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Abstract

We say that a Riemannian manifold (M, g) with a non- empty boundary dM is
a minimal orientable filling if, for every compact orientable (M g) with IM =
dM , the inequality dz(x,y) > dg(x, y) for all x,y € dM implies Vol(M ,8) >
vol(M, g). We show that if a metric g on a region M C R” with a connected
boundary is sufficiently C2-close to a Euclidean one, then it is a minimal filling.
By studying the equality case vol(ﬁ, g) = vol(M, g) we show thatif dz(x,y) =
dg(x,y) forall x,y € 0M then (M, g) is isometric to (7\7, £). This gives the first
known open class of boundary rigid manifolds in dimensions higher than two and
makes a step towards a proof of Michel’s conjecture.

1. Introduction

Let (M", g) be a compact Riemannian manifold with boundary oM. Its
boundary distance function is the restriction of the Riemannian distance dg to
dM x oM. The term “boundary rigidity” means that the metric is uniquely deter-
mined by its boundary distance function. More precisely,

Definition 1.1. (M, g) is boundary rigid if every compact Riemannian mani-
fold (M, g) with the same boundary and the same boundary distance function is
isometric to (M, g) via a boundary-preserving isometry.

It is easy to construct metrics that are not boundary rigid. For example, con-
sider a metric on a disc with a “big bump” around a point p, such that the distance
from p to the boundary is greater than the diameter of the boundary. Since no
minimal geodesic between boundary points passes through p, a perturbation of the
metric near p does not change the boundary distance function.
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Thus one has to impose restrictions on the metric in order to make the bound-
ary rigidity problem sensible. One natural restriction is the following: a Riemann-
ian manifold (M, g) is called simple if the boundary dM is strictly convex, every
two points x,y € M are connected by a unique geodesic, and geodesics have
no conjugate points (cf. [15]). A more general condition called SGM (“strong
geodesic minimizing”’) was introduced in [9] in order to allow nonconvex bound-
aries. Note that if (M, g) is simple, then M is a topological disc. The simplicity
of (M, g) can be seen from the boundary distance function. The convexity of
dM is equivalent to a (local) inequality between boundary distances and intrinsic
distances of dM . The uniqueness of geodesics is equivalent to smoothness of the
boundary distances. Thus if two Riemannian manifolds have the same boundary
and the same boundary distance functions, then either both are simple or both
are not.

CONJECTURE 1.2 (Michel [15]). All simple manifolds are boundary rigid.

Pestov and Uhlmann [17] proved this conjecture in dimension 2. In higher
dimensions, few examples of boundary rigid metrics are known. They are: regions
in R” [12], in the open hemisphere [15], in symmetric spaces of negative curvature
(follows from the main result of [3]), and in products of domains without conjugate
points with R ([11]). We refer the reader to [8] and [17] for a survey of boundary
rigidity, other inverse problems, and their applications.

One of the main results of this paper asserts that if (M, g) is C?-close to
a region in the Euclidean space, then (M, g) is rigid. For instance, to the best
of our knowledge, this is the first known example of boundary rigid metrics in
higher dimensions which do not have a special curvature tensor and, in particular,
the first known open set of boundary rigid matrices. Our result also requires only
C2-smoothness, so that even in dimension 2 it is not completely covered by Pestov-
Uhlmann’s 2-dimensional theorem [17].

Our approach to boundary rigidity grew from [6] and [7], where we study
minimality of flats in normed spaces, asymptotic volume of Finsler tori, and el-
lipticity of surface-area functionals. Even though our proof is not directly based
on Finsler geometry, it is strongly motivated by Finsler considerations. Boundary
rigidity here is treated as the equality case of the minimal filling problem discussed
in [6] and [14].

Definition 1.3. (M, g) is a minimal filling if, for every compact (1\71 , &) with
dM = M, the inequality

dz(x,y)>dg(x,y) forallx,y €M

implies _
vol(M, g) > vol(M, g).
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We say that (M, g) is a minimal orientable filling if the same holds under the
additional assumption that (M, &) is orientable.

CONJECTURE 1.4. Every simple manifold is a minimal filling.

If (M, g) is simple, then vol(M, g) is uniquely determined by dg, namely
there is an integral formula expressing vol(M, g) via dg and its first order deriva-
tives (the Santalé formula, [18]). It is not clear though whether the formula is
monotone in dg.

Our approach to Michel’s Conjecture is to prove Conjecture 1.4 and then to
obtain Michel’s Conjecture by studying the equality case. So far we were able to
carry out this plan for metrics close to a Euclidean one.

The main result of this paper is the following theorem:

THEOREM 1. Let M C R” be a compact region with a smooth boundary.
There exists a C?-neighborhood U of the Euclidean metric gg on M such that,
every g € U is a minimal orientable filling and is boundary rigid.

One can check that actually we show that there is a ¢(n) > 0 such that, if g
is a Riemannian metric in R” satisfying g = gg outside Bg(0) and | K| < clg—”z),
then for any 2 C Bg(0), the space (€2, g) is a minimal orientable filling and is
boundary rigid. We do not know if the orientability assumption can be removed;
this seems to be a rather intriguing question.

Known higher-dimensional examples of minimal fillings form a subset of
known examples of rigid metrics: regions in R” (follows from the Besikovitch
inequality [2]) and regions in symmetric spaces of negative curvature [3].

There are many more examples of locally rigid metrics: for instance, simple
almost nonpositively curved metrics and simple analytic metrics are locally rigid
[10], [19]. The manifold (M, g) is said to be locally (boundary) rigid if every com-
pact Riemannian manifold (]\7 , &) with the same boundary and the same boundary
distance function is isometric to (M, g) via a boundary preserving isometry pro-
vided that g and g are a priori sufficiently close. We want to emphasize that in
Theorem 1 we do not impose any restrictions on M.

All 2-dimensional simple manifolds are minimal fillings in a restricted sense:
they are minimal only within the class of fillings homeomorphic to the disc [14].
In general (when M from Definition 1.3 may have handles), it is not known even if
the standard hemisphere is a minimal orientable filling. That is, the filling volume
(in the sense of M. Gromov) of the standard circle is not known.

However, it has been noticed by M. Gromov [12] that if n > 3, then one can
assume that M ~ D" without loss of generality (i.e., the orientable filling volume
can be realized by topological discs).
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Remark 1.5. The Finsler case was very important for motivating our argument.
Little is known about minimality of Finsler metrics, even though the Santal6 for-
mula still yields the normalized symplectic volume of the unit cotangent bundle (the
Holmes-Thompson volume). This work originated from our study of minimality
of flat Finsler metrics. However, there is no rigidity in the Finsler case. Here is a
simple example.

Example. Let (M, g) be a simple Riemannian manifold. For every p € oM
define a function f, : M — R by

Jp(x) =distg (p, x).
Let { f;} be a C3 perturbation of { f,} in the interior of M. Then { f;,} is a family of
distance functions of a Finsler metric with the same boundary distances (this metric
is possibly nonsymmetric, but it can be made symmetric with some additional
work). This Finsler metric is defined by

[lv]lx = sup{dfp(v)}, xeM, veT M.
P

We obtain Theorem 1 as a corollary of the following (more technical and more
general):

THEOREM 2. Let M C R" be a compact region with a smooth boundary.
There exists a C2-neighborhood U of the Euclidean metric g on M such that for
every g € U the following holds.

If (1\7 , &) is an orientable piecewise C° Riemannian manifold such that IM =
OM and the respective Riemannian distance functions d and d satisfy

then a~7(x, y)=>d(x,y) forall x,y € oM,

1. vol(M, g) > vol(M, g);

2. If V01(1\7 ,&) =vol(M, g) then (1\7 , &) is isometric to (M, g) via a boundary-
preserving isometry.

Here by a piecewise C° Riemannian manifold we mean a smooth manifold,
possibly with boundary, triangulated into simplices such that each simplex is C !-
diffeomorphic to the standard one and equipped with a continuous Riemannian
structure. The Riemannian metrics on simplices do not have to agree on their
common faces.

Deducing Theorem 1 from Theorem 2. To deduce Theorem 1 from Theorem 2
it suffices to check the following two facts.

1. The equality c?(x, y) =d(x,y) for all x,y € 0M implies VOI(M, g) =
vol(M, g). Indeed, if M is convex (and hence simple), this immediately follows
from the Santal6 formula. Since we do not assume convexity, M may fail to be
simple. However, it is easy to check that it still satisfies the SGM (Strong Geodesic
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Minimizing) condition introduced by C. Croke [9]. Then Lemma 5.1 from [9]
implies the desired equality VO](M , &) =vol(M, g).

2. The equality d (x,y) =d(x,y) forall x,y € dM also implies that M is
orientable. In fact, M is homeomorphic to M. Again, if M is convex, it is easy
to show that both M and M are homeomorphic to a disc. For a general region
M C R¥ satisfying the conditions of Theorem 1 this is the contents of Remark 5.2
in the above mentioned paper [9].

2. Plan of the proof

In the “ideal world”, the proof of boundary rigidity should go as follows: It
is well-known that every compact metric space X can be embedded into L°°(X)
isometrically by sending x to d(x,-). By attaching appropriate collars, one can
assume that both boundaries OM = oM = S , where § is a standard sphere in R”,
and that both metrics d and d are extended by the standard Euclidean metric to
the outside of S. Denote by T, .S the supporting hyperplane to S at « € S. One
can see that since (M, g) is simple, the map ¢ from M to £ = L°°(S) sending x
to ¢x : S = R:px(a) =d(x,T,S) is also an isometry (in the strongest possible
sense: it is a distance preserving map). Thus it is very tempting to think of this
embedding as a “minimal surface” in &£. Applying the same construction to M
one gets a Lipschitz-1 (and hence an area-nonincreasing) map ¢. Since M and M
have the same boundary distance function, the embeddings ¢ and ¢ coincide on the
common boundary S = M = oM. Furthermore, if d is a flat metric, then ¢ is a
linear embedding. Hence our assumption that d is close to a Euclidean metric tells
us that ¢ is close to a linear embedding. Then all we would need to conclude the
“proof” is an infinite-dimensional analog of a well-known theorem (for instance,
see Theorem 3 and Remark 3.1 of [16]) that a minimal surface close to an affine
plane of the same dimension is the unique area-minimizer among all surfaces with
the same boundary.

However, this approach encounters a number of difficulties:

1. When we speak about minimal surfaces, we need to define surface area.
This is a major question. The space & naturally carries the structure of a normed
space, and there are many different notions of surface area in normed spaces. It
is very convenient to work with symplectic (the Holmes-Thompson, [13], [20])
surface area; however, there are too many minimal surfaces with respect to this
surfaces area. We will fix this by introducing a surface area induced by a family
of L2-structure on .

2. We need to prove that ¢ is indeed a minimal surface. The fact that it is
totally geodesic does not imply by itself minimality for nonstandard surface areas
(e.g., see [1]). We verify minimality by means of a rather straightforward but
cumbersome computation.
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3. We need a very “robust” argument for the uniqueness of minimal surfaces
close to affine planes. Our proof models a co-dimension-one argument showing
that two co-dimension-one minimal surfaces with the same boundary coincide
provided that both of them are graphs of functions (with respect to the same co-
ordinates). Indeed, if the surfaces are graphs of f and g, consider a function
v(t) = area(Graph(¢f + (1 —t)g). We have v'(0) = v’(1) = 0 by minimality of
f and g. By the Cauchy inequality v is convex on ¢ € [0, 1]. Furthermore, it is
strictly convex unless f = g, and this implies that f = g. We will generalize this
argument to higher co-dimensions (using the assumption that one of the surfaces
is close to a plane).

3. Attaching a collar

This is a purely technical section. Its purpose is to reduce the problem to a
special case when M is a Euclidean disc of radius 1, and g coincides with the
standard Euclidean metric outside the ball of radius ﬁ.

PROPOSITION 3.1. Theorem 2 follows from its special case when

(1) M is a unit disc D = B1(0) C R" and g coincides with the standard Euclidean
metric g on the “collar” N = B1(0) \ By/10,(0);

(ii) M contains N (with IM = ON)and g = gon N;

(iii) the distance functions dg and dg satisfy the inequality dg(x,y) > dg(x,y)

forall x,y € N.

Proof. Let (M, g) and (]\7 , &) be as in Theorem 2. By means of re-scaling we
assume that M is contained in the ball By,29,(0) C R". We extend g to a smooth
metric on the whole R” so that g remains C2-close to gz and g = g outside the
ball By /10,(0). (The extended metric is denoted by the same letter g.)

Let M+ = (D, g). We can think of M T as the result of attaching another
“collar” N’ = D\ M to M. Attaching the same collar (N', g) to (M, §) we obtain
a manifold M+ = M U N’ with a piecewise C° Riemannian metric (which we
will also denote by g). Note that N C N’,sothat g =g =gg on N.

The new spaces (M, g) and (1\7 *, g) satisfy the conditions (i)—(iii). The
first two are obvious. To verify (iii), consider x,y € N and observe that the
length distance d(z\?+,§)(x’ y) depends only on g|n and d(ﬂ,g) lapmxom and the
latter dependency is monotonous. Since d( .5 2 d(m,g) on dM , it follows that
d(ﬂ—i—ﬂg)(x’ Y) Zdpr+ ,g)(x, ).

It remains to note that the conclusion of Theorem 2 for (M, g) and (M, &)
implies the conclusion for (M, g) and (M, g). O

Convention. From now we assume that (M, g) and (1\7 , &) from Theorem 2
satisfy the additional assumptions from Proposition 3.1.
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4. Distance-preserving embedding into L*°

We fix the following notation: S = M = M = S"1 (recall that M = D
by the convention from the previous section); £ = L%°(S).

The goal of this section is to construct Lipschitz-1 maps @ g,  and ® from
R",gg), (M, g) and (1\7, g) resp., to . When we speak about maps to &, we
always keep in mind the following construction.

Definition 4.1. Given a (measurable) family { Fy }4es, of uniformly locally
bounded functions Fy : M — R, one can think of this family asamap F : M — &
where F(x)(a) = Fy(x) forx e M, a € S. We say that Fy are coordinate functions
of F.

Note that a family {Fy} defining a given map F is not unique and may be
defined only for almost every «.

LEMMA 4.2. If F : M — &£ is defined by a family { Fy} of coordinate functions
and every Fy is Lipschitz-1, then so is F.

Proof. This is immediate from the definition of the distance in £ = L%°(S).
O

Conversely, every Lipschitz-1 map & : M — & can be represented by Lipschitz-1
coordinate functions. We prove this in the next section; cf. Lemma 5.1.

Definition 4.3. Define ®g : R” — &£ by
Op(x)(a) =(x,a), xeR"aeS
where (, ) is the standard scalar product in R”.

Obviously ®g is a linear map. For o € S, the corresponding coordinate
function ®g, : R” — R is the scalar multiplication by «. Since « is a unit vector
(recall that S = dD is the unit sphere in R"), ® g, is a Lipschitz-1 function. Then
so is ®g. Moreover ® g is an isometric embedding. Indeed,

[®E ()|l = sup{x,a) = [x].
acsS

Definition 4.4. Let ® : M — & be a map whose coordinate functions {®y }ges
are given by

Dy (x) =1 —distg (x, Hy)

where Hy, is the hyperplane tangent to S at «, and distg is the distance with respect
to g (assuming that g = gg outside M ; recall that this is a smooth extension).

Observe that if this definition is applied to the Euclidean metric gg in place
of g, it yields the map ® g |ps. Indeed, the Euclidean distance from H, to x € M
equals 1 — (x,a).
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Since the metric g is C?-close to g, the hyperplanes H, have no focal points
in M, hence the functions ®, are smooth distance-like functions. The Riemannian
gradient of ®, at x € M is the initial velocity vector of the unique minimal geodesic
connecting x to Hy.

Definition 4.5. Defineamap G : M xS — UTM by
G(x,a) = grad ®y(x)
where the gradient is taken with respect to the metric g.
We denote by G the similar function for gg in place of g. Then
ge(x,0)=(x,0) eR" xS =UTR"
(recall that S is the unit sphere in R™).

PROPOSITION 4.6. 1. ®: (M, g) — & is a distance-preserving map.
2. @ is C! smooth.

3. Themap G : M xS — UTM is a diffeomorphism.

4. ® is Cl-close to ®g; G is Cl-close to GE.

Proof. 1. Every ®,, is Lipschitz-1, and so is & (by Lemma 4.2). It remains to
show that ||®(x) —®(y)|| > dg(x,y), forall x, y € M. Since Py (x) is continuous
in o, we have

[®(x) =2 = sup | Po (x) — P (y)]-

Let y be a geodesic from x through y (x = y(0), y = y(#1)). It is close to a straight
line while in M and coincides with a straight line after it leaves M. Eventually
v hits orthogonally one of the hyperplanes Hy; that is, y(t2) € Hy and y'(f) L
Hy for some o € S and t, > ;. Since H, has no focal points in M, we have
distg (x, Hy) =t and distg (y, Hy) =t —t1. Then

| P (x) — Py (y)| = |di5tg(x, Hy) —distg (y, Hy)| =1t = dg(x,y)

and the desired inequality follows.

2—4. Since g is C?-close to g, the geodesic flow of g is C!-close to that
of gg. In particular, the hyperplanes have no focal points in M. Then the distance
functions of the hyperplanes and their gradients are recovered from the union of
the hyperplanes’ normal geodesic flows via the implicit function theorem, and they
are C! close to their Euclidean counterparts. O

Remark 4.77. The assumption that g is close to gg is needed only for the last
statement of the proposition. The first three would follow for any simple metric g
if we defined @y (x) = distg (x, o).
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Now we are in a position to define a “surface” d:M—> spanning the
same boundary as ®. All we need is a Lipschitz-1 extension ®qy of Dy |gp from
dM = dM to M. Such an extension exists due to the fact that ®g| o7 18 Lipschitz-1
with respect to dz. Indeed, it is Lipschitz-1 with respect to dg and dz > dg on
9M . (This is the only point where we use this key assumption of Theorem 2.) In
order to ensure that the family {&Da} is measurable (in fact, continuous), we define
an extension by an explicit formula. We also want ® to be reasonably close to ©,
and so we cut off too large values of the functions.

Definition 4.8. Let & : M — $bea map whose coordinate functions {Polaes
are given by

Dy (x) —cutoff( 1nf {<I>a(y)+d (x,y)}, 2 +d1stg(x M\N))

where
cutoff(a, b) = min{b, max{—b, a}}.
Recall that N is the “collar” (cf. Proposition 3.1).
PROPOSITION 4.9. 1. & : (]\7 g) — $is a Lipschitz-1 map.
2. ?l N = D|N.
3. ®(M \ N) is contained in the ball of radius % centered at the origin of &f.
Proof. 1. Every dy is Lipschitz-1 since it is obtained from a family of

Lipschitz-1 functions by means of suprema and infima. Then by Lemma 4.2 ®
is Lipschitz-1.

2. Since @ is close to a linear isometry ®g and M \ N is the disc of radius
% we have supyp\ y [Po| < 155, Let x € N. Then

|Pg(x)] < sup [Pyl + distg (x, M\N) <— +dlstg(x M\N)
M\N 10n

hence the cutoff does not apply. Furthermore,

Do (x) = Py (y) +dg(x,y) = Po(y) +dg(x. y)

for all y € N. (The inequalities follow from the facts that ®, is Lipschitz-1 with
respect to g and dg < dz on N.) Then the infimum in the definition of ® is
attained at y = x and ®y(x) = Oy (x)

3.Ifx e M\N then |®y(x)| < 15, due to cutoff, hence ||d>(x)|| %. d
5. Coordinates and derivatives

This section is technical. Its purpose is to validate our view of ¥ as a “coor-
dinate space” and ® as a “surface” (with tangent planes) in this space.
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In this section M denotes an arbitrary Riemannian manifold while § = §”~1
and & = L°°(S) are the same as in the previous section. Recall that a family { F}
of functions on M defines a map F : M — &£ (cf. Definition 4.1). The converse is
more complicated since a point in & is a “function defined a.e.” whose individual
values do not make sense.

LEMMA 5.1. 1. Every Lipschitz map F : M — £ can be represented by a
family {Fy}oes of coordinate functions so that every Fy, : M — R is Lipschitz with
the same Lipschitz constant.

2. If {Fy} and { F} are two such representations, then for almost every a € S,
Fy = F[, everywhere on M.

3. If, in addition, M is a vector space and F is linear, then Fy is linear for
almost every o.

Proof. 1. Let X be a countable dense subset of M. For every x € X, pick a
function fy : S — R representing F(x) € L°°(S). Then for every x,y € X,

| fx(@)— fy(@)]| <C|xy| forae . a€S

where C is the Lipschitz constant of F' and |xy| is the distance in M. Since X is
countable, we can redefine fx () to be zero whenever the above inequality fails
for at least one y € X. Then | fx(a) — fy(e)| < C|xy|forallx,y € X andx € S,
and we get a family of Lipschitz functions F, : X — M. Every Fy admits a
unique Lipschitz extension to the whole M, also denoted by Fy. It remains to
note that for every z € M, the function o + F,(z) represents F(z) in L°°(S).
Indeed, if f; : S — R represents F(z), then for almost every « the inequality
| fz () — fx ()| < C|zx| holds for all x € X, and this property uniquely determines
Sz(@) = Fyu(2).

2. For every x € M, we have F,(x) = F,(x) for almost all «. Then by Fubini,
for almost every «, the relation Fy(x) = F,(x) holds for almost all x € M, and
hence for all x € M by continuity of Fy and F,.

3. Similarly, for almost every «, the relation Fy(x 4+ y) = Fy(x) + Fo(y)
holds for almost all pairs (x, y), and hence for all x, y. O

Definition 5.2. We say that a Lipschitz map F : M — & is weakly differen-
tiable at x € M if the coordinate function Fy, is differentiable at x for almost every
a. If so, we define the derivative dx F : Txy M — & to be the map whose coordinate
functions are dy Fy.

We need the following version of Rademacher’s Theorem:

LEMMA 5.3. Let F : M — & be a Lipschitz function. Then

1. F is weakly differentiable almost everywhere;
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2. If F is weakly differentiable at x € M, then the derivative dx F : TxyM — &£
is a Lipschitz linear map with the same Lipschitz constant.

Proof. Every coordinate function Fy is Lipschitz and hence differentiable a.e.
(by Rademacher’s Theorem). Then by Fubini almost every x € M satisfies the
following: for almost all «, Fy is differentiable at x. Furthermore, ||dx Fy|| < C
where C is a Lipschitz constant for . Then Lemmas 4.2 and 5.1, imply that
dy F : Ty M — &£ is correctly defined and Lipschitz with the same constant. [

The map dy F introduced above is not a derivative in any traditional sense.
We will use only a limited set of features of this “derivative”, namely the following
chain rule.

LEMMA 5.4. Let F : M — & be a Lipschitz function weakly differentiable at
X € M, and let | be a continuous finite measure on S (that is, a measure with an
L' density). Then

1. If L : & — Ris a linear function of the form

L= [
then L o F is differentiable at x and
dx(LoF)=Lod.F.

2. If W is a finite-dimensional subspace of £ and P : & — W is the orthogonal
projection with respect to the L? structure defined by ., then P o F is differentiable
at x and

dx(LoP)=Lod,P.

Proof. 1. Since the functions Fy are uniformly Lipschitz, the lemma follows

immediately by differentiation under the symbol of integration.

2. The first part of the lemma implies that for every w € W, the function
f = (f,w) on & commutes with differentiation. Applying this to every w from a
basis of W yields the second part. O

6. A Riemannian structure on &£

Definition 6.1. Let u be a probability measure on S. We define a scalar prod-
uct (, ), on &£ by

Mgm=nﬁf@m.

We denote the space & equipped with this scalar product by &, and the identical
map idy regarded as a map from £ to &, by i;,. Obviously i, is a Lipschitz map
with Lipschitz constant 7.
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The normalizing factor n in the definition is introduced for the following
reason: The integral of the square of a linear function of norm one against the
normalized surface area over the unit sphere is equal to %

LEMMA 6.2. Let A : R* — &£ be a Lipschitz-1 linear map. Then the com-
position iy, 0 A : R" — £, is area-nonexpanding. Furthermore, if i;, o A is an
area-preserving map then A and i, o A are linear isometries.

Proof. Let {Aq}aes be the coordinate functions of 4 and g, = A*(({,),) be
the pull-back of the scalar product in £,,. Then

guv.0) = [ AuPdp(@)

Hence
trace(gy) =n / trace (Ai) du(a) <n
S

since trace A2 = ||Ag||?> < 1. Since g, is a positive definite symmetric matrix, we
conclude the proof of the inequality by applying the inequality

det(gyu) < (—trace(gu)) .
n

The equality case obviously follows from the equality case in the above inequality.
|

Recall that there is a diffeomorphism G : M x § — UTM with G(x,«a) €
UTxM (cf. Definition 4.5 and Proposition 4.6). Then for every x € M, the map
G(x,-):S — UTxM is a diffeomorphism.

Definition 6.3. Let x € M. We denote the inverse of G(x,-) by wy; that is,
we define a map wy : UTxyM — S by
wx(G(x,a)) =«

foralla € S.
Let it be the push-forward by w, of the normalized standard (n — 1)-volume
on the unit sphere U Ty M . For brevity, we denote &, . by £, and similarly i,

by ix.
LEMMA 6.4. In the above notation, iy odx® : Tx M — £, is a linear isometric
embedding for every x € M.

Proof. Denote U = UT, M. For every v € U,

lde®@)|2. = n [S @ (0)]? i (@)

=n/S(v,a);1(a))2d;Lx(a)=n/U(v,u)2du=1,
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where du denotes the normalized (7 — 1)-volume on U. The second equality fol-
lows from the definitions of G and wy: grad @4 (x) = G(x,a) = w; (). The
last integral equals % since it does not depend on v € U (due to the symmetry of
the measure), and if v ranges over an orthonormal basis of Tx M, the sum of the
corresponding functions under the integral is the constant 1. O

Recall that our surface ®(M) is close to an n-dimensional linear subspace
® £ (R™). We want to think of this surface as a graph of a map from this subspace
to its “orthogonal complement” denoted by Q (see below). Then we extend our
family of scalar products {{, }x }xeam to a Riemannian structure on the whole <.
This Riemannian structure equals (, ), at ®(x) and is constant along subspaces
parallel to Q. Then Lemmas 6.4 and 6.2 imply that ® is an isometric embedding
and @ is area-nonexpanding with respect to this Riemannian structure. We are
going to prove the main theorem by comparing the areas of surfaces ®(M) and
CB(]\? ) in the resulting infinite-dimensional Riemannian space.

To avoid unnecessary technical details, we do not refer directly to the Rie-
mannian structure in &. Instead, we consider a projection of MtoM correspond-
ing to the projection of &)(1\7 ) to ®(M) along Q, and define “areas” in terms of
scalar products {, ).

Definition 6.5. Let H be a Euclidean space (not necessarily finite-dimensional)
and ¢ > 0. We say that linear subspaces W; and W, of H are e-orthogonal if
Z(wy, wy) > % — ¢ for all nonzero vectors w; € Wy, wa € Wa.

PROPOSITION 6.6. There are a codimension n linear subspace Q C & and a
Lipschitz map w : M — M satisfying the following:

1. For every x € M, Q is s-orthogonal to the image of dx® in £y for a small
e>0.

2. For every x € M, d((x)) — 5()() e Q.
3. 1If ® is weakly differentiable at an x € M, then 7 is differentiable at x and
dx(Qomr —DP)(v) € Q forallve Ty M.

Proof. If M is Euclidean (that is, g = gg) then ., is independent of x and
coincides with the standard normalized (n — 1)-volume v on S. Since the map
G is close to its Euclidean counterpart (cf. Proposition 4.6), the measures [, are
absolutely continuous with respect to v and have densities close to one. Thus every
scalar product (, ), x € M, is close to the “flat” L? structure (, ), .

Let Q be the orthogonal complement to W = &g (R") with respect to (, ),.
Since every scalar product (, ) is close to {, },, the first assertion of the proposition
follows. Let P : £ — W be the orthogonal projection with respect to (, },. Since
® is C! close to @, the map P o ® is a diffeomorphism of M to a region Q2 C W,
and €2 is close to the unit ball in W.
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Recall that (by Proposition 4.9) ® coincides with ® on the “collar” N, and
&)(ﬂ \ N) is contained within the ball of radius % in ¥, and hence within the
ball of radius 12—0 in &,,. Therefore P o 5(1\7 ) C 2, and we can define 7 : M—>M
by

T=(Po®) 'o(Pod).
The second assertion of the proposition follows immediately. If d is weakly differ-
entiable at x, then by the second part of Lemma 5.4 the map P o d is differentiable
at x and dy (P o ®) = P od,®. Then the last assertion follows since P o ® is a
diffeomorphism and ® is smooth. O

Notation 6.7. We fix the notation 7 introduced in Proposition 6.6 for the rest
of the paper, and introduce ®* = ®ox and V' = & — 7.

Definition 6.8. If P is weakly differentiable at an x € M, denote by JxCD the
Jacobian (that is, the area- expanswn coefficient) of dy ® as a map from TxM to
£z(x)- By Lemma 5.3, J® is defined for a.e. x € M . Then define

Area(d) = /N J®dx
M ~
where the integral is taken with respect to the Riemannian volume on (M, g).
Now Lemma 6.2 implies

LEMMA 6.9. Area(@) < VOI(M 8). The equality in this inequality implies
that J® = 1 fora.e x € M and dx® is a linear isometry. O

7. First variation of surface area

The maps @7 and ® can be connected by a linear family of maps {®;};¢[0,1]
from M to & defined by ®; = &7 + V. We think of V" as a vector field of
variation of a surface ®” and introduce a quantity §A(®”*, V") which we call the
first variation of surface area.

Definition 7.1. Let H be a (possibly infinite-dimensional) Euclidean space,
and W an oriented n-dimensional linear subspace of H. Let Py denote the or-
thogonal projection to W.

For an oriented Euclidean n-space X and a linear map L : X — H, let Jy (L)
denote the Jacobian determinant of Py o L (which takes into account the orientation
of X and W). We also think of Jy (L) as an element of A" X ™ (i.e., an exterior
n-form on X), using the natural identification A” X* = R. In this interpretation,
Jw (L) does not depend on the Euclidean structure of X .

For linear maps L, V : X — H introduce

d
sJw(L,V) = a7 t=0JW(L +tV).
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Now define
) SA(D™ V) = /~ 8w, (dx®, d, V) dx,
M

where Wy (x) = dy(x) ®P(Tr(x)M) is the tangent space to (M) at ®™ (x) regarded
as a subspace of £ (), so that the term Jy,_ ., is computed with respect to the
scalar product (, ) (x). The quantity §A(®”, V") is well-defined since both d, ®™
and dx7" are defined a.e. The orientation of Wy () is defined so that the map
dp()® : Tr(x)M — Wy (x) is orientation-preserving.

Formula (1) can be read in two equivalent ways. First, it is an integral of a real-
valued function against the Riemannian volume dx on M. Second, the integrand
can be regarded as an exterior n-form on 7 M (independent of the Riemannian
structure), thus defining a (measurable) differential n-form on M , and 64 is the
integral of this n-form over M . In this section we use the latter meaning.

One can check that if 7 is a diffeomorphism, then §A (D7, V) is the derivative
at t = 0 of the n-dimensional surface area of ®; = ®" +¢V'. Since we will not use
this fact, we do not prove it here. We need a more complicated formula to handle
the case of noninjective and singular 7.

We think of ® as a minimal surface, and therefore it is natural to expect that
the first variation of surface area is zero. Indeed, this is the case, and the rest of
this section is devoted to a proof of the following key proposition:

PROPOSITION 7.2. §A(®",V) =

The proof consists of two parts. First, we compute the integrand of (1) at a
point x € M . The result is written in terms of derivatives of 7 and the coordinate
functions {Vy }ges of V.

Second, we represent the resulting expression as a differential form in a suit-
able manifold and integrate it using Stokes’ formula. While this computation is
probably valid for functions of so low regularity as we have, we do not verify this
for every formula. Instead, we perform the computation assuming that the maps
m and V" are smooth. Then the general case follows by approximation. Indeed,
we do not use any specific properties of our maps except that &7 = ® o & and
thatw: M — M isa Lipschitz map, so that the computatlon proves the identity
SA(D™,V) = 0 for arbitrary smooth maps 7 : M —> M and¥ : M — £. The
identity then follows for all Lipschitz maps since the integrand of (1) is expressed
in terms of the first-order derivatives.

In addition, note that §4(®7,%") is independent of the Riemannian metric
on M, so the fact that it is only piecewise C° does not play any role.

Notation. We denote by A the oriented Riemannian volume form of (M, g).
Thatis,if y € M and vy, ...,v, € Ty M, then A(vy, ..., vy,) is the oriented volume
of the parallelotope spanned by vy, ..., v,.
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If £ is an exterior k-form on a vector space X and v € X, then u—§ denotes
the (k — 1)-form on X defined by

(U_'E)('Ul, ceey vl’l—l) = E(U, Ul,..., Un—l)
for all vy,...,v,—1 € X. If £ is a differential form and v is a vector field, the

notation is applied point-wise.

Point-wise computation. Fix x € M and denote y =mn(x) € M. To avoid cum-
bersome formulas, we introduce the following temporary notation: U = UTy M,
W =W, =d,®(TyM). We regard W as a subspace of the Euclidean space &£,
with the scalar product (, ).

Recall that the unit sphere U with the standard normalized volume du is
identified with (S, jty) via amap wy, : U — § (cf. Definition 6.3). Then we can
“change coordinates” in & by identifying it with L>°(U); this way (, ), becomes
the standard scalar product in L2(U, du).

LEMMA 7.3. Let L : Txﬂ — & be a linear map with coordinate functions
{Lo}acs; then
n
@ Jw(L) = ”—'f AU+ ttn) Ly ALy A= ALy, dy . iy,
n: Jun

where I, = L, (u)-

Proof. Let {e1, ez, ... e,} be an orthonormal positively oriented basis in 7y, M .
Then

3 Jw(L) =Py APy--- APy,
where P; is a linear function on Txﬁ defined by
Pi(v) = (L(v),dy®(ei))y.

Indeed, dy ® is an isometric embedding of 7, M to £, (cf. Lemma 6.4) and P;
is a composition of L and the orthogonal projection to the image of e;. Then by
definition of the scalar product in &£,,,

Pi(v)=n /S La(v)dy Paler) dity (@) = n fs La)(G(y. ). ¢i) diiy (@)

(recall that G(y, @) = grad ®4(y)). Using the definition of w, (cf. 6.3) we rewrite
the formula as

P;(v) :n/ Lu()(u, e;) du.
U
Then (3) takes the form

Jw (L) = n”/U buy ANlyus Ao Aly, (U1, e1)(uz, ea) ... (un,en) duy ...duy.
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Note that if we replaced the basis {e; } by another one obtained by permuting the
vectors eg, ea, ..., ey, the same formula holds for positive permutations, and it
acquires a minus sign for negative ones. Adding these formulas for all permutations
of {e1,ea,...e,}, we get

n!Jw (L) = n"/U Lyy ANy A= Ny, det((ui,ej))ﬁj=1 dui...duy.

We complete the proof of the lemma by noting that the determinant of the matrix
({u;,e;)) is just the oriented volume of the parallelotope spanned by uy, uz,. .., u,.
O

LEMMA 74. If L=dx®" and V : TeM — L is a linear map with coordinates
Valaes, then

4) SJw(L,V)= c(n)/ vy At (u—A) du
U

where vy, = Vi () and * denotes the pull-back of a form under (the deriva-
tive of ) .

Proof. As in Lemma 7.3, define [, = L, (u) Where {Lq}qes are coordinate
functions of L. Then for § € Tx M, u € U and a = wy (1), we have

lu(§) = La(§) = dyPo(dxm(§)) = (G(y, @), dx7(§)) = (u, dx7(§)).
Introducing a co-vector u® € Ty’ M by u® = (u, -), we rewrite this formula as
%) Ly = ™ (u®).

To compute §Jw (L, V) = %’z:oJW(L +1tV), we plug [, + tvy, for [, in (2)
and differentiate it with respect to r. We get

A\ zui) du

i#k

where u stands for (11, ...,u,) and du for du; ... du,. Using the symmetry of
the formula with respect to permuting u;’s, we rewrite it as

pntl n n
/ A(u) vul/\(/\lu.)duz
I’l' un ! !
=2

where A(u) is an (n — 1)-form on T M given by

n—1
A(u):/ (A(u,ul,...,un_l)/\ lu,) dul...dun_l.
Un—1

i=1

8Jw(L.V) = ’;—, [U DR v A (
) k=1

n+1
6) $Jw(L,V)=

/ vy ANA(u) du,
U
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From (5) we have [,,; = 7*(u7); then
A(u) = " (B(u))
where
B(u)z/ (A(u,ul,.. S Up_ 1)/\ ) duy...duy—1.

yn-t i=1
Observe that B(u) depends only on u and the Euclidean structure of 7), M, in
particular, it is equivariant under the action of the orthogonal group. Such an
(n — 1)-form is unique up to a constant factor, and u—A is an example of such

a form. Therefore B(u) = c1(n)u—A, A(u) = c1(n)7*(u—A) and the lemma
follows by plugging this into (6). O

Changing the variable u to o = w) (1) under the integral in (4), we get
S (L. V) = (o) [ VoA (G302 dity @)
S

(recall that G(y, @) = wy, 1()). This finishes the point-wise computation for which
we needed temporary notation. Substituting the definitions of L, y and U, we get

8IW 3y (dx @™, V) = c(n) /S Vo A (G(m(x), @)=A) dpy (@).
Substitution of d,V" for V" (assuming that V" is weakly differentiable at x) yields
(T 8w (de®™ ) = c(n) /S Ao A * (G (x), 0)=A) djty (@),
where {7y }qes are the coordinate functions of V.

Integration of the form Note that the expression in (7) (as a function of x) is
a differential n-form on M, and SA(DT, V) is the integral of this form over M We
are going to rewrite this as an integral of a differential (2n — 1)-form over MxS.
Define a map P :MxS—>Mbey

P(x,a) = (7(x),a), xeM,a€S.

We need (1 — 1)-forms o and 5 on M x S and M x S to represent integration
over the family of measures wy, y € M. Namely, define

o(y,a)=Pyuy(@), yeMacs,

where P> : M x § — § is the coordinate projection and p, is regarded as an
(n — 1)-form on S. Similarly define

6(x,a)=ﬁ;un(x)(a), xeM,a €S,

where P; is the coordinate projection M x S — S. Note that & = P*(0).
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We say that a differential form £ on M x S represent a family of forms {£, }4es
on M if forevery a € S, £y = &|prx{ay; more precisely, &, =i (§) where ig : M —
M x S is defined by iy (x) = (x, ). One easily checks the following properties:

1. If forms & and 5 represent families {£y}qes and {nq}eecs, then € A
represents {§q A 7o jaes-

2. If a form £ on M x S represents a family {&, }4es of forms on M, then the
form P*£ on M xS represents the family {7 *&} of forms on M.

3. If ¢ is an n-form on M xS representing a family {&, }4es, then

[ ([ s @) ar= [ ens.

Combining this with (7) we get
8) SA®T,V) = /~ 8IWp 1y (dx @7, dx V) dx = c(n) /~ EAP*NAG
M MxS

where £ is any 1-form on M xS representing the family {dx7 ¢y }yes of 1-forms
on M, n is an (n — 1)-form on M x S representing the family {Gy—A}yes of
(n — 1)-forms on M. Here G4 is a vector field on M defined by G (x) = G(x, @).

We have to specify & and 7 in (8). First define § = d F where the function
F:]\?xS—>Risgivenby

(&) F(x,a) =TVa(x).

Obviously & = d F represents the family {dxV ¢y }qes-

To define n, introduce a vector field y on M xS so that for every (y, o) € M xS
the projection of the vector y(y, ) to M equals Gy(y) and the projection to S is
zero. Let Ao denote the n-form on M x S computing the oriented Riemannian vol-
ume of the projection to M. Note that A¢ is the pull-back of A under the coordinate
projection M x § — M. Now define

n=y—Ao.

The definitions imply that 1 represents the family {Gy—A}qes.
Plugging £ = dF into (8), we get

SA(DT, V) = c(n) /~ dF AP*nAG.
MxS
Using the identity 6 = P *o, we rewrite this as follows:
(10) 8A(<D”,°l/)=c(n)[~ dF AP*(nno).
MxS

Recall that G : UTM — M x S is a diffeomorphism, and the measure du, dy
on M x S (where du is the Riemannian volume on M) is the pull-back of the
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Liouville measure on U TM under G. Denote by u the differential (2n — 1)-form
on M x S corresponding to this measure. Then
UW=AoACO
by the definitions of Ao and o. Observe that y—o = 0 since y is tangent to the
fibers M x {«} and these fibers annulate 0. Hence
nAo =(y—=io) Ao =y—(hoNO) =y—p.
Then (10) takes the form

(11) SA(®™, V) = c(n) /~ dF A P*(y=p).
MxS

For every « € S, the vector field y on a M x {a} projects to the vector field
Gy = grad @, on M. The trajectories of G, are geodesics since @, is a distance
function. Hence the flow on M x S generated by y is mapped by G to the geo-
desic flow on UTM . Since the geodesic flow preserves the Liouville measure, the
flow generated by y preserves p. This implies that y—pu is a closed form. Then
P*(y—pu) is closed: d(P*(y—u)) = 0. Therefore

dF AP*(y—p) = d(F - P*(y—p)).
Then from (11),

SA(®7, V) =c(n>/1‘7 ACFP () = (o) /m PP )

by Stokes’ formula. The last integral is zero since F vanishes on the boundary of
M x S (cf. (9)). This finishes the proof of Proposition 7.2.

8. An estimate on §J

Let H be a (possibly infinite-dimensional) Euclidean space and X an oriented
Euclidean n-space. For a linear map L : X — H we denote by J(L) the (nonneg-
ative) Jacobian of L.

Let W be an oriented n-dimensional subspace of H. We use the notation
Jw (L) and 8Jw (L, V) from Definition 7.1 for linear maps L,V : X — H.

PROPOSITION 8.1. There exists a constant ¢ = g(n) > 0 such that the follow-
ing holds. In the above notation, if L(X) C W and V(X) C Q where Q C H is
a codimension n linear subspace and Q is e-orthogonal to W (cf. Definition 6.5),
then

(12) JIL+V)>Jw(L)+8Jw(L,V),

and the equality implies that either V = 0 or both L and L + V are degenerate
(have ranks less than n), and in either case J(L + V) = Jw (L).
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Proof. The images of maps L, V and L 4+ V are contained in the subspace
W 4 L(X) of dimension at most 2n. Therefore it suffices to prove the proposition
in the case when dim H = 2n. Then dim W = dim Q = n.

Introduce a family of linear maps L;: X — H,t€[0,1]by L, =L +¢-V.
Then by definition,

d
§Jw(L,V) = 77 W&o,

We will show that

(13) J(Ly)=>Jw(L)+t-6Jw(L,V)

for all £ > 0; then (12) follows by substitution of ¢ = 1.

If « € A" (H) is a decomposable n-vector « = vy A vy A -+ A vy, we denote
by ||| the n-volume of the parallelotope spanned by vy, va, ..., v,. Note that the
scalar product (,) in H canonically determines a scalar product in A" (H). We
also denote this scalar product by {, ). Then || - || is a Euclidean norm on A" (H)
corresponding to this scalar product.

Denote Ay = AK(W) A A" K(Q). The assumption that Q and W are almost
orthogonal implies that A; and A; (i # j) are almost orthogonal. Namely, if
§cAjandneAj (i #j)then

(14) (E,m) <er €Il Inl

for some 1 = ¢1(e,n), e1 > 0as e — 0.
Let a(t) € A" (H) denote the image of the unit positively oriented n-vector
in A" (X) ~ R under (L;)«. In other words,

a(t) = Le(er) ANLi(e2) A-+- A Ly(en)

where e, ea, ..., ey, is a positive orthonormal basis of X. Then J(L;) = |la(z)].
Obviously «(¢) is a polynomial of the form

(15) a(t) =Y at’,
i=0

where «; € A;.

LEMMA 8.2. Assuming that ¢ is sufficiently small, there exists a constant ¢(n)
such that

(16) lecoll lee Il < ¢ () lleea [} flot—1
where «; are as defined by (15).

Proof. Since Q and W are e-orthogonal, application of a linear transformation
making them orthogonal changes all norms in the exterior algebra by factors close
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to 1. Thus we can assume that Q and W are orthogonal, and identify H =W & Q
with R” x R”,

If Lo is degenerate then the left-hand side of (16) is zero, and the inequality
is obvious. Otherwise we can choose a basis in X so that the matrix {L;;,i =
1,2...2n,j=1,2...n} of Lo consists of two blocks: the identity matrix {L;;,i =
1,2...n,j =1,2...n} (corresponding to the projection to W) and the zero matrix
{Lij,i=n+1,n+2...2n,j=1,2...n} (corresponding to the projection to Q).
Then the first block of L; remains the identity matrix for all # (by the definition
of the family {L,}, and the second block is B, where B is some (fixed) matrix.
Even though the norms on exterior powers depend on the choice of a basis, both
parts of (16) are multiplied by the same constant. Hence changing coordinates in
X is an admissible procedure.

Note that ||y ||? is the sum of the squares of all 7 x n-minors of (the matrix
of ) L1 such that exactly k rows are chosen in the lower half of the matrix (that is,
in B). Since the upper-half of L; is the identity matrix, every such minor is equal
to a k x k-minor of B. Hence ||og || is the binomial coefficient times the sum of
the squares of all k x k-minors of B.

In our coordinates, ag = 1. Since every k x k-minor is a sum of products of
(k —1) x (k — 1)-minors and 1 x 1-minors, the lemma follows. |

Let o denote the unit positively oriented n-vector in A" W ~ R. Note that
Jw(B) = (o, B) forevery B € A"(H). Hence §Jw (L, V)= (a1,0) and Jyw (Lg) =
(g, o). Thus (13) takes the form

le @) = (@0, 0) +1{a1,0),
or, after squaring (note that the left-hand side is nonnegative),
le@)II? = (@0, 0)? + 2t (a0, o) @1, 0) + 17 (a1, 0)>.

Since «g is proportional to o and ||o||=1, we have |{xo,0)|=||xo|| and {xp,0) (@1 ,0)

= (ag, a1). Thus the desired inequality takes the form
lac(@)[1? = llewol|* + 22 (@0, 1) + 1% (@1, ).

We will actually prove the following stronger inequality:
1
A7 lle@®? = lleoll® +21(ao, 1) + 1% (@1, 0)? + 1ol ® —aoll?.

The additional term % () — apl|? in the right-hand side of this inequality will
help us to analyze the equality case in (13).
Denote B(t) = t?ay -+ + t"ay; then a(t) = ag + tay + B(¢) and

lee (@) 1> = lleto | > + 22 {eto, 1) + 22 leex |12 +2{eo, B(1)) +2¢ {er, B()) + [ B>
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Since a; € Ay is e1-orthogonal to o € Ag, we have |la; > > 10{(x1,0)?, so it
suffices to prove that

9 1
I—Otzllotl I +2(o, B(@)) + 2t {1, B©)) + IBO)II* = Tolle® —a?.

Since o is e1-orthogonal to each A;, i > 1, which in their turn are also almost
orthogonal, one can easily see that o is, say, 24/neq-orthogonal to B(t) € A, @
-+ @ Ay (provided that g7 is small enough). Then we have

I > 2 1 2

—1 2t , p(t — t >0.

2| + 21 e B0) + S IBOI =
It remains to prove that

S|+ 200, B0) + IBOI = 1o lla) ~aol

Observe that

1 2 1 2 2 2 2 2
— [loe(t) — = —||t HI* < —(¢ H1%);
Sl —aol? = St + BOI = (el + 1B0)I)

hence it suffices to prove that

(8) Sl + 2. ) + S IBWI 20

Combining the triangle inequality with (14) and (16), we get
(o, BO) <D Newo t'ai)| <1 ) t'lleolllles || < e1c(n) Y i el i1 -
i=2 =2 =2
We may assume that e1c(n) < 1L0' Then, separating the first term, we get

1 "
(o, B(0))] = Elelal I +e1c() Yt el i1l
i=3

Using the above inequality, one sees that, to prove (18) it suffices to show that
19 Al - 2eietn Y el + 1801 20
10 =~ 0 -

Recall that B(t) = >, t'a;, and the terms t'e; are mutually &1-orthogonal.
Hence

3
IBOI =5 > 1 e
=2
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provided that £; small enough (and % is just a number smaller than 1). Then (19)
follows from

4 n—1 ) 4 n )
@0) ol =2e1e ) 3o el + 15 D1 e |* = 0.
=2 =2

We assume that ¢ is so small that ¢1c(n) < ﬁ. Then

e |2~ 2ene e’ o e | + 757 i 2 2 0,
foralli =2,3,...,n—1, and the desired inequality (20) follows by adding them.

Now let us consider the equality case in (12), or, equivalently, in (13) for f = 1.
Since we proved a stronger inequality (17), the equality implies that ||o(1) — o ||=0.
Hence the images of L and L1 = L+ V either coincide or degenerate (of dimension
less than n). Furthermore, since the image of L is almost orthogonal to the image
of L, this implies that V' = 0 unless L has rank smaller than n, in which case
V' has rank smaller than n as well. Since a(1) — o9 = a1 + @2 + -+ + a5 and
the terms «; belong to the respective components A; of the direct sum A" (H) =
& A;, it follows that o; = 0 for all i > 1. Then §Jw (L, V) = («1,0) = 0, hence
J(L+V)=Jw(L). |

9. Proof of Theorem 2

Let x € M be such that ® is weakly differentiable at x. Consider X = TeM,
H=%34),L=dx®": X — H,V =dx¥:X — H (cf. Notation 6.7) and W =
Whr(x) (cf. Definition 7.1). Note that L(X) C W. By Proposition 6.6, L(V) C Q
where Q is e-orthogonal to W for a small . Then Proposition 8.1 applies, and we
have

1) T (@) = T, (dx D) + 8T, (dx @, dx V).

By means of integration we get
Area(®) > /~ TWyiy (dx @) dx + SA(D™, V).
M
(cf. Definitions 6.8 and 7.1). By Proposition 7.2, the last term is zero; thus

(22) Area(®) > [N TW i (dx @T).
M

Recall that ®" = ® o7 and hence dy ®”" = d(x)P o dym. By Definition 7.1 and
Lemma 6.9, d(,)® is an orientation-preserving isometry from Ty ()M to Wy (y).
Hence the integrand Jy, ., (dx ®™) of (22) is nothing but the signed Jacobian of
the map = : M — M at x. Then the right-hand part of (22) equals the volume of
(M, g); thus _

Area(®) > vol(M, g).
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By Lemma 6.9 we have Area(&s) < VOI(M , &), and the inequality part of the theo-
rem follows.

To analyze the equality case, note that all the above inequalities have to turn
into equalities almost everywhere on M. The equality part of Lemma 6.9 implies
that J (&5) =1forae. x € M. Then by Proposition 8.1, the equality in (21) implies
that

IW (@5 @) = Jx(B) = 1

for a.e. x € M. Hence by the equality case of Proposition 8.1, we conclude that
dxV = 0 (that is, the tangent spaces to the images of ® and ® at corresponding
points are parallel). Again observe that Jy, ., (dx®”) equals the signed Jacobian
of 7 at x, and thus we get that d, 7 is an orientation-preserving linear isometry
from Txﬁ to T (x)M for almost all x € M.

Now the theorem follows from the next lemma (compare with Sublemma for
Theorem 1 of [5] and Appendix C of [3]) :

LEMMA 9.1. Let M be a piece-wise C° Riemannian manifold and M a
smooth Riemannian manifold and VOI(M ) = vol(M). Let 7 : M — M be a
surjective Lipschitz map such that the differential dym is a linear isometry for
almost all x, and n(81\7 ) C IM. Then  is an isometry.

Proof. Since d, 7 is a linear isometry for almost all x € M,rwisa Lipschitz-1
map. Hence it is volume-nonexpanding. Then the assumption Vol(ﬂ )=vol(M) =
vol(n(ﬁ )) implies that 7 is volume-preserving: vol(sw(U)) = vol(U) for every
measurable set U C M.

Recall that M is triangulated into n-dimensional simplices with C® Riemann-
ian metrics. Let X be the union of 9M and the (n — 2)-skeleton of the triangulation.

For an x € M, we denote by C the tangent cone of M at x. By definition, it
is a length space identified with the vector space M (or half-space if x € IM )
and split into a number of polyhedral cones corresponding to simplices adjacent
to x. Each cone carries a flat metric defined by the Riemannian tensor of the
corresponding simplex at x, and the whole metric of Cy is obtained by gluing
these Euclidean metrics together in the usual length metric sense.

It is easy to see that the volume of a small metric ball centered at x € M is
approximately equal to that of a similar ball in C. More precisely,

vol(Bg(x)) = vol(B)&s" +0(e"), &—0,

where B is a unit metric ball in C, centered at the origin. (Note that B may be larger
than the union of balls in the polyhedral cones that form C, since nonisometric
gluing can decrease distances). If x € M \ X, then the tangent cone is a Euclidean
space or the result of gluing of two half-spaces along a linear map between their
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boundaries. Hence
vol(Bg(x)) > wye" +0(e"), &—0,
where w,, is the volume of the standard Euclidean n-ball.
We prove the lemma in a number of steps.
1. The map w1 == m |A71\E is injective and its image is contained in M \ oM .

Suppose that 77 (x) = 7 (y) for some x, y € M \ ¥, x # y. For a sufficiently
small & > 0, the balls B.(x) and B.(y) are disjoint and contained in M \ X. Since
C, is either a Euclidean space or a union of two half-spaces, we have

vol(Bg(x)) > wne" +0(e"), &—0,
and similarly for y,
vol(Be(x) U Bs(y)) > 2w,e" +0(e"), &—0.

Since 7 is Lipschitz-1, the images of balls B.(x) and B.(y) are contained in the
g-ball centered at w(x) = 7 (y). On the other hand,

vol(Bg(7(x))) = wne" +0(e") < vol(Be(x) U Be(y))

contrary to the fact that & is volume-preserving. Thus m is injective.
The second statement follows similarly: if x € M \ ¥ and 7 (x) € M, then

vol(Bg(m(x))) = %a)ns” + 0(&") < vol(Bg(x)),

a contradiction.

2. The metrics of the adjacent simplices of the triangulation of M agree on
the (n — 1)-dimensional faces.

Letx € M \ . The tangent cone Cy is obtained by gluing together two
Euclidean half-spaces H; and H,. We have to show that the metrics of H; and
H; agree on their common hyperplane. Suppose the contrary. Then some points
are closer to the origin in Cy than they would be in the disjoint union of H; and
H;. Hence the unit ball in Cy is strictly larger that the union of two Euclidean
half-balls in H; and H;; therefore the volume of the ball is greater than w,. Thus

vol(Bg(x)) = Cwpe”™ + 0(€")
for some C > 1. This leads to a contradiction as in Step 1.

3. The map w1 = ”'1\71\): is a locally bi-Lipschitz homeomorphism onto an
open subset of M \ M.

Since M \ ¥ and M \ M are n-dimensional manifolds without boundaries,
by the Brouwer Invariance of the Domain Theorem ([4]), the injectivity implies
that 71 is an open map; hence its inverse 7, 1 is continuous.
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Since the metrics agree on the (n — 1)-dimensional faces of M, we may regard
M \ ¥ as a manifold (with some differential structure) with a C 0 Riemannian
metric. Note that the continuity of metric coefficients implies that the relation

vol(Bg(x)) = wue" +0(e"), &—0,

is uniform in x on any compact subset of M \ X, and similarly in M \ dM. Fix an
x € M\ X, let y be sufficiently close to x, and suppose that ¢ := |7 (x) 7 (y)| < %|xy|.
Then the balls B¢(x) and B.(y) are disjoint; therefore

vol(7(Bs(x) U Be(y))) = vol(Be(x) U Be(y)) = 2wpe” + 0(e").

On the other hand, 77 (Bg(x)UBg(y)) CBg(7w(x))U B (7 (y)) since 7 is Lipschitz-1,
but the balls B.(;r(x)) and B.(;r(y)) contain a ball of radius &/2 in their intersec-
tion; therefore

VOl(Be (7 (x)) U Be(r0())) < (2—1/2")wne" + 0(e") < vol(w(Be(x) U Be(»)))

if ¢ is small enough. This contradiction shows that |7 (x)m(y)| > %|x y|if y is
sufficiently close to x. It follows that ;" 1 is locally Lipschitz at 7 (x).

4. 7 is an isometry.

First observe that 1 is an isometry of length spaces M \ ¥ and JT(M \ X).
Indeed, since 7, 1 is Lipschitz, it is differentiable a.e., and its differential, wherever
defined, is the inverse of that of 7. Then d), (JTI_I) is a linear isometry for almost
all y € 71(]\7 \ X). It follows that 7 1 is Lipschitz-1 (with respect to the induced
length distances). Since both 7y and 71 ! are Lipschitz-1, m; is an isometry (of
induced length metrics).

It remains to show that the induced length metrics on M \ X and n(ﬂ \ )
coincide with the restrictions of the ambient metrics of M and M. This follows
from the fact that the sets £ in M and (X)) are “small”: each of them consists
of a subset of a boundary and a set of Hausdorff dimension at most n —2. Every
piecewise curve can be perturbed so as to avoid such a set while almost preserving
the length; so removing these sets does not change the length distances. O
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