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Abstract

We show that the mapping class group of a compact orientable surface with
higher complexity satisfies the following rigidity in the sense of measure equiva-
lence: If the mapping class group is measure equivalent to a discrete group, then
they are commensurable up to finite kernels. Moreover, we describe all locally
compact second countable groups containing a lattice isomorphic to the mapping
class group. We obtain similar results for finite direct products of mapping class
groups.

1. Introduction

The purpose of this paper is to establish a rigidity theorem for the mapping
class group in terms of measure equivalence. In this paper, by a discrete group we
mean a discrete and countable one. Measure equivalence is introduced by Gromov
[18] as follows.

Definition 1.1. We say that two discrete groups � and ƒ are measure equiv-
alent (ME) if there exists a measure-preserving action of � �ƒ on a standard
Borel space .†;m/ with a �-finite positive measure such that both of the actions
of � �feg and feg�ƒ on † are essentially free and have a fundamental domain of
finite measure. The space .†;m/ equipped with the .� �ƒ/-action is then called
an ME coupling of � and ƒ.

It is known that ME defines an equivalence relation between discrete groups
(see �2 in [12]). One typical example of two ME groups is given by any two lattices
in the same locally compact second countable group. This example motivates us
to introduce ME. Commensurability up to finite kernels is the equivalence relation
for discrete groups defined by declaring two groups in an exact sequence 1!A!

B!C ! 1 of discrete groups to be equivalent if the third group is finite. It is easy
to see that any two discrete groups which are commensurable up to finite kernels
are ME.
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ME between two groups has another equivalent formulation in terms of orbit
equivalence (OE) (see Theorem 2.12), which has been studied for a long time and
is closely related to ergodic theory and the theory of von Neumann algebras. The
first magnificent result on OE is due to Ornstein and Weiss [36] following Dye
[5], [6] and it can be stated in terms of ME as follows: A discrete group is ME to
Z if and only if it is an infinite amenable group. Connes, Feldman and Weiss [4]
obtain a generalized result in terms of amenable discrete measured equivalence re-
lations. Zimmer [44] extends the superrigidity theorem for semisimple Lie groups
of noncompact type due to Margulis to the one in the context of OE, which is
called his cocycle superrigidity theorem, and he classifies lattices in simple Lie
groups of real rank at least two up to ME. In addition to this classification, his
cocycle superrigidity theorem has many applications to various rigidity phenomena
of higher rank lattices.

Recent studies on ME and OE are rapidly developing. By utilizing Zim-
mer’s cocycle superrigidity theorem, Furman [12] obtains a beautiful rigidity result,
which completely determines the class of discrete groups ME to higher rank lattices.
Namely, if a discrete group ƒ is ME to a lattice in a connected simple Lie group G
with its center finite and its real rank at least two, then there exists a homomorphism
from ƒ onto a lattice in Aut.AdG/ whose kernel is finite. Gaboriau’s discovery in
[16] that `2-Betti numbers for discrete groups are invariant under ME in a certain
sense leads to surprising progress in the classification problem of ME because
these numerical invariants are defined for all discrete groups and are computable
for various discrete groups arising geometrically. Popa shows in [37] and [38] that
the Bernoulli actions of groups satisfying Kazhdan’s property (T) have various
rigidity properties in terms of OE (see also [14]). It is remarkable that he treats
all groups satisfying Kazhdan’s property (T), which is a very large class of groups.
The reader should be referred to [15], [40] and [42] for more details of recent
development in the theory of ME and OE.

Let M DMg;p be a connected compact orientable surface of type .g; p/, that
is, of genus g and with p boundary components. Throughout the paper, a surface
is assumed to be connected, compact and orientable unless otherwise stated. The
mapping class group �.M/ of M is defined as the group of isotopy classes of
all orientation-preserving diffeomorphisms of M . The extended mapping class
group �.M/˘ of M is the group of isotopy classes of all diffeomorphisms of M ,
which contains �.M/ as a subgroup of index two. Let �.M/D 3gCp� 4 be the
complexity of M . If �.M/ > 0, we say that M has higher complexity. Let C D
C.M/ be the curve complex for a surface M . In [27], we obtain some classification
result of �.M/ in terms of ME and give various examples of discrete groups not
ME to �.M/. In the proof, we establish fundamental methods to study subrelations
in a discrete measured equivalence relation arising from a standard action of �.M/,
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where a standard action means an essentially free, measure-preserving action on a
standard Borel space with a finite positive measure. The curve complex plays one
of the most important roles in the study of them. Using these methods, we show
the following rigidity theorem for �.M/, which is the main result of this paper. Let
Aut.C / denote the automorphism group of the simplicial complex C . Note that
we have the natural homomorphism � W�.M/˘! Aut.C / such that �.�.M/˘/ is
a finite index subgroup of Aut.C / and ker.�/ is finite (see Theorem 2.8).

THEOREM 1.1. If a discrete group ƒ is ME to the mapping class group �.M/

with �.M/ > 0, then there exists a surjective homomorphism � from ƒ onto a finite
index subgroup of Aut.C / with ker.�/ finite.

This theorem completely determines the class of discrete groups ME to �.M/

and provides the first example of infinite discrete groups satisfying such an extreme
rigidity in the theory of ME. Remark that uniform and nonuniform lattices in
Lie groups treated in Furman’s rigidity result are not commensurable up to finite
kernels. Hence, if � is a lattice in Furman’s rigidity theorem, then there exists a
discrete group which is ME to � and is not commensurable up to finite kernels
with � .

Remark 1.1. Both Furman’s and Popa’s rigidity theorems are concerned with
discrete groups satisfying (or related to) Kazhdan’s property (T). On the other
hand, the mapping class group of a surface of genus at most two does not satisfy
Kazhdan’s property (T), and moreover it contains a subgroup of finite index which
admits a quotient isomorphic to a non-abelian free group of finite rank (see [31]). It
is unknown whether the mapping class groups of other surfaces satisfy Kazhdan’s
property (T) or not.

Theorem 1.1 completes the classification of mapping class groups up to ME.

THEOREM 1.2. Suppose that M 1 and M 2 are distinct surfaces of type .g1;p1/
and of type .g2; p2/, respectively, satisfying �.M 1/ > 0, �.M 2/ > 0 and g1 � g2.
Moreover, assume that �.M 1/ and �.M 2/ are ME. Then the following only two
possibilities occur: ..g1; p1/; .g2; p2//D ..0; 5/; .1; 2//; ..0; 6/; .2; 0//.

Remark 1.2. Note that if �.M/< 0 and M ¤M1;0, then �.M/ is finite. Both
�.M1;0/ and �.M1;1/ are isomorphic to SL.2;Z/ and �.M0;4/ is commensurable
up to finite kernels with SL.2;Z/. It is known that �.M0;5/ and �.M1;2/ (resp.
�.M0;6/ and �.M2;0)) are commensurable up to finite kernels (see Theorem 2.8).

Let � be a lattice in a connected simple Lie group G with its center finite and
its real rank at least two. In the proof of Furman’s rigidity theorem in [12], the
main ingredient is to prove the following (see Theorem 4.1 in [12]): Let .�; !/
be a self ME coupling of � (i.e., an ME coupling of � and �). Then there exists
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an essentially unique, almost .� ��/-equivariant Borel map ‰W�! Aut.AdG/,
where the equivariance means the equation

‰..
; 
 0/x/D Ad.
/‰.x/Ad.
 0/�1

for any 
; 
 0 2 � and a.e. x 2 �. Furman used Zimmer’s cocycle superrigidity
theorem for the construction of ‰. On the other hand, we will show that for any self
ME coupling .†;m/ of �.M/, there exists an essentially unique, almost .�.M/�

�.M//-equivariant Borel map ˆW†! Aut.C /, where the equivariance means the
equation

ˆ..
; 
 0/x/D �.
/ˆ.x/�.
 0/�1

for any 
; 
 0 2 �.M/ and a.e. x 2 †. Here, � W�.M/˘! Aut.C / is the natural
homomorphism. This construction of ˆ is the heart of the proof of Theorem 1.1.
In Section 3, we give an outline of the construction of ˆ.

After the construction of the map ˆ, we apply Furman’s technique in [12] for
higher rank lattices that is applicable to a more general situation. More precisely,
given an ME coupling .†0; m0/ of �.M/ and a discrete group ƒ, we construct
the self ME coupling of �.M/ associated with it. Using his technique for the
equivariant Borel map from this self ME coupling into Aut.C /, one can find the
homomorphism � in Theorem 1.1.

Moreover, we consider the same problem as above for a finite direct product
�.M1/� � � � � �.Mn/ of mapping class groups �.Mi / with �.Mi / > 0 for all i .
Monod and Shalom introduced in [35] the class C consisting of discrete groups �
which admit a mixing unitary representation � on a Hilbert space such that the sec-
ond bounded cohomology group H 2

b
.�; �/ of � with coefficient � does not vanish.

They show in that paper that a nontrivial finite direct product of discrete groups
in C satisfies various measurable rigidity properties. The class C contains a large
number of discrete groups arising geometrically (e.g., word-hyperbolic groups) and
whether a discrete group is in C or not is invariant under ME. Since Hamenstädt
proves in [20] that the mapping class group of a surface with higher complexity
belongs to C, one obtains various measurable rigidity theorems as in [35] for direct
products of mapping class groups.

Following Monod and Shalom’s ingenious technique treating fundamental do-
mains for actions on ME couplings, one can find an essentially unique, almost equi-
variant Borel map from a self ME coupling of a direct product of �.Mi / into the
automorphism group of the direct product of Aut.C.Mi //. The following theorem
is then proved.

THEOREM 1.3. Let n be a positive integer. Let Mi be a surface with �.Mi />0

for each i 2 f1; : : : ; ng and put

G D Aut.Aut.C.M1//� � � � �Aut.C.Mn///:
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If a discrete group ƒ is ME to the direct product �.M1/� � � � ��.Mn/, then there
exists a surjective homomorphism � from ƒ onto a finite index subgroup of G with
ker.�/ finite.

Note that Aut.C.M1//�� � ��Aut.C.Mn// is naturally a finite index subgroup
of its automorphism group G (see Corollary 7.3).

In [11], Furman gives another application of the map ‰ mentioned above. He
explicitly describes all locally compact second countable (lcsc) groups containing
a lattice isomorphic to a lattice in a simple Lie group of higher rank. Roughly
speaking, such a lcsc group can be built from the ambient Lie group or from the
lattice itself and their actions on a compact group. Following his argument, we
describe a lcsc group containing a lattice isomorphic to the mapping class group.
We fix the notation as follows: Let n be a positive integer and let Mi be a surface
with �.Mi / > 0 for each i 2 f1; : : : ; ng. Put

G0 D �.M1/
˘
� � � � ��.Mn/

˘; G D Aut.Aut.C.M1//� � � � �Aut.C.Mn///;

and let � WG0!G be the natural homomorphism.

THEOREM 1.4. Suppose that � is a subgroup of finite index in G0. Let
� W�!H be an injective homomorphism into a lcsc group H such that �.�/
is a lattice in H . Then

(i) there exists a continuous homomorphism ˆ0WH !G such that ˆ0.�.
//D
�.
/ for any 
 2 �;

(ii) let K be the kernel of ˆ0 and let � act on K by conjugation via � . Let
�W� ËK ! H be the homomorphism defined by �.k/ D k for k 2 K and
�.
/D �.
/ for 
 2 � . Then ŒH W �.� ËK/�� ŒG W �.�/� <1 and ker.�/ is
finite.

In the assertion (ii), for 
 2 � and k 2 K, we have .
; k/ 2 ker.�/ if and only if
�.
/D e and k D �.
/�1. In particular, if the kernel of the restriction of � to �
is trivial, then � is an isomorphism onto its image.

This theorem says that there exists no interesting lcsc group containing a lat-
tice isomorphic to the mapping class group. The following is easily shown.

COROLLARY 1.5. Let � be a subgroup of finite index in G0 and suppose that
� is isomorphic to a lattice in a lcsc group H . Then the lattice is cocompact in H
and H has infinitely many connected components.

It follows from this corollary that any subgroup of finite index of the map-
ping class group for a surface with higher complexity can not be isomorphic to a
lattice in a connected semisimple Lie group, which is proved by Kaimanovich and
Masur [25]. They show more generally that any sufficiently large subgroup of the
mapping class group can not be isomorphic to a lattice in a semisimple Lie group.
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In this direction, Farb and Masur [7], Bestvina and Fujiwara [2], and Yeung [43]
study homomorphisms from a lattice in a semisimple Lie group into the mapping
class group and concluded that their images are finite.

In a subsequent paper [28], we give an application of the existence of an equi-
variant Borel map from a self ME coupling of the mapping class group, following
Furman [13]. In [28], we establish OE rigidity for ergodic standard actions of the
mapping class group.

2. Preliminaries

2.1. The mapping class group. In this subsection, we recall fundamental facts
on the mapping class group and several geometric objects related to it. We refer the
reader to [8], [22], [24] or Sections 3.1, 3.2, 4.3, and 4.5 in [27] and the references
therein for the material of this subsection.

Let M DMg;p be a surface of genus g and with p boundary components.
Let �.M/ and �.M/˘ be the mapping class group and the extended one of M ,
respectively, introduced in Section 1. Let �.M/D 3gCp� 4 be the complexity
of M . When �.M/ > 0, we say that M has higher complexity.

For a surface M , let V.C / D V.C.M// be the set of all nontrivial isotopy
classes of nonperipheral simple closed curves on M . Let S.M/ denote the set
of all nonempty finite subsets of V.C / which can be realized disjointly on M at
the same time. When �.M/ > 0, the curve complex C D C.M/ is defined as a
simplicial complex whose vertex set is V.C / and simplex set is S.M/, which is
introduced by Harvey [21]. Remark that when �.M/D 0, the curve complex of M
is defined in a slightly different way so that its vertex set V.C / is given in the same
way as above. If �.M/� 0, then �.M/˘ has a natural and simplicial action on C ,
and C is connected and has infinite diameter. Moreover, when C is equipped with
a natural combinatorial metric, it is hyperbolic in the sense of Gromov (see [33]).

Let M be a surface with �.M/ � 0 and denote by i WV.C / � V.C / ! N

the geometric intersection number. Let MFDMF.M/ be the space of measured
foliations on M and let PMF D PMF.M/ be the space of projective measured
foliations on M . The space PMF is also called the Thurston boundary and is
homeomorphic to the sphere of dimension 6g�7C2p. Note that S.M/ is naturally
embedded into PMF. The function i can be continuously extended to a function
MF�MF! R�0 in the following manner:

i.r1F1; r2F2/D r1r2i.F1; F2/

for any r1; r2 2 R>0 and F1; F2 2MF. Hence, for two elements F1; F2 2 PMF,
whether i.F1; F2/D 0 or ¤ 0 makes sense. It is known that �.M/˘ acts continu-
ously on both MF and PMF and

i.gF1; gF2/D i.F1; F2/
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for any g 2 �.M/˘ and F1; F2 2MF (or PMF). Let

MIND fF 2 PMF j i.F; ˛/¤ 0 for any ˛ 2 V.C /g

be the set of all minimal measured foliations on M , which is a �.M/˘-invariant
Borel subset of PMF. The Thurston boundary PMF is an ideal boundary of the
Teichmüller space T D T.M/ for M . The union xT D T [ PMF is called the
Thurston compactification of the Teichmüller space, which is homeomorphic to
the closed Euclidean ball of dimension 6g� 6C 2p whose boundary corresponds
to PMF.

For g 2 �.M/, we denote by

Fix.g/D fx 2 xT j gx D xg

the fixed point set of g. Each element g 2 �.M/ is classified in terms of Fix.g/ as
follows (see Expóse 9, �V, Théorème and Expóse 11, �4, Théorème in [8]):

(i) g has finite order and has a fixed point on T;

(ii) g is pseudo-Anosov, i.e., Fix.g/ consists of exactly two points in MIN;

(iii) g has infinite order and is reducible, i.e., there exists � 2 S.M/ with g� D � .

These three types are mutually exclusive. We say that F 2 PMF is a pseudo-
Anosov foliation if F is a fixed point for some pseudo-Anosov element. The set
of all pseudo-Anosov foliations is known to be dense in PMF. A pseudo-Anosov
element g 2 �.M/ has the following remarkable dynamics on xT (see Theorem
7.3.A in [24]): The two fixed points F˙.g/ 2 MIN of g satisfy that if U is any
neighborhood of FC.g/ in xT and K is any compact set in xT n fF�.g/g, then
gn.K/� U for all sufficiently large n 2 N.

Since the curve complex C is hyperbolic, we can consider its boundary @C at
infinity, which is not compact. There exists a natural �.M/-equivariant continuous
map MIN! @C , which is injective on the set of all uniquely ergodic measured fo-
liations. This set contains all pseudo-Anosov foliations (see [19], [29], and Section
3.2 in [27]).

McCarthy and Papadopoulos [34] classify subgroups of �.M/ into four types
by using the above classification of elements of �.M/.

THEOREM 2.1 ([34]). Each subgroup � of �.M/ is classified into the follow-
ing four cases:

(i) � is finite;

(ii) There exists a pseudo-Anosov element g 2 � such that hfF˙.g/g D fF˙.g/g
for any h 2 � . In this case, � is virtually cyclic and is said to be IA (D infinite,
irreducible, and amenable);
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(iii) � is infinite and reducible, i.e., there exists � 2 S.M/ such that g� D � for
any g 2 �;

(iv) There exist two pseudo-Anosov elements g1; g2 2 � such that fF˙.g1/g \
fF˙.g2/g D ∅. In this case, � contains a non-abelian free subgroup and is
said to be sufficiently large.

We next recall the canonical reduction system (CRS) for a subgroup of �.M/,
which plays an important role in the study of reducible subgroups. We refer the
reader to Chapter 7 in [22] for more details on CRS’s. For � 2 S.M/, we denote
by M� the surface obtained by cutting M along a realization of curves in � . For
an integer m� 3, let �.M Im/ be the subgroup of �.M/ consisting of all elements
which act trivially on the homology group H1.M IZ=mZ/. This subgroup satisfies
the following notable properties (see Theorem 1.2 and Corollaries 1.5, 1.8, 3.6 in
[22]).

THEOREM 2.2 ([22]). In the above notation, the following assertions hold:

(i) �.M Im/ is a torsion-free subgroup of finite index in �.M/.

(ii) If g 2 �.M Im/ and F 2 PMF satisfy gnF D F for some n 2 Z n f0g, then
gF D F .

(iii) If g 2 �.M Im/ and � 2 S.M/ satisfy gn� D � for some n 2 Z n f0g, then
g˛ D ˛ for any ˛ 2 � and g preserves each component of M� and of the
boundary of M .

When we consider the problem of ME in the sections that follow, we study
measure-preserving actions of (a finite index subgroup of) �.M Im/ instead of
�.M/.

Definition 2.1 ([22, Chap. 7]). Let M be a surface with �.M/ � 0 and let
m� 3 be an integer. Let � be a subgroup of �.M Im/. A curve ˛ 2 V.C / is called
an essential reduction class for � if the following two conditions are satisfied:

(i) g˛ D ˛ for any g 2 �;

(ii) If ˇ 2 V.C / satisfies i.˛; ˇ/¤ 0, then there exists g 2 � such that gˇ ¤ ˇ.

The canonical reduction system (CRS) �.�/ for � is defined to be the set of all
essential reduction classes for � , which is either an element of S.M/ or empty. We
define the CRS for a general subgroup � of �.M/ as the CRS for � \�.M Im/,
which is independent of m.

The following theorem is fundamental in the study of reducible subgroups.

THEOREM 2.3 ([22, Cor. 7.17]). An infinite subgroup � of �.M/ is reducible
if and only if �.�/ is nonempty.
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Given a subgroup � of �.M Im/ and � 2 S.M/ with g� D � for any g 2 � ,
thanks to Theorem 2.2 (iii), we have the natural homomorphism

p� W�!
Y
Q

�.Q/;

where Q runs through all components of M� .

LEMMA 2.4 ([3, Lemma 2.1 (1)], [24, Cor. 4.1.B]). The kernel of p� is con-
tained in the subgroup of �.M/ generated by Dehn twists about all curves in � .

For each component Q of M� , let pQW�! �.Q/ be the composition of p�
with the projection onto �.Q/. As for the quotient group pQ.�/, the following
theorem is known.

THEOREM 2.5 ([22, Cor. 7.18]). If a subgroup � of �.M Im/ is reducible and
Q is a component of the disconnected surface M�.�/ obtained by cutting M along
the CRS �.�/ for � , then the image pQ.�/ either is trivial or contains a pseudo-
Anosov element in �.Q/. In particular, pQ.�/ cannot be infinite reducible.

If pQ.�/ is trivial, IA or sufficiently large, then we say that Q is T (D trivial),
IA (D infinite, irreducible, and amenable) or IN (D irreducible and nonamenable),
respectively, for the reducible subgroup � .

LEMMA 2.6. Let � be a finite index subgroup of �.M/ and define the sub-
group

�� D fg 2 � j g� D �g

for � 2 S.M/. Then the CRS for �� is equal to � .

This lemma easily follows from Theorem 7.16 in [22] because any component
of M� which is not a pair of pants is IN for �� if � is a finite index subgroup of
�.M Im/.

LEMMA 2.7. Let � be an infinite subgroup of �.M Im/ and let ˛ 2 V.C.M//.
Assume that g˛D ˛ for all g 2� . If for each componentQ ofM˛ , we have gˇDˇ
for any ˇ 2 V.C.Q// and any g 2 � , then the CRS for � is f˛g.

Proof. Since � is infinite and reducible, the CRS �.�/ for � is nonempty. Let
ı 2 �.�/. We show that ı D ˛. Let Q be a component of M˛. If ı 2 V.C.Q//,
then there exists ˇ 2 V.C.Q// with i.ˇ; ı/ ¤ 0. By assumption, ˇ is invariant
for � , which contradicts the assumption that ı is an essential reduction class for � .
Thus, either i.ı; ˛/¤ 0 or ı D ˛. The former case can not happen because ˛ is
invariant for � and ı 2 �.�/. �
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2.2. The automorphism group of the curve complex. Let M be a surface with
�.M/ > 0. Then we have the natural homomorphism � W�.M/˘ ! Aut.C /. It
is a natural question whether � is an isomorphism or not. The following theorem
says that � is in fact an isomorphism for almost all surfaces M . In [23], Ivanov
sketches a proof of this statement for surfaces of genus at least two, and Korkmaz
[30] gives a proof for some surfaces of genus less than two. Luo [32] suggests
another approach for this question, which does not distinguish the cases of surfaces
of higher and lower genus, and finally concludes the following

THEOREM 2.8. Let M be a surface with �.M/ > 0.

(i) If M is neither M1;2 nor M2;0, then � is an isomorphism.

(ii) If M DM1;2, then the image of � is a subgroup of Aut.C / with its index five
and ker.�/ is the subgroup generated by a hyperelliptic involution, which is
isomorphic to Z=2Z.

(iii) If M DM2;0, then � is surjective and ker.�/ is the subgroup generated by a
hyperelliptic involution, which is isomorphic to Z=2Z.

(iv) The two simplicial complexes C.M0;5/ and C.M1;2/ (resp. C.M0;6/ and
C.M2;0/) are isomorphic.

THEOREM 2.9. Let � be a subgroup of finite index in Aut.C /. For each
g0 2 Aut.C / n feg, the set fgg0g�1 j g 2 �g consists of infinitely many elements.

Proof. We may assume that M ¤M1;2;M2;0 by Theorem 2.8 (iv). By The-
orem 2.8 (i), we identify Aut.C / with �.M/˘. Let g0 2 �.M/˘ and assume that
the set fgg0g�1 j g 2 �g consists of only finitely many elements. Then note that
for any infinite subset fhngn2N of � , there exists an infinite subsequence fnigi2N

of N such that hnig0h
�1
ni
D hnj g0h

�1
nj

for each i , j . Put

Fix.g0/D fx 2 xT j g0x D xg;

which is a nonempty closed subset of xT.
Assume Fix.g0/ 6� PMF. If we deduce a contradiction, then the inclusion

Fix.g0/�PMF holds, and this implies g0 D e and completes the proof. Since the
set of pseudo-Anosov foliations is dense in PMF, there exist pseudo-Anosov ele-
ments g1; g2 2�.M/ such that fF˙.g1/g\fF˙.g2/gD∅ and FC.g1/; FC.g2/2
PMF n Fix.g0/. Using the assumption that � is a subgroup of finite index in
�.M/˘, we may assume that g1; g2 2 � .

Let s 2 Fix.g0/. It follows from the remark in the first paragraph that there
exists an infinite increasing subsequence fnig of N such that g�ni1 g0g

ni
1 D g0 for

each i . Then we have s D g0s D g
�ni
1 g0g

ni
1 s, which implies gni1 s 2 Fix.g0/ for

each i . If s¤F�.g1/, then gni1 s!FC.g1/ 2PMFnFix.g0/ as i!1. This is a
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contradiction. Thus, s D F�.g1/. Similarly, we can show that if s 2 Fix.g0/, then
s D F�.g2/. This contradicts fF˙.g1/g\ fF˙.g2/g D∅. �

2.3. Measure equivalence and orbit equivalence. In this subsection, we re-
call the construction of weakly orbit equivalent actions from an ME coupling given
in Section 3 in [13]. We refer the reader to [1] and Chapter XIII, Section 3 in [41]
for the terminology of a discrete measured groupoid and its amenability. We fix
the notation as follows: Given a discrete measured groupoid G on a standard finite
measure space .X; �/ (i.e., a standard Borel space with a finite positive measure)
and a Borel subset A�X with positive measure, we denote by

.G/A D f
 2 G j r.
/; s.
/ 2 Ag

the groupoid restricted to A, where r; sWG! X are the range and source maps,
respectively. For x; y 2X , let

Gxy D f
 2 G j r.
/D x; s.
/D yg

and let ex 2 Gxx denote the unit. If A is a Borel subset of X , then GA denotes the
saturation defined by

GAD fr.
/ 2X j 
 2 G; s.
/ 2 Ag;

which is a Borel subset of X .
Suppose that a discrete group G admits a measure-preserving action on .X; �/.

Then the product space G �X has the following groupoid structure:

� The range and source maps are given by r.g; x/ D gx and s.g; x/ D x, re-
spectively, for g 2G and x 2X .

� The operation of products is given by .g1; g2x/.g2; x/ D .g1g2; x/ for g1,
g2 2G and x 2X .

� .e; x/ is the unit element at x 2X .

� The inverse of .g; x/ 2G �X is given by .g�1; gx/.

When G �X is equipped with this groupoid structure, we denote it by G ËX .
Let .†;m/ be an ME coupling of discrete groups � and ƒ, and choose funda-

mental domains Y;X �† for the �-action and ƒ-action, respectively. Remark that
we have a natural �-action on the space X equipped with the restricted measure
of m because X can be identified with the quotient space †=ƒ as a Borel space.
Similarly, we have a naturalƒ-action on Y . In order to distinguish from the original
�-action and ƒ-action on †, we denote the �-action on X and the ƒ-action on Y
by 
 � x and � �y, respectively, using a dot. Note that one can choose X and Y so
that ADX \Y satisfies � �ADX and ƒ �AD Y up to null sets. In what follows,
we suppose that X and Y satisfy this condition.
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Let GD�ËX (resp. HDƒËY ) be the discrete measured groupoid on .X; �/
(resp. .Y; �// constructed from the above action. We can define cocycles

˛W� �X !ƒ; ˇWƒ�Y ! �

so that 
 � x D .
; ˛.
; x//x 2 X and � � y D .ˇ.�; y/; �/y 2 Y for any 
 2 � ,
� 2ƒ, and a.e. x 2X , y 2 Y . Let

pWX ! Y; qWY !X

be the Borel maps defined by

p.x/D �x\Y; q.y/Dƒy \X

for x 2X and y 2 Y . Note that both p and q are the identity on ADX \Y and

p.
 � x/D ˛.
; x/ �p.x/; q.� �y/D ˇ.�; y/ � q.y/

for any 
 2 � , � 2ƒ, and a.e. x 2X , y 2 Y . Define groupoid homomorphisms

f WG 3 .
; x/ 7! .˛.
; x/; p.x// 2H;

gWH 3 .�; y/ 7! .ˇ.�; y/; q.y// 2 G:

Note that ˇ.˛.
; x/; x/ D 
 for any 
 2 � and a.e. x 2 A with 
 � x 2 A, and
˛.ˇ.�; y/; y/ D � for any � 2 ƒ and a.e. y 2 A with � � y 2 A. Therefore, we
obtain the following

PROPOSITION 2.10. The groupoid homomorphisms

f W .G/A! .H/A; gW .H/A! .G/A

satisfy g ıf D id and f ıg D id.

This proposition implies that the two actions of � on X and of ƒ on Y are
weakly orbit equivalent, that is, .� � x/\AD .ƒ � x/\A for a.e. x 2 A.

Consider the .� �ƒ/-action on X �ƒ defined by

.
; �/.x; �0/D .
 � x; ˛.
; x/�0��1/

for 
 2 � , �; �0 2ƒ, and x 2X . It is easy to check the following

LEMMA 2.11. The Borel map†!X�ƒ defined by �x 7! .x; ��1/ for x 2X
and � 2ƒ is a .� �ƒ/-equivariant Borel isomorphism.

Conversely, we know the following theorem, which will not be used in the
sequel. For simplicity, a standard action of a discrete group means an essentially
free, measure-preserving Borel action of it on a standard finite measure space.

THEOREM 2.12 ([13, Th. 3.3]). If two discrete groups � and ƒ have ergodic
standard actions on .X; �/ and .Y; �/ which are weakly orbit equivalent, then there
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exists an ME coupling .†;m/ of � and ƒ such that the �-actions on X and ƒn†
(resp. the ƒ-actions on Y and �n†) are conjugate.

2.4. Normal subgroupoids. In this subsection, we introduce the notion of nor-
mal subgroupoids of a discrete measured groupoid, based on [9] and Subsection
4.6.1 in [27]. This notion is a generalization of normal subrelations of a discrete
measured equivalence relation and also a generalization of normal subgroups of a
discrete group.

Let G be a discrete measured groupoid on a standard finite measure space
.X; �/ and denote by r; sWG! X the range and source maps, respectively. Let
S be a subgroupoid of G. In this paper, we mean by a subgroupoid of G a Borel
subgroupoid of G whose unit space is the same as the one for G. We denote by
EndG.S/ the set of all Borel maps 'W dom.'/! G from a Borel subset dom.'/ of
X such that

(i) s.'.x//D x for a.e. x 2 dom.'/;

(ii) for a.e. 
 2 .G/dom.'/, 
 2 S if and only if '.r.
//
'.s.
//�1 2 S.

We define the composition  ı'W dom. ı'/!G of two elements '; 2EndG.S/

by putting

dom. ı'/D fx 2 dom.'/ j r.'.x// 2 dom. /g;

 ı'.x/D  .r.'.x///'.x/

for x 2 dom. ı'/. It is easy to check that  ı' 2 EndG.S/.

Definition 2.2. A subgroupoid S of a discrete measured groupoid G on a
standard finite measure space .X; �/ is said to be normal in G if the following
condition is satisfied: There exists a countable family f�ng of maps in EndG.S/

such that for a.e. 
 2 G, we can find �n in the family satisfying r.
/ 2 dom.�n/
and �n.r.
//
 2 S. In this case, we write S C G and we call f�ng a family of
normal choice functions for the pair .G;S/.

The following two lemmas give natural examples of normal subgroupoids.
The proof of Lemma 2.13 is straightforward. Lemmas 2.14 and 2.15 can be proved
by using 18.14 in [26].

LEMMA 2.13. Suppose that a discrete group G has a measure-preserving
action on .X; �/. Let H be a normal subgroup of G. Let G and H be the groupoids
generated by the actions of G and H , respectively. Then the subgroupoid H is
normal in G.
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LEMMA 2.14. Let G be a discrete measured groupoid on .X; �/. Then the
isotropy groupoid

G0 D f
 2 G j r.
/D s.
/g

is normal in G.

LEMMA 2.15. Let G be a discrete measured groupoid on .X; �/ and let A be
a Borel subset of X . Then there exists a Borel map f WGA! G such that

(i) s.f .x//D x and r.f .x// 2 A for a.e. x 2 GA;

(ii) f .x/D ex 2 Gxx for a.e. x 2 A, where Gxx D f
 2 G j r.
/D s.
/D xg and
ex is the unit element of the isotropy group Gxx .

LEMMA 2.16. Let G be a discrete measured groupoid on .X; �/ and let S be
a normal subgroupoid of G. If A is a Borel subset of X with positive measure, then
.S/A is normal in .G/A.

Proof. Let f�ng be a family of normal choice functions for the pair .G;S/.
We put

Dn D fx 2 A\ dom.�n/ j r.�n.x// 2 SAg:

Define a Borel map �0nWDn! .G/A by �0n.x/ D f .r.�n.x///�n.x/ for x 2 Dn,
where f WSA! S is a Borel map given by Lemma 2.15 such that
� s.f .x//D x and r.f .x// 2 A for a.e. x 2 SA;

� f .x/D ex 2 Sxx for a.e. x 2 A.

We show that f�0ng is a family of normal choice functions for ..G/A; .S/A/. Since
�0n is the composition of �n and f , we see that �0n 2 EndG.S/. Let 
 2 .G/A.
Then there exists �n such that r.
/ 2 dom.�n/ and �n.r.
//
 2 S. Note that
r.
/2A\dom.�n/ and r.�n.r.
///D r.�n.r.
//
/2SA. Therefore, r.
/2Dn
and

�0n.r.
//
 D f .r.�n.r.
////�n.r.
//
 2 .S/A;

which completes the proof. �
LEMMA 2.17. Let G be a discrete group generated by two subgroups G1 and

G2 so that G1 is normal in G, and assume that we have a measure-preserving
action of G on a standard finite measure space .X; �/. We denote by G, G1 and G2
the groupoids arising from the actions of G, G1 and G2, respectively. Let A�X
be a Borel subset with positive measure. Then .G1/A is normal in the subgroupoid
HD .G1/A _ .G2/A of .G/A generated by the two subgroupoids .G1/A and .G2/A.

Proof. For each i D 1; 2 and g 2Gi , define Ag D A\g�1A and  g WAg !
.G/A by  g.x/D .g; x/ for x 2Ag . It is easy to check that  g 2EndH..G1/A/. For
each word ! of elements in G1 and G2, we can naturally define the composition
 ! 2 EndH..G1/A/ of  g ’s. It is clear that f !g! forms a family of normal choice
functions for .H; .G1/A/. �
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3. Groupoids associated with measure-preserving actions
of the mapping class group

3.1. Subgroupoids defined geometrically. In Sections 4 and 5, we consider
mainly the groupoid generated by a measure-preserving action of the mapping
class group and its subgroupoids. In this subsection, we collect fundamental facts
on them. Most of the following results can be shown in the same way as in [27],
where we assume that the action is essentially free.

Definition 3.1. A discrete measured groupoid G on a standard finite measure
space .X; �/ is said to be of infinite type if there exists a Borel partitionXDA1tA2
such that

(i) for a.e. x 2 A1, the isotropy group Gxx is infinite;

(ii) the associated principal groupoid of .G/A2 defined by

f.r.
/; s.
// 2 A2 �A2 j 
 2 .G/A2g

is recurrent. Namely, the restriction of it to any Borel subset of A2 with
positive measure does not admit a Borel fundamental domain.

Note that for any n 2 N[f1g, the subset

Xn D fx 2X j jG
x
xj D ng

is Borel and satisfies GXn DXn.
Let G be a discrete measured groupoid on .X; �/ and let �WG ! G be a

groupoid homomorphism into a standard Borel group G. Let S be a Borel G-
space. Recall that a Borel map 'WA! S from a Borel subset A � X is said to
be �-invariant for G if �.
/'.s.
// D '.r.
// for a.e. 
 2 .G/A. The following
lemma is used to extend a �-invariant Borel map 'WA! S to a �-invariant Borel
map defined on the saturation GA.

LEMMA 3.1. Let 'WA! S be a �-invariant Borel map for G as above. De-
fine a Borel map '0WGA ! S by '0.x/ D �.f .x/�1/'.r.f .x/// for x 2 GA,
where f WGA! G is the Borel map constructed in Lemma 2.15. Then '0 is also
�-invariant for G.

Proof. Let 
 2 .G/GA and put y D r.
/, x D s.
/ 2 GA. Then

�.
/'0.x/D �.f .y/�1/�.f .y/
f .x/�1/'.r.f .x///

D �.f .y/�1/'.r.f .y///D '0.y/

since f .y/
f .x/�1 2 .G/A and r.f .y/
f .x/�1/D r.f .y//. �

Assumption 3.1. We refer the following assumption as .?/: Let � be a sub-
group of �.M Im/, where M is a surface with �.M/ > 0 and m� 3 is an integer.
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Let .X; �/ be a standard finite measure space. Assume that we have a measure-
preserving action of � on .X; �/, which generates the groupoid

GD G� D f.
; x/ 2 � �X j 
 2 �; x 2Xg:

Define the induced cocycle �WG! � by .
; x/ 7! 
 for 
 2 � and x 2X .

Under the above assumption, we often use the following notation:

� For a subgroup � 0 of � , let G� 0 denote the subgroupoid of G generated by the
action of � 0:

G� 0 D f.
; x/ 2 G j 
 2 � 0; x 2Xg:

� For � 2 S.M/, we denote by D� the intersection of � and the subgroup
generated by Dehn twists about all curves in � . We write G� instead of GD�
for simplicity. If � consists of one element ˛ 2 V.C /, then we write D˛
(resp. G˛) instead of D� (resp. G� ).

As in [27], we introduce two types of subgroupoids of infinite type, following
the classification of subgroups of �.M/ in Theorem 2.1. Let M.PMF/ denote the
space of all probability measures on PMF.

THEOREM 3.2 ([27, Th. 4.41]). Under the assumption .?/, let Y � X be a
Borel subset with positive measure and let S be a subgroupoid of .G/Y of infinite
type. If we have a �-invariant Borel map 'WY !M.PMF/ for S, then there exists
a Borel partition Y D Y1 tY2 satisfying the following:

(i) '.x/.MIN/D 1 for a.e. x 2 Y1;

(ii) '.x/.PMF nMIN/D 1 for a.e. x 2 Y2.

In this theorem, remark that both Y1 and Y2 are invariant for S and that if Y 0

is a Borel subset of Y with positive measure and  WY 0 !M.PMF/ is another
�-invariant Borel map for S, then

(i)  .x/.MIN/D 1 for a.e. x 2 Y1\Y 0;

(ii)  .x/.PMF nMIN/D 1 for a.e. x 2 Y2\Y 0,

where Y1 and Y2 are the same Borel subsets as in the theorem. Hence, it is natural
to give the following

Definition 3.2. Under the assumption .?/, let Y �X be a Borel subset with
positive measure and let S be a subgroupoid of .G/Y of infinite type.

(i) If there is a �-invariant Borel map 'WY !M.PMF/ for S such that

'.x/.MIN/D 1

for a.e. x 2 Y , then we say that S is IA (D irreducible and amenable).
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(ii) If there is a �-invariant Borel map 'WY !M.PMF/ for S such that

'.x/.PMF nMIN/D 1

for a.e. x 2 Y , then we say that S is reducible.

It is shown that IA subgroupoids are in fact amenable (see Theorem 3.4 (iii)).
Moreover, IA (resp. reducible) subgroupoids satisfy similar properties to the ones
known for IA (resp. reducible) subgroups, which will be stated in subsequent theo-
rems of this subsection. In fact, if X consists of a single point and G is isomorphic
to � , then IA and reducible subgroupoids in Definition 3.2 coincides with IA and
reducible subgroups given in Theorem 2.1.

We have explained in Section 1 that the key ingredient of the proof of Theo-
rem 1.1 is to construct an essentially unique, almost .�.M/��.M//-equivariant
Borel map ˆW†! Aut.C / for a self ME coupling .†;m/ of �.M/. We give
a rough outline of the construction of the map ˆ in what follows. In [27], we
develop the theory of recurrent subrelations of an equivalence relation arising from
a standard action of the mapping class group. Thanks to it, we can classify such
subrelations into two types, IA and reducible ones, as in Definition 3.2. The no-
tion of normal subrelations also plays an important role in the ME classification
theorem of [27]. In this subsection, we generalize various central results in [27]
on such subrelations to the case where the action of the mapping class group is
not necessarily essentially free. In this general case, although we need to consider
discrete measured groupoids arising from group actions, the proof can be given
along the same line.

In Section 4, using various results in this subsection, we characterize a re-
ducible subgroupoid in terms of amenability and normal subgroupoids (see Propo-
sitions 4.1 and 4.2). Note that these properties are preserved under an isomorphism
between two groupoids. As mentioned in Section 2.3, considering a self ME cou-
pling of �.M/ is almost equivalent to considering an isomorphism f between two
groupoids G1 and G2 arising from measure-preserving actions of �.M/. Thanks
to the characterization of reducible subgroupoids, one sees that the image of a
reducible subgroupoid of G1 via f is also reducible. Moreover, maximal reducible
subgroupoids are mapped to maximal ones by f (see Corollary 4.5, Lemma 4.6
and Corollary 4.7).

Let G be the groupoid associated with a measure-preserving action of �.M/

on a standard finite measure space .X; �/. As a next stage, in Section 5, we study
an amenable normal subgroupoid S of infinite type of a maximal reducible sub-
groupoid of G. We show that S is contained in the groupoid G˛ generated by the
action of the Dehn twist about some simple closed curve ˛ 2 V.C / on M up to a
countable Borel partition of X (see Lemma 5.1). Conversely, for any ˛ 2 V.C /,
the subgroupoid G˛ is normal in some maximal reducible subgroupoid of G. It
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follows that the subgroupoid generated by the Dehn twist about a simple closed
curve can be characterized in terms of amenability and normal subgroupoids, and in
the situation of the previous paragraph, we see that such subgroupoids are preserved
by f . This implies that f induces a bijection of the set V.C / of all isotopy classes
of simple closed curves on M , which is shown to be an automorphism of the curve
complex. Translating this fact into structural information on a self ME coupling
.†;m/ of �.M/, we can construct an almost .�.M/��.M//-equivariant Borel
map ˆ from † into Aut.C / as mentioned in Section 1.

Remark 3.1. When �.M/ > 0 and M ¤M1;2;M2;0, it is known that any iso-
morphism between finite index subgroups of �.M/˘ is the restriction of a unique
inner automorphism of �.M/˘ (see �8.5 in [24]). A key ingredient of the proof
of this fact is to show that such an isomorphism f maps sufficiently high powers
of Dehn twists into powers of Dehn twists by characterizing a (power of) Dehn
twist algebraically (see Theorem 7.5.B in [24]). It follows that f yields a bijection
on the set V.C /, which is in fact an automorphism of the curve complex. This
automorphism comes from an element g of �.M/˘ by Theorem 2.8. After an easy
computation shown in the proof of Theorem 8.5.A in [24], one can prove that f is
the restriction of the inner automorphism of �.M/˘ given by g. Our construction
of the map ˆ mentioned above heavily relies on this idea due to Ivanov.

Remark 3.2. Note that if we want to prove only Theorem 1.1, it is not neces-
sary to generalize the results in [27] to the case where the action of the mapping
class group is not necessarily essentially free because in general, when two discrete
groups ƒ1 and ƒ2 are ME, there exists an ME coupling of ƒ1 and ƒ2 such that the
.ƒ1 �ƒ2/-action on it is essentially free, which induces weak orbit equivalence
between standard actions of ƒ1 and ƒ2. However, in Theorem 1.4, we need to
consider an ME coupling of �.M/ such that the .�.M/ � �.M//-action is not
necessarily essentially free. Moreover, thanks to the generalization, we obtain
information on stabilizers of measure-preserving actions of �.M/ (see Corollaries
3.11 and 3.19).

In the following theorems, we collect basic properties of IA and reducible
subgroupoids. First, we treat IA subgroupoids. Let @C denote the boundary of
the curve complex C for a surface M with �.M/ > 0. Let @2C be the quotient
space of @C � @C by the coordinate exchanging action of the symmetric group of
two letters and let M.@C/ be the space of all probability measures on @C , which
has the Borel structure introduced in the comment before Proposition 4.30 in [27].
Each element of @2C can be naturally viewed as an atomic measure in M.@C/ so
that each atom has measure 1 or 1=2. Then @2C is a Borel subset of M.@C/.

Under the assumption .?/, let Y �X be a Borel subset with positive measure
and let S be a subgroupoid of .G/Y of infinite type. Note that if S is IA, then



MEASURE EQUIVALENCE RIGIDITY OF THE MAPPING CLASS GROUP 1869

we can construct a �-invariant Borel map Y !M.@C/ for S by using the natural
�.M/-equivariant map MIN! @C constructed in [29] (see also [19]).

PROPOSITION 3.3 ([27, Prop. 4.32 (ii), Corollary 4.43]). Under the assump-
tion .?/, let Y � X be a Borel subset with positive measure and let S be a sub-
groupoid of .G/Y of infinite type. Suppose that S admits a �-invariant Borel map
'WY !M.@C/. Then the cardinality of supp.'.x// is at most two for a.e. x 2 Y ,
where supp.�/ denotes the support of a measure �. Moreover, S is IA.

THEOREM 3.4 ([27, §4.4.1, Lemma 4.58]). Under the assumption .?/, let
Y �X be a Borel subset with positive measure and let S be a subgroupoid of .G/Y
of infinite type. Suppose that S is IA. Then

(i) there exists an essentially unique �-invariant Borel map '0WY ! @2C for S

satisfying the following: If Y 0 is a Borel subset of Y with positive measure
and 'WY 0!M.@C/ is a �-invariant Borel map for S, then

supp.'.x//� supp.'0.x//

for a.e. x 2 Y 0;

(ii) if T is a subgroupoid of .G/Y with S C T, then '0 is �-invariant for T. It
follows from Proposition 3.3 that T is also IA;

(iii) the groupoid S is amenable.

If X consists of a single point and G is isomorphic to � , then the above facts
follow from the classification of subgroups of �.M/ described in Theorem 2.1.
In this case, using properties of pseudo-Anosov elements, we can prove that S is
virtually cyclic, which implies Theorem 3.4 (iii). To prove Theorem 3.4 (iii) in a
general case, we need to use the amenability in a measurable sense of the action of
�.M/ on @C (and on @2C ). The assertion (ii) is a very important property of IA
subgroupoids because it gives a sufficient condition for amenability of bigger sub-
groupoids. This property will be used in the algebraic characterization of various
subgroupoids in Section 4. Although the following observation will not be used
in the sequel, it proves the assertion (ii) in the case where X consists of a single
point.

LEMMA 3.5. Let M be a surface with �.M/ � 0 and let � and N be sub-
groups of �.M/ such that N is IA and is a normal subgroup of � . Then � is
also IA.

Proof. Since N is IA, there exists a pseudo-Anosov element g 2N such that
N fixes its pseudo-Anosov foliations fF˙.g/g. Let h 2 � . Then hgh�1 is pseudo-
Anosov and hfF˙.g/g D fF˙.hgh�1/g. On the other hand, since hgh�1 2N , it
fixes fF˙.g/g. Since each pseudo-Anosov element has exactly two fixed points on
PMF, we have fF˙.hgh�1/g D fF˙.g/g. Hence, h fixes fF˙.g/g. �
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The �-invariant Borel map '0 in Theorem 3.4 (ii) plays the same role as the
fixed point set fF˙.g/g in the proof of Lemma 3.5.

Remark 3.3. Under the assumption .?/, let Y � X be a Borel subset with
positive measure and let S be a subgroupoid of .G/Y of infinite type. It follows
from Theorem 3.2 that there exists an essentially unique Borel partition Y D Y1 t
Y2 tY3 satisfying the following:

� If Y1 has positive measure, then .S/Y1 is IA;

� If Y2 has positive measure, then .S/Y2 is reducible;

� If Y3 has positive measure, then .S/Y 0
3

admits no �-invariant Borel map Y 03!
M.PMF/ for any Borel subset Y 03 of Y3 with positive measure.

If S is amenable and any restriction of S to a Borel subset of Y with positive
measure is not reducible, then S is IA. The converse also holds by Theorem 3.2
and Theorem 3.4 (iii).

Next, we recall basic properties of reducible subgroupoids. We can define the
canonical reduction system for a reducible subgroupoid as in the case of groups.

Definition 3.3. Under the assumption .?/, let Y �X be a Borel subset with
positive measure and let S be a subgroupoid of .G/Y of infinite type. Let A be a
Borel subset of Y with positive measure and let ˛ 2 V.C /.

(i) We say that the pair .˛; A/ is �-invariant for S if there exists a countable Borel
partition AD

F
An of A such that the constant map An! f˛g is �-invariant

for S for each n.

(ii) Suppose that .˛; A/ is �-invariant for S. The pair .˛; A/ is said to be purely
�-invariant if .ˇ; B/ is not �-invariant for S for any Borel subset B of A with
positive measure and any ˇ 2 V.C / with i.˛; ˇ/¤ 0. (In [27], we call such
a pair an essential �-invariant one for S.)

Since we take a countable Borel partition in the definition of a �-invariant pair,
it is easily shown that if there are ˛ 2 V.C / and a Borel subset An � Y for n 2 N

with .˛; An/ �-invariant for S, then the pair .˛;
S
An/ is also �-invariant for S. It

follows that for each ˛ 2 V.C /, we can find an essentially maximal Borel subset
A˛ � Y such that .˛; A˛/ is �-invariant for S if there exists a �-invariant pair for
S. One can say the same thing for purely �-invariant pairs for S.

THEOREM 3.6 ([27, §4.5, Lemma 4.60]). Under the assumption .?/, let Y �X
be a Borel subset with positive measure and let S be a subgroupoid of .G/Y of
infinite type. Suppose that S is reducible. Then

(i) there exists a purely �-invariant pair for S;
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(ii) we can define an essentially unique �-invariant Borel map 'WY ! S.M/ for
S so that
(a) if � 2 S.M/ satisfies �.'�1.�// > 0 and ˛ 2 � , then .˛; '�1.�// is a

purely �-invariant pair for S;
(b) if .˛; A/ is a purely �-invariant pair for S, then

�.A n'�1.f� 2 S.M/ j ˛ 2 �g//D 0I

(iii) if T is a subgroupoid of .G/Y with S C T, then ' is �-invariant for T. In
particular, T is also reducible.

We call ' in the above theorem the canonical reduction system (CRS) for S.
It is easy to see that if A is a Borel subset of Y with positive measure, then the CRS
for .S/A is the restriction of ' to A (see Lemma 4.53 (iii) in [27]). If X consists
of a single point and G is isomorphic to � , then the above definition of the CRS
for S coincides with the one mentioned in Definition 2.1. As in Lemma 3.5, the
following lemma proves the assertion (iii) in the case where X consists of a single
point.

LEMMA 3.7. Let M be a surface with �.M/ � 0 and let � and N be sub-
groups of �.M/ such that N is infinite reducible and is a normal subgroup of � .
Then � is also reducible, and �.N /� �.�/.

Proof. For g 2 � , it follows that g�.N / D �.gNg�1/ D �.N /, and thus
� fixes �.N /. The latter assertion easily follows from the definition of essential
reduction classes for N and � . �

In the following two lemmas, we study the CRS’s for certain reducible sub-
groupoids arising from measure-preserving actions of reducible subgroups.

LEMMA 3.8. Under the assumption .?/, let G be an infinite reducible sub-
group of � and let � 2 S.M/ be the CRS for G. Then GG is reducible and its CRS
'WX ! S.M/ is constant with its value � .

Proof. It is clear that GG is reducible and for any ˛ 2 � , the pair .˛;X/ is
�-invariant for GG . Assume that there exists ˛ 2 � such that the pair .˛;X/ is
not purely �-invariant for GG . Then we have a Borel subset B of X with positive
measure and ˇ 2 V.C / with i.˛; ˇ/¤ 0 such that .ˇ; B/ is a �-invariant pair for
GG . It follows that there exists a Borel subset B 0 of B with positive measure such
that �.
/ˇDˇ for a.e. 
 2 .GG/B 0 . We can find g 2G of infinite order with gˇ¤ˇ
since ˛ 2 � . Since g has infinite order and the �-action on .X; �/ preserves the
finite positive measure �, the subgroupoid .Ghgi/B 0 is of infinite type, where hgi
denotes the cyclic subgroup generated by g. There exist a Borel subset B 01 � B

0

with positive measure and n 2 Z n f0g such that .gn; x/ 2 .Ghgi/B 0 for a.e. x 2 B 01.
Thus, gnˇ D �.gn; x/ˇ D ˇ holds for a.e. x 2 B 01. Since G is a subgroup of
�.M Im/, it follows from Theorem 2.2 that gkˇ D ˇ for any k 2 Z n f0g. This is
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a contradiction. Thus, .˛;X/ is a purely �-invariant pair for GG and we see that �
is contained in '.x/ for a.e. x 2X .

Next, assume that we have a Borel subset A of X with positive measure and
ˇ 2 '.x/ n � for any x 2 A. For each g 2 G, there are a Borel subset A1 � A
with positive measure and n 2 Z n f0g such that .gn; x/ 2 .GG/A1 and the equation
gnˇD �.gn; x/ˇD ˇ holds for any x 2A1 because .ˇ; A/ is a �-invariant pair for
GG . Thus, gˇ D ˇ for any g 2G by Theorem 2.2. It follows from ˇ 62 � that there
exists 
 2 V.C / such that i.ˇ; 
/¤ 0 and h
 D 
 for any h 2G. Thus, .
; X/ is
a �-invariant pair for GG . This contradicts the assumption that ˇ 2 '.x/ for any
x 2 A, that is, the pair .ˇ; A/ is purely �-invariant. �

LEMMA 3.9. Under the assumption .?/, let ˛ 2 V.C / and assume that the
subgroup D˛ is infinite. Let Y be a Borel subset of X with positive measure and
let S be a subgroupoid of .G˛/Y of infinite type. Then S is reducible and its CRS
for S is constant with its value f˛g.

Proof. It is clear that S is reducible and the pair .˛; Y / is �-invariant for S.
Let A be a Borel subset of Y with positive measure and ˇ 2 V.C /. Assume that
the pair .ˇ; A/ is �-invariant for S. Then there exists a Borel subset B of A with
positive measure such that �.
/ˇ D ˇ for a.e. 
 2 .S/B . Since S is a subgroupoid
of .G˛/Y of infinite type, there exist infinitely many n 2 Z and a Borel subset Bn
of B with positive measure such that tn 2 � and .tn; x/ 2 .S/B for any x 2 Bn,
where t 2 �.M/ denotes the Dehn twist about ˛. Hence, tnˇ D �.tn; x/ˇ D ˇ
for a.e. x 2 Bn. In particular, tnˇ D ˇ for infinitely many n 2 Z. It follows from
Lemma 4.2 in [22] that i.˛; ˇ/D 0. Thus, the pair .˛; Y / is a pure �-invariant one
for S.

If 
 2 V.C / satisfies i.˛; 
/D 0 and ˛ ¤ 
 , then there exists ı 2 V.C / such
that i.˛; ı/D 0 and i.
; ı/¤ 0. Since the pair .ı; Y / is �-invariant for S, the pair
.
; A0/ can not be a pure �-invariant one for S for any Borel subset A0 of Y . �

The following proposition is also proved along the same line as in [27].

PROPOSITION 3.10 ([27, Prop. 4.61]). Under the assumption .?/, suppose
that � is sufficiently large. Then .G/Y is neither IA nor reducible for any Borel
subset Y �X with positive measure.

As an application of the above generalization of the results in [27], we obtain
some information on stabilizers for a measure-preserving action of the mapping
class group on a standard finite measure space.

COROLLARY 3.11. Under the assumption .?/, suppose that � is sufficiently
large. Then for a.e. x 2X , the isotropy group

Gxx D f
 2 G j r.
/D s.
/D xg

is either trivial or sufficiently large.
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This corollary follows from Lemma 2.14, Theorem 3.4 (ii), Theorem 3.6 (iii)
and Proposition 3.10. Note that � is torsion-free and that
� for each pseudo-Anosov element g 2� , the subset of X consisting of all x 2X

such that Gxx is IA and fixes the pair fF˙.g/g of pseudo-Anosov foliations is
Borel;

� for each � 2 S.M/, the subset of X consisting of all x 2 X such that Gxx is
reducible and its CRS is � is Borel.

It follows from these remarks that for a Borel subset Y of X with positive measure,
both subsets

Y1 D fx 2 Y j G
x
x is IAg; Y2 D fx 2 Y j Gxx is reducibleg

are Borel, and .G0/Y1 is IA and .G0/Y2 is reducible, where

G0 D f
 2 G j r.
/D s.
/g

is the isotropy groupoid of G.
In order to analyze reducible subgroupoids S furthermore, in Theorems 3.13

and 3.15, we consider components of the surface obtained by cutting M along the
CRS for S. There are three types of components as in the case of subgroups of
�.M Im/ mentioned in the comment right after Theorem 2.5.

If � is an infinite reducible subgroup of �.M Im/ with an integer m � 3
and � 2 S.M/ is the CRS for � , then we can classify each component Q of
M� in terms of properties of the quotients pQ.�/ by using Theorem 2.5, where
pQW�! �.Q/ is the natural homomorphism. More precisely, if pQ.�/ is trivial,
infinite amenable or nonamenable, then Q is said to be T, IA or IN, respectively.
On the other hand, when we consider a reducible subgroupoid, we cannot construct
such a quotient. However, fortunately, the properties of the quotient pQ.�/ used in
the classification of Q can be characterized in terms of fixed points for the action
of pQ.�/ on the space M.PMF.Q// of all probability measures on PMF.Q/ as
follows:
(a) Q is T for � if and only if either Q is a pair of pants or pQ.g/˛ D ˛ for any

g 2 � and any (or some) ˛ 2 V.C.Q//.

(b) Q is IA for � if and only if the following three conditions are satisfied:
� Q is not a pair of pants;
� pQ.g/˛ ¤ ˛ for any nontrivial g 2 � and any (or some) ˛ 2 V.C.Q//;
� There exists � 2M.PMF.Q// such that pQ.g/�D � for any g 2 � and
�.MIN.Q//D 1.

(c) Q is IN for � if and only if the following two conditions are satisfied:
� Q is not a pair of pants;
� There exists no fixed point for the action of pQ.�/ on M.PMF.Q//.
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Following this observation, we will introduce three types of components of the
surface obtained by cutting M along the CRS for a reducible subgroupoid. Before
stating the definition of the three types of components, we recall some notation.

Let L be a submanifold of the surface M which is a realization of some
element of S.M/. Let Q be a component of ML, where ML denotes the surface
obtained by cutting M along L. Let pLWML ! M denote the canonical map.
For ı 2 V.C.M//, we define a finite subset r.ı;Q/ of V.C.Q// as follows. Let
ı 2 V.C.M// and represent the isotopy class ı by a circle D that intersects each
of the components of L in the least possible number of points. Put DL D p�1L .D/.
The manifold DL consists of some intervals or it is a circle (if D\LD∅).

If eitherDL\QD∅ orDL is a circle which lies inQ and is peripheral forQ,
then put r.ı;Q/D∅. IfDL is a nonperipheral circle lying inQ, put r.ı;Q/Dfıg.
In the remaining cases, the intersection DL \Q consists of some intervals. For
each such interval I , consider a regular neighborhood NI in Q of the union of the
interval I and those components of @Q on which the ends of I lie. Then NI is
a pair of pants. Let r 0.ı;Q/ be the set of isotopy classes of components of the
manifolds @NI n @Q, where I runs through the set of all components of DL\Q.
Define r.ı;Q/ as the resulting set of discarding from r 0.ı;Q/ the isotopy classes
of trivial or peripheral circles ofQ. We will regard r.ı;Q/ as a subset of V.C.M//

using the embedding V.C.Q// ,! V.C.M//. It is clear that this definition depends
only on ı and the isotopy class of Q.

Let F WM !M be a diffeomorphism such that F.L/D L and the induced
diffeomorphism ML!ML takes Q to Q. If f 2 �.M/ denotes the isotopy class
of F , then we have the equality f .r.ı;Q//D r.f ı;Q/ by definition.

LEMMA 3.12 ([22, Lemma 7.9]). Let L and Q be the same as above and let
ı 2 V.C.M//. If r.ı;Q/D∅, then one of the following three cases occurs:

(i) There is a simple closed curve in the class ı which does not intersect Q;

(ii) ı is the isotopy class of one of the components of L;

(iii) Q is a pair of pants.

We denote by D DD.M/ the set of all isotopy classes of subsurfaces in M
and denote by F0.D/ the set of all finite subsets F of D (including the empty set)
such that if Q1;Q2 2 F and Q1 ¤Q2, then Q1 and Q2 can be realized disjointly
on M .

THEOREM 3.13 ([27, Th. 5.6]). Under the assumption .?/, let Y � X be a
Borel subset with positive measure and let S be a subgroupoid of .G/Y of infinite
type. Suppose that S is reducible and let 'WY ! S.M/ be its CRS. Then there exist
two essentially unique �-invariant Borel maps 't ; 'i WY !F0.D/ for S satisfying
the following:
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(i) Any element in 't .x/['i .x/ is a component of M'.x/ for a.e. x 2 Y ;

(ii) Each component of M'.x/ belongs to 't .x/['i .x/, and 't .x/\'i .x/D∅
for a.e. x 2 Y ;

(iii) If Q is in F 2 F0.D/ with �.'�1t .F // > 0, then either Q is a pair of pants
or the pair .˛; '�1t .F // is �-invariant for S for any ˛ 2 V.C.Q//;

(iv) If Q is in F 2 F0.D/ with �.'�1i .F // > 0, then Q is not a pair of pants and
.˛; A/ is not �-invariant for S for any ˛ 2 V.C.M// with r.˛;Q/¤ ∅ and
any Borel subset A� '�1i .F / with positive measure.

We call 't the T system for S, and call 'i the I system for S. We often call
elements in 't .x/ and 'i .x/ T and I subsurfaces for S at x 2 Y , respectively. When
we identify a subsurface with a component of the surface obtained by cutting M
along some curves, we call T and I subsurfaces T and I components, respectively.
It is easy to see that if A is a Borel subset of Y with positive measure, then the
T and I systems for .S/A are the restrictions of 't and 'i to A, respectively (see
Lemma 5.7 in [27]). It is shown that T components satisfy the following stronger
property.

LEMMA 3.14 ([27, Lemma 5.4]). Under the assumption .?/, let Y �X be a
Borel subset with positive measure and let S be a subgroupoid of .G/Y of infinite
type. Suppose that S is reducible and let 'WY ! S.M/ be its CRS. We assume the
following:

� ' is constant with its value � 2 S.M/ and Q is a component of M� ;

� We have ˛ 2 V.C.M// with r.˛;Q/ ¤ ∅ and a Borel subset A � Y with
positive measure such that .˛; A/ is �-invariant for S.

Then there exists a countable Borel partition AD
F
An such that �.
/ˇ D ˇ for

any ˇ 2 V.C.Q// and a.e. 
 2 .S/An . In particular, the pair .ˇ; A/ is �-invariant
for S for any curve ˇ 2 V.C.Q//.

If the cocycle �WS! � is essentially valued in �� D fg 2 � j g� D �g for
some � and Q is a component of M� , then �Q denotes the cocycle defined by the
composition of � with pQW�� ! �.Q/. In the next theorem, we further divide I
subsurfaces into two types, IA and IN ones.

THEOREM 3.15 ([27, Th. 5.9, §5.2]). In Theorem 3.13, there exist two essen-
tially unique �-invariant Borel maps 'ia; 'inWY ! F0.D/ for S satisfying the
following:

(i) 'i .x/D 'ia.x/['in.x/ and 'ia.x/\'in.x/D∅ for a.e. x 2 Y .

(ii) Let Q be a component in F 2 F0.D/ with �.'�1ia .F // > 0. Then
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(a) given any Borel subset A of '�1ia .F / with positive measure and any �Q-
invariant Borel map  WA!M.PMF.Q// for S, we have the equation
 .x/.MIN.Q//D 1 for a.e. x 2 A;

(b) we have an essentially unique �Q-invariant Borel map  0W'�1ia .F /!
@2C.Q/ for S such that if A is a Borel subset of '�1ia .F / with positive
measure and  WA!M.@C.Q// is a �Q-invariant Borel map for S, then

supp. .x//� supp. 0.x//

for a.e. x 2 A.

(iii) IfQ is in F 2F0.D/ with �.'�1in .F //>0, then S admits neither �Q-invariant
Borel maps A!M.PMF.Q// nor A! @2C.Q/ for any Borel subset A �
'�1in .F / with positive measure.

We call 'ia and 'in the IA and IN systems for S, respectively. We often call
elements in 'ia.x/ and 'in.x/ IA and IN subsurfaces (or components) at x 2 Y ,
respectively. It is easy to see that if A is a Borel subset of Y with positive measure,
then the IA and IN systems for .S/A are the restrictions of 'ia and 'in to A, re-
spectively (see Lemma 5.10 in [27]). We recall some properties of IA components
in the following lemma, which can be regarded as an analogue of Theorem 3.4 (ii).
The assertion (ii) corresponds to the latter assertion of Lemma 3.7.

LEMMA 3.16 ([27, Lemma 5.13]). Under the assumption .?/, let Y �X be a
Borel subset with positive measure and let S be a subgroupoid of .G/Y of infinite
type. Let H be a subgroupoid of .G/Y with S C H. Suppose that S is reducible
(thus, so is H) and all of the CRS and T, IA and IN systems for S are constant. Let
Q be an IA component for S and let  0WY ! @2C.Q/ be the �Q-invariant Borel
map for S as in Theorem 3.15 (ii) (b). Then

(i)  0 is �Q-invariant for H;

(ii) if we denote by  WY ! S.M/ the CRS for H, then � �  .x/ for a.e. x 2 Y ,
where � 2 S.M/ is the CRS for S;

(iii) if we denote by  iaWY ! F0.D/ the IA system for H, then Q 2  ia.x/ for
a.e. x 2 Y .

The following proposition implies that if a reducible subgroupoid has no IN
component, then it is amenable as a groupoid.

PROPOSITION 3.17 ([27, Prop. 5.18]). Under the assumption .?/, let Y �X
be a Borel subset with positive measure and let S be a subgroupoid of .G/Y of
infinite type. Suppose that S is reducible and there exists � 2 S.M/ such that
�.
/� D � for a.e. 
 2 S. Let fQigi be the set of all components of M� which are
not pairs of pants and let �� WS!

Q
i �.Qi / be the product

Q
i �Qi . Moreover,
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we assume that there exists a �� -invariant Borel map

 WY !
Y
i

@2C.Qi /:

Then the groupoid S is amenable.

Suppose that � is a subgroup of �.M Im/ with an integer m � 3 and that
� 2 S.M/ is fixed by each element of � . Let p� W�!

Q
Q �.Q/ be the productQ

Q pQ, where Q runs through all components in M� . Note that the kernel of p�
is contained in the amenable subgroup of �.M/ generated by Dehn twists about
all curves in � by Lemma 2.4. It is then easily shown that if every component of
M� is either T or IA, then � is amenable. This proves Proposition 3.17 in the case
where X is a point.

3.2. Groupoids associated with actions of hyperbolic groups. In this subsec-
tion, we study subgroupoids of a groupoid defined by a measure-preserving action
of a word-hyperbolic group. Let us mention that only Lemma 3.20 will be used in
the rest of the paper.

Assumption 3.2. We call the following assumption .?/h: Let � be an infinite
subgroup of a hyperbolic group �0. Let .X; �/ be a standard finite measure space
and assume that we have a measure-preserving action of � on .X; �/. We denote
by GD � ËX and �WG! � the associated groupoid and cocycle, respectively.

For a hyperbolic group �0, let @�0 be the boundary at infinity and let M.@�0/
be the space of all probability measures on @�0. We denote by @2�0 the quotient
space of @�0 � @�0 by the coordinate exchanging action of the symmetric group
of two letters, which can be naturally viewed as a Borel subset of M.@�0/ as in
the case of the boundary of the curve complex. The following proposition can be
shown along the same idea in Theorem 3.4.

PROPOSITION 3.18. Under the assumption .?/h, let Y be a Borel subset of X
with positive measure and let S be a subgroupoid of .G/Y of infinite type. Assume
that there is a �-invariant Borel map Y !M.@�0/ for S. Then

(i) there exists an essentially unique �-invariant Borel map '0WY ! @2�0 for S

satisfying the following: If Y 0 is a Borel subset of Y with positive measure
and 'WY 0!M.@�0/ is a �-invariant Borel map for S, then

supp.'.x//� supp.'0.x//

for a.e. x 2 Y 0;

(ii) if T is a subgroupoid of .G/Y with SC T, then '0 is �-invariant for T;

(iii) the groupoid S is amenable.
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Using Lemma 2.14 and Proposition 3.18 (ii), (iii), we can show the following
corollary in the same way as Corollary 3.11. Note that the set consisting of all
points in @2�0 fixed by some infinite subgroup of �0 is countable (see Chapitre 8
in [17]).

COROLLARY 3.19. Under the assumption .?/h, suppose that � is nonamen-
able. Then for a.e. x 2X , the isotropy group

Gxx D f
 2 G j r.
/D s.
/D xg

is either finite or nonamenable.

LEMMA 3.20. Let G1 and G2 be infinite cyclic groups and suppose that we
have a measure-preserving action of the free product G DG1 �G2 on a standard
finite measure space .X; �/. Let G, G1 and G2 be the groupoids arising from the
actions of G, G1 and G2, respectively. Then the subgroupoid .G1/A _ .G2/A of
.G/A generated by .G1/A and .G2/A is nonamenable for any Borel subset A � X
with positive measure.

Proof. Suppose that .G1/A _ .G2/A is amenable. We have the natural cocycle
�WG! G. It follows that there exists a �-invariant Borel map '0WA! @2G for
.G1/A _ .G2/A as in Proposition 3.18 (i). Let a˙i 2 @G be the two fixed points on
the boundary @G of G for the action of the group Gi for i D 1; 2. Then the constant
map 'i WA! @2G with its value fa˙i g is �-invariant for the subgroupoid .Gi /A of
infinite type. It follows that 'i has to satisfy the property in Proposition 3.18 (i).
Thus, we have supp.'0.x// � supp.'i .x//D fa˙i g for i D 1; 2. This contradicts
fa˙1 g\ fa

˙
2 g D∅. �

4. Characterizations of reducible subgroupoids

The next two propositions characterize amenable and nonamenable reducible
subgroupoids, respectively, in terms of amenability and normal subgroupoids. As
in the previous section, we use the following notation under the assumption .?/:

� For a subgroup � 0 of � , let G� 0 denote the subgroupoid of G generated by the
action of � 0:

G� 0 D f.
; x/ 2 G j 
 2 � 0; x 2Xg:

� For � 2 S.M/, we denote by D� the intersection of � and the subgroup
generated by Dehn twists about all curves in � . We write G� instead of GD�
for simplicity. If � consists of one element ˛ 2 V.C /, then we write D˛ (resp.
G˛) instead of D� (resp. G� ).

� For � 2 S.M/, we put

�� D fg 2 � j g� D �g:
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PROPOSITION 4.1. Under the assumption .?/, let Y � X be a Borel subset
with positive measure and let S be a subgroupoid of .G/Y of infinite type. Suppose
that S is amenable. Consider the following two assertions:

(i) S is reducible.

(ii) For any Borel subset A of Y with positive measure, we have a Borel subset B
of A with positive measure and the following three subgroupoids S0, S00 and
T of .G/B :

(a) an amenable subgroupoid S0 with .S/B < S0;
(b) a subgroupoid S00 of infinite type with S00 < S0;
(c) a nonamenable subgroupoid T with S00 C T.

Then the assertion (ii) implies the assertion (i). If � is a subgroup of finite index in
�.M Im/, then the converse also holds.

Before the proof, we explain a geometric meaning of the above subgroupoids
when � is a finite index subgroup of �.M Im/ and X consists of a single point,
that is, G is isomorphic to � . The subgroups ƒ, ƒ0, ƒ00 and � introduced below
correspond to the subgroupoids S, S0, S00 and T in Proposition 4.1, respectively.
Given an infinite amenable reducible subgroup ƒ of � , let � 2 S.M/ be its CRS,
and classify each component of M� into T and IA ones. Let ƒ0 be the stabilizer
in � of all of � , the fixed points fFQ

˙
g of pQ.ƒ/ for all IA components Q and all

˛ 2 V.C.R// for all T components R.
If j� j D �.M/C 1, then ƒ0 DD� . Choose one ˛ 2 � and put � 0 D � n f˛g 2

S.M/. Put ƒ00 DD� 0 , and let � be the stabilizer of � 0 in � .
If j� j< �.M/C 1, then put ƒ00 DD� , and let � be the stabilizer of � in � .
It is then easy to see that

� ƒ<ƒ0 and ƒ0 is amenable;

� ƒ00 <ƒ0 and ƒ00 is infinite;

� ƒ00 C� and � is nonamenable.

Conversely, ifƒ is an infinite amenable subgroup of � and ifƒ0,ƒ00 and� are
subgroups of � satisfying the above conditions, then ƒ00 is either IA or reducible
since ƒ00 is amenable. If ƒ00 were IA, then � would be IA by Lemma 3.5, and
thus amenable. This is a contradiction. Hence, ƒ00 is reducible. Since ƒ0 is also
amenable, it is either IA or reducible. If ƒ0 were IA, then it would contradict
the condition that ƒ0 contains an infinite reducible subgroup ƒ00 because any IA
subgroup has a finite index subgroup generated by a pseudo-Anosov element by
Theorem 2.1. Therefore, ƒ0 is reducible, and so is ƒ.

We give a proof of Proposition 4.1 along the same line as above.
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Proof of Proposition 4.1. First, we show that the assertion (ii) implies the
assertion (i). If S were not reducible, then since S is of infinite type and amenable,
there would exist an invariant Borel subset A of Y for S with positive measure
such that .S/A is IA (see Remark 3.3). It follows from our assumption that we
have a Borel subset B of A with positive measure and subgroupoids S0, S00 and T

satisfying the conditions in the assertion (ii). Since .S/A is IA and S0 is amenable,
it follows from Theorem 3.2 that S0 is IA. Moreover, S00 is also IA. Thus, T is also
IA and amenable by Theorem 3.4 (ii) and Proposition 3.3. This is a contradiction.

Next, we assume that � is a subgroup of finite index in �.M Im/ and show
that the assertion (i) implies the assertion (ii). Let A be a Borel subset of Y with
positive measure. Then there exists a Borel subset B of A with positive measure
satisfying the following conditions (see Lemma 3.14 for the second condition):

� All of the CRS and T and IA systems for S are constant on B . Let � 2 S.M/

and 't ; 'ia 2 F0.M/ be their values on B , respectively. Note that the IN
system for S is empty since S is amenable;

� For a.e. 
 2 .S/B and any component Q in 't and ˛ 2 V.C.Q//, we have
�Q.
/˛D ˛, where �QW .S/B!�.Q/ is the composition of � and the natural
projection �� ! �.Q/.

For each Q 2 'ia, we have the canonical �Q-invariant Borel map  QWB!
@2C.Q/ for .S/B as in Theorem 3.15 (ii) (b). Let S0 be a subgroupoid of .G/B
consisting of all 
 2 .G/B satisfying

�.
/� D �; �Q.
/ Q.s.
//D  Q.r.
//; �.
/˛ D ˛

for any Q 2 'ia, any ˛ 2 V.C.R// and any R 2 't which is not a pair of pants.
Note that .S/B < S0. It follows from Proposition 3.17 that S0 is amenable.

If j� j < �.M/ C 1, then put S00 D .G� /B . Then S00 < S0. Since � is a
subgroup of finite index in �.M Im/ and there exists a component of M� which
is not a pair of pants, we see that S00 is of infinite type and �� is nonamenable.
Thus, the subgroupoid TD .G�� /B is nonamenable. Moreover, S00 CT since D�
is a normal subgroup of �� by Lemma 2.4. This completes the construction of
subgroupoids in the assertion (ii) in the case of j� j< �.M/C 1.

If j� j D �.M/C 1, then S0 D .G� /B and it is amenable. Choose ˛0 2 � . Let
� 0 D � n f˛0g, which is an element of S.M/ since �.M/ > 0. Then S00 D .G� 0/B
is a subgroupoid of infinite type with S00 < S0. Define T D .G��0 /B . Then T is
nonamenable and S00 C T since D� 0 is a normal subgroup of �� 0 by Lemma 2.4.
This completes the construction of subgroupoids in the assertion (ii) in the case of
j� j D �.M/C 1. �

PROPOSITION 4.2. Under the assumption .?/, let Y � X be a Borel subset
with positive measure and let S be a subgroupoid of .G/Y of infinite type. Suppose
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that .S/Y 0 is not amenable for any Borel subset Y 0 of Y with positive measure.
Consider the following two assertions:

(i) S is reducible.

(ii) For any Borel subset A of Y with positive measure, we have a Borel subset
B of A with positive measure and the following two subgroupoids S0 and S00

of .G/B :
(a) a subgroupoid S0 with .S/B < S0;
(b) an amenable subgroupoid S00 of infinite type with S00 C S0.

Then the assertion (ii) implies the assertion (i). If � is a subgroup of finite index in
�.M Im/, then the converse also holds.

As in the previous proposition, we first explain a geometric meaning of the
above subgroupoids when � is a finite index subgroup of �.M Im/ and X consists
of a single point, and G is isomorphic to � . The subgroupsƒ,ƒ0 andƒ00 introduced
below correspond to the subgroupoids S, S0 and S00 in Proposition 4.2, respectively.
Given a nonamenable reducible subgroup ƒ of � , let � 2 S.M/ be its CRS. Define
ƒ0 to be the stabilizer of � in � and put ƒ00 DD� . Then

� ƒ<ƒ0;

� ƒ00 Cƒ0 and ƒ00 is infinite amenable.

Conversely, if ƒ is a nonamenable subgroup of � and if ƒ0 and ƒ00 are sub-
groups of � satisfying the above conditions, then ƒ00 is either IA or reducible. If
ƒ00 were IA, then ƒ0 would be IA by Lemmas 3.5, and thus amenable. This is a
contradiction. Hence, ƒ00 is reducible, and so is ƒ0 by Lemma 3.7. Therefore, ƒ
is also reducible.

Proof of Proposition 4.2. First, we show that the assertion (ii) implies the
assertion (i). Suppose that S is not reducible. Then there exists a Borel subset A
of Y with positive measure such that for any Borel subset B of A with positive
measure, there is no �-invariant Borel map B!M.PMF/ for S (see Remark 3.3).
By assumption, we have a Borel subset B of A with positive measure and two
subgroupoids S0 and S00 satisfying the conditions in the assertion (ii). Since S00 is
amenable, by Theorem 3.2, we have a Borel partition B DB1tB2 (up to null sets)
such that .S00/B1 is IA and .S00/B2 is reducible. It follows from Theorem 3.4 (ii)
and Theorem 3.6 (iii) that .S0/B1 is IA and .S0/B2 is reducible. If B1 has positive
measure, then .S/B1 is nonamenable by the assumption on S. Since .S/B < S0,
the groupoid .S0/B1 is nonamenable, and this contradicts Theorem 3.4 (iii). On
the other hand, if B2 has positive measure, then .S/B2 has a �-invariant Borel map
B2! S.M/�M.PMF/. This is also a contradiction.

Next, we assume that � is a subgroup of finite index in �.M Im/ and show
that the converse also holds. Let A be a Borel subset of Y with positive measure.
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Then there exists a Borel subset B of A with positive measure such that the CRS
for S is constant on B . We denote by � 2 S.M/ its value on B . Define the
subgroupoid

S0 D f
 2 .G/B j �.
/� D �g D .G�� /B ;

which satisfies .S/B < S0. Let S00 D .G� /B . Then S00 is of infinite type since � is
a subgroup of finite index in �.M Im/. Since D� is a normal subgroup of �� and
it is amenable by Lemma 2.4, we see that S00 C S0 and S00 is amenable. �

Assumption 4.1. We refer the following assumption as .�/: For i D 1; 2, let
�i be a finite index subgroup of �.Mi Imi /, where Mi is a surface with �.Mi / > 0

and mi � 3 is an integer. Consider a measure-preserving action of �i on a standard
finite measure space .Xi ; �i / and let

Gi D Gi� ; �i WG
i
! �i

be the induced groupoid and cocycle, respectively. Suppose that we have a groupoid
isomorphism

f W .G1/Y1 ! .G2/Y2 ;

where Yi �Xi is a Borel subset satisfying GiYi DXi up to null sets for i D 1; 2.

The following corollary is a consequence of Propositions 4.1 and 4.2 charac-
terizing reducible subgroupoids.

COROLLARY 4.3. Under the assumption .�/, let A1 be a Borel subset of Y1
with positive measure and let S1 be a subgroupoid of .G1/A1 of infinite type. Then
S1 is reducible if and only if the image f .S1/ is reducible.

Next, we characterize maximal reducible subgroupoids. In the assumption
.?/, let Y be a Borel subset of X with positive measure and let 'WY ! S.M/ be
a Borel map. Then we define the reducible subgroupoid

S' D f
 2 .G/Y j �.
/'.s.
//D '.r.
//g:

PROPOSITION 4.4. Under the assumption .?/, let Y be a Borel subset of X
with positive measure and let 'WY ! S.M/ be a Borel map. Assume that � is a
subgroup of finite index in �.M Im/. Then the CRS for S' is ' and for a.e. x 2 Y ,
each component of M'.x/ either is a pair of pants or is IN for S' .

Proof. We may assume that all of the CRS and T, IA and IN systems for S'
and ' are constant. We denote the value of ' by the same symbol. Then note that
S' is equal to .G�' /Y . It follows from Lemmas 2.6 and 3.8 that the CRS for S'
is '.

Let Q be a component of M' which is not a pair of pants. Let g1; g2 2
�' be elements such that pQ.g1/; pQ.g2/ 2 �.Q/ are pseudo-Anosov elements
with fF˙.pQ.g1//g\ fF˙.pQ.g2//g D∅, where pQW�'! �.Q/ is the natural
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homomorphism. Let G be the subgroup of �' generated by g1 and g2. Note that
.GG/Y < S' .

If Q were T for S' , then by Lemma 3.14, there would exist a Borel subset A
of Y with positive measure such that �Q.
/˛ D ˛ for any ˛ 2 V.C.Q// and for
a.e. 
 2 .S'/A, where �Q is the composition of � and pQ. This contradicts the
fact that pQ.gn1 /˛ ¤ ˛ for any ˛ 2 V.C.Q// and all n 2 Z n f0g.

If Q were IA for S' , then we would have the canonical �Q-invariant Borel
map �WY ! @2C.Q/ for S' as in Theorem 3.15 (ii) (b). For i D 1; 2, define a
Borel map �i WY ! @2C.Q/ to be the constant map whose value is the image of
fF˙.pQ.gi //g in @C.Q/. Recall that the natural map MIN! @C is injective
on the set of all pseudo-Anosov foliations. It follows that �i is the canonical �Q-
invariant Borel map for .GGi /Y for i D 1; 2, where Gi is the cyclic subgroup
generated by gi . Since � is �Q-invariant for .GGi /Y , we have the inclusion

supp.�.x//� supp.�i .x//

for a.e. x 2 Y and any i D 1; 2. This is a contradiction because fF˙.pQ.g1//g\
fF˙.pQ.g2//g D∅. �

In what follows, we regard V.C / as a subset of S.M/ naturally.

COROLLARY 4.5. Under the assumption .?/, let Y be a Borel subset of X
with positive measure and let 'WY ! V.C / be a Borel map. Assume that � is a
finite index subgroup of �.M Im/. If S is a reducible subgroupoid of .G/Y with
S' < S, then SD S' .

Proof. Let  WY ! S.M/ be the CRS for S. It is enough to show ' D up to
null sets. Choose ˛ 2 V.C / and � 2 S.M/ such that �.'�1.˛/\ �1.�// > 0 and
put AD '�1.˛/\ �1.�/. It suffices to prove ' D  a.e. on A, that is, � D f˛g.
We may assume that all of the T, IA and IN systems for S' on A are constant.

Choose ˇ 2 � . Since ˇ is in the CRS for .S/A, the pair .ˇ; A/ is �-invariant
for S' . If we had a component Q of M˛ which is not a pair of pants and satisfies
r.ˇ;Q/ ¤ ∅, then Q would be T for S' by Theorem 3.13. This contradicts
Proposition 4.4. Thus, r.ˇ;Q/D∅ for each component Q of M˛ which is not a
pair of pants. It follows from Lemma 3.12 that ˇ is a boundary component of Q,
and thus ˛ D ˇ. Therefore, � D f˛g and ' D  a.e. on A. �

LEMMA 4.6. Under the assumption .?/, let Y � X be a Borel subset with
positive measure and let S be a subgroupoid of .G/Y of infinite type. Suppose that
S is reducible. Then there exists a Borel map  WY ! V.C / such that S< S .

Proof. Let 'WY ! S.M/ be the CRS for S. Choose a countable Borel
partition Y D

F
Yn of Y such that ' is constant on each Yn. Let ˛n 2 V.C /

be an element such that ˛n 2 '.x/ for a.e. x 2 Yn. Then the constant map
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Yn 3 x 7! ˛n 2 V.C / is �-invariant for .S/Yn . By using Lemma 3.1, we can
construct a �-invariant Borel map  WY ! V.C / for S. �

The following is a consequence of Corollaries 4.3, 4.5 and Lemma 4.6.

COROLLARY 4.7. Under the assumption .�/, let A1 be a Borel subset of Y1
with positive measure and let '1WA1 ! V.C.M1// be a Borel map. Put A2 D
f .A1/ and

S1'1 D f
 2 .G
1/Y1 j �1.
/'1.s.
//D '1.r.
//g:

Then there exists a Borel map '2WA2! V.C.M2// such that f .S1'1/DS2'2 , where

S2'2 D f
 2 .G
2/Y2 j �2.
/'2.s.
//D '2.r.
//g:

5. An equivariant Borel map from a self ME coupling

In the next lemma, we study a normal amenable subgroupoid of a maximal
reducible subgroupoid. As in the previous section, we regard the vertex set V.C /
as a subset of the simplex set S.M/ naturally.

LEMMA 5.1. Under the assumption .?/, let Y be a Borel subset of X with
positive measure and let 'WY ! V.C / be a Borel map. Assume that � is a finite
index subgroup of �.M Im/. If S is an amenable subgroupoid of S' of infinite
type with S C S' , then there exists a countable Borel partition Y D

F
Yn of Y

satisfying the following conditions:

(i) The map ' is constant a.e. on Yn. Let ˛n 2 V.C / be its value;

(ii) For each n, we have .S/Yn < .G˛n/Yn < .S'/Yn .

Proof. Recall that S' is reducible and its CRS is given by ' (see Proposi-
tion 4.4). Since S is a subgroupoid of S' , it is also reducible. Let  WY ! S.M/

be the CRS for S. Since S is normal in S' , the map  is �-invariant for S' and
satisfies  .x/� '.x/ for a.e. x 2 Y . Thus,  .x/D '.x/ for a.e. x 2 Y by Lemma
3.16 because the cardinality of '.x/ is one.

Let A be a Borel subset of Y with positive measure such that all of the CRS
' D  and T, IA and IN systems for S and S' are constant on A. We denote
by ˛ 2 V.C / the value of ' D  on A. If Q is a component of M˛, then Q is
not IN for .S/A since S is amenable. If Q were IA for .S/A, then Q would be
IA for .S'/A by Lemma 3.16 (iii). This contradicts Proposition 4.4. Thus, each
component of M˛ is T for .S/A.

It follows from Lemma 3.14 that we have a countable Borel partition A DF
An of A such that �.
/ˇ D ˇ for each component Q of M˛ and ˇ 2 V.C.Q//

and for a.e. 
 2 .S/An for any n. For a.e. 
 2 .S/An , consider the subgroup of �
generated by �.
/. If �.
/ is nontrivial, then the CRS for the subgroup is f˛g by
Lemma 2.7. It follows from Theorem 2.5 that �.
/ lies in the kernel of the natural
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homomorphism from �˛ into
Q
Q �.Q/, where Q is taken over all components

of M˛. Thus, �.
/ 2D˛ by Lemma 2.4. Since A is any Borel subset of Y with
positive measure such that all of ' D  and T, IA and IN systems for S and S'
are constant on A, we complete the proof. �

Under the assumption .�/, let ˛ 2 V.C.M1//. Define the constant map
'˛WY1 3 x 7! ˛ 2 V.C.M1//. It follows from Corollary 4.7 that we have a Borel
map '2WY2! V.C.M2// such that f .S1'˛ /D S2'2 , where we use the same nota-
tion as in the corollary. Since the intersection of �1 and the subgroup of �.M1/

generated by the Dehn twist about ˛ is normal in

�1;˛ D fg 2 �1 j g˛ D ˛g

by Lemma 2.4 and S1'˛ D .G
1
�1;˛

/Y1 , we see that .G1˛/Y1 C S1'˛ . Thus, f ..G1˛/Y1/
C S2'2 . By Lemma 5.1, we have a countable Borel partition Y2 D

F
An such that

(i) the map '2 is constant on An for each n. Let ˇn 2 V.C.M2// be its value on
An;

(ii) for each n, we have .f ..G1˛/Y1//An < .G
2
ˇn
/An < .S

2
'2
/An .

Therefore, for each ˛ 2 V.C.M1//, we can define a Borel map

‰.�; ˛/WY1! V.C.M2//

by putting ‰.x; ˛/D ˇn if x 2 f �1.An/ (up to null sets). Note that this map does
not depend on the decomposition Y2 D

F
An.

LEMMA 5.2. If ˛; ˛02V.C.M1// satisfy i.˛; ˛0/D0, then i.‰.x; ˛/;‰.x; ˛0//
D 0 for a.e. x 2 Y1.

Proof. Since i.˛; ˛0/D 0, we see that

.G1˛/A C .G
1
˛/A _ .G

1
˛0/A

for any Borel subset A of Y1 with positive measure (see Lemma 2.17). It follows
from the construction of ‰.�; ˛/ and ‰.�; ˛0/ that we have a countable Borel parti-
tion Y2 D

F
An and ˇn; ˇ0n 2 V.C.M2// such that

.f ..G1˛/Y1//An < .G
2
ˇn
/An ; .f ..G1˛0/Y1//An < .G

2
ˇ 0
n
/An

for each n. Using Lemma 3.9, we see that .f ..G1˛/Y1//An (resp. .f ..G1˛0/Y1//An)
is a reducible subgroupoid of .G2/An and its CRS is given by the constant map
An 3 x 7! ˇn (resp. ˇ0n) 2 V.C.M2//. It follows from the above normality that
the constant map An 3 x 7! ˇn is �2-invariant for .f ..G1˛0/Y1//An , which implies
i.ˇn; ˇ

0
n/D 0 by the pureness of the pair .ˇ0n; An/ for .f ..G1˛0/Y1//An . �

LEMMA 5.3. LetM be a surface with �.M/� 0 and let ˛; ˛0 2V.C.M// with
i.˛; ˛0/¤ 0. Then tn˛ and tm˛0 generate a free group of rank two for all sufficiently
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large n;m 2 N, where t˛; t˛0 2 �.M/ denote the Dehn twists about ˛ and ˛0,
respectively.

Proof. We regard ˛ and ˛0 as elements in PMF. Choose an open neighbor-
hood U of ˛ such that

xU � fF 2 PMF j i.F; ˛0/¤ 0g;

where xK denotes the closure of a subset K of PMF. Choose an open neighborhood
U 0 of ˛0 such that

xU 0 � fF 2 PMF j i.F; ˛/¤ 0g

and xU \ xU 0 D ∅. It follows from Theorem 4.3 in [22] that there exist n;m 2 N

such that

tk˛ .
xU 0/� U � xU ; t l˛0. xU/� U

0
� xU 0

for any k; l 2 Z with jkj � n and jl j �m.
The lemma follows from the above inclusions and the following ping-pong

argument: We show that a D tn˛ and b D tm˛0 generate a free group of rank two.
Let w be a nonempty reduced word consisting of a˙1 and b˙1. We prove that
w is nontrivial in �.M/. It follows from the above inclusions that both ak and
bl are nontrivial for any k; l 2 Z n f0g. Therefore, by possibly replacing w by an
appropriate conjugate and an inverse, it is enough to prove that w D akw0bl is
nontrivial in �.M/, where k; l 2 Z n f0g and w0 is a reduced word such that if w0

is nonempty, then the first letter of w0 is b or b�1 and the last letter of w0 is a or
a�1. Then w.x/ 2 U for any x 2 xU nU by the above inclusions, and in particular
w.x/¤ x. Thus, w is nontrivial in �.M/. �

LEMMA 5.4. If ˛; ˛02V.C.M1// satisfy i.˛; ˛0/¤0, then i.‰.x; ˛/;‰.x; ˛0//
¤ 0 for a.e. x 2 Y1.

Proof. Let ˛; ˛0 2 V.C.M1// with i.˛; ˛0/ ¤ 0. Assume that there exists a
Borel subset A of Y1 with positive measure satisfying the following conditions:

(i) ‰.�; ˛/ and ‰.�; ˛0/ are constant on A. Let ˇ; ˇ0 2 V.C.M2// be their values,
respectively;

(ii) i.ˇ; ˇ0/D 0 and

f ..G1˛/A/ < .G
2
ˇ /f .A/; f ..G1˛0/A/ < .G

2
ˇ 0/f .A/:

Since i.ˇ; ˇ0/D0, we see that .G2
ˇ
/f .A/_.G

2
ˇ 0/f .A/ is amenable. On the other hand,

.G1˛/A _ .G
1
˛0/A is nonamenable by Lemmas 3.20 and 5.3. This is a contradiction.

�
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For each ˛ 2 V.C.M1//, we have a Borel subset A˛ of Y1 with full measure
such that ‰.�; ˛/ is defined on A˛. Put

A1 D
\

˛2V.C.M1//

A˛:

By Lemmas 5.2 and 5.4, for each pair f˛; ˛0g of elements in V.C.M1//, we can
take a Borel subset A˛;˛0 of A1 with full measure so that for any x 2A˛;˛0 , we have
i.‰.x; ˛/;‰.x; ˛0//D0 if i.˛; ˛0/D0 and i.‰.x; ˛/;‰.x; ˛0//¤0 if i.˛; ˛0/¤0.
Put

AD
\

˛;˛02V.C.M1//

A˛;˛0 :

Then ‰.x; ˛/ is defined for any x 2 A and ˛ 2 V.C.M1//, and the conclusions in
Lemmas 5.2 and 5.4 are satisfied for any x 2 A.

Under the assumption .�/, suppose that the two surfaces M1 and M2 are equal.
We denote the surface by M and put C D C.M/. Applying the above process to
f and f �1, we see that there exist a Borel subset A of Y1 with full measure and
a Borel map

‰WA�V.C /! V.C /

such that for each x 2 A, the map ‰.x; �/WV.C /! V.C / defines an element of
Aut.C /, the automorphism group of the curve complex C . We define a Borel map
‰WA! Aut.C / by putting ‰.x/D ‰.x; �/ for x 2 A. For simplicity, we denote
� ı �i by �i for i D 1; 2, where � W�! Aut.C / is the natural homomorphism.

LEMMA 5.5. The equality

‰.r.
//D �2.f .
//‰.s.
//�1.

�1/

holds for a.e. 
 2 .G1/Y1 .

Proof. Let A be a Borel subset of Y1 and let g1 2 �1 and g2 2 �2 be elements
satisfying the following conditions:

(a) .g1; x/ 2 .G1/Y1 and .g2; f .x//D f .g1; x/ 2 .G2/Y2 for any x 2 A;

(b) The map ‰ is constant on A and g1A, respectively. Let  ; 0 2 Aut.C / be
the values on A and g1A, respectively.

Note that Y1 can be covered by countably many such Borel subsets A. For each
˛ 2 V.C /, there exists a Borel subset B of A with positive measure such that
f ..G1˛/B/ < .G

2
 .˛/

/f .B/. Note that for ˛ 2 V.C / and g 2 �.M/, we have

gt˛g
�1
D tg˛
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by Lemma 4.1.C in [24], where tˇ 2�.M/ denotes the Dehn twist about ˇ 2 V.C /.
It follows that

.g1; r.
//
.g
�1
1 ; g1s.
// 2 .G

1
g1˛
/g1B ;

.g2; r.ı//ı.g
�1
2 ; g2s.ı// 2 .G

2
g2 .˛/

/f .g1B/

for 
 2 .G1˛/B and ı 2 .G .˛//f .B/. Therefore, f ..G1g1˛/g1B/ < .G
2
g2 .˛/

/f .g1B/.
Thus,  0.g1˛/ D g2 .˛/. Since this equality holds for any ˛ 2 V.C /, we have
 0 D g2 g

�1
1 . This implies the equation

‰.r.
//D �2.f .
//‰.s.
//�1.
/
�1

for a.e. 
 D .g1; x/ 2 .G1/Y1 with x 2 A. �
Definition 5.1. Let S be a Borel space and let m be a positive measure on S .

(i) Suppose that we are given a Borel space T , Borel actions of a discrete group
G on S and on T and a Borel map f WS ! T . We say that the map f is
almost G-equivariant if the equality

f .gx/D gf .x/

holds for any g 2G and a.e. x 2 S .

(ii) Suppose we have discrete groups � , ƒ and G and homomorphisms � W�!G

and � Wƒ!G. Then we denote by .G; �; �/ the Borel space G equipped with
the .� �ƒ/-action given by

.
; �/g D �.
/g�.�/�1

for 
 2 � , � 2ƒ and g 2G.

THEOREM 5.6. For i D 1; 2, let �i be a finite index subgroup of �.M Imi /,
where M is a surface with �.M/ > 0 and mi � 3 is an integer. Suppose that
we have an ME coupling .†;m/ of �1 and �2. Then there exists an essentially
unique, almost .�1 � �2/-equivariant Borel map ˆW†! .Aut.C /; �; �/, where
� W�.M/˘! Aut.C / is the natural homomorphism.

Proof. As in Section 2.3, we can associate to † a measure-preserving action
of �i on a standard finite measure space .Xi ; �i / for i D 1; 2 such that they satisfy
the assumption .�/. In this proof, we use the notation in .�/. For the existence of
ˆ, it is enough to show that there exists a Borel map ˆW†! Aut.C / such that

ˆ..g1; g2/z/D �.g2/ˆ.z/�.g1/
�1

for any g1 2�1, g2 2�2 and a.e. z 2†. By Lemma 2.11, the space† is isomorphic
to X1 ��2 as a .�1 ��2/-space. Here, the .�1 ��2/-action on X1 ��2 is given
by the formula

.g1; g2/.x; 
/D .g1x; ˛.g1; x/
g
�1
2 /
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for g1 2 �1, g2; 
 2 �2 and x 2 X1, where ˛W�1 �X1 ! �2 is the associated
cocycle. We identify † with X1 ��2. For the proof of the theorem, it is enough
to show that if we define ˆW†! Aut.C / by the formula

ˆ..g1; g2/.x; e//D �.g2/‰.x/�.g1/
�1

for g1 2 �1, g2 2 �2 and x 2 Y1, then it is well-defined. In other words, it is
enough to show that

�.g2/‰.x/�.g1/
�1
D �.g02/‰.x

0/�.g01/
�1

for any g1; g01 2 �1, g2; g02 2 �2 and a.e. x; x0 2 Y1 satisfying

.g1; g2/.x; e/D .g
0
1; g
0
2/.x

0; e/:

In what follows, we omit � for simplicity. Since

.x0; e/D ..g01/
�1g1; .g

0
2/
�1g2/.x; e/D ..g

0
1/
�1g1x; ˛..g

0
1/
�1g1; x/g

�1
2 g02/;

we see that x0 D .g01/
�1g1x 2 Y1. Since ˛.g; y/ D �2.f .g; y// for g 2 �1 and

y 2 Y1 with gy 2 Y1, we have

‰.x0/D‰..g01/
�1g1x/D �2.f ..g

0
1/
�1g1; x//‰.x/�1..g

0
1/
�1g1; x/

�1

D .g02/
�1g2‰.x/g

�1
1 g01

by Lemma 5.5, which shows the claim. The uniqueness of ˆ is a consequence of
Theorem 2.9 and the following Lemma 5.7. �

Definition 5.2. Let � W�!G be a homomorphism between discrete groups.
Then � is said to be ICC (D infinite conjugacy class) if the set f�.
/g�.
/�1 j

 2 �g consists of infinitely many elements for any g 2G n feg.

LEMMA 5.7. Let � , ƒ and G be discrete groups and assume that

� W�!G; � Wƒ!G

are homomorphisms such that either � or � is ICC. Suppose the following two
conditions:

(i) We have an ME coupling .†;m/ of � and ƒ;

(ii) There exist two almost .� �ƒ/-equivariant Borel maps ˆ;ˆ0W†! .G; �; �/.

Then ˆ and ˆ0 are essentially equal.

Proof. We may assume that � is ICC. Define a Borel map ˆ0W†! G by
ˆ0.x/Dˆ

0.x/ˆ.x/�1 for x 2†. Then ˆ0 satisfies the equality

ˆ0..
; �/x/D �.
/ˆ0.x/�.
/
�1

for any 
 2 � , � 2 ƒ and a.e. x 2 †. Therefore, ˆ0 is ƒ-invariant and induces
an almost �-equivariant Borel map ƒn†!G, where the �-action on G is given
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by conjugation via � . By projecting the finite �-invariant measure on ƒn† to G,
we obtain a finite measure on G which is invariant under the conjugation via � of
each element of � . Since � is ICC, the support of this measure is equal to feg, and
this implies that ˆ0.x/D e for a.e. x 2†. �

LEMMA 5.8. Let � , ƒ and G be discrete groups and assume that

� W�!G; � Wƒ!G

are homomorphisms. Suppose the following three conditions:

(i) We have a normal subgroup � 0 of � (resp. ƒ0 of ƒ) of finite index and an ME
coupling .†;m/ of � and ƒ;

(ii) Either the restrictions � W� 0!G or � Wƒ0!G is ICC;

(iii) There exists an almost .� 0 �ƒ0/-equivariant Borel map ˆW†! .G; �; �/.

Then the map ˆ is almost .� �ƒ/-equivariant.

Proof. We may assume that the restriction � Wƒ0!G is ICC. For fixed 
 2 �
and � 2ƒ, define a Borel map ˆ0W†!G by the formula

ˆ0.x/Dˆ..
; �/x/
�1�.
/ˆ.x/�.�/�1

for x 2†.
Let g 2 � 0 and h 2 ƒ0. Since � 0 is normal in � and ƒ0 is normal in ƒ, we

have g0 2 � 0 and h0 2ƒ0 such that 
g D g0
 and �h0 D h�. Then

ˆ0..g; h
0/x/Dˆ..
g; �h0/x/�1�.
/�.g/ˆ.x/�.h0/�1�.�/�1

Dˆ..g0
; h�/x/�1�.g0/�.
/ˆ.x/�.�/�1�.h/�1

D �.h/ˆ..
; �/x/�1�.
/ˆ.x/�.�/�1�.h/�1

D �.h/ˆ0.x/�.h/
�1:

Since g 2 � 0 is arbitrary, the map ˆ0 induces a Borel map � 0n† ! G. The
projected finite measure on G is invariant under the conjugation via � of each
element of ƒ0. As in the proof of Lemma 5.7, we can show that ˆ0.x/D e for a.e.
x 2†. �

COROLLARY 5.9. Let M be a surface with �.M/ > 0 and let � and ƒ be
finite index subgroups of �.M/˘. Suppose that we have an ME coupling .†;m/
of � and ƒ. Then there exists an essentially unique, almost .� �ƒ/-equivariant
Borel map †! .Aut.C /; �; �/.
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6. Measure equivalence rigidity

For an ME coupling .†;m/ of discrete groups � and ƒ, the opposite cou-
pling {† of ƒ and � is defined as the .ƒ � �/-space obtained by the canonical
isomorphism between � �ƒ and ƒ�� .

If .†;m/ is an ME coupling of discrete groups � and ƒ and .�; n/ is an
ME coupling of discrete groups ƒ and �, then the composed coupling †�ƒ� of
� and � is defined as the .� ��/-space given by the quotient of †�� by the
diagonal ƒ-action.

Definition 6.1. Let � W�!G be a homomorphism between discrete groups.
We say that � is almost an isomorphism if �.�/ is a finite index subgroup of G
and ker.�/ is finite.

THEOREM 6.1. Let � , ƒ and G be discrete groups and let �; � W� ! G be
homomorphisms. Suppose that � is ICC and � is almost an isomorphism and that
we have an ME coupling .†;m/ of � andƒ. Let�D†�ƒƒ�ƒ {† be the self ME
coupling of � . Moreover, assume that there exists an almost .� ��/-equivariant
Borel map ˆW�! .G; �; �/. Then we can find the following two maps:

(a) a homomorphism �Wƒ!G which is almost an isomorphism;

(b) an almost .� �ƒ/-equivariant Borel map ˆ0W†! .G; �; �/.

Before the proof, we give the following

LEMMA 6.2. Let � , ƒ and G be discrete groups and let .†;m/ be an ME
coupling of � and ƒ. Let Y � † be a fundamental domain for the �-action on
† and let � Wƒ � Y ! � be the associated cocycle. Suppose the following two
conditions:

(i) We have a homomorphism � W�!G which is almost an isomorphism;

(ii) There exists a subgroup G0 of G such that the cocycle � ı � Wƒ� Y ! G is
cohomologous to a cocycle which is essentially valued in G0.

Then G0 is a subgroup of finite index in G.

Proof. Take a standard ƒ-action on a standard probability space X0 and define
a �-action and a .G �ƒ/-action on †�G �X0 by


.z; g; x/D ..
; e/z; �.
/g; x/

.g1; �/.z; g; x/D ..e; �/z; gg
�1
1 ; �x/

for g; g1 2 G, 
 2 � , � 2 ƒ, z 2 †, and x 2 X0. Consider the .G �ƒ/-space z†
given by the quotient of †�G �X0 by the �-action. Since ker.�/ is finite, the
action of ƒ on z† has a fundamental domain. Since the index ŒG W �.�/� is finite,
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the fundamental domain has finite measure. Thus, the .G �ƒ/-space z† is an ME
coupling of G and ƒ.

Let pW† �G �X0 ! z† be the natural projection. Then p.Y � feg �X0/
is a fundamental domain for the G-action on z†. Remark that p is injective on
Y � feg �X0. The cocycle Q� Wƒ�p.Y � feg �X0/!G associated to it is given
by

Q�.�; p.y; e; x//D � ı �.�; y/

for � 2ƒ, y 2 Y and x 2X0. By assumption, we can find a Borel map 'WY !G

such that
� 0.�; y/D '.� �y/� ı �.�; y/'.y/�1 2G0

for any � 2 ƒ, and a.e. y 2 Y . Define a Borel map z'Wp.Y � feg �X0/! G by
z'.p.y; e; x//D '.y/ for y 2 Y . Then

z'.� �p.y; e; x// Q�.�; p.y; e; x//z'.p.y; e; x//�1

D '.� �y/� ı �.�; y/'.y/�1 2G0;

and thus Q� is cohomologous to a cocycle which is essentially valued in G0. The
lemma now follows from Lemma 6.1 in [35]. �

Proof of Theorem 6.1. This proof is almost the same as the one given in
Section 6.2 in [35]. One denotes the element corresponding to .x; �; y/2†�ƒ� {†
by Œx; �; y� 2†�ƒƒ�ƒ {†. As in Lemma 6.6 in [35], we can prove the following
lemma by using the assumption that � is ICC.

LEMMA 6.3. If one defines a Borel map ‰W†3!G by

‰.x; y; z/Dˆ.Œx; e; z�/ˆ.Œy; e; z�/�1

for .x; y; z/ 2†3, then

‰.x; y; z1/D‰.x; y; z2/

for m4-a.e. .x; y; z1; z2/ 2†4.

Define a Borel map F W†2 ! G by F.x; y/ D ‰.x; y; z/. It follows from
Lemma 6.2 in [35] that for m-a.e. x 2†, the Borel map �x Wƒ! � given by

�x.�/D F.�
�1x; y/F.x; y/�1

is the same for m-a.e. y 2† and defines a homomorphism. Moreover, the equality

�y.�/D F.x; y/
�1�x.�/F.x; y/

holds for any � 2ƒ and m2-a.e. .x; y/ 2†2. Note that we have the equality

�x.�/Dˆ.Œx; �; z�/ˆ.Œx; e; z�/
�1



MEASURE EQUIVALENCE RIGIDITY OF THE MAPPING CLASS GROUP 1893

for any � 2ƒ and m2-a.e. .x; z/ 2†2. Let N be the normal subgroup of ƒ that is
the common kernel of �x for m-a.e. x 2†.

Let D � † be a fundamental domain for the ƒ-action on † and put z� D
D �ƒ�D �†�ƒ�†. This inclusion induces a Borel isomorphism between z�
and �. Define a �-action on z� induced by the second �-action on � and define a
ƒ-action on z� by the left multiplication on the second coordinate:

.
; �/.x; �1; y/D .x; ��1˛.
; y/
�1; 
 �y/

for 
 2 � , �; �1 2ƒ and x; y 2D, where ˛W� �D!ƒ is the cocycle associated
to D.

Let ẑ W z�!G be the Borel map induced by ˆ and the isomorphism between
z� and �. Note that ẑ is almost �-equivariant in the following sense:

ẑ ..
; e/!/D ẑ .!/�.
/�1

for any 
 2 � , and a.e. ! 2 z�. Put E0 D ẑ�1.fgng/, where fgng � G is a finite
set of all representatives of G=�.�/. Remark that E0 is invariant under the action
of ker.�/. If E � E0 is a fundamental domain for the ker.�/-action on E0, then
it is also a fundamental domain for the �-action on z�. Since ker.�/ is finite, the
measure of E0 is finite. The homomorphism �x is given by

�x.�/D ẑ .x; �; z/ ẑ .x; e; z/
�1

for any � 2ƒ and m2-a.e. .x; z/ 2D2.
For �0 2ƒ, it is easy to see that �0 2N if and only if

ẑ .x; �0�1; y/D ẑ .x; �1; y/

for any �1 2 ƒ and m2-a.e. .x; y/ 2 D2. It follows that any element in N pre-
serves E0. Since the measure of E0 is finite, we see that N is finite. Note that for
any � 2ƒ and a.e. t D .x; �1; z/ 2 z�, we have

�x.�/D �x.��1/�x.�1/
�1

D ẑ .x; ��1; z/ ẑ .x; e; z/
�1. ẑ .x; �1; z/ ẑ .x; e; z/

�1/�1

D ẑ ..e; �/t/ ẑ .t/�1:

Let � Wƒ�E! � be the cocycle associated to E. It follows from Fubini’s theorem
that there exists x0 2D such that � D �x0 Wƒ! G is a homomorphism with its
kernel N and for any � 2ƒ, 
 2 � , a.e. x 2D, and a.e. .�1; z/ 2ƒ�D, we have

�x.�/D F.x0; x/
�1�.x/F.x0; x/

and
ẑ ..
; �/.x0; �1; z//D �.�/ ẑ .x0; �1; z/�.
/

�1:
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We show that �.ƒ/ is a subgroup of finite index in G. Define a Borel map
'WE!G by

'.t/D F.x0; x/ ẑ .t/

for t D .x; �1; z/ 2E. Put

� 0.�; t/D '.� � t /� ı �.�; t/'.t/�1

for � 2ƒ and t 2E. Since � � t D .�.�; t/; �/t , we see that

ẑ .� � t /D ẑ ..�.�; t/; �/t/D ẑ ..e; �/t/� ı �.�; t/�1

and

� 0.�; t/D F.x0; x/ ẑ .� � t /� ı �.�; t/ ẑ .t/
�1F.x0; x/

�1

D F.x0; x/ ẑ ..e; �/t/ ẑ .t/
�1F.x0; x/

�1

D F.x0; x/�x.�/F.x0; x/
�1
D �.�/ 2 �.ƒ/:

It follows from Lemma 6.2 that �.ƒ/ is a subgroup of finite index in G.
Finally, we construct a Borel map ˆ0W†!G. Note that fx0g �ƒ�D � z�

is a .� �ƒ/-invariant Borel subset isomorphic to † as a .� �ƒ/-space. It follows
from the choice of x0 that the composition of the restriction of ẑ to fx0g �ƒ�D
and the map G 3 g 7! g�1 2G is a desired map. �

Combining Corollary 5.9 and Theorem 6.1, we obtain Theorem 1.1.

Proof of Theorem 1.2. First, suppose that �.M 1/ � �.M 2/. We may as-
sume that �.M 1/� 2. By Theorem 1.1, one can find an injective homomorphism
�.M 1I 3/ ! Aut.C.M 2// whose image is of finite index in Aut.C.M 2//. By
using Theorem 2.8 and restricting the homomorphism to some subgroup �1 of fi-
nite index in �.M 1I 3/, one can construct an injective homomorphism from �1 into
�.M 2/ whose image is of finite index in �.M 2/. It follows from Theorem 2 in [39]
that M 1 DM0;6 and M 2 DM2;0. Similarly, if we assume that �.M 1/� �.M 2/,
then it can be shown that M 1 DM0;6 and M 2 DM2;0. �

7. Rigidity of a direct product of mapping class groups

We first review Monod and Shalom’s result proved in Section 5.1 of [35]. Let
C be the class mentioned in Section 1, i.e., the class consisting of discrete groups
G which admit a mixing unitary representation � on a Hilbert space such that the
second bounded cohomology group H 2

b
.G; �/ of G with coefficient � does not

vanish. In what follows, we fix a positive integer n. Let �1; : : : ; �n be torsion-
free discrete groups in C and let ƒ1; : : : ; ƒn be torsion-free discrete groups. Put
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� D �1 � � � � ��n and ƒDƒ1 � � � � �ƒn. We write

� 0i D
Y
j¤i

�j ; ƒ0i D
Y
j¤i

ƒj

for each i 2 f1; : : : ; ng.
Suppose that we have an ergodic ME coupling .†;m/ of � and ƒ, that is,

.†;m/ is an ME coupling on which � �ƒ acts ergodically. Then there exists a
bijection t W f1; : : : ; ng ! f1; : : : ; ng and fundamental domains Y;X � † for the
�-action and ƒ-action on †, respectively, satisfying

ƒt.i/Y � �iY; �iX �ƒt.i/X

for any i 2 f1; : : : ; ng. Let x†i be the space of ergodic components for the .� 0i �
ƒ0
t.i/
/-action on .†;m/ for i 2 f1; : : : ; ng, which is naturally a .�i �ƒt.i//-space.

Define a measure �i (resp. �i ) on x†i by projecting the restricted measure on �iY
(resp. ƒt.i/X ) through the natural map �iY ! x†i (resp. ƒt.i/X ! x†i ). Then

(a) �i and �i are absolutely continuous with respect to each other;

(b) both �i and �i are invariant for the .�i �ƒt.i//-action on x†i ;

(c) if xY (resp. xX) is the image of Y (resp. X) in x†i , then it is a fundamen-
tal domain for the �i -action on .x†i ; �i / (resp. the ƒt.i/-action on .x†i ; �i /).
Moreover, both �i . xY / and �i . xX/ are finite.

These claims are shown in the proof of Theorem 1.16 in [35]. Let

ci .x/D
d�i

d�i
.x/; x 2 x†i

be the Radon-Nikodym derivative, which is positive and finite a.e. on x†i . It follows
from the condition (b) that the function ci is invariant for the .�i �ƒt.i//-action.
Put

x†i;k D fx 2 x†i j k < ci .x/� kC 1g

for each nonnegative integer k. Then x†i D
F1
kD0
x†i;k up to null sets. It follows

from the condition (c) that x†i;k is an ME coupling of �i and ƒt.i/ with respect to
�i for each k (if x†i;k has nonzero measure).

In this situation, we suppose the following condition: For each i 2 f1; : : : ; ng
and j 2 f1; 2g, let M j

i be a surface with �.M j
i / > 0 and M j

i ¤ M1;2;M2;0.
Assume that �i (resp. ƒi ) is a torsion-free subgroup of finite index in �.M 1

i /
˘

(resp. �.M 2
i /
˘) for each i .

Remark that the mapping class group �.M/ of a surface M with �.M/� 0

belongs to the class C (see Corollary B in [20]). Whether a discrete group belongs
to C or not is preserved under ME, and in particular under commensurability up to
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finite kernels (see Corollary 7.6 in [35]). Note that M 1
i and M 2

t.i/
are diffeomor-

phic for any i by Theorem 1.2 and let gi be an isotopy class of a diffeomorphism
M 2
t.i/
!M 1

i . Let

�g W

nY
iD1

�.M 2
i /
˘
!

nY
iD1

Aut.C.M 1
i //

be the isomorphism defined by

�g.
1; : : : ; 
n/D .�.g1
t.1/g
�1
1 /; : : : ; �.gn
t.n/g

�1
n //

for 
i 2 �.M 2
i /
˘, where we denote by the same symbol � the natural homomor-

phism �.M/˘ ! Aut.C.M// for any surface M . By applying Corollary 5.9
to each ME coupling x†i;k of �i and ƒt.i/, one obtains an almost .�i �ƒt.i//-
equivariant Borel map ˆi W x†i ! .Aut.C.Mi //; �; �gi /, where �gi W�.M

2
t.i/
/˘!

Aut.C.M 1
i // is the isomorphism defined by gi . Define a Borel map ˆW† !Qn

iD1 Aut.C.M 1
i // by

ˆ.x/D .ˆ1.p1.x//; : : : ; ˆn.pn.x///

for x 2†, where pi W†! x†i denotes the natural projection. It is easy to see that

ˆ..
; �/x/D �.
/ˆ.x/�g.�/
�1

for any 
 2 � , � 2ƒ. and a.e. x 2†. Hence, we have shown the following

THEOREM 7.1. For each i 2 f1; : : : ; ng and j 2 f1; 2g, let M j
i be a surface

with �.M j
i / > 0 andM j

i ¤M1;2;M2;0. Assume that �i (resp.ƒi ) is a torsion-free
subgroup of finite index in �.M 1

i /
˘ (resp. �.M 2

i /
˘). Put � D �1 � � � � ��n and

ƒ D ƒ1 � � � � �ƒn. Suppose that we have an ergodic ME coupling .†;m/ of �
and ƒ. Then we can find the following:

(a) a bijection t on the set f1; : : : ; ng;

(b) an isotopy class gi of a diffeomorphism M 2
t.i/
!M 1

i for each i ;

(c) an almost .� �ƒ/-equivariant Borel map

ˆW†!

 
nY
iD1

Aut.C.M 1
i //; �; �g

!
:

COROLLARY 7.2. Let M j
i be the surfaces in Theorem 7.1. The conclusion of

Theorem 7.1 holds even if � (resp. ƒ) is a subgroup of finite index in �.M 1
1 /
˘ �

� � � ��.M 1
n /
˘ (resp. �.M 2

1 /
˘ � � � � ��.M 2

n /
˘).
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Proof. It is easy to check that if Mi is a surface with �.Mi / > 0 and if �i is
a finite index subgroup of �.Mi /

˘, then the natural homomorphism

�1 � � � � ��n! Aut.C.M1//� � � � �Aut.C.Mn//

is almost an isomorphism and ICC. By Lemma 5.8 and Theorem 7.1, we obtain
the corollary. �

The following corollary determines all isomorphisms between finite index
subgroups of a direct product of mapping class groups.

COROLLARY 7.3. For each i 2 f1; : : : ; ng, letMi be a surface with �.Mi / > 0

and Mi ¤M1;2;M2;0 and let � be a finite index subgroup of

G0 D �.M1/
˘
� � � � ��.Mn/

˘:

Suppose that we have an injective homomorphism � W�!G0 with the index
ŒG0 W �.�/� finite. Then we can find a bijection t on the set f1; : : : ; ng and an
isotopy class gi of a diffeomorphism Mt.i/ ! Mi for each i such that for any

 D .
1; : : : ; 
n/ 2 � , we have

�.
/D .g1
t.1/g
�1
1 ; : : : ; gn
t.n/g

�1
n /:

Proof. We identify �.Mi /
˘ and Aut.C.Mi // via the natural isomorphism.

Consider the ergodic ME coupling .G0; �; �/ of G0 and � . It follows from Corol-
lary 7.2 that we can find the following:

(a) a bijection t on f1; : : : ; ng;

(b) an isotopy class gi of a diffeomorphism Mt.i/!Mi for each i ;

(c) an almost .G0 ��/-equivariant Borel map

ˆW .G0; �; �/! .G0; �; �g/:

Put hD .h1; : : : ; hn/Dˆ.e/ and define an automorphism �hg of G0 by

�hg.s/D .h1g1st.1/g
�1
1 h�11 ; : : : ; hngnst.n/g

�1
n h�1n /

for s D .s1; : : : ; sn/ 2G0. Define a .G0 �G0/-equivariant map

‰W .G0; �; �g/! .G0; �; �hg/

by ‰.s/D sh�1 for s 2G0. It is easy to see that ‰ıˆ.e/D e, and thus ‰ıˆD id.
Therefore, � is the restriction of �hg . �

COROLLARY 7.4. For each i 2 f1; : : : ; ng, letMi be a surface with �.Mi / > 0

and let � be a finite index subgroup of G0 D �.M1/
˘ � � � � ��.Mn/

˘. We put

G D Aut.Aut.C.M1//� � � � �Aut.C.Mn///
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and denote by � WG0 ! G the natural homomorphism. If .†;m/ is a self ME
coupling of � , then there exists an essentially unique, almost .� ��/-equivariant
Borel map ˆW†! .G; �; �/.

Proof. By using Lemma 5.7 and Corollary 7.2, one can easily check that
there exists an essentially unique, almost .� ��/-equivariant Borel map from each
ergodic component for the .� ��/-action on .†;m/ into .G; �; �/. The corollary
then follows from Corollary 3.6 in [10]. �

Theorem 1.3 follows from Theorem 6.1 and this corollary.

8. Lattice embeddings of the mapping class group

In this final section, we give another application of Corollary 7.4, following
[11]. We prove Theorem 1.4 that describes all locally compact second countable
(lcsc) groups containing a lattice isomorphic to a finite direct product of mapping
class groups. We fix the notation as follows: Let n be a positive integer and let Mi

be a surface with �.Mi / > 0 for each i 2 f1; : : : ; ng. Put

G0 D �.M1/
˘
� � � � ��.Mn/

˘; G D Aut.Aut.C.M1//� � � � �Aut.C.Mn///:

Let � WG0!G be the natural homomorphism. Theorem 1.4 directly follows from
the following

THEOREM 8.1. Let � be a finite index subgroup of G0. Suppose that we have
an injective homomorphism � W� ! H into a lcsc group H such that �.�/ is a
lattice in H . Then there exist the following two maps:

(i) an almost .� � �/-equivariant Borel map ˆW .H; �; �/! .G; �; �/, which
satisfies ˆ.h1h2/Dˆ.h1/ˆ.h2/ for a.e. .h1; h2/ 2H �H ;

(ii) a continuous homomorphism ˆ0WH ! G such that ˆ0.h/ D ˆ.h/ for a.e.
h 2H and ˆ0.�.
//D �.
/ for any 
 2 � . Moreover, ker.ˆ0/ is compact.

Proof. First, we show the assertion (i). Applying Corollary 7.4 to the self ME
coupling H of � with the Haar measure, one obtains an almost .���/-equivariant
Borel map

ˆW .H; �; �/! .G; �; �/:

Define a Borel map F WH �H !G by

F.h1; h2/Dˆ.h
�1
1 /�1ˆ.h�11 h2/ˆ.h2/

�1

for h1; h2 2H . Then for any 
 2 � and a.e. .h1; h2/ 2H �H , we have

F.h1�.
/; h2/D F.h1; h2/D F.h1; h2�.
/
�1/;

F .�.
/h1; �.
/h2/D �.
/F.h1; h2/�.
/
�1:
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Thus, F induces a Borel map f from X D .H=�.�//� .H=�.�// to G such that

f .
x/D �.
/f .x/�.
/�1

for any 
 2� and a.e. x 2X , where the �-action on X is induced from the �-action
on H �H given by 
.h1; h2/ D .�.
/h1; �.
/h2/ for 
 2 � and h1; h2 2 H .
By projecting the finite �-invariant measure on X to G through f , we obtain
a finite measure � on G invariant under the action of the diagonal subgroup of
� �� on .G; �; �/. It follows from Theorem 2.9 that the support of � is feg and
F.h1; h2/D e, that is, ˆ.h�11 h2/Dˆ.h

�1
1 /ˆ.h2/ for a.e. .h1; h2/ 2H �H .

Next, we show the assertion (ii). It follows from Theorems B.2 and B.3 in [44]
that there exists a continuous homomorphism ˆ0WH !G such that ˆ0.h/Dˆ.h/
for a.e. h 2H . For any 
 2 � and a.e. h 2H , we have

�.
/ˆ.h/Dˆ.�.
/h/Dˆ0.�.
/h/Dˆ0.�.
//ˆ0.h/Dˆ0.�.
//ˆ.h/;

which implies �.
/Dˆ0.�.
// for any 
 2 � . Since ker.ˆ0/ is essentially equal
to ˆ�1.e/, which has finite measure, we see that ker.ˆ0/ is compact. �
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