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Abstract

This paper introduces a new measure-conjugacy invariant for actions of free
groups. Using this invariant, it is shown that two Bernoulli shifts over a finitely
generated free group are measurably conjugate if and only if their base measures
have the same entropy. This answers a question of Ornstein and Weiss.

1. Introduction

This paper is motivated by an old and central problem in measurable dynamics:
given two dynamical systems, determine whether they are measurably-conjugate,
i.e., isomorphic. Let us set some notation.

A dynamical system (or system for short) is a triple .G;X;�/ where .X; �/ is a
probability space and G is a group acting by measure-preserving transformations on
.X; �/. We will also call this a dynamical system over G, a G-system or an action
of G. In this paper, G will always be a discrete countable group. Two systems
.G;X;�/ and .G; Y; �/ are isomorphic (i.e., measurably conjugate) if and only if
there exist conull sets X 0�X; Y 0�Y and a bijective measurable map � WX 0!Y 0

such that ��1 is measurable, ���D � and �.gx/D g�.x/8g 2G, x 2X 0.
A special class of dynamical systems called Bernoulli systems or Bernoulli

shifts has played a significant role in the development of the theory as a whole;
it was the problem of trying to classify them that motivated Kolmogorov to in-
troduce the mean entropy of a dynamical system over Z [Kol58], [Kol59]. That
is, Kolmogorov defined for every system .Z; X; �/ a number h.Z; X; �/ called the
mean entropy of .Z; X; �/ that quantifies, in some sense, how “random” the system
is. His definition was modified by Sinai [Sin59]; the latter has become standard.
The lectures notes [Roh67] are a classical reference. Modern references include
[Pet83], [Rud90] and [Gla03].

Bernoulli shifts also play an important role in this paper, so let us define
them. Let .K; �/ be a standard Borel probability space. For a discrete countable
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group G, let KG D
Q
g2G K be the set of all functions x W G ! K with the

product Borel structure and let �G be the product measure on KG . G acts on
KG by .gx/.f / D x.g�1f / for x 2 KG and g; f 2 G. This action is measure-
preserving. The system .G;KG ; �G/ is the Bernoulli shift over G with base .K; �/.
It is nontrivial if � is not supported on a single point.

Before Kolmogorov’s seminal work [Kol58], [Kol59], it was unknown whether
all nontrivial Bernoulli shifts over Z were measurably conjugate to each other. He
proved that h.Z; KZ; �Z/DH.�/ where H.�/, the entropy of � is defined as fol-
lows. If there exists a finite or countably infinite set K 0 �K such that �.K 0/D 1
then

H.�/D�
X
k2K0

�.fkg/ log.�.fkg//

where we follow the convention 0 log.0/D 0. Otherwise, H.�/DC1. Thus two
Bernoulli shifts over Z with different base measure entropies cannot be measurably
conjugate.

The converse was proven by D. Ornstein in the groundbreaking papers [Orn70a],
[Orn70b]. That is, he proved that if two Bernoulli shifts .Z; KZ; �Z/, .Z; LZ; �Z/

are such that H.�/DH.�/ then they are isomorphic.
In [Kie75], Kieffer proved a generalization of the Shannon-McMillan theorem

to actions of a countable amenable group G. In particular, he extended the defini-
tion of mean entropy from Z-systems to G-systems. This leads to the generalization
of Kolmogorov’s theorem to amenable groups.

In the landmark paper [OW87], Ornstein and Weiss extended most of the
classical entropy theory from Z-systems to G-systems where G is any countable
amenable group. In particular, they proved that if two Bernoulli shifts .G;KG ; �G/,
.G;LG ; �G/ over a countably infinite amenable group G are such that H.�/ D
H.�/ then they are isomorphic. Thus Bernoulli shifts over G are completely clas-
sified by base measure entropy.

Now let us say that a groupG is Ornstein ifH.�/DH.�/ implies .G;KG ; �G/
is isomorphic to .G;LG ; �G/ whenever .K; �/ and .L; �/ are standard Borel prob-
ability spaces. By the above, all countably infinite amenable groups are Ornstein.
Stepin proved that any countable group that contains an Ornstein subgroup is itself
Ornstein [Ste75]. It is unknown whether every countably infinite group is Ornstein.

In [OW87], Ornstein and Weiss asked whether all Bernoulli shifts over a non-
amenable group are isomorphic. The next result shows that the answer is ‘no’:

THEOREM 1.1. Let G D hs1; : : : ; sri be the free group of rank r . If .K1; �1/,
.K2; �2/ are standard probability spaces withH.�1/CH.�2/<1 then .G;KG1 ; �

G
1 /

is measurably conjugate to .G;KG2 ; �
G
2 / if and only if H.�1/DH.�2/.
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The reason Ornstein and Weiss thought the answer might be ‘yes’ is due to
a curious example presented in [OW87]. It pertains to a well-known fundamental
property of entropy: it is nonincreasing under factor maps. Let .G;X;�/ and
.G; Y; �/ be two systems. A map � WX ! Y is a factor if ���D � and �.gx/D
g�.x/ for almost every x 2X and every g 2G. If G is amenable then the mean
entropy of a factor is less than or equal to the mean entropy of the source. This
is essentially due to Sinai [Si59]. So if Kn D f1; : : : ; ng and �n is the uniform
probability measure on Kn then .G;KG2 ; �

G
2 /, which has entropy log.2/, cannot

factor onto .G;KG4 ; �
G
4 /, which has entropy log.4/.

The argument above fails if G is nonamenable. Indeed, let G D ha; bi be a
rank 2 free group. Identify K2 with the group Z=2Z and K4 with Z=2Z�Z=2Z.
Then

�.x/.g/ WD
�
x.g/C x.ga/; x.g/C x.gb/

�
8x 2KG2 ; g 2G

is a factor map from .G;KG2 ; �
G
2 / onto .G;KG4 ; �

G
4 /. This is Ornstein-Weiss’ ex-

ample. It is the main ingredient in the proof of the next theorem, which will appear
in a separate paper.

THEOREM 1.2. Let G be any countable group that contains a nonabelian free
subgroup. Then every nontrivial Bernoulli shift over G factors onto every Bernoulli
shift over G.

To prove Theorem 1.1, the following invariant is introduced. Let .X; �/ be any
probability space on whichGDhs1; : : : ; sri, the rank r free group, acts by measure-
preserving transformations. Let ˛ D fA1; : : : ; Ang be a partition of X into finitely
many measurable sets. Let B.e; n/�G denote the ball of radius n centered at the
identity element with respect to the word metric induced by S D fs˙11 ; : : : ; s˙1r g.
The join of two partitions ˛; ˇ of X is defined by ˛_ˇ D fA\B j A 2 ˛;B 2 ˇg.
Let

H.˛/ WD �
X
A2˛

�.A/ log.�.A//;

F.˛/ WD .1� 2r/H.˛/C

rX
iD1

H.˛_ si˛/;

˛n WD
_

g2B.e;n/

g˛;

f .˛/ WD inf
n
F.˛n/:

A partition ˛ is generating if the smallest G-invariant � -algebra containing ˛ is the
�-algebra of all measurable sets (up to sets of measure zero). The main theorem
of this paper is:
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THEOREM 1.3. Let G D hs1; : : : ; sri. Let .G;X;�/ be a system. If ˛ and ˇ
are finite measurable generating partitions of X then f .˛/ D f .ˇ/. Hence this
number, denoted f .G;X;�/, is a measure-conjugacy invariant.

Theorem 5.2 below implies that if jKj<1 then f .G;KG ; �G/DH.�/. This
and Stepin’s theorem proves Theorem 1.1. A simple exercise reveals that if r D 1,
then f .G;X;�/D h.G;X;�/ is Kolmogorov’s entropy.

Here is a brief outline of the paper. In the next section, standard entropy-theory
definitions are presented. In Section 3, an equivalence relation, called combinato-
rial equivalence, is introduced on the space of finite partitions of X , where .X; �/
is a standard probability space on which a countable group G acts. We prove
that the combinatorial equivalence class of a finite generating partition is dense
in the space of all generating partitions. In Section 4, we introduce an operation
on partitions called splitting and show that any two combinatorially equivalent
partitions have a common splitting. This culminates in a condition sufficient for a
function from the space of partitions to R to induce a measure-conjugacy invariant.
In Section 5, this condition is shown to hold for the function F defined above. This
proves Theorem 1.3. Then we prove Theorem 5.2 (that f .G;KG ; �G/DH.�/ if
jKj<1) and conclude Theorem 1.1.

2. Some standard definitions

For the rest of this section, fix a standard probability space .X; �/.

Definition 1. A partition ˛ D fA1; : : : ; Ang is a pairwise disjoint collection
of measurable subsets Ai of X such that [niD1Ai DX . The sets Ai are called the
partition elements of ˛. Alternatively, they are called the atoms of ˛. Unless stated
otherwise, all partitions in this paper are finite (i.e., n <1).

If ˛ and ˇ are partitions of X then we write ˛ D ˇ a.e. if for all A 2 ˛ there
exists B 2 ˇ with �.A�B/D 0. Let P denote the set of all a.e.-equivalence classes
of finite partitions of X . By a standard abuse of notation, we will refer to elements
of P as partitions.

Definition 2. If ˛; ˇ 2 P then the join of ˛ and ˇ is the partition ˛ _ ˇ D
fA\B jA 2 ˛; B 2 ˇg.

Definition 3. Let F be a �-algebra contained in the �-algebra of all measur-
able subsets of X . Given a partition ˛, define the conditional information function
I.˛jF/ WX ! R by

I.˛jF/.x/D� log
�
�.AxjF/.x/

�
where Ax is the atom of ˛ containing x. Here �.AxjF/ W X ! R is the condi-
tional expectation of �Ax

, the characteristic function of Ax , with respect to the
� -algebra F.



A MEASURE-CONJUGACY INVARIANT FOR FREE GROUP ACTIONS 1391

The conditional entropy of ˛ with respect to F is defined by

H.˛jF/D

Z
X

I.˛jF/.x/ d�.x/:

If ˇ is a partition then, by abuse of notation, we can identify ˇ with the �-
algebra equal to the set of all unions of partition elements of ˇ. Through this
identification, I.˛jˇ/ and H.˛jˇ/ are well-defined. Let I.˛/D I.˛jf∅; Xg/ and
H.˛/DH.˛jf∅; Xg/.

LEMMA 2.1. For any two partitions ˛; ˇ and for any two �-algebras F1;F2
with F1 � F2,

H.˛_ˇ/DH.˛/CH.ˇj˛/;

H.˛jF2/ � H.˛jF1/:

Proof. This is well-known. For example, see [Gla03, Prop. 14.16, p. 255]. �

Definition 4 (Rokhlin distance). Define d W P�P! R by

d.˛; ˇ/DH.˛jˇ/CH.ˇj˛/D 2H.˛_ˇ/�H.˛/�H.ˇ/:

By [Par69, Th. 5.22, p. 62] this defines a distance function on P. If G is a group
acting by measure-preserving transformations on .X; �/ then the action of G on
P is isometric. Thus, if g 2G, ˛; ˇ 2 P then d.g˛; gˇ/D d.˛; ˇ/. From now on,
we consider P with the topology induced by d.�; �/.

Definition 5. Let G be a group acting on .X; �/. Let ˛ be a partition of X .
Let †˛ be the smallest G-invariant �-algebra containing ˛. Then ˛ is generating
if for any measurable set A�X there exists a set A0 2†˛ such that �.A�A0/D 0.
Let Pgen � P denote the set of all generating partitions.

3. Combinatorially equivalent partitions

For this section, fix a countable group G and an action of G on a standard
probability space .X; �/ by measure-preserving transformations.

Definition 6. Given ˛ 2 P and F �G finite, let ˛F D
W
f 2F f ˛.

Definition 7. If ˛; ˇ 2 P are such that for all A 2 ˛ there exists B 2 ˇ with
�.A�B/D 0 then we say that ˛ refines ˇ and denote it by ˛ � ˇ. Equivalently,
ˇ is a coarsening of ˛.

Definition 8. Let ˛; ˇ 2P. We say that ˛ is combinatorially equivalent to ˇ
if there exist finite sets L;M �G such that ˛ � ˇL and ˇ � ˛M . Let Peq.˛/�P

denote the set of partitions combinatorially equivalent to ˛

The goal of this section is to prove Theorem 3.3 below: If ˛ is a generating
partition then Peq.˛/ is dense in the subspace of all generating partitions.
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LEMMA 3.1. Let ˛ be a generating partition and ˇ D fB1; : : : ; Bmg 2P. Let
" > 0. Then there exists a partition ˇ0 D fB 01; : : : ; B

0
mg and a finite set L�G such

that ˛L � ˇ0 and for all i D 1 : : : m, �.Bi�B 0i /� ".

Proof. Since ˛ is generating, there exists a finite set L�G such that for every
i 2 f1; : : : ; mg, there is a set B 00i , equal to a finite union of atoms of ˛L, such that
�.Bi�B

00
i / <

"
m

. For i D 1 : : : m� 1, let

B 0i WD B
00
i �

[
j¤i

B 00j :

B 0m WDX �
[
i<m

B 0i D B
00
m[

[
i¤j

B 00i \B
00
j :

Observe that for all i D 1 : : : m,

Bi �
[
j

B 00j �Bj � B
0
i � Bi [

[
j

B 00j �Bj :

Thus
�.B 0i�Bi /�m

� "
m

�
D ":

By construction, ˇ0 D fB 01; : : : ; B
0
mg � ˛

L. �
LEMMA 3.2. Let ˛ D fA1; : : : ; Ang 2 P and ˇ 2 Pgen. Let " > 0. Then

there exists a finite set M � G such that for all finite L � G with M � L, the
partition elements fBL1 ; : : : ; B

L
mL
g of ˇL can be ordered so that there exists an

r 2 f1; : : : ; mLg and a function f W f1; 2; : : : ; rg ! f1; 2; : : : ; ng so that for all
i 2 f1; : : : ; rg,

�.BLi \Af .i//

�.BLi /
� 1� "

and
�
�[
i>r

BLi

�
< ":

Proof. Let ı > 0 be such that ı <
�
"
n

�2
. By the previous lemma, there exists

a partition ˛0 D fA01; : : : ; A
0
ng 2 P and a finite set M �G such that ˛0 � ˇM and

�.A0i�Ai / < ı for all i . Let L be any finite subset of G with M � L.
Let ˇLDfBL1 ; : : : ; B

L
mL
g and let f W f1; : : : ; mLg!f1; : : : ; ng be the function

f .i/D j if �.BLi �A
0
j /D 0. This is well-defined since ˇL refines ˛0.

After reordering the partition elements of ˇL D fBL1 ; : : : ; B
L
mL
g if necessary,

we may assume that there is an r 2 f0; : : : ; mLg such that, if r > 0 then for all
i � r ,

�.BLi \Af .i//

�.BLi /
� 1�

p
ı;
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and if i > r then
�.BLi \Af .i//

�.BLi /
< 1�

p
ı:

So if i > r then
�.BLi \Af .i// < .1�

p
ı/�.BLi /:

Thus

�.BLi /D �.B
L
i �Af .i//C�.B

L
i \Af .i//

< �.BLi �Af .i//C .1�
p
ı/�.BLi /:

Solve for �.BLi / to obtain

�.BLi / <
1
p
ı
�.BLi �Af .i//:

Since the atoms BLi are pairwise disjoint, it follows that

�
�[
i>r

BLi

�
<

1
p
ı
�
�[
i>r

BLi �Af .i/

�
:

Since �.BLi �A
0
f .i/

/D 0, it must be that BLi �Af .i/ � A
0
f .i/
�Af .i/, up to a set

of measure zero. So,

�
�[
i>r

BLi

�
�

1
p
ı
�
�[
i>r

A0f .i/�Af .i/

�
� n
p
ı < ": �

THEOREM 3.3. If ˛ is a generating partition then

Pgen � Peq.˛/:

In other words, the subspace of partitions combinatorially equivalent to ˛ is dense
in the space of all generating partitions.

Proof. Let ˛ D fA1; : : : ; Ang and ˇ D fB1; : : : ; Bmg 2 Pgen. Without loss
of generality, we assume that �.Ai / > 0 for all i D 1 : : : n. Let " > 0. By the
previous lemma, there exists a finite set L � G such that the atoms of ˇL D
fBL1 ; : : : ; B

L
mL
g can be ordered so that there exists an r 2 f1; : : : ; mLg and a func-

tion f W f1; 2; : : : rg ! f1; 2; : : : ; ng so that for all i 2 f1; : : : ; rg,

�.BLi \Af .i//

�.BLi /
� 1� "

and

�
�[
i>r

BLi

�
< ":(1)
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By choosing " small enough (if necessary) we may assume that f maps onto
f1; 2; : : : ; ng (for example, by choosing " to be smaller than 1

2
�.Aj / over all

j D 1 : : : n). By definition of ˇL, mL � mjLj. If necessary, we may assume
that mL DmjLj after modifying ˇL by adding to it several copies of the empty set.
That is, for some i , it may occur that BLi D∅.

Let ı > 0 be such that ı < ". By Lemma 3.1 there exists a partition 
 D
fC1; : : : ; Cmg and a finite set M � G such that 
 � ˛M and �.Ci�Bi / < ı

for all i . By choosing ı small enough we may assume the following. Let 
L D
fCL1 ; : : : ; C

L
mL
g. Then, after reordering the atoms of 
L if necessary,

�
� mL[
jD1

CLj �B
L
j

�
� ":(2)

Let

C 0i D fx 2 Ci j if x 2 CLj for some j then x 2 Af .j /g

D

mL[
jD1

Ci \C
L
j \Af .j /:

Let Ci;j D Ci \Aj �C 0i . Let


1 D fC
0
i j i D 1 : : : mg[ fCi;j j 1� i; j �mg:

Note that 
1 � .˛M /LD ˛LM where LM D flm j l 2L;m 2M g. We claim
that 
1 is combinatorially equivalent to ˛. Let †1 be the smallest G-invariant
collection of subsets of X that is closed under finite intersections and unions and
contains the atoms of 
1. It suffices to show that every atom of ˛ is in †1. Observe
that, for each i , Ci D C 0i [

Sm
jD1 Ci;j . Hence, Ci 2 †1. Therefore the atoms of


L are also in †1. Since f maps onto f1; 2; : : : ; ng, the definition of C 0i implies

C 0i \Ap D[fC
0
i \C

L
j j f .j /D pg:

So C 0i \Ap is in†1 for all i; p. Now Ci\ApDCi;p[.C 0i \Ap/. So Ci\Ap 2†1
for all i; p. Since

Ap D

m[
iD1

Ci \Ap;

Ap 2†1. Since p is arbitrary, this proves the claim. Thus 
1 2 Peq.˛/.
We claim that �.C 0i�Ci /� 3" for all i . By definition,

C 0i�Ci D Ci �C
0
i �

mL[
jD1

CLj �Af .j /:
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For each j ,

CLj �Af .j / � .C
L
j �B

L
j /[ .B

L
j �Af .j //:

Thus,

C 0i�Ci �

mL[
jD1

.CLj �B
L
j /[

r[
jD1

.BLj �Af .j //[
[
j>r

.BLj �Af .j //:(3)

If j � r , then by definition of r ,

�.BLj \Af .j //

�.BLj /
� 1� ":

This implies

�.BLj �A
L
f.j //� "�.B

L
j /:

Thus

�
� r[
jD1

BLj �A
L
f.j /

�
�

X
j

"�.BLj /� ":(4)

Equations (3), (2), (4) and (1) imply the claim.
Since ı<" and�.Ci�Bi /<ı for all i , the above claim implies that�.C 0i�Bi /�

4" for all i . Thus we have shown that for every " > 0, there exists a parti-
tion 
1 D fC 01; : : : ; C

0
m; : : : g, combinatorially equivalent to ˛, containing at most

mCm2 partition elements and such that �.C 0i�Bi / < 4" for i D 1 : : : m. This
implies that ˇ is in the closure of Peq.˛/. Since ˇ is arbitrary this implies the
theorem. �

4. Splittings

In this section, G can be any finitely generated group with finite symmetric
generating set S . Let .X; �/ be a standard probability space on which G acts by
measure-preserving transformations.

Definition 9. Let ˛ be a partition. A simple splitting of ˛ is a partition � of
the form � D ˛_ sˇ where s 2 S and ˇ is a coarsening of ˛.

A splitting of ˛ is any partition � that can be obtained from ˛ by a sequence
of simple splittings. In other words, there exist partitions ˛0, ˛1; : : : ; ˛m such that
˛0 D ˛, ˛m D � and ˛iC1 is a simple splitting of ˛i for all 1� i < m.

If � is a splitting of ˛ then ˛ and � are combinatorially equivalent. The
splitting concept originated from Williams’ work [Wil73] in symbolic dynamics.
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Definition 10. The Cayley graph � of .G; S/ is defined as follows. The vertex
set of � is G. For every s 2 S and every g 2G there is a directed edge from g to
gs labeled s. There are no other edges.

The induced subgraph of a subset F � G is the largest subgraph of � with
vertex set F . A subset F � G is connected if its induced subgraph in � is con-
nected.

LEMMA 4.1. If ˛; ˇ 2 P, ˛ refines ˇ and F � G is finite, connected and
contains the identity element e then

˛_
_

f 2F�1

fˇ

is a splitting of ˛.

Proof. We prove this by induction on jF j. If jF j D 1 then F D feg and the
statement is trivial. Let f0 2 F �feg be such that F1 D F �ff0g is connected. To
see that such an f0 exists, choose a spanning tree for the induced subgraph of F .
Let f0 be any leaf of this tree that is not equal to e.

By induction, ˛1 WD ˛_
W
f 2F�1

1
fˇ is a splitting of ˛. Since F is connected,

there exists an element f1 2 F1 and an element s1 2 S such that f1s1 D f0. Since
f1 2 F1, ˛1 refines .f �11 ˇ/. Thus

˛_
_

f 2F�1

fˇ D ˛1 _f
�1
0 ˇ D ˛1 _ s

�1
1 .f �11 ˇ/

is a splitting of ˛. �

PROPOSITION 4.2. Let ˛; ˇ be two combinatorially equivalent generating
partitions. Then there is an n� 0 such that

˛n D
_

g2B.e;n/

g˛

is a splitting of ˇ. Here B.e; n/ is the ball of radius n centered at the identity
element in G with respect to the word metric induced by S . Of course, ˛n is also a
splitting of ˛.

This proposition is a variation of a result that is well-known in the case G D Z

in the context of subshifts of finite-type. For example, see [LM95, Th. 7.1.2, p. 218].
It was first proven in [Wil73].

Proof. Let L;M �G be finite sets such that ˛�ˇL and ˇ�˛M . Let l; m2N

be such that L � B.e; l/ and M � B.e;m/. So ˛ � ˇl and ˇ � ˛m. Since balls
are connected and ˛ � ˇl , the previous lemma implies ˇl _˛mCl is a splitting of
ˇl , and therefore, is a splitting of ˇ. But ˇl _˛mCl D .ˇ_˛m/l D ˛mCl . �
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THEOREM 4.3. Let ˆ W P! R be any continuous function. Suppose that ˆ is
monotone decreasing under splittings; i.e., if � is a splitting of ˛ then ˆ.�/�ˆ.˛/.
Define � W P! R by

�.˛/D lim
n!1

ˆ.˛n/D inf
n
ˆ.˛n/:

Then, for any two finite generating partitions ˛1 and ˛2, �.˛1/D �.˛2/. So
we may define �.G;X;�/D �.˛/ for any finite generating partition ˛. The number
�.G;X;�/ is a measure-conjugacy invariant.

Proof. Let ˛ and ˇ be two combinatorially equivalent finite partitions. We
claim that �.˛/ D �.ˇ/. To see this, suppose, for a contradiction, that �.˛/ <
�.ˇ/. Then there exists an n � 0 such that ˆ.˛n/ < �.ˇ/. But by the previous
proposition, there is an m � 0 such that ˇm is a splitting of ˛n which implies
ˆ.˛n/�ˆ.ˇm/� �.ˇ/, a contradiction. So �.˛/D �.ˇ/.

For n � 0 and ˛ 2 P, let ˆn.˛/ D ˆ.˛n/. Since ˆ is continuous and the
map ˛ 7! ˛n is also continuous, it follows that ˆn is continuous. Since �.˛/D
infnˆn.˛/, it follows that � is upper semi-continuous, i.e., if fˇng is a sequence
of partitions converging to ˛ then lim supn �.ˇn/� �.˛/.

Now let ˛; ˇ be two finite generating partitions. By Theorem 3.3, there exist
finite partitions fˇng1nD1 combinatorially equivalent to ˇ such that fˇng1nD1 con-
verges to ˛. So �.ˇ/ D lim supn �.ˇn/ � �.˛/. Similarly, �.˛/ � �.ˇ/. So
�.˛/D �.ˇ/. �

5. The f -invariant

In this section, GDhs1; : : : ; sri. Let .X; �/ be a standard probability space on
which G acts by measure-preserving transformations and let S D fs˙11 ; : : : ; s˙1r g.
Note jS j D 2r . Let F W P! R be defined as in the introduction.

PROPOSITION 5.1. Let ˛ 2 P. If � is a splitting of ˛ then F.�/� F.˛/.

Proof. By induction, it suffices to prove the proposition in the special case in
which � is a simple splitting of ˛. So let � D ˛_ tˇ for some t 2 S and coarsening
ˇ of ˛. For any s 2 S ,

H.� _ s�/DH.˛_ s˛/CH.� _ s� j˛_ s˛/

DH.˛_ s˛/CH.s� j˛_ s˛/CH.� j˛_ s˛_ s�/

� H.˛_ s˛/CH.� j˛_ s�1˛/CH.� j˛_ s˛/:

The last inequality occurs because � is G-invariant, so

H.s� j˛_ s˛/DH.� j˛_ s�1˛/:



1398 LEWIS PHYLIP BOWEN

Since H.�/DH.˛/CH.� j˛/, the above implies

F.�/ � .1� 2r/
�
H.˛/CH.� j˛/

�
C

rX
iD1

H.˛_ s˛/CH.� j˛_ s�1˛/CH.� j˛_ s˛/

D F.˛/C .1� 2r/H.� j˛/C
X
s2S

H.� j˛_ s˛/:

Since � � ˛_ t˛, H.� j˛_ t˛/D 0. Hence

F.�/�F.˛/� .1� 2r/H.� j˛/C
X

s2S�ftg

H.� j˛_ s˛/

D

X
s2S�ftg

�
H.� j˛_ s˛/�H.� j˛/

�
� 0: �

Theorem 1.3 now follows from the proposition above and Theorem 4.3.

Definition 11. Let K be a finite set and � a probability measure on K. Let
KG be the product space with the product measure �G . The system .G;KG ; �G/

is called the Bernoulli shift over G with base measure �.
Let Ak D fx 2 KG j x.e/ D kg where e denotes the identity element in G.

Then ˛ D fAk j k 2Kg is the Bernoulli partition associated to K. It is generating
and H.�/DH.˛/, by definition.

THEOREM 5.2. Let G D hs1; : : : ; sri be the free group of rank r . Let K be a
finite set and � a probability measure on K. Then

f .G;KG ; �G/DH.�/:

Proof. Let ˛ be the Bernoulli partition associated to K. Let g1; : : : ; gn be n
distinct elements of G. It follows from the Bernoulli condition that the collection
fgi˛g

n
iD1 of partitions is independent. This means that if j W f1; : : : ; ng !K is

any function then

�G
� n\
iD1

giAj.i/

�
D

nY
iD1

�G.Aj.i//:

It is well-known that this implies

H
� n_
iD1

gi˛
�
D

nX
iD1

H.gi˛/D nH.˛/:
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See, for example, [Gla03, Prop. 14.19, p. 257]. So for any k � 1,

F.˛k/D
�1
2

X
s2S

H.˛k _ s˛k/
�
� .jS j � 1/H.˛k/

D

�1
2

X
s2S

jB.e; k/[B.s; k/jH.˛/
�
� .jS j � 1/jB.e; k/jH.˛/:

Suppose r > 1. Then, since G D hs1; : : : ; sri is free, it is a short exercise to
compute:

jB.e; k/j D 1CjS j
.jS j � 1/k � 1

jS j � 2
;

jB.e; k/[B.s; k/j D 2
.jS j � 1/kC1� 1

jS j � 2

for all s 2 S . Thus,

F.˛k/DH.˛/
�
jS j
.jS j � 1/kC1� 1

jS j � 2
� .jS j � 1/� .jS j � 1/jS j

.jS j � 1/k � 1

jS j � 2

�
DH.˛/:

If r D 1, then jB.e; k/j D 2kC1 and jB.e; k/[B.s; k/j D 2kC2. So it follows in
a similar way that F.˛k/DH.˛/. Thus f .G;X;�/D limk!1 F.˛k/DH.˛/D
H.�/. �

Proof of Theorem 1.1. By Stepin’s theorem [Ste75], if .K1; �1/, .K2;�2/
are standard Borel probability spaces with H.�1/DH.�2/ then .G;KG1 ; �

G
1 / is

measurably conjugate to .G;KG2 ; �
G
2 /.

Suppose .K1; �1/, .K2; �2/ are Borel probability spaces such that .G;KG1 ; �
G
1 /

is measurably conjugate to .G;KG2 ; �
G
2 /. Let .L1; �1/; .L2; �2/ be probability

spaces with jL1j C jL2j < 1 and H.�i / D H.�i / for i D 1; 2. By Stepin’s
theorem, .G;LGi ; �

G
i / is measurably conjugate to .G;KGi ; �

G
i /. By the above

theorem, f .G;LGi ; �
G
i / D H.�i /. Since f is a measure-conjugacy invariant,

H.�1/DH.�2/. �
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