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Abstract

We introduce spaces of exponential constructible functions in the motivic set-
ting for which we construct direct image functors in the absolute and relative set-
tings. This allows us to define a motivic Fourier transformation for which we get
various inversion statements. We also define spaces of motivic Schwartz-Bruhat
functions on which motivic Fourier transformation induces isomorphisms. Our mo-
tivic integrals specialize to nonarchimedean integrals. We give a general transfer
principle comparing identities between functions defined by exponential integrals
over local fields of characteristic zero, resp. of positive characteristic, having the
same residue field. We also prove new results about p-adic integrals of exponential
functions and stability of this class of functions under p-adic integration.

1. Introduction

In our previous work [11], we laid general foundations for motivic integration
of constructible functions. One of the most salient features of motivic constructible
functions is that they form a class which is stable under direct image and that mo-
tivic integrals of constructible functions depending on parameters are constructible
as functions of the parameters. Though motivic constructible functions as defined
in [11] encompass motivic analogues of many functions occurring in integrals over
nonarchimedean local fields, one important class of functions was still missing in
the picture, namely motivic analogues of nonarchimedean integrals of the typeZ

Qnp

f .x/‰.g.x//jdxj;
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with ‰ a (nontrivial) additive character on Qp, f a p-adic constructible function
and g a Qp-valued definable function on Qn

p , and their parametrized versions, func-
tions of the type

� 7�!

Z
Qnp

f .x; �/‰.g.x; �//jdxj;

where � runs over, say Qm
p , and f and g are now functions on QmCn

p . Need-
less to say, integrals of this kind are ubiquitous in harmonic analysis over non-
archimedean local fields, p-adic representation theory and the Langlands program.

One of the purposes of the present paper is to fill this gap by extending the
framework of [11] in order to include motivic analogues of exponential integrals of
the type above. Once this is done one is able to develop a natural Fourier transform
and to prove various forms of Fourier inversion. Another interesting feature of our
formalism is that it makes it possible to state and prove a general transfer principle
for integrals over nonarchimedean local fields, allowing one to transfer identities
between functions defined by integrals over fields of characteristic zero to fields of
characteristic p, when the residual characteristic is large enough, and vice versa. It
should be emphasized that our statement holds for quite general functions defined
by integrals depending on valued field variables. One should keep in mind that
there is no meaning in comparing values of individual parameters in the integrals,
or the integrals themselves, between characteristic zero and characteristic p. Our
transfer principle, which can be considered as a wide generalization of the classi-
cal Ax-Kochen-Eršov result, should have a wide range of applications to p-adic
representation theory and the Langlands program. It applies in particular to many
forms of the Fundamental Lemma and to the integrals occurring in the Jacquet-Ye
conjecture [24], which has been proved by Ngô [26] over functions fields and by
Jacquet [23] in general.

Let us now review the content of the paper in more detail. In Section 3 we
enlarge our Grothendieck rings in order to add exponentials. In fact it is useful
to consider not only exponentials of functions with values in the valued field, but
also exponentials of functions with values in the residue field. This is performed
in a formal way by replacing the category RDefS considered in [11] — consisting
of certain objects X ! S — by a larger category RDefexp

S consisting of the same
X ! S together with functions g and � on X with values in the valued field,
resp. the residue field. We define a Grothendieck ring K0.RDefexp

S / generated by
classes of objects .X; g; �/ modulo certain relations. Here we have to add some
new relations to the classical ones already considered in [11]. When X ! S is the
identity, the class of .X; g; 0/, resp. .X; 0; �/, corresponds to the exponential of g,
resp. the exponential of �. One defines the ring C.S/exp of motivic exponential
functions on S by tensoring K0.RDefexp

S / with the ring P.S/ of constructible Pres-
burger functions on S . We are then able to state our main results on integration
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of exponential functions in Section 4. In particular we show that integrals with
parameters of functions in Cexp still lie in Cexp.

We first directly construct integrals of exponential functions in relative di-
mension 1 in Section 5 and then perform the general construction in Section 6. As
was the case in [11], extensive use is made of the Denef-Pas cell decomposition
theorem. Though some parts of our constructions and proofs are quite similar to
what we performed in [11], or sometimes even follow directly from [11], others
require new ideas and additional work specific to the exponential setting. As a
first application, we develop in Section 7 the fundamentals of a motivic Fourier
transform. More precisely, there are two Fourier transforms, the first one over
residue field variables and the second one, which is more interesting, over valued
field variables. Calculus with our valued field Fourier transform is completely
similar to the usual one. Using convolution, we define motivic Schwartz-Bruhat
functions, and we show that the valued field Fourier transform is involutive on
motivic Schwartz-Bruhat functions.

We finally deduce Fourier inversion for integrable functions with the inte-
grable Fourier transform. In the following Section 8 we move to the p-adic setting,
defining the p-adic analogue of C.S/exp and proving stability under integration
with parameters of these p-adic constructible exponential functions. Such a result
is the natural extension to the exponential context of Denef’s fundamental result
on stability of p-adic constructible functions under integration with respect to pa-
rameters. This result of Denef greatly influenced our work [11] and the present
one. It has been later generalized to the subanalytic case by the first author in [4]
and [5].

In Section 9, we close the circle by showing that motivic integration of con-
structible exponential functions commutes with specialization to the corresponding
nonarchimedean ones, when the residue characteristic is large enough. Finally, we
end the paper by proving our fundamental transfer theorem, a form of which was
already stated in [9] when there is no exponential. Note that in their recent paper
[21] Hrushovski and Kazhdan have also considered integrals of exponentials.

Some of the results in this paper have been announced in [10].

2. Preliminaries

2.1. Definable subassignments and constructible functions. We start by re-
calling briefly some definitions and constructions from [11]; cf. also [7], [8]. We
fix a field k of characteristic zero and we consider for any field K containing k the
field of Laurent series K..t// endowed with its natural valuation

(2.1.1) ord WK..t//��! Z
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and with the angular component mapping

(2.1.2) ac WK..t//�!K;

defined by ac.x/D xt�ord.x/ mod t if x 6D 0 and ac.0/D 0. We use the Denef-Pas
language LDP;P which is a 3-sorted language

(2.1.3) .LVal;LRes;LOrd; ord; ac/

with sorts corresponding respectively to valued field, residue field and value group
variables. The languages LVal and LRes are equal to the ring language LRings D

fC;�; �; 0; 1g, and for LOrd we take the Presburger language

(2.1.4) LPR D fC;�; 0; 1;�g[ f�n j n 2 N; n > 1g;

with �n the equivalence relation modulo n. Symbols ord and ac will be interpreted
respectively as valuation and angular component, so that .K..t//;K;Z/ is a struc-
ture for LDP;P. We shall also add constant symbols in the Val, resp. Res, sort, for
every element of k..t//, resp. k.

Let ' be a formula in the language LDP;P with respectively m, n and r free
variables in the various sorts. For every K in Fieldk , the category of fields contain-
ing k, we denote by h'.K/ the subset of

(2.1.5) hŒm; n; r�.K/ WDK..t//m�Kn �Zr

consisting of points satisfying '. We call the assignment K 7! h'.K/ a definable
subassignment and we define a category Defk whose objects are definable sub-
assignments. For Z in Defk , a point x of Z is by definition a tuple x D .x0; K/
such that x0 is in Z.K/ and K is in Fieldk . For a point xD .x0; K/ of Z, we write
k.x/DK and we call k.x/ the residue field of x.

More generally for S in Defk , we denote by DefS the category of objects
of Defk over S . We denote by RDefS the subcategory of DefS consisting of
definable subassignments of S � hŒ0; n; 0�, for variable n, and by K0.RDefS / the
corresponding Grothendieck ring.

We consider the ring

(2.1.6) AD Z

h
L; L�1;

� 1

1� L�i

�
i>0

i
;

where L is a symbol, and the subring P.S/ of the ring of functions from the set of
points of S to A generated by constant functions, definable functions S ! Z and
functions of the form Lˇ with ˇ definable S!Z. If Y is a definable subassignment
of S , we denote by 1Y the function in P.S/ with value 1 on Y and 0 outside. We
denote by P0.S/ the subring of P.S/ generated by such functions and by the
constant function L. There is a morphism P0.S/!K0.RDefS / sending 1Y to the
class of Y and sending L to the class of hŒ0; 1; 0�. Finally we define the ring of
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constructible motivic functions on S by

(2.1.7) C.S/ WDK0.RDefS /˝P0.S/ P.S/:

To any algebraic subvariety Z of Am
k..t//

we assign the definable subassign-
ment hZ of hŒm; 0; 0� given by hZ.K/ D Z.K..t///. The Zariski closure of a
subassignment S of hŒm; 0; 0� is the intersection W of all algebraic subvarieties Z
of Am

k..t//
such that S � hZ . We set dimS WD dimW . More generally, if S is a

subassignment of hŒm; n; r�, we define dimS to be dimp.S/ with p the projection
hŒm; n; r�! hŒm; 0; 0�. One proves, using results of [29] and [32], that two isomor-
phic objects in Defk have the same dimension. For every nonnegative integer d ,
we denote by C�d .S/ the ideal of C.S/ generated by the characteristic functions
1Z of definable subassignmentsZ of S with dimZ�d . We set C.S/D˚dC d .S/
with C d .S/ WD C�d .S/=C�d�1.S/.

In [11], we defined, for k a field of characteristic zero, S in Defk , and Z in
DefS , a graded subgroup ISC.Z/ of C.Z/ together with pushforward morphisms

(2.1.8) fŠ W ISC.Z/ �! ISC.Y /

for every morphism f WZ! Y in DefS . When S is the final object hŒ0; 0; 0� and
f is the morphism Z! S , the morphism fŠ corresponds to motivic integration
and we denote it by �.

Finally, fix ƒ in Defk . Replacing dimension by relative dimension, we define
relative analogues C.Z!ƒ/ of C.Z/ for Z!ƒ in Defƒ and extend the above
constructions to this relative setting. In particular we construct a morphism

(2.1.9) �ƒ W IƒC.Z!ƒ/ �! C.ƒ/D IƒC.ƒ!ƒ/

which corresponds to motivic integration along the fibers of the morphism Z!ƒ.

2.2. Cell decomposition. We now recall the definition of cells given in [11],
which is a slight generalization of the one in [29].

Let C be a definable subassignment in Defk . Let ˛, �, and c be definable
morphisms ˛ WC!Z, � WC!hGm;k , and c WC!hŒ1; 0; 0�. The cellZC;˛;�;c with
basis C , order ˛, center c, and angular component � is the definable subassignment
of C Œ1; 0; 0� defined by ord.z�c.y//D˛.y/, and ac.z�c.y//D �.y/, where y lies
in C and z in hŒ1; 0; 0�. Similarly, if c is a definable morphism c W C ! hŒ1; 0; 0�,
we define the cell ZC;c with center c and basis C as the definable subassignment
of C Œ1; 0; 0� defined by y 2 C and z D c.y/.

More generally, a definable subassignment Z of SŒ1; 0; 0� for some S in Defk
will be called a 1-cell, resp. a 0-cell, if there exists a definable isomorphism

(2.2.1) � WZ!ZC DZC;˛;�;c � SŒ1; s; r�;
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resp. a definable isomorphism

(2.2.2) � WZ!ZC DZC;c � SŒ1; s; 0�;

for some s; r � 0, some C � SŒ0; s; r�, and some 1-cell ZC;˛;�;c , resp. 0-cell ZC;c ,
such that the morphism � ı�, with � the projection on the SŒ1; 0; 0�-factor, is the
identity on Z.

We shall call the data .�;ZC;˛;�;c/, resp. .�;ZC;c/, sometimes written for
short .�;ZC /, a presentation of the cell Z.

One should note that �� induces a canonical bijection between C.ZC / and
C.Z/.

In [11], we proved the following variant of the Denef-Pas Cell Decomposition
Theorem [29]:

THEOREM 2.2.1. Let X be a definable subassignment of SŒ1; 0; 0� with S in
Defk .

(1) The subassignment X is a finite disjoint union of cells.

(2) For every ' in C.X/ there exists a finite partition of X into cells Zi with
presentation .�i ; ZCi /, such that 'jZi D ��i p

�
i . i /, with  i in C.Ci / and

pi WZCi ! Ci the projection. Similar statements hold for ' in P.X/, and in
K0.RDefX /.

We shall call a finite partition of X into cells Zi as in Theorem 2.2.1 (1),
resp. Theorem 2.2.1 (2) for a function ', a cell decomposition of X , resp. a cell
decomposition of X adapted to '.

The following result is in [11, Th. 7.5.3], except for (6) which is new.

THEOREM 2.2.2. Let X be in Defk , Z be a definable subassignment of
XŒ1; 0; 0�, and let f WZ! hŒ1; 0; 0� be a definable morphism. There exists a cell
decomposition of Z into cells Zi such that the following conditions hold for every
y in Ci , for every K in Fieldk.y/, and for every 1-cell Zi with presentation �i W
Zi!ZCi DZCi ;˛i ;�i ;ci and with projections pi WZCi !Ci , �i WZCi ! hŒ1; 0; 0�:

(1) The set �i .p�1i .y//.K/ is either empty or a ball of volume L�˛i .y/�1.

(2) When �i .p�1i .y//.K/ is nonempty, the function

gy;K W

(
�i .p

�1
i .y//.K/!K..t//

x 7! f ı��1i .y; x/

is strictly analytic.

For each i we can furthermore ensure that either gy;K is constant or (3) up to (6)
hold.
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(3) There exists a definable morphism ˇi W Ci ! hŒ0; 0; 1� such that

ord
@

@x
gy;K.x/D ˇi .y/

for every x in �i .p�1i .y//.K/.

(4) When �i .p�1i .y//.K/ is nonempty, the map gy;K is a bijection onto a ball of
volume L�˛i .y/�1�ˇi .y/.

(5) For every x; x0 in �i .p�1i .y//.K/,

ord.gy;K.x/�gy;K.x0//D ˇi .y/C ord.x� x0/:

(6) There exists a morphism ri W Ci ! hŒ1; 0; 0� s.t. for every x in �i .p�1i .y//.K/

gy;K.x/D ri .y/ or ord.gy;K.x/� ri .y//� ˛i .y/Cˇi .y/:

Proof. We only have to prove (6). First take a cell decomposition with prop-
erties (1) up to (5). By replacing X we may suppose that the identity maps are
presentations of the occurring cells. We consider the graph of f in ZŒ1; 0; 0�
and its image W �XŒ1; 0; 0� under the morphism ZŒ1; 0; 0�!XŒ1; 0; 0� sending
.z; x/ to .p.z/; x/, with p W Z ! X the morphism induced by the projection
XŒ1; 0; 0�! X . If one takes a cell decomposition of W � XŒ1; 0; 0�, the centers
of the cells we obtain that way are approximations of f as required in (6), and
again by replacing X one can assume that the identity maps are presentations of
the occurring cells. Now take again a cell decomposition of X such that properties
(1) up to (5) are fulfilled. Then automatically (6) is fulfilled as well. �

3. Constructible exponential functions

3.1. Adding exponentials to Grothendieck rings. Let Z be in Defk . We con-
sider the category RDefexp

Z whose objects are triples .Y ! Z; �; g/ with Y in
RDefZ and � W Y ! hŒ0; 1; 0� and g W Y ! hŒ1; 0; 0� morphisms in Defk . A mor-
phism .Y 0!Z; � 0; g0/! .Y !Z; �; g/ in RDefexp

Z is a morphism h W Y 0! Y in
DefZ such that � 0D �ıh and g0Dgıh. The functor sending Y in RDefZ to .Y; 0; 0/,
with 0 denoting the constant morphism with value 0 in hŒ0; 1; 0�, resp. hŒ1; 0; 0�
being fully faithful, we may consider RDefZ as a full subcategory of RDefexp

Z . We
shall also consider the intermediate full subcategory RDefe

Z consisting of objects
.Y; �; 0/ with � W Y ! hŒ0; 1; 0� a morphism in Defk .

To the category RDefexp
Z one assigns a Grothendieck ring K0.RDefexp

Z / de-
fined as follows. As an abelian group it is the quotient of the free abelian group
over symbols ŒY !Z; �; g� with .Y !Z; �; g/ in RDefexp

Z by the following four
relations (R1)–(R4). The first two are natural analogues of the ones occurring in the
definition of K0.RDefZ/ while the last two are specific to the exponential setting.
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Isomorphism: For .Y !Z; �; g/ isomorphic to .Y 0!Z; � 0; g0/,

(R1) ŒY !Z; �; g�D ŒY 0!Z; � 0; g0�:

Additivity: For Y and Y 0 definable subassignments of some X in RDefZ and
�, g defined on Y [Y 0,

Œ.Y [Y 0/!Z; �; g�C Œ.Y \Y 0/!Z; �jY\Y 0 ; gjY\Y 0 �

D ŒY !Z; �jY ; gjY �C ŒY
0
!Z; �jY 0 ; gjY 0 �:

(R2)

Compatibility with reduction: For h W Y ! hŒ1; 0; 0� a definable morphism
with ord.h.y//� 0 for all y in Y and Nh the reduction of h modulo .t/,

(R3) ŒY !Z; �; gC h�D ŒY !Z; �C Nh; g�:

Sum over the line: When p W Y Œ0; 1; 0� ! hŒ0; 1; 0� is the projection and
when the morphisms Y Œ0; 1; 0�!Z, g, and � all factorize through the projection
Y Œ0; 1; 0�! Y ,

(R4) ŒY Œ0; 1; 0�!Z; �Cp; g�D 0:

Relation (R3) expresses compatibility under reduction modulo the uniformiz-
ing parameter between the exponential over the valued field and over the residue
field. It can be considered as an analogue of the relation exp..2�i=p/x/ D
exp..2�i=p/ Nx/ for x in Zp reducing mod p to Nx in Z=pZ. Relation (R4) expresses
abstractly the familiar fact that the sum of the values of a nontrivial character over
all points in a finite field is zero. Indeed, in the special case where Y DZ and �
and g are the constant morphisms with value zero, the relation reduces to

(R40) ŒY Œ0; 1; 0�! Y; p; 0�D 0

which one can understand as expressing that the integral of a nontrivial character
over a residue field line is zero.

The following lemma allows us to endow K0.RDefexp
Z / with a ring structure.

LEMMA 3.1.1. We may endow K0.RDefexp
Z / with a ring structure by setting

ŒY !Z; �; g��ŒY 0!Z; � 0; g0�D ŒY˝ZY
0
!Z; �ıpYC�

0
ıpY 0 ; gıpYCg

0
ıpY 0 �;

where Y ˝Z Y 0 is the fiber product of Y and Y 0, pY the projection to Y , and pY 0
the projection to Y 0.

Proof. Clearly the fiber product induces a commutative ring structure on the
free group on symbols ŒY !Z; �; g� with .Y !Z; �; g/ in RDefexp

Z . The subgroup
generated by the four relations (R1) up to (R4) is an ideal of this ring, hence, the
quotient by this subgroup is a ring. �
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Similarly, using relations (R1), (R2), (R4), and the subcategory RDefe
Z , one

may define the subring K0.RDefe
Z/ of K0.RDefexp

Z /.

3.1.2. Notation and abbreviations. We write e�E.g/ŒY!Z� for ŒY!Z; �; g�.
We abbreviate e0E.g/ŒY !Z� by E.g/ŒY !Z�, e�E.0/ŒY !Z� by e� ŒY !Z�,
and e0E.0/ŒY !Z� by ŒY !Z�. Likewise we write e�E.g/ for e�E.g/ŒZ!Z�,
E.g/ for e0E.g/ŒZ ! Z� and e� for e�E.0/ŒZ ! Z�. Note that the element
ŒZ!Z� is the multiplicative unit of K0.RDefexp

Z /.

LEMMA 3.1.3. There are natural injections of rings

K0.RDefZ/!K0.RDefe
Z/!K0.RDefexp

Z /

sending ŒY !Z� to ŒY !Z� and e� ŒY !Z� to e� ŒY !Z�.

Proof. Since both statements are similar, we will prove that i WK0.RDefZ/!
K0.RDefe

Z/ is an injection. Suppose that there are a1; a2 in K0.RDefZ/ having
the same image in K0.RDefe

Z/. The equality i.a1/D i.a2/ in K0.RDefe
Z/ induces

an equality in the free group on symbols ŒY !Z; �; 0� of the form

(3.1.1)
X
i

ŒYi !Z; �i ; 0�D
X
j

ŒYj !Z; �j ; 0�;

by adding up relations. For each i; j , let Y 0i �Yi and Y 0j �Yj be the subassignments
defined by �i D 0, resp. �j D 0. Then

(3.1.2)
X
i

ŒY 0i !Z; 0; 0�D
X
j

ŒY 0j !Z; 0; 0�

holds in the free group. Hence, a1 D a2 in K0.RDefZ/. �

3.2. Pull-back. For f W Z ! Z0 in Defk we have a natural pull-back mor-
phism f � WK0.RDefexp

Z0 /!K0.RDefexp
Z /, induced by the fiber product.

If f W Z ! Z0 is a morphism in RDefZ0 , composition with f induces a
morphism fŠ WK0.RDefexp

Z /!K0.RDefexp
Z0 /.

We have similar morphisms when we replace RDefexp by RDefe.

3.3. Constructible exponential functions. For Z in Defk we define the ring
C.Z/exp of constructible exponential functions by

(3.3.1) C.Z/exp
WD C.Z/˝K0.RDefZ/K0.RDefexp

Z /:

Note that the element E.id/ of C.hŒ1; 0; 0�/exp, with id the identity map on
hŒ1; 0; 0�, can be seen as an abstract additive character, taking nontrivial values at
elements of order � 0 only; see (R3) and the explanation of axiom (R3). Likewise,
the element eid of C.hŒ0; 1; 0�/exp, with id the identity map on hŒ0; 1; 0�, can be
seen as an additive character on the residue field. These two meanings of abstract
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additive characters underlie, of course, the definition of the ring structure in Lemma
3.1.1.

For every d � 0 we define C�d .Z/exp as the ideal of C.Z/exp generated by
the characteristic functions 1Z0 of subassignments Z0 �Z of dimension � d .

We set

(3.3.2) C.Z/exp
D˚dC

d .Z/exp

with

(3.3.3) C d .Z/exp
WD C�d .Z/exp=C�d�1.Z/exp:

It is a graded abelian group, and also a C.Z/exp-module. We call elements of
C.Z/exp constructible exponential Functions.

For S in Defk and Z in DefS we define the group ISC.Z/exp of S -integrable
constructible exponential Functions by

(3.3.4) ISC.Z/exp
WD ISC.Z/˝K0.RDefZ/K0.RDefexp

Z /:

It is a graded subgroup of C.Z/exp.

LEMMA 3.3.1. For every Z in Defk , the natural morphisms of rings, resp. of
graded groups, C.Z/!C.Z/exp, C�d .Z/!C�d .Z/exp, resp. C.Z/!C.Z/exp,
ISC.Z/! ISC.Z/exp are injective.

Proof. This follows from Lemma 3.1.3 by taking tensor products, and by
noting that C�d .Z/exp is isomorphic to C�d .Z/˝K0.RDefZ/K0.RDefexp

Z /. �

PROPOSITION 3.3.2. Let S be in Defk and let W be a definable subassign-
ment of hŒ0; 0;m�. The canonical morphism

K0.RDefexp
S /˝P0.S/ P0.S �W / �!K0.RDefexp

S�W /

is an isomorphism.

Proof. This follows from the Denef-Pas quantifier elimination as stated in [11].
�

3.4. Inverse image of constructible exponential functions. Let f WZ!Z0 be
a morphism in Defk . Since f � as defined onK0.RDefexp

Z0 / and on C.Z0/ is compat-
ible with the morphisms K0.RDefZ0/! C.Z0/ and K0.RDefZ0/!K0.RDefexp

Z0 /,
one gets by tensor product a natural pull-back morphism f � WC.Z0/exp!C.Z/exp.

3.5. Push-forward for inclusions. Let i WZ ,!Z0 be the inclusion between
two definable subassignments Z � Z0. Extension by zero induces a morphism
iŠ W K0.RDefexp

Z /! K0.RDefexp
Z0 /. Since this is compatible on K0.RDefZ/ with

iŠ WC.Z/!C.Z0/, we get, by tensor product, a morphism iŠ WC.Z/
exp!C.Z0/exp.
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Because i sends subassignments of Z to subassignments of Z0 of the same dimen-
sion, there are group morphisms iŠ W C�d .Z/exp! C�d .Z0/exp, and graded group
morphisms iŠ W C.Z/exp! C.Z0/exp. If Z0 is in DefS then fŠ clearly restricts to a
morphism fŠ W ISC.Z/exp! ISC.Z0/exp.

3.6. Push-forward for k-projections. Let Y be in Defk and let Z be a de-
finable subassignment of Y Œ0; r; 0�, for some r � 0. Denote by f W Z ! Y the
morphism induced by projection. It follows from statement (1) in Proposition 5.2.1
of [11] that the map fŠ W K0.RDefexp

Z /! K0.RDefexp
Y / induces a ring morphism

fŠ W C.Z/
exp! C.Y /exp, and because f sends subassignments of Z to subassign-

ments of Y of the same dimension, there are group morphisms fŠ W C�d .Z/exp!

C�d .Y /exp, and graded group morphisms fŠ WC.Z/exp!C.Y /exp. If Y is in DefS
then fŠ clearly restricts to a morphism fŠ W ISC.Z/exp! ISC.Y /exp. Note also that
the projection formula trivially holds in this setting; that is, for every ˛ in C.Y /exp

and ˇ in C.Z/exp, fŠ.f �.˛/ˇ/D f̨Š.ˇ/.

3.7. Push-forward for Z-projections. If f W ZŒ0; 0;m� ! Z is the projec-
tion and Z is in DefS , m � 0, then, by Proposition 3.3.2 and by the fact that
f preserves the dimension of definable subassignments of ZŒ0; 0;m�, the map
fŠ W ISC.ZŒ0; 0;m�/! ISC.Z/ induces a graded group morphism

fŠ W ISC.ZŒ0; 0;m�/exp
! ISC.Z/exp:

Lemma-Definition 3.7.1 below is a basic kind of Fubini theorem between the
push forwards of Sections 3.6 and 3.7, and Lemma 3.7.2 is a basic form of the
change of variables formula.

Lemma-Definition 3.7.1. Let ' be in ISC.ZŒ0;m; r�/exp for some m; r � 0
and someZ in DefS and let f WZŒ0;m; r�!Z be the projection. Let �1; : : : ; �mCr
be any sequence of projections of the formZŒ0; i; j �!ZŒ0; i�1; j � orZŒ0; i; j �!
ZŒ0; i; j � 1� whose composition goes from ZŒ0;m; r� to Z. Then, �mCrŠ ı : : : ı
�1Š.'/ is independent of the sequence �1; : : : ; �mCr and we define fŠ.'/ to be
this element.

Proof. This follows from the fact that

K0.RDefexp
ZŒ0;m;0�

/˝K0.RDefexp
Z /

C.Z/exp
˝C.Z/ C.ZŒ0; 0; r�/ �! C.ZŒ0;m; r�/exp

is an isomorphism. �

Let � W SŒ0; n; r�! SŒ0; n0; r 0� be a morphism in DefS . Let ' be a function in
C.SŒ0; n; r�/exp. Assume ' D 1Z' with Z a definable subassignment of SŒ0; n; r�
on which � is injective. Thus � restricts to an isomorphism �0 between Z and
Z0 WD �.Z/. We define �C.'/ in C.SŒ0; n0; r 0�/exp as Œi 0

Š
.�0�1/�i��.'/, where i

and i 0 denote respectively the inclusions of Z and Z0 in SŒ0; n; r� and SŒ0; n0; r 0�.
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LEMMA 3.7.2. Let � W SŒ0; n; r�! SŒ0; n0; r 0� be a morphism in DefS . Let '
be a function in C.SŒ0; n; r�/exp such that ' D 1Z' with Z a definable subassign-
ment of SŒ0; n; r� on which � is injective. Then ' is in ISC.SŒ0; n; r�/exp if and
only if �C.'/ is in ISC.SŒ0; n0; r 0�/exp and if this is the case then

pŠ.'/D p
0
Š.�C.'//;

with p W SŒ0; n; r�! S and p0 W SŒ0; n0; r 0�! S the projections and pŠ and p0
Š

as
in Lemma-Definition 3.7.1.

Proof. Consider the definable isomorphism

(3.7.1) �� id W SŒ0; n; r�! SŒ0; nCn0; r C r 0�

with inverse g. Since this is an isomorphism, ' is S -integrable if and only if g�.'/
is S -integrable. By construction,

� 0Š
�
g�.'/

�
D �C.'/;(3.7.2)

�Š
�
g�.'/

�
D ';(3.7.3)

with � W SŒ0; nCn0; rC r 0�! SŒ0; n; r� and � 0 W SŒ0; nCn0; rC r 0�! SŒ0; n0; r 0�

the projections. Now the Lemma follows from Lemma-Definition 3.7.1. �

3.8. Relative setting. Let us fix ƒ in Defk that will play the role of a param-
eter space. For Z in Defƒ, we consider, similarly, as in [11], the ideal C�d .Z!

ƒ/exp of C.Z/exp generated by functions 1Z0 with Z0 a definable subassignment
of Z such that all fibers of Z0!ƒ have dimension � d . We set

(3.8.1) C.Z!ƒ/exp
WD ˚dC

d .Z!ƒ/exp

with

(3.8.2) C d .Z!ƒ/ WD C�d .Z!ƒ/=C�d�1.Z!ƒ/:

This graded abelian semigroup may be naturally identified with

(3.8.3) C.Z!ƒ/˝K0.RDefZ/K0.RDefexp
Z /:

For Z! S a morphism in Defƒ, we set

(3.8.4) ISC.Z!ƒ/exp
WD ISC.Z!ƒ/˝K0.RDefZ/K0.RDefexp

Z /:

Lemma 3.3.1 and all results and constructions in Sections 3.5, 3.6, 3.7, includ-
ing Lemma-Definition 3.7.1 and Lemma 3.7.2, extend immediately with the same
proofs to the relative setting.
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4. Integration of constructible exponential functions

4.1. The main result. We can now state the result on extending our construc-
tion of motivic integrals from constructible functions to constructible exponential
functions.

THEOREM 4.1.1. Let S be in Defk . There is a unique functor from the cate-
gory DefS to the category of abelian groups which sends Z to ISC.Z/exp, assigns
to every morphism f WZ! Y in DefS a morphism fŠ W ISC.Z/exp! ISC.Y /exp

and which satisfies the following five axioms:

(A1) Compatibility: For every morphism f W Z ! Y in DefS , the map
fŠ W ISC.Z/exp ! ISC.Y /exp is compatible with the inclusions of groups
ISC.Z/ ! ISC.Z/exp and ISC.Y / ! ISC.Y /exp and with the map fŠ W
ISC.Z/! ISC.Y / as constructed in [11].

(A2) Disjoint union: Let Z and Y be definable subassignments in DefS . As-
sume Z, resp. Y , is the disjoint union of two definable subassignments Z1 and
Z2, resp. Y1 and Y2, of Z, resp. Y . Then, for every morphism f W Z ! Y

in DefS , with f .Zi /� Yi for i D 1; 2, under the isomorphisms ISC.Z/exp '

ISC.Z1/exp ˚ ISC.Z2/exp and ISC.Y /exp ' ISC.Y1/exp ˚ ISC.Y2/exp, we
have fŠ D f1Š˚f2Š, with fi WZi ! Yi the restrictions of f .

(A3) Projection formula: For every morphism f W Z ! Y in DefS , and
every ˛ in C.Y /exp and ˇ in ISC.Z/exp, if f �.˛/ˇ is in ISC.Z/exp, then
fŠ.f

�.˛/ˇ/D f̨Š.ˇ/.

(A4) Projection on k-variables: Assume that f is the projection f W Z D
Y Œ0; n; 0�! Y for some Y in DefS . For every ' in ISC.Z/exp, fŠ.'/ is as
constructed in Section 3.6.

(A5) Relative balls of large volume: Let Y be in DefS and consider definable
morphisms ˛ W Y ! Z, � W Y ! hGm;k , with Gm;k the multiplicative group
A1
k
n f0g. Suppose that Œ1Z � is in ISC.Z/exp and that Z is the definable

subassignment of Y Œ1; 0; 0� defined by ord z D ˛.y/ and ac z D �.y/, and
f W Z ! Y is the morphism induced by the projection Y Œ1; 0; 0� ! Y . If
moreover ˛.y/ < 0 holds for every y in Y , then

fŠ.E.z/Œ1Z �/D 0:

Moreover, these group morphisms fŠ coincide with the group morphisms con-
structed in Sections 3.7 and in 3.5 in the corresponding cases.

When S D hŒ0; 0; 0�, we write IC.Y /exp for ISC.Y /exp and � for the mor-
phism fŠ W IC.Y /exp! IC.hŒ0; 0; 0�/expDK0.RDefexp

hŒ0;0;0�
/˝ZŒL�A when f W Y !

hŒ0; 0; 0� is the projection to the final object.
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4.2. Change of variables formula. We have the following analogue of Theo-
rem 12.1.1 of [11].

THEOREM 4.2.1 (Change of variables formula). Let f W X ! Y be a de-
finable isomorphism between definable subassignments of dimension d . Let '
be in C�d .Y /exp with a nonzero class in C d .Y /exp. Then Œf �.'/� belongs to
IYC d .X/exp and

fŠ.Œf
�.'/�/D Lordjacf ıf �1 Œ'�:

Proof. Similar to the proof of Theorem 12.1.1 of [11], it is enough to con-
sider the cases where f is an injection or a projection. When f is an injection
the statement is true by construction. For projections, one reduces to the case of
the projection of a 0-cell as in Proposition 11.4.3 of [11], which follows also by
construction. �

4.3. Relative version. Fix ƒ in Defk . The proof of Theorem 4.1.1 which we
shall give in Sections 5 and 6 readily extends to the following relative version:

THEOREM 4.3.1. Let ƒ belong to Defk and let S belong to Defƒ. There
exists a unique functor from DefS to the category of abelian groups assigning to
any morphism f WZ! Y in DefS a morphism

fŠƒ W ISC.Z!ƒ/exp
! ISC.Y �!ƒ/exp

satisfying the analogues of axioms (A1)–(A5) when replacing C._/ by C._!ƒ/.

LetZ be in Defƒ. For every point � ofƒ, we denote byZ� the fiber ofZ at �,
as defined in [11, 2.6]. We have a natural restriction morphism i�

�
W C.Z!ƒ/exp

! C.Z�/
exp, which respects the grading. Let f WZ! Y be a morphism in Defƒ

and let ' be in C.Z!ƒ/exp. We denote by f� WZ�!Y� the restriction of f to the
fiber Z�. It follows from Proposition 14.2.1 of [11] that if ' is in IYC.Z!ƒ/exp,
then i�

�
.'/ is in IY�C.Z�/

exp. Furthermore, it follows from the constructions that

(4.3.1) i�� .fŠƒ.'//D f�Š.i
�
� .'//

for every point � of ƒ.
When S Dƒ and f is the morphism Z!ƒ, we write �ƒ for the morphism

fŠƒ W IƒC.Z!ƒ/exp! C.ƒ/exp D IƒC.ƒ!ƒ/exp.

Remark 4.3.2. It follows from the functoriality statement in Theorem 4.1.1,
resp. Theorem 4.3.1, that for f WX! Y and g W Y !Z in DefS , .gıf /ŠD gŠ ıfŠ,
resp. .g ı f /Šƒ D gŠƒ ı fŠƒ. We shall sometimes refer to that property as the
“Fubini Theorem”.
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4.4. Global version. Once we have Theorem 4.2.1 at our disposal it is pos-
sible to develop the theory on global subassignments, defined by replacing affine
spaces by general algebraic varieties, along the lines of Section 15 of [11]. Since
this is essentially straightforward we shall not give more details here.

5. Exponential integrals in dimension 1

We shall start by constructing directly exponential integrals in relative valued
field dimension 1.

5.1. Construction. Let S be a definable subassignment and consider a defin-
able subassignment X � SŒ1; 0; 0� and denote by � W X ! S the projection. Let
MX be the free group on symbols ŒY ! X; �; g; '� with ..Y ! X; �; g/; '/ in
RDefexp

X � ISC.X/.
We construct a map

(5.1.1) �Š WMX ! C.S/exp

and show that it factors through the natural surjective group morphism MX !

ISC.X/
exp, thus obtaining a map

(5.1.2) �Š W ISC.X/
exp
! C.S/exp;

which is the integral in relative dimension 1.
Consider aD Œf W Y !X; �; g; '� in MX .
We shall use a suitable isomorphism of the form � WY !Y 0�Y Œ0; n; r� which

is an isomorphism over Y and which is adapted to a in a certain sense. Then we
shall define �Š by going through the commutative diagram

Y

� Š

��

f // X
� // S

Y 0
� 0// S 0 WD SŒ0; nCnY ; r�

p

77

A1[A2[B;

where Y �XŒ0; nY ; 0�, � 0 and p are the projections, and where we will write Y 0

as the disjoint union of A1, A2, and B , along which � 0
Š

will be easy to define.
Once we have found � we will write a0 for ŒY 0 ! Y 0; � 0 WD � ı ��1; g0 WD

g ı ��1; '0 WD ��1�f �.'/� in MY 0 . We will first define � 0
Š
.a0/, and then define

�Š.a/ as pŠ� 0Š.a
0/, where pŠ is as in Lemma-Definition 3.7.1.

Write ' as Œ'0�CŒ'1�with 'i in C�i .X!S/ and '1 not in C�0.X!S/nf0g.
Let Y0 be the graph of � , and let �0 WY !Y0 be the natural morphism. Let 'iY

be f �.'i / and let 'iY0 be ��10
�.'iY /. By taking common refinements, one can
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take a single cell decomposition of Y0 adapted to the 'iY0 as in Theorem 2.2.1(2)
and such that all six conditions of Theorem 2.2.2 are fulfilled for gY0 WD g ı�

�1
0 .

Indeed, take a finite partition P0 into cells adapted to '0Y0 , another finite partition
P1 adapted to '1Y0 , and another one P2 as given by Theorem 2.2.2 for the function
gY0 W Y0 ! hŒ1; 0; 0�. The refinement P3 is constructed as follows. For each
triple .Z0; Z1; Z2/ of cells with Zi 2 Pi having presentation �i , the intersection
Z0\Z1\Z2, if nonempty, is a cell with presentation ˝Y0�i and is defined to be
in P3. The cell decomposition P3 is as desired.

Now we can construct �. Write Z3i for the cells in P3 with presentation
�3i WZ3i! SŒ1; nY Cni ; ri �. Let n be the maximum of the ni and r the maximum
of the ri . We extend the maps �3i to maps �03i WZ3i ! SŒ1; nY Cn; r�, by sending
to 0 on additional coordinates. Define � as � W Y ! Y 0 � SŒ1; nY Cn; r� sending
y in Y to �03i .�0.y// for the unique i with �0.y/ 2Z3i .

Let '0i be ��1�.'iY / for i D 0; 1. Since � is a coordinate function on Y0 and
hence also on Y 0, one has a priori that � 0 D Q� ı� 0 for a unique Q� W S 0! hŒ0; 1; 0�.
By the above applications of Theorems 2.2.1 and 2.2.2 and the definition of �, one
has that '0i D �

0�. i / for some  i 2 C.S 0/, and that properties (1) up to (6) of
Theorem 2.2.2 are fulfilled for g0 D g ı��1. There are now uniquely determined
parts A, B � Y 0, such that g0.x; �/ W y 7! g0.x; y/ is constant on Bx for each x, and
nonconstant and injective on Ax for each x, where AxDfy 2hŒ1; 0; 0� j .x; y/2Ag
and Bx D fy 2 hŒ1; 0; 0� j .x; y/ 2 Bg are the fibers, and x runs over S 0.

By construction g0
jB
D Qg ı� 0

jB
for a unique definable Qg W � 0.B/! hŒ1; 0; 0�.

On the part A we proceed differently. It follows from the fact that g0.x; �/ is
nonconstant on the fiber Ax and the construction of � that A is a 1-cell having the
identity morphism as presentation. By the previous use of Theorem 2.2.2, A is the
disjoint union of A1 and A2, with
(5.1.3)
A1 WD f.x; y/ 2 A j g

0.x; �/ maps Ax onto a ball of volume L�j with j � 0g:

(5.1.4)
A2 WD f.x; y/ 2 A j g

0.x; �/ maps Ax onto a ball of volume L�j with j > 0g

(recall the normalization is such that the subassignment of all x 2 hŒ1; 0; 0� with
ord.x/ � j is a ball of volume L�j ). Note that the Ai are cells which have the
identity maps as presentations.

By construction and property (6) of Theorem 2.2.2, there are definable mor-
phisms r W S 0! hŒ1; 0; 0� and � W S 0! hŒ0; 1; 0� such that

(5.1.5) g0.x; y/� r.x/� �.x/ mod .t/

for .x; y/ 2 A2, that is, either r.x/� g0.x; y/ has order > 0 and �.x/ D 0, or, it
has order 0 and angular component equal to �.x/.
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Lemma-Definition 5.1.1. Consider �, A1, A2, B , r , and � as constructed
above. Define � 0

Š
.a0/ in C.S 0/exp as

� 0Š.a
0/ WD eQ�E. Qg/ � 0Š

�
1B'0

�
C eQ�C�E.r/ � 0Š

�
1A2'

0
�

where � 0
Š

in the right-hand side is as in [11]. Then, � 0
Š
.a0/ lies in ISC.S 0/exp and

is independent of the choice of r and �. Furthermore, pŠ.� 0Š.a
0//, where pŠ is as in

Lemma-Definition 3.7.1, is independent of the choice of �, so that we can define
�Š.a/ in C.S/exp as

�Š.a/ WD pŠ.�
0
Š.a
0//:

We extend �Š to a group morphism �Š WMX ! C.S/exp.

Proof. That � 0
Š
.'0/ lies in ISC.S 0/exp follows from the fact that � 0

Š
.1B'0/ and

� 0
Š

�
1A2'0

�
are in ISC.S 0/, which is true by the main theorem of [11] and the fact

that ' is in ISC.X/. The independence from the choice of r and � is clear by
relation (R3) for K0.RDefexp

S 0 /.
We prove the independence from the choice of � W Y ! Y 0. Although this is

similar to the proof of Lemma-Definition 9.1.2 in [11], using furthermore relation
(R4), we give details. If another map O� W Y ! OY with the same properties and with
partition OA1; OA2; OB is given, there exists a third map M� W Y ! MY with the same
properties and with partition MA1; MA2; MB , such that M��1. MB/ contains both O��1. OB/
and ��1.B/; for example, the map M� WD �˝Y O� has this property. Necessarily,
M��1. MB/ is equal to the union of ��1.B/ with a 0-cell and is also equal to the union
of O��1. OB/ with a 0-cell, since g0 is injective on Ax . Since A is a 1-cell adapted to
'0i , it follows that

(5.1.6) pŠ�
0
Š

�
1B'0

�
D OpŠ O�

0
Š

�
1 OB O'

0
�
D MpŠ M�

0
Š

�
1 MB M'

0
�
;

with obvious notation (this also follows from Lemma-Definition 9.1.2 in [11]). By
Lemma-Definition 3.7.1, one finds

(5.1.7) pŠ.e
Q�E. Qg/� 0Š

�
1B'0

�
/D OpŠ.e

QO�E. QOg/ O� 0Š
�
1 OB O'

0
�
/D MpŠ.e

QM�E. QMg/ M� 0Š
�
1 MB M'

0
�
/:

We now compare integrals over A, OA and MA. Note that automatically we have
the following inclusions

M��1. MA/� ��1.A/; M��1. MA/� O��1. OA/;(5.1.8)

M��1. MA1/� �
�1.A1/; M��1. MA1/� O�

�1. OA1/;(5.1.9)

but maybe not so for A2. By Lemma-Definition 9.1.2 in [11], one has

(5.1.10) pŠ�
0
Š

�
1A'0

�
D OpŠ O�

0
Š

�
1 OA O'

0
�
D MpŠ M�

0
Š

�
1 MA M'

0
�
:
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The subassignment M��1. MA2/ corresponds to ��1.A2/ with a 1-cell C adjoined
and with a 0-cell removed, since balls can be partitioned into smaller balls but
not into bigger balls. In our construction, since A and A2 are adapted to '0i , the
pushforward is stable under removing a 0-cell from A (or from A2). Relation (R4)
ensures that the integral over C is equal to zero. Together with (5.1.10), this proves
the lemma. (The idea behind the integral over C being equal to zero, is that if a big
ball (namely a ball of volume L�j with j � 0) gets partitioned into a combination
of big balls and small balls (namely of volume L�j for some j > 0) by a refining
cell decomposition, the small balls fit together to fill the full line on the residue
field level so that Relation (R4) can be applied (see the proof of 9.1.2 of [11] for
more details about such refinements and how smaller balls fit together).) �

Example 5.1.2. If g W Zp! Zp is an analytic isometry and  p is the additive
character on Qp sending x 2Qp to exp.2�i Nx=p/, with Nx a representative of x mod
pZp in ZŒ1=p� and exp the complex exponential, thenZ

Zp

 p.g.x//jdxj D 0

with jdxj the Haar measure on Qp . Indeed, one can perform the change of variables
z D g.x/ and then computeZ

Zp

 p.g.x//jdxj D

Z
Zp

 p.z/jdzj D
1

p

pX
aD0

exp.2�ia=p/D 0:

This example explains intuitively why the integral over A1 in the Lemma-Definition
5.1.1 gives a zero contribution.

Lemma-Definition 5.1.3. The map �Š constructed in Lemma-Definition 5.1.1
factors through the natural group homomorphism MX ! ISC.X/

exp. We write �Š
for the induced group homomorphism

�Š W ISC.X/
exp
! C.S/exp:

Proof. We have to check that �Š WMX!C.S/exp factors throughK0.RDefexp
X /

�ISC.X/, and that it factors further through the tensor product K0.RDefexp
X /

˝K0.RDefX /ISC.X/D ISC.X/
exp.

That �Š factors through relation (R1) is clear since its definition is indepen-
dent of the choice of �, cf. Lemma-Definition 5.1.1. Relation (R2) is clear by
construction. Relation (R3) also follows since we can choose � in such a way
that Nh factors through the projection � 0, and then one can compare the original
construction and definition with the ones where g is replaced by gC h. We prove
relation (R4). Assume that a is of the form ŒY Œ0; 1; 0� ! X; � C p; g; '� with
p W Y Œ0; 1; 0�! hŒ0; 1; 0� the projection and that Y Œ0; 1; 0�!X , g, and � factorize
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through the projection Y Œ0; 1; 0�! Y . It follows by construction and from relation
(R4) for K0.RDefexp

S / that �Š.a/ is zero.
By construction, the obtained map K0.RDefexp

X / � ISC.X/ ! C.S/exp is
bilinear in the factors K0.RDefexp

X / and ISC.X/ over the ring K0.RDefX /; hence
it factors through K0.RDefexp

X /˝K0.RDefX / ISC.X/. �

5.2. Change of variables in relative dimension 1. One deduces from Theo-
rem 2.2.2 the following change of variables statement in relative dimension 1:

PROPOSITION 5.2.1 (Change of variables). Let X and Y be definable sub-
assignments of dimension r of SŒ1; 0; 0� for some S in Defk and let f W X ! Y

be a definable isomorphism over S . Suppose that X and Y are equidimensional
of relative dimension 1 relative to the projection to S . Then, ' is in ISC r.Y /exp if
and only if L�ordjacf f �.'/ is in ISC r.X/exp and if this is the case then

�Y Š.'/D �XŠ.L
�ordjacf f �.'//

holds in C.S/exp with �Y W Y ! S and �X WX ! S is the projection, �Y Š; �XŠ as
in Lemma-Definition 5.1.3, and ordjac as in [11].

Proof. By linearity we may assume that ' is of the form

(5.2.1) ' D e�E.g/ŒZ! Y �'0;

with '0 in ISC.Y /, Z � Y Œ0; n; 0�, and � W Z! hŒ0; 1; 0� and g W Z! hŒ1; 0; 0�

definable morphisms. By pulling back along Z! Y , we may assume that Z D
Y . Choose � as in the construction of �Y Š.'/ in Lemma-Definition 5.1.3. By
changing � we may suppose that Theorem 2.2.2 is also applied to the function
p1 ı f , with p1 W X ! hŒ1; 0; 0� the projection. But then � ı f can be used
to compute �XŠ.L�ordjacf f �.'// as in Lemma-Definition 5.1.3 and is seen to be
equal to �Y Š.'/. �

6. Proof of Theorem 4.1.1

6.1. Notation. If p W X ! Z is a morphism in RDefZ and ' a Function in
C i .Z/ which is the class of  in C�i .Z/, the class of p�. / in C i .X/ depends
only of ', so we denote it by p�.'/. This construction extends by linearity to a
morphism p� W C.Z/! C.X/.

6.2. A special case. Replacing K0.RDefexp
Z / by the subring K0.RDefe

Z/,
one defines subobjects C.Z/e, C.Z/e and ISC.Z/e of C.Z/exp, C.Z/exp and
ISC.Z/exp as defined in Section 3.3; cf. Lemma 3.1.3.

Let us first prove that Theorem 4.1.1 restricted to this setting holds:

PROPOSITION 6.2.1. Let S be in Defk . There is a unique functor from the
category DefS to the category of abelian groups which sends Z to ISC.Z/e, as-
signs to every morphism f WZ! Y in DefS a morphism fŠ W ISC.Z/e! ISC.Y /e
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and which satisfies axioms (A1) to (A4) of Theorem 4.1.1. Moreover, these group
morphisms fŠ coincide with the group morphisms constructed in Section 3.7 and
in Section 3.5 in the corresponding cases.

Proof. Let f WZ! Y be a morphism in DefS . Consider ' in ISC.Z/e of the
form

(6.2.1) e�ŒX !Z�'0

with p WX !Z in RDefZ , � WX ! hŒ0; 1; 0� and '0 in ISC.Z/. We have

(6.2.2) ' D pŠ.e�p�'0/:

Hence, if we denote by ıf;� WX ! Y Œ0; 1; 0� the morphism

(6.2.3) x 7�! ..f ıp/.x/; �.x//;

the axioms force

(6.2.4) fŠ.'/ WD �Y Š.e�ıf;�Š.p�'0//;

with �Y the projection Y Œ0; 1; 0�! Y , � the canonical coordinate on the fibers
of �Y , and �Y Š uniquely determined by (A4). Since ISC.Z/e is generated by
functions ' as above, this proves the uniqueness part of the statement. For exis-
tence, one uses (6.2.4) to define pŠ by additivity. Note that this definition is clearly
compatible with the relations involved in the definition of C.Z/e. Note also that
(A2) and (A1) are obvious and that (A4), that is, compatibility with Section 3.6,
is easily checked. The projection formula (A3) follows easily from the projection
formula in [11].

Now let us prove functoriality, namely, that gŠ ıfŠ D .g ıf /Š for morphisms
f WZ! Y and g W Y !W in DefS . As above consider ' in ISC.Z/e of the form
e�ŒX ! Z�'0 D pŠ.e�p�'0/ with p W X ! Z in RDefZ , � W X ! hŒ0; 1; 0� and
'0 in ISC.Z/. We have

(6.2.5) .gŠ ıfŠ/.'/D gŠ.�Y Š..e�ıf;�Š.p�'0///

and

.g ıf /Š.'/D �W Š.e�ıgıf;�Š.p�'0//

D �W Š.e�..g� id/Š ı ıf;�Š/.p
�'0//I

(6.2.6)

hence it is enough to check that for every  in ISC.Y Œ0; 1; 0�/

(6.2.7) gŠ.�Y Š.e� //D �W Š.e�..g� id/Š //:

We may assume  is of the form Œp WX ! Y Œ0; 1; 0�� ��Y . 0/ with  0 in ISC.Y /
the class of a function in some Ci .Y /, and with the above use of notation. Since
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�Y Š.e� /D e�ıpŒX ! Y � 0, we have

(6.2.8) gŠ.�Y Š.e� //D �W Š.e�ıg;�ıpŠ.p� //:

We now deduce (6.2.7) since

ıg;�ıpŠ.p
� /D .g� id/Š.pŠ.ŒX�p���Y . 0////

D .g� id/Š.ŒX ! Y Œ0; 1; 0�� ��Y . 0//D .g� id/Š. /:
(6.2.9)

Remark 6.2.2. Note that in relative dimension 1, the morphisms fŠ in Propo-
sition 6.2.1 coincide with those constructed in Section 5, by the construction in
Section 5, the change of variables formula Proposition 5.2.1, and the construction
in the proof of Proposition 6.2.1.

6.3. Uniqueness. The proof is similar to the one in Proposition 6.2.1. Let
f WZ! Y be a morphism in DefS . Consider ' in ISC.Z/exp of the form

(6.3.1) E.g/e�ŒX !Z�'0

with p W X ! Z in RDefZ , g W X ! hŒ1; 0; 0� and � W X ! hŒ0; 1; 0� definable
morphisms, and '0 in ISC.Z/. We have

(6.3.2) ' D pŠ.E.g/e�p�'0/:

Thus, if we denote by ıf;g;� WX!Y Œ1; 1; 0� the morphism sending x to ..f ıp/.x/,
g.x/; �.x//, the axioms force us to set

(6.3.3) fŠ.'/ WD �Y Š.�Y Œ0;1;0�Š.E.x/e�ıf;g;�Š.p�'0///;

with �Y Œ0;1;0� W Y Œ1; 1; 0�! Y Œ0; 1; 0� and �Y W Y Œ0; 1; 0�! Y the projections, and
x and � respectively the canonical coordinate on the fibers of �Y Œ0;1;0� and �Y .
The map �Y Š is determined by (A4) and for the map �Y Œ0;1;0�Š one is forced to use
the construction of Section 5.

6.4. Preliminaries. Let Z be in DefS . In Lemma-Definition 3.7.1 we defined
push-forward morphisms

(6.4.1) �Š W ISC.ZŒ0; r;m�/exp
�! ISC.Z/exp

and in Section 5 we constructed a pushforward

(6.4.2) �Š W ISC.ZŒ1; 0; 0�/exp
�! ISC.Z/exp;

with � denoting the projection ZŒ0; r;m�!Z and ZŒ1; 0; 0�!Z, respectively.
We may mix these two constructions as follows:



1032 RAF CLUCKERS and FRANÇOIS LOESER

Lemma-Definition 6.4.1. Let Y be in DefS . Let ' in ISC.Y Œ1; n; r�/exp. Con-
sider the following commutative diagram of projections

Y Œ1; n; r�

�1

xx

� 01

&&
�

��

Y Œ1; 0; 0�

�2
&&

Y Œ0; n; r�

� 02xx
Y :

Now,
�2Š�1Š.'/D �

0
2Š�
0
1Š.'/

and we define �Š.'/ to be the common value of �2Š�1Š.'/ and � 0
2Š
� 0
1Š
.'/.

Proof. The proof of Proposition-Definition 11.2.2 in [11] carries over to the
present setting. �

6.5. A Fubini result for projections Y Œ2; 0; 0�! Y .

PROPOSITION 6.5.1. Let Y be in DefS . Consider an object p WX! Y Œ1; 0; 0�

in RDefY Œ1;0;0� and let g WX! hŒ1; 0; 0� be a morphism in Defk . Denote by �Y the
projection Y Œ1; 0; 0�! Y , by z the canonical coordinate on the fibers of �Y , and
set 
g WD .�Y ıp; g/ WX ! Y Œ1; 0; 0�. For every Function  in ISC.Y Œ1; 0; 0�/e,

�Y Š.E.g/ŒX ! Y � /D �Y Š.E.z/
gŠ.p
�. ///:

Proof. By using a construction with a cell decomposition adapted to X !
Y Œ1; 0; 0�, by pulling back, and by Lemma-Definition 6.4.1, we may assume X D
Y Œ1; 0; 0�. Similarly, by a cell decomposition construction using Theorem 2.2.2 and
by Lemma-Definition 6.4.1, we can reduce to the case where g is either constant
or injective. When g is constant the statement is clear and when g is injective it is
a direct consequence of Proposition 5.2.1. �

Let Y be in DefS . For i D 1; 2, we denote by �i W Y Œ2; 0; 0�! Y Œ1; 0; 0� the
projection .y; z1; z2/ 7! .y; zi / and by �Y the projection Y Œ1; 0; 0�! Y .

PROPOSITION 6.5.2. Let  be in ISC.Y Œ2; 0; 0�/e. Then

�Y Š.�1Š.E.z2/ //D �Y Š.�2Š.E.z2/ //:

Proof. We shall use bicells as defined in Section 7.4 of [11]. By Proposition
7.4.1 of [11], any definable subassignment Z of Y Œ2; 0; 0� admits a bicell decom-
position and, furthermore, for any ' in C.Z/ there is a bicell decomposition of
Z adapted to ' in the sense of loc. cit. More generally, for any ' in C.Z/e,
there is a bicell decomposition of Z adapted to '. Indeed, this follows from the
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proof of loc. cit. and the fact that statement (2) in Theorem 2.2.1 still holds when
replacing C.X/ by C.X/e. Hence, we may assume  is the characteristic function
of a bicell Z in Y Œ2; 0; 0�. By the argument given at the beginning of the proof of
Proposition 11.2.4 of [11], we may assume that the bicell Z is presented by the
identity morphism.

Let us consider first the case when Z is a .1; 1/-bicell. We start with the
following special case:

LEMMA 6.5.3. Let C be a definable subassignment of Y and consider defin-
able morphisms c W C ! hŒ1; 0; 0�, ˛, ˇ W C ! hŒ0; 0; 1�, and �, � W C ! hGm;k .
Consider the subassignment Z of Y Œ2; 0; 0� defined by .y 2 C/,

ord.z1� z2/D ˛.y/;

ac.z1� z2/D �.y/;

ord.z2� c.y//D ˇ.y/;

ac.z2� c.y//D �.y/:

Then �Y Š.�1Š.E.z2/1Z//D �Y Š.�2Š.E.z2/1Z//:

Proof. As in the proof of Lemma 11.2.5 of [11], we may assume, after parti-
tioning C , that one of the following conditions is satisfied everywhere on C :

(1) ˇ > ˛,

(2) ˇ < ˛,

(3) ˇ D ˛ and �C � 6D 0,

(4) ˇ D ˛ and �C �D 0.

If condition (1) or (3) holds, Z can be rewritten as a product of two 1-cells, cf. loc.
cit., and the result is clear. If (2) is satisfied, then Z is also defined .y 2 C/ by

ord.z1� z2/D ˛.y/;

ac.z1� z2/D �.y/;

ord.z2� c.y//D ˇ.y/;

ac.z2� c.y//D �.y/;

and one computes

(6.5.1) �Y Š.�1Š.E.z2/1Z//DE.c/I˛;�Iˇ;�

and

(6.5.2) �Y Š.�2Š.E.z2/1Z//DE.c/L�˛�1Iˇ;�

with I˛;� , resp. Iˇ;�, the integral of E.z/ over the subassignment of hŒ1; 0; 0�
defined by ord.z/D ˛ and ac.z/D �, resp. ord.z/D ˇ and ac.z/D �. To deduce
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the requested equality note that Iˇ;� D 0 when ˇ < 0, and that when ˇ � 0, then
˛ > 0, hence I˛;� D L�˛�1. The case of condition (4) also follows from an easy
direct computation. �

When Z is a .1; 1/-bicell one proceeds similarly, as in the proof of Proposition
11.5.4 of [11]. More precisely assume Z is of the form .y 2 C/

ord.z1� d.y; z2//D ˛.y/;

ac.z1� d.y; z2//D �.y/;

ord.z2� c.y//D ˇ.y/;

ac.z2� c.y//D �.y/:

If d depends only on y, Z is a product of 1-cells and the statement is clear. Oth-
erwise d.y; z2/ can be supposed injective, as in [11], as a function of z2 for fixed
y. One deduces, with exactly the same proof as in loc. cit., the statement from
Lemma 6.5.3 using the change of variables in relative dimension 1 (Proposition
5.2.1).

When Z is a .1; 0/-bicell one proceeds exactly as in loc. cit., using change
of variables in relative dimension 1. In the remaining cases of a .0; 1/ or a .0; 0/-
bicell, Z is a product of cells, and the statement is clear. �

We may now prove the following version of the Fubini theorem:

PROPOSITION 6.5.4. Let ' be in ISC.Y Œ2; 0; 0�/exp. Then

�Y Š.�1Š.'//D �Y Š.�2Š.'//:

Proof. By using a construction as in the proof of Lemma-Definition 6.4.1, but
now with a bicell decomposition, we may assume 'DE.g/ with g W Y Œ2; 0; 0�!
hŒ1; 0; 0� in RDefS and  in ISC.Y Œ2; 0; 0�/e. By Proposition 6.5.1 we have

�Y Š.�1Š.'//D �Y Š.�1Š.E.g/ //

D �Y Š.�1Š.E.z2/
1Š. ///;
(6.5.3)

with 
1 WD .�1; g/ WX ! Y Œ2; 0; 0�. Hence, by Proposition 6.5.2,

�Y Š.�1Š.'//D �Y Š.�2Š.E.z2/
1Š. ///

D �Y Š.E.z/.�2Š ı 
1Š/. ///:
(6.5.4)

The result follows, since by Proposition 6.2.1,

(6.5.5) .�2Š ı 
1Š/. /D .�2 ı 
1/Š. /

where �2 ı 
1 W X ! Y Œ1; 0; 0� is the morphism .�; g/, with � W Y Œ2; 0; 0�! Y

the projection, which is independent of the order of the two variables in hŒ2; 0; 0�,
again, by Proposition 6.2.1. �
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6.6. Projections. Let us first consider the projection p WY Œm; 0; 0�!Y . Let '
be in ISC.Y Œm; 0; 0�/exp. Ifm>1, we set, by induction onm, pŠ.'/D�Y Š.�1Š.'//,
where �1 WY Œm; 0; 0�!Y Œm�1; 0; 0� is the projection on the firstm�1 coordinates.
By Proposition 6.5.4, this definition is invariant under permutation of coordinates.

In the general case of a projection

p W Y Œm; n; r� �! Y;

for any ' in ISC.Y Œm; n; r�/exp, we set pŠ.'/ WD .p2Š ıp1Š/.'/ for

Y Œm; n; r�
p1 //Y Œm; 0; 0�

p2 //Y:

It follows from Lemma-Definition 3.7.1, Lemma-Definition 6.4.1 and Proposition
6.5.4 that, for any decomposition of p into projections

Y Œm; n; r�
p1 //Y Œm0; n0; r 0�

p2 //Y;

with m0 �m, n0 � n and r 0 � r , we have pŠ.'/D .p2Š ıp1Š/.'/ and the definition
of pŠ.'/ is invariant under permutation of coordinates.

Now if Z is a definable subassignment of some hŒm; n; r� and ' belongs
to ISC.Y �Z/exp we denote by Q' the Function in ISC.Y Œm; n; r�/exp which is
obtained from ' by extension by zero outsideZ. If 'D

P
1�i�j 'i ŒXi �E.gi /, with

'i in ISC.Y �Z/e, Xi in RDefY�Z and gi WXi! hŒ1; 0; 0�, we have, with a slight
abuse of notations, Q' D

P
1�i�j jŠ.'i /jŠ.ŒXi �/E.gi /, with j WZ! hŒm; n; r� the

inclusion. We write the projection p W Y �Z! Y as � ı j , with � the projection
Y Œm; n; r�! Y , and we set

(6.6.1) pŠ.'/ WD �Š. Q'/

for ' in ISC.Y �Z/exp.
The projection formula (A3) trivially holds for pŠ and also the following form

of Fubini’s theorem.

PROPOSITION 6.6.1. Consider a diagram of projections

Y �Z �W
p1
�!Y �Z

p2
�!Y;

with Z and W in Defk . Then for any ' in ISC.Y �Z �W /exp,

.p2 ıp1/Š.'/D .p2Š ıp1Š/.'/:

6.7. Definable injections. Let i WX ! Y be a morphism in DefS which is a
definable injection and let g WX ! hŒ1; 0; 0� and � WX ! hŒ0; 1; 0� be morphisms.
Now if ' D '0E.g/e�ŒW ! X� lies in ISC.X/exp with '0 in ISC.X/, W in
RDefX , and if we write W 0 for the unique element of RDefY such that for each
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x 2X the fiber Wx equals W 0
i.x/

and W 0y empty for y outside i.X/, then

(6.7.1) iŠ.'/ WD iŠ.'0/E.gW 0/e�W 0 ŒW 0! Y �;

where �W 0 and gW 0 are � and g seen on W 0.
This definition extends uniquely by linearity to give a morphism

iŠ W ISC.X/exp
! ISC.Y /exp:

Also it is quite clear that if j W Y ! Z is another definable injection in DefS ,
.j ı i/Š D jŠ ı iŠ.

6.8. General case. To define fŠ for f WX ! Y a general morphism in DefS ,
we proceed as in [11]. We decompose f as a composition f D �f ı if with if the
definable injection X !X �Y given by x 7! .x; f .x// and �f WX �Y ! Y the
canonical projection, and we set fŠ D �f Š ı if Š.

It is quite clear that when f is an injection the new definition coincides with
the previous one. Also, when f is a projection Y �Z ! Y , the new definition
coincides with the previous one. Indeed, the analogue of Lemma 11.5.2 of [11]
holds for similar reasons in the present setting, and so the proof in Lemma 11.6.1
of [11] extends directly.

6.9. End of proof. We still have to check that if f WX! Y and g W Y !Z are
morphisms in DefS , then gŠ ıfŠD .g ıf /Š. This is proved in a formal way exactly
as in Proposition 11.7.1 of [11], since the analogue of Lemma 11.7.2 in [11] holds
in the present setting. Axioms (A1)–(A5) follow directly by construction.

7. Fourier transform

Let p WX!ƒ be a morphism in Defk , with all fibers of relative dimension d .
We shall denote by Iƒ.X/

exp or Ip.X/
exp the C.ƒ/exp-module of functions ' in

C.X/exp whose class Œ'� in C d .X!ƒ/exp lies in IƒC.Z!ƒ/exp. We shall also
write �ƒ.'/ or �p.'/ to denote the function �ƒ.Œ'�/ in C.ƒ/exp.

7.1. Fourier transform over the residue field. Fix ƒ in Defk and an integer
d � 0. We consider the subassignment ƒŒ0; 2d; 0� with first d residue field coordi-
nates xD .x1; : : : ; xd / and last d residue coordinates yD .y1; : : : ; yd / and denote
by p1 W ƒŒ0; 2d; 0�! ƒŒ0; d; 0� and p2 W ƒŒ0; 2d; 0�! ƒŒ0; d; 0� the projection
onto the x-variables and y-variables, respectively. In this section we shall write
e.�/ for e� . We view

P
1�i�d xiyi as a morphism ƒŒ0; 2d; 0�! hŒ0; 1; 0� and we

consider the function
e.xy/ WD e

� X
1�i�d

xiyi

�
in C.ƒŒ0; 2d; 0�/exp.
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We define the Fourier transform

(7.1.1) f W C.ƒŒ0; d; 0�/exp
�! C.ƒŒ0; d; 0�/exp

by

(7.1.2) f.'/ WD p1ŠƒŒ0;d;0�.Œe.xy/p�2 .'/�/;

for ' in C.ƒŒ0; d; 0�/exp. The morphism f is C.ƒ/exp-linear.
For ' in C.ƒŒ0; d; 0�/exp we write L' for ��.'/, with � WƒŒ0; d; 0�!ƒŒ0; d; 0�

the ƒ-morphism sending x to �x.

THEOREM 7.1.1. Let ' be in C.ƒŒ0; d; 0�/exp. Then

.f ı f/.'/D Ld L':

Proof. The proof is essentially the same as the standard one for finite fields.
More precisely, we work on ƒŒ0; 3d; 0� with coordinates

.x1; : : : ; xd ; y1; : : : ; yd ; z1; : : : ; zd /:

We shall denote by x WƒŒ0; 3d; 0�!ƒŒ0; d; 0�, .x; y/ WƒŒ0; 3d; 0�!ƒŒ0; 2d; 0�

the projections onto the corresponding components, etc. If f is a function on
ƒŒ0; d; 0� we shall write f .x/ instead of x�f , etc. By induction and Fubini’s
theorem (cf. Remark 4.3.2) we may assume d D 1.

Let ' be in C.ƒŒ0; d; 0�/exp. Then

.f ı f/.'/D �xŒe.y.xC z//'.z/�
D �xŒe.yu/'.u� x/�;

(7.1.3)

after performing the change of variables .x; y; z/ 7! .x; y; uD xC z/. Since

(7.1.4) L L'.x/D �xŒ1uD01yDy'.�x/�;

we have

(7.1.5) ..f ı f/.'/� L L'/.x/D �xŒ1u 6D0e.yu/'.u� x/�;

which, after performing the change of variables .x; y; u/ 7! .x; w D yu; u/, may
be rewritten as

(7.1.6) ..f ı f/.'/� L L'/.x/D �xŒ1u 6D0e.w/'.u� x/�;

whose right-hand side is zero by the Fubini theorem and relation (R4). �

7.2. Fourier transform over the valued field. Fix ƒ in Defk and an integer
d � 0. We consider the subassignment ƒŒ2d; 0; 0� with first d valued field coordi-
nates x D .x1; : : : ; xd / and last d valued field coordinates y D .y1; : : : ; yd / and
denote by p1 WƒŒ2d; 0; 0�!ƒŒd; 0; 0� and p2 WƒŒ2d; 0; 0�!ƒŒd; 0; 0� the pro-
jection onto the x-variables and y-variables, respectively. We view

P
1�i�d xiyi
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as a morphism ƒŒ0; 2d; 0�! hŒ1; 0; 0� and we consider the function E.xy/ WD
E.
P
1�i�d xiyi / in C.ƒŒ2d; 0; 0�/exp.

LEMMA 7.2.1. Let ' be in Iƒ.ƒŒd; 0; 0�/
exp. The class ŒE.xy/p�2 .'/� of

E.xy/p�2 .'/ in C d .p1 WƒŒ2d; 0; 0�!ƒŒd; 0; 0�/exp is integrable rel. p1.

Proof. Indeed, it follows by construction that, if is a function in C.ƒŒd;0;0�/

whose class Œ � in C d .ƒŒd; 0; 0�!ƒ/ is ƒ-integrable, the class of the pull-back
p�2 . / in C d .p1 W ƒŒ2d; 0; 0�! ƒŒd; 0; 0�/ is integrable rel. p1. The statement
follows. �

Thanks to Lemma 7.2.1, one may define the Fourier transform

(7.2.1) F W Iƒ.ƒŒd; 0; 0�/
exp
�! C.ƒŒd; 0; 0�/exp

by

(7.2.2) F.'/ WD �p1.E.xy/p
�
2 .'//;

for ' in Iƒ.ƒŒd; 0; 0�/
exp. The morphism F is C.ƒ/exp-linear.

7.3. Some examples. Let us compute some simple examples. Consider defin-
able functions ˛ W ƒ! Z and � D .�1; : : : ; �d / W ƒ! hŒ0; d; 0� with �i nowhere
zero and set

Z˛ WD f.�; x D .x1; : : : ; xd // 2ƒŒd; 0; 0� j ord.xi /� ˛.�/g;

W˛ WD f.�; x D .x1; : : : ; xd // 2ƒŒd; 0; 0� j ord.xi /D ˛.�/g;

W˛;� WD f.�; x D .x1; : : : ; xd // 2ƒŒd; 0; 0� j ord.xi /D ˛.�/; ac.xi /D �i .�/g;

'˛ WD 1Z˛ ;  ˛ WD 1W˛ ; and  ˛;� WD 1W˛;� :

PROPOSITION 7.3.1. The following formulas hold:

(1) F.'˛/D L�d˛'�˛C1.

(2) F. ˛/D L�d˛'�˛C1� L�d˛�d'�˛.

(3) F. ˛;�/ D L�d˛�d .'�˛C1 C e.i/ �˛/; with i the morphism ƒŒd; 0; 0� !

ƒŒd; 1; 0� given by .�; x/ 7! .�; x;
P
i �i .�/ac xi /.

Proof. By induction on d , we may assume d D 1. Let us start by proving (3).
It is enough to check that the restriction of F. ˛;�/ to the subassignment defined
by ord x D ˇ and ac x D � is equal to 0 if ˛Cˇ < 0, to L�˛�1 if ˛Cˇ > 0, and
is equal to e.��/L�˛�1 if ˛C ˇ D 0. The case ˛C ˇ < 0 follows from (A5) of
Theorem 4.1.1. The cases ˛Cˇ > 0 and ˛Cˇ D 0 follow from relation (R3) and
the construction of the direct image formalism in [11]. Cases (1) and (2) are easier.
The reader may also choose to prove first the case of ˛ D 0 and deduce the case of
general ˛ from it. �
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We compute some more examples.

LEMMA 7.3.2. Assume d D 1 and let 
 W ƒ! Z and � W ƒ! hŒ0; 1; 0� be
definable functions. Then

(1) If 
 > 0 on ƒ, �ƒ. 
;�E.x//D L�
�1, �ƒ. 
E.x//D .L� 1/L�
�1 and
�ƒ.'
E.x//D L�
 .

(2) If 
 < 0 on ƒ, �ƒ. 
;�E.x//D �ƒ. 
E.x//D 0.

(3) If 
 D 0 on ƒ, �ƒ. 
;�E.x//D e.�/L�1 and �ƒ. 
E.x//D�L�1.

Proof. Statement (1) and the first part of (3) are obvious from relation (R3)
and the construction in [11], and (2) follows from (A5) of Theorem 4.1.1.

The last part of (3) follows from the first part using cell decomposition, since,
by relation (R4), �ƒ.iŠi�e.�//D�1, with � the residue field variable on ƒŒ0; 1; 0�
and i the inclusion of the subassignment defined by � 6D 0 in ƒŒ0; 1; 0�. �

If follows readily from Proposition 7.3.1 that

(7.3.1) F ıF.'˛/D L�d '˛

and

(7.3.2) F ıF. ˛/D L�d  ˛:

The corresponding statement for  ˛;� will follow from the general Fourier inver-
sion for Schwartz-Bruhat functions to be proved in Theorem 7.5.1. Though not at
all necessary, let us provide a direct proof of that fact:

PROPOSITION 7.3.3. The following holds

F ıF. ˛;�/D L�d  ˛;�� :

Proof. We may assume d D 1. By (1) and (3) of Proposition 7.3.1, it is
enough to compute F.e.i/ �˛/; with i the morphism ƒŒ1; 0; 0�!ƒŒ1; 1; 0� given
by .�; x/ 7! .�; x; �.�/ac x/. But this can be done similarly as in (3) of Proposition
7.3.1 and the last part of (3) in Lemma 7.3.2. �

7.4. Convolution. We denote by xCy the morphism ƒŒ2d; 0; 0�!ƒŒd; 0; 0�

given by .x1; : : : ; xd ; y1; : : : ; yd / 7! .x1Cy1; : : : ; xdCyd /. We shall also work on
ƒŒ3d; 0; 0� with coordinates .x1; : : : ; xd ; y1; : : : ; yd ; z1; : : : ; zd /. We shall denote
by x W ƒŒ3d; 0; 0�! ƒŒd; 0; 0�, .x; y/ W ƒŒ3d; 0; 0�! ƒŒ2d; 0; 0� the projections
onto the corresponding components, etc. If f is a function on ƒŒd; 0; 0� we shall
write f .x/ instead of x�f , etc.

Proposition-Definition 7.4.1. Let f and g be two functions in

Iƒ.ƒŒd; 0; 0�/
exp:



1040 RAF CLUCKERS and FRANÇOIS LOESER

The function p�1 .f /p
�
2 .g/ lies in IxCy.ƒŒ2d; 0; 0�/

exp and the function

f �g WD �xCy.p
�
1 .f /p

�
2 .g//

lies in Iƒ.ƒŒd; 0; 0�/
exp, where p1 and p2 are as in Section 7.2.

Proof. It follows directly from [11, Th. 14.1.1] that, if ' and  are functions
in C.ƒŒd; 0; 0�/ whose classes in C d .ƒŒd; 0; 0�!ƒ/ are in IƒC.ƒŒd; 0; 0�!ƒ/,
then the class of p�1 .'/p

�
2 . / in C d.ƒŒ2d;0;0�!ƒ/ lies in IƒC.ƒŒ2d; 0; 0�!ƒ/.

One deduces that the function p�1 .f /p
�
2 .g/ lies in Iƒ.ƒŒ2d; 0; 0�/

exp, hence also
in IxCy.ƒŒ2d; 0; 0�/

exp. Since, by the Fubini theorem,

(7.4.1) �ƒ.p
�
1 .f /p

�
2 .g//D �ƒ.�xCy.p

�
1 .f /p

�
2 .g///;

it follows that f �g lies in Iƒ.ƒŒd; 0; 0�/
exp. �

PROPOSITION 7.4.2. The convolution product .f; g/ 7! f � g is C.ƒ/exp-
linear and it endows Iƒ.ƒŒd; 0; 0�/

exp with an associative and commutative law.

Proof. C.ƒ/exp-linearity and commutativity being clear, we check associativ-
ity. This follows from the fact that, if f , g and h are functions in Iƒ.ƒŒd; 0; 0�/

exp,

(7.4.2) .f �g/� hD �xCyCz.p
�
1 .f /p

�
2 .g/p

�
3 .h//:

by the Fubini theorem. �

PROPOSITION 7.4.3. Let f and g be two functions in Iƒ.ƒŒd; 0; 0�/
exp. Then

F.f �g/D F.f /F.g/:

Proof. The proof is just the same as the usual one. Let us consider the function
E.x.y C z//f .y/g.z/ on ƒŒ3d; 0; 0�. It is integrable rel. x, and by the Fubini
theorem we have

�x.E.x.yC z//f .y/g.z//D �x..E.xy/f .y//.E.xz/g.z///

D F.f /F.g/:
(7.4.3)

On the other hand, by the change of variables formula, .x; y; z/ 7! .x; uDyCz; z/,
�x.E.x.yC z//f .y/g.z// may be expressed as

(7.4.4) �x.E.xu/�x;u.f .u� z/g.z///D F.f �g/;

which ends the proof. �

For ' in C.ƒŒd; 0; 0�/exp we write L' for ��.'/, with � WƒŒd; 0; 0�!ƒŒd; 0; 0�

the ƒ-morphism sending x to �x.
We have the following partial Fourier inversion:
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PROPOSITION 7.4.4. Let ' be a function in Iƒ.ƒŒd; 0; 0�/
exp. For every ˛ in

Z, '˛F.'/ lies in Iƒ.ƒŒd; 0; 0�/
exp and

F.'˛F.'//D L�˛d L' �'�˛C1:

Proof. We shall work on ƒŒ3d; 0; 0�, keeping notation and conventions from
the proof of Proposition 7.4.3. The integrability of '˛F.'/ follows from the fact
that the function E.yz/'˛.y/'.z/ on ƒŒ2d; 0; 0� lies in Iƒ.ƒŒ2d; 0; 0�/

exp. We
consider the function E.y.xC z//'˛.y/'.z/ on ƒŒ3d; 0; 0�. It is integrable rel. x,
and by the Fubini theorem we have

�x.E.y.xC z//'˛.y/'.z//D �x.�.x;y/.E.y.xC z//'˛.y/'.z///(7.4.5)

D �x.'˛.y/E.xy/�.x;y/.E.yz/'.z///

D �x.E.xy/'˛.y/F.'/.y//

D F.'˛F.'//:

On the other hand, performing the change of variables .x; y; z/ 7! .uD xCz; y; z/,
we have, accordingly,

�x.E.y.xC z//'˛.y/'.z//D �x.�.x;z/.E.y.xC z//'˛.y/'.z///(7.4.6)

D �u�z.�.u;z/.E.uy/'˛.y/'.z///

D �u�z.'.z/�.u;z/.E.uy/'˛.y///

D �u�z.'.z/F.'˛/.u//

D �uCz. L'.z/F.'˛/.u//

D L' �F.'˛/;

which concludes the proof. �

7.5. Schwartz-Bruhat functions. We define the space Sƒ.ƒŒd; 0; 0�/
exp of

Schwartz-Bruhat functions over ƒ as the C.ƒ/exp-submodule of Iƒ.ƒŒd; 0; 0�/
exp

consisting of functions f such that

(7.5.1) f �'˛ D f for˛� 0

and

(7.5.2) f �'˛ D L�˛d f for˛� 0:

Condition (7.5.1) stands for “compactly supported” and condition (7.5.2) for “lo-
cally constant”. Here the quantifier ˛� 0 in (7.5.1), resp. ˛� 0 in (7.5.2), means
there exists a definable function ˛0 Wƒ! Z such that (7.5.1), resp. (7.5.2), holds
for every definable function ˛ Wƒ! Z such that ˛ � ˛0, resp. ˛ � ˛0.
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THEOREM 7.5.1. Fourier transform induces an isomorphism

(7.5.3) F W Sƒ.ƒŒd; 0; 0�/
exp
' Sƒ.ƒŒd; 0; 0�/

exp

and, for every ' in Sƒ.ƒŒd; 0; 0�/
exp,

(7.5.4) .F ıF/.'/D L�d L':

Proof. Let ' be in Sƒ.ƒŒd; 0; 0�/
exp. Note that, for ˛� 0,

(7.5.5) F.'/'˛ D F.'/:

Indeed, by Proposition 7.4.3 and Proposition 7.3.1 (1), for ˛� 0,

(7.5.6) F.'/D F.' �'˛/ L˛d D F.'/'�˛C1:

It follows from Proposition 7.4.4 that F.'/ lies in Iƒ.ƒŒd; 0; 0�/
exp and that

(7.5.7) F.F.'//D L�˛d L' �'�˛C1;

for ˛� 0. Since ' lies in Sƒ.ƒŒd; 0; 0�/
exp, L' also,

(7.5.8) L' �'�˛C1 D L.˛�1/d L'

for ˛ � 0, and we deduce (7.5.4). So we are left to prove that F.'/ lies in
Sƒ.ƒŒd; 0; 0�/

exp. It is enough to check that, for ˛� 0,

(7.5.9) F.'/ L�.�˛C1/d D F.'/�'�˛C1;

which follows from the relations

(7.5.10) F.F.F.'///D F.'˛F.F.'///D L�˛d LF.'/�'�˛C1;

for ˛� 0 by Proposition 7.4.4, and, by (7.5.4),

(7.5.11) F.F.F.'///D L�d LF.'/;

which concludes the proof. �

Now we can prove Fourier inversion for integrable functions with integrable
Fourier transform.

THEOREM 7.5.2. Let ' be in Iƒ.ƒŒd; 0; 0�/
exp. Assume F.'/ belongs also to

Iƒ.ƒŒd; 0; 0�/
exp. Then the functions .F ıF/.'/ and L�d L' have the same class in

C d .ƒŒd; 0; 0�!ƒ/exp.

Proof. By induction on d we may assume dD1. Take ' in Iƒ.ƒŒ1; 0; 0�/
exp.

By Lemma 7.5.3 and additivity, we may assume a 1-cell � WZ!ZC �ƒŒ1; s; r�

exists, such that, denoting by i the inclusion Z!ƒŒ1; 0; 0� and by j the inclusion
ZC!ƒŒ1; s; r�, 'D iŠ.i�.'// and  WD jŠ�Š.i�.'// lies in SƒŒ0;r;s�.ƒŒ1; r; s�/

exp.
Denoting by � the projection ƒŒ1; r; s�! ƒ, ' D �Š. /, we see that the result
follows formally from Lemma 7.5.4 and Theorem 7.5.1. �
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LEMMA 7.5.3. For every ' in Iƒ.ƒŒ1; 0; 0�/
exp there exists a cell decom-

position of ƒŒ1; 0; 0� such that, for every 1-cell � W Z ! ZC � ƒŒ1; s; r�, the
function jŠ�Š.i�'/ lies in SƒŒ0;r;s�.ƒŒ1; r; s�/

exp, where i denotes the inclusion
Z!ƒŒ1; 0; 0� and j the inclusion ZC !ƒŒ1; s; r�.

Proof. This follows easily from Section 5.1, or even from Theorem 2.2.1. �
LEMMA 7.5.4. For r and s in N, denote by � the projection ƒŒd; r; s� !

ƒŒd; 0; 0� and recall notation from Section 3.6. For any ' in IƒŒ0;r;s�.ƒŒd; r; s�/
exp,

if the function �Š.'/ lies in Iƒ.ƒŒd; 0; 0�/
exp, then

F.�Š.'//D �Š.F.'//:

Proof. This follows from the fact that �p1 commutes with �Š. �

8. Exponential integrals over the p-adics

8.1. Definable sets over the p-adics. Let K be a finite field extension of Qp

with valuation ring R. We recall the notion of (globally) subanalytic subsets of
Kn and of semialgebraic subsets of Kn. Let LMacDf0;C;�; �; fPngn>0g be the
language of Macintyre and Lan D LMac [ f

�1;[m>0Kfx1; : : : ; xmgg, where Pn
stands for the set of nth powers in K�, where Kfx1; : : : ; xmg is the ring of re-
stricted power series over K (that is, formal power series converging on Rm), and
each element f of Kfx1; : : : ; xmg is interpreted as the restricted analytic function
Km!K given by

(8.1.1) x 7!

(
f .x/ if x 2Rm

0 otherwise.

By subanalytic we mean Lan-definable with coefficients from K and by semial-
gebraic we mean LMac-definable with coefficients from K. Note that subanalytic,
resp. semialgebraic, sets can be given by a quantifier free formula with coefficients
from K in the language LMac, resp. Lan.

In this section we let L be either the language LMac or Lan and by L-definable
we will mean semialgebraic, resp. subanalytic when L is LMac, resp. Lan. Every-
thing in this section will hold for both languages and we will give the appropriate
references for both languages where needed.

For each definable set X �Kn, let C.X/ be the Q-algebra of functions on X
generated by functions jf j and ord.f / for all definable functions f WX !K�.1

For an L-definable set X , let C�d .X/ be the ideal of C.X/ generated by the
characteristic functions 1Z of L-definable subsets Z �X of dimension � d . (For
the definition of the dimension of L-definable sets, see [30] and [19].) Note that

1Instead of taking the Q-algebra we could as well take the ZŒ1=q; f1=.1� qi /gi<0�-algebra, with
q the residue cardinality of K.
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the support of a function in C.X/ is in general not L-definable; cf. the function
.x; y/ 7! jxj � ord.y/ on K �K�.

By C d .X/ we denote the quotient

(8.1.2) C d .X/ WD C�d .X/=C�d�1.X/:

Finally we set

(8.1.3) C.X/ WD
M
d�0

C d .X/:

It is a module over C.X/. If ' is in C.X/ with support contained in a L-definable
set of dimension d , we denote by Œ'�d its image in C d .X/.

8.2. The p-adic measure. Suppose that X � Kn is an L-definable set of
dimension d � 0. The set X contains a definable nonempty open submanifold
X 0 � Kn such that X n X 0 has dimension < d ; cf. [19]. There is a canon-
ical d -dimensional measure on X 0 coming from the embedding in Kn, which
is constructed as follows; cf. [31]. For each d -element subset J of f1; : : : ; ng,
with ji < jiC1, ji in J , let dxJ be the d -form dxj1 ^ : : : ^ dxjd on Kn, with
x D .x1; : : : ; xn/ standard global coordinates on Kn. Let x0 be a point on X 0

such that xI are local coordinates around x0 for some I � f1; : : : ; ng. For each
d -element subset J of f1; : : : ; ng let gJ be the L-definable function determined
at a neighborhood of x0 in X 0 by gJdxI D dxJ . There is a unique volume form
j!0jX 0 on X 0 which is locally equal to .maxJ jgJ j/jdxI j around every point x0 in
X 0. Indeed, j!0jX 0 is equal to supJ jdxJ j. The canonical d -dimensional measure
on X 0, cf. [31], [28], is the one induced by the volume form j!0jX 0 . We extend
this measure to X by zero and denote it by �d .

This measure allows us to define the subgroup IC d .X/ of C d .X/ for an L-
definable set X of dimension d , as the group generated by elements Œ'�d with '
in C.X/ integrable for �d . We define IC e.X/ for general e as the subgroup of
C e.X/ consisting of elements Œ'�e with ' with support contained in an L-definable
subset Z � X of dimension e and with Œ'jZ �e in IC e.Z/. Finally, we define the
graded group IC.X/ as ˚r IC r.X/.

8.3. Jacobian. Using the pullback of differential forms under analytic maps,
it is possible to define the norm of the Jacobian jJacf j of an L-definable bijection
f W X �Kn! Y �Km as follows. There exist definable K-analytic manifolds
X 0�X and Y 0�Y such thatXnX 0 and Y nY 0 have dimension<d with d DdimX

and such that fjX 0 is a K-bi-analytic bijection onto Y 0. For subsets I and J of
f1; : : : ; ng and f1; : : : ; mg respectively, we denote by UI;J the definable subset of
X 0 consisting of points x0 such that jdxI j coincides with j!0jX 0 on a neighborhood
of x0 and jdyJ j coincides with j!0jY 0 on a neighborhood of f .x0/. On UI;J we
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may write f �.dyJ / D gI;JdxI . The functions jgI;J j are constructible on UI;J
and there exists a unique constructible function h on X 0 restricting to jgI;J j on
each UI;J . We define jJacf j as the class of h in C d .X/ which does not depend
on the choices made.

The p-adic change of variables formula (cf. [22]) may be restated as follows:

PROPOSITION 8.3.1. Let f WX �Kn! Y �Km be an L-definable bijection,
with d D dimX . For every measurable subset A of Y one has

(8.3.1) �d .A/D

Z
f �1.A/

jJacf j�d :

8.3.2. A variant. For the proof of Theorem 8.5.3 below we shall need the
following variant of jJacf j. LetX be a definable subset of Y �Kn for Y a definable
subset of Km and consider the morphism f WX ! Y induced by projection. As-
sume first X is of dimension r , Y of dimension s, f is surjective and all fibers of f
have dimension r�s. In this setting we define a constructible function ı.f / defined
almost everywhere on X as follows. We can choose (cf. [19]) definable manifolds
X 0�X and Y 0� Y such that X nX 0 has dimension < r , Y nY 0 has dimension < s,
f restricts to a locally analytic morphism f 0 W X 0! Y 0 and for every point y in
Y 0, f �1.y/ nf 0�1.y/ is of dimension < r � s, and such that f 0 is regular (that is,
the Jacobian matrix has everywhere maximal rank). Denote by yi the coordinates
on Km and by zi the coordinates on Kn. Consider subsets I , I 0 of f1; : : : ; mg and
J , J 0 of f1; : : : ; ng, and denote by UI;J;I 0;J 0 the set of points x of X 0 such that on
a neighborhood of x, j!0jX 0 coincides with jdyI ^ dzJ j, j!0jf 0�1.f .x// coincides
with jdzJ 0 j, and on a neighborhood of f .x/, j!0jY 0 coincides with jdyI 0 j. On
UI;J;I 0;J 0 we may write

(8.3.2) dyI 0 ^ dzJ 0 D gI;J;I 0;J 0dyI ^ dzJ ;

with gI;J;I 0;J 0 definable. There is a unique constructible function g on X 0 restrict-
ing to jgI;J;I 0;J 0 j on X 0. We denote its class in C r.X/ , which is independent of
the choices made, by ı.f /. Note that when f is an isomorphism ı.f /D jJacf j.

The proof of the following chain rule is clear:

LEMMA 8.3.3. Let Z be a definable subset of dimension t of Km, Y be a
definable subset of dimension s ofZ�Kn and X be a definable subset of dimension
r of Y �Kq . Assume the morphisms f W X ! Y and g W Y ! Z are induced by
projections and are surjective, and that all their fibers have dimension r � s and
s� t , respectively. Then the equality

ı.g ıf /D ı.f /.ı.g/ ıf /

holds.
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8.4. p-adic cell decomposition. Recall that Pn is the set of nth powers in K�,
and for � 2 K let �Pn be f�x j x 2 Png. Cells are defined by induction on the
number of variables:

Definition 8.4.1. An L-cell A�K is a (nonempty) set of the form

(8.4.1) ft 2K j j˛j�
1
jt � cj�

2
jˇj; t � c 2 �Png;

with constants n > 0, �; c in K, ˛; ˇ in K�, and �i either < or no condition. An
L-cell A�KmC1, m� 0, is a set of the form

(8.4.2)
f.x; t/ 2KmC1 j x 2D; j˛.x/j�1 jt � c.x/j�2 jˇ.x/j;

t � c.x/ 2 �Png;

with .x; t/D .x1; : : : ; xm; t /, n > 0, � in K, D D �m.A/ a cell where �m is the
projection KmC1!Km, L-definable functions ˛; ˇ WKm!K� and c WKm!K,
and �i either < or no condition, such that the functions ˛, ˇ, and c are analytic
on D. We call c the center of the cell A and �Pn the coset of A. In either case, if
�D 0 we call A a 0-cell and if � 6D 0 we call A a 1-cell. (Recall that Pn denotes
the set of n-th powers in K�.)

In the p-adic semialgebraic case, cell decomposition theorems are due to Co-
hen [12] and Denef [14], [16] and they were extended in [4] to the subanalytic
setting where one can find the following version:

THEOREM 8.4.2 (p-adic cell decomposition). LetX �KmC1 and fj WX!K

be L-definable for j D 1; : : : ; r . Then there exists a finite partition ofX into L-cells
Ai with center ci and coset �iPni such that

jfj .x; t/j D jhij .x/j � j.t � ci .x//
aij�

�aij
i j

1
ni ; for each .x; t/ 2 Ai ;

with .x; t/D .x1; : : : ; xm; t /, integers aij , and hij WKm!K L-definable functions
which are analytic on �m.Ai /, j D 1; : : : ; r . If �i D 0, we use the convention that
aij D 0.

We shall also use the following lemma from [5]:

LEMMA 8.4.3. Let X � KmC1 be L-definable and let Gj be functions in
C.X/ in the variables .x1; : : : ; xm; t / for j D 1; : : : ; r . Then there exists a finite
partition of X into L-cells Ai with center ci and coset �iPni such that each re-
striction Gj jAi is a finite sum of functions of the form

j.t � ci .x//
a��aj

1
ni v.t � ci .x//

sh.x/;

where h is in C.Km/, and s � 0 and a are integers.
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8.5. Integration. By Def.L/ we denote the category of L-definable subsets
X � Kn for n > 0, with L-definable maps as morphisms. We can now state a
general integration result which states uniqueness and existence of a certain in-
tegral operator. This integral operator is introduced as a push-forward operator
of functions under L-definable maps, inspired by integration in the fibers with a
measure on the fibers coming from Leray-differential forms.

In [17], see also [15], Denef proved stability of p-adic constructible functions
under integration with respect to parameters in the semialgebraic case. Denef’s
result had a major influence on our work [11] and the present one. It was later
generalized to the subanalytic case by the first author in [4] and [5].

PROPOSITION 8.5.1 ([17], [4], [5]). Let W be a definable subset of Kn of
dimension r .
(1) Let ' be in C.W �Km/. Assume for every x in W the function t 7! '.x; t/ is

integrable on Km. Then the function

g.x/ WD

Z
Km

'.x; t/jdt j

lies in C.W /.

(2) Let ' be in IC rCm.W �Km/. Then, there exists a function g in C.Kn/ such
that for all x in W nZ, with Z an L-definable set of dimension < r in Kn,
one has

g.x/D

Z
Km

'.x; t/jdt j:

Proof. When W DKn, statement (1) is proved in [17] in the semialgebraic
case and in [4] in the subanalytic case and statement (2) is proved in [5]. The
proofs carry over literally to general W . �

Remark 8.5.2. The point in (2) of Proposition 8.5.1 is that it is possible that
the subset of W consisting of those points x in W such that t 2Km 7! '.x; t/ is
integrable may not be definable.

We shall now prove the following analogue of Theorem 10.1.1 of [11]. Note
that the proof will be much easier, since integrable functions are already defined
and Proposition 8.5.1 is available.

THEOREM 8.5.3. There exists a unique functor from Def.L/ to the category
of groups sending an L-definable set X to the group IC.X/ such that a morphism
f WX ! Y in Def.L/ is sent to a group morphism fŠ W IC.X/! IC.Y / satisfying
the following axioms

(A1) Disjoint union: Assume that X , resp. Y , is the disjoint union of two
L-definable sets X1 and X2, resp. Y1 and Y2, such that f .Xi / � Yi . Write fi W
Xi ! Yi for the restrictions. Then we have fŠ D f1Š˚f2Š under the isomorphisms
IC.X/' IC.X1/˚ IC.X2/ and IC.Y /' IC.Y1/˚ IC.Y2/.



1048 RAF CLUCKERS and FRANÇOIS LOESER

(A2) Projection formula: For every ˛ in C.Y / and ˇ in IC.X/, if .˛ ıf /ˇ is
in IC.X/, then fŠ..˛ ıf /ˇ/D f̨Š.ˇ/.

(A3) Projection for 1-cells: Let X � KnC1 be a 1-cell of dimension r and
Y its image under the projection on Kn, f W X ! Y the projection. Let ' be a
�r - integrable function in C.X/. By Proposition 8.5.1 there exists an L-definable
set Z � Y such that Y n Z has dimension < r � 1 and such that the function
g W Y ! Q W y 7!

R
f �1.y/ 1Y nZ.y/'.y; t/jdt j lies in C�r�1.Y /. Then fŠ.Œ'�r/ is

equal to the class of g in IC r�1.Y /.

(A4) Projection for 0-cells: Let X �KnC1 be a 0-cell of dimension r and Y
its image under the projection on Kn, f W X ! Y the projection. Then fŠ.1X / is
equal to the class of .j.Jacf /j ıf �1/�11Y in IC r.Y /, where jJacf j is as in 8.3.

Proof. We will freely use classical forms of the change of variables formula,
without mentioning it. Let us first check uniqueness. Since, by the graph con-
struction, any morphism f W X ! Y is the composition of the graph injection
if WX !X �Y and the projection p WX �Y ! Y , it is enough, by functoriality,
to prove uniqueness for if Š and pŠ. For projections X �Y ! Y , one can assume
X DKm and Y DKn by (A1). By induction on m, it is enough to define pŠ when
mD 1. Consider ' in Cr.KnC1/ and assume it is integrable. By cell decomposition
and linearity we may assume the support of ' is contained in a cell Z of dimension
r . If Z is a 1-cell, fŠ.Œ'�r/ is given by (A3). In case Z is a 0-cell, we may assume
by (A2) that 'D 1Z , and then fŠ.Œ'�r/ is given by (A4). Finally, since q ı if D idX ,
with q the projection X�Y !X , and since q induces a bijection between the graph
of f and X , uniqueness for if Š reduces to that of qŠ (an essentially similar argument
is given with full details in the uniqueness section of the proof of Theorem 10.1.1
of [11]).

Let us now define fŠ for projections. Let X be a definable subset of Y �Kn

for Y a definable subset of Km and consider the morphism f WX ! Y induced by
projection. Assume first that X is of dimension r , Y of dimension s, f is surjective
and all fibers of f have dimension r � s.

Let ' be a �r -integrable function in C.X/. There exists a definable subset Z
of Y , with dimension < s, such that the function

(8.5.1) g W y 7!

Z
f �1.y/

1Y nZ.y/ı.f /'�r�s

lies in C.Y /, with ı.f / as in Section 8.3.2, and �r�s is the measure as in Section
8.2. Indeed, by Fubini and induction, and possibly after considering a partition of
X and Y , we may assume n D 1. Then, we may by cell decomposition assume
X is a cell. If X is a 0-cell the statement is clear, if X is a 1-cell the statement
follows from Proposition 8.5.1. We may then define fŠ.Œ'�r/ to be the class of g in
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C r�s.Y /. It follows from Fubini that fŠ.Œ'�r/ lies in IC r�s.Y /. Note that certainly
(A3) and (A4) hold. Also, there is a unique way to extend that construction to
a morphism fŠ W IC.X/! IC.Y / satisfying (A1) and (A2) for every morphism
f WX! Y induced by a projection Y �Km! Y . Indeed, it is enough to construct
fŠ on IC r.X/ and after cutting X and Y into finitely many definable pieces, one
may assume the above condition is verified. Furthermore, by Lemma 8.3.3, .gıf /Š
D gŠ ıfŠ for composable morphisms induced by projections.

Let us now define iŠ when i W X ! Y is a definable injection. Let ' be in
C e.X/. Consider a definable subset X 0 of dimension e of X such that the support
of a representative Q' of ' is contained in X 0. Denote by � W i.X 0/!X 0 the inverse
of the isomorphism induced by i . We define iŠ.'/ as the image of Œ. Q' ı�/�ejJac.�/j
in C e.Y / under the inclusion C e.i.X 0//! C e.Y /. Certainly iŠ.'/ is integrable
if ' is, hence we deduce a morphism �Š W IC.X/! IC.Y /.

For a general morphism f W X ! Y one considers the factorization f D
�f ı if , with if W X ! X � Y the inclusion of the graph and �f W X � Y ! Y

the projection, and one sets fŠ WD �f Š ı if Š. One is then left with checking that the
construction coincides with the previous one for injections and projections and that
.g ıf /Š D gŠ ıfŠ for composable morphisms. This is purely formal and performed
exactly as in the proof of the corresponding statements in the proof of Theorem
10.1.1 and Proposition 12.1.2 of [11]. �

8.6. Exponential constructible functions. Fix an additive character  WK!
C� which is trivial on the maximal ideal M of R and such that  .x/ 6D 1 for some
x in K with ord.x/D 0.

For X an L-definable set, we let C.X/exp be the Q-algebra generated by
C.X/ and all functions  .f /, where f W X ! K is L-definable (cf. footnote
on page 1043).

Similarly, for each d � 0 we define C�d .X/exp as the Q-algebra generated
by C�d .X/ and all functions  .f / with f WX !K L-definable.

We set

(8.6.1) C.X/exp
D˚dC

d .X/exp

with

(8.6.2) C d .X/exp
WD C�d .X/exp=C�d�1.X/exp:

We call elements of C.Z/exp constructible exponential Functions.
For d � 0 we define the group IC d .X/exp of integrable constructible exponen-

tial Functions as the subgroup of C d .X/exp generated by elements  .f /'0 with
f WX!K L-definable and '0 in IC d .X/. Thus IC.X/exp D˚d�0IC d .X/exp is
a graded subgroup of C.X/exp.
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The following exponential analogue of Proposition 8.5.1 is our main p-adic
result:

PROPOSITION 8.6.1. Let W be a definable subset of Kn of dimension r .

(1) Let ' be in C.W �Km/exp of the form '0 .f / with '0 in C.W �Km/ and
f an L-definable function from W �Km to K. Assume for every x in W the
function t 7! '.x; t/ is integrable on Km. Then the function

g.x/ WD

Z
Km

'.x; t/jdt j

lies in C.W /exp.

(2) Let ' be in IC rCm.W �Km/exp. Then, there exists a function g in C.Kn/exp

such that for all x in W nZ, with Z an L-definable set of dimension < r in
Kn, one has

g.x/D

Z
Km

'.x; t/jdt j:

Proof. (1) follows easily from (2), so let us prove (2). By the Fubini theorem
it is enough to consider the case mD 1. By linearity of the integral operator it is
enough to prove the proposition when ' D '0 .f / with '0 in IC rC1.W �K/ and
f WW �K!K an L-definable morphism.

We partition W �K into L-definable parts B1, B2, and B3:

B1 WD f.x; t/ 2W �K j f .x; �/ is C 1 at t and
@f

@t
.x; t/ 6D 0g;

B2 WD f.x; t/ 2W �K j f .x; �/ is not C 1 at tg;

B3 WD f.x; t/ 2W �K j f .x; �/ is C 1 at t and
@f

@t
.x; t/D 0g;

where C 1 at a point means continuously differentiable in an open neighborhood
and f .x; �/ denotes the function K!K W t 7! f .x; t/ for each x in W .

Note that it follows directly from cell decomposition Theorem 8.4.2, cf. also
[19] and [30], that for every x in W the set B2x WD ft 2 K j .x; t/ 2 B2g is
finite and of uniformly bounded cardinality when x varies and also that surjective
L-definable maps admit L-definable sections. Hence there exists a partition of B2
into finitely many L-definable sets B2i such that f .x; t/D gi .x/ for each i and
for each .x; t/ in B2i for some L-definable functions gi WW !K.

Similarly, there exists a partition B3 into finitely many L-definable sets B3i
such that f .x; t/D ri .x/ for each i and for each .x; t/ in B3i for some L-definable
functions ri WW !K. Indeed, this follows from the fact that for every x the image
of the function t 7! f .x; t/ is discrete, hence finite and uniformly bounded when x
varies (again a consequence of cell decomposition Theorem 8.4.2, cf. also [19] and
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[30]) and from the already mentioned fact that surjective L-definable maps admit
L-definable sections.

Hence, for the functions 1B`i' with ` D 2; 3 the proposition follows. By
linearity of the integral operator we only have to prove the proposition for the
function 1B1'.

By the implicit function theorem, the set ft j f .x; t/ D z; .x; t/ 2 B1g is
discrete for each x in W and z in K, hence finite and uniformly bounded when
x and z vary, by the cell decomposition Theorem 8.4.2 (or by [19], [30]). By the
existence of L-definable sections for surjective L-definable maps, there exists a
partition of B1 into finitely many L-definable parts B1i such that f .x; �/ is injective
on B1ix for each i and each x, with B1ix WD ft 2 K j .x; t/ 2 B1ig. Hence, we
may as well suppose that f .x; �/ is injective on B1x WD ft 2K j .x; t/ 2 B1g itself.
Then, we let T be the transformation

(8.6.3) T W

(
B1 7! T .B1/

.x; t/ 7! .x; y/ WD .x; f .x; t//;

and let jJacT j be the Jacobian of T as in Section 8.3. Writing T .B1/x for ft 2K j
.x; t/ 2 T .B1/g, one has by the change of variables rule for each x in �B1.B1/

(8.6.4)
Z
B1x

'0.x; t/ .f .x; t//jdt j

D

Z
T.B1/x

.jJacT j ıT �1.x; y//�1'0.T �1.x; y// .y/jdyj:

Now apply Lemma 8.4.3 to the function

(8.6.5) '1 W

(
T .B1/!Q

.x; y/ 7! .jJacT j ıT �1.x; y//�1'0.T �1.x; y//

with respect to the variable y to obtain a partition of T .B1/ into L-cells A with
center c and coset �Pm such that each '1jA is a finite sum of functions of the form

(8.6.6) H.x; y/D j.y � c.x//a��aj
1
m v.y � c.x//sh.x/;

where h WW !Q is in C.W /, and s � 0 and a are integers.

CLAIM 8.6.2. Possibly after refining the partition, we can assure that for each
A either the projection A0 WD �W .A/�W has zero �r -measure, or we can write
'1jA as a sum of terms H of the form (8.6.6) such that H is �r -integrable over A
and H.x; �/ is integrable over Ax WD fy j .x; y/ 2 Ag for all x in A0.

As this claim is very similar to Claim 2 of [5] we will only give an indication
of its proof. Partitioning further, we may suppose that v.y � c.x// either takes
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only one value on A or infinitely many values. In the case that v.y � c.x// only
takes one value on A, we may suppose that the exponents a and s as in (8.6.6) are
zero. In the other case, we just keep a and s. Now, in both cases, apply Lemma
8.4.3 to each h and to the norms of all the L-definable functions appearing in the
description of the cells A in a similar way and do this inductively for each variable.
This way, the claim is reduced to a summation problem over a Presburger set of
integers, which is easily solved. This proves the claim.

Fix a cell A and a term H as in the claim. The cell A has by definition the
following form

AD f.x; y/ j x 2 A0; v.˛.x//�
1
v.y � c.x//�

2
v.ˇ.x//; y � c.x/ 2 �Pmg;

where A0 D �W .A/ is a cell, �i is < or no condition, and ˛; ˇ W W ! K� and
c WW !K are L-definable functions. We focus on a cell A of dimension r C 1,
in particular, � 6D 0 and A0 is of dimension r .

For x in A0, we denote by I.x/ the value

I.x/D

Z
y2Ax

H.x; y/ .y/ jdyj;

where Ax D fy 2K j .x; y/ 2 Ag. Write

(8.6.7) G.j / WD

Z
v.u/Dj; u2�Pm

 .u/ jduj:

We easily find

(8.6.8) I.x/D  .c.x// h.x/j�j�a=m
P

.8:6:9/

q�ja=m j sG.j /;

where the summation is over

(8.6.9) J WD fj j v.˛.x//�
1
j �
2
v.ˇ.x//; j � v.�/ mod mg:

By Hensel’s Lemma, there exists an integer e � 0 such that all units u with
u� 1 mod �e0 are m-th powers (here, �0 is such that v.�0/D 1). Hence, G.j / is
zero whenever j ��e (since in this case one essentially sums a nontrivial character
over a finite group). Also, when j > 0 then G.j /D

R
v.u/Dj; u2�Pm

jduj, which
is independent of  . We find that I.y/ is equal to
(8.6.10)

 .c.y// h.y/j�j�a=m �

� X
�e�j�0
j2J

q�ja=m j sG.j /C
X
0<j
j2J

q�ja=m j sG.j /

�
:

The factors of (8.6.10) before the brackets clearly are in C.W /exp. The (para-
metrized) finite sum inside the brackets of (8.6.10) can be written as a finite sum
of generators of C.W /exp since each G.j /D p�j j̨ mod eCn with each j̨ mod eCn
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some Q-linear combination of values of  which only depends on j mod eC n,
and hence, it is also in C.W /exp. The infinite sum inside the brackets of (8.6.10)
is in C.W / by Proposition 8.5.1 and the above discussion. This finishes the proof
of the proposition. �

One may extend Theorem 8.5.3 to the exponential setting as follows:

THEOREM 8.6.3. There exists a unique functor from Def.L/ to the category of
groups sending an L-definable set X to the group IC.X/exp such that a morphism
f W X ! Y in Def.L/ is sent to a group morphism fŠ W IC.X/exp ! IC.Y /exp

satisfying the following axioms:

(A1) Compatibility: For every morphism f W X ! Y in Def.L/, the map
fŠ W IC.X/exp! IC.Y /exp is compatible with the inclusions of groups IC.X/!
IC.X/exp and IC.Y /! IC.Y /exp and with the map fŠ W IC.X/! IC.Y / as con-
structed in Theorem 8.5.3.

(A2) Disjoint union: Assume that X , resp. Y , is the disjoint union of two L-de-
finable sets X1 and X2, resp. Y1 and Y2, such that f .Xi /� Yi . Write fi WXi ! Yi
for the restrictions. Then fŠ D f1Š ˚ f2Š under the isomorphisms IC.X/exp '

IC.X1/exp˚ IC.X2/exp and IC.Y /exp ' IC.Y1/exp˚ IC.Y2/exp.

(A3) Projection formula: For every ˛ in C.Y /exp and ˇ in IC.X/exp, if .˛ ıf /ˇ
is in IC.X/exp, then fŠ..˛ ıf /ˇ/D f̨Š.ˇ/.

(A4) Projection for 1-cells: Let X � KnC1 be a 1-cell of dimension r
and Y its image under the projection to Kn, f W X ! Y the projection. Let
' be a �r - integrable function in C.X/exp. By Proposition 8.6.1 there exists an
L-definable set Z � Y such that Y nZ has dimension < r �1 and such that the the
function g W Y !Q W y 7!

R
f �1.y/ 1Y nZ.y/'.y; t/jdt j lies in C�r�1.Y /exp. We let

fŠ.Œ'�r/ be the class of g in IC r�1.Y /exp.

Proof. The proof is quite formal and similar to proofs we have already given.
Indeed, uniqueness is proved along similar lines to those given in Section 6.3;
for existence one can proceed similarly, as in the proof of Theorem 8.5.3, using
Proposition 8.6.1 instead of Proposition 8.5.1. �

8.7. Variants: adding sorts and relative versions. By analogy with the mo-
tivic framework, we now expand the language L to a three sorted language L0

having L as language for the valued field sort, the ring language LRings for the
residue field, and the Presburger language LPR for the value group together with
maps ord and ac as in Section 2.1. By taking the product of the measure �m with
the counting measure on knK �Zr one defines a measure still denoted by �m on
Km � knK �Zr .
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One defines the dimension of an L0-definable subset X of Km � knK �Zr as
the dimension of its projection �.X/�Km. If X is of dimension d , one defines
a measure �d on X extending the previous construction on X by setting

(8.7.1) �d .W / WD

Z
�.X/

�Š.1W /�d

with �Š.1W / the function y 7! card.��1.y/\W /.
For such anX , one defines C.X/ as the Q-algebra of functions onX generated

by functions ˛ and p�˛ with ˛ WX ! Z definable in L0. Note that this definition
coincides with the previous one when nD r D 0. Since L0 is interpretable in L,
the formalism developed in this section extends to L0-definable objects in a natural
way. In particular the definitions of C�d , C d , IC , jJacj, ı, Cexp, etc., extend readily
to L0-definable objects and we have:

THEOREM 8.7.1. (1) The statement of Theorem 8.5.3 extends to Def.L0/ after
adding the additional axiom:

(A5) Let � WX � knK �Zr !X be the projection with X in Def.L0/. For any
' in IC.X � knK �Zr/ and every x in X ,

�Š.'/.x/D
X

�.y/Dx

'.y/:

(2) The statement of Theorem 8.6.3 extends to Def.L0/.

8.7.2. Fix ƒ in Def.L0/. We consider the category Defƒ.L0/ whose objects
are L0-definable morphisms f WS!ƒ, a morphism gW .f WS!ƒ/! .f 0 WS 0!ƒ/

being a morphism g W S ! S 0 in Def.L0/ with f 0 ı g D f . For f W S ! ƒ in
Defƒ.L0/ we define the relative dimension of S over ƒ as the maximum of the
dimension of the fibers of f . For d in Z, define C�d .S!ƒ/ as the ideal of C.S/

generated by the characteristic functions of L0-definable subsets of S of relative
dimension � d over ƒ. Set

(8.7.2) C d .S !ƒ/ WD C�d .S !ƒ/=C�d�1.S !ƒ/;

and define the graded group

(8.7.3) C.S !ƒ/ WD ˚dC
d .S !ƒ/:

For every � in ƒ there exists a graded group homomorphism called restriction to �,

(8.7.4) jf �1.�/ W C.S !ƒ/! C.f �1.�//;

sending ' in C.S !ƒ/ to its restriction to the fiber f �1.�/.
We define IC.S!ƒ/ as the graded subgroup of C.S!ƒ/ consisting of ' 2

C.S!ƒ/ such that, for every � in ƒ, the restriction 'jf �1.�/ lies in IC.f �1.�//.
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One defines similarly C�d .S !ƒ/exp, C.S !ƒ/exp, IC.S !ƒ/exp and

(8.7.5) jf �1.�/ W C.S !ƒ/exp
! C.f �1.�//exp:

If g W S ! S 0 is an isomorphism in Defƒ.L0/ between subsets of relative
dimension d , one denotes by jJacƒgj the function in C d .S !ƒ/ such that

(8.7.6) jJacƒgjjf �1.�/ D jJac.gjf �1.�//j

for every � in ƒ.

PROPOSITION 8.7.3. For g W S ! S 0 a morphism in Defƒ.L0/, there exists a
unique morphism

(8.7.7) gŠƒ W IC.S !ƒ/! IC.S 0!ƒ/

which sends ' 2 IC.S ! ƒ/ to the unique  2 IC.S 0 ! ƒ/ such that for each
� 2ƒ

(8.7.8) .gjS�/Š.'jf �1.�//D  jS 0�
;

with S� and S 0
�

the fibers and .gjS�/Š the direct image as constructed above, and
similarly a morphism

(8.7.9) gŠƒ W IC.S !ƒ/exp
! IC.S 0!ƒ/exp:

Furthermore, these morphisms gŠƒ satisfy the relative analogues of properties
(A1)–(A4) of Theorem 8.5.3, (A1)–(A4) of Theorem 8.6.3, and (A5) of Theorem
8.7.1 respectively, where in (A4) of Theorem 8.5.3, jJacj is replaced by its relative
analogue jJacƒj.

Proof. One can either note that the proofs of Theorems 8.5.3, 8.6.3 and 8.7.1
carry over literally to the relative case, or deduce it from the absolute case using
Propositions 8.5.1 and 8.6.1. �

Since IC.ƒ!ƒ/D C.ƒ/, when g is the morphism S !ƒ, one gets from
(8.7.7) a morphism

(8.7.10) �ƒ W IC.S !ƒ/! C.ƒ/:

9. Specialization and transfer

In this section we obtain new results on specialization to p-adic and Fq..t//-
integration and a transfer principle for exponential integrals with parameters from
Qp and from Fq..t//. Some of the results which are announced in [9] are general-
ized here to exponential constructible functions. The specialization principle given
here generalizes the one of [18].

9.1. Specialization to valued local fields.
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9.1.1. Notation. Let k be a number field with ring of integers O. We denote
by AO the collection of the p-adic completions of all the finite field extensions of
k. We denote by BO the set of all local fields of positive characteristic over O, that
is, endowed with an O-algebra structure. For N > 0, denote by CO;N the collection
of all K in AO[BO with residue field of characteristic >N and write CO for CO;1.
By AO;N , resp. BO;N , denote CO;N \AO, resp. CO;N \BO.

For K in CO, we write RK for its valuation ring, MK for the maximal ideal,
kK for its residue field, and q.K/ for the number of elements of kK . For each
choice of a uniformizing parameter $K of RK , there is a unique multiplicative
map ac W K�! k�K which extends the projection R�K ! k�K and sends $K to 1,
and we extend this by setting ac.0/D 0. We denote by DK the collection of additive
characters  WK! C� such that

 .x/D exp..2�i=p/TrkK . Nx//

for x 2 RK , with p the characteristic of kK , TrkK the trace of kK over its prime
subfield and Nx the natural projection modulo MK of x into kK . Here we identify
Fp with Z=pZ and observe that exp denotes the complex exponential.

9.1.2. Interpretation of functions. As a language that can be interpreted in
all the fields of CO, we shall use LO WD LDP;P.OŒŒt ��/, that is, the language LDP;P

with coefficients in k for the residue field sort and coefficients in OŒŒt �� for the
valued field sort. (Instead of OŒŒt ��, any subring of OŒŒt �� containing OŒt � can be
used as a coefficient ring.) To say that a definable subassignment is defined in the
language LO, we say that it belongs to Def.LO/, and for a constructible function
we say likewise that it belongs to C.S;LO/, C.S;LO/

exp, and so on, when it is
defined in LO.

For every uniformizing parameter $K of RK , one may consider K as an
OŒŒt ��-algebra via the morphism

(9.1.1) �O;K W OŒŒt ��!K W
X
i2N

ai t
i
7!

X
i2N

ai$
i
K :

Hence, if one interprets elements a of OŒŒt �� as �O;K.a/, an OŒŒt ��-formula # defines
for all K in CO a definable subset 'K of Km�knK �Zr for some m, n, r , for every
choice of uniformizing parameter $K of RK . On the other hand, the formula #
gives rise to a definable subassignment X of hŒm; n; r� and if # 0 gives rise to the
same subassignment X then #K D # 0K for all K in CO;N for some large enough N ,
independently of the choice of uniformizing parameter.2

2This follows either from Ax and Kochen [1], [2], [3], Eršov [20], Cohen [12], Pas [29], or
others, or from a small variant of Proposition 5.2.1 of [18] (a result of Ax-Kochen-Eršov type that
uses ultraproducts and follows from the theorem of Denef-Pas).
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With a slight abuse of notation, for X a definable subassignment of hŒm; n; r�
in Def.LO/, we write XK for the subassignment defined by #K where # is a
Def.LO/-formula defining X , which is well determined for K in CO;N for some
large enough N , as explained above. Similarly, if f WX ! Y is an LO-definable
morphism, we obtain a function fK WXK ! YK for all K in CO;N for some N .

With a similar abuse of notation, we can interpret a function ' in C.X;LO/

as a function XK !Q, for N large enough and K in CO;N , as follows.
First suppose that ' is in K0.RDefX .LO// and of the form Œ� WW !X� for

some LO-definable subassignment W in RDefX .LO/. For K in CO, consider WK ,
which is a subset of XK � .kK/` for some `, and consider the natural projection
�K WWK !XK . Then one sets

(9.1.2) 'K W

(
XK !Q

x 7! card
�
��1K .x/

�
:

Similarly as before, this is well determined for N large enough and K in CO;N . By
linearity that construction extends to K0.RDefX .LO//.

Let us now define 'K when ' lies in P.X/. If one expresses ' in terms
of L and of definable morphisms ˛ W X ! Z, replacing L by qK and each ˛ by
˛K WXK ! Z, one gets a function 'K WXK !Q again well determined for K in
CO;N when N is large enough. By tensor product, this defines 'K for general ' in
C.X;LO/.

Next we interpret ' in C.X;LO/
exp as a function 'K; K WXK ! C, for K in

CO;N when N is large enough and for every  K in DK , as follows.
First suppose that ' in K0.RDefX .LO//

exp is of the form ŒW; g; �� with W
an LO-definable subassignment, where g WW ! hŒ1; 0; 0� and � WW ! hŒ0; 1; 0�

are LO-definable morphisms. For K in CO, consider WK , gK W WK ! K, and
�K WWK ! kK , and consider the projection � WWK !XK . Then, for  K in DK ,

(9.1.3) 'K; K W

(
XK !Q

x 7!
P
y2��1K .x/  K.gK.y// exp..2�i=p/TrkK .�K.y///:

Similarly, as before, this is well determined for N large enough and for all K
in CO;N and all  K in DK . The construction being compatible with the previous
one, this defines 'K; K for general ' 2 C.X;LO/

exp, by tensor product.

9.1.3. Integration. Let K be in CO and consider a (not necessarily definable)
subset A of Km � knK �Zr . Let A0 be the image of A under the projection Km �
knK � Zr ! Km and define the dimension of A as the dimension of the Zariski
closure of A0 in AmK with dim ∅ WD �1. Let f W A! ƒ be any function, with
ƒ a subset of Km

0

� kn
0

K �Zr
0

. The relative dimension of f is defined to be the
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maximum of the dimensions of the fibers; it is also called the relative dimension
of A over ƒ.

For A and A0 as above, we denote by NA0 the Zariski closure of A0 in AmK . If NA0

is of dimension d , we consider the canonical d -dimensional measure �d on NA0.K/,
cf. [31], [28], and put the counting measure on knK �Zr . We shall still write �d

for the product measure on NA0.K/� knK �Zr , formed by taking the product of the
above �d with the counting measure, and we still denote by �d its restriction to A,
similarly as in Section 8.

We denote by F.A/ the algebra of all functions A ! C. Also, we say a
function ' in F.A/ is integrable in dimension d if A and ' are measurable and ' is
integrable with respect to the measure �d . More generally, we say that a function
' 2 F.A/ is integrable in dimension e if the support B of ' is of dimension e
and the restriction 'jB is integrable in dimension e as defined above. For e � 0
an integer, we denote by F�e.A/ the ideal of F.A/ of functions with support of
dimension � e and we set

(9.1.4) F e.A/ WD F�e.A/=F�e�1.A/ and F.A/ WD ˚eF
e.A/:

We define IF e.A/ as the subgroup of F e.A/ consisting of functions in F e.A/
which are integrable in dimension e and denote by � W IF e.A/! C as the inte-
gration operator. We set IF.A/ WD ˚eIF e.A/ and extend � to � W IF.A/! C by
linearity.

Let f W A! ƒ be a mapping as before. Let F�e.A! ƒ/ be the ideal of
F.A/ of functions with support of relative dimension � e over ƒ. The groups
F e.A!ƒ/ and F.A!ƒ/ are defined correspondingly. For every � in ƒ, there
is a natural restriction map, which is a graded group homomorphism,

(9.1.5) jf �1.�/ W FK.A!ƒ/! FK.f
�1.�//;

defined by sending ' in FK.A!ƒ/ to the restriction of ' to the fiber f �1.�/. We
define IFK.A!ƒ/ as the graded subgroup of FK.A!ƒ/ of Functions whose
restrictions to all fibers lie in IF , where restriction is as just defined, and we denote
by �ƒ the unique mapping

(9.1.6) �ƒ W IF.A!ƒ/! F.ƒ/

such that �ƒ.'/.�/D �.'jf �1.�// for every ' in IF.A!ƒ/ and every point �
in ƒ.

We still have to go one step further in the interpretation of Functions. Let
f WS!ƒ be a morphism in Def.LO/. Let ' be in C.S!ƒ;LO/

exp. The function
' is the class of a tuple .'d /d with 'd in C�d .S!ƒ;LO/

exp, where only finitely
many components are nonzero. Then, for N > 0 large enough, K 2 CO;N , and
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 K 2 DK , each function 'd;K; K lies in F�dK .SK/, and by taking the class of
.'d;K; K /d , we get a function 'K; K in FK.SK !ƒK/.

The following result says that the motivic exponential integral specializes
to the corresponding integrals over the local fields of high enough residue field
characteristic.

THEOREM 9.1.4 (Specialization Principle). Let f W S !ƒ be a morphism in
Def.LO/. Take ' in IC.S !ƒ;LO/

exp. Then there exists N > 0 such that for all
K in CO;N , every choice of a uniformizing parameter $K of RK , and all  K in
DK , the Function 'K; K lies in IFK.SK !ƒK/ and

.�ƒ.'//K; K D �ƒK .'K; K /:

Proof. Let us first consider the case where ' lies in IC.S ! ƒ;LO/. We
can assume ' lies in ICC.S ! ƒ;LO/, using notations from [11]. In [11], the
definition of relative integrability of ' and the value of the relative integral were
defined simultaneously along the following lines. One may assume S is a definable
subassignment of ƒŒm; n; r� WDƒ�hŒm; n; r� and, using cell decomposition and
induction, it is enough, by Theorem 14.1.1 of [11] to consider the behavior of the
integrability condition and the computation of the integral for: 1) projection along
Z-variables, 2) projection along residue field variables, 3) projections ƒŒm; n; r�!
ƒŒm�1; n; r� when S is a 0-cell, 4) projections ƒŒm; n; r�!ƒŒm�1; n; r� when
S is a 1-cell adapted to '. Note that given ' the cell decompositions involved here
will certainly specialize to cell decomposition defined by the specialized conditions
when N is large enough. This is a special instance of the compactness argument
in model theory. In 1), one can assume ' is a Presburger function, that is lies in
PC.S/ with the notation of loc. cit. In that case, the integrability condition was
built from the start to be compatible with specialization, since it was expressed by
“summability with L replaced by q > 1”. Also the relative integral was defined by
summing up series in powers of L and specializes to summing over Zr with respect
to the counting measure. Step 2) is tautologically compatible with specialization.
In step 3) a function L�ordjacf , defined almost everywhere occurs, and for N large
enough it specializes to jJacfK j. By the change of variables formula for integrals
over fields in CO, it follows that 3) is compatible with specialization. Finally step 4)
is compatible with specialization since the relative motivic volume of a 1-cell Z
specializes to the volume of the corresponding ZK , for N large enough, by defini-
tion.

When ' lies in C.S;LO/
exp, the statement about compatibility of relative inte-

grability with specialization holds by the previous construction. The construction
of the relative integral of ' can be performed along similar lines as before. Special-
ization for steps 1), 2) and 3) holds for the same reasons as before and only step 4)
needs to be considered. It follows from our constructions that it is enough to show
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that the relative integral of the function E.z/ on a 1-cell with special coordinate z
specializes to the corresponding one over K, for N large enough, which is clear
by construction; see also Lemma 7.3.2. �

For p-adic fields, we can say more, using the formalism of Section 8.7.

THEOREM 9.1.5 (Specialization Principle). Let ƒ be in Def.LO/ and let
f W S ! S 0 be a morphism in Defƒ.LO/. Let ' be in IC.S ! ƒ;LO/

exp. Then
there exists N > 0 such that for all K in AO;N , each choice of a uniformizing pa-
rameter$K ofRK , and all  K in DK , the function 'K; K lies in IC.SK!ƒK/

exp

and is such that
.fŠƒ.'//K; K D fŠƒK .'K; K /:

Proof. This is similar to the proof of Theorem 9.1.4. �

9.2. Transfer principle for integrals with parameters. We start by proving the
following abstract form of the transfer principle:

PROPOSITION 9.2.1. Let ' be in C.ƒ;LO/
exp. Then, there exists an integer

N such that for all K1; K2 in CO;N with kK1 ' kK2 the following holds:

'K1; K1 D 0 for all  K1 2 DK1

if and only if
'K2; K2 D 0 for all  K2 2 DK2 :

Proof. We first consider the case when ' lies in C.ƒ;LO/
e. Suppose that ƒ

is an LO-definable subassignment of hŒm; n; r�. We give a proof by induction on
m. For mD 0, the proof goes as follows. By quantifier elimination, any finite set
of formulas needed to describe ' can be taken to be valued field quantifier free. It
follows that

(9.2.1) 'K1 D 'K2

for K1 and K2 in CO;N with kK1 ' kK2 and N large enough, since two ultraprod-
ucts K D

Q
UKi and K 0D

Q
UK
0
i of fields Ki and K 0i in CO with kKi ' kK0i over

a nonprincipal ultrafilter U on a set I are elementarily equivalent, as soon as K
and K 0 have characteristic zero.

Now assume m> 0. By applying inductively the Cell Decomposition Theo-
rem 2.2.1, we can construct an LO-definable morphism

(9.2.2) f Wƒ! hŒ0; n0; r 0�

for some n0, r 0, and Q' 2 C.hŒ0; n0; r 0�;LO/
e, such that ' D f �. Q'/. Necessarily, Q'

is unique. By the induction hypothesis,

(9.2.3) Q'K1 D 0 if and only if Q'K2 D 0
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for K1 and K2 in CO;N with kK1 ' kK2 and N large enough. Since 'K D f �K . Q'K/
for K in CO;N when N is large enough, the result follows for general m and for '
in C.ƒ;LO/

e.
In general, when ' lies in C.ƒ;LO/

exp, we write ' as a finite sum of the form

(9.2.4)
X̀
iD1

E.gi /e.�i /ŒXi !ƒ�'i ;

with 'i 2 C.ƒ;LO/.
After finitely partitioning ƒ, we may suppose that there is a partition of

f1; : : : ; `g into parts Br such that

(9.2.5) ord.gi .xi /�gj .xj // < 0

for all i 2 Br1 , all j 2 Br2 , all r1 6D r2, all � 2ƒ and all xi 2 Xi , xj 2 Xj lying
above �, and such that

(9.2.6) ord.gi .xi /�gj .xj //� 0

for all i; j 2 Br , all r , all � 2ƒ and all xi 2Xi , xj 2Xj lying above �.

CLAIM 9.2.2. There exists N > 0 such that for all K in CO;N the statement

(9.2.7) 'K; K D 0 for every  K 2 DK

is equivalent to

(9.2.8)
X
i2Br

.e.�i /ŒXi !ƒ�'i /K; K D 0 for every r and for every  K 2 DK :

Since the left-hand side of (9.2.8) is in fact independent of the choice of char-
acter  K , the proposition directly follows from the claim and the treatment of the
case ' in C.ƒ;LO/

e.
Let us now prove the claim. By compactness there exists N0 such that for all

K 2 CO;N0 the partition fBrgr satisfies the following property: for every i 2 Br1 ,
every j 2 Br2 , every r1 6D r2, every � 2ƒK and every xi 2XiK , xj 2XjK lying
above �,

(9.2.9) ord.giK.xi /�gjK.xj // < 0;

and, for every i; j 2 Br , every r , every � 2 ƒK and every xi 2 XiK , xj 2 XjK
lying above �,

(9.2.10) ord.giK.xi /�gjK.xj //� 0:

Now the claim follows from Lemma 9.2.3. �
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LEMMA 9.2.3. LetK be in CO. Let ci be in C and xi 2K with ord.xi�xj /<0
for i 6D j , i; j D 1; : : : ; n. For every  in DK consider the exponential sum

S WD

nX
iD1

ci .xi /:

Suppose that S D 0 for all  in DK . Then ci D 0 for all i .

Proof. We shall perform an induction on m WD �mini .ord.xi //. If m D 0
there is nothing to prove. So let us assume m� 1.

For every n� 0, we denote by DK.n/ the set of restrictions of the characters in
DK to the ball$�nK R. We denote by p the characteristic of kK and we set � WD$K
if K is of characteristic p and � WD p if K is of characteristic 0. We fix elements
y1; : : : ; yr of $�mK R whose images in $�mK R=�$�mK R form an Fp-basis. For
aD .a1; : : : ; ar/ in f0; : : : ; p�1gr , we denote by Ba the ball ord.x�

P
j ajyj /�

ord.�$�mK /. Let us fix  0 in DK.m � 1/. There are exactly pr characters in
DK.m/ extending  0. Indeed, such characters are determined by their value on
y1, . . . , yr , hence if we denote by �j;i , for 1 � i � p, the p distinct complex
numbers such that �pj;i D  0.pyj /, they are in one to one correspondence with the
set of tuples .�j;i /j , via  7! . .yj //.

We may rewrite S as

(9.2.11) S D
X

a2f0;:::;p�1gr

Y
1�j�r

 .yj /
ajSa; 0

with

(9.2.12) Sa; 0 D
X
xi2Ba

ci 0

�
xi �

X
1�j�r

ajyj

�
:

For fixed j , the p �p-matrix Aj WD .�`j;i /i;`, 0 � ` � p� 1, is an invertible
Vandermonde matrix. It follows that the Kronecker (tensor) product matrix A1˝
� � � ˝Ar with coefficients

Q
1�j�r �

j̀

j;i , 0 � j̀ � p � 1, is an invertible pr �pr -
matrix. Thus, the vanishing of S for every  in DK.m/ implies the vanishing of
all the sums Sa; 0 for every  0 in DK.m�1/, and the induction hypothesis allows
us to conclude. �

Now we can prove the following fundamental transfer principle for exponen-
tial integrals:

THEOREM 9.2.4 (Transfer principle for exponential integrals). Let S ! ƒ

and S 0! ƒ be morphisms in Def.LO/. Let ' be in IC.S ! ƒ;LO/
exp and '0 in

IC.S 0 ! ƒ;LO/
exp. Then, there exists an integer N such that for all K1; K2 in
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CO;N with kK1 ' kK2 the following holds:

�ƒK1 .'K1; K1 /D �ƒK1 .'
0
K1; K1

/ for all  K1 2 DK1

if and only if
�ƒK2 .'K2; K2 /D �ƒK2 .'

0
K2; K2

/ for all  K2 2 DK2 :

Proof. By taking the disjoint union of S and S 0 over ƒ and linearity, it is
enough to prove the following particular case of the result: if S!ƒ is a morphism
in Def.LO/ and ' is in IC.S !ƒ;LO/

exp, there exists an integer N such that for
all K1; K2 in CO;N with kK1 ' kK2 the following holds:

�ƒK1 .'K1; K1 /D 0 for all  K1 2 DK1

if and only if
�ƒK2 .'K2; K2 /D 0 for all  K2 2 DK2 ;

which follows directly from Theorem 9.1.4 and Proposition 9.2.1. �

Remark 9.2.5. Without exponentials, a form of Theorem 9.2.4 can be found
in [9]. As mentioned in the introduction, it should have a wide range of appli-
cations to p-adic representation theory and the Langlands program. It applies in
particular to many forms of the Fundamental Lemma. In this direction, we mention
work by Cunningham and Hales [13], and recall that the Fundamental Lemma over
functions fields has been proved by Laumon and Ngô for unitary groups [25] and
more recently by Ngô for Lie algebras [27], and that Waldspurger deduced the
case of p-adic fields [33] by representation theoretic techniques. In the paper [6],
we explain in detail how our transfer Theorem 9.2.4 applies to the Fundamental
Lemma. Theorem 9.2.4 applies also, for instance, to the Jacquet-Ye conjecture
[24], a relative version of the Fundamental Lemma involving integrals of additive
characters, which has been proved by Ngô [26] over functions fields and by Jacquet
[23] in general.

Acknowledgment. During the realization of this project, the first author was
a postdoctoral fellow of the Fund for Scientific Research - Flanders (Belgium)
(F.W.O.) and was supported by The European Commission - Marie Curie European
Individual Fellowship with contract number HPMF CT 2005-007121.

References

[1] J. AX and S. KOCHEN, Diophantine problems over local fields. I, Amer. J. Math. 87 (1965),
605–630. MR 32 #2401 Zbl 0136.32805

[2] , Diophantine problems over local fields. II. A complete set of axioms for p-adic num-
ber theory, Amer. J. Math. 87 (1965), 631–648. MR 32 #2402 Zbl 0136.32805

[3] , Diophantine problems over local fields. III. Decidable fields, Ann. of Math. 83 (1966),
437–456. MR 34 #1262 Zbl 0223.02050



1064 RAF CLUCKERS and FRANÇOIS LOESER

[4] R. CLUCKERS, Analytic p-adic cell decomposition and integrals, Trans. Amer. Math. Soc. 356
(2004), 1489–1499. MR 2005d:11166 Zbl 1048.11094

[5] , Multi-variate Igusa theory: Decay rates of p-adic exponential sums, Internat. Math.
Res. Not. 76 (2004), 4093–4108. MR 2005i:11104 Zbl 1063.11047

[6] R. CLUCKERS, T. HALES, and F. LOESER, Transfer principle for the fundamental lemma,
Stabilization of the Trace Formula, Shimura Varieties, and Arithmetic Applications, vol. 1, to
appear. arXiv 0712.0708

[7] R. CLUCKERS and F. LOESER, Fonctions constructibles et intégration motivique. I, C. R. Math.
Acad. Sci. Paris 339 (2004), 411–416. MR 2005f:14049 Zbl 1062.14030

[8] , Fonctions constructibles et intégration motivique. II, C. R. Math. Acad. Sci. Paris 339
(2004), 487–492. MR 2005f:14050 Zbl 1064.14021

[9] , Ax-Kochen-Eršov Theorems for P -adic integrals and motivic integration, in Geomet-
ric Methods in Algebra and Number Theory (F. BOGOMOLOV and Y. TSCHINKEL, eds.), Progr.
Math. 235, Birkhäuser Verlag, Basel, 2005, pp. 109–137. MR 2006g:12014 Zbl 1159.12314

[10] , Fonctions constructibles exponentielles, transformation de Fourier motivique et principe
de transfert, C. R. Math. Acad. Sci. Paris 341 (2005), 741–746. MR 2006h:14027 Zbl 1081.
14032

[11] , Constructible motivic functions and motivic integration, Invent. Math. 173 (2008),
23–121. MR 2009g:14018 Zbl pre05288756

[12] P. J. COHEN, Decision procedures for real and p-adic fields, Comm. Pure Appl. Math. 22
(1969), 131–151. MR 39 #5342 Zbl 0167.01502

[13] C. CUNNINGHAM and T. C. HALES, Good orbital integrals, Represent. Theory 8 (2004), 414–
457. MR 2006d:22021 Zbl 1054.22016

[14] J. DENEF, The rationality of the Poincaré series associated to the p-adic points on a variety,
Invent. Math. 77 (1984), 1–23. MR 86c:11043 Zbl 0537.12011

[15] , On the evaluation of certain p-adic integrals, in Séminaire de Théorie des Nombres,
Paris 1983–84, Progr. Math. 59, Birkhäuser, Boston, MA, 1985, pp. 25–47. MR 88j:11031
Zbl 0597.12021

[16] , p-adic semi-algebraic sets and cell decomposition, J. Reine Angew. Math. 369 (1986),
154–166. MR 88d:11030 Zbl 0584.12015

[17] , Arithmetic and geometric applications of quantifier elimination for valued fields, in
Model Theory, Algebra, and Geometry, Math. Sci. Res. Inst. Publ. 39, Cambridge Univ. Press,
Cambridge, 2000, pp. 173–198. MR 2001e:03063 Zbl 0981.03041

[18] J. DENEF and F. LOESER, Definable sets, motives and p-adic integrals, J. Amer. Math. Soc. 14
(2001), 429–469. MR 2002k:14033 Zbl 1040.14010

[19] J. DENEF and L. VAN DEN DRIES, p-adic and real subanalytic sets, Ann. of Math. 128 (1988),
79–138. MR 89k:03034 Zbl 0693.14012

[20] J. L. ERŠOV, On the elementary theory of maximal normed fields, Dokl. Akad. Nauk SSSR
165 (1965), 21–23. MR 32 #7554 Zbl 0152.02403

[21] E. HRUSHOVSKI and D. KAZHDAN, Integration in valued fields, in Algebraic Geometry and
Number Theory, Progr. Math. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 261–245. MR
2007k:03094 Zbl 1136.03025

[22] J.-I. IGUSA, An Introduction to the Theory of Local Zeta Functions, AMS/IP Studies in Adv.
Math. 14, Amer. Math. Soc., Providence, RI, 2000. MR 2001j:11112 Zbl 0959.11047



CONSTRUCTIBLE EXPONENTIAL FUNCTIONS 1065

[23] H. JACQUET, Kloosterman identities over a quadratic extension, Ann. of Math. 160 (2004),
755–779. MR 2006d:11051 Zbl 1071.11026

[24] H. JACQUET and Y. YE, Relative Kloosterman integrals for GL.3/, Bull. Soc. Math. France
120 (1992), 263–295. MR 94c:11047 Zbl 0785.11032

[25] G. LAUMON and B. C. NGÔ, Le lemme fondamental pour les groupes unitaires, Ann. of Math.
168 (2008), 477–573. MR 2009i:22022 Zbl 05578725

[26] B. C. NGÔ, Faisceaux pervers, homomorphisme de changement de base et lemme fondamen-
tal de Jacquet et Ye, Ann. Sci. École Norm. Sup. 32 (1999), 619–679. MR 2001g:11076
Zbl 1002.11046

[27] , Le lemme fondamental pour les algèbres de Lie, preprint, 2007.

[28] J. OESTERLÉ, Réduction modulo pn des sous-ensembles analytiques fermés de ZNp , Invent.
Math. 66 (1982), 325–341. MR 83j:12014 Zbl 0479.12006

[29] J. PAS, Uniform p-adic cell decomposition and local zeta functions, J. Reine Angew. Math. 399
(1989), 137–172. MR 91g:11142 Zbl 0666.12014

[30] P. SCOWCROFT and L. VAN DEN DRIES, On the structure of semialgebraic sets over p-adic
fields, J. Symbolic Logic 53 (1988), 1138–1164. MR 90g:14010 Zbl 0692.14014

[31] J.-P. SERRE, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études
Sci. Publ. Math. (1981), 323–401. MR 83k:12011 Zbl 0496.12011

[32] L. VAN DEN DRIES, Dimension of definable sets, algebraic boundedness and Henselian fields,
Ann. Pure Appl. Logic 45 (1989), 189–209. MR 91k:03082 Zbl 0704.03017

[33] J.-L. WALDSPURGER, Endoscopie et changement de caractéristique, J. Inst. Math. Jussieu 5
(2006), 423–525. MR 2007h:22007 Zbl 1102.22010

(Received March 27, 2006)
(Revised March 21, 2007)

E-mail address: cluckers@ens.fr
KATHOLIEKE UNIVERSITEIT LEUVEN, DEPARTEMENT WISKUNDE, CELESTIJNENLAAN 200B,
B-3001 LEUVEN, BELGIUM

http://www.dma.ens.fr/~cluckers/

E-mail address: Francois.Loeser@ens.fr
ÉCOLE NORMALE SUPÉRIEURE, 45, RUE D’ULM, F-75230 PARIS CEDEX 05, FRANCE

http://www.dma.ens.fr/~loeser/




