
p
CS�p:

Since J 2 TJ0)�J D�J0 , this proves( in (3.1).
Now suppose the left-hand side of (3.1) holds. By (2.14), (3.3), and

(3.7) .SpCS�p/m;mCp D 1 .SpCS�p/m;mCp�1 D 0

this implies

(3.8) am � � � amCp�1 D a
.0/
1 � � � a

.0/
p

and

(3.9)
p�1X
jD0

bmCj D

p�1X
jD0

b
.0/
jC1:

In particular,

am � � � amCp�1 D amC1 � � � amCp

p�1X
jD0

.bmCjC1� bmCj /D 0

which lead to

(3.10) am D amCp bm D bmCp

so J is periodic.
Since J is periodic, �J .J /D Sp C S�p; moreover, �J0.J /D S

p C S�p

by hypothesis. Thus we learn that applying the polynomial �J ��J0 to J gives
zero. By the k D ` case of (3.3), it must therefore be the zero polynomial, that is,
�J D�J0 . Lemma 3.3 now completes the proof. �

Remarks. 1. Showing that J was periodic only required equality in �J0.T/D
Sp C S�p, for the two most extreme upper (or lower) diagonals. Nevertheless,
J 2 TJ0 requires equality everywhere.
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2. We need not suppose a priori that each an > 0 and can allow some an D 0
(J can still be defined on `2.Z/), for (3.8) implies that if the left-hand side of (3.1)
holds, then each an > 0.

We now turn to our second proof of (3.2).

LEMMA 3.4 (Naı̆man [81]). Let A be a two-sided (bounded) infinite matrix of
finite width (i.e., for some w, we have that jk� `j>w) Ak` D 0). Suppose

(3.11) ŒA; SpCS�p�D 0

for some p, then

(3.12) ŒA; Sp�D 0:

Remarks. 1. This is Lemma 2 in [81]; no proof is given.

2. ŒA; B�� AB �BA.

3. (3.12) has an equivalent form:

(3.13) ŒA; Sp�D 0() AkCp;`Cp D Ak;` for all k; `:

4. As (3.13) shows, ŒJ; Sp�D 0 for a Jacobi matrix if and only if ak and bk
are p-periodic.

Proof. Since A has finite width, we can find diagonal matrices Dk1 ;Dk1C1;
: : : ;Dk2 with Dk1 ¤ 0¤Dk2 , so that

(3.14) AD

k2X
jDk1

DjS
j :

Since Dj is diagonal, so is SpDjS�p. Thus

.SpCS�p/AD

k2X
jDk1

.SpDjS
�p/SjCpC

k2X
jDk1

.S�pDjS
p/Sj�p

A.SpCS�p/D

k2X
jDk1

DjS
jCp
C

k2X
jDk1

DjS
j�p:

Since the composition (3.14) uniquely determines each Dj , (3.11) implies

SpDk2S
�p
DDk2

that is, Dk2 is periodic. Thus, Dk2S
p commutes with Sp C S�p, so we can

remove it from (3.14) without losing (3.11). This shows inductively that each Dj
is periodic. �

Second proof of (3.2). J commutes with �.J /, so (3.12) holds. �
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Our next goal is to compare Qdm..a; b/;T/ given by (1.34) and dm..a; b/;T/
given by (1.18). As well as satisfying natural curiosity, this relation also plays an
important role (via Theorem 11.13) in the proofs of Theorems 1.3 and 1.4.

To capture the essence of what follows, let us pause to ponder the following:
suppose Qdm..a; b/;T/D 0 for all m, does this mean that .a; b/ 2 T? The hypoth-
esis tells us that each length-p block belongs to the isospectral torus; it does not
a priori even guarantee that the coefficients are periodic. Example 4.5 shows that
periodicity can fail in the OPUC case. However, such problems do not arise for
OPRL. The reason is simple: within the isospectral torus, a1; : : : ; ap�1 determines
ap and b1; : : : ; bp�1 determines bp.

PROPOSITION 3.5. Given a p-periodic Jacobi matrix J0, 1 � q � 1, and
" > 0, there is a constant C so that
(3.15)

e1�p
 Qdm�.a; b/;TJ0�`q� dm�.a; b/;TJ0�`q� C Qdm�.a; b/;TJ0�`q

for all sequences f.an; bn/g obeying "�1 > an > " > 0. All `q norms are over
m 2 f1; 2; 3; : : :g.

The key input is

LEMMA 3.6. Given f.an; bn/g obeying "�1 > an > " > 0,

ˇ̌
an� a

.0/
n

ˇ̌
C
ˇ̌
bn� b

.0/
n

ˇ̌
� Qdm

�
.a; b/; .a.0/; b.0//

�
CC

n�pC1X
rDm

Qdr
�
.a; b/;TJ0

�
for all n�m. The constant C depends only on �.

Proof. The proof is by induction on n. For m� n�mCp� 1, the result is
immediate from the definition of Qdm.

For n > mCp� 1, we consider the functions

f .a1; : : : ; ap/ WD

pX
jD1

�
log.aj /� log.a.0/j /

�
g.b1; : : : ; bp/ WD

pX
jD1

�
bj � b

.0/
j

�
:

These vanish on TJ0 , as explained in the proof of Theorem 3.1.
As g is Lipschitz (with constant 1),ˇ̌

bn� bn�p
ˇ̌
D
ˇ̌
g.bn; : : : ; bn�pC1/�g.bn�1; : : : ; bn�p/

ˇ̌
�
ˇ̌
g.bn; : : : ; bn�pC1/

ˇ̌
C
ˇ̌
g.bn�1; : : : ; bn�p/

ˇ̌
� Qdn�pC1

�
.a; b/;TJ0

�
C Qdn�p

�
.a; b/;TJ0

�
:

In a similar way,ˇ̌
logŒan�� logŒan�p�

ˇ̌
D
ˇ̌
f .an; : : : ; an�pC1/�f .an�1; : : : ; an�p/

ˇ̌
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leads to ˇ̌
an� an�p

ˇ̌
� C�

�
Qdn�pC1

�
.a; b/;TJ0

�
C Qdn�p

�
.a; b/;TJ0

��
:

Combining these two inequalities givesˇ̌
an� a

.0/
n

ˇ̌
C
ˇ̌
bn� b

.0/
n

ˇ̌
�
ˇ̌
an�p � a

.0/
n�p

ˇ̌
C
ˇ̌
bn�p � b

.0/
n�p

ˇ̌
C.1CC"/

�
Qdn�pC1

�
.a; b/;TJ0

�
C Qdn�p

�
.a; b/;TJ0

��
;

which completes the proof of the inductive step. �

Proof of Proposition 3.5. The left-hand inequality in (3.15) follows immedi-
ately from the definitions of dm and Qdm; we focus on the second inequality.

Choose .a.0/; b.0// minimizing dm..a; b/;TJ0/; strictly, this amounts to a
(inconsequential) change in J0. Applying Lemma 3.6 in the definition of dm gives

dm
�
.a; b/;TJ0

�
�

e
e�1
Qdm
�
.a; b/;TJ0

�
CC

1X
kD0

mCkX
rDm

e�k Qdr
�
.a; b/;TJ0

�
� C 0

1X
jD0

e�j QdmCj
�
.a; b/;TJ0

�
:

The proposition follows because convolution with e�j�Œ0;1/.j / is a bounded op-
erator on all `q spaces. �

4. The magic formula for CMV matrices

Our goal in this section is to prove

THEOREM 4.1. Let p be even and let C0 be a two-sided p-periodic CMV
matrix with discriminant �C0.z/ and isospectral torus TC0 . Given a two-sided
(not a priori periodic) CMV matrix, C,

(4.1) �C0.C/D S
p
CS�p() C 2 TC0 :

Remarks. 1. Notice that since C is unitary and �.ei� / is real, �C0.C/ is
self-adjoint.

2. By (2.16) and the fact that C is five-diagonal, �C0.C/ has 2.p=2/ diagonals
above/below the main diagonal.

3. As in Section 3, we will first present our initial proof that

(4.2) �C0.C/D S
p
CS�p)f˛ng is periodic

and then a proof based on Golinskii’s suggestion.
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LEMMA 4.2. We have:

.C`/m;mCk D .C
�`/m;mCk D 0 if k > 2`;(4.3)

.C`/2m;2mC2` D �2m�2mC1 : : : �2mC2`�1;(4.4)

.C`/2mC1;2mC2`C1 D 0;(4.5)

.C�`/2m;2mC2` D 0;(4.6)

.C�`/2mC1;2mC`C1 D �2mC1�2mC2 : : : �2mC2`;(4.7)

.C`/2m;2mC2`�1 D �2m�2mC1 : : : �2mC2`�2 N̨2mC2`�1;(4.8)

.C`/2mC1;2mC2` D�˛2m�2mC1 : : : �2mC2`�1;(4.9)

.C�`/2m;2mC2`�1 D� N̨2m�1�2m�2mC1 : : : �2mC2`�2;(4.10)

.C�`/2mC1;2mC2` D �2mC1 : : : �2mC2`�1˛2mC2`:(4.11)

Proof. As L and M are tridiagonal, C` is a product of 2` tridiagonal matrices,
so (4.3) is immediate.

We will prove the results for C`. The results for C�` are similar if we note

(4.12) ‚.˛/�1 D‚. N̨ /

since ‚ is unitary and symmetric.
Equation (4.4) follows from

(4.13) L2m;2mC1 D �2m M2mC1;2mC2 D �2mC1

and (4.5) from

(4.14) L2mC1;2mC2 D 0:

Because of (4.14), the only way for C` to get from 2m to 2mC2`�1 is to increase
index in the first 2`� 1 factors, which leads to (4.8). For the same reason, to get
from 2mC 1 to 2mC 2`, the last 2`� 1 factor must increase index, leading to
(4.9). �

LEMMA 4.3. If C and C0 are p-periodic, then �.C/ D �.C0/ if and only if
�C D�C0 .

Proof. Either proof of Lemma 3.3 carries over with no change. �

Proof of Theorem 4.1. The proof that

(4.15) �C0.C0/D S
p
CS�p

is identical to the proof of (3.5).
For the converse, suppose

(4.16) �C0.C/D S
p
CS�p:
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In particular,

(4.17) �C0.C/2m;2mCp�1 D 0:

By (2.16) and Lemma 4.2, this implies (recall p is even)

.�
.0/
0 : : : �

.0/
p�1/

�1.�2m�mC1 : : : �2mCp�2/. N̨2mCp�1� N̨2m�1/D 0

so

(4.18) ˛2mCp�1 D ˛2m�1:

Similarly, since
�C0.C/2mC1;2mCp D 0;

we get

.�
.0/
0 : : : �

.0/
p�1/

�1.�2mC1 : : : �2mCp�1/.˛2mC2�˛2mCp�1/D 0

which leads to

(4.19) ˛2mCp D ˛2m:

Thus, ˛ has period p. That C 2 TC0 follows from Lemma 4.3 and the same
argument used in the OPRL case. �

Next, we give a proof using Naı̆man’s lemma. We will need

LEMMA 4.4. Let C be the extended CMV matrix associated to f˛ng1nD�1.
Let p be even. If SpCD CSp, then

(4.20) ˛nCp D ˛n

for all n.

Proof. We have that C22j 2jC1 C C22j 2jC2 D �22j (see (4.2.14) of [103]),
so �2j is periodic. Thus, C2j 2jC2=�2j D �2jC1 is also periodic. So N̨2jC1 D
C2j 2jC1=�2j is periodic as is ˛2j D C2jC1 2jC2=.��2jC1/. �

Second proof that (4.2) holds. C commutes with SpCS�p, so by Naı̆man’s
lemma (Lemma 3.4), which did not require that A be self-adjoint, SpCD CSp,
which implies ˛ is periodic by Lemma 4.4. �

We now turn to the OPUC version of Proposition 3.5. As noted in the intro-
duction, it is not sufficient to sum over exactly one period:

Example 4.5. .0; 1
2
; 0; 1

2
; 0; : : : / and .0;�1

2
; 0;�1

2
; 0; : : : / are in the same

isospectral torus, namely, the one with p D 2 and

�.z/D

q
4
3
.zC z�1/:
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Now consider ˛ D .0; 1
2
; 0;�1

2
; 0; 1

2
; 0;�1

2
; : : : /. If Qdm.˛;TC0/ were defined as

sum from k D 0 to p� 1, it would be zero for all m, but dm.˛;TC0/ is not small.
�

The problem, as this example shows, is that for sequences in TC0 , .˛0; : : :
: : : ; p̨�2/ does not determine p̨�1. But by periodicity, ˛0; : : : ; p̨�1 determines
p̨. Thus, if we define

(4.21) Qdm.˛; ˛
0/ WD

pX
kD0

j˛mCk �˛
0
mCkj;

then
j˛mCp �˛mj � Qdm.˛;TC0/:

Plugging this into the proofs of Lemma 3.6 and Proposition 3.5 leads quickly to

PROPOSITION 4.6. Let C0 be a fixed periodic CMV matrix, then

(4.22) e�p
 Qdm.˛;TC0/


`q
�
dm.˛;TC0/


`q
� C

 Qdm.˛;TC0/

`q

for any sequence of Verblunsky coefficients f˛ng.

5. The magic formula for Schrödinger operators

In this section, we want to illustrate the potential applicability of our central
idea to the spectral theory of one-dimensional Schrödinger operators,

(5.1) H D�
d2

dx
CV.x/:

However, we will not pursue the applications in this paper.
We will suppose V 2L1loc;unif, that is, supx

R xC1
x�1 jV.y/j dy <1. In that case,

V is a form bounded perturbation of � d2

dx2
on L2.R; dx/ with relative bound zero,

so H is a self-adjoint operator. Its form domain is the Sobolev space H 1.R/.
We need to say something about periodic Schrödinger operators. Suppose V0

has period L; that is,

(5.2) V0.xCL/D V0.x/:

For arbitrary V in L1loc;unif and E 2 C, let uD.x;EIV / and uN .x;EIV / (we
will often drop the V if it is clear which V is intended) be the solutions of

(5.3) �u00CV uDEu

obeying the boundary conditions

(5.4) uD.0/D 0 u0D.0/D 1 uN .0/D 1 u0N .0/D 0:



1956 DAVID DAMANIK, ROWAN KILLIP, and BARRY SIMON

The transfer matrix that updates solutions of (5.3) (with data written as
�
u
u0

�
)

is

(5.5) T .x;EIV /D

�
uN .x;E/ uD.x;E/

u0N .x;E/ u
0
D.x;E/

�
det.T /D 1 by constancy of the Wronskian. For periodic V0, we define the discrim-
inant by

�V0.E/D Tr.T .L;EIV0//(5.6)

D uN .L;E/Cu
0
D.L;E/:

As in the OPRL and OPUC cases, it is easy to see for the whole-line operator
that

(5.7) �
�
�
d2

dx2
CV0

�
D��1V0 .Œ�2; 2�/

and is purely absolutely continuous. Moreover (see, e.g., [93]), if

(5.8) .Syu/.x/D u.x�y/;

thenH D� d2

dx2
CV0 commutes with SL and so has a direct integral decomposition,

(5.9) H D

Z ˚
H.�/

d�

2�

whose fibers, H.�/, are the operator (5.1) on Œ0; L� with

(5.10) u.L/D ei�u.0/ u0.L/D ei�u0.0/

boundary conditions. H.�/ has purely discrete spectrum (i.e., .H.�/C i/�1 is
compact); the eigenvalues are precisely the solutions of

(5.11) �.E/D 2 cos.�/:

Two periodic potentials of period L are called isospectral if and only if they
have the same �. As in the Jacobi and CMV cases, the spectrum determines �,
but this is more difficult to prove in the Schrödinger case. It is also known ([79]
for nice V0’s; [15], [41], [56], [92]) that the set of V ’s isospectral to V0 is a torus
of dimension equal to the number of gaps which is typically infinite, so we will
refer to an isospectral torus, TV0 . We can now state the main result in this section:

THEOREM 5.1. Let V0 be periodic obeying (5.2) and let �V0 be its discrimi-
nant and TV0 its isospectral torus. Let V be in L1loc;unif on R and H D� d2

dx2
CV.

Then

(5.12) �V0.H/D SLCS�L() V 2 TV0 :

Here S˙L denotes the shift operator, as in (5.8).
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Remarks. 1. �V0.H/ is defined by the functional calculus.

2. As in the last two sections, we will provide our initial proof that

(5.13) �V0.H/D SLCS�L) V periodic

and then a simpler proof using an analog of Naı̆man’s lemma. This argument does
not require Theorems 5.2 and 5.3 and the considerable machinery their proofs entail.
That said, to show �V0.H/D SLC S�L plus V periodic implies V 2 TV0 does
require Theorem 5.3, but it should be noted that one can prove Theorem 5.3 fairly
easily without needing transformation formulae of Delsarte, Levitan, Gel’fand,
Marchenko type.

We need two preliminaries whose proofs we defer to later in the section. We
first make a definition:

Definition. For any y > 0, Ry consists of operators on L2.R/ of the form

(5.14) .Af /.x/D 1
2
f .xCy/C 1

2
f .x�y/C

Z xCy

x�y

K.x; z/f .z/ dz

where K is continuous and uniformly bounded on f.x; z/ W jx� zj � yg.

Note. It can happen that K.x; x˙y/¤ 0, so if we think of K as an integral
kernel on R�R, it can be discontinuous at jx� zj D y.

THEOREM 5.2. If V0 is L-periodic and V in L1loc;unif, then 1
2
�.H/ 2RL and

(5.15) K.x; xCL/D�1
4

Z xCL

x

.V .z/�V0.z// dz:

Note that (5.15) describes the ‘matrix elements’ of �V0.H/� .SLC S�L/
that are farthest from the diagonal. Indeed, just as in the other cases, one does not
need the full statement �V0.H/D SLCS�L to see that V is periodic, only that
hf; .�.H/�SL�S�L/gi D 0 for f supported near x0 and g near x0CL (for all
x0).

THEOREM 5.3. �.E/ is an entire function which obeys

(i) j�.E/j � C exp
�
L
p
jEj
�
;(5.16)

(ii) lim
E!�1
E real

�.E/

exp.L
p
jEj/

D 1:(5.17)

Proof of Theorem 5.1. If V 2 TV0 , then �V D �V0 , so for the( direction
we need only prove

(5.18) �V0
�
d2

dx2
CV0/D SLCS�L:

As before, this is equivalent to �V0.H.�//D 2 cos � which follows from (5.11).
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Conversely, if �V0.H/D SLCS�L, then from Theorem 5.2 and the period-
icity of V0, we see

(5.19)
Z xCL

x

V.z/ dz D constant:

This implies that V.xCL/�V.x/D 0 for a.e. x, that is, V is periodic.
If H.�/ are the fibers of H in the direct integral decomposition, �V0.H/D

SLCS�L implies

(5.20) �V0.H.�//D 2 cos �

so, if � is the discriminant for V, we have �.z/D˙2)�V0.z/D˙2. Moreover,
(5.20) implies �.H/ � �.� d2

dx2
C V0/, so any double zero of �˙ 2 is a double

zero of �V0 ˙ 2. It follows that

(5.21) g.z/D
�2V0.z/� 4

�2.z/� 4

is analytic.
Since �V0 and � are entire functions of order 1

2
(by Theorem 5.3), g.z/ is of

the form

(5.22) g.z/D C

JY
jD1

�
1�

z

zj

�
;

where z1 < z2 < � � � are bounded from below. By (5.17), limE!�1 g.E/ D 1,
which implies g � 1, that is, �D�V0 . �

The argument used at the end of the proof to conclude that missing zeros
cannot occur is reminiscent of ideas connected with the Hochstadt-Lieberman [54]
and related theorems [47], [48].

We now turn to the proofs of Theorems 5.2 and 5.3. A critical role is played by
the wave equation and the transformation operator formalism of Gel’fand-Levitan,
further important work is due to Delsarte, Levin, and Marchenko; see the book of
Marchenko [77] for references and history.

Define for s > 0,

(5.23) Cs.z/D cos
�
s
p
z
�

Ss.z/D z
�1=2 sin

�
s
p
z
�

which are entire functions of z bounded on .a;1/ for any a 2 R. Thus Cs.H/ and
Ss.H/ are bounded operators for any H that is bounded from below. We will need
to study the form of Cs.� d2

dx2
CV /. For bounded continuous V, this is discussed

in Marchenko [77]. While his proofs extend to the L1loc;unif case, it seems simpler
to sketch the ideas:
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PROPOSITION 5.4. C 0s WD Cs.�
d2

dx2
/ 2Rs; indeed,

(5.24) .C 0s f /.x/D
1
2
Œf .xC s/Cf .x� s/�:

If S0s WD Ss.�
d2

dx2
/, then

(5.25) .S0s f /.x/D
1
2

Z xCs

x�s

f .y/ dy:

Remark. If w.x; s/ WD .C 0s f /.x/C.Ssg/.x/, then w obeys the wave equation
. @

2

@s2
�

@2

@x2
/w D 0 with initial data w.x; 0/D f and @sw.x; 0/D g.x/. Thus the

proposition basically encodes d’Alembert’s solution of the wave equation. From
this point of view, Theorem 5.2 is connected to finite propagation speed for the
wave equation.

Proof. Since cos is even,

(5.26) cos.sjkj/D cos.sk/D 1
2
.eiksC e�iks/:

Equation (5.24) is just the Fourier transform of this. (5.25) follows from

(5.27) Ss.z/D

Z s

0

Ct .z/ dt

and (5.24). �

We are heading towards

THEOREM 5.5. Let V 2L1loc;unif.R/ and letH D� d2

dx2
CV. Then Cs.H/2Rs

and the associated kernel Ks of (5.14) obeys

(5.28) Ks.x; xC s/D�
1
4

Z xCs

x

V.u/ du

and for each t 2 .0;1/,

(5.29) sup
x;y;jsj�t

jKs.x; y/j<1:

In addition,

(5.30) .Ss.H/f /.x/D

Z xCs

x�s

Ls.x; y/f .y/ dy

where

(5.31) Ls.x; xC s/D
1
2
:

LEMMA 5.6. It suffices to prove Theorem 5.5 for s small.

Proof. Since cos.2u/D 2 cos2.u/� 1, one sees

(5.32) C2s.A/D 2Cs.A/
2
� 1:
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Thus, if Cs 2Rs , one sees C2s 2R2s and

(5.33) K2s.x; y/DKs.x; yC s/CKs.x; y � s/CKs.xC s; y/CKs.x� s; y/

where K.x; y/D 0 if jx�yj> s. Thus

(5.34) K2s.x; xC 2s/DKs.x; yC s/CKs.xC s; yC 2s/:

This shows that if the formula is known for jsj � T , one gets it successively
for 2T; 4T; 8T; : : : .

Using (5.27), one sees that the result for Cs.H/ implies (5.30) and (5.31). �
Proof of Theorem 5.5. If A is a bounded self-adjoint operator on H which is

bounded from below, and B is the operator on H˚H given by

(5.35) B D

�
0 1

�A 0

�
;

then

(5.36) esB D

�
Ct .A/ St .A/

�ASt .A/ Ct .A/

�
:

This formula can be checked by showing that the right side of (5.36) is a
bounded semigroup whose derivative at t D 0 is B . DuHamel’s formula for A; zA
bounded says that

et
QB
D etB C

Z t

0

esB. QB �B/e.t�s/
QB ds(5.37)

D etB C

Z t

0

es
QB. QB �B/e.t�s/B ds:(5.38)

Using (5.36), we obtain

Ct . zA/D Ct .A/�

Z t

0

Ss. zA/. zA�A/Ct�s.A/ ds(5.39)

D Ct .A/�

Z t

0

Ss.A/. zA�A/Ct�s. zA/ ds:(5.40)

By taking limits, it is easy to obtain these formulae for A D � d2

dx2
, zA D

�
d2

dx2
CV with V bounded. By obtaining a priori bounds below depending only

on certain L1 norms of V, we get estimates for V in L1 and so, using the lemma,
prove the theorem.

By iterating (5.40), one gets an expansion (which converges if V is bounded
and whose estimates then extend),

Ct
�
�
d2

dx2
CV.x/

�
D C

.0/
t C

1X
nD1

C
.n/
t ;(5.41)



PERTURBATIONS OF OP WITH PERIODIC COEFFICIENTS 1961

C
.n/
t D .�1/

n

Z
0�s1C���Csn�t

S .0/s1 VS
.0/
s2
: : : VS .0/sn VC

.0/
t�s1�����sn

ds1; : : : dsn:

(5.42)

Apply the integrand in C .n/t to a function f and evaluate at x for fixed
s1; : : : ; sn. Each S .0/sj V evaluates V at points and integrals using (5.25). The
integrands in V are in the interval .x� t; xC t /, so if we take absolute values, we
see this integrand is bounded by�
1
2

Z xCt

x�t

jV.y/j dy

�n
Œ1
2
f .xC t � s1� � � � � sn/C

1
2
f .x� t C s1C � � �C sn/�:

Now we can do the integral over s1; : : : ; sn. For t � s1 � � � � � sn fixed, the
new integrand is independent of s1; : : : ; sn�1 and is bounded by tn�1. We find

(5.43) j.C
.n/
t f /.x/j � tn�1

�
1
2

Z xCt

x�t

jV.y/j dy

�n Z xCt

x�t

jf .y/j dy:

Moreover, C .n/t has a continuous integral kernel K.n/t .x; y/ supported in
jx � yj � t . Since V is uniformly locally L1, by taking t small, we can be
sure supx

1
2

R xCt
x�t jV.y/j dy < 1, which yields uniform convergence of K.n/t to

a uniformly bounded kernel.
By (5.27), we get (5.30) from Cs.H/ 2 Rs , and (5.31) comes from noting

that

(5.44) jLs.x; y/�
1
2
j � .s� jx�yj/ sup

x;y;u�s
jKu.x; y/j:

Finally, using (5.39), we see that

Kt .x; xC t /D�
1
2

Z t

0

Ls.x; xC s/V .xC s/ ds

proving (5.28). �

To complete the proofs of Theorems 5.2 and 5.3 (and so Theorem 5.1), we
need the transformation formulae of Delsarte, Levitan, Gel’fand, and Marchenko
[77]:

THEOREM 5.7. If V 2 L1.Œ0; R�/ for R < 1, then there exist functions
KN ; KD C

1 in f.y; x/ W 0� y � x �Rg so that for 0� x �R,

uN .x;E/D Cx.E/C

Z x

0

KN .y; x/Cy.E/ dy;(5.45)

uD.x;E/D Sx.E/C

Z x

0

KD.y; x/Sy.E/ dy:(5.46)
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Moreover,

(5.47) KD.x; x/DKN .x; x/D
1
2

Z x

0

V.t/ dt:

Remarks. 1. These formulae are in Marchenko [77, p. 9 and (1.2.28)]. He
supposes V is continuous, but his proof works if V is L1; indeed, see Remark 2.

2. Defining QuX .x; k/D uX .x; k2/ for X DD;N andQX .x; y/ as the Fourier
transform of QuX in k, we see (5.3) becomes

(5.48)
@2Q

@x2
�
@2Q

@y2
D VQ.x; y/

with initial conditions

QN .x D 0; y/D ı.y/; Q0n.x D 0; y/D 0;

QD.x D 0; y/D 0; Q0D.x D 0; y/D ı.y/:

Thus, Theorem 5.7 is essentially Theorem 5.5 with a time-dependent V used.

3. By (5.6), (5.45), and (5.46), we obtain a critical representation for �:

(5.49) �.E/D 2Cx.E/C

Z L

0

L1.t/Ct .E/ dt

C

Z L

0

L2.t/St .E/ dt CKD.L;L/SL.E/;

where L1; L2 are continuous in Œ0; L�. Indeed,

L1.t/DKN .t; L/ L2.t/D
@

@x
KD.t; x/

ˇ̌̌̌
xDL

:

Proof of Theorem 5.3. The analyticity is immediate from (5.49) as is (5.16)
given

jCx.E/jC jSx.E/j � C exp
�
x
p
jEj
�
:

Moreover, since for t < L,

lim
E!�1

Ct .E/

CL.E/
D 0 and lim

E!�1

SL.E/

CL.E/
D 0;

we have (5.17). �

Proof of Theorem 5.2. By (5.49) and Theorem 5.5, 1
2
�.� d2

dx2
CV / is in RL.

Moreover, the only terms contributing to K.x; xCL/ come from CL.�
d2

dx2
CV /

and KD.L;L/SL.� d2

dx2
CV /. By (5.28), (5.31), and (5.47),

K.x; xCL/D�1
4

Z xCL

x

V.y/ dyC 1
2

�
1
2

Z L

0

V0.y/ dy

�
which, given the periodicity of V0, is (5.15). �
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There is a second proof of (5.13). It depends on this analog of Naı̆man’s
lemma:

LEMMA 5.8. If V is L1loc;unif and � d2

dx2
CV commutes with SLCS�L, then

(5.50) V.xCL/D V.x/:

Proof. Suppose first that V is bounded. Then SL C S�L leaves D.� d2

dx2
/

invariant and commutes with it, so SLCS�L commutes with V. If f is supported in
a small neighborhood of x0, .x0�ı; x0Cı/with jıj<L=2, then .SLCS�L/.Vf / is
two separate pieces V.x�L/f .x�L/ supported near x0CL and V.xCL/f .xCL/
supported near x0 �L, while V.SL C S�L/f is two pieces V.x/f .x �L/ and
V.x/f .xCL/. Since the pieces are disjoint,

V.x/f .x�L/D V.xCL/f .x�L/

which implies (5.50).
For general V, take g 2 C10 .R/ with

R
g.x/ dx D 1 and noteZ

g.x/Sx

�
�
d2

dx2
CV

�
S�x dx

is � d2

dx2
Cg �V and it commutes with SLCS�L also. But g �V is bounded, so

it is periodic. (5.50) follows by using an approximate ı-function. �

6. Block Jacobi matrices and matrix orthogonal polynomials

What the magic formula suggests is that the Jacobi matrix J has parameters
that approach an isospectral torus if and only if �.J / approaches SpCS�p . �.J /
is a matrix of width 2p C 1 (i.e., �.J /k` D 0 if k � ` … f0;˙1; : : : ;˙pg) and
SpCS�p is a matrix with 1’s at the extremes.

A matrix of width 2`C 1 has the structure of a tridiagonal matrix if rewritten
in terms of `� ` blocks and S`CS�` corresponds to Bk D 0, Ak D 1, the identity
matrix, so �.J /� S`CS�`, at the matrix level, approaches the ‘free case.’ This
will allow us to reduce our main theorems to matrix analogs of the theorems on
perturbations of the free case.

Of course, the association of the block matrix to orthogonal polynomials is
critical—the orthogonality will be with respect to a matrix-valued measure. There
is a huge literature on MOPRL (see, e.g., [16], [24], [32], [33], [34], [35], [36],
[37], [38], [39], [57], [75], [76], [119], [120]) and MOPUC (see, e.g., [8], [25],
[26], [28], [29], [27], [30], [44], [71], [74], [95], [114], [121]). In this section,
our main purpose is to set notation and discuss the important notion of equivalent
families of block Jacobi matrices, a notion discussed more explicitly in [21].
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Given a semi-infinite complex matrix M D fmij g1�i;j�1 and `D 1; 2; : : : ,
we define the `�` block decomposition as the family of `�`matricesfMqrg1�q;r�1

by

(6.1) .Mqr/ij Dm`.q�1/Ci; `.r�1/Cj i; j D 1; : : : `:

Definition. A block Jacobi matrix is an M where

(6.2) Mqr D

8̂̂̂̂
<̂
ˆ̂̂:
Bq if r D q � 1

Aq if r D qC 1; q � 1

A
�
q�1 if r D q� 1; q � 2

0 jq� r j � 2

with each Aq invertible and each Bq Hermitian. Here, following [103, �2.13], we
use � for Hermitian adjoint; this is to avoid confusion with the Szegő dual ˆ�n
appearing in OPUC.

We will start writing J for such matrices. In analogy with the scalar case, one
may be tempted to require

(6.3) Aq > 0

but to include �.J /, we do not want to do that exclusively. If (6.3) holds, we say
that J is of type 1. If instead

(6.4) A1 : : : An > 0

for all n, we say J is of type 2.
An `� ` matrix, K, is said to be in L if it is lower triangular with strictly

positive diagonal elements; that is,

(6.5) Kij D

(
0 if i < j

> 0 if i D j:

If each Aq 2 L, we say that J is of type 3. The calculations in Section 3 and 4
show:

PROPOSITION 6.1.(i) If � is the discriminant of a periodic Jacobi matrix,
J0, of period `, then for any Jacobi matrix, J , �.J / D J is a block Jacobi
matrix of type 3.

(ii) If � is the discriminant of a periodic CMV matrix, C0, of even period `, then
for any CMV matrix, C, of �.C/D J is a block Jacobi matrix of type 3.

We will see that distinct J’s may correspond to the same measure. Indeed, in
the scalar case, the bn’s and janj’s are fixed by the measure, but the arg.an/’s are
arbitrary. Thus, we define
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Definition. Two block Jacobi matrices, J and zJ, are called equivalent if and
only if there is an `� ` block diagonal unitary UD 1˚U2˚U3˚ � � � (we will
use U1 for 1) so that

(6.6) zJDUJU�1:

This is equivalent to

zBn D UnBnU
�1
n ;(6.7a)

zAn D UnAnU
�1
nC1:(6.7b)

We will be interested in equivalence classes of J’s.

PROPOSITION 6.2 ([21]). Each equivalence class of J’s has exactly one ele-
ment each of type 1, type 2, and type 3.

Definition. The Nevai class is the set of J’s for which

(6.8) Bn! 0 A�nAn! 1:

The following is immediate from (6.7):

PROPOSITION 6.3. If some J is in the Nevai class, so are all equivalent J’s.

For types 1 and 3, Damanik, Pushnitski, and Simon [21], and for type 2,
Kozhan [64] prove that

PROPOSITION 6.4 ([21]). If J is in the Nevai class and is type 1, type 2, or
type 3, then

(6.9) An! 1:

We will sometimes need the MOPRL, the matrix orthogonal polynomials.
What we describe here are the left OPs. There are also right OPs (see [21]), which
we do not need here. An `-dimensional matrix-valued measure is a positive scalar
measure d�t .x/ and a nonnegative `� ` matrix-valued function M.x/. The matrix-
valued measure

(6.10) d�.x/DM.x/ d�t .x/

can always be normalized by

(6.11) Tr.M.x//D `:

We will always assume d� is normalized; that is,

(6.12)
Z
d�.x/D 1:

The proper notion of nontriviality is a little subtle; it is discussed in detail in [21].
For our purpose here, it is sufficient that hh�; �iiL defined below is nondegenerate on
polynomials.
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If f; g are two `-dimensional matrix-valued functions, we define

hhf; giiL D

Z
g.x/M.x/f .x/� d�t .x/:

Note that this ‘inner product’ returns matrix values. Recall also that � denotes the
Hermitian conjugate of a matrix. The subscript ‘L’ is for ‘left’ and reflects the fact
that if C is an `� ` matrix, then

hhf; CgiiL D C hhf; giiL;(6.13)

hhCf; giiL D hhf; giiLC
�:(6.14)

We will normally just write hh�; �ii from now on.
Left orthonormal polynomials are of the form

pn.x/D �nx
n
C lower order

with matrix coefficients, defined by

(6.15) hhpn; pmii D ınm1:

So long as d� is nontrivial, the pn exist. They are not unique since if fUng1nD1 are
unitary `� ` matrices,

(6.16) Qpn.x/D UnC1pn.x/

are also MOPRL. We demand �0 D 1, that is, p0.x/D 1, and so U1 D 1.
fpj g

n
jD0 are a left module basis for matrix polynomials of degree n, that is, if

f is any polynomial of degree n, then there are unique `� ` matrices f0; : : : ; fn
so that

f .x/D

nX
jD0

fjpj .x/:

Indeed,

(6.17) fj D hhpj ; f ii:

For nD 1; 2; : : : ; define

(6.18) Bn D hhpn�1; xpn�1ii An D hhpn; xpn�1ii:

Then, since xpj D
PjC1

`D0
C`p` implies hhpj ; xpnii D hhxpj ; pnii D 0 if j � n� 2,

we have

(6.19) xpn.x/D AnC1pnC1.x/CBnC1pn.x/CA
�
npn�1.x/:

This implies AnC1�nC1 D �n so

(6.20) �n D .A1 : : : An/
�1

and the type 2 condition is equivalent to �n > 0.
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Looking at (6.19), we see that (6.16) holds for Qpn; pn if and only if zAn; zBn
are related to An; Bn by (6.7). Jacobi matrix equivalence is just a ‘change of phase’
in the MOPRL.

Given a block Jacobi matrix, we can view it as acting on the Hilbert space
`2.f1; 2; : : : g;C`/ with inner product

(6.21) hf; gi D

1X
nD1

hfn; gniC` :

If fej g`jD1 is the standard basis of C`, then fıkIj g1kD1
`
jD1, defined by

(6.22) .ıkIj /n D ıknej

is a basis. J acts on `2.f1; 2; : : : g;C`/ via

(6.23) .Jf /n D A
�
n�1fn�1CBnfnCAnfnC1

(with A0 D 0).
The spectral measure for J is the `� ` matrix-valued measure with

(6.24) hı0Ij ; f .J/ı0Iki D

Z
f .x/ d�jk.x/

for any scalar-valued function f . It is easy to see (e.g., [21]) that this map from
J to � inverts the one given by forming the MOPRL and defining J by (6.18).
Moreover, J and zJ are equivalent if and only if d Q�� d�.

The m-function is defined by

m.E/D

Z
1

x�E
d�.x/(6.25)

D hı0I � ; .J�E/
�1ı0I � i:(6.26)

It is an `� ` matrix-valued Herglotz function:

(6.27) ImE > 0) Imm.E/ > 0I

that is, 1
2i
.m�m�/ is positive definite in the upper half-plane. For information

on matrix Herglotz functions, see [3], [4], [11], [12], [42], [46], [49], [50], [53],
[58], [65], [66], [97], [117]. Obviously, by (6.25), m is constant over equivalence
classes.

As in the scalar case, one has that for a.e. x 2R, lim"#0m.xCi"/�m.xCi0/
exists (see [103, �1.2]), and

(6.28) d�ac.x/D �
�1 Imm.xC i0/ dx:

Here

(6.29) d�ac.x/DM.x/ d�t Iac.x/;
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where d�t Iac is the a.c. part of d�t . Alternatively, d�ac is the unique matrix-valued
measure which is a.c. (i.e., �ac.I /D 0 for any set with jI j D 0) and where there is
a set K with jKj D 0 so .�� �ac/.R nK/D 0.

Given a block Jacobi matrix, J, by J.n/ we mean the matrix with the top n
(block matrix) rows and leftmost n columns removed; that is,

(6.30) B
.n/

k
D BkCn A

.n/

k
D AkCn:

We write m.n/.z/ for the m-function associated to J.n/. Equivalent J’s do not have
the same m.n/ for n� 1 (although they are unitarily related). We see m.0/ �m.

We will need the following result of Aptekarev-Nikishin [6] (see also [21]), a
matrix analog of the well-known Jacobi-Stieltjes recursion for OPRL:

THEOREM 6.5 ([6; 21]). We have that

(6.31) m.n/.E/�1 DE �BnC1�AnC1m
.nC1/.E/A

�
nC1

for nD 0; 1; 2; : : : .

Next, we need to note the following analog of a well-known scalar result (see,
e.g., [105]) proven in [21]:

THEOREM 6.6. Let J be a block Jacobi matrix with �ess.J/ � Œa; b�. Then,
for any ", there is a K so that for k �K,

(6.32) �.J.k//� Œa� "; bC "�:

Finally, we need to look at poles and zeros of det.m.z//. In the scalar .`D 1/
case, poles occur precisely at eigenvalues of J and zeros at eigenvalues of J.1/, the
once stripped Jacobi matrix. In that scalar case, these eigenvalues are distinct.

In the matrix case, J and J.1/ can have eigenvalues in common (as can be
easily arranged by taking a direct sum of suitable scalar J ’s) so there can be can-
cellations. We say a scalar meromorphic function, f .z/, has a zero/pole of order
k 2 Z at z0 2 C if .z � z0/�kf .z/ has a finite nonzero limit as z! z0. We will
need the following result from [21]:

THEOREM 6.7 ([21]). Let x0 2 R. Let q0 be the multiplicity of x0 as an
eigenvalue of J, and q1 its multiplicity as an eigenvalue of J1. Then

(a) q0C q1 � `,
(b) det.m.z// has a zero/pole of order q1� q0.

We will also need the following result from Aptekarev-Nikishin [6]:

THEOREM 6.8. Let J be a block Jacobi matrix with �ess.J/D Œ�2; 2�, �.J/ n
�ess.J/ a finite set and with g.x/D d�ac.x/=dx we have

(6.33)
Z
.4� x2/�1=2 log.det.g.x// dx > �1:
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Suppose J is type 2. Then
lim
n!1

A1 : : : An

exists and is a strictly positive matrix.

7. A Denisov-Rakhmanov theorem for MOPRL

As preparation for proving Theorem 1.2 in Section 8, in this section we will
prove

THEOREM 7.1. Let d� be a nondegenerate `� ` matrix-valued measure on R

with associated block Jacobi matrix J of type 3 so that

(i) �ess.J/D Œ�2; 2�;

(ii) d�D f .x/ dxC d�s

with d�s singular, and

(7.1) det.f .x// > 0

a.e. on Œ�2; 2�. Then

(7.2) Bn! 0 An! 1:

Remark. (7.1) says the a.c. spectrum has multiplicity `.

If assumption (i) in Theorem 7.1 is replaced by the stronger �.J /D Œ�2; 2�
and type 3 by type 2, this is a theorem of Yakhlef-Marcellán [119]. We will prove
Theorem 7.1 by modifying their proof.

The shift from type 2 to 3 is easy on account of Proposition 6.4. By applying
the argument of [119], we get zAn! 1 for the equivalent zJ of type 2, conclude the
whole equivalence class is in the Nevai class, and see An! 1. So we will only
worry about the changes needed to go from �.J /D Œ�2; 2� to �ess.J /D Œ�2; 2�,
where we follow Denisov’s approach for the scalar case [31].

[119] relies on a matrix version of Rakhmanov’s theorem proven by Van Ass-
che [114]. We need to extend it slightly to allow a.c. spectrum on a large subset of
@D rather than all of @D:

THEOREM 7.2. Let d� be an ` � ` matrix-valued measure on @D and let
f˛ng

1
nD0 denote its matrix Verblunsky coefficients . Suppose

(7.3) d�D w.�/
d�

2w
C d�s

where d�s is singular, and let

(7.4) �D f� W det.w.�// > 0g:
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Then

(7.5) lim sup
n!1

k˛nk � 2
p
2`

�
1�

�
j�j

2�

�3�1=2
:

Remarks. 1. For notation on MOPUC, see [21].

2. Where we use f˛ng1nD0, Van Assche [114] uses fHng1nD1 related to ˛n by

(7.6) Hn D�˛
�
n�1:

3. We follow notation from [114] and the variant of the scalar proof as in
[104, �9.1] where an; bn; cn; dn below all appear.

We define

an D k˛nk;

bn;q D
1

2�

Z 2�

0

kŒ'L
n.e

i� /'L
nCq.e

i� /�1� Œ'L
n.e

i� /'L
nCq.e

i� /�1��� Ik d�;

cn;q D
1

2�`

Z 2�

0

Tr.'L
n.e

i� /'L
nCq.e

i� /�1Œ'L
nCq.e

i� /���1'L
n.e

i� /�/1=2 d�;

dn D
1

2�`

Z 2�

0

Tr.Œ'L
n.e

i� /w.�/'L
n.e

i� /��1=2/ d�:

PROPOSITION 7.3. For every n� 0, we have that

an � bn;q for every q � 1;(7.7)

b2n;q � 8`
2.1� cn;q/ for every q � 1;(7.8)

d2n � inf
q�1

cn;q:(7.9)

Moreover, we have that

(7.10)
�
j�j

2�

�3=2
� lim inf

n!1
dn:

Consequently,

(7.11) lim sup
n!1

an � 2
p
2 `

�
1�

�
j�j

2�

�3�1=2
:

Proof. The second to last displayed formula on [114, p. 233] is (7.7). The
estimates on [114, p. 238] show that

b2n;q D
1

4�2

�Z 2�

0

kŒ'L
n.e

i� /'L
nCq.e

i� /�1� Œ'L
n.e

i� /'L
nCq.e

i� /�1��� Ik d�

�2
�
2`

�

Z 2�

0

k.Œ'L
n.e

i� /'L
nCq.e

i� /�1� Œ'L
n.e

i� /'L
nCq.e

i� /�1��/1=2� Ik2 d�
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�
2`

�
.4�`� 4�` cn;q/

D 8`2.1� cn;q/

which is (7.8). Equation (4.9) in [114, p. 239] is (7.9).
Now, mimicking the estimates on the bottom half of [114, p. 240],Z

�

Tr.Œf .�/w.�/f .�/��1=4/ d�

�

�
2�`

Z
�

Tr.f .�/'L
n.e

i� /�1.'L
n.e

i� /�/�1f .�/�/
d�

2�

�1=4
.2�` dn/

1=2:

Taking n!1, we see thatZ
�

Tr.Œf .�/w.�/f .�/��1=4/ d�

�

�
2�`Tr

Z
�

f .�/d�.�/f .�/�/1=4
�
2�` lim inf

n!1
dn
�1=2

:

Removing the singular part as in [114], we obtainZ
�

Tr.Œf .�/w.�/f .�/��1=4/ d�

�

�
2�`Tr

Z
�

f .�/w.�/f .�/�d�

�1=4�
2�` lim inf

n!1
dn
�1=2

:

Proceeding as in [114, pp. 241], it then follows that

j�j`� .2�` j�j`/1=4
�
2�` lim inf

n!1
dn
�1=2

which implies (7.10).
Putting these estimates together,

an � bn;1 � 2
p
2 `.1� cn;1/

1=2
� 2
p
2 `.1� d2n /

1=2

and hence

lim sup
n!1

an � 2
p
2 `

�
1�

�
j�j

2�

�3�1=2
which is (7.11). �

In particular, for 2� � j�j small,

lim sup
n!1

an DO

��
1�

�
j�j

2�

�3�1=2�
DO..2� � j�j/1=2/

as in the scalar case.
We have thus proven Theorem 7.2. To get Theorem 7.1, we follow [119] using

the analog of Denisov’s arguments for the case `D 1.
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Proof of Theorem 7.1. By Proposition 6.4, we need only prove for the type 2
choice, for any " > 0, we have

(7.12) lim sup .k zAn� 1kCk QBnk/� ":

By the Szegő mapping and Geronimus connection formulae in [119], this holds by
Theorem 7.2 so long as for any "0 > 0, we can find k so �.J.k//� Œ�2� "0; 2C "0�,
and this is true by Theorem 6.6. �

8. A Denisov-Rakhmanov theorem for periodic OPRL

Our main goal in this section is to prove Theorem 1.2. We will also prove
the ‘hard’ half of Theorem 1.1. The simplicity of the proof shows the magic in the
magic formula!

Proof of Theorem 1.2. By a right limit of J , we mean a two-sided Jacobi
matrix, Jr , (but with some a’s allowed to vanish) so that for some subsequence
nj !1 and any k 2 Z,

(8.1) anjCk! .ar/k bnjCk! .br/k :

By our standing convention, Jacobi parameters are uniformly bounded, so by com-
pactness, if dm..a; b/;TJ0/ ¹ 0, there exists a right limit Jr … TJ0 . Thus, it
suffices to show that any right limit Jr has Jr 2 TJ0 .

By the hypotheses of Theorem 1.2, the spectral mapping theorem, and the fact
that � maps �ess.J0/ to Œ�2; 2� with a p-fold cover on .�2; 2/, we see that

�.J /ess D Œ�2; 2�

and �.J / has a.c. spectrum of multiplicity p. So thinking of J��.J / as a block
Jacobi matrix, J is of type 3 and the hypotheses of Theorem 7.1 apply. It follows
that An! 1, Bn! 0. This means that�.Jr/DSpCS�p so by the magic formula
(Theorem 3.1), Jr 2 TJ0 . �

Rakhmanov’s theorem is often related to issues of w-limjpnj2 d� and to the
density of zeros. We note that there are also results of that genre here:

THEOREM 8.1. If J0 is a periodic Jacobi matrix of period p and J is a Jacobi
matrix with bounded Jacobi parameters whose right limits all lie in TJ0 (in partic-
ular, if the hypotheses of Theorem 1.2 hold), then (with d� the measure for J )

(a)

(8.2) w-lim
n!1

1

p

pX
jD1

jpjCn.x/j
2 d�.x/D d�

the density of zeros for J0.
(b) The density of zeros of pn.x/ converges to d�.
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Proof. If J1 2 TJ0 , then the spectral measure d�.J1/
k

associated to ık has
period p in k since J1 is periodic. Thus

lim
N!1

1

2N C 1

X
jj j�N

d�
.J1/
j D

1

p

pX
jD1

d�
.J1/
j ;

but the limit is d� by the discussion in Section 2.8. Since

(8.3)
Z
x`jp

.J /
j .x/j2 d�.x/D hıj ; J

`ıj i

and Jj;j ; Jj;j˙1 is very close to some .J1/j;j , .J1/j;jC1 for jj �j0j �M for fixed
M and j0!1, we see that moments of the left-hand side of (8.2) are close to
moments of d�. This proves (a).

If J .n/ denotes the top left n�n submatrix of J , thenZ
x` d�n D

1

n
Tr..J .n//`/

so

lim
n!1

Z
x` d�n D lim

n!1

Z
x`
�
1

n

n�1X
jD0

pj .x/
2 d�.x/

�
and thus (a) implies (b). �

We also have
THEOREM 8.2. If dm..a; b/;TJ0/! 0, then

�ess.J /� �ess.J0/:

Proof. By the magic formula, compactness, and the fact that every right limit
of J is in TJ0 , we see that every right limit of �.J / is SpCS�p , that is, An! 1,
Bn! 0. Thus, by Weyl’s theorem, �ess.�.J //D Œ�2; 2�. Since

�ess.�.J //D�.�ess.J //

we see �ess.J /��
�1.Œ�2; 2�/D �ess.J0/. �

Remarks. 1. Since � is p to 1, we cannot conclude that �ess.J0/D �ess.J /

from �.�ess.J0//D�.�ess.J //.

2. That �ess.J0/ � �ess.J / is a simple trial function argument given that J
must have some right limits; see [69], [70].

9. Denisov-Rakhmanov sets

In this section, we want to show how one can take suitable limits of Theo-
rem 1.2 to get a ‘cheap’ proof of similar theorems in other nonperiodic cases. We
will also present an insight into the proper general form of Denisov-Rakhmanov-
type theorems.
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The right limits we have discussed so far involve the weak product topology
on the Jacobi parameters, so we will emphasize this fact by using the phrase ‘weak
right limits’ in this section. We are also interested in limits in the `1-topology for
two-sided sequences, that is, fc.k/n g1nD�1! fc

.1/
n g1nD�1 in this topology if and

only if, as k!1,
sup
n
jc.k/n � c

.1/
n j ! 0:

In terms of weak limits, we note the following:

PROPOSITION 9.1. Let E be a closed set. Let J be a half-line Jacobi matrix
with

(9.1) †ac.J /D �ess.J /D E:

Let Jr be a weak right limit of J . Then

(9.2) †ac.Jr/D �.Jr/D E:

Remark. Note that (9.2) has �.Jr/, not merely �ess.Jr/.

Proof. By results in [69],

�.Jr/� E�†ac.Jr/:

Since †ac.Jr/� �.Jr/ trivially, (9.2) holds. �

Recall that a sequence fcng1nD�1 is called uniformly almost periodic (in the
general theory of almost periodic functions, this defines ‘almost periodic’—we add
‘uniformly’ because the term is sometimes used in a weaker sense in the spectral
theory literature) if and only if fc.`/g1

`D�1
given by .c.`//n D cnC` has compact

closure in the `1-topology.

Definition. A set E is called essentially perfect if and only if E is closed, and
for all E 2 E and ı > 0, j.E � ı; EC ı/\Ej> 0.

Remark. Essentially perfect sets are precisely the sets, E, for which there is a
purely a.c. measure d� with supp.d�/D E.

Definition. A set E is said to be a Denisov-Rakhmanov set if and only if
(i) E is essentially perfect and bounded.
(ii) There is a set TE compact in the uniform topology so that for any bounded

Jacobi matrix, J , for which (9.1) holds, the set of right limits of J lies in TE.

The definition says nothing explicit about TE being a torus, but by Proposi-
tion 9.1, if Jr 2 TE, then (9.2) holds, and since TE is closed under translations,
each Jr in TE is almost periodic. By Kotani theory (see [62], [63], [100], [104]),
hın; .Jr �E � i"/

�1ıni has real boundary values for a.e. E. In many cases and,
in particular, if E is a finite union of closed intervals, Sodin-Yuditskii [109] (see
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also [5], [14]) proved there is a natural torus so that any almost periodic Jr with
real boundary values lies in this torus. Thus for such cases, that E is a Denisov-
Rakhmanov set can be connected to approach to an isospectral torus. In particular,
our Theorem 1.2 implies the statement that �ess.J0/ is a Denisov-Rakhmanov set.

Given an essentially perfect set, E, we define D.E/ to be the set of Jacobi
matrices obeying (9.1).

The following two simple results will be the basis of our approximation theo-
rems:

PROPOSITION 9.2. Let E be an essentially perfect set. Suppose there are
uniformly compact sets fT.n/g1nD1 and T.1/ of two-sided Jacobi matrices so that

(1) If Jn 2 T.n/ and Jn! J1 weakly, then J1 2 T.1/.
(2) For any weak right limit point Jr of some J 2 D.E/, there is QJ 2 T.n/ so

(9.3) sup
jj j�n

ja
.r/
j � Qaj jC jb

.r/
j �

Qbj j �
1

n
:

Then E is a Denisov-Rakhmanov set.

Proof. Let Jn be the QJ guaranteed by (9.3). Then clearly, Jn converges weakly
to Jr so, by (1), Jr 2 T.1/. Since T.1/ is uniformly compact, E is a Denisov-
Rakhmanov set. �

PROPOSITION 9.3. Let J0 be a fixed periodic Jacobi matrix with essential
spectrum E0. Then for any n, there is a ı > 0 so that for any set E with

(a) E� fE W dist.E;E0/ < ıg;(9.4)

(b) jEj> .1� ı/jE0j;(9.5)

and any J 2D.E/, we have that any right limit, Jr , obeys (9.3) for some QJ 2TJ0 .
Moreover, if p is fixed and C is a compact subset of Œ.0;1/�R�p , then ı can

be picked to work for all J0 D f.an; bn/g
p
nD1 2 C .

Proof. The uniformity claimed in the last statement comes from noting that
choices can be made uniformly in the proof below.

Let p be the period of J0. We first claim that given ı1, we can find ı so if E

obeys (9.4)–(9.5), then

dist.�.E/; Œ�2; 2�/ < ı1;(9.6)

jfx 2 .�2; 2/ W all p solutions of �.E/D x lie in Egj> 4� ı1:(9.7)

This is immediate from the continuity of � and its derivatives.
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Next, we note that given "1, we can find ı1 so that if J is a p�p block Jacobi
matrix so that

�ess.J/� Œ�2� ı1; 2C ı1�

jfE 2 Œ�2; 2� W J has a.c. spectrum at E of multiplicity pgj> 4� ı1;

then
lim sup
k;m!1

jJkm� .S
p
CS�p/kmj< "1:

The proof of this is identical to the proof of the matrix Denisov-Rakhmanov theo-
rem.

Combining these steps, we are reduced to showing for any n and ", there is
"1 so for all two-sided Jr with dist.�.Jr/;E/ < ", we have that

(9.8) sup
k;m

j�.Jr/� .S
p
CS�p/kmj< "1

implies there is a QJ 2 TJ0 so that (9.3) holds. To do this, we first follow the proof
of Theorem 3.1 to note that for n, "2, and "3 fixed, we can find "1 so (9.8) implies
there is a p-periodic J ] such that

(9.9) k�.J ]/��.J /k< "2

and
sup
jj j�n

ja
.r/
j � a

]
j jC jb

.r/
j �

Qbj j � "3:

Finally, a compactness argument shows that for any n, we can find "4 so for
any periodic J ] with

k�.J ]/� .SpCS�p/k< "4

there is a QJ 2 TJ0 so that

kJ ]� QJ k �
1

2n
:

Putting these together implies (9.3). �

THEOREM 9.4. Let `1; `2; : : : be an arbitrary sequence in .2; 3; 4; : : :/. For
any `1-periodic Jacobi matrix J .0/, there exist k2; k3; : : : so that for any limit
periodic J with Jacobi coefficients

an D a
.0/
n C

1X
mD2

ReŒAme2�in=`1`2:::`m �;(9.10)

bn D b
.0/
n C

1X
mD2

ReŒBme2�in=`1:::`m �(9.11)
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obeying

(9.12) jAmjC jBmj � km;

we have that �.J / is a Denisov-Rakhmanov set.

Remark. The study of limit periodic discrete Schrödinger operators with small
tails was initiated by Avron-Simon [7] and Chulaevsky [19]. They prove purely
a.c. spectrum.

Proof. As in [7], [19], one can pick the km’s so the spectrum is purely a.c.
and so that the union of all isospectral tori for the periodic approximates lie in
a fixed `1 compact sets. This implies the limit periodic potentials also have
compact isospectral sets, and within this compact set, weak convergence implies
norm convergence so hypothesis (1) of Proposition 9.2 holds. By decreasing the
km’s if necessary, Proposition 9.3, continuity of the spectrum in `1 norm, and
absolute continuity of periodic spectrum imply we can be sure that (9.3) holds.
Thus Proposition 9.2 implies this theorem. �

Our final theorem in this section is the following:

THEOREM 9.5. Fix `. Let GD f.˛1; ˇ1; ˛2; : : : ; ˛`C1; ˇ`C1/ 2 R2`C2 W ˛1 <

ˇ1 < ˛2 < ˇ2 < � � �< ˇ`C1g. For . Ę; Ě/ 2 G, define

(9.13) E. Ę; Ě/D

`C1[
jD1

Œ j̨ ; ǰ �:

Then f. Ę; Ě/ W E. Ę; Ě/ is a Denisov-Rakhmanov setg contains a dense Gı .

Remarks. 1. As we have seen, the E. Ę; Ě/ which arise from periodic problems
are precisely those where the harmonic measure of each ej D Œ j̨ ; ǰ � is rational.
In particular, if we fix Ę and ˇ`C1, the set of ˇ’s that are periodic is countable, and
so certainly not a Gı . We show that the family that leads to Denisov-Rakhmanov
sets is uncountable.

2. It is a reasonable conjecture that every E is a Denisov-Rakhmanov set, so
this result is weak. We include it because it is such a ‘cheap’ way to go beyond
the periodic case using only that case.

Proof. For each . Ę; Ě/, it is known [109] that there is an isospectral torus T

of almost periodic J ’s where (whole line) spectrum is precisely E. Ę; Ě/. It follows
from the construction in [109] that if . Ę.n/; Ě.n//2G converge to . Ę.1/; Ě.1//2G,
then condition (1) of Proposition 9.2 holds.

Let Gp be the subset of G coming from periodic problems—this is dense in G.
For . Ę.0/; Ě.0// 2 Gp, pick J. Ę.0/; Ě.0// periodic with E. Ę.0/; Ě.0// as spectrum
and pick ın. Ę.0/; Ě.0// via Proposition 9.3 requiring ın < 1

2
min.jˇ.0/j � ˛

.0/
j j,
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j˛
.0/
jC1 � ˇ

.0/
j j/. Let U .n/. Ę0; Ě0/ D f. Ę; Ě/ W E. Ę; Ě/ obeys (9.4)/(9.5) for E D

E. Ę; Ě/, E0 D E. Ę.0/; Ě.0// and ı D ıng, and let

U .n/ D
[
Gp

U .n/.˛.0/; ˇ.0//:

This is dense and open. Then \nU .n/ is a dense Gı whose points, by construction
and Proposition 9.2, correspond to Denisov-Rakhmanov sets. �

10. Sum rules for MOPRL

In this section, our main goal is to prove the following two theorems about
block Jacobi matrices:

THEOREM 10.1 (P2 sum rule for MOPRL). Let J be a block Jacobi matrix
with `�` Jacobi parameters fAng1nD1; fBng

1
nD1 and matrix measure d�. Letm.E/

be given by (6.25) and suppose �ess.J/D Œ�2; 2�. Define for z 2DnfzDECE�1 W

E 2 �.J/ n Œ�2; 2�g

(10.1) M.z/D�m.zC z�1/:

Let F;G be the functions

(10.2) F.ˇCˇ�1/D 1
4
Œˇ2�ˇ�2� logˇ2�

for ˇ 2 R n Œ�1; 1�, that is, E D ˇCˇ�1 2 R n Œ�2; 2� and

(10.3) G.a/D a2� 1� log.a2/ a 2 .0;1/:

Then limr"1M.rei� / exists for a.e. � and

(10.4)
1

2�

Z
log
�

sin` �
det.ImM.ei� //

�
sin2 � d�

C

X
E2�.J/nŒ�2;2�

F.E/D

1X
nD1

Tr.1
4
B2n C

1
2
G.jAnj//:

Remarks. 1. All terms are positive (since F and G are positive, this is evident
for two terms; positivity of the integral will be seen below), so this sum rule always
makes sense, although some terms may be C1.

2. Recall that jAnj D
q
A
�
nAn; although since the formula for G.a/ only

involves a2, one does not need to take a square-root.

3. Because of the trace and absolute value, Tr.1
4
B2n C

1
2
G.jAnj// is constant

over equivalence classes of Jacobi matrix parameters.
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4. In the type 1 case, the right-hand side of (10.4) is finite if and only if
J � Sp � S�p is Hilbert-Schmidt. This is also true when J is of type 3; see
Proposition 11.12.

THEOREM 10.2 (Sharp case C0 sum rule for MOPRL). Consider the three
quantities:

Z.J/D
1

4�

Z 2�

0

log
�

sin` �
det.ImM.ei� //

�
d�;(10.5)

E0.J/D
X

E…�.J/nŒ�2;2�

log.jˇj/;(10.6)

where ˇ is related to E by

(10.7) ˇ 2 R n Œ�1; 1� E D ˇCˇ�1

and

(10.8) A0.J/D lim
N!1

�

NX
nD1

log.det.jAnj//;

which we suppose exists but it may beC1 or �1. Then
(i) If any two of Z;E0; A0 are finite, then so is the third.
(ii) If all are finite, then

(10.9) Z.J /D A0.J /CE0.J /:

(iii) If all are finite, then

(10.10) lim
N!1

NX
nD1

Tr.Bn/

exists.

Remark. We will prove (and actually use it to prove Theorem 1.3) that if
E0.J / <1, then Z.J / <1 so long as

(10.11) A0.J/D lim inf
N

�
�

NX
nD1

log.det.jAnj//
�
<1:

Theorem 10.1 is a matrix-valued analog of the OPRL P2 sum rule of Killip-
Simon [61], and Theorem 10.2 of the OPRL Case C0 sum rule by Simon-Zlatoš
[108]. Both were refinements of sum rules of Case [17], [18] who in turn was
motivated by earlier KdV and Toda sum rules. Case only considered short-range
jan � 1j C jbnj, while [61], [108] considered the necessary techniques to go up
to the borderline of validity. [108] had some simplifications of [61], and [101]
further simplified, although each of the later two proofs depends heavily on the
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earlier ones. Here, following Simon [101], we will prove a nonlocal step-by-step
sum rule. As there, the key is a suitable representation theorem for meromorphic
Herglotz functions—in this case, extended to matrix-valued functions.

For a 2 .�1; 1/, we define Blaschke factors as usual by

(10.12) b.z; a/D

(
a�z
1�az

0 < a < 1
z�a
1�az

�1 < a � 0:

PROPOSITION 10.3. Let f .z/ be an `�` matrix-valued meromorphic function
on D so that

(i) ˙ Imf .z/ > 0 when ˙ Im z > 0;(10.13)

(ii) lim
z!0

f .z/z�1 D 1;(10.14)

where Imf � 1
2i
.f �f �/. Then

(a) For a.e. � , limr"1 f .rei� /� f .ei� / exists.
(b) logjdet.f .ei� //j 2 \1�p<1Lp.@D; d�=2�/.
(c) All the zeros and poles of det.f .z// lie on .�1; 1/ and are of finite order. Let

fzj g
1
jD1 and fpj g1jD1 be those zeros and poles of det.f .z// repeated up to

multiplicity (it can also happen that both sets are finite). z D 0 is not included
in fzj g. Then

(10.15) B1.z/D lim
r"1

Q
jzj j<r

b.z; zj /Q
jpj j<r

b.z; pj /

exists and obeys:
(i) B1 is analytic and nonvanishing on C n fzj g[ fpj g[ fz

�1
j g[ fp

�1
j g[

f˙1g;
(ii) jB1.e

i� /j D 1 on @D n f˙1g;
(iii)

(10.16) jarg.B1.z//j � 2�`

for jzj< 1 with arg normalized by argB1.0/D 0;
(d) We have the representation

(10.17) det.f .z//D z`B1.z/ exp
�Z

ei� C z

ei� � z
logjdet.f .ei� //j

d�

�

�
:

Remarks. 1. It should be possible to prove that 0 < arg.B1.z// < �` for
Im z > 0; we settle for the weaker result.

2. (10.14) is not central for a result of this type, but it is true in applications
and simplifies the notation.
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3. This result for `D 1 is in [101]. ` > 1 has some subtleties, but the basic
strategy we use is that of [101].

We will prove this result in a sequence of lemmas:

LEMMA 10.4. det.f .z// is analytic and nonvanishing in � � fz W z 2 D;

Im z > 0g, and arg.det.f .z/// can be chosen in that region to be continuous so
that

(10.18) 0 < arg.det.f .z/// < �`:

Proof. In �, all matrix elements h'; f .z/'i are analytic and have a.e. bound-
ary values (since they are scalar Herglotz functions), so by polarization, f .z/ is
analytic on � and has a.e. boundary values. Thus det.f .z// as a polynomial in
matrix elements is analytic on �.

Consider

(10.19) P.�; z/D det.�1�f .z//

which is a polynomial in � with analytic coefficients away from the poles of f . It
follows, for z near any z0 about which f is analytic, that the roots P.�; z/ D 0
written as a function of z are analytic functions in .z� z0/1=k for some k depend-
ing on z0. It then follows that near any fixed z0, all roots are analytic, that is,
singularities are isolated.

Pick x0 2 .0; "/ so that x0f .x0/ > 0, so all eigenvalues �1.x0/; : : : ; �`.x0/
are in .0;1/. Let z 2 � be a point about which all eigenvalues are analytic,
and let .z/ be a simple closed path from x0 to z which avoids the discrete set
where eigenvalues are not analytic and lie in � except for x0 with, say, .0/D x0,
.1/ D z. By analytically continuing eigenvalues, we get functions f�j .z/g`jD1,
so �j .z/ are all the eigenvalues of f ..t// and �j .0/ 2 .0;1/. By Imf > 0,
Im�j .z/ > 0, so if we define arg.�j .z// with arg.�j .0//D 0, we have

0 < arg.�j .z// < �:

Thus

arg.det.f .z///D
X̀
jD1

arg.�j .z//

normalized by arg.det.f .x0///D 0 obeys (10.18).
By analyticity of det.f .z// and the fact that it is nonvanishing, arg.det.f .z///

is uniquely defined as a continuous function on � with

lim
"#0

arg.det.f .x0C i"///D 0:
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By the above, (10.18) holds at all points z in � where all eigenvalues are analytic
and so, by continuity and the open mapping theorem for analytic functions, all
points. �

LEMMA 10.5. Let a < b lie in .�1; 1/ so that both a and b are neither a
zero nor a pole of det.f .z//. Let Z.a; b/; P.a; b/ be the number of zeros, poles of
det.f .z// in .a; b/ counting multiplicity. Then

(10.20) jZ.a; b/�P.a; b/j � `:

Proof. By the argument principle, 2�.Z �P / is the change of arg.det.f .z//
along the circle through a and b centered at 1

2
.aC b/. By Lemma 10.4, this is at

most 2.`�/. �

LEMMA 10.6. The sets of zeros and poles (with multiplicity) of det.f .z//,
including the `-fold zero at z D 0, can be written as ` subsets z.k/j ; p

.k/
j with

k D 1; : : : ; ` and � zNk < j < Nk (with Nk and zNk among 1; 2; : : : ;1) so that
z
.k/
0 D 0 and

(10.21) z
.k/
j < p

.k/
j < z

.k/
jC1

for all allowed values of j .

Remarks. 1. If there are infinitely many z in .�1; 0/ and in .0; 1/, then zNk D
Nk D1 for all k. The awkwardness requiring Nk; zNk is only needed if there are
finitely many zeros.

2. To avoid notational complexity, we slightly lied if Nk or zNk is finite. If
Nk is finite, z.k/j runs to j DNk . p.k/j can then run to either Nk or Nk � 1.

Proof. Construct S1; S2; : : : ; S` as follows: Set z.1/0 D 0. Let p.1/0 be the
first pole larger than z.1/0 , z.1/1 the first zero larger than p.1/0 , p.1/1 the next pole,
etc. This either continues indefinitely, in which case we set N1 D 1, or stops
because there is no next zero or pole. Then do the same to the left of 0, that is,
p
.1/
�1 is the first pole smaller than z.1/1 , etc. Clearly, the points in S1 obey (10.21).

Now remove the points of S1 (or decrease their multiplicity by 1) and repeat the
construction (starting with z.2/0 D 0) to make S2; S3; : : : ; S`.

We claim that after we construct ` Sj ’s, we have exhausted all the poles and
zeros. Let us show this is true for .0; 1/; the argument for .�1; 0/ is similar (and
since 0 has multiplicity `, it is removed after ` steps).

Suppose Qz is a zero that is left and it is closer to zero than any leftover zero or
pole. If Qz lies in some .p.k/j ; z

.k/
jC1/, j D 0; 1; : : : , we could have used it as z.k/jC1

so it cannot lie in any such interval. Put differently, there are only matched zeros
and poles in .0; Qz/\[`jD1Sj . By the choice of Qz, there are no other poles in .0; Qz/.



PERTURBATIONS OF OP WITH PERIODIC COEFFICIENTS 1983

Thus, for small ı, the interval .�ı; QzCı/ has `C1 extra zeros over poles, violating
Lemma 10.5. So the closest leftover point is not a zero.

Suppose Qp is a pole that is left and it is closer to zero than any other leftover
zero or pole. As above, Qp cannot lie in any .z.k/j ; p

.k/
j /, j D 0; 1; : : : , so there are

only matched zeros and poles in Œ0; Qp/\[`jD1Sj . But then, for small ı, .ı; QpC ı/
has `C 1 extra poles, violating Lemma 10.5. Thus [`jD1Sj includes all zeros and
poles. �

LEMMA 10.7. The limit B1.z/ of (10.15) exists and obeys conditions (i)–(iii)
of Proposition 10.3(c).

Proof. Renumber the p.k/j into a single sequence p1; p2; : : : , so jp1j � jp2j �

� � � and let zm be the correspondingly paired z.k/jC1 (paired to the p.k/j that is p).

Since f.p.k/j ; z
.k/
jC1/g

Nj
jD1 are disjoint subsets of .0; 1/ for each fixed k,

1X
jD1

jz
.k/
jC1�p

.k/
j j D

1X
jD1

z
.k/
jC1�p

.k/
j < 1

so we see that
1X
jD1

jzj �pj j � 2`:

The existence of B1 then follows by Proposition 13.8.2 of [104], as do (i) and (ii).
To get (iii), we note that just taking the zeros and poles in a single Sj yields

a set obeying (13.8.5) and (13.8.6) of [104]. So, by (13.8.10), that product has arg
bounded by 2� . The `-fold product thus obeys (10.16). �

Proof of Proposition 10.3. Given Lemma 10.7, the proof is essentially that of
Theorem 13.8.3 of [104]. Then

(10.22) g.z/�
det.f .z//
z`B1.z/

is analytic and nonvanishing on D with g.0/ > 0 (since B1.0/ > 0). Moreover, by
(10.18) and (10.16),

(10.23) jargg.z/j � 4�`

so, by M. Riesz’ theorem, log.g.z// 2 \p<1Hp.@D/ from which (a), (b) of
the theorem are immediate and (d) follows from the Poisson representation for
log.g.z// since log.jg.ei� /j/D log.jdet.f .ei� //j. �

Now we turn to block Jacobi matrices where we obtain:

THEOREM 10.8 (Nonlocal step-by-step sum rule for block Jacobi matrices).
Let J be a block Jacobi matrix with �ess.J/ � Œ�2; 2� and Jacobi parameters
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fAn; Bng
1
nD1. Let J.1/ denote this Jacobi matrix with the top row of blocks and

left-most column of blocks removed. Let m.E/;m.1/.E/ be the m-functions given
by (6.25). Let M;M .1/ be defined on D by

(10.24) M.z/D�m.zC z�1/

with poles at fpigNiD1 where pi Cp�1i are eigenvalues of J. We repeat each pi a
number of times equal to the multiplicity of the eigenvalues (equivalently, the rank
of the residue). Let fzigN�1iD1 be the corresponding points for J.1/. Then:

(a) The Blaschke product, B1.z/, defined by the fzig [ fpig via (10.15) exists
and obeys (i)–(iii) of Proposition 10.3(c).

(b) M.z/ and M .1/.z/ have limits M.ei� / and M .1/.ei� / as r " 1 for z D rei�

for a.e. � in @D and

(10.25) log
�

det.ImM/.ei� /

det.ImM .1/.ei� //

�
2

\
1�p<1

Lp
�
@D;

d�

2�

�
:

(c)
(10.26)

det
�
jA1jM.z/

z

�
D B1.z/ exp

�Z
ei� C z

ei� � z
log
�

det.ImM.ei� //

det.ImM .1/.ei� //

�
d�

4�

�
:

Remark. As in the case `D 1, it can happen (although not in examples where
sum rules are finite) that det.ImM.ei� //D det.ImM .1/.ei� //D 0 for � in a set
of positive measure. (b) and (c) are shorthand for the more precise

(i) For a.e. � , det.ImM.ei� //D 0 if and only if det.ImM .1/.ei� //D 0.

(ii) There is an a.e. positive function g.�/ on @D, equal to det.ImM.ei� //
det.ImM .1/.ei� //

when
the ratio is not 0=0 so that (10.25) and (10.26) hold if the formal ratio is
replaced by g.�/.

Proof. Given Proposition 10.3, this is essentially identical to the proof of
Theorem 13.8.4 of [104] with care given to matrix issues. We begin by noting that
(6.31) for n! nC 1 first implies near z D 0

(10.27) M .nC1/.z/�1 D z�1CO.1/

and then by (6.25) that

(10.28)
�
M .n/.z/

z

��1
D 1�BnC1z� .A

�
nC1AnC1� 1/z

2
CO.z3/:

Since M .n/.z/=z is near 1 for z small, we can compute its determinant using

(10.29) det.C /D exp.Tr.log.C //



PERTURBATIONS OF OP WITH PERIODIC COEFFICIENTS 1985

which holds if kC � 1k< 1. Thus

(10.30) log det
�
M .n/.z/

z

�
D Tr.BnC1/zC ŒTrf.ŒA�nC1AnC1� 1�C

1
2
B2nC1/g�z

2
CO.z3/:

In addition, (6.31) implies

(10.31) ImŒM.z/�1�D Im.zC z�1/�A1 ImM1.z/A
�
1

so at points where M.z/ has radial limits (a.e. � , see below),

(10.32) �ŒM.ei� /���1 ImM.ei� /ŒM.ei� /��1 D�A1 ImM.ei� /A
�
1

which, using (on account of det.jC j/2 D det.C �/ det.C /)

jdet.A1/j D det.jA1j/
yields

jdet.jA1jM.ei� //j2 D
det.ImM.ei� //

det.ImM1.ei� //
:(10.33)

We now apply Proposition 10.3 to M.z/ which obeys (10.13) (since Im.zC z�1/
< 0 on D and (10.24) has a minus sign) and (10.14) by (10.27).

By Theorem 6.7, our B1.z/ here (after perhaps canceling some zeros and
poles) is the B1.z/ of Proposition 10.3. (a) and (b) immediately follow from
Proposition 10.3. We get (10.26) from (10.17) by using (10.33) (noting (10.26)
has a 1=4� while (10.17) a 1=2� on account of the square on the left side of
(10.33)). We also use that if c is a positive constant,

(10.34) exp
�Z

ei� C z

ei� � z
log.c2/

d�

4�

�
D c:

This concludes the proof of Theorem 10.8 �

As in [101], we can get step-by-step P2 (originally in [61]), C0, C1 (originally
in [108]) sum rules immediately from Taylor expansion of the log of (10.26). We
let ǰ .J/ be the numbers in .�1; 1/nf0g for which Ej � ǰ Cˇ

�1
j are eigenvalues

of J counting multiplicities.

THEOREM 10.9 (C0, C1, P2 step-by-step sum rules).
(i)

(10.35)
1

4�

Z 2�

0

log
�

det.ImM .1/.ei� //

det.ImM.ei� //

�
d�

�

X
j

log.j ǰ .J/j/� log.j ǰ .J.1//j/D� log.detjA1j/:
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(ii)

(10.36) �
1

2�

Z 2�

0

log
�

det.ImM .1/.ei� //

det.ImM.ei� //

�
cos �

C

X
j

Œ ǰ .J/� .ˇ
�1
j .J/�1/�� Œ ǰ .J

.1//� . ǰ .J
.1///�1�� Tr.B1/:

(iii)

(10.37)
1

4�

Z
log
�

det.ImM .1/.ei� //

det.ImM.ei� //

�
sin2.�/�.�/

C

X
F.Ej .J//�F.Ej .J

.1///D Tr1
4

�
B21 C

1
2
G.jA1j/

�
;

where F is given by (10.2) and G by (10.3).

Remark. The Ej .J/ in .�1;�2/ and .2;1/ and Ej .J.1// interlace in the
` D 1 case. In the general ` case, we have at most ` fewer eigenvalues of J.1/

on any .�1;�E0/ or .E0;1/ so, as in Lemma 10.6, one can decompose into
` interlacing subsets. This and the monotonicity of functions like F show the
eigenvalue sums in (10.35)–(10.37) are conditionally convergent. Similarly, the
integrals are always convergent.

Proof. Apply log to both sides of (10.26) and take Taylor coefficients. The
constant term is (10.35) and the first derivative is (10.36). If L.z/ is the log of the
left side and R.z/ of the right, then

L.0/C 1
2
L00.0/DR.0/C 1

2
R00.0/

is (10.37). �
The proofs of Theorems 10.1–10.2 are now identical to those of the scalar

case; see, for example, the discussion of Theorems 13.8.6 and 13.8.8 of [104]. In
particular, Z.J/ and Q.J/ (the integral on the right of (10.4)) are negatives of
relative entropies, and so, lower semi-continuous.

11. Szegő and Killip-Simon theorems when all gaps are open

Our goal here is to prove Theorems 1.3 and 1.4. Our strategy, of course, will
be to translate Theorems 10.1 and 10.2 for �.J / to statements about J . Firstly,
we need to relate the a.c. part of the matrix measure for �.J / to the a.c. part of the
(scalar) measure for J . And secondly, to relate `2 norms of coefficients of �.J /
to the distance of J ’s Jacobi parameters to the isospectral torus. We begin with the
first question. Thus we take

(11.1) d�J .x/D !.x/ dxC d�J;s.x/
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with d�J;s singular and ! supported precisely on �ess.J0/. By this assumption and
the spectral mapping theorem, �.J / has a.c. spectrum precisely on Œ�2; 2� so the
matrix measure for �.J / has the form

(11.2) d��.J/.E/DW.E/ dEC d��.J/;s.E/:

PROPOSITION 11.1. Let J0 be a periodic Jacobi matrix with period p and J
a Jacobi matrix with Jacobi parameters fan; bng1nD1 and measure d�J of the form
(11.1) with ! supported on �ess.J0/. Let � be the discriminant for J0 and W.E/
the a.c. part of the p �p matrix-valued measure d��.J/ associated to �.J / (so
W is a p�p matrix). Then for E 2 .�2; 2/ and ��1.E/D fx1; : : : ; xpg,

(11.3) det.W.E//D
� pY
jD1

a
p�j
j

��2� pY
jD1

a
.0/
j

�p� pY
jD1

!.xj /

�
:

Proof. In the block Jacobi form, d��.J/ has jk matrix element equal to the
spectral measure of the operator �.J / associated to ıj ; ık ; i.e.,

R
F.x/.d��.x//jk

D hıj ; F .�.J //ıki. But ıj D pj�1.J /ı1. It follows that

Wkj .E/D

pX
`D1

!.x`/
�
j�0.x`/j

��1
pk�1.x`/pj�1.x`/:(11.4)

Note that the factors of 1=�0 arise from the Jacobian dE
dx
D�0.x/. We can rewrite

(11.4) as Wkj .E/D .MAM t /kj where A is the diagonal matrix

(11.5) A`m D ı`m!.x`/
�
j�0.x`/j

��1
and M is the matrix

(11.6) Mk` D pk�1.x`/ k D 1; : : : ; pI `D 1; : : : ; p:

Next we compute det.M/; det.A/ is easy. Note that

(11.7) pk�1.x`/D

� k�1Y
jD1

aj

��1
xk�1` C lower order:

Moreover, inductively one sees that the lower order terms can be neglected in the
determinant—they can be removed by subtracting a multiple of rows above (i.e.,
smaller values of k). Thus,
(11.8)

det.M/D

� pY
kD1

� k�1Y
jD1

aj

��1�
det.xk�1` /D

� pY
jD1

a
p�j
j

��1�Y
j>k

.xj � xk/

�
by the well-known formula for Vandermonde determinants. This can be simplified
further. The points xj are precisely the zeros of the polynomial �.x/�E; hence,
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invoking (2.14),

�.x/�E D

� pY
jD1

a
.0/
j

��1� pY
kD1

.x� xk/

�
:

In this way we discover that

(11.9) det.M/2 D

� pY
jD1

a
p�j
j

��2� pY
jD1

a
.0/
j

�p� pY
kD1

j�0.xk/j

�
:

Multiplying this by det.A/ gives (11.3). �

COROLLARY 11.2. If J0 has all gaps open and ˛ > �1, then

(11.10)
Z 2

�2

.4�E2/˛jlog det.W.E//j dE <1

if and only if

(11.11)
Z
�ess.J0/

dist.x;R n �ess.J0//
˛
jlog!.x/j dx <1:

When ˛ D�1
2

, the same conclusion holds even if some gaps are closed.

Remark. Since ˛ > �1, .4 � E2/˛ (resp., dist.: : : /˛) are in Lp for some
p > 1, so the logC. / is always integrable and these conditions are equivalent to
the integral without j�j being larger than �1.

Proof. Changing variables via E D�.x/ and applying Proposition 11.1 shows
that (11.10) holds if and only if

(11.12)
Z
�ess.J0/

j log!.x/j .4��.x/2/˛ j�0.x/j dx <1:

If all gaps are open, then j�0.x/j is strictly positive on �ess.J0/, while 4�
�.x/2 is a polynomial with a simple zero at each band edge (and no others). This
proves the first claim.

At a closed gap, 4��.x/2 has a double zero and �0.x/ a simple zero. When
˛ D�1

2
, these cancel exactly. �

Next we turn to the `2 issue. Given any two-sided periodic matrix QJ with Ja-
cobi parameters fan; bng

p
nD1 and fixed periodic J0, let BJ0. QJ /; AJ0. QJ / be the con-

stant p�p blocks in �J0. QJ /. We are heading towards showing that kBJ0. QJ /k
2
2C

kAJ0.
QJ /� 1k22 is comparable to dist..an; bn/

p
nD1;TJ0/. This will be the key to

showing `2 tails in the matrix pieces of �J0.J / � S
p � S�p for general J is

equivalent to (1.28).
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The crucial fact will be that the polynomial coefficients of �J0. QJ /��J0.J0/
are comparable to dist..an; bn/

p
nD1;TJ0/. For this we need the following, which

is a simple application of the implicit function theorem and compactness:

LEMMA 11.3. Let F be a C1 map of an open set U � Rn to R` with ` < n.
Suppose TD F�1.y0/ is a smooth manifold of dimension n� ` and compact for
some y0 2 R`, and

(11.13) rank..rF /.x0//D `

for all x0 2 T. Then for any compact neighborhood, K, of T, there are cK ; dK 2
.0;1/ so for all x 2K,

(11.14) cK jF.x/�y0j � dist.x;T/� dK jF.x/�y0j:

One can restate (11.13) in a more illuminated way in terms of the components
F1; : : : ; F` of T. Of course, rFj .x0/ is orthogonal to T at x0. The condition
(11.13) is equivalent to saying that frFj .x0/g`jD1 span the normal bundle to T.
This is equivalent to saying they are linearly independent. Notice that if J0 has all
gaps open, TJ0 is of dimension p � 1 D 2p � .pC 1/ and �J0 is a polynomial
of degree p, hence with pC 1 coefficients. Thus the following shows we can use
Lemma 11.3:

THEOREM 11.4. Suppose all gaps are open for some periodic J0. Then at
any point in TJ0 , the gradients of the derivatives of the coefficients of �J span the
normal bundle of TJ0 in R2p.

Proof. �J0 has the form

�J0.x/D .a1 : : : ap/
�1

pY
jD1

.x��j /D

pX
jD0

cjx
j

where �j are the roots. The coefficients thus obey

c�1p D a1 : : : ap(11.15)

c`c
�1
p D

X
1�k1�����kp�`�p

�k1 : : : �k1�` � sk�` ` < p:(11.16)

It is well known that if

(11.17) t` D

pX
jD1

�`j ;

then t` is `s` plus a polynomial in fsj g`�1jD1, so frtj g`jD1 and frsj g`jD1 span the
same space. It follows that we need only show the gradients of c�1p and t` span
the normal bundle of TJ0 .
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Let
(11.18)
M0Df.an; bn/

p

`D1
Wa1a2 : : : apDa

.0/
1 a

.0/
2 : : : a.0/p I b1C� � �CbpDb

.0/
1 C� � �Cb

.0/
p g:

We know M0 � TJ0 . Clearly, rc�1p and rt1 span the normal bundle to M0 since
t1 D

Pp
jD1 bj (see (2.14)). Thus we need only show the projections of frt`g

p

`D2

into the tangent space of M0 span the normal bundle of TJ0 in M0.
Studies of the Toda flows show that M0 is a symplectic manifold with ft`g

p

`D2

Poisson commuting. Since the symplectic form on M0 is nondegenerate, to say
frtj g

p
jD2 span the normal bundle is the same as saying that the Hamiltonian

flows generated by ftj g
p
jD2 span the tangent bundle of TJ0 , or equivalently, given

dim.TJ0/D p� 1, that these Hamiltonian flows are independent.
This independence is a theorem of van Moerbeke [115, Th. 5.2] or [107]. �

LEMMA 11.5. Let �k be the projection onto the k-dimensional space spanned
by fıj gkjD1. For any compact subset, K, of period p Jacobi matrices, there exist
constants cK and dK in .0;1/ so for all J 2K,

(11.19) cK

 pX
`D0

˛`J
`�pC1


2

�

� pX
`D0

j˛`j
2

� 1
2

� dK

 pX
`D0

˛`J
`�pC1


2

:

Proof. fJ `�pC1g
p

`D0
are independent since J ` has strictly positive elements

in the `-th diagonal and fJ kgk<` only has zero elements there. Hence, the matrix

(11.20) Tr.�pC1J `J k�pC1/
ˇ̌̌
`;kD0;:::;p

is strictly positive so (11.19) holds for each fixed J . The optimal constants are
clearly continuous so uniformly bounded above and below on K. �

PROPOSITION 11.6. Let J0 be a periodic Jacobi matrix with all gaps open.
For any compact neighborhood K of TJ0 in .0;1/p �Rp , there are constants cK
and dK in .0;1/ so that for all J 2K,

cK.kAJ0.J /� 1k2CkBJ0.J /k
2/1=2 � dist.J;TJ0/

� dK.kAJ0.J /� 1k2CkBJ0.J /k
2/1=2:

Proof. We have that

2kAJ0.J /� 1k2CkBJ0.J /k
2
� kŒ�J0.J /� .S

p
CS�p/��pk

2(11.21)

� 4kAJ0.J /� 1k2C 2kBJ0.J /k
2:

But by the magic formula,

(11.22) �J0.J0/D S
p
CS�p
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so

(11.23) Œ�J0.J /� .S
p
CS�p/��pC1 D

pX
`D0

c`J
`�pC1;

where c` is the difference of coefficients for J and J0. By Lemma 11.5,

(11.24) kŒ�J0.J /� .S
p
CS�p/��pC1k

2
�

pX
`D0

jc`j
2;

where � means the ratio is bounded above and away from zero on compact subsets.
By Lemma 11.3 and Theorem 11.4,

(11.25)
pX
`D0

jc`j
2
� dist.J;TJ0/

2:

Combining this with (11.24) proves the proposition. �

Now we take a general J not periodic and form �J0.J / which is a one-sided
block Jacobi matrix with block elements An;J0.J /; Bn;J0.J /.

LEMMA 11.7. �J0.J /k` for k�` depends only on fbj g`C˛jDk�˛
and faj g`C˛�1jDk�˛

where ˛Db1
2
.p�.`�k//c is the greatest integer less than or equal to 1

2
Œp�.`�k/�.

Proof. Each factor of J changes index by at most one. In order to get from k

to `, `� k steps are needed. The remainder cannot go below `�˛ or above kC˛
and get back to k in p steps. �

LEMMA 11.8. Let J have Jacobi parameters fan; bng1nD1. Let QJ be periodic
with period p and suppose bn D Qbn for kp �p � n � kpC 2p and an D Qan for
kp�p � n� kpC 2p� 1. Then

Ak;J0.J /D AJ0.
QJ / Bk;J0.J /D BJ0.

QJ /:

Proof. Immediate from Lemma 11.7. �

LEMMA 11.9. Let k � ` and ˛ D Œ1
2
.p� .`� k//�. For any two J and QJ and

any K, there is CK so that

(11.26) j�J0.J /k`��J0.
QJ /k`j � CK sup

k�˛�j�`C˛

Œjbj � Qbj jC jaj � Qaj j�

so long as

(11.27) supŒjbj jC j Qbj jC jaj jC j Qaj j��K:

Proof. Immediate from Lemma 11.7 and the fact that �J0 has matrix elements
that are fixed (given J0) polynomials in a’s and b’s. �
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LEMMA 11.10. (a) For any Jacobi matrix, J , and `D 1; 2; : : : ; mD 1; 2; : : : ;

(11.28) .J `/mmCl D amamC1 � � � amC`�1

and for `D 2; 3; : : : ; mD 1; 2; : : : ;

(11.29) .J `/mmC`�1 D am � � � amC`�2

�`�1X
jD0

bmCj

�
:

(b) For J0 periodic of period p � 2 and mD 1; 2; : : : ;

�J0.J /mmCp D
am � � � amCp�1

a
.0/
m � � � a

.0/
mCp�1

;

(11.30)

�J0.J /mmCp�1 D
�
a.0/m � � � a

.0/
mCp�1

��1
.am � � � amCp�2/

�p�1X
jD0

.bmCj � b
.0/
mCj /

�
:

(11.31)

Proof. (a) Since J changes index by at most one,

.J `/mmC` D .JmmC1/ � � � .JmC`�1mC`/

proving (11.28), while

.J `/mmC`�1 D

`�1X
jD0

.J j /mmCj JmCj mCj .J
`Cj�1/mCj mC`�1

which, given (11.28), proves (11.29).
(b) By (2.14),

�J0.J /D
�
a
.0/
1 � � � a

.0/
p

��124J p � p�1X
jD0

b
.0/
jC1J

p�1
CO.J p�2/

35
which, given (a), .J p�k/mmCp D .J p�k/mmCp�1 D 0 if k D 2; 3; : : : ; and the
periodicity of a.0/ and b.0/ yields (11.30) and (11.31). �

LEMMA 11.11. Suppose that �J0.J /�S
p �S�p is a Hilbert-Schmidt oper-

ator on `2.f0; 1; 2; : : :g/. Then,X
n

.ananC1 � � � anCp�1� a
.0/
n a

.0/
nC1 � � � a

.0/
nCp�1/

2 <1;(11.32)

X
n

0@p�1X
jD0

.bnCj � b
.0/
nCj /

1A2 <1;(11.33)
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n

.anCp � an/
2 <1;(11.34) X

n

.bnCp � bn/
2 <1:(11.35)

Proof. For a Hilbert-Schmidt operator, any subset of matrix elements lies in
`2, so by (11.30),X

n

ˇ̌̌
an � � � anCp�1

�
a.0/n � � � a

.0/
nCp�1

��1
� 1

ˇ̌̌2
<1

which, given that a.0/n � � � a
.0/
nCp�1 is n-independent, implies (11.32).

Similarly, (11.31) implies (11.33) if we note that faj g bounded and

an � � � anCp�1! a
.0/
1 � � � a

.0/
p > 0

implies inf aj > 0, so

inf
m

�
a.0/m � � � a

.0/
mCp�1

��1
.am � � � amCp�2/ > 0:

Since the difference of `2 sequences is `2, (11.32) implies (since a.0/n is peri-
odic) X

n

.anCp � an/
2.anC1 � � � anCp�1/

2 <1

which, given that inf aj > 0, implies (11.34).
Similarly, since

p�1X
jD0

.bnC1Cj � bnCj /D bnCp � bn;

(11.33) implies (11.35). �

Our next preliminary is to relate A 2 L to

(11.36) jAj D

q
A�A:

PROPOSITION 11.12. The map A 7! jAj from L to positive definite matrices
is a diffeomorphism. In particular, for A’s in L with kA � 1k < 1

2
, there exist

constants C1 and C2 so that

(11.37) C1kA� 1k2 � k jAj � 1k2 � C2kA� 1k2:

Proof. By (11.36), A 7! jAj is a smooth map. The inverse map (strictly
jAj2 7! A) is known as the Cholesky factorization; see [52], [116]. Given B > 0,
apply the Gram-Schmidt procedure to the (linearly independent) columns of B
working from right to left. This gives a factorization B D QA with Q unitary
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and A 2 L. Note that jAj D B and that because the columns of B are linearly
independent, B 7! A is also a smooth map. �

THEOREM 11.13. Let J0 be a two-sided p-periodic Jacobi matrix with all
gaps open and let �J0 denote its discriminant. For a Jacobi matrix with parame-
ters .an; bn/, the following are equivalent:

(i) �J0.J /�S
p �S�p is a Hilbert-Schmidt operator on `2.f0; 1; 2; : : :g/.

(ii)
P
n TrfB2n CjAn� 1j

2g<1.

(iii)
P
n TrfB2n C .jAnj � 1/

2g<1.

(iv)
P
n TrfB2n CG.jAnj/g<1.

(v)
P
m dm..a; b/;TJ0/

2 <1.

(vi)
P
m
Qdm..a; b/;TJ0/

2 <1.

Here we have adopted the abbreviations An WD An;J0.J / and Bn WD Bn;J0.J /.

Proof. (i),(ii) amounts to the definition of the Hilbert-Schmidt norm.
(ii),(iii) follows from Proposition 11.12.
(iii),(iv) Notice that G, defined in (10.3), obeys

c".x� 1/
2
�G.x/� c0".x� 1/

2
8 x 2 ."; "�1/:

Applying this to the eigenvalues of jAnj yields this equivalence.
(v),(vi) is the q D 2 case of Proposition 3.5.
(vi))(i) By Lemma 11.7, each matrix element of �J0.J /�S

p �S�p is a
smooth function of p consecutive pairs .an; bn/; moreover, by the magic formula,
all of these smooth functions vanish if the corresponding p-tuple belongs to TJ0 .
The implication now follows from the fact that smooth functions are Lipschitz.

(i))(vi) Define J .k/ to be the p-periodic Jacobi matrix that equals J on block
k, that is,

(11.38) b
.k/

`
D bkpC` a

.k/

`
D akpC`

for `D 1; 2; : : : ; p. Obviously, J .k/ D J on block k and, by (11.34) and (11.35),
the difference on blocks k� 1 and kC 1 are in `2; that is,

(11.39)
X
k

h
sup

.k�1/p�j�.kC2/p�1

jbj � b
.k/
j jC jaj � a

.k/
j j

i2
<1:

Together with Lemma 11.9 and Proposition 11.6, this implies

(11.40)
X
k

Qdkp.J
.k/;TJ0/

2 <1:
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On the other hand, (11.39) implies that for j D 1; : : : ; p,

(11.41)
X
k

QdkpCj .J; J
.k//2 <1:

By the triangle inequality,

QdkpCj .J;TJ0/
2
� 2dkpCj .J; J

.k//2C 2 Qdkp.J
.k/;TJ0/

2

so (11.40) and (11.41) imply (vi). �

Proof of Theorem 1.4. We will refer to the three statements (i)–(iii) of Theo-
rem 1.4 simply by their numbers. Suppose first that

(11.42) dm
�
.a; b/;TJ0/

�
2 `2:

Then (i) holds by Theorem 1.1. Moreover, by Theorem 11.13 and the hypothesis
that all gaps are open, the right-hand side of (10.4) is finite. Therefore, the left-hand
side is finite. Next we use this fact to prove (ii) and (iii).

As �0 is nonvanishing at all band edges,

(11.43)
X
j

F.�.Ej // <1()

NX
jD1

dist
�
Ej ; �ess.J /

�3=2
<1

which verifies (iii). By Corollary 11.2,

(11.44) Leftmost term in (10.4)<1() (ii) holds:

This completes the proof of (i)–(iii).
Conversely, if (i)–(iii) hold, then by (11.43), (11.44), and (10.4), we see that

the right-hand side of (10.4) is finite. By Theorem 11.13, this implies (11.42). �

Proof of Theorem 1.3. Let ǰ be the ˇ’s associated to �.J /, that is, j ǰ j> 1,
ǰ Cˇ

�1
j D Ej with Ej the eigenvalues of �.J / in R n Œ�2; 2�. Then logj ǰ j �

j ǰ j � 1 as ˇ!˙1 small and j ǰ j � 1� .jEj j � 2/1=2. Therefore,

(11.45) (10.6)<1()
X
j

.jEj j � 2/
1=2
() (1.24):

By Corollary 11.2,

(11.46) (10.5)<1() (1.25):

Finally, if fAn; Bng1nD1 are the p�p blocks in �.J /, we have An D U jAnj
for some U with jdet.U /j D 1, so

(11.47) detjAnj D jdet.An/j D
npY

jD.n�1/pC1

jCpD1Y
kDj

�
ak

a
.0/

k

�
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by (3.3) and (2.14). Thus

NX
nD1

log.det.jAnj//�p
NpX
kD1

log
�
ak

a
.0/

k

�
is bounded. Thus (1.27) is equivalent to (10.11).

By Theorem 10.2, we see that when (1.24) holds, then (1.25), (1.27), and
if they hold, (1.26) has a limit. Moreover, if they hold, the hypotheses of Theorem
1.4 hold, so (1.28) is true. That (1.29) holds is a theorem of Peherstorfer-Yuditskii
[88]; see also the remark below. �

In the remainder of this section, we will describe an alternate approach to
proving (1.29); one based on combining the magic formula with Theorem 6.8. Un-
fortunately, because of the strong hypothesis on the discrete spectrum that appears
in this theorem, we will not recover the full formulation from Theorem 1.3.

Let QJ denote the (unique) type 2 block Jacobi matrix that is equivalent to
J D �J0.J /, which is of type 3. Further, let us use Aj and zAj to denote the
off-diagonal block entries of J and zJ, respectively.

If we strengthen the hypothesis (1.24) to finiteness of the discrete spectrum
(i.e., finiteness of the set �.J/ n �ess.J/), then Theorem 6.8 shows that (1.25) im-
plies the convergence of the product zA1 � � � zAn as n!1. In view of (6.7b) and
Proposition 11.12, this convergence is inherited by the product A1 � � �An. Thus,
it remains only to connect the convergence of this matrix product to the behavior
of the sequences of parameters. This is the job of the next lemma. In the original
version of this paper, it was only proved that the sequence fang was asymptotic to
a fixed periodic sequence. The argument for the sequence fbng was provided by
one of the referees; we are most grateful for this.

LEMMA 11.14. Let J0 be a p-periodic two-sided Jacobi matrix and let �D
�J0 denote its discriminant. Let J be a one-sided Jacobi matrix with parameters
fan; bng. Suppose the product An � � �A1 converges to a nonsingular matrix as
n ! 1. Here An and Bn denote the p � p block entries of �.J /. Then the
parameters of J asymptotically converge to fixed periodic parameters in the sense
of (1.29).

Proof. By applying the same affine transformation (i.e., x 7! ˛x C ˇ) to
both J and J0, we may assume that the discriminant of J0 takes the form �.x/D

xpCO.xp�2/. This will significantly simplify some of the formulae that follow.
Note also that this transformation makes a.0/1 � � � a

.0/
p D 1 and b.0/1 C� � �Cb

.0/
p D 0.

Let An and Bn denote the p�p block entries of �.J /. Then

.An/k;k D ap.n�1/Ck � � � apnCk�1

.An/kC1;k D ap.n�1/CkC1 � � � apnCk�1
�
bp.n�1/CkC1C � � �C bpnCk

�
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as can be read off from Lemma 11.10. Using this and the lower-triangular structure
of the matrices Aj , one may quickly deduce

.A1 � � �An/k;k D

pnCk�1Y
jDk

aj ;(11.48)

.A1 � � �An/kC1;k D

nX
rD1

.A1/kC1;kC1(11.49)

� � � .Ar�1/kC1;kC1.Ar/kC1;k.ArC1/k;k � � � .An/k;k

D

 
pnCk�1Y
jDkC1

aj

!
pnCkX
jDkC1

bj :

To see that the sequence n 7! apnCk converges for each fixed k 2 f1; : : : ; pg,
one need only take ratios of (11.48) for consecutive values of k and the same n
(and also for .n; k D p/ and .nC 1; k D 1/), then send n!1.

For the parameters bn, one may proceed in a similar fashion: For example,
when 2� k � p� 1, the fact that

ak
.A1 � � �An/kC1;k

.A1 � � �An/k;k
� ak�1

.A1 � � �An/k;k�1

.A1 � � �An/k�1;k�1
D bpnCk � bk

shows us that bpnCk converges as n!1. �

12. Szegő and Killip-Simon theorems when some gaps are closed

Here we want to examine what might replace Theorems 1.3 and 1.4 if J0 is
periodic but with some closed gaps. The Szegő-type theorem is almost the same
as Theorem 1.3:

THEOREM 12.1. Let J0 be any two-sided periodic Jacobi matrix with Jacobi
parameters fa.0/n ; b

.0/
n g
1
nD�1, and J a one-sided Jacobi matrix with Jacobi pa-

rameters fan; bng1nD1 and spectral measure d�. Suppose that (1.22) holds, and
that

(12.1)
NX
mD1

dist.Em; �ess.J //
1=2 <1

if fEmgNmD1 is a labeling of the eigenvalues of J outside �ess.J /. Then

(12.2) �

Z
�ess.J0/

log
�
d�ac

dx

�
dist.x;R n �ess.J0//

�1=2 dx <1
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implies

(12.3) lim
� pNX
jD1

log
�
aj

a
.0/
j

��
exists and lies in .�1;1/. Conversely, (12.2) holds so long as

(12.4) lim sup
� NX
jD1

log
�
aj

a
.0/
j

��
> �1

and then the limit in (12.3) exists and lies in .�1;1/.
Moreover, if (12.2) or (12.4) holds, then there is J1 2 TJ0 , so

(12.5) dm.J; J1/! 0:

Remark. All that is missing is (1.28) which we do not claim. However, since
(12.1)/(12.2) imply (i)–(iii) of Theorem 12.3 below, we have (12.7).

Proof. As noted, even with closed gaps, (1.25) is equivalent to (11.10) (see
Corollary 11.2). Once one notes this, the proof of Theorem 1.3 provides all the
results stated as Theorem 12.1. �

Theorem 1.4 used open gaps in two ways. First, in the translation of a matrix
pseudo-Szegő condition, (11.10) with ˛ D 1

2
to the original spectral measure of J ,

and second, translating a Hilbert-Schmidt bound on �.J /� Sp � S�p to `2 ap-
proach to the isospectral torus. The second issue can be finessed if we leave things
as a Hilbert-Schmidt condition, which reduces to a sum of translates of an explicit
positive polynomial in the an’s and bn’s being finite. As for translating (11.10)
with ˛ D 1

2
, the argument that proved Corollary 11.2 translates immediately to

LEMMA 12.2. Suppose �.J0/ has closed gaps at fyj g`jD1 � �.J0/. Then
(11.10) holds with ˛ D 1

2
if and only if

(12.6)
Z
�ess.J0/

dist.x;R n �.J0//1=2
Ỳ
jD1

jx�yj j
2
jlog.!.x//j dx <1:

Plugging this into our proof of Theorem 1.4 immediately yields

THEOREM 12.3. Let J0 be a two-sided periodic Jacobi matrix with closed
gaps at fyj g`jD1 � �.J0/ and let J be a Jacobi matrix. Then

(12.7) Tr..�J0.J /�S
p
�S�p/2/ <1

if and only if
(i) (1.22) holds.
(ii) (1.24) holds with 1

2
replaced by 3

2
.

(iii) (12.6) holds.
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Example 12.4. Take J0 to be the two-sided free Jacobi matrix but think of it
as period 2. Then

�J .x/D x
2
� 2

and a direct calculation of J 2 � S2 � S�2 shows that (12.7) is equivalent to the
three conditions: X

n

.a2nC b
2
nC a

2
nC1� 2/

2 <1;(12.8) X
n

.anC1.bnC bnC1//
2 <1;(12.9) X

n

.ananC1� 1/
2 <1:(12.10)

If bn D 0 and

(12.11) an D 1C .�1/
n.nC 1/�ˇ ;

then (12.8)–(12.10) hold if and only if ˇ > 1
4

while, of course, (1.13) requires ˇ >
1
2

. This is one of many known extensions of the .J0-free) Killip-Simon theorem
(see, e.g., Laptev et al. [68], Kupin [67], and Nazarov et al. [82]). Some of these
results have MOPRL analogs which, via the magic formula, lead to variants of
Theorems 1.4 and 12.3.

13. Eigenvalue bounds for MOPRL

There are Birman-Schwinger kernels for MOPRL and it should be possible to
extend the proofs of most bounds on the number of eigenvalues outside Œ�2; 2� or
on moments of jEj j�2 from the scalar to matrix case with optimal constants. But if
one is willing to settle for less than optimal constants (but still not awful constants),
there is a simple method to go from the scalar to matrix case. It depends on the
following:

THEOREM 13.1. Let J be an ` � ` block Jacobi matrix in the Nevai class
with Jacobi parameters fAn; Bng1nD1. Let E˙j .J/ denote its eigenvalues counting
multiplicity outside Œ�2; 2�, that is, EC1 � E

C
2 � � � � > 2 > �2 > � � � � E

�
2 � E

�
1 .

Let J˙ be the scalar Jacobi matrix with an � 1 and

(13.1) b˙n D˙kBnk˙kAn�1� 1k˙kAn� 1k

and let J .`/
˙

be an `-fold direct sum of J˙. Then

(13.2) jE˙j .J/j � jE
˙
j .J

.`/
˙
/j:
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Proof. The matrix analog of the observation of Hundertmark-Simon [55] ex-
tended to 2`� 2` matrices (with `� ` blocks) says that�

�jAn� 1j 1

1 �jAn� 1j

�
�

 
0 An

A
�
n 0

!
�

�
jAn� 1j 1

1 jAn� 1j

�
(13.3)

since � 0 C

C � 0

�2 D �C �C 0

0 CC �

�D kCk2:(13.4)

Thus writing J .`/
˙

as `� ` blocks with each block a multiple of 1,

(13.5) J .`/� � J� J
.`/
C

from which (13.2) is immediate. �

COROLLARY 13.2. For any block Jacobi matrix, J, in Nevai class,

(13.6)
X
j;˙

.E˙j .J/
2
� 4/1=2 � 2`

X
n

kBnkC 4`
X
n

kAn� 1k:

Remark. In particular, this implies if the right-hand side of (13.6) is finite, so
is the left-hand side.

Proof. Hundertmark-Simon [55] proved

(13.7)
X
j

.E˙j .J˙/
2
� 4/1=2 �

X
n

b˙n

from which (13.6) follows by (13.2). �

14. The analog of Nevai’s conjecture

Proof of Theorem 1.5. By (1.32), J � J0 is trace class. Thus J ` � J `0 DP`�1
kD0 J

k.J �J0/J
`�1�k is trace class, so

�J0.J /��J0.J0/D�J0.J /� .S
p
CS�p/

is trace class. It follows that if (1.32) holds and �.J / has matrix Jacobi parameters
fAn; Bng

1
nD1 that

(14.1)
1X
nD1

kBnkC

1X
nD1

kAn� 1k<1:

By Corollary 13.2, the eigenvalues �.J / obey

(14.2)
1X
jD1

.jE˙j j � 2/
1=2 <1:



PERTURBATIONS OF OP WITH PERIODIC COEFFICIENTS 2001

Equation (14.1) also implies

(14.3)
1X
nD1

jlog.detjAnj/j<1:

We can apply Theorem 10.2 and conclude that Z.J / is finite, that is,

(14.4)
Z
.4�E2/�1=2 log.det.W.E/// dE > �1:

By Corollary 11.2, we obtain (1.25). �

15. Perturbations of periodic OPUC

In this final section, we want to present the translations of our results to
OPUC. Since the magic formula maps periodic OPUC to MOPRL, the changes
needed in the proofs will be minor, although for the analog of Theorem 1.4, there
is one significant change. It is interesting to note the sequence of mappings for
the OPUC periodic Rakhmanov’s theorem. We map OPUC to MOPRL using the
magic formula and them map that to MOPUC using the Szegő map.

The OPUC version of Theorem 1.1 is already in Last-Simon [69]. As for
Theorem 1.2:

THEOREM 15.1. Let C0 be a two-sided periodic CMV matrix. Let C be an
ordinary CMV matrix with Verblunsky coefficients f˛ng1nD0. Suppose

(15.1) †ac.C/D �ess.C/D �ess.C0/:

Then, as m!1,

(15.2) dm.˛;TC0/! 0:

Proof. Let Cr be a right limit of C. By Theorem 7.1, �.Cr/ D Sp C S�p.
Thus, by Theorem 4.1, Cr 2 TC0 . �

As for the analog of Theorem 1.3, if we drop discussion of `2 convergence, it
holds, similar to Theorem 12.1.

THEOREM 15.2. Let C0 be a two-sided periodic CMV matrix with Verblunsky
coefficients f˛.0/j g

1
jD�1, and C a one-sided CMV matrix with Verblunsky coeffi-

cients f j̨ g1jD0 and spectral measure d�. Suppose that �ess.C/D �.C0/ and

(15.3)
NX
mD1

dist.Em; �ess.C//
1=2 <1;
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where fEmgNmD1 is a labeling of the eigenvalues of C outside �ess.C0/. Then

(15.4) �

Z
�ess.C0/

log
�
d�ac

d�

�
dist.�;R n �ess.C0//

�1=2 d�

2�
<1

implies

(15.5) lim
N!1

� pNX
jD1

log
�
�j

�
.0/
j

��
exists and lies in .�1;1/. Conversely, (1.25) holds so long as

(15.6) lim sup
N!1

� NX
jD1

log
�
�j

�
.0/
j

��
> �1

and then the limit in (15.5) exists and lies in .�1;1/.

Remarks. 1. We have not stated that the ˛n have a limit in TC0 . We suspect
that the methods of [88] extend to the OPUC but have not checked this and they
do not explicitly mention it.

2. Of course, if this theorem is applicable and C0 obeys the conditions of
Theorem 15.3 below, then we have a result on `2 convergence to TC0 .

3. One can replace �.0/j by the logarithmic capacity of �.C0/.

Proof. At open gaps, �0.ei� /¤ 0, so (15.3) is equivalent to

(15.7)
X

E…Œ�2;2�
E2�.�.C//

.jEj � 2/1=2 <1:

Moreover, by (4.4)–(4.7), we have that

(15.8) log.detjAnj/D log.det.An//D log
� npY
jD.n�1/pC1

jCp�1Y
kDj

�k

�
.0/

k

�
:

Now just follow the proof of Theorem 12.1. �

In carrying over Theorem 1.4 to OPUC, one runs into a serious roadblock: van
Moerbeke’s theorem [115] that the Hamiltonian flows generated by the coefficients
of the tj (given by (11.17)) are independent is not known for OPUC. Instead, we
use a weaker result of Simon [104, �11.10] that proves the derivatives of coeffi-
cients of � span the normal bundle for a dense open set, that is, ‘most’ of the
points have all gaps open. We will call the isospectral tori in this dense open set
the generic independence tori. Then by mimicking the arguments in Section 11,
we obtain
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THEOREM 15.3. Let C0 be a two-sided CMV matrix in a generic indepen-
dence torus with Verblunsky coefficients f˛.0/j g

1
jD�1. Let C be a CMV matrix

with Verblunsky coefficients f j̨ g1jD0. Then

(15.9)
1X
mD0

dm.˛;TC0/
2 <1

if and only if
(i) �ess.C/D �.C0/.
(ii) For the eigenvalues fEj gNjD1 not in �.C0/,

(15.10)
NX
jD1

dist.Ej ; �.C0//3=2 <1:

(iii) If � is the spectral measure for C, then

(15.11) �

Z
�.C0/

log
�
d�ac

d�

�
dist.�; @D n �ess.C0//

1=2 d�

2�
<1:

Our last result is a periodic OPUC version of Nevai’s conjecture.

THEOREM 15.4. Let C0 be a two-sided p-periodic CMV matrix and let C be
a CMV matrix with Verblunsky coefficients f j̨ g1jD0. Then

(15.12)
1X
mD0

dm.˛;TC0/ <1

implies (15.4)

All the above results assume the period p is even. However, by using sieving
(see Example 1.6.14 of [103]) to map period p to period 2p, one can extend The-
orems 15.1 and 15.2 to p odd. In particular, we obtain the p D 1 results of [10],
[2], [9] as very special cases of ours.

Acknowledgements. It is a pleasure to thank Leonid Golinskii, Irina Nenciu,
Leonid Pastur, and Peter Yuditskii for useful discussions.

Note Added August, 2008. During the refereeing of this paper, Remling (in
[94]), motivated in part by this paper, found a positive resolution of the conjecture
that, in the language of our Theorem 9.5, every set in G is a Denisov-Rakhmanov
set. His analysis depends on a very interesting theorem on right limits of Ja-
cobi matrices with absolutely continuous spectrum—it provides a new approach
to Denisov-Rakhmanov theorems.
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