A group-theoretic approach to a family of 2-local finite groups constructed by Levi and Oliver

By Michael Aschbacher and Andrew Chermak

SECOND SERIES, VOL. 171, NO. 2
March, 2010

ANMAAH

A group-theoretic approach to a family of 2-local finite groups constructed by Levi and Oliver

By Michael Aschbacher and Andrew Chermak

Abstract

We extend the notion of a p-local finite group (defined in [BLO03]) to the notion of a p-local group. We define morphisms of p-local groups, obtaining thereby a category, and we introduce the notion of a representation of a p-local group via signalizer functors associated with groups. We construct a chain $\mathfrak{G}=$ $\left(\mathscr{G}_{0} \rightarrow \mathscr{G}_{1} \rightarrow \cdots\right)$ of 2-local finite groups, via a representation of a chain $\mathfrak{G}^{*}=$ $\left(G_{0} \rightarrow G_{1} \rightarrow \cdots\right)$ of groups, such that \mathscr{G}_{0} is the 2-local finite group of the third Conway sporadic group Co_{3}, and for $n>0, \mathscr{\varphi}_{n}$ is one of the 2-local finite groups constructed by Levi and Oliver in [LO02]. We show that the direct limit \mathscr{G} of \mathfrak{G} exists in the category of 2-local groups, and that it is the 2-local group of the union of the chain \mathfrak{G}^{*}. The 2-completed classifying space of \mathscr{G} is shown to be the classifying space $B \mathrm{DI}(4)$ of the exotic 2-compact group of Dwyer and Wilkerson [DW93].

Introduction

In [BLO03], Broto, Levi, and Oliver introduced the notion of a p-local finite group \mathscr{G}, consisting of a finite p-group S and a pair of categories \mathscr{F} and \mathscr{L} (the fusion system and the centric linking system) whose objects are subgroups of S, and which satisfy axioms which encode much of the structure that one expects from a finite group having S as a Sylow p-subgroup. If indeed G is a finite group with Sylow p-subgroup S, then there is a canonical construction which associates to G a p-local finite group $\mathscr{G}=\mathscr{G}_{S}(G)$, such that the p-completed nerve of \mathscr{L} is homotopically equivalent to the p-completed classifying space of G. A p-local finite group \mathscr{G} is said to be exotic if \mathscr{G} is not equal to $\mathscr{G}_{S}(G)$ for any finite group G with Sylow group S.

From the work of various authors (cf. [BLO03, §9]), it has begun to appear that for p odd, exotic p-local finite groups are plentiful. On the other hand, exotic

2-local finite groups are - as things stand at this date - quite exceptional. In fact, the known examples of exotic 2-local finite groups fall into a single family $\mathscr{G}_{\text {Sol }}(q)$, q an odd prime power, constructed by Ran Levi and Bob Oliver [LO02]. With hindsight, the work of Ron Solomon [Sol74] in the early 1970's may be thought of as a proof that $\varphi_{\text {Sol }}(q) \neq \mathscr{\varphi}_{S}(G)$ for any finite simple group G with Sylow group S.

Solomon considered finite simple groups G having a Sylow 2-subgroup isomorphic to that of Co_{3} (the smallest of the three sporadic groups discovered by John Conway), and he showed that any such G is isomorphic to Co_{3}. While proving this, he was also led to consider the situation in which G has a single conjugacy class z^{G} of involutions, and $C_{G}(z)$ has a subgroup H with the following properties:

$$
H \cong \operatorname{Spin}_{7}(q), q=r^{n}, q \equiv 3 \text { or } 5 \bmod 8, \quad \text { and } C_{G}(z)=O\left(C_{G}(z)\right) H
$$

Here $\operatorname{Spin}_{7}(q)$ is a perfect central extension of the simple orthogonal group $\Omega_{7}(q)$ by a group of order 2 , and for any group $X, O(X)$ denotes the largest normal subgroup of X all of whose elements are of odd order.

Solomon showed that there is no finite simple group G which satisfies the above conditions - but he was not able to do this by means of "2-local analysis" (i.e. the study of the normalizers of 2 -subgroups of G). Indeed a potential counterexample possessed a rich and internally consistent 2-local structure. It was only after turning from 2-local subgroups to local subgroups for the prime r that a contradiction was reached.

One of the achievements of [LO02] is to suggest that the single "sporadic" object Co_{3} in the category of groups is a member of an infinite family of exceptional objects in the category of 2-local groups. But in addition, [LO02] establishes a special relationship between the $\mathscr{\varphi}_{\text {Sol }}(q)$'s and the exotic 2-adic finite loop space $\mathrm{DI}(4)$ of Dwyer and Wilkerson [DW93]. Namely, in [LO02] it is shown that the classifying space $B \mathrm{DI}(4)$ is homotopy equivalent to the 2-completion of the nerve of a union of subcategories of the linking systems $\mathscr{L}_{\mathrm{Sol}}\left(q^{n}\right)$, with the union taken for any fixed q as n goes to infinity. (This result was prefigured in, and motivated by, work of David Benson [Ben94]. Benson showed, first, that the 2-cohomology ring $H^{*}(B \mathrm{DI}(4) ; 2)$ is finitely generated over $H^{*}\left(\mathrm{Co}_{3} ; 2\right)$, and second, that the 2cohomology of the space of fixed points in $B \mathrm{DI}(4)$ of an unstable Adams operation ψ_{q}, would be that of the "Solomon groups", if such groups existed.) Moreover [BLO05] introduces the notion of a " p-local compact group", and Theorem 9.8 in [BLO05] shows that each p-compact group supports the structure of a p-local compact group. As a special case, DI(4) supports such a structure. We give here an alternate, constructive proof of this fact.

Our paper is built around an alternate construction (Theorem A) of the 2-local finite groups

$$
\mathscr{\varphi}_{k}=\mathscr{G}_{k, r}=\mathscr{G}_{\mathrm{Sol}}\left(r^{2^{k+1}}\right)=\left(S_{k}, \mathscr{F}_{k}, \mathscr{L}_{k}\right)
$$

where r is a prime congruent to 3 or $5 \bmod 8$. The construction is based on a notion of the "representation" of a p-local finite group $\mathscr{G}=(S, \mathscr{F}, \mathscr{L})$ as the p-local group of a not necessarily finite group G, by means of a "signalizer functor" θ. This means, first of all, that S is a Sylow p-subgroup of G (in a sense which we shall make precise), and that the fusion system \mathscr{F} may be identified with the fusion system $\mathscr{F}_{S}(G)$ consisting of all the maps between subgroups of S that are induced by conjugation by elements of G. Second, it means that whenever P is a subgroup of S which contains every p-element of its G-centralizer (i.e. whenever P is centric in \mathscr{F}), there is a direct-product factorization

$$
C_{G}(P)=Z(P) \times \theta(P)
$$

where the operator θ is inclusion-reversing and conjugation-equivariant. Then θ gives rise to a centric linking system \mathscr{L}_{θ} associated with \mathscr{F}, with the property that

$$
\operatorname{Aut}_{\mathscr{L}_{\theta}}(P)=N_{G}(P) / \theta(P)
$$

for any \mathscr{F}-centric subgroup P of S. One says that \mathscr{G} is represented in G via θ if the p-local groups \mathscr{G} and $\left(S, \mathscr{F}, \mathscr{L}_{\theta}\right)$ are isomorphic.

The notions of p-local finite group and of representation via a signalizer functor can be generalized to obtain a representation of the 2-local compact group of $\mathrm{DI}(4)$, by allowing S to be an infinite 2 -group. We also introduce a notion of morphism, to obtain a category of p-local groups, having p-local finite groups as a full subcategory. As an application we show in Theorem B that the 2-local finite group \mathscr{G}_{0} associated with Co_{3} is a "subgroup" of each \mathscr{G}_{k}.

In the final section of this paper we introduce a notion of direct limit of a directed system of embeddings of p-local groups, and in this way obtain (Theorem C) a 2-local compact group $\mathscr{G}_{\mathfrak{G}}$ which is the direct limit of a directed system $\mathfrak{G}=\left(\mathscr{G}_{k} \rightarrow \mathscr{G}_{k+1}\right)_{k \geq 0}$ of embeddings of 2-local finite groups. The identification of $\mathscr{G}_{\mathfrak{G}}$ with the 2-local compact group of $\mathrm{DI}(4)$ (Theorem D) is a corollary of results in [LO02], obtained by setting up a homotopy equivalence between the nerve of our direct limit and the nerve of a category $\mathscr{L}_{\text {Sol }}^{c}\left(p^{\infty}\right)$ constructed in [LO02]. The 2-completion of the latter category is shown in [LO02] to be homotopy equivalent to $B \mathrm{DI}(4)$.

In view of the length of this paper, the reader may find the following outline helpful. The first three sections are concerned with general principles and supporting results. Then in Section 4, which provides information on certain spin groups, the argument actually begins to take shape.

Let p be an odd prime. For reasons which will not be immediately apparent, it will be necessary to take p to be congruent to 3 or $5 \bmod 8$. Let $\overline{\mathbf{F}}$ be an algebraic closure of the field of p elements. There is a subfield \mathbf{F} of $\overline{\mathbf{F}}$, obtained as the union of the tower of subfields of $\overline{\mathbf{F}}$ of order $p^{2^{n}}, n \geq 0$. Take \bar{H} to be the group $\operatorname{Spin}_{7}(\overline{\mathbf{F}})$

- the universal covering group of the simple orthogonal group $\Omega_{7}(\overline{\mathbf{F}})$. Let ψ be an endomorphism of \bar{H} such that $C_{\bar{H}}(\psi) \cong \operatorname{Spin}_{7}(p)$, and set

$$
H=\bigcup_{n \geq 0} C_{\bar{H}}\left(\psi^{2^{n}}\right)
$$

Then H is a group of \mathbf{F}-rational points of \bar{H}. One finds that all fours groups in H containing $Z(H)$ are conjugate, and that if U is such a fours group then the identity component B^{0} of the group $B=N_{H}(U)$ is a commuting product of three copies of $\mathrm{SL}_{2}(\mathbf{F})$.

In Section 5 we show that there is an automorphism y of B^{0} of order 3, which transitively permutes the three $\mathrm{SL}_{2}(\mathbf{F})$ components of B, and which when chosen carefully, interacts in a special way (to be described shortly) with the normalizer in H of a maximal torus T of B. It is at this point, in choosing an appropriate automorphism y, that we require that p be congruent to $3 \operatorname{or} 5 \bmod 8$. Once y has been fixed in the appropriate way, we form a group $K=\langle B, y\rangle$ which is isomorphic to a split extension of B^{0} by the symmetric group of degree 3. We then form the amalgam $\mathscr{A}=(H>B<K)$, and its associated free amalgamated product

$$
G=H *_{B} K
$$

This is the group which informs and guides our investigation.
We need the following notion of "Sylow 2-subgroup": A subgroup S of G is a Sylow 2-subgroup of G if every element of S has order a power of 2 (i.e. S is a 2-group), S is maximal with respect to inclusion among the 2 -subgroups of G, and every finite 2 -subgroup of G is conjugate to a subgroup of S. It turns out that the normalizer in H of a maximal torus T of B^{0} contains a Sylow 2-subgroup S of G. Moreover, if T is chosen to be y-invariant then S is a Sylow 2 -subgroup of each of the groups H, B, and K. The special way in which y interacts with S may be summarized as follows: for the Sylow 2-subgroup $S_{\infty}=S \cap T$ of T, we have

$$
\begin{equation*}
N_{G}\left(S_{\infty}\right)=N_{H}\left(S_{\infty}\right) *_{N_{B}\left(S_{\infty}\right)} N_{K}\left(S_{\infty}\right), \quad \text { and } \tag{*}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Aut}_{G}\left(S_{\infty}\right):=N_{G}\left(S_{\infty}\right) / C_{G}\left(S_{\infty}\right) \cong \operatorname{GL}(3,2) \times \mathbf{C}_{2} \tag{**}
\end{equation*}
$$

The effect of $(* *)$ is that S / S_{∞} may be identified with a Sylow 2-subgroup of $\operatorname{Aut}_{G}\left(S_{\infty}\right)$, and it is this property which, as is made clear in [LO02], turns out to be the key to fulfilling the axioms for "saturation" (defined in 1.5, below).

One feature of our treatment is the use of amalgams (cf. §3) to keep track of the various fusion systems which can be constructed from H, B, and K, and to distinguish the system with property $(* *)$. We prove in Theorem 5.2 that the amalgam \mathscr{A} with property $(* *)$ is unique. Then we carry out the remainder of our analysis in the universal completion G of \mathscr{A}, using the "standard tree" of G
as a source of geometric intuition, and as the basis for geometric arguments. The formalization by means of the amalgam \mathscr{A} and its free amalgamated product G provides, at the very least, a useful system of bookkeeping. For example, the language of amalgams provides a conceptual framework within which one can rigorously consider the question of which of the fusion systems constructed from H, B, and K is the "right" system. We mention that amalgams have also been used in recent work of G. Robinson [Rob07], and of Ian Leary and Radu Stancu [LS] as a tool for studying abstract fusion systems.

Setting $Z=Z(H)$ one has $|Z|=2$, and $C_{G}(Z)$ is in fact a rather complicated subgroup of G, properly containing H. Our proof that the fusion system $\mathscr{F}_{S}(G)$ is saturated is modeled on the proof of saturation in [LO02] for the fusion systems ${ }^{F}{ }_{S o l}(q)$ defined over finite 2-groups. Thus, the main step is to establish that H controls $C_{G}(Z)$-fusion in S. That is, the fusion system $\mathscr{F}_{S}(H)$ is equal to the a priori larger system $\mathscr{F}_{S}\left(C_{G}(Z)\right)$.

The proof of saturation in G is accompanied by the construction of a linking system by means of a signalizer functor. These steps require information on fusion among the centric subgroups of S, obtained in Sections 6 through 8. After this, in order to prepare the way for the construction of morphisms, we determine in complete detail the radical centric subgroups of S and of S_{σ}, where σ is an automorphism of G which fixes S and which induces a Frobenius endomorphism of H. Here a subgroup P of S is defined to be radical if $\operatorname{Inn}(P)=O_{2}\left(\operatorname{Aut}_{G}(P)\right)$.

One of the radical centric subgroups of S is an elementary abelian group A of order 16 which has the property, as in $(*)$, that

$$
N_{G}(A)=N_{H}(A) *_{N_{B}(A)} N_{K}(A) .
$$

Here one can do better than to determine $\operatorname{Aut}_{G}(A)$ in analogy with $(* *)$. Indeed, there is a surjective homomorphism

$$
\phi_{A}: N_{G}(A) \longrightarrow L,
$$

with $C_{G}(A)=A \times \operatorname{ker}\left(\phi_{A}\right)$, where L is a maximal subgroup of the sporadic group Co_{3}, isomorphic to a nonsplit extension of A by $\operatorname{Aut}(A)$. We then define a normal subset \mathbf{X} of G by

$$
\mathbf{X}=\bigcup_{g \in G} \operatorname{ker}\left(\phi_{A}\right)^{g}
$$

For any centric subgroup P of S we define a subset $\theta(P)$ of $C_{G}(P)$ by

$$
\theta(P)=C_{\mathbf{X}}(P) O\left(C_{G}(P)\right)
$$

It turns out that $\theta(P)$ is a subgroup of $C_{G}(P)$ and that θ is a signalizer functor (cf. Theorem 8.8 below).

We next consider the groups G_{σ} of fixed points of automorphisms σ of G, such that σ fixes both H and K, and such that the restriction of σ to H is a Frobenius map with $H_{\sigma} \cong \operatorname{Spin}_{7}\left(\mathbf{F}_{q}\right), q=p^{2^{n}}$. The groups G_{σ}, for $n \geq 0$, provide representations of the 2-local finite groups of [LO02]. In particular, for each such σ (chosen so that S_{σ} is a Sylow 2- subgroup of G_{σ}), the fusion system $\mathscr{F} S_{\sigma}\left(G_{\sigma}\right)$ is saturated, and the signalizer functor θ_{σ} given by

$$
\theta_{\sigma}(P)=C_{\mathbf{x}_{\sigma}}(P) O\left(C_{G_{\sigma}}(P)\right)
$$

for centric subgroups P of S_{σ}, defines a centric linking system $\mathscr{L}_{\theta_{\sigma}}\left(S_{\sigma}\right)$ associated with $\mathscr{F}_{S_{\sigma}}\left(G_{\sigma}\right)$.

This completes our outline of the proof of Theorem A. One aim of this paper is thus to suggest the possibility that many p-local finite groups may best be studied via a representation in terms of free amagalmated products and signalizer functors. For example, to study the fusion system \mathscr{F} on a p-group S generated by systems $\mathscr{F}_{S}\left(G_{i}\right)$ for some family $\mathscr{G}=\left(G_{i} \mid i \in I\right)$ of finite groups with Sylow group S, perhaps one should study the various amalgams \mathscr{A} obtained from \mathscr{G}, and the corresponding free amalgamated products $G=G(\mathscr{A})$. If \mathscr{A} is well chosen, then S is Sylow in G and $\mathscr{F}=\mathscr{F} S(G)$ is saturated. Then one can consider suitable overamalgams \mathscr{B} of \mathscr{A}, and the kernels of surjections from subgroups $G(\mathscr{B})$ of G onto suitable finite groups and use these kernels to construct a signalizer functor θ and the corresponding p-local finite group from \mathscr{F}. If \mathscr{A} is the amalgam of some family of subgroups generating a finite group \widehat{G}, then the kernel of the surjection $G \rightarrow \widehat{G}$ will be $\left\langle\theta(P)^{g} \mid P \in \mathscr{F}^{c}, g \in G\right\rangle$, whence $\mathscr{F} \cong \mathscr{F}_{S}(\widehat{G})$ (cf. Example 2.13, below). But in other cases one may hope for exotic p-local finite groups, such as $\mathscr{L}_{\text {sol }}(q)$.

Now here are the main theorems.
THEOREM A. Let p be a prime, $p \equiv 3$ or $5 \bmod 8$, let $\overline{\mathbf{F}}$ be an algebraic closure of the field \mathbf{F}_{p} of p elements, and let \mathbf{F} be the union of the subfields of $\overline{\mathbf{F}}$ of order $q_{n}=p^{2^{n}}, n \geq 0$. Then there is a group $G=G(p)$, an automorphism ψ_{0} of G, a Sylow 2-subgroup S of G, and a ψ_{0}-invariant normal subset \mathbf{X} of G such that, for any power σ of ψ_{0} of the form $\psi_{0}^{2^{n}}$, we have the following.
(1) $G=H *_{B} K$ is the free amalgamated product of an amalgam

$$
\mathscr{A}=(H \longleftarrow B \longrightarrow K),
$$

where H is a group of \mathbf{F}-rational points in $\operatorname{Spin}_{7}(\overline{\mathbf{F}}), B$ is the normalizer in H of a fours group U of H containing $Z(H)$, and K is a group which contains B as a subgroup of index 3 where K has the property that $\operatorname{Aut}_{K}(U) \cong \mathrm{GL}(2,2)$.
(2) ψ_{0} leaves invariant each of the subgroups H, K, and B of G; the restriction of ψ_{0} to H is the restriction of a Frobenius automorphism of $\operatorname{Spin}_{7}(\overline{\mathbf{F}})$, and $C_{H}\left(\psi_{0}\right) \cong \operatorname{Spin}_{7}(p)$.
(3) The group $S_{\sigma}=C_{S}(\sigma)$ is a finite Sylow 2-subgroup of the group $G_{\sigma}=C_{G}(\sigma)$, and there exists a unique choice of the amalgam \mathscr{A} such that, for all σ, the fusion system $\mathscr{F}_{\sigma}=\mathscr{F}_{\sigma}\left(G_{\sigma}\right)$ is isomorphic to the fusion system $\mathscr{F}_{\text {Sol }}(q)$ of [LO02], $\left(q=p^{2^{n}}\right)$.
(4) For any \mathscr{F}_{σ}-centric subgroup P of S_{σ}, the set

$$
\theta_{\sigma}(P):=C_{\mathbf{X} \cap G_{\sigma}}(P) O\left(C_{G_{\sigma}}(P)\right)
$$

is a group, and is a complement to $Z(P)$ in $C_{G_{\sigma}}(P)$. Moreover, θ_{σ} defines a 2-local finite group $\mathscr{G}_{\sigma}=\left(S_{\sigma}, \mathscr{F}_{\sigma}, \mathscr{L}_{\sigma}\right)$ isomorphic to the 2-local finite group $\mathscr{L}_{\text {sol }}(q)$ of [LO02].
(5) The order of a maximal elementary abelian 2-subgroup A of S is 16, and all maximal elementary abelian 2-subgroups of G are conjugate in G. Moreover, $C_{G}(A)=A \times C_{\mathbf{X}}(A)$, where $C_{\mathbf{X}}(A)$ is a free normal subgroup of $C_{G}(A)$, $N_{G}(A) / C_{\mathbf{X}}(A)$ is isomorphic to a nonsplit extension of A by $\operatorname{Aut}(A)$, and \mathbf{X} is the union of the conjugates of $C_{\mathbf{X}}(A)$ in G.

Theorem B. Let p, A, G, ψ_{0}, and \mathbf{X} be as in Theorem A. Then there exist subgroups H_{0}, K_{0}, and $B_{0}=H_{0} \cap K_{0}$ of $H_{\psi_{0}}, K_{\psi_{0}}$, and $B_{\psi_{0}}$, respectively, such that the following hold.
(1) H_{0} is isomorphic to a perfect central extension of $\operatorname{Sp}(6,2)$ by \mathbb{Z}_{2}, K_{0} is a group of order $2^{10} 3^{3}$, and B_{0} is of index 3 in K_{0}.
(2) Setting $G_{0}=\left\langle H_{0}, K_{0}\right\rangle$, we have
(a) $X \cap H_{0}=X \cap K_{0}=\{1\}$, and
(b) $G_{0} /\left\langle X \cap G_{0}\right\rangle$ is isomorphic to the colimit of the amalgam \mathcal{M} of maximal subgroups of Co_{3} containing a fixed Sylow 2-subgroup of Co_{3}.
(3) Let S_{0}^{\prime} be a Sylow 2-subgroup of Co_{3} and S_{0} a Sylow 2-subgroup of B_{0}. Then there is an isomorphism of 2-local finite groups

$$
\mathscr{G}_{S_{0}^{\prime}}\left(\mathrm{Co}_{3}\right) \cong \mathscr{G}_{S_{0}}\left(G_{0}\right)
$$

THEOREM C. For any positive integer i, let \mathscr{G}_{i} be the 2-local finite group $\mathscr{G}_{\psi_{0}^{2 i-1}}$ of Theorem A , and let \mathscr{G}_{0} be the 2-local finite group associated with Co_{3} as in Theorem B. Let \mathscr{G} be the 2-local group $(S, \mathscr{F}, \mathscr{L})$ associated with G via the fusion system $\mathscr{F}=\mathscr{F}_{S}(G)$ and via the signalizer functor θ defined by the subset \mathbf{X} of G. Then there exists a directed system

$$
\mathfrak{G}=\left(\beta_{i, j}: \mathscr{G}_{i} \longrightarrow \mathscr{G}_{j}\right)_{0 \leq i \leq j}
$$

of embeddings of 2-local finite groups, possessing a limit $\mathscr{G}_{\mathfrak{G}}$ which is canonically isomorphic to the 2-local group \mathscr{G}.

The 2-local group $\mathscr{G}(G)$ is a 2-local compact group, as defined in [BLO05].

It will be proved in [COS06] that the exotic fusion systems $\mathscr{F}_{\text {Sol }}(q)$ of Levi and Oliver, defined over 2-groups S_{q}, are determined by the isomorphism type of S_{q}. This implies that for any odd prime power q, and any prime $p \equiv 3$ or $5 \bmod 8$, there is a unique σ such that the Levi-Oliver fusion system $\mathscr{F}_{\mathrm{Sol}}(q)$ is isomorphic to $\mathscr{F}_{\sigma}\left(G_{\sigma}\right)$, where $G=G(p)$ is the group in characteristic p constructed here. This is needed for the proof of the following result.

THEOREM D. Let $\mathscr{L}:=\mathscr{L}_{S, \theta}(G)$ be the centric linking system over \mathscr{F} as given in Theorem C. Then the 2-completed nerve $|\mathscr{L}|_{2}^{\wedge}$ is homotopy equivalent to $B \mathrm{DI}(4)$. In particular, $\mathrm{DI}(4)$ may be given the structure of the 2-local group \mathcal{G}, and $\mathrm{DI}(4)$ is then a 2-local compact group.

We are grateful to Bob Oliver for many helpful conversations about the 2-local finite groups $\mathscr{G}_{\text {Sol }}(q)$ which he and Ran Levi constructed, and for his help in understanding the space $B \mathrm{DI}(4)$ of Dwyer and Wilkerson. The proof of Theorem D was communicated to us by Levi and Oliver. We would also like to thank Ron Solomon and the other members of his seminar at Ohio State, for suggesting improvements to an earlier version of this manuscript.

Remarks and questions.
(1) One might imagine that the normal subgroup $\langle\mathbf{X}\rangle$ of G leads to an interesting factor group $G /\langle\mathbf{X}\rangle$. But the fact is that $\langle\mathbf{X}\rangle=G$. Moreover, $G_{\sigma} /\left\langle\mathbf{X}_{\sigma}\right\rangle=1$ for any automorphism σ of G as in Theorem A, while $G_{0} /\left\langle\mathbf{X} \cap G_{0}\right\rangle$ is in fact isomorphic to Co_{3}. These results will appear in [COS06].
(2) To what extent can our method of construction of the Levi-Oliver fusion and linking systems be carried out in a characteristic 0 context? For example, one might consider a subring 0 of the field of complex numbers, and ask whether there is a 7 -dimensional quadratic space over \mathbb{O}, yielding a group $H_{0}=\operatorname{Spin}_{7}(\mathbb{O})$, from which to build up a suitable free amalgamated product and linking system as we do here in characteristic p. One requires $1 / 2 \in \mathbb{O}$ in order to have an isomorphism of $\mathrm{PSL}_{2}(0)$ with a suitable 3-dimensional orthogonal group. The rings

$$
\mathrm{O}_{m}=\mathbb{Z}[\omega / 2],
$$

where ω is a primitive 2^{m}-th root of unity, are possible candidates for this, and there may be others.
(3) The sporadic group $O^{\prime} N$ (or rather, the 2-local finite group associated with $O^{\prime} N$) can be shown to occur as a subgroup of some of the 2-local finite groups constructed here. Since $O^{\prime} N$ and its subgroup J_{1} are "pariahs", i.e. are not among the twenty sporadic simple groups which are involved in the Monster, it is of some interest to have a context in which these groups, and Co_{3} (which is not a pariah) can live together in harmony. This will be the subject of another paper.

1. Fusion systems and Sylow subgroups

We shall need to consider fusion systems both over finite p-groups, and over certain infinite p-groups. In the finite case the definitions are due first of all to Lluis Puig [Pui06], and then to Broto, Levi, and Oliver [BLO03]. The latter three authors also consider a class of infinite p-groups which they call discrete p-toral groups, in [BLO05], and this class includes all of the p-groups that will be studied here. For reasons of exposition, however, we shall present the definitions in a somewhat more general context - but we emphasize that the main concepts, and the proofs of the basic lemmas, come from the above-cited works.

We follow the practice, peculiar to finite group theory, of using right-hand notation for conjugation within a group, and for group homomorphisms. But we use left-hand notation for functors, and for auxiliary mappings associated with some of our functors. It may also be worth mentioning that if X is a set admitting action by a group G, and g is an element of G, then the set of fixed points for g in X is denoted X_{g}, rather than the topologist's X^{g}.

If G is a group, g an element of G, and X a subset or an element of G, we write X^{g} for the image of X under the conjugation automorphism

$$
c_{g}: G \rightarrow G, \quad\left(c_{g}: x \mapsto x^{g}:=g^{-1} x g \quad \text { for all } x \in G\right)
$$

We also write $c_{g}: P \rightarrow Q$ for the mapping of P into Q given by g-conjugation, whenever P and Q are subgroups of G with $P^{g} \leq Q$. The transporter of P into Q is the set
and we define

$$
N_{G}(P, Q):=\left\{g \in G \mid P^{g} \leq Q\right\}
$$

$$
\operatorname{Hom}_{G}(P, Q):=\left\{c_{g}: P \rightarrow Q \mid g \in N_{G}(P, Q)\right\}
$$

Denote by $\operatorname{Inj}(P, Q)$ the set of all injective homomorphisms of P into Q. If $\alpha: P \rightarrow Q$ is an isomorphism, write α^{*} for the isomorphism from $\operatorname{Aut}(P)$ to $\operatorname{Aut}(Q)$ defined by $\alpha^{*}: \beta \mapsto \alpha^{-1} \beta \alpha$.

Definition 1.1. A fusion system \mathscr{F} over a group S is a category whose objects are the subgroups of S, and whose morphism-sets $\operatorname{Hom}_{\mathscr{F}}(P, Q)$ satisfy the following two conditions.
(1) $\operatorname{Hom}_{S}(P, Q) \subseteq \operatorname{Hom}_{\mathscr{F}}(P, Q) \subseteq \operatorname{Inj}(P, Q)$.
(2) If $\alpha \in \operatorname{Hom}_{\mathscr{F}}(P, Q)$ then the isomorphisms $\alpha: P \rightarrow P \alpha$ and $\alpha^{-1}: P \alpha \rightarrow P$ are morphisms in \mathscr{F}.

Example 1.2. Let G be a group and S a subgroup of G. For subgroups P and Q of S, set

$$
\operatorname{Hom}_{\mathscr{F}}(P, Q)=\operatorname{Hom}_{G}(P, Q)
$$

Then \mathscr{F} is a fusion system over S, denoted $\mathscr{F} S(G)$.

Let \mathscr{F} be a fusion system over S, let P be a subgroup of S, and let $\alpha \in$ Aut $_{\mathscr{F}}(P)$. Set

$$
N_{\alpha}=\left\{x \in N_{S}(P) \mid\left(c_{x}\right) \alpha^{*} \in \operatorname{Aut}_{S}(P)\right\}
$$

Thus, N_{α} is the largest subgroup R of $N_{S}(P)$ having the property that, in the group $\operatorname{Aut}_{\mathcal{F}}(P)$, the conjugation map c_{α} carries $\operatorname{Aut}_{R}(P)$ into $\operatorname{Aut}_{S}(P)$.

Lemma 1.3. Let S be a subgroup of a group G, and let P be a subgroup of S. Set $\mathscr{F}=\mathscr{F}_{S}(G)$, let $g \in N_{G}(P)$, and set $\alpha=c_{g} \in \operatorname{Aut}_{\mathscr{F}}(P)$.
(a) $\left(N_{\alpha}\right)^{g}=S^{g} \cap\left(C_{G}(P) N_{S}(P)\right)$.
(b) If S is a p-group, and every p-subgroup of $C_{G}(P) N_{S}(P)$ is conjugate via $C_{G}(P)$ to a subgroup of $N_{S}(P)$, then there exists $\bar{\alpha} \in \operatorname{Aut}_{\mathscr{F}}\left(N_{\alpha}, N_{S}(P)\right)$ extending α.

Proof. Set $R=N_{\alpha}$. By definition, R^{g} consists of those $x \in N_{G}(P)$ such that $x \in S^{g}$ and $c_{x \mid P} \in \operatorname{Aut}_{S}(P)$. But $c_{x \mid P} \in \operatorname{Aut}_{S}(P)$ if and only if $x \in C_{G}(P) N_{S}(P)$, and thus (a) holds.

Assume the hypothesis of (b). Then R^{g} is a p-subgroup of $C_{G}(P) N_{S}(P)$, by (a), so that by the hypothesis of (b) there exists $h \in C_{G}(P)$ such that $R^{h} \leq N_{S}(P)$. Now α is the restriction to P of $\bar{\alpha}=c_{g h}: R \longrightarrow N_{S}(P)$, and we have (b).

Definition 1.4. Let p be a prime. A group S is a p-group if for every $x \in S$, the order of x is a power of p. A p-subgroup S of a group G is a Sylow p-subgroup of G if
(1) S is maximal (with respect to inclusion) among all p-subgroups of G, and
(2) S contains a conjugate of every finite p-subgroup of G.

The set of all Sylow p-subgroups of G is denoted $\operatorname{Syl}_{p}(G)$. The group generated by the set of normal p-subgroups of G is itself a normal p-subgroup of G, and is denoted $O_{p}(G)$.

Definition 1.5. Let p be a prime, let S be a p-group, and let \mathscr{F} be a fusion system over S. A subgroup P of S is fully normalized in \mathscr{F} if, for every $\phi \in$ $\operatorname{Hom}_{\mathscr{F}}(P, S)$, there exists $\psi \in \operatorname{Hom}_{\mathscr{F}}\left(N_{S}(P \phi), N_{S}(P)\right)$ such that ψ maps $P \phi$ to P. We say that \mathscr{F} is saturated if the following two conditions hold for every subgroup P of S.
(I) There exists $\phi \in \operatorname{Hom}_{\mathscr{F}}(P, S)$ such that $P \phi$ is fully normalized in \mathscr{F}.
(II) If P is fully normalized in \mathscr{F} then:
(A) $\operatorname{Aut}_{S}(P) \in \operatorname{Syl}_{p}\left(\operatorname{Aut}_{\mathscr{F}}(P)\right)$, and
(B) each $\alpha \in \operatorname{Aut}_{\mathscr{F}}(P)$ extends to a member of $\operatorname{Hom}_{\mathscr{F}}\left(N_{\alpha}, S\right)$.

The preceding definition of saturation is formulated so as to make no mention of $\left|N_{S}(P)\right|$ for $P \leq S$, and it is equivalent to the standard definition (cf. [BLO03]) in the case that S is finite. This follows from $\left[\mathrm{BCG}^{+} 05\right.$, Lemma 2.3], and it is then easy to check that our definition of "fully normalized" is equivalent to the usual one, in a saturated fusion system over a finite p-group.

Lemma 1.6. Let p be a prime and G a group. Let Y be the set of subgroups Y of G such that the set $\mathscr{S}(Y)$ of maximal p-subgroups of Y is nonempty, and such that Y is transitive on $\mathscr{S}(Y)$ by conjugation. Assume for each p-subgroup P of G that:
(1) $N_{G}(P), C_{G}(P) P$, and $C_{G}(P) T$ are in 9 for $T \in \mathscr{Y}\left(N_{G}(P)\right)$.
(2) $\operatorname{Out}_{G}(P)$ is finite.
(3) P is Artinian (i.e., any descending chain of subgroups of P stabilizes).
(4) If $P \neq 1$ then $N_{G}(P)$ is locally finite.

Then
(a) G has a Sylow p-subgroup S.
(b) A subgroup P of S is fully normalized in $\mathscr{F}_{S}(G)$ if and only if $N_{S}(P)$ is a Sylow p-subgroup of $N_{G}(P)$.
(c) $\mathscr{F}_{S}(G)$ is saturated.

Proof. We have $G \in \mathscr{Y}$, by (1) as applied to $P=1$. Thus $\mathscr{S}(G)=\operatorname{Syl}_{p}(G)$, and (a) holds.

Let $P \leq S$ and set $L=N_{G}(P), K=C_{G}(P)$, and $T=N_{S}(P)$. Applying (1) to P, we obtain $T \leq X$ for some $X \in \operatorname{Syl}_{p}(L)$. Let $Q \leq S$ and $g \in G$ with $Q^{g}=P$. Then $N_{S}(Q)^{g}$ is a p-subgroup of L, and since $L \in \mathscr{Y}$ there exists $l \in L$ with $N_{S}(Q)^{g l} \leq X$. We conclude that P is fully normalized if $T=X$. Further, as $G \in \mathscr{Y}$ there exists $h \in G$ with $X^{h} \leq S$, and so $X^{h} \in \operatorname{Syl}_{p}\left(L^{h}\right)$ and hence P^{h} is fully normalized. This verifies axiom (I) in the definition 1.5 of saturation.

Assume that P is fully normalized. Then there exists $y \in G$ with $P^{h y}=P$ and with $X^{h y} \leq T \leq X$. Then $X^{(h y)^{n}} \leq X$ for all $n>0$, and it follows from (3) that $X=X^{h y}$, and then that $X=T$. This completes the proof of (b).

Set $\bar{L}=L / P K$. We have $T \in \operatorname{Syl}_{p}(L)$ by (b), and \bar{L} is finite by (2). Let Y be the pre-image in L of a Sylow p-subgroup of \bar{L} containing \bar{T}. By (4) there is a finite subgroup U of Y with $\bar{Y}=\bar{U}$. As \bar{U} is a p-group we have $\bar{U}=\bar{V}$ for some $V \in \operatorname{Syl}_{p}(U)$. As $L \in \mathcal{Y}$ there exists $a \in L$ with $V^{a} \leq T$. Then $|\bar{Y}|=|\bar{V}| \leq|\bar{T}| \leq|\bar{Y}|$, so that $\bar{Y}=\bar{T}$, and we have verified axiom (IIA) in 1.5.

Finally, set $\mathscr{F}=\mathscr{F}_{S}(G)$ and let $\alpha \in \operatorname{Aut}_{\mathscr{F}}(P)$. As $T K \in \mathscr{Y}$, by (1), we conclude from 1.3(b) that α extends to an element of $\operatorname{Hom}_{\mathscr{F}}\left(N_{\alpha}, S\right)$, verifying axiom (IIB) for saturation, and completing the proof of (c).

Notice that if G is a finite group then the hypotheses of 1.6 are satisfied by G. Thus, it is a corollary of 1.6 that for any finite group G and $S \in \operatorname{Syl}_{p}(G)$, the fusion system $\mathscr{F}_{S}(G)$ is saturated.

Let $\mathscr{F}_{i}, i=1,2$, be fusion systems over subgroups S_{i} of a group S. We say that \mathscr{F}_{1} is a fusion subsystem of \mathscr{F}_{2} (and write $\mathscr{F}_{1} \leq \mathscr{F}_{2}$) if $S_{1} \leq S_{2}$ and $\operatorname{Hom}_{\mathscr{F}_{1}}(P, Q) \subseteq \operatorname{Hom}_{\mathscr{F}_{2}}(P, Q)$ for all $P, Q \leq S_{1}$.

Given a set \mathbf{F} of fusion systems over S, there is a largest fusion system

$$
\mathscr{F}_{\mathbf{F}}:=\bigcap_{\mathscr{F} \in \mathbf{F}} \mathscr{F}
$$

which is a subsystem of each $\mathscr{F} \in \mathbf{F}$. Thus

$$
\operatorname{Hom}_{\mathscr{F}_{F}}(P, Q)=\bigcap_{\mathscr{F} \in F} \operatorname{Hom}_{\mathscr{F}}(P, Q)
$$

Given a set \mathbf{E} of fusions systems, each of which is defined over a subgroup of S, define $\langle\mathbf{E}\rangle$ - the fusion system generated by \mathbf{E} - to be the fusion system $\mathscr{F}_{\mathbf{F}}$, where \mathbf{F} is the set of all fusion systems over S which contain each member of \mathbf{E}. The proof of the following result is straightforward:

Lemma 1.7. Let S be a group and let $\left(S_{i}: i \in I\right)$ be a collection of subgroups of S. For each $i \in I$, let \mathscr{F}_{i} be a fusion system over S_{i}, and set $F=\left(\mathscr{F}_{i} \mid i \in I\right)$. Assume that $S_{i}=S$ for at least one index i, and define a fusion system $\mathcal{C}_{\mathcal{G}}$ on S by taking $\operatorname{Hom}_{(}(P, Q)$ to consist of the maps $\alpha_{0} \ldots \alpha_{r}$ such that, for each $0 \leq j \leq r$, there exists $i(j) \in I, P_{j} \leq S_{i(j)}$, and $\alpha_{j} \in \operatorname{Hom}_{\mathscr{F}_{i(j)}}\left(P_{j}, S_{i(j)}\right)$, such that $P_{j+1}=$ $P_{j} \alpha_{j}, P_{0}=P$, and $P_{r+1}=Q$. Then $\langle F\rangle=\mathscr{G}$.

Lemma 1.8. Let G be a group, $S \in \operatorname{Syl}_{p}(G)$, and let X be a normal subgroup of G of index p in S, such that $S / X \cong N_{G / X}(S / X)$. Then $\mathscr{F}_{S}(G)=$ $\left\langle\mathscr{F}_{S}(S), \mathscr{F}_{X}(G)\right\rangle$.

Proof. Set $G^{*}=G / X$ and $\mathscr{E}=\left\langle\mathscr{F}_{S}(S), \mathscr{F}_{X}(G)\right\rangle$. As $\mathscr{F}_{S}(S)$ and $\mathscr{F}_{X}(G)$ are contained in $\mathscr{F}=\mathscr{F}_{S}(G)$, we have $\mathscr{E} \subseteq \mathscr{F}$ by definition of \mathscr{E}, and it remains to establish the opposite inclusion. Let $P, Q \leq S$ and $\alpha \in \operatorname{Hom}_{\mathscr{F}}(P, Q)$. If $P \not \pm X$ then as S^{*} is of order p and is equal to its normalizer in G^{*} we get $Q \not 又 X$ and $\alpha \in \operatorname{Hom}_{\mathscr{F}_{S}(S)}(P, Q)$. Similarly if $P \leq X$ but $Q \not \leq X$ then $\alpha=\beta \gamma$ where $\beta \in \operatorname{Hom}_{\mathscr{F}}(P, P \beta), P \beta \leq X$, and $\gamma: P \beta \rightarrow Q$ is the inclusion map. Thus it remains to show that $\operatorname{Hom}_{\mathscr{F}}(P, Q) \subseteq \operatorname{Hom}_{\mathscr{E}}(P, Q)$ for $P, Q \leq X$, which follows since $\mathscr{F}_{X}(G) \subseteq \mathscr{E}$.

The next lemma states a weak form of the Alperin-Goldschmidt fusion theorem [Gol70], in the language of fusion systems. This result will be of use in the proof of Theorem B.

Lemma 1.9. Let G be a finite group, $S \in \operatorname{Syl}_{p}(G)$, and denote by \mathcal{N} the set of subgroups N of G having the following properties.
(1) $N=N_{G}\left(O_{p}(N)\right)$,
(2) $S \cap N \in \operatorname{Syl}_{p}(N)$, and
(3) $C_{S}\left(O_{p}(N)\right) \leq O_{p}(N)$.

Let \mathcal{N}_{0} be the set of minimal members of \mathcal{N}, with respect to inclusion. Then $\mathscr{F}_{S}(G)=\left\langle\mathscr{F} S_{S N}(N) \mid N \in \mathcal{N}_{0}\right\rangle$.

We end this section with a generalization of a well-known result concerning finite p-groups.

Lemma 1.10. Let P be a p-group, set $A=\operatorname{Aut}(P)$, and let

$$
\mathscr{C}=\left(P=P_{0} \geq P_{1} \geq \cdots \geq P_{k}=1\right)
$$

be a chain of normal subgroups of P. Let Λ be a subgroup of the group

$$
C_{A}(\mathscr{C})=\left\{\alpha \in A \mid\left[P_{i}, \alpha\right] \leq P_{i+1} \quad \text { for all } i, 0 \leq i<k\right\}
$$

and assume that either Λ is a torsion group or that P_{1} is of bounded exponent. Then Λ is a p-group.

Proof. Apply induction on k. The lemma is trivial when $k=1$, so take $k>1$ and set $P^{*}=P / P_{k-1}$. Then Λ centralizes the chain $\mathscr{C}^{*}=\left(P_{0}^{*} \geq \cdots \geq P_{k-1}^{*}=1\right)$. By induction, $\operatorname{Aut}_{\Lambda}\left(\mathscr{C}^{*}\right)$ is a p-group, so it remains to show that $C_{\Lambda}\left(P^{*}\right)$ is a p-group. Thus, we may take $k=2$. Let $\alpha \in \Lambda, x \in P$, and set $c=[x, \alpha]$. Then $c \in P_{1} \leq C_{P}(\alpha)$, so that $x^{\alpha^{n}}=x c^{n}$, and hence $\left|\alpha_{\mid\langle x\rangle}\right|=|c|$. If α is of finite order, or P_{1} is of bounded exponent, we conclude that

$$
|\alpha|=\operatorname{lcm}\{|[x, \alpha]| \mid x \in P\}
$$

is a power of p.

2. Linking systems, signalizer functors, and p-local groups

Let \mathscr{F} be a fusion system over a p-group S. A subgroup P of S is \mathscr{F}-centric if $C_{S}(P \phi)=Z(P \phi)$ for every $\phi \in \operatorname{Hom}_{\mathscr{F}}(P, S)$, and P is $\mathscr{F}-$ radical if $O_{p}\left(\operatorname{Aut}_{\mathscr{F}}(P)\right)$ $=\operatorname{Inn}(P)$. Write \mathscr{F}^{c} for the set of \mathscr{F}-centric subgroups of S, \mathscr{F}^{r} for the set of \mathscr{F} radical subgroups of S, and $\mathscr{F}^{\mathrm{rc}}$ for $\mathscr{F}^{c} \cap \mathscr{F}^{r}$.

Lemma 2.1. Let S be a Sylow p-subgroup of a group G, set $\mathscr{F}=\mathscr{F}_{S}(G)$, and let $P \leq S$.
(a) If $P \in \mathscr{F}^{c}$, and $g \in G$ with $P \leq S^{g}$, then $C_{S^{g}}(P) \leq P$.
(b) If P contains every finite p-subgroup of $C_{G}(P)$ then $P \in \mathscr{F}^{c}$.
(c) If P is finite and $P \in \mathscr{F}^{c}$, then $Z(P)$ contains every p-subgroup of $C_{G}(P)$.

Proof. Part (a) is immediate from the definition of \mathscr{F}^{c}. Now suppose that $Z(P)$ contains every finite p-subgroup of $C_{G}(P)$, and let $g \in N_{G}(P, S)$. Then every element of $C_{S}\left(P^{g}\right)$ is contained in $Z\left(P^{g}\right)$, and thus $P \in \mathscr{F}^{c}$, proving (b).

Finally, assume that P is finite and that $P \in \mathscr{F}^{c}$, and let R be a finite p-subgroup of $C_{G}(P)$. Then $R P$ is a finite p-subgroup of G. Since S is a Sylow p-subgroup of G, there exists $g \in G$ with $(R P)^{g} \leq S$. As $P \in \mathscr{F}^{c}$ we have $C_{S}\left(P^{g}\right)=$ $Z\left(P^{g}\right)$, and so $R \leq Z(P)$. Thus $Z(P)$ contains every finite p-subgroup of $C_{G}(P)$, and since every p-group is the union of its finite subgroups, we obtain (c).

Lemma 2.2. Let S be a Sylow p-subgroup of a group G, and set $\mathscr{F}=\mathscr{F}_{S}(G)$. Let $P \in \mathscr{F}^{r}$ such that P contains every p-element of $C_{G}(P)$, and let

$$
\mathscr{C}=\left(P=P_{0} \geq P_{1} \geq \cdots \geq P_{k}=1\right)
$$

be a chain of $N_{G}(P)$-invariant subgroups of P. Suppose that P_{1} is of bounded exponent. Then P contains every finite P-invariant p-subgroup R of $C_{G}(\mathscr{C})$.

Proof. First, let R_{0} be a p-subgroup of $C_{G}(P) P$. Then $R_{0} P=C_{R_{0} P}(P) P$ by the Dedekind Lemma. As $P \unlhd C_{G}(P) P, R_{0} P$ is a p-group, and then $C_{R_{0} P}(P)$ $\leq P$ by hypothesis. Thus

$$
\begin{equation*}
R_{0} \leq R_{0} P \leq C_{R_{0} P}(P) P \leq P \tag{*}
\end{equation*}
$$

Now let R be a p-subgroup of $C_{G}(\mathscr{C})$. Set $\Lambda=C_{\text {Aut }_{G}(P)}(\mathscr{C})$. Then $\Lambda \unlhd \operatorname{Aut}_{G}(P)$, and Λ is a p-group by 1.10. As P is \mathscr{F}-radical, it follows that $\operatorname{Aut}_{R}(P) \leq \operatorname{Inn}(P)$, and thus $R \leq C_{G}(P) P$. Then $R \leq P$ by $(*)$.
A set \mathscr{F}_{0} of objects in a fusion system \mathscr{F} is closed under \mathscr{F}-conjugation if $P \phi \in \mathscr{F}_{0}$ for all $P \in \mathscr{F}_{0}$ and all morphisms $\phi \in \mathscr{F}$ defined on P.

Lemma 2.3. Let $\mathscr{F}^{\text {be }}$ a fusion system on S. Then $\mathscr{F}^{c}, \mathscr{F}^{r}$, and $\mathscr{F}^{\mathrm{rc}}$ are closed under \mathscr{F}-conjugation.

Proof. Let $P \leq S$ and let $\phi \in \operatorname{Hom}_{\mathscr{F}}(P, S)$. Then $P \in \mathscr{F}^{c}$ if and only if $P \phi \in \mathscr{F}^{c}$, by definition. Now let $P \in \mathscr{F}^{r}$. The natural map ϕ^{*} : $\operatorname{Aut} \mathscr{F}(P) \rightarrow$ $\operatorname{Aut}_{\mathscr{F}}(P \phi)$ is an isomorphism, and since $\operatorname{Inn}(P)=O_{p}\left(\operatorname{Aut}_{\mathscr{F}}(P)\right)$, it follows that $\operatorname{Inn}(P \phi)=O_{p}\left(\right.$ Aut $\left._{\mathscr{F}}(P \phi)\right)$. Thus, $P \in \mathscr{F} r$ if and only if $P \phi \in \mathscr{F}^{r}$.

Definition 2.4. Let S be a p-group, let \mathscr{F} be a fusion system over S, and let \mathscr{E} be a subset of \mathscr{F}^{c}. An \mathscr{E}-linking system (or linking system on \mathscr{E}), consists of
(1) a category \mathscr{L} with $\operatorname{Obj}(\mathscr{L})=\mathscr{E}$ and composition \cdot (read from left to right),
(2) a functor $\pi: \mathscr{L} \rightarrow \mathscr{F}$, for which the associated map of objects induces the identity map $\operatorname{Obj}(\mathscr{L}) \longrightarrow \mathscr{E}$, and
(3) a collection $\delta=\left\{\delta_{P}: P \rightarrow \operatorname{Aut}_{\mathscr{L}}(P) \mid P \in \mathscr{E}\right\}$ of injective group homomorphisms,
such that the following three conditions hold for any P and Q in \mathscr{E}.
(A) The left action of $Z(P)$ on $\operatorname{Mor}_{\mathscr{L}}(P, Q)$ given by

$$
z: \phi \mapsto \delta_{P}\left(z^{-1}\right) \cdot \phi
$$

is free (i.e. $\operatorname{Mor}_{\mathscr{L}}(P, Q)$ is a union of regular orbits for $Z(P)$), and the map $Z(P) \phi \mapsto \pi(\phi)$ is a bijection of $Z(P) \backslash \operatorname{Mor}_{\mathscr{L}}(P, Q)$ with $\operatorname{Hom}_{\mathscr{F}}(P, Q)$. In particular, π is surjective on morphism sets, and $\pi(\mathscr{L})$ is a full subcategory of \mathscr{F}.
(B) For all $g \in P$,

$$
\pi\left(\delta_{P}(g)\right)=c_{g} \in \operatorname{Aut}_{\mathscr{F}}(P)
$$

(C) For each $\psi \in \operatorname{Mor}_{\mathscr{L}}(P, Q)$ and each $g \in P$, the following square commutes in \mathscr{L} :

$$
\begin{array}{rll}
P & \xrightarrow{\psi} & Q \\
g) \downarrow & & \\
& & \downarrow \delta_{Q}(g \cdot \pi(\psi)) \\
P & \xrightarrow{\psi} & Q
\end{array}
$$

A centric linking system on \mathscr{F} is a linking system on \mathscr{F}^{c}. A pre-local group consists of a triple $\mathscr{G}=(S, \mathscr{F}, \mathscr{L})$ where S is a p-group, \mathscr{F} is a fusion system over S, and $\mathscr{L}=(\mathscr{L}, \pi, \delta)$ is a linking system on a subset \mathscr{E} of $\mathscr{F} c$. If \mathscr{F} is saturated, and \mathscr{L} is a centric linking system, then \mathscr{G} is a p-local group. A p-local finite group is a p-local group \mathscr{G} in which S is finite.

We are following the notational conventions in [BLO03] in writing $\operatorname{Mor}_{\mathscr{L}}(P, Q)$ (rather than $\operatorname{Hom}_{\mathscr{L}}(P, Q)$) for the set of morphisms in \mathscr{L} from P to Q, in order to emphasize that in general, \mathscr{L}-morphisms are not mappings.

Definition 2.5. Let G be a group, let S be a Sylow p-subgroup of G, and set $\mathscr{F}=\mathscr{F}_{S}(G)$. Let $\mathscr{T}(G)$ be the set of all subgroups of G. An \mathscr{F}-signalizer functor is a mapping

$$
\theta: \mathscr{F}^{c} \longrightarrow \mathscr{T}(G)
$$

satisfying the following three conditions:
(1) $\theta(P)$ is a complement to $Z(P)$ in $C_{G}(P)$.
(2) $\theta\left(P^{g}\right)=\theta(P)^{g}$ for all $g \in N_{G}(P, S)$.
(3) $\theta(Q) \leq \theta(P)$ for all Q with $P \leq Q \leq S$.

Remark. Signalizer functors are bona fide contravariant functors. Namely, in 2.5 , view $\mathscr{T}=\mathscr{T}(G)$ as a category whose morphism sets are given by

$$
\operatorname{Mor}_{\mathscr{J}}(X, Y)=N_{G}(X, Y)
$$

for any subgroups X and Y of G, and where composition is given by multiplication in G. Let \mathscr{T}^{c} be the full subcategory of \mathscr{T} whose set of objects is \mathscr{F}^{c}. Condition (2)
in 2.5 implies that an \mathscr{F}-signalizer functor θ is a contravariant functor from \mathscr{T}^{c} to \mathscr{T}, if we define

$$
\theta: \operatorname{Mor}_{\mathscr{T}} c(P, Q) \rightarrow \operatorname{Mor}_{\mathscr{T}}(\theta(P), \theta(Q))
$$

by $\theta(g)=g^{-1}$.
Given the setup of 2.5 , define $\mathscr{L}=\mathscr{L}_{\theta}$ to be the category whose objects are the \mathscr{F}-centric subgroups of S, with morphisms

$$
\operatorname{Mor}_{\mathscr{L}}(P, Q)=\theta(P) \backslash N_{G}(P, Q)
$$

The composition of morphisms is defined by

$$
\theta(P) g \cdot \theta(Q) h=\theta(P) g h
$$

for $g \in N_{G}(P, Q)$ and $h \in N_{G}(Q, R)$. In fact, this composition is no more than ordinary multiplication of subsets of G. To see this, notice that if $P^{g} \leq Q$, then the signalizer functor axioms (2) and (3) yield $\theta(Q) \leq \theta\left(P^{g}\right)=\theta(P)^{g}$. Thus $\theta(Q)^{g^{-1}} \leq \theta(P)$, and so

$$
(\theta(P) g)(\theta(Q) h)=\theta(P) \theta(Q)^{g^{-1}} g h=\theta(P) g h
$$

Next, define a functor

$$
\pi=\pi_{\theta}: \mathscr{L}_{\theta} \rightarrow \mathscr{F}^{c}
$$

by $\pi(P)=P$ and by $\pi(\theta(P) g)=c_{g}$ for $g \in N_{G}(P, Q)$. Finally, define a family $\delta=\delta_{\theta}=\left\{\delta_{P} \mid P \in \mathscr{F}^{c}\right\}$ of monomorphisms

$$
\delta_{P}=\delta_{P, \theta}: P \rightarrow \operatorname{Aut}_{\mathscr{L}}(P)
$$

by $\delta_{P}(g)=\theta(P) g$, for $P \in \mathscr{F}^{c}$.
Lemma 2.6. Let S be a Sylow p-subgroup of a group G, set $\mathscr{F}=\mathscr{F}_{S}(G)$, and let θ be an \mathscr{F}-signalizer functor. Then
(a) $\left(\mathscr{L}_{\theta}, \pi_{\theta}, \delta_{\theta}\right)$ is a centric linking system on \mathscr{F}.
(b) If \mathscr{F} is saturated then $\mathscr{\varphi}_{S, \theta}(G):=\left(S, \mathscr{F}_{S}(G), \mathscr{L}_{\theta}\right)$ is a p-local group.

Proof. Let $P, Q \in \mathscr{F}^{c}$, let z be a nonidentity element of $Z(P)$, and let $g \in$ $N_{G}(P, Q)$. Then $\theta(P) g \in \operatorname{Mor}_{\mathscr{L}}(P, Q)$, and

$$
\delta_{P}(z) \cdot \theta(P) g=\theta(P) z \cdot \theta(P) g=\theta(P) z g .
$$

Here $\theta(P) z g \neq \theta(P) g$ since $\theta(P) \cap Z(P)=1$. Thus, $Z(P)$ acts freely on $\operatorname{Hom}_{\mathscr{L}}(P, Q)$. Similarly, since $C_{G}(P)=\theta(P) \times Z(P)$, the map

$$
Z(P) \theta(P) g \mapsto c_{g}=\pi(\theta(P) g)
$$

is a bijection from $\operatorname{Hom}_{\mathscr{L}}(P, Q) / Z(P)$ to $\operatorname{Hom}_{\mathscr{F}}(P, Q)$. Thus, condition (A) in Definition 2.4 is satisfied in our setup.

Now suppose that $g \in P$. By construction, we then have

$$
\pi\left(\delta_{P}(g)\right)=\pi(\theta(P) g)=c_{g}
$$

and so condition (B) is satisfied. Finally, let $f=\theta(P) x \in \operatorname{Mor}_{\mathscr{L}}(P, Q)$. We then have $\pi(f)=c_{x}: P \longrightarrow Q$, and $g \pi(f)=g^{x}$. Since also $\delta_{Q}\left(g^{x}\right)=\theta(Q) g^{x}$, we obtain

$$
\begin{aligned}
f \cdot \delta_{Q}((g \pi(f)) & =\theta(P) x \cdot \theta(Q) g^{x}=\theta(P) x g^{x} \\
& =\theta(P) g x=\theta(P) g \cdot \theta(P) x=\delta_{P}(g) \cdot f
\end{aligned}
$$

Thus, condition (C) is satisfied, and (a) is proved. Part (b) follows from (a), by the definition of p-local group.

Proposition 2.7. Let S be a Sylow p-subgroup of a group G and set $\mathscr{F}=$ $\mathscr{F}_{S}(G)$. Suppose that $N_{G}(P)$ is finite for every $P \in \mathscr{F}^{c}$.
(a) There is a unique \mathscr{F}-signalizer functor θ given by $\theta(P)=O^{p}\left(C_{G}(P)\right)$.
(b) Set $\mathscr{L}_{S}(G)=\mathscr{L}_{\theta}$, and suppose that \mathscr{F} is saturated. Then

$$
\mathscr{G}_{S}(G):=\left(S, \mathscr{F}_{S}(G), \mathscr{L}_{S}(G)\right)
$$

is a p-local finite group.
Proof. Part (a) follows from 2.1(c), and then (b) follows from (a) and from 2.6(b).

The following lemma is intended as a remark, to point out the connection between Definition 2.5 and the usual notion of "balanced signalizer functor" in finite group theory. It will not be used in the sequel.

Lemma 2.8. Let θ be an \mathscr{F}-signalizer functor, where \mathscr{F} is a fusion system over a finite p-group. Then, for any $P, Q \in \mathscr{F}^{c}$ with $P \leq Q$,
(a) $Z(Q) \leq Z(P)$, and
(b) $\theta(Q)=C_{\theta(P)}(Q)$.

Proof. Part (a) is immediate from 2.1(c). By definition,

$$
\theta(Q) \leq C_{\theta(P)}(Q) \leq C_{G}(Q)=\theta(Q) \times Z(Q)
$$

so that $C_{\theta(P)}(Q)=\theta(Q) \times(Z(Q) \cap \theta(P))$. Since $Z(Q) \leq Z(P)$, we obtain (b).
Definition 2.9. Let \mathscr{F} and $\widetilde{\mathscr{F}}$ be fusion systems over the groups S and \widetilde{S}, respectively. A morphism $\alpha: \mathscr{F} \rightarrow \widetilde{\mathscr{F}}$ of fusion systems consists of a functor α_{1} : $\mathscr{F} \longrightarrow \widetilde{\mathscr{F}}$, and a homomorphism $\alpha_{0}: S \rightarrow \widetilde{S}$ of groups, satisfying the following two conditions.
(MF1) For every subgroup P of $S, \alpha_{1}(P)=\alpha_{0}(P)$, and
(MF2) for each $\phi \in \operatorname{Hom}_{\mathscr{F}}(P, Q)$, we have $\alpha_{0} \circ \alpha(\phi)=\phi \circ \alpha_{0}$ (in right-hand notation).

We most often write α for both α_{0} and α_{1}. In the case that α_{0} is given by inclusion of S into \widetilde{S}, and α_{1} is given by inclusion of $\operatorname{Hom}_{\mathscr{F}}(P, Q)$ into $\operatorname{Hom}_{\widetilde{\mathscr{F}}}(P, Q)$ for all $P, Q \in \mathscr{F}$, we say that α is an embedding. We reserve the symbol ι to denote an embedding of fusion systems.

In general, if \mathscr{F} and $\widetilde{\mathscr{F}}$ are fusion systems over finite p-groups S and \widetilde{S}, respectively, then a morphism $\alpha: \mathscr{F} \rightarrow \widetilde{\mathscr{F}}$ of fusion systems need not send \mathscr{F}-centric subgroups of S to $\widetilde{\mathscr{F}}$-centric subgroups of \widetilde{S}. For example, let G be a finite group, take \widetilde{G} to be the direct product of G with a nonidentity p-group R, let \widetilde{S} be a Sylow p-subgroup of \widetilde{G}, and take $S=\widetilde{S} \cap G$. Then the inclusion map $\alpha: \mathscr{F} S(G) \rightarrow \mathscr{F} \widetilde{S}(\widetilde{G})$ carries no centric subgroup to a centric subgroup.

Recall that if \mathscr{F} is a saturated fusion system over a p-group S, then $\mathscr{F}^{\text {rc }}$ denotes the set of subgroups of S which are both \mathscr{F}-centric and \mathscr{F}-radical. Given a p-local group $\mathscr{G}=(S, \mathscr{F}, \mathscr{L})$, denote by $\mathscr{L}^{\text {rc }}$ the full subcategory of \mathscr{L} whose objects are the objects of $\mathscr{F}^{\text {rc }}$. Thus $\mathscr{L}^{\text {rc }}$ is a linking system on $\mathscr{F}^{\mathrm{rc}}$.
$\mathrm{By}\left[\mathrm{BCG}^{+} 05, \mathrm{Th} . \mathrm{B}\right]$, the classifying spaces $|\mathscr{L}|$ and $\left|\mathscr{L}^{\text {rc }}\right|$ are homotopy equivalent in the case that S is finite. This provides some justification for the following definition of morphism of p-local groups.

Definition 2.10. Let $\mathscr{G}=(S, \mathscr{F}, \mathscr{L})$ and $\widetilde{\mathscr{G}}=(\widetilde{S}, \widetilde{\mathscr{F}}, \widetilde{\mathscr{L}})$ be pre-local groups. A morphism of pre-local groups from \mathscr{G} to $\widetilde{\mathscr{G}}$ is a pair (α, β), where $\alpha: \mathscr{F} \rightarrow \widetilde{\mathscr{F}}$ is a morphism of fusion systems, and $\beta: \mathscr{L} \rightarrow \widetilde{\mathscr{L}}$ is a functor which, for each pair P, Q of objects of \mathscr{L}, satisfies the following conditions.
$($ MG1) $\alpha(P) \leq \beta(P)$.
(MG2) For each $\psi \in \operatorname{Mor}_{\mathscr{L}}(P, Q)$, the restriction of $\tilde{\pi}(\beta(\psi))$ to $\alpha(P)$ maps $\alpha(P)$ into $\alpha(Q)$, and $\alpha(\pi(\psi))=\left.\tilde{\pi}(\beta(\psi))\right|_{\alpha(P)}$.
(MG3) $\beta \circ \delta_{P}=\delta_{\beta(P)} \circ \alpha_{0}$.
We say that the morphism (α, β) is an embedding if α is an embedding of fusion systems and

$$
\beta: \operatorname{Mor}_{\mathscr{L}}(P, Q) \rightarrow \operatorname{Mor}_{\widetilde{L}}(\alpha(P), \alpha(Q))
$$

is an injection for all $P, Q \in \mathscr{L}$. We say that \mathscr{G} is a pre-subgroup of $\widetilde{\mathscr{G}}$ if there is an embedding (ι, β) of \mathscr{G} into $\widetilde{\mathscr{G}}$, and in this case one may say simply that $\beta: \mathscr{G} \longrightarrow \widetilde{\mathscr{G}}$ is an embedding. If \mathscr{G} and $\widetilde{\mathscr{G}}$ are p-local groups, then a morphism of p-local groups from \mathscr{G} to $\widetilde{\mathscr{G}}$ is a morphism of pre-local groups

$$
(\alpha, \beta):\left(S, \mathscr{F}, \mathscr{L}^{\mathrm{rc}}\right) \longrightarrow\left(\tilde{S}, \tilde{\mathscr{F}}, \tilde{\mathscr{L}}^{\mathrm{rc}}\right)
$$

Such a morphism is an embedding of p-local groups if it is an embedding of prelocal groups, and if α is given by inclusion, we say that \mathscr{G} is a subgroup of $\widetilde{\mathscr{G}}$.

The next two results provide tools for carrying out the construction of morphisms, and particularly of embeddings, of p-local groups.

Proposition 2.11. Let G_{1} be a subgroup of a group G_{2}, and assume that there are Sylow p-subgroups S_{i} of G_{i} with $S_{1}=G_{1} \cap S_{2}$. Assume that for each i, the fusion system $\mathscr{F}_{i}:=\mathscr{F}_{S_{i}}\left(G_{i}\right)$ is saturated, and that we are given an \mathscr{F}_{i}-signalizer functor θ_{i}. In addition, assume given a mapping $\beta: \mathscr{F}_{1}^{\mathrm{rc}} \rightarrow \mathscr{F}_{2}^{\mathrm{rc}}$ such that the following conditions hold for every $P \in \mathscr{F}_{1}^{\mathrm{rc}}$.
(1) $P \leq \beta(P)$.
(2) For each $g \in N_{G_{1}}\left(P, S_{1}\right)$ we have $\beta\left(P^{g}\right)=\beta(P)^{g}$.
(3) For each $Q \in \mathscr{F}_{1}^{\mathrm{rc}}$ with $P \leq Q$ we have $\beta(P) \leq \beta(Q)$.
(4) $\theta_{2}(\beta(P)) \cap G_{1}=\theta_{1}(P)$.

Let $l: \mathscr{F}_{1} \rightarrow \mathscr{F}_{2}$ be the inclusion functor, and write $\mathscr{G}_{i}=\left(S_{i}, \mathscr{F}_{i}, \mathscr{L}_{i}\right)$ for the p local group which is canonically associated with \mathscr{F}_{i} and θ_{i} (cf. 2.6). Then for any $P, Q \in \mathscr{F}_{1}^{\mathrm{rc}}$ there is a mapping

$$
\begin{equation*}
\beta_{P, Q}: \operatorname{Mor}_{\mathscr{L}_{1}}(P, Q) \longrightarrow \operatorname{Mor}_{\mathscr{L}_{2}}(P, Q) \tag{*}
\end{equation*}
$$

given by $\theta_{1}(P) g \mapsto \theta_{2}(\beta(P)) g$; and (ι, β) is an embedding of \mathscr{G}_{1} into \mathscr{G}_{2}. That is, \mathscr{G}_{1} is a p-local subgroup of \mathscr{G}_{2}.

Proof. Let $P, Q \in \mathscr{F}_{1}^{\mathrm{rc}}$ and let $g \in N_{G_{1}}(P, Q)$. Then $P^{g} \in \mathscr{F}_{1}^{\mathrm{rc}}$ by 2.3. Since $P^{g} \leq Q$, (3) yields $\beta\left(P^{g}\right) \leq \beta(Q)$. Then $\beta(P)^{g} \leq \beta(Q)$ by (2), and so $g \in N_{G_{2}}(\beta(P), \beta(Q))$. We have $\theta_{1}(P) g=\theta_{1}(P) h$ if and only if $h g^{-1} \in \theta_{1}(P)$, while by (4), $h g^{-1} \in \theta_{1}(P)$ if and only if $h g^{-1} \in \theta_{2}(\beta(P)) \cap G$, which holds if and only if $\theta_{2}(\beta(P)) g=\theta_{2}(\beta(P)) h$. This shows that the mappings $\beta_{P, Q}$ in $(*)$ are well-defined injections. Visibly, β preserves composition, so that β is a functor from \mathscr{L}_{1} to \mathscr{L}_{2}.

Axiom (MG1) in 2.10 is an immediate consequence of (1). Next,

$$
\alpha\left(\pi_{1}\left(\theta_{1}(P) g\right)\right)=\alpha\left(c_{g}\right)=c_{g \mid P}=\pi_{2}\left(\theta_{2}(\beta(P) g)_{\mid P}=\pi_{2}\left(\beta\left(\theta_{1}(P) g\right)\right)_{\mid P}\right.
$$

so that (MG2) holds. Finally, for any $g \in P$,

$$
\beta\left(\delta_{1, P}(g)\right)=\beta\left(\theta_{1}(P) g\right)=\theta_{2}(\beta(P)) g=\delta_{1, \beta(P)}(g)=\delta_{1, \beta(P)}(\alpha(g))
$$

and so (MG3) holds.
Proposition 2.12. Let G_{1} be a subgroup of a group G_{2}, assume that there are Sylow p-subgroups S_{i} of G_{i} with $S_{1}=G_{1} \cap S_{2}$, and let θ_{i} be a signalizer functor on the fusion system $\mathscr{F}_{i}:=\mathscr{F}_{S_{i}}\left(G_{i}\right)$. Assume also that each \mathscr{F}_{i} is saturated. For $P \in \mathscr{F}_{1}^{\mathrm{rc}}$, denote by $\mathscr{B}(P)$ the set of $N_{G_{1}}(P)$-invariant p-subgroups of G_{2}, and set $\beta(P)=\langle\mathscr{B}(P)\rangle$. Assume that the following two conditions hold for each $P \in \mathscr{F}_{1}^{\mathrm{rc}}$.
(1') $\beta(P) \in \mathscr{F}_{2}^{\mathrm{rc}}$. (In particular, $\beta(P) \leq S_{2}$.)
(2') $\theta_{1}(P)=\theta_{2}(\beta(P)) \cap G_{1}$.

Then β satisfies conditions (1) through (4) of 2.11, and defines an embedding $(\iota, \beta): \mathscr{G}_{1} \longrightarrow \mathscr{G}_{2}$ of p-local groups.

Proof. By (1^{\prime}), β is indeed a map from $\mathscr{F}_{1}^{\mathrm{rc}}$ to $\mathscr{F}_{2}^{\mathrm{rc}}$. Let $P \in \mathscr{F}_{1}^{\mathrm{rc}}$. As $P \in \mathscr{B}(P)$, condition (1) of 2.11 holds. We have $\mathscr{B}(P)^{g}=\mathscr{B}\left(P^{g}\right)$ for any $g \in N_{G_{1}}\left(P, S_{1}\right)$, so that condition (2) holds.

Let $Q \in \mathscr{F}_{1}^{\mathrm{rc}}$ with $P \leq Q$. For any $x \in N_{G_{1}}(Q)$ we have $P^{x} \leq S_{1}$. Then $P^{x} \in \mathscr{F}_{1}^{\mathrm{rc}}$, and so $\beta(P)^{x}=\beta\left(P^{x}\right) \leq S_{2}$ by (2). Thus $\left\langle\beta(P)^{N_{G_{1}}(Q)}\right\rangle$ is a p-group, invariant under $N_{G_{1}}(Q)$, and hence contained in $\beta(Q)$. Thus condition (3) holds. Condition (4) is equivalent to (2^{\prime}), and so the proof is complete.

Example 2.13. Let G be a group and $K \unlhd G$ such that $\bar{G}:=G / K$ is finite. Let S be a p-subgroup of G such that $S \cap K=1, S \in \operatorname{Syl}_{p}(K S)$, and $\bar{S} \in \operatorname{Syl}_{p}(\bar{G})$. Set $\mathscr{F}:=\mathscr{F}_{S}(G)$, and for $P \in \mathscr{F}^{c}$ set $\bar{\theta}(P)=O_{p^{\prime}}\left(C_{\bar{G}}(P)\right)$. Let $\theta(P)$ be the preimage in $C_{G}(P)$ of $\bar{\theta}(P)$.

Set $\overline{\mathscr{F}}=\mathscr{F} \bar{S}(\bar{G})$. Then $\bar{\theta}$ is an $\overline{\mathscr{F}}$-signalizer functor, and $\overline{\mathscr{G}}:=\mathscr{\varphi}_{\bar{S}, \bar{\theta}}(\bar{G})$ is the natural p-local group $\mathscr{G}_{\bar{S}}(\bar{G})$. Let $\alpha_{0}: S \longrightarrow \bar{S}$ be the restriction to S of the quotient map $G \longrightarrow \bar{G}$. For $P \leq S$ define α_{1} on $\operatorname{Hom}_{G}(P, S)$ by $\alpha_{1}: c_{g} \mapsto c_{\bar{g}}$.

Observe that for $P \leq S, \alpha_{0}: N_{G}(P, S) \longrightarrow N_{\bar{G}}(\bar{P}, \bar{S})$ is a surjection. Namely, if $g \in G$ with $\bar{P}^{\bar{g}} \leq \bar{S}$ then, as $S \in \operatorname{Syl}_{p}(K S)$, there is $k \in K$ with $P^{g k} \leq S$, and we have $\bar{g}=\overline{g k}$. Similarly $C_{\bar{G}}(\bar{P})=\overline{C_{G}(P)}$. Also, if $g, h \in N_{G}(P, S)$ with $\alpha_{1}\left(c_{g}\right)=\alpha_{1}\left(c_{h}\right)$ then $P^{g} \leq S \geq P^{h}$ with $g h^{-1}$ centralizing \bar{P}, so $g h^{-1} \in N_{G}(P)$ with $\left[P, g h^{-1}\right] \leq P \cap K=1$. Thus $\alpha_{1}: \operatorname{Hom}_{\mathscr{F}}(P, S) \longrightarrow \operatorname{Hom}_{\overline{\mathscr{F}}}(\bar{P}, \bar{S})$ is a bijection. Therefore $\left(\alpha_{0}, \alpha_{1}\right)$ is an isomorphism of \mathscr{F} with $\overline{\mathscr{F}}$, and since $\overline{\mathscr{F}}$ is saturated, so is $\overline{\mathscr{F}}$. It is now easy to check that θ is an \mathscr{F}-signalizer functor, and then $\mathscr{G}_{S}:=\mathscr{G}_{S, \theta}(G)$ is a p-local finite group by $2.7(\mathrm{~b})$.

Define $\beta: \mathscr{L} \longrightarrow \overline{\mathscr{L}}$ by $\beta(P)=\bar{P}$ (on objects), and by $\beta: \theta(P) g \mapsto \bar{\theta}(\bar{P}) \bar{g}$ (on morphisms). One may now check that $(\alpha, \beta): \mathscr{G} \longrightarrow \overline{\mathcal{G}}$ is an isomorphism of p-local finite groups.

The hypothesis that $S \in \operatorname{Syl}_{p}(K S)$ was used only to verify that the maps $\alpha_{0}: N_{G}(P, S) \longrightarrow N_{\bar{G}}(\bar{P}, \bar{S})$ are surjective, and that $\bar{\theta}(\bar{P}) \leq \overline{C_{G}(P)}$ for each $P \in$ $\mathscr{F}^{\mathrm{rc}}$. Thus, that hypothesis may be replaced by the hypothesis that $\alpha_{0}: N_{G}(P, S) \longrightarrow$ $N_{\bar{G}}(\bar{P}, \bar{S})$ is surjective and $\bar{\theta}(\bar{P})=1$ for each $\bar{P} \in \overline{\mathscr{F}}^{\mathrm{rc}}$.

3. Amalgams

In this section, an amalgam of groups will always mean a pair

$$
\mathscr{A}=\left(A_{1} \stackrel{\alpha_{1}}{\longleftrightarrow} A_{1,2} \xrightarrow{\alpha_{2}} A_{2}\right)
$$

of injective group homomorphisms. A morphism from the amalgam \mathscr{A} to an amalgam $\mathscr{B}=\left(B_{1} \stackrel{\beta_{1}}{\longleftrightarrow} B_{1,2} \xrightarrow{\beta_{2}} B_{2}\right)$ is a triple $\gamma=\left(\gamma_{J} \mid \varnothing \neq J \subseteq\{1,2\}\right)$ of injective group homomorphisms $\gamma_{J}: A_{J} \rightarrow B_{J}$, such that $\alpha_{i} \gamma_{i}=\gamma_{1,2} \beta_{i}$ for $i=1,2$.

For example, if G is a group with subgroups G_{1} and G_{2}, and $G_{1,2}$ is a subgroup of $G_{1} \cap G_{2}$, then there is a subgroup amalgam \mathscr{G} given by the inclusion maps $\alpha_{i}: G_{1,2} \rightarrow G_{i}$. A completion of an amalgam \mathscr{A} is an isomorphism $\gamma: \mathscr{A} \rightarrow \mathscr{G}$ of \mathscr{A} with a subgroup amalgam \mathscr{G} in a group G, such that $G=\left\langle G_{1}, G_{2}\right\rangle$. One often abuses the terminology and says simply that G is a completion of \mathscr{A}.

Let

$$
\mathscr{A}=\left(G_{1} \longleftarrow B \longrightarrow G_{2}\right)
$$

be an amalgam and let $G=G_{1} *_{B} G_{2}$ be the associated free amalgamated product. Then G is a completion of \mathscr{A}, and indeed the universal completion of \mathscr{A}. We identify \mathscr{A} with the subgroup amalgam of G which is the image of \mathscr{A} under this completion, and in particular regard G_{1}, G_{2} and B as subgroups of G with $G_{1} \cap$ $G_{2}=B$.

For any subgroup X of G, denote by $X \backslash G$ the set of right cosets of X in G. Set $\Gamma_{i}=G_{i} \backslash G$. Then $\Gamma=\Gamma(\mathscr{A})$ is the graph whose vertex set is the disjoint union $V(\Gamma)=\Gamma_{1} \amalg \Gamma_{2}$, and whose set of edges is the set $E(\Gamma)$ of 2-subsets $\left\{G_{1} x, G_{2} x\right\}$ with $x \in G$. We call $\Gamma=\Gamma(\mathscr{A})$ the standard tree associated with \mathscr{A} and with G, and we refer to [Se] for the fact that Γ really is a tree. Observe that G is represented as a group of automorphisms of Γ via right multiplication, and that the kernel of this representation is the largest normal subgroup of G which is contained in B. Evidently, G acts transitively on $E(\Gamma)$, while Γ_{1} and Γ_{2} are the (distinct) orbits for G on $V(\Gamma)$. It is also evident that G is locally transitive on Γ; that is the stabilizer G_{δ} of any vertex δ acts transitively on the set $\Gamma(\delta)$ defined by

$$
\Gamma(\delta)=\{\gamma \in \Gamma \mid\{\delta, \gamma\} \in E(\Gamma)\}
$$

For any subgroup or element X of G, write Γ_{X} for the subgraph of Γ induced on the set of vertices which are fixed by X. For any connected graph Δ, and vertices α and β of Δ, the length of the shortest geodesic path from α to β in Δ is denoted $d(\alpha, \beta)$. Then (Δ, d) is a discrete metric space, and automorphisms of Δ are isometries. An isometry of a tree is said to be hyperbolic if it fixes no vertices or edges. The following two results, noticed first by J. Tits [Tit70], are elementary.

Lemma 3.1. Let h be an automorphism of a tree Γ, and denote by $\Lambda(h)$ the intersection of all the h-invariant subtrees of Γ. Suppose that there exists an edge $\{\gamma, \delta\}$ of Γ such that
(1) $d(\gamma, \gamma h)=d(\delta, \delta h) \neq 0$ and
(2) $\{\gamma, \delta\}$ is not fixed by h.

Then h is hyperbolic, and the set of all edges $\{\gamma, \delta\}$ which satisfy condition (1) is the edge set of $\Lambda(h)$.

LEmmA 3.2. Let Γ be a tree, let g be a hyperbolic isometry of Γ, and define $\Lambda=\Lambda(g)$ as in 3.1. Set $d=\min \left\{d\left(\delta, \delta^{g}\right) \mid \delta \in V(\Gamma)\right\}$. Then:
(a) Λ is isomorphic to the graph $\overline{\mathbb{Z}}$ whose vertex set is the set \mathbb{Z} of integers, and whose edges are the pairs $\{n, n+1\}$ for $n \in \mathbb{Z}$.
(b) There is an isomorphism $\psi: \Lambda \rightarrow \overline{\mathbb{Z}}$ such that $\psi^{-1} g \psi: n \mapsto n+d$ for all $n \in \mathbb{Z}$.
(c) For any vertex γ of Γ, the geodesic in Γ from γ to γ^{g} has length $d+2 e$, where e is the minimal distance from γ to a vertex of Λ.
Lemma 3.3. Let Γ be a tree, and let $x, y \in \operatorname{Aut}(\Gamma), \delta \in \Gamma_{x}, \gamma \in \Gamma_{y}$, and $\left(\alpha_{0}, \ldots, \alpha_{d}\right)$ the geodesic from γ to δ. Suppose x does not fix $\alpha=\alpha_{d-1}$ and y does not fix α_{1}. Then $x y$ is hyperbolic.

Proof. Observe first of all that $\left(\alpha_{0} y, \ldots, \alpha_{d} y\right)$ is the geodesic from $\gamma=\alpha_{0} y$ to δy, so that the path $\rho=\left(\alpha_{d} y, \ldots, \alpha_{0} y, \alpha_{1}, \ldots, \alpha_{d}\right)$ contains a geodesic g from δy to δ. Indeed as $\alpha_{1} \neq \alpha_{1} y, g=\rho$ is of length $2 d$. Then $g^{\prime}=\left(\alpha_{d-1} y, \ldots, \alpha_{0} y\right.$, $\alpha_{1}, \ldots, \alpha_{d}$) is the geodesic from αy to δ, and since $\beta=\alpha x^{-1} \neq \alpha$, it follows that $g^{\prime} \beta$ is the geodesic of length $2 d$ from αy to β. But $\delta y=\delta x y$ and $\beta x y=\alpha y$, and so $d(\delta, \delta x y)=d(\beta, \beta x y)$. The lemma now follows from 3.1.

We will work under the following hypothesis for the remainder of this section.
Hypothesis 3.4. $G=G_{1} *_{B} G_{2}$ is the free amalgamated product associated with an amalgam

$$
\mathscr{A}=\left(G_{1} \longleftarrow B \longrightarrow G_{2}\right),
$$

and G_{1}, G_{2}, and B are regarded as subgroups of G in the canonical way. Let Γ be the standard tree associated with \mathscr{A} and G, and let Γ_{i} be the subset $G_{i} \backslash G$ of the vertex set of Γ. Assume
(1) There is a subgroup S of G such that S is a (possibly infinite) Sylow p-subgroup of each of the groups G_{1}, G_{2}, and B.
(2) $N_{G_{i}}(S) \leq B \neq G_{i}$, for $i=1$ and 2 .

The vertex G_{i} of Γ will most often be denoted γ_{i}.
Lemma 3.5. Assume Hypothesis 3.4, and assume also that
(*)

$$
\left\{S^{g} \mid g \in G_{1} \cup G_{2}, S^{g} \leq B\right\}=S^{B}
$$

Then:
(a) $\Gamma_{S}=\left\{\gamma_{1}, \gamma_{2}\right\}$, and
(b) $S \in \operatorname{Syl}_{p}(G)$.

Proof. It follows from (*) and from [Asc86, 5.21] that $N_{G_{i}}(S)$ is transitive on $\Gamma_{S}\left(\gamma_{i}\right)$. Since $N_{G_{i}}(S) \leq B$, by 3.4, we obtain (a).

Let S^{*} be a p-subgroup of G containing S and let $x \in S^{*}$. Then $|x|$ is finite, so that 3.2 implies that $\Gamma_{x} \neq \varnothing$. Choose $\delta \in \Gamma_{x}$ and $\gamma \in \Gamma_{S}$ with $d:=d(\delta, \gamma)$
minimal. Suppose that $d>0$ and let $\left(\delta, \delta^{\prime}, \ldots, \gamma^{\prime}, \gamma\right)$ be the geodesic from δ to γ in Γ. Then $x \notin G_{\delta^{\prime}}$, and there exists $y \in S-G_{\gamma^{\prime}}$. As $|x y|$ is finite, this contradicts 3.3, and so we conclude that $d=0$. Then (a) yields $S^{*} \leq G_{i}$ for some i. Since S is a maximal p-subgroup of G_{i} we then have $S^{*}=S$, and thus S is a maximal p-subgroup of G.

Let P be a finite p-subgroup of G, and let P_{0} be a subgroup of P which fixes a vertex of Γ, and which is maximal for this condition. Then $N_{P}\left(P_{0}\right)$ acts on the tree $\Gamma_{0}=\Gamma_{P_{0}}$, and no element of $N_{P}\left(P_{0}\right)-P_{0}$ fixes a vertex of Γ_{0}. Now, $N_{P}\left(P_{0}\right)-P_{0}$ consists of hyperbolic isometries on Γ_{0}, by 3.2 , and hence $N_{P}\left(P_{0}\right)=P_{0}=P$. Since G is edge-transitive on Γ, it follows that P is conjugate to a subgroup of G_{1} or G_{2}. Then P is conjugate to a subgroup of S, by $3.4(1)$, and S is a Sylow p-subgroup of G.

Lemma 3.6. Assume Hypothesis 3.4, let P be a finite subgroup of S, and let $g \in N_{G}(P, S)$. Set $F_{0}=P$. Then there exists a positive integer n, elements g_{1}, \ldots, g_{n} of G_{1}, elements h_{1}, \ldots, h_{n} of G_{2}, and subgroups E_{i} and F_{i} of $S, 1 \leq$ $i \leq n$, such that the following conditions hold.
(a) $g_{i} \notin B$ for $1<i \leq n$, and $h_{i} \notin B$ for $1 \leq i<n$.
(b) $E_{i}=F_{i-1}^{g_{i}}$ and $F_{i}=E_{i}^{h_{i}}$ for all i with $1 \leq i \leq n$.
(c) $g=g_{1} h_{1} \ldots g_{n} h_{n}$.

Moreover, the minimal length of g as a word in the generating set $G_{1} \cup G_{2}$ is $2 n-2$ if $g_{1}, h_{n} \in B, 2 n-1$ if exactly one of g_{1} and h_{n} is in B, and $2 n$ if neither g_{1} nor h_{n} is in B.

Proof. Since G_{1} and G_{2} generate G, we may choose elements $g_{i} \in G_{1}$ and $h_{i} \in G_{2}$, satisfying the conditions in (a) and (c). Set $\alpha_{0}=\gamma_{2}, \beta_{0}=\gamma_{1} h_{n}$, and for $1 \leq i \leq n$ set $w_{i}=g_{n-i+1} h_{n-i+1} \ldots g_{n} h_{n}, \alpha_{i}=\gamma_{2} w_{i}$, and $\beta_{i}=\gamma_{1} h_{n-i} w_{i}$. Then $q=\left(\alpha_{0}, \beta_{0}, \ldots, \beta_{n-1}\right)$ is a path in Γ with $\beta_{i} \neq \beta_{i+1}$ and $\alpha_{i} \neq \alpha_{i+1}$ for $i<n-1$. Thus q is a geodesic from α_{0} to β_{n-1}, and if $g_{1} \notin B$ then also the path $q \alpha_{n}$ is a geodesic. In particular if $n>1$ or $g_{1} \notin B$ then $d\left(a_{0}, a_{n}\right)>0$, and $w_{n} \notin B$.

Take (b) as the definition of the groups E_{i} and F_{i} for $i>0$. We now show that these groups are contained in B. Let $x \in F_{0}$, set $y_{0}=x$, and for $1 \leq i \leq n$ define x_{i} and y_{i} recursively, by

$$
x_{i}=y_{i-1}^{g_{i}} \quad \text { and } \quad y_{i}=x_{i}^{h_{i}} .
$$

Suppose that for some j, either x_{j} or y_{j} is not in B, and let j be the smallest such index. Suppose that $x_{j} \notin B$. Then $y_{j-1} \in B$, and so $x_{j}=y_{j-1}^{g_{j}} \in G_{1}-B$. Then

$$
x^{g}=h_{n}^{-1} g_{n}^{-1} \ldots h_{j}^{-1} x_{j} h_{j} \ldots g_{n} h_{n}
$$

is an alternating product of elements of G_{2} and G_{1}, in which none of the factors lies in B except possibly for the first and the last. It follows from paragraph one that $x^{g} \notin B$, whereas $x^{g} \in S \leq B$. A similar argument shows $y_{j} \in B$. Therefore x_{i} and y_{i} are in B for all i, and so each of the groups E_{i} and F_{i} is contained in B. Since S is a Sylow p-subgroup of B, we may adjust our choices of the elements g_{i} and h_{i}, via right multiplication by elements of B, to ensure that E_{i} and F_{i} are in S for all i.

It remains to prove the final statement in the lemma. This follows since, by paragraph one, the length $\ell(g)$ of g as a word in the generating set $G_{1} \cup G_{2}$ for G is equal to the shortest distance in the tree $\Gamma(\mathscr{A})$ from a vertex in $\left\{\gamma_{1} g, \gamma_{2} g\right\}$ to a vertex in $\left\{\gamma_{1}, \gamma_{2}\right\}$.

We have the following immediate consequence of 3.6.

Corollary 3.7. Assume Hypothesis 3.4. Then

$$
\mathscr{F}_{S}(G)=\left\langle\mathscr{F}_{S}\left(G_{1}\right), \mathscr{F}_{S}\left(G_{2}\right)\right\rangle .
$$

For any subgroup X of G, and any elementary abelian p-subgroup A of X, denote by $\mathscr{E}_{n}(X, A)$ the set of elementary abelian p-subgroups of X which have order p^{n} and which contain A. Write $\mathscr{E}_{n}(X)$ for $\mathscr{E}_{n}(X, 1)$.

In the remainder of this section we assume the following hypothesis.
HYpothesis 3.8. Hypothesis 3.4 holds, and so do the following conditions.
(1) There is a normal subgroup Z of G_{1} of order p, and Z is the unique subgroup of order p in $Z(S)$.
(2) There exists $U \in \mathscr{E}_{2}\left(G_{2}, Z\right)$ with $U \unlhd G_{2}$, and G_{2} acts transitively on $\mathscr{E}_{1}(U)$.
(3) $B=N_{G_{1}}(U)=N_{G_{2}}(Z)$.
(4) For each $X \in\{H, K, B\}, X$ is transitive on its set of maximal p-subgroups.

Lemma 3.9. Let P be a subgroup of S and let X be a subgroup of $Z(P)$ of order p.
(a) Let $g \in G_{2}$ with $P^{g} \leq S$. Then one of the following holds.
(i) $g \in B$, and neither P nor P^{g} is contained in $C_{G}(U)$.
(ii) $P \leq C_{G}(U)$.
(b) If $X \neq Z$ and $X \leq U$ then there exists $g \in G_{2}$ with $X^{g}=Z$ and with $P^{g} \leq S$.

Proof. Let g be as in (a), and set $Q=P^{g}$. Since $U \unlhd G_{2}$, we have $P \leq C_{G}(U)$ if and only if $Q \leq C_{G}(U)$. Since conclusion (ii) of (a) does not hold, neither P nor Q is contained in $C_{G}(U)$. Set $\bar{G}_{2}=G_{2} / C_{G_{2}}(U)$. Then \bar{P} and \bar{Q} are nontrivial p-subgroups of \bar{S}. Hence by $3.8(2), \bar{G}_{2}$ is isomorphic to a subgroup of $\mathrm{GL}_{2}(p)$ containing $\mathrm{SL}_{2}(p)$, and $B=N_{G_{2}}(Z)$ has index $p+1$ in G_{2}. Thus $\bar{P}=\bar{Q}=\bar{S}$,
and $\bar{B}=N_{\bar{G}_{2}}(\bar{S})$. Since $P^{g}=Q$, we then have $\bar{g} \in \bar{B}$. Thus $g \in B$ and (a) is proved.

Suppose that $Z \neq X \leq U$. By 3.8(2) there exists $g \in G_{2}$ with $X^{g}=Z$. Since $X \leq Z(P)$, we have $P^{g} \leq C_{G_{2}}(Z) \leq B$. By 3.8(4) there exists $h \in B$ with $P^{g h} \leq S$. Replacing g with $g h$, we obtain (b).

For $\delta \in \Gamma$ and $g \in G$ with $\delta=\gamma_{i} g$ for some i, Z_{δ} will denote Z^{g} if $i=1$, and U^{g} if $i=2$. This notation is well defined as a consequence of 3.8(3).

Lemma 3.10. Let Σ be a subtree of Γ and let $\gamma \in \Sigma$. Set $Y=\left\langle Z_{\delta} \mid \delta \in \Sigma\right\rangle$. Then $C_{G_{\gamma}}(Y)$ fixes Σ vertex-wise.

Proof. Let $\gamma \in \Sigma$, set $X=C_{G_{\gamma}}(Y)$, and assume that $X \not \pm G_{\Sigma}$. Among all pairs (δ, x) with $\delta \in \Sigma$ and $x \in X$ with $\delta x \neq \delta$, choose (δ, x) so that $d:=d(\delta, \delta x)$ is minimal. Let $\alpha \in \Sigma(\delta)$ be of distance $d-1$ from γ. Then X fixes α and centralizes Y, so X centralizes Z_{δ}. Thus $X \leq C_{G_{\alpha}}\left(Z_{\delta}\right) \leq G_{\delta}$ by 3.8(3), and contrary to our choice of δ.

Lemma 3.11. Let δ and γ be distinct vertices in Γ_{1} with $Z_{\delta}=Z_{\gamma}$. Then $d(\delta, \gamma) \geq 6$. Moreover, the following hold.
(a) Let $\alpha, \beta \in \Gamma_{1}$ with $d(\alpha, \beta)=2$, and let X be a subgroup of G fixing β and centralizing Z_{α} and Z_{β}. Then X fixes α.
(b) Let $\alpha_{0}, \alpha_{4} \in \Gamma_{1}$ with $d\left(\alpha_{0}, \alpha_{4}\right)=4$, and such that $Z_{\alpha_{4}}$ centralizes $Z_{\alpha_{0}}$. Then $Z_{a_{4}}$ fixes a_{0}.

Proof. Suppose $d:=d(\delta, \gamma)<6$. Then $d=2$ or 4 . If $d=2$, and (δ, β, γ) is the geodesic from δ to γ, then $Z_{\beta}=Z_{\delta} Z_{\gamma}$ is of order p, which is not the case. Thus $d=4$. Write ($\delta, \beta, \delta^{\prime}, \beta^{\prime}, \gamma$) for the geodesic from δ to γ. Then

$$
Z_{\beta}=Z_{\delta} Z_{\delta^{\prime}}=Z_{\gamma} Z_{\delta^{\prime}}=Z_{\beta^{\prime}}
$$

By edge-transitivity, we may take $\delta^{\prime}=\gamma_{1}$ and $\beta^{\prime}=\gamma_{2}$. Then $U=Z_{\beta^{\prime}}=Z_{\beta}$, and by local transitivity there exists $g \in G_{1}$ with $\beta^{g}=\beta^{\prime}$. Then $U=U^{g}$, so $g \in B$, and $\beta=\beta^{\prime}$. Then $d<4$, and we have a contradiction.

Assume the hypothesis of (a). Without loss, $\beta=\gamma_{1}$ and $\left\{\gamma_{2}\right\}=\Gamma(\alpha) \cap \Gamma(\beta)$. As X fixes β and centralizes Z_{α} and Z_{β}, we obtain $X \leq C_{H}\left(Z_{\alpha} Z_{\beta}\right)=C_{H}(U) \leq$ $B \leq G_{\alpha}$, establishing (a).

Now assume the hypothesis of (b), and take X to be $Z_{\alpha_{4}}$. Let $\left(\alpha_{0}, \ldots, \alpha_{4}\right)$ be the geodesic from α_{0} to α_{4}. Then $X \leq Z_{a_{3}}=Z_{\alpha_{2}} Z_{a_{4}} \leq C_{G}\left(Z_{\alpha_{2}}\right)$, and so X fixes α_{2} by (a). Then, since dist $\left(\alpha_{0}, \alpha_{2}\right)=2$ and X centralizes $Z_{\alpha_{i}}$ for $i=0,2, X$ fixes α_{0} by another application of (a).

HYpothesis 3.12. Hypothesis 3.8 holds, and every subgroup of G_{1} of order p is conjugate in G_{1} to a subgroup of U.

Lemma 3.13. Assume Hypothesis 3.12. Let P be a subgroup of S and let X be a subgroup of $Z(P)$ of order p.
(a) If $X \nsubseteq U$ then there exists $g \in G_{1}$ with $X^{g} \leq U$ and with $P^{g} \leq S$.
(b) If $X \neq Z$ then there exists $g \in G$ with $X^{g}=Z,(X Z)^{g}=U,(P U)^{g} \leq S$, and $g=g_{1} g_{2}$ where $g_{i} \in G_{i}$ and $P^{g_{1}} \leq S$.

Proof. Suppose that $X \nsubseteq U$. By 3.12 there exists $g \in G_{1}$ with $X^{g} \leq U$. Set $Y=X^{g}$. Then $Y Z=U$, so that $P^{g} \leq C_{G_{1}}(U) \leq B$, and by 3.8(4) there exists $h \in B$ such that $P^{g h} \leq C_{S}(Y)$. Replacing g with $g h$, we obtain (a).

Now assume that $X \neq Z$. If $X \leq U$ we appeal to 3.9 (b), with $P U$ in the role of P, in order to obtain $g_{2} \in G_{2}$ with $X^{g_{2}}=Z$ and $(P U)^{g_{2}} \leq S$. With $g_{1}=1$, (b) holds in this case. So assume that $X \nsubseteq U$. If U centralizes X we apply (a) to $P U$, obtaining $g_{1} \in G_{1}$ such that $X^{g_{1}} \leq U$ and $(P U)^{g_{1}} \leq S$. Then $(X Z)^{g_{1}}=U$, and by 3.9(b) there exists $g_{2} \in G_{2}$ with $X^{g_{1} g_{2}}=Z$ and $(P U)^{g_{1} g_{2}} \leq S$. Thus (b) also holds in this case, and we are reduced to the case where U does not centralize X. Since $P \leq S, 3.8(3)$ implies that $[U, X]=[U, S]=Z$. Then $X Z \unlhd P U$. By 3.12 there exists $g_{1} \in G_{1}$ with $X^{g_{1}} \leq U$. Then $(X Z)^{g_{1}}=U$, so that $(P U)^{g_{1}} \leq N_{G_{1}}(U)=B$. By 3.8(4) we may assume that g_{1} was chosen so that $(P U)^{g_{1}} \leq S$. Then (a) applies, and completes the proof of (b).

The next result amounts to a re-working of [LO02, Lemma 1.4] in our treetheoretic setup. The formulation given here is different in several respects from the one in [LO02], but the main idea of the proof has not been altered. We remark that we shall only use part (c) of 3.14, and this will occur only once, in the proof of 9.2.

Proposition 3.14. Assume Hypothesis 3.12. Set $D=N_{G}(Z)$ and assume that $\mathscr{F}_{S}(D) \neq \mathscr{F}_{S}\left(G_{1}\right)$. Denote by Δ the set of all pairs (P, g) such that P is a finite subgroup of $S, g \in N_{D}(P, S)$, and $c_{g} \notin \operatorname{Hom}_{G_{1}}(P, S)$. Set

$$
\mathscr{P}=\{P \mid(P, g) \in \Delta \text { for some } g \in D\}
$$

and let $P \in \mathscr{P}$. Choose $(P, g) \in \Delta$ so that the length $\ell(g)$ of g, as a word in the set $G_{1} \cup G_{2}$ of generators of G, is minimal. Then $[P, U]=1,(P U, g) \in \Delta$, and upon replacing P with a suitable subgroup of $C_{S}(P) P$ containing P, we have
(a) $\ell(g)=5$, and $g=g_{1} g_{2} g_{3} g_{4} g_{5}$ where $g_{i} \in G_{2}$ for i odd, and $g_{i} \in G_{1}$ for i even.
(b) The elements g_{1} through g_{5} in (a) may be chosen so that $U \leq Z\left(P^{g_{1} \ldots g_{i}}\right)$, and $P^{g_{1} \cdots g_{i}} \leq S$ for all $i, 1 \leq i \leq 5$.
(c) There exists $E \in \mathscr{E}_{3}(Z(P), U)$ such that $U \leq E^{g}, C_{B}(E)^{g} \leq B$, and $C_{B}\left(E^{g}\right)$ $\leq B^{g}$.

Proof. Set $Q=P^{g}$. Since $g \in D$, also $g \in N_{D}(P Z, Q Z)$, so that we may assume $Z \leq P$.

By 3.6 we have $g=g_{1} \ldots g_{n}$, where each g_{i} is in $G_{1} \cup G_{2}$, and where $P^{g_{1} \ldots g_{i}} \leq S$ for all $i, 1 \leq i \leq n$. Moreover, the sequence $\left(g_{1}, \ldots, g_{n}\right)$ may be chosen so that $\ell(g)=n$.

Set $P_{0}=P, Z_{0}=Z$, and for $1 \leq i \leq n$ set $P_{i}=P_{i-1}^{g_{i}}$ and $Z_{i}=Z_{i-1}^{g_{i}}$. If $Z_{i}=$ Z for some i with $0<i<n$, then the minimality of n implies that, for $x=g_{1} \ldots g_{i}$ and $y=g_{i+1} \ldots g_{n}$, we have $c_{x} \in \operatorname{Hom}_{G_{1}}\left(P, P_{i}\right)$ and $c_{y} \in \operatorname{Hom}_{G_{1}}\left(P_{i}, Q\right)$. But in that case we get $c_{g}=c_{x} c_{y} \in \operatorname{Hom}_{G_{1}}(P, Q)$, contrary to hypothesis. Thus:
(1) $Z_{i}=Z$ if and only if $i=0$ or n.

By 3.13(b) there exist elements v_{1} through v_{n-1} of $G_{1} G_{2}$, such that
(2) $Z_{i}^{v_{i}}=Z,\left(Z Z_{i}\right)^{v_{i}}=U$, and $\left(P_{i} U\right)^{v_{i}} \leq S$.

Set $v_{0}=v_{n}=1$, and for each $i, 0 \leq i \leq n$, choose $r_{i} \in G_{1}$ and $s_{i} \in G_{2}$ with $v_{i}=r_{i} s_{i}$. Set $k_{i}=v_{i-1}^{-1} g_{i} v_{i}$ for $i \geq 1$, and set $P_{i}^{\prime}=P_{i}^{v_{i}}$ for $i \geq 0$. Then $P_{i}^{\prime} \leq S$ for all i, by (2), and $\left(P_{i-1}^{\prime}\right)^{k_{i}}=P_{i}^{\prime}$ for $i \geq 1$. Notice that

$$
\begin{equation*}
g_{1} \ldots g_{n}=k_{1} \ldots k_{n} \tag{*}
\end{equation*}
$$

Suppose that, for all $i \geq 1$, we have $c_{k_{i}} \in \operatorname{Hom}_{G_{1}}\left(P_{i-1}^{\prime}, P_{i}^{\prime}\right)$. Choose $t_{i} \in G_{1}$ so that $k_{i} t_{i}^{-1} \in C_{G}\left(P_{i-1}^{\prime}\right)$, and set $t=t_{1} \ldots t_{n}$. Then $g t^{-1} \in C_{G}(P)$ by $(*)$, so that $c_{g} \in \operatorname{Hom}_{G_{1}}(P, Q)$, contrary to hypothesis. Thus, $c_{k_{i}} \notin \operatorname{Hom}_{G_{1}}\left(P_{i-1}^{\prime}, P_{i}^{\prime}\right)$ for some $i \geq 1$. Since $k_{i}=\left(r_{i-1} s_{i-1}\right)^{-1} g_{i} r_{i} s_{i}$ is of length 5 , it follows from the minimality of n that $n \leq 5$.

Set $\alpha=\alpha_{0}=\gamma_{1}$, and define vertices α_{1} through α_{n} by $\alpha_{i}=\alpha_{i-1} g_{i}$. Let Σ be the subtree of Γ generated by $\left\{\alpha_{0}, \ldots, \alpha_{n}\right\}$, and let Σ_{i} be the subtree of Σ generated by α_{0} and α_{i}. Thus Σ is the union of its subtrees Σ_{i}, and Σ_{i} is the geodesic from α to α_{i} in Γ.

Minimality of n implies that $g_{1} \in G_{2}-G_{1}$, as otherwise we may replace (P, g) with $\left(P^{g_{1}}, g_{2} \ldots g_{n}\right)$. Then g_{i} is in $G_{2}-G_{1}$ for i odd, and in $G_{1}-G_{2}$ for i even. Observe that

$$
d\left(\alpha, \alpha_{i}\right)=\left\{\begin{array}{l}
i+1 \quad \text { if } i \text { is odd, and } \tag{**}\\
i \quad \text { if } i \text { is even }
\end{array}\right.
$$

Notice that $Z_{i}=Z_{\alpha_{i}}$. Then 3.11 implies that $Z_{\delta} \neq Z$ for any $\delta \in V(\Sigma)$ with $d(\alpha, \delta) \leq 5$. Since $n \leq 5$, it now follows from $(* *)$ that $n=5$.

The reader may find it convenient to have a "picture" of Σ, at this point, as a visual reference for the remainder of the argument.

Since $P_{i} \leq S \leq G_{\alpha_{0}}, P_{i}$ fixes every vertex of Σ_{i}, and then 3.10 implies that [Z_{δ}, P_{i}] $=1$ for every $\delta \in \Sigma_{i}$. Set $\beta=\gamma_{2}$. Then from paragraph one of the proof of 3.6, for i odd, Σ_{i} is the tree induced on the geodesic ($\alpha, \beta, \alpha g_{i}, \beta g_{i-1} g_{i}, \ldots$, $\alpha g_{1} \ldots g_{i}$). In particular, β is a vertex of Σ_{i} for i odd. Since $Z_{\beta}=U$, it follows that $\left[U, P_{i}\right]=1$ for i odd. But for i odd we also have $g_{i} \in G_{2} \leq N_{G}(U)$, and then since $P_{i}=P_{i-1}^{g_{i}}$, we conclude that:
(3) $\left[U, P_{i}\right]=1$ for all $i, 0 \leq i \leq 5$.

From the description of Σ_{5} above, βg is the vertex of Σ_{5} at distance 5 from α, and $\alpha g \neq \alpha_{1} g \in \Gamma(\beta g)$. Set $\beta^{\prime}=\beta g$, let α^{\prime} be the vertex in $\Gamma_{\beta^{\prime}}$ at distance 4 from α, and let $\alpha^{\prime \prime}$ be the vertex of Σ_{5} at distance 2 from α. By (3), U centralizes $Z_{\alpha^{\prime}}$, so as $Z_{\beta^{\prime}}=Z Z_{\alpha^{\prime}} \geq Z_{1}^{g}$, we get $Z_{1}^{g} \leq C_{G}(U) \leq C_{G}\left(Z_{\alpha^{\prime \prime}}\right)$. Then Z_{1}^{g} fixes $\alpha^{\prime \prime}$, by 3.11(b). Also $\left[Z_{1}^{g}, Z\right]=1$, so that 3.11(a) implies Z_{1}^{g} fixes α. Since $U^{g}=\left(Z Z_{1}\right)^{g}=Z Z_{1}^{g}$, we conclude that $U^{g} \leq G_{\alpha} \cap G_{\beta}$. That is, $U^{g} \leq B$, and so $Q U^{g}$ is a p-subgroup of B. By 3.8(4) there exists $h \in B$ with $\left(Q U^{g}\right)^{h} \leq S$, and we may replace (P, g) with $(P U, g h)$, without increasing the length n. Thus, we may assume henceforth that $U \leq P$. By symmetry between (P, g) and $\left(Q, g^{-1}\right)$), we may assume also that $U \leq Q$. Then since $g_{1} \in N_{G}(U)$), also $U \leq P_{1}$. Since $g_{5} \in N_{G}(U)$ we then obtain $U \leq P_{4}$.

As $g_{2}, g_{4} \in G_{1}$ and $U \leq P_{1} \cap P_{4}$, we have $Z \leq P_{2} \cap P_{3}$. Since $g_{3} \in N_{G}(U)$, we have $U \leq P_{2}$ if and only if $U \leq P_{3}$. Suppose that $U \nsubseteq P_{2}$. Then

$$
Z^{g_{3}}=\left(U \cap P_{2}\right)^{g_{3}}=U \cap P_{3}=Z
$$

contrary to $g_{3} \in G_{2}-G_{1}$. Therefore $U \leq P_{i}$ for all i. Then by (3):
(4) $U \leq Z\left(P_{i}\right)$ for all $i, 0 \leq i \leq 5$.

Set $U_{0}=U=U_{-1}$, and for $1 \leq i \leq 5$, let $U_{i}=U^{g_{1} \ldots g_{i}}$. For $0 \leq i \leq 5$ set $E_{i}=U_{i-1} U_{i}$. As $g_{1} \in G_{2}$, we have $U=U_{1} \leq E_{2}$, and so

$$
Z=Z^{g_{4}} \leq U^{g_{4}}=U^{g_{3} g_{4}} \leq E_{2}^{g_{3} g_{4}}=E_{4}
$$

Also $g_{5} \in G_{2}-G_{1}$, so that $Z \neq Z^{g_{5}^{-1}} \leq E_{5}^{-1}=E_{4}$. Then $U=Z Z^{g_{5}^{-1}} \leq E_{4}$. Since $g_{5} \in G_{2}$, also $U \leq E_{5}$.

Set $F=C_{B}\left(E_{0}\right)$. Then $F^{g}=C_{B^{g}}\left(E_{5}\right)$, and B^{g} is the stabilizer in G of the edge $\left\{\alpha_{5}, \beta g\right\}$ of Σ_{5}. Next $U^{g} \leq E_{0}^{g}=E_{5}$, and $U^{g}=Z_{\beta g}$, so that F^{g} centralizes $Z_{\beta g}$. Then F^{g} fixes the vertex α^{\prime} of Σ_{5}, by $3.11(a)$. Denote by $\beta^{\prime \prime}$ the vertex of Σ_{5} at distance 3 from α, and hence adjacent to α^{\prime}. From an earlier remark, we have $\beta^{\prime \prime}=\beta g_{4} g_{5}$, and so

$$
Z_{\beta^{\prime \prime}}=U^{g_{4} g_{5}}=U^{g_{3} g_{4} g_{5}} \leq E_{2}^{g_{3} g_{4} g_{5}}=E_{5}
$$

Thus F^{g} centralizes $Z_{\beta^{\prime \prime}}$, and so F^{g} fixes every vertex in $\Gamma\left(\beta^{\prime \prime}\right)$ by 3.11(a). In particular, F^{g} fixes $\alpha^{\prime \prime}$. Since $\left[U, F^{g}\right]=1, F^{g}$ fixes every vertex in $\Gamma(\beta)$ by 3.11(a). Thus, F^{g} fixes α and β, and so $F^{g} \leq B$. This yields the first part of (c), with E_{0} in the role of E. Since $Z_{\beta^{\prime \prime}} Z_{\beta^{\prime}} \leq E_{5}, 3.11$ (a) yields $C_{B}\left(E_{5}\right) \leq B^{g}$, and thus all parts of 3.14 have been established.

4. $\operatorname{Spin}_{7}(\mathbf{F})$

Let p be an odd prime, let $\overline{\mathbf{F}}$ be an algebraic closure of the field of p elements, let \tilde{V} be a vector space over $\overline{\mathbf{F}}$ (of finite dimension d), and let f be a symmetric, nondegenerate bilinear form on \widetilde{V}. The form f is essentially unique, as \widetilde{V} has an orthonormal basis with respect to f. The isometry group $O(\tilde{V}, f)$ will be denoted also $O(\tilde{V})$ (and $O_{d}(\overline{\mathbf{F}})$). The identity component of $O(\tilde{V})$ is denoted $\Omega(\widetilde{V})$, and has index 2 in $O(\tilde{V})$. Indeed, we have $O(\widetilde{V})=\Omega(\tilde{V})\langle\tau\rangle$, where τ is a reflection on \tilde{V}. In the case that d is odd, we have $O(\tilde{V})=\Omega(\tilde{V}) \times\{ \pm I\}$. The universal covering group of $\Omega(\tilde{V})$ is denoted $\operatorname{Spin}(\widetilde{V})\left(\right.$ or $\left._{\tilde{V}} \operatorname{Spin}_{d}(\tilde{\mathbf{F}})\right)$.

There is a rational representation $\phi: \operatorname{Spin}(\tilde{V}) \longrightarrow \Omega(\tilde{V})$, with kernel contained in $Z(\operatorname{Spin}(\tilde{V}))$. From $[\mathrm{C}]$, one has $|\operatorname{ker}(\phi)|=2$, and $\operatorname{ker}(\phi)=Z(\operatorname{Spin}(\tilde{V}))$ if d is odd.

For any subset or element D of $\operatorname{Spin}(\tilde{V})$, we write $C_{\widetilde{V}}(D)$ and $[\tilde{V}, D]$ for $C_{\widetilde{V}}(D \phi)$ and $[\tilde{V}, D \phi]$, respectively.

Let \widetilde{T} be a maximal torus of $\operatorname{Spin}(\tilde{V})$. By a weight of \widetilde{T} on \tilde{V} we mean a homomorphism $\lambda: \widetilde{T} \longrightarrow \overline{\mathbf{F}}^{\times}$such that the space $\widetilde{V}_{\lambda}=\{v \in \widetilde{V} \mid v a=\lambda(a) v$ for all $a \in \widetilde{T}\}$ is nonzero. The set of such weights is denoted $\Lambda(\widetilde{T})$.

A hyperbolic line in \tilde{V} is a nondegenerate subspace ℓ of \tilde{V} of dimension 2. Such a subspace has exactly two 1-dimensional singular subspaces (or points), and
from this one may easily deduce that $\Omega(\ell) \cong \overline{\mathbf{F}}^{\times}$and that $O(\ell)=\Omega(\ell)\langle t\rangle$, where t is an involution which interchanges the singular points of ℓ.

The following result is well known, and its proof is elementary.
LEMMA 4.1. Let (\tilde{V}, f) be a nondegenerate orthogonal space over $\overline{\mathbf{F}}$ of dimension d, and let \widetilde{T} be a maximal torus of $\Omega(\tilde{V})$. Then there exists a set $\ell(\widetilde{T})=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$ of \widetilde{T}-invariant, pairwise orthogonal hyperbolic lines in \widetilde{V}, such that the following hold.
(a) $d=2 k$ or $d=2 k+1$.
(b) $[\widetilde{V}, \widetilde{T}]=\ell_{1}+\cdots+\ell_{k}$, and either $C_{\widetilde{V}}(T)=0$ or $C_{\widetilde{V}}(\widetilde{T})$ is a nonsingular 1-space, orthogonal to $[\tilde{V}, \widetilde{T}]$.
(c) Each ℓ_{i} is a sum of two weight spaces \widetilde{V}_{λ} and $\widetilde{V}_{\lambda^{-1}}$, where $\lambda \neq \lambda^{-1}$. These weight spaces are the singular points of ℓ_{i}.
The set $\ell(\widetilde{T})$ is uniquely determined by the conditions (a) and (c). Conversely, for any maximal set U of pairwise orthogonal, hyperbolic lines in \widetilde{V}, there is a unique maximal torus \widetilde{T} in $\Omega(\tilde{V})$ with $\ell(\widetilde{T})=\vartheta$.

From now on, let \widetilde{V} be a vector space of dimension 7 over $\overline{\mathbf{F}}$, and set $\widetilde{H}=$ $\operatorname{Spin}(\tilde{V})$. Write Z for the kernel of ϕ. Then $Z=\langle z\rangle$ where z is of order 2 .

It is well known that an involution t in an orthogonal group (over a field of characteristic different from 2) lifts to an involution in the corresponding spin group if and only if the dimension of the commutator space of t is divisible by 4. This implies the following result.

Lemma 4.2. Let $x \in \tilde{H}$ with $|\phi(x)|=2$. Then $|x|=2$ if and only if $\operatorname{dim}([\tilde{V}, x])=4$.

Let \widetilde{T} be a maximal torus of \tilde{H}. By 4.1 , the commutator space $[\widetilde{V}, \widetilde{T}]$ is the orthogonal direct sum of three hyperbolic lines ℓ_{1}, ℓ_{2}, and ℓ_{3}, where each ℓ_{i} is a sum of two weight spaces for \widetilde{T}, with weights λ_{i} and λ_{i}^{-1}. For $i=1,2$, 3, fix a basis $\left\{x_{2 i-1}, x_{2 i}\right\}$ for ℓ_{i} of singular vectors, with $f\left(x_{2 i-1}, x_{2 i}\right)=1$. Then 4.1 yields

$$
\begin{equation*}
[\tilde{V}, \widetilde{T}]=\ell_{1}+\ell_{2}+\ell_{3} \tag{4.2.1}
\end{equation*}
$$

Let $x_{7} \in C_{\widetilde{V}}(\widetilde{T})$, with $f\left(x_{7}, x_{7}\right)=1$. Then

$$
C_{\widetilde{V}}(\widetilde{T})=[\tilde{V}, \widetilde{T}]^{\perp}=\overline{\mathbf{F}} x_{7}
$$

Identify \tilde{V} with $\overline{\mathbf{F}}^{(7)}$, via the ordered basis $\left(x_{1}, \ldots, x_{7}\right)$.
The semidirect product $\tilde{V} \tilde{H}$ is an algebraic group in which \widetilde{T} is a maximal torus, and in which \tilde{V} is the unipotent radical. Let ζ be a Frobenius endomorphism of $\widetilde{V} \widetilde{H}$ which induces the $p^{\text {th }}$-power map on \widetilde{T}. Then ζ fixes $\ell(\widetilde{T})$ pointwise, and fixes the vectors x_{1} through x_{7}.

Denote also by ζ the $p^{\text {th }}$-power automorphism of $\overline{\mathbf{F}}$, and set

$$
\mathbf{F}=\bigcup_{k \geq 0} C_{\overline{\mathbf{F}}}\left(\zeta^{2^{k}}\right)
$$

Evidently, \mathbf{F} is a subfield of $\overline{\mathbf{F}}$. Denote by V the \mathbf{F}-span of $\left\{x_{1}, \ldots, x_{7}\right\}$ in \tilde{V}, and by H the group of \mathbf{F}-rational points in \widetilde{H}, with respect to the matrix representation given by the chosen basis for \tilde{V}. The restriction of f to $V \times V$ defines an orthogonal form on V, and $\phi(H)$ is contained in $O(V)$. Set $T=\widetilde{T} \cap H$, and set $E=\{x \in$ $\left.T \mid x^{2}=1\right\}$.

Since $O(\tilde{V})=\Omega(\tilde{V})\langle t\rangle$ for any reflection $t \in O(\tilde{V})$, it follows that $\Omega(\tilde{V})$ is the group $S O(\tilde{V})$ of determinant 1 isometries. Any element x of $O([\tilde{V}, \widetilde{T}])$ extends to an element of $\Omega(\widetilde{V})$, since we are free to adjust the action of x on $C_{\widetilde{V}}(\widetilde{T})$ by ± 1. In particular, there exists an element w_{0} of \tilde{H} such that w_{0} acts on $[\widetilde{V}, \widetilde{T}]$ by the permutation $\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)\left(x_{5} x_{6}\right)$ of the basis vectors; and then $x_{7} w_{0}=-x_{7}$. Evidently w_{0} commutes with ζ, so $w_{0} \in H$. By $4.1, w_{0} \in N_{H}(T)$, and one can check that w_{0} acts on $\phi(T)$ by inversion. Since every element of \mathbf{F} is a square, it follows that w_{0} acts on T by inversion.

Similarly we choose elements w_{1}, w_{2}, w_{3}, w, and ρ of $N_{H}(T)$ so that:

$$
\begin{aligned}
& \phi(w)=\left(\begin{array}{lll}
x_{1} & x_{3} & x_{5}
\end{array}\right)\left(\begin{array}{lll}
x_{2} & x_{4} & x_{6}
\end{array}\right), \\
& \phi(\rho)=\left(x_{1} x_{3}\right)\left(x_{2} x_{4}\right), \quad \text { and } \\
& \phi\left(w_{i}\right)=\left(x_{2 i-1} x_{2 i}\right), \quad 1 \leq i \leq 3 .
\end{aligned}
$$

Thus, we may take $w_{0}=w_{1} w_{2} w_{3}$.
(4.2.2) Fix $n \geq 0$ and set $q=p^{2^{n}}$. Denote by ω both the inner automorphism of \tilde{H} induced by w_{0}, and the identity map on $\overline{\mathbf{F}}$. For any $k \geq 0$, let ψ_{k} be the automorphism of \tilde{H} defined by

$$
\psi_{k}=\left\{\begin{array}{rll}
(\zeta \omega)^{2^{k}} & \text { if } p \equiv 3 & \bmod 4, \\
\zeta^{2^{k}} & \text { if } p \equiv 1 & \bmod 4
\end{array}\right.
$$

We now fix n, and set

$$
\sigma=\psi_{n}
$$

Notice that since $\omega^{2}=1$, we in fact have $\sigma=\zeta^{2^{n}}$ unless $n=0$ and $p \equiv 3 \bmod 4$.
The restriction of σ to H will again be denoted σ. For any subgroup D of H, write D_{σ} for $C_{D}(\sigma)$, and write \mathbf{F}_{σ} for $C_{\mathbf{F}}(\sigma)$.

Lemma 4.3. Set $W=\left\langle z, w_{1}, w_{2}, w_{3}, w, \rho\right\rangle$. Then $W \leq H_{\sigma}$, and the following hold.
(a) $T=C_{H}(T)$, and w_{0} acts on T as inversion.
(b) $N_{H}(T)=W T$.
(c) $\operatorname{Aut}_{H}(T) \cong \operatorname{Sym}(4) \times C_{2}$.
(d) Set $E=\left\{x \in T \mid x^{2}=1\right\}$. Then E is an elementary abelian subgroup of T_{σ} of rank $3, C_{H}(E)=T\left\langle w_{0}\right\rangle, N_{\tilde{H}}(E)=\widetilde{T} W$, and $N_{H}(E)=N_{H}(T)$.
Proof. Set $\mathscr{L}=\left\{\ell_{1}, \ell_{2}, \ell_{3}\right\}$, and denote by \widetilde{T}^{*} the pointwise stabilizer of \mathscr{L} in \widetilde{H}. Thus $T \leq \widetilde{T}^{*}$, and $\phi\left(\widetilde{T}^{*}\right)$ is contained in the direct product of the orthogonal groups $O\left(\ell_{i}\right)$, so that $\widetilde{T}^{*}=\widetilde{T}\left\langle w_{1}, w_{2}, w_{3}\right\rangle$.

By 4.1, $C_{\widetilde{H}}(\widetilde{T}) \leq \widetilde{T}^{*}$ and $N_{\widetilde{H}}(\widetilde{T})$ permutes \mathscr{L}. Since Aut $\widetilde{T}^{\left(\ell_{i}\right) \text { contains its }}$ centralizer in GL $\left(\ell_{i}\right)$, we have $\widetilde{T}=C_{\widetilde{H}}(\widetilde{T})$. Similarly $C_{H}(T)=T$.

Evidently, each of the elements w_{i}, w, and ρ commutes with both σ and w_{0}, and so $W \leq N_{H_{\sigma}}(T)$. From the definitions of these elements, we obtain $\phi\left(w_{0}\right) \in Z(\phi(W)), \phi\left(\left\langle w_{1}, w_{2}, w_{3}\right\rangle\right)$ is elementary abelian of order $8, \phi(\langle w, \rho\rangle) \cong$ $\operatorname{Sym}(3)$, and $\langle w, \rho\rangle$ acts naturally on $\phi\left(\left\{w_{1}, w_{2}, w_{3}\right\}\right)$ and on \mathscr{L}. We conclude that $W T$ contains $H \cap T^{*}, W T=N_{H}(T)$, that $W T / T \cong \operatorname{Sym}(4) \times C_{2}$, and that $\left\langle w_{0}\right\rangle T / T=Z(W T / T)$. As w_{0} inverts \widetilde{T}, it inverts T. Thus, parts (a) through (c) hold.

Notice that $C_{H}([V, T])=Z$ since $\phi(H)$ contains no reflections. As ω inverts T and ζ induces a power map on $\widetilde{T}, T_{\sigma}$ contains the group $E=\left\{t \in T \mid t^{2}=1\right\}$. From $4.2, \phi(E)$ is a fours group and E is elementary abelian of order 8. The lines ℓ_{i} are the fixed point spaces for the three involutions in $\phi(E)$ on $[\tilde{V}, E]$, so that $N_{\tilde{H}}(E)=N_{\tilde{H}}(\widetilde{T})$, and hence $N_{H}(E)=N_{H}(T)$. Since w_{0} inverts T, $w_{0} \in C_{H}(E)$.

Since $C_{H}(E) \leq \widetilde{T}^{*}$, we have $C_{H}(E)=T\left\langle w_{1}, w_{2}, w_{3}\right\rangle$. By 4.2, for $\{i, j, k\}=$ $\{1,2,3\}$ and $x \in E$ such that $[\tilde{V}, x]=\ell_{j}+\ell_{k}$, each of $w_{i}, w_{i} x, w_{j} w_{k}$, and $w_{j} w_{k} x$ is of order 4. Then x does not centralize w_{i} or $w_{j} w_{k}$, and $C_{H}(E)=T\left\langle w_{0}\right\rangle$, completing the proof of (d).

We may choose $z_{1} \in \widetilde{T}$ so that z_{1} acts as the scalar -1 on $\ell_{1}+\ell_{2}$, and as 1 on ℓ_{3}. Then z_{1} centralizes x_{7}. Set $U=\left\langle z, z_{1}\right\rangle, \widetilde{B}=N_{\widetilde{H}}(U), B=\widetilde{B} \cap H$, and denote the identity component of \widetilde{B} by \widetilde{B}^{0}. Set $B^{0}=\widetilde{B}^{0} \cap H$.

Lemma 4.4. The following hold.
(a) \widetilde{V} is the orthogonal direct sum of $[\tilde{V}, U]$ and $C_{\widetilde{V}}(U)$, of dimensions 4 and 3 , respectively, over $\overline{\widetilde{F}}$.
(b) \widetilde{B} is the stabilizer in \tilde{H} of $[\tilde{V}, U]$ and of $C_{\tilde{V}}(U)$.
(c) $\widetilde{B}^{0}=C_{\tilde{H}}(U)=\widetilde{L}_{1} \tilde{L}_{2} \tilde{L}_{3}$, where $\tilde{L}_{i} \cong \mathrm{SL}_{2}(\overline{\mathbf{F}})$ and where $\widetilde{L}_{i} \widetilde{L}_{j} \cong \mathrm{SL}_{2}(\overline{\mathbf{F}}) \times$ $\mathrm{SL}_{2}(\overline{\mathbf{F}})$ for all distinct i and j. Moreover, the indexing may be chosen so that
(i) \tilde{L}_{3} centralizes $[\tilde{V}, U]$ and $\tilde{L}_{3} \phi=\Omega\left(C_{\widetilde{V}}(U)\right)$.
(ii) $\widetilde{L}_{1} \tilde{L}_{2}$ centralizes $C_{\tilde{V}}(U)$ and $\widetilde{L}_{1} \tilde{L}_{2} \phi=\Omega([\tilde{V}, U])$.
(iii) The maximal singular subspaces of $[\tilde{V}, U]$ spanned by $\left\{x_{1}, x_{4}\right\}$ and $\left\{x_{2}, x_{3}\right\}$ over $\overline{\mathbf{F}}$ are natural $\mathrm{SL}_{2}(\overline{\mathbf{F}})$-modules for \widetilde{L}_{1}, and the maximal singular subspaces spanned by $\left\{x_{1}, x_{3}\right\}$ and $\left\{x_{2}, x_{4}\right\}$ are natural $\mathrm{SL}_{2}(\overline{\mathbf{F}})$ modules for \widetilde{L}_{2}.
(d) $U=Z\left(\widetilde{B}^{0}\right)$, and notation may be chosen so that $z_{1} \in \tilde{L}_{1}$. When z_{i} is the involution in \tilde{L}_{i}, then

$$
z=z_{1} z_{2}=z_{3}
$$

(e) $\widetilde{B}=\widetilde{B}^{0}\left\langle w_{1}\right\rangle=\widetilde{B}^{0}\left\langle w_{2}\right\rangle$, where both w_{1} and w_{2} interchange \widetilde{L}_{1} and \widetilde{L}_{2} by conjugation.
Proof. As $[\tilde{V}, U]=\left[\tilde{V}, z_{1}\right]$ and $C_{\tilde{V}}(U)=C_{\tilde{V}}\left(z_{1}\right)$, part (a) is immediate from our choice of z_{1}. The stabilizer in \tilde{H} of $[\tilde{V}, U]$ normalizes the unique subgroup U of \tilde{H} containing Z which acts as $-I$ on $[\tilde{V}, U]$ and as I on $[\tilde{V}, U]^{\perp}$. Similarly, the stabilizer in \widetilde{H} of $C_{\widetilde{V}}(U)$ normalizes U, establishing (b).

Set $\widetilde{K}=C_{\tilde{H}}\left(C_{\widetilde{V}}(U)\right)^{0}$ and $\widetilde{L}_{3}=C_{\tilde{H}}([\tilde{V}, U])^{0}$. From the Steinberg relations, $\widetilde{K}=\widetilde{L}_{1} \times \widetilde{L}_{2}$, and $\widetilde{L}_{i} \cong \mathrm{SL}_{2}(\mathbf{F})$ for $i=1,2,3$. Thus \widetilde{B}^{0} is a commuting product of these three copies of $\mathrm{SL}_{2}(\overline{\mathbf{F}})$, and $U \leq Z\left(\widetilde{B}^{0}\right)$. Here [\widetilde{V}, U] is a natural $\Omega_{4}(\overline{\mathbf{F}})$-module for $\widetilde{L}_{1} \widetilde{L}_{2}$, and is therefore a direct sum of two natural $\mathrm{SL}_{2}(\overline{\mathbf{F}})$ modules for each of \widetilde{L}_{1} and \widetilde{L}_{2}. Observe that $\widetilde{T} \leq \widetilde{B}^{0}$ since \widetilde{T} is connected. Then \widetilde{T} is a maximal torus of \widetilde{B}^{0}, and hence $\widetilde{T}=\widetilde{T}_{1} \widetilde{T}_{2} \widetilde{T}_{3}$, where $\widetilde{T}_{i}:=\widetilde{T} \cap \widetilde{L}_{i}$. Since $\left[\tilde{L}_{1}, \widetilde{L}_{2} \widetilde{L}_{3}\right]=1$, the irreducible $\widetilde{L}_{1} \widetilde{T}$-submodules of $[\tilde{V}, U]$ are weight spaces for $\widetilde{T}_{2} \widetilde{T}_{3}$. Since these irreducible $\widetilde{L}_{1} \widetilde{T}$-submodules are also maximal singular subspaces of $[\widetilde{V}, U]$, the only possibilities are that the two irreducible $\widetilde{L}_{1} \widetilde{T}$ submodules of $[\tilde{V}, U]$ are

$$
\left\{\left\langle x_{1}, x_{3}\right\rangle,\left\langle x_{2}, x_{4}\right\rangle\right\} \quad \text { or } \quad\left\{\left\langle x_{1}, x_{4}\right\rangle,\left\langle x_{2}, x_{3}\right\rangle\right\} .
$$

We may therefore choose the indexing so that (c)(iii) holds.
To complete the proof of (c), it remains to show that $\widetilde{B}^{0}=C_{\widetilde{H}}(U)$. This will follow from (e), and since (d) is immediate from the parts of (c) which have already been established, we now need only prove (e).

The group $O([\tilde{V}, U])$ is generated by $\Omega([\tilde{V}, U])$ together with a reflection interchanging $\phi\left(\tilde{L}_{1}\right)$ and $\phi\left(\tilde{L}_{2}\right)$. Similarly, $O\left(C_{\widetilde{V}}(U)\right)$ is generated by $\Omega\left(C_{\widetilde{V}}(U)\right)$ together with a reflection on $C_{\widetilde{V}}(U)$. Since $\phi(\tilde{H})$ contains no reflections on \widetilde{V}, we have $\left|\widetilde{B}: \widetilde{B}^{0}\right|=2$, and then (e) follows from the definitions of w_{1} and w_{2}.

Notice that each of the groups \widetilde{L}_{i} is ζ-invariant. Set $L_{i}=\widetilde{L}_{i} \cap H, 1 \leq i \leq 3$. The following result should then be evident:

LEMMA 4.5. All parts of 4.4 hold, with B, B^{0}, \mathbf{F}, and L_{i} in place of $\widetilde{B}, \widetilde{B}^{0}$, $\overline{\mathbf{F}}$, and \widetilde{L}_{i}.

Given a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ of an \mathbf{F}-space \mathbf{V}, and elements d_{i} of $\mathbf{F}, 1 \leq i \leq m$, we write $\partial\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ for the diagonal map $\mathbf{v}_{i} \mapsto d_{i} \mathbf{v}_{i}$ for each i.

Lemma 4.6. Let \mathbf{V} be a 2-dimensional \mathbf{F}-space with basis $\mathscr{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, set $\mathbf{L}=\mathrm{SL}(\mathbf{V})$, and let \mathbf{T} be the maximal torus $\left\{\partial\left(a, a^{-1}\right) \mid a \in \mathbf{F}\right\}$ of \mathbf{L} determined by \mathscr{B}. Set $X=\mathbf{L} \times \mathbf{L} \times \mathbf{L}$, set $[[X]]=X /\langle(-I,-I,-I)\rangle$, and write $[[a, b, c]]$ for the image of $(a, b, c) \in X$ under the canonical surjection $X \rightarrow[[X]]$. Finally, let $\gamma_{1}, \delta_{1}, \gamma_{2}$, and δ_{2} be maps from \mathscr{B} into V which send the ordered basis $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$ to the pairs $\left(x_{1}, x_{4}\right),\left(x_{3}, x_{2}\right),\left(x_{1}, x_{3}\right)$, and $\left(x_{4}, x_{2}\right)$, respectively.
(a) There are isomorphisms $\alpha_{i}: \mathbf{L} \rightarrow L_{i}, i=1,2,3$, such that
(i) α_{1}, γ_{1} and α_{1}, δ_{1} are quasi-equivalences of the representation of \mathbf{L} on \mathbf{V} with the representations of L_{1} on $\left\langle x_{1}, x_{4}\right\rangle$ and $\left\langle x_{3}, x_{2}\right\rangle$, respectively.
(ii) α_{2}, γ_{2} and α_{2}, δ_{2} are quasi-equivalences of the representation of \mathbf{L} on \mathbf{V} with the representations of L_{2} on $\left\langle x_{1}, x_{3}\right\rangle$ and $\left\langle x_{4}, x_{2}\right\rangle$, respectively.
(iii) The map α_{3} is the 3-dimensional orthogonal representation of \mathbf{L} in which $\partial\left(c, c^{-1}\right)$ acts as $\partial\left(c^{2}, 1, c^{-2}\right)$ with respect to the ordered basis $\left(x_{5}, x_{7}, x_{6}\right)$ of $C_{V}(U)$.
(b) The map $\alpha_{1} \times \alpha_{2} \times \alpha_{3}: X \rightarrow B^{0}$ given by

$$
(a, b, c) \mapsto\left(a \alpha_{1}\right)\left(b \alpha_{2}\right)\left(c \alpha_{3}\right)
$$

induces an isomorphism of $[[X]]$ with B^{0}.
(c) $\left(T \cap L_{i}\right) \alpha_{i}^{-1}$ is the set of diagonal maps in \mathbf{L}. For each i, let $\beta_{i}: F \rightarrow T \cap L_{i}$ be the composition of ∂ with α_{i}. Set $Y=\mathbf{F} \times \mathbf{F} \times \mathbf{F}$, and $[Y]=Y /\langle(-1,-1,-1)\rangle$, with $[a, b, c]$ the image of $(a, b, c) \in Y$ in $[Y]$. Then the map $\beta_{1} \times \beta_{2} \times \beta_{2}$: $Y \rightarrow T$ induces an isomorphism $[a, b, c] \mapsto\left(a \beta_{1}\right)\left(b \beta_{2}\right)\left(c \beta_{3}\right)$ of $[Y]$ with T.

Proof. This is straightforward, given 4.4.
From now on we use 4.6 to identify B^{0} with the set of equivalence classes

$$
[[a, b, c]]=[[-a,-b,-c]], a, b, c \in \mathrm{SL}_{2}(\mathbf{F})
$$

and identify T with the set of equivalence classes

$$
[a, b, c]=[-a,-b,-c] a, b, c \in \mathbf{F}^{\times}
$$

Lemma 4.7. (a) The element $[a, b, c]$ of T acts diagonally as

$$
\partial\left(a b, a^{-1} b^{-1}, a b^{-1}, a^{-1} b, c^{2}, c^{-2}, 1\right)
$$

with respect to the ordered basis $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$ of V.
(b) The action of W on T is given as follows.

$$
\begin{aligned}
& w_{1}:[a, b, c] \mapsto\left[b^{-1}, a^{-1}, c\right], \\
& w_{2}:[a, b, c] \mapsto[b, a, c] \text {, } \\
& w_{3}:[a, b, c] \mapsto\left[a, b, c^{-1}\right] \text {, } \\
& w:\left[a^{2}, b^{2}, c^{2}\right] \mapsto\left[a b c^{2}, a^{-1} b^{-1} c^{2}, a b^{-1}\right], \\
& \rho:[a, b, c] \mapsto\left[a, b^{-1}, c\right] .
\end{aligned}
$$

Proof. Again, this is straightforward, given 4.6.
Denote by S_{∞} the set of elements of T whose order is a power of 2 . Set $W_{S}=\left\langle w_{1}, w_{2}, w_{3}, \rho\right\rangle$, and set $S=S_{\infty} W_{S}$. Also, for any $k \geq 1$ set

$$
T_{k}=\left\{t \in T \mid t^{2^{k}}=1\right\}
$$

Thus T_{k} is a subgroup of S_{∞}, and T_{1} is the group E appearing in 4.2.
We shall henceforth take p to be congruent to $3 \operatorname{or} 5 \bmod 8$. One reason for this choice is that it allows us to keep track of the structure of Sylow 2-subgroups of the groups H and H_{σ}, as in the following two lemmas.

Lemma 4.8. Let k be a nonnegative integer, and set $\psi=\psi_{k}$. Then $C_{S_{\infty}}(\psi)$ $=T_{k+2}$ is homocyclic abelian of rank 3 and exponent 2^{k+2}.

Proof. For any integer m, and any $k \geq 1$,

$$
m^{2^{k}}-1=\left(m^{2^{k-1}}+1\right)\left(m^{2^{k-1}}-1\right) .
$$

A straightforward induction argument then yields the following fact.
(*) For any integer m with $m \equiv 5 \bmod 8$, and for any nonnegative integer k, we have

$$
m^{2^{k}} \equiv 1+2^{k+2} \quad \bmod 2^{k+3}
$$

Set $D=\left\{d \in \mathbf{F} \mid d^{2^{k+2}}=1\right\}$, set $D^{\prime}=\left\{f \in \mathbf{F} \mid f^{2^{k+3}}=1\right\}$, and fix $f \in D^{\prime}-D$. Then $D^{\prime}=D \cup D f$. Set $Q_{k}=\{[a, b, c] \in T \mid a, b, c \in D\}$ and $R_{k}=T_{k+2}$. That is $R_{k}=\left\{x \in T \mid x^{2^{k+2}}=1\right\}$. As $[a, b, c]^{2^{k}}=1$ in T if and only if $a^{2^{k}}=b^{2^{k}}=c^{2^{k}}= \pm 1$, it follows that $R_{k}=Q_{k} \cup Q_{k}[f, f, f]$. Thus Q_{k} has index 2 in R_{k}. Let A be a homocyclic abelian group of rank 3 and exponent 2^{k+2}. Since $[a, b, c]=[-a,-b,-c]$, there is an exact sequence

$$
1 \longrightarrow C_{2} \longrightarrow A \longrightarrow Q_{k} \longrightarrow 1,
$$

and thus $|A|=2\left|Q_{k}\right|=\left|R_{k}\right|$. Since R_{k} is abelian of rank 3 , exponent 2^{k+2}, and order $|A|$, it follows from the fundamental theorem of finite abelian groups that $R_{k} \cong A$.

Suppose that $p \equiv 3 \bmod 8$ and that $k=0$. For $[a, b, c] \in T$,

$$
[a, b, c] \psi=\left[a^{-p}, b^{-p}, c^{-p}\right]
$$

so that $[a, b, c] \in T_{\psi}$ if and only if $a^{p+1}=b^{p+1}=c^{p+1}= \pm 1$. As $p \equiv 3 \bmod 8,4$ is the largest power of 2 dividing $p+1$, and it follows from the preceding paragraph that $C_{S_{\infty}}(\psi)=R_{k}$ in this case. On the other hand, suppose that $p \equiv 5 \bmod 8$ or that $k>0$. Then

$$
[a, b, c] \psi=\left[a^{p^{2^{k}}}, b^{p^{2^{k}}}, c^{{p^{2}}^{k}}\right] .
$$

Notice that if $p \equiv 3 \bmod 8$ then $-p \equiv 5 \bmod 8$, while for $k>0$ we have $p^{2^{k}}=$ $(-p)^{2^{k}}$. Now $(*)$ shows that, in any case, we have $C_{S_{\infty}}(\psi)=R_{k}$. This yields the lemma.

Lemma 4.9. The following hold.
(a) $S_{\sigma}=C_{S_{\infty}}(\sigma) W_{S}$, and S_{σ} is a Sylow 2-subgroup of H_{σ}.
(b) S is a Sylow 2-subgroup of every subgroup X of H which contains S.
(c) T_{2} is the unique homocyclic abelian subgroup of S of rank 3 and exponent 4. Moreover, we have $T=C_{H}\left(T_{2}\right)$, and $T_{2} \leq T_{\sigma}=C_{H_{\sigma}}\left(T_{2}\right)$.
(d) S^{B} is the set of maximal 2-subgroups of B containing a subgroup isomorphic to T_{2}.

Proof. For any subgroup P of S, denote by $\mathscr{A}(P)$ the set of homocyclic abelian subgroups of P of rank 3 and exponent 4 . Let ψ and R_{k} be defined as in the preceding lemma, set $Q=W_{S} R_{k}$, and set $Q_{0}=\left\langle w_{0}\right\rangle R_{k}$.

Suppose first that that there exists $A \in \mathscr{A}(Q)$ with $A \neq T_{2}$. Then $A \not \leq T$. Suppose that $A \cap Q_{0}$ has rank 3 and exponent 4. Since w_{0} inverts R_{k}, we then have $A \cap Q_{0} \leq R_{k}$, and A contains the unique elementary abelian subgroup E of R_{k} of order 8 . By 4.3, Q / Q_{0} acts faithfully on E, so that $A \leq Q_{0}$, and then $A \leq T$. This is a contradiction, and so we conclude that $A \cap Q_{0}$ has exponent less than 4 or has rank less than 3. Since Q / Q_{0} is dihedral of order 8 , it follows that $A Q_{0} / Q_{0}$ is cyclic of order 4. Then $A \cap Q_{0}$ is homocyclic of rank 2 and exponent 4. Again, $A \cap Q_{0} \leq R_{k}$, and now $|A \cap E|=4$. The faithful action of Q / Q_{0} on E implies that $C_{Q / Q_{0}}(A \cap E)$ has exponent 2 . Since $A Q_{0} / Q_{0}$ centralizes $A \cap E$, we again have a contradiction, and thus $A \leq R_{k}$. That is, $\mathcal{A}(Q)=\left\{T_{2}\right\}$.

Let P be a Sylow 2 -subgroup of (the finite group) H_{ψ} containing Q. By the preceding paragraph, $T_{2} \unlhd N_{P}(Q)$. It follows from 4.1 that $N_{P}(Q)$ preserves the set $\left\{\ell_{1}, \ell_{2}, \ell_{2}\right\}$ of hyperbolic lines, and hence $N_{P}(Q)$ normalizes T. Then $N_{P}(Q) \leq T W$ by 4.3. Since Q is a Sylow 2-subgroup of $(W T)_{\psi}$, we conclude that $N_{P}(Q)=Q$. Then $P=Q$, and so $Q \in \operatorname{Syl}_{2}\left(H_{\psi}\right)$. We recall that $\psi=\psi_{k}=\zeta^{2^{k}}$
or $\left(\zeta w_{0}\right)^{2^{k}}$ for some k, and that

$$
H=\bigcup_{k \geq 0} C_{H}\left(\left(\psi_{k}\right)\right.
$$

Then S is the union of its subgroups $S \cap H_{\psi_{k}}$, and so $\mathscr{A}(S)=\left\{T_{2}\right\}$.
By Zorn's Lemma, there is a maximal 2 -subgroup S^{*} of H containing S. We have

$$
X=\bigcup_{k \geq 0} X_{\psi_{k}}
$$

for any subgroup X of H. Taking $X=S^{*}$, we conclude that $S=S^{*}$. Taking X to be an arbitrary subgroup of H containing S, we note that every finite subgroup of X is contained in $X_{\psi_{k}}$ for some k, so that every finite 2-subgroup of X is X-conjugate into S. Thus, S is a Sylow 2 -subgroup of X, and we have (a) and (b).

Notice that $\sigma=\psi_{k}$ for some k. Then (c) follows as $T_{2} \leq C_{H}\left(\psi_{0}\right), \mathcal{A}(S)=$ $\left\{T_{2}\right\}$, and $N_{H}\left(T_{2}\right)=N_{H}(T)$.

By (c) and 4.3.b, $N_{B}\left(T_{2}\right)=T W_{S}=T S$. Let S_{2} be a subgroup of B isomorphic to T_{2}, and X a maximal 2 -subgroup of B containing S_{2}. By (b), S is Sylow in B, and so $S_{2}^{b} \leq S$ for some $b \in B$, and by (c), $S_{2}^{b}=T_{2}$. Thus we may take $T_{2}=S_{2}$. Similarly for each $k, X_{\psi_{k}}$ is contained in a conjugate of S, and so by (c), $X_{\psi_{k}} \leq N_{B}\left(T_{2}\right)=T S$. Hence X is a maximal 2-subgroup of $T S, X \in S^{T}$, establishing (d).

5. The amalgam \mathscr{A}_{λ}, and an amalgam for Co_{3}

We now undertake the construction of the amalgam which provides the focus for this work. (See the beginning of Section 3 for a discussion of amalgams.)

We continue the setup and notation of the preceding section. In particular, we have $p \equiv 3$ or $5(\bmod 8)$. Let i be a square root of -1 in \mathbf{F}, and let τ be the element $w_{2}[1,1, i]$ of B. Then $B=B^{0}\langle\tau\rangle$, by 4.4(e). By definition, w_{2} interchanges the two singular points of ℓ_{2}, centralizes ℓ_{1} and ℓ_{3}, and acts as -1 on $C_{V}(T)$. Then τ acts as $-I$ on $C_{V}(U)=\ell_{3}+C_{V}(T)$, and acts as a transvection on [$\left.V, U\right]$. In particular, τ commutes with $\phi\left(L_{3}\right)$, hence also with L_{3} (since L_{3} is perfect), and τ is an involution by 4.2. Further, τ acts as w_{2} on [$\left.V, T\right]$, and then 4.4(c)(iii) yields

$$
\tau:[[\alpha, \beta, \gamma]] \mapsto[[\beta, \alpha, \gamma]]
$$

for all $[[\alpha, \beta, \gamma]] \in B^{0}$.
Define y_{0} to be the automorphism of B^{0} given by

$$
\begin{equation*}
y_{0}:[[\alpha, \beta, \gamma]] \mapsto[[\gamma, \alpha, \beta]] . \tag{5.0}
\end{equation*}
$$

Then $\left|y_{0}\right|=3$, and $\left\langle y_{0}, \tau\right\rangle$ acts faithfully as the symmetric group $\operatorname{Sym}(3)$ on the set $\mathscr{L}=\left\{L_{1}, L_{2}, L_{3}\right\}$. In the semidirect product

$$
K=B^{0}\left\langle y_{0}, \tau\right\rangle
$$

we may then identify B with the subgroup $B^{0}\langle\tau\rangle$ of K, and form the amalgam

$$
\mathscr{A}_{1}=(H \geq B \leq K)
$$

For any $\lambda \in \operatorname{Aut}(B)$, denote by λ^{*} the composition of λ with the inclusion map of B into K, and form the amalgam

$$
\mathscr{A}_{\lambda}=\left(H \geq B \xrightarrow{\lambda^{*}} K\right) .
$$

The corresponding free amalgamated product will be denoted G_{λ}. Subject to the usual identifications, H and K are subgroups of G_{λ}, with $H \cap K=B$. Here it is important to note that the inclusion map of B into K, within G_{λ}, is obtained by "twisting" via λ the "ordinary" inclusion map occurring in \mathscr{A}_{1}.

Lemma 5.1. For $X \in\{H, K\}$, write A_{X} for $\operatorname{Aut}_{\operatorname{Aut}(X)}(B)$. Set $\Phi=\operatorname{Aut}(\mathbf{F})$, and regard Φ as the group of field automorphisms of $\mathrm{SL}_{2}(\mathbf{F})$. Define a representation of Φ on B^{0} by

$$
\lambda:[[\alpha, \beta, \gamma]] \mapsto\left[\left[\alpha, \beta, \gamma^{\lambda}\right]\right] \text { for } \lambda \in \Phi
$$

Then Φ commutes with τ on B^{0}, and the representation of Φ on B^{0} extends thereby to a representation on B. Moreover:
(a) $\operatorname{Inn}(B) \leq A_{H} \cap A_{K}$.
(b) For each $X \in\{H, K\}$ we have $\operatorname{Aut}(B)=A_{X} \Phi=A_{H} A_{K} \Phi$, and $A_{X} \cap \Phi=1$.
(c) For $\mu, \lambda \in \operatorname{Aut}(B)$, we have $\mathscr{A}_{\lambda} \cong \mathscr{A}_{\mu}$ if and only if $A_{H} A_{K} \lambda=A_{H} A_{K} \mu$.

Proof. Identify Φ with a subgroup of $\operatorname{Aut}\left(B^{0}\right)$ via the prescribed representation. Evidently $[\Phi, \tau]=1$, so we may even regard Φ as a subgroup of $\operatorname{Aut}(B)$. As $B=H \cap K$, (a) holds. As is well known (cf. [Ste]), $\operatorname{Aut}\left(\mathrm{SL}_{2}(\mathbf{F})\right)=\operatorname{Inn}\left(\mathrm{SL}_{2}(\mathbf{F})\right) \Phi$. Then, since B^{0} is the central product of three copies of $\mathrm{SL}_{2}(\mathbf{F}), \operatorname{Aut}\left(B^{0}\right)$ is the split extension of $\operatorname{Aut}\left(\mathrm{SL}_{2}(\mathbf{F})\right)^{3}$ by $\operatorname{Sym}(3)$, where $\operatorname{Sym}(3)$ permutes the three components of B^{0} faithfully.

Recall that $B=B^{0}\langle\tau\rangle$, where τ centralizes L_{3} and interchanges L_{1} and L_{2}. For $X \in\{H, K\}$ we have $A_{X}=\operatorname{Inn}(B) \Phi_{X}$, where $\Phi_{X} \cong \Phi$ and Φ_{X} is diagonally embedded in the subgroup Φ^{3} of $\operatorname{Aut}\left(\mathrm{SL}_{2}(\mathbf{F})\right)^{3}$, and centralizes τ. Similarly, $\operatorname{Aut}(B)=\operatorname{Inn}(B)\left(\Phi_{X} \times \Phi\right)$, where Φ centralizes $L_{1} L_{2}$ and acts faithfully as Φ on L_{3}. Now (b) follows, and $\operatorname{Aut}(B)=A_{H} A_{K} \Phi$. By [Gol80, Lemma 2.7], $\mathscr{A}_{\lambda} \cong \mathscr{A}_{\mu}$ if and only if $A_{H} \lambda A_{K}=A_{H} \mu A_{K}$, and now (c) follows from (b).

We may now state the first main result of this section.

THEOREM 5.2. Let S_{∞} be the Sylow 2 -subgroup of T, and for any $\lambda \in \operatorname{Aut}(B)$ set $N_{\lambda}=\left\langle N_{H}\left(S_{\infty}\right), N_{K}\left(S_{\infty}\right)\right\rangle$, where H and K are regarded as subgroups of G_{λ} in the canonical way. Set $\mathcal{N}_{\lambda}=\operatorname{Aut}_{N_{\lambda}}\left(S_{\infty}\right)$, define Φ as in 5.1, and set

$$
\Lambda=\left\{\lambda \in \Phi \mid \mathcal{N}_{\lambda} \cong \operatorname{GL}(3,2) \times C_{2}\right\}
$$

Then the following hold.
(a) $|\Lambda|=1$.
(b) For $\lambda \in \Lambda$,

$$
C_{N_{\lambda}}\left(T_{e}\right)=\left\{\begin{array}{l}
C_{N_{\lambda}}\left(S_{\infty}\right) \quad \text { if } e \geq 2, \text { and } \\
C_{N_{\lambda}}\left(S_{\infty}\right)\left\langle w_{0}\right\rangle \quad \text { if } e=1
\end{array}\right.
$$

(c) $A_{H}=A_{K}$.
(d) The map $\phi \mapsto \mathscr{A}_{\phi}$ is a bijection of Φ with the set of isomorphism classes of amalgams \mathscr{A}_{μ} with $\mu \in \operatorname{Aut}(B)$.

Remark. It can be shown, by means of a lengthy computation based on 4.7(b), that the unique λ in the set Λ of Theorem 5.2 is not an algebraic endomorphism of B.

Let ω_{3} be the automorphism of B^{0} induced by conjugation by w_{3}. By 4.7(b), $w_{3} \in L_{3}$ and w_{3} inverts $T \cap L_{3}$. Denote by ζ_{3} the automorphism of B^{0} which induces the $p^{\text {th }}$ power Frobenius map on L_{3} and which centralizes L_{1} and L_{2}. Then let ξ_{0} be the automorphism of B^{0} given by

$$
\xi_{0}=\left\{\begin{array}{rll}
\zeta_{3} \omega_{3} & \text { if } p \equiv 3 & \bmod 8 \\
\zeta_{3} & \text { if } p \equiv 5 & \bmod 8
\end{array}\right.
$$

Thus,

$$
\xi_{0}:[[\alpha, \beta, \gamma]] \mapsto\left\{\begin{array}{rll}
{\left[\left[\alpha, \beta, \bar{\gamma}^{w_{3}}\right]\right]} & \text { if } p \equiv 3 & \bmod 8 \\
{[[\alpha, \beta, \bar{\gamma}]]} & \text { if } p \equiv 5 & \bmod 8
\end{array}\right.
$$

where $\bar{\gamma}$ is the element of $\mathrm{SL}_{2}(\mathbb{F})$ whose entries are the $p^{\text {th }}$ powers of the corresponding entries of γ. For any $e \in \mathbb{N}$, set

$$
\xi_{e}=\xi_{0}^{2^{e}}
$$

Notice that T is invariant under ξ_{e}, that $\left[L_{1} L_{2}, \xi_{e}\right]=1$, and that $\xi_{e}=\zeta_{3}^{2^{e}}$ for $e \geq 1$. Recall from 4.8 that we have defined subgroups T_{e} of T_{0} by

$$
T_{e}=\left\{t \in T \mid t^{2^{e}}=1\right\}, e \geq 1
$$

and that T_{e} is homocyclic abelian of rank 3.
LEMMA 5.3. Let e be a nonnegative integer, and let $c \in \mathbf{F}$ with $c^{2^{e+3}}=1$. Then
(a) $[a, b, c] \xi_{e}=[a, b, c]$ if $c^{2^{e+2}}=1$, and otherwise $[a, b, c] \xi_{e}=[a, b,-c]$.
(b) ξ_{e} centralizes a subgroup of index 2 in T_{e+2} containing T_{e+1}, and $\left[T_{e+2}, \xi_{e}\right]$ $=Z$.
Proof. Suppose first that $e=0$ and that $p \equiv 3 \bmod 8$. Then $c^{8}=1$, and

$$
[a, b, c] \xi_{e}=\left[a, b, c^{-p}\right]=\left[a, b, c^{5}\right]
$$

Since $c^{5}=-c$ if $|c|=8$, and $c^{5}=c$ if $c^{4}=1$, (a) holds in this case. On the other hand, suppose that either $e>0$ or $p \equiv 5 \bmod 8$. We saw in the proof of 4.8 that for any integer m with $m \equiv 5 \bmod 8$,

$$
m^{2^{e}} \equiv 1+2^{e+2} \quad \bmod 2^{e+3}
$$

Taking $m=p$ if $p \equiv 5 \bmod 8$, and taking $m=-p$ if $p \equiv 3 \bmod 8$, we then have

$$
[a, b, c] \xi_{e}=\left[a, b, c^{m^{2^{e}}}\right]=\left[a, b, c^{1+2^{e+2}}\right]
$$

Thus (a) holds in every case. Part (b) follows from (a) and the fact that $Z=$ $\langle[1,1,-1]\rangle$ and $T_{e+2}=\left\langle\left[c^{2}, 1,1\right],\left[1, c^{2}, 1\right],[c, c, c]\right\rangle$, where $|c|=2^{e+3}$.

PROPOSITION 5.4. There is a uniquely determined sequence ($y_{e} \mid e \geq 0$) of automorphisms of B^{0}, with y_{0} as in 5.0, and having the following two properties.
(a) $y_{e} \in\left\{y_{e-1}, y_{e-1}^{\xi_{e-1}}\right\}$ for $e>0$.
(b) The group \mathcal{N}_{e} of automorphisms of T_{e+1} induced by the action of $\left\langle W, y_{e}\right\rangle$ is isomorphic to $\mathrm{GL}(3,2) \times C_{2}$ for $e>0$, and is isomorphic to $\mathrm{GL}(3,2)$ for $e=0$.
The proof of 5.4 will be based on the following result.
Lemma 5.5. Let N be the Steinberg module for GL(3,2) over the field \mathbb{F}_{2} of two elements, and let X be an extension of N by GL(3, 2). Then the following hold:
(a) X splits over N.
(b) Let D be a complement to N in a Sylow 2-subgroup of X. Then $C_{N}(D)=\langle g\rangle$ is of order 2.
(c) Let D be as in (b), and denote by \mathscr{P} the set of subgroups P of X such that $D \leq P \cong \operatorname{Sym}(4)$. Then $\mathscr{P}=\left\{P_{1}, P_{2}, Q_{1}, Q_{2}\right\}$, where $Q_{i}=P_{i}^{g}$ for $i=1,2$, $\left\langle P_{i}, Q_{i}\right\rangle$ is a complement to N in X, and $\left\langle P_{1}, Q_{2}\right\rangle=\left\langle P_{2}, Q_{1}\right\rangle=X$.
Proof. Let $R \in \operatorname{Syl}_{2}(X)$. Then N is a free $\mathbb{F}_{2} R / N$-module, so that $C_{N}(R)=$ $\langle g\rangle$ is of order 2, and for each overgroup Y of R in X we have $H^{i}(Y / N, N)=0$ for $i=1,2$. In particular, (a) and (b) hold.

Choose R so that $R=D N$ and let P and Q be maximal subgroups of X such that P / N and Q / N are the maximal parabolic subgroups of X / N over R / N. It
follows from the preceding paragraph that for each $Y \in\{X, P, Q, R\}, Y$ splits over N and is transitive on its complements to N. Thus the set \mathscr{P}_{Y} of complements to N in Y containing D is nonempty for $Y \in\{X, P, Q\}$, and by a standard argument (cf. 5.2.1 in [Asc86]), $N_{Y}(D)$ is transitive on \mathscr{P}_{Y}. Then as $N_{X}(D)=D \times\langle g\rangle$, $\mathscr{P}_{Y}=\left\{Y_{1}, Y_{2}\right\}$ with $Y_{1}^{g}=Y_{2}$. Since $C_{N}(Y)=0$ for $Y \in\{P, Q\}$, each P_{i} and each Q_{i} is contained in a unique complement to N in X. In particular $X_{i} \cong \operatorname{GL}(3,2)$ and the indexing may be chosen so that X_{i} is generated by P_{i} and $Q_{i} \in P_{Q}$. Then $M_{i}=\left\langle P_{i}, Q_{3-i}\right\rangle$ is not a complement to N in X. Since X is irreducible on N, $M_{i}=N$. This completes the proof.

We may now prove Proposition 5.4. Since T_{1} is elementary abelian of order 8, we have $\operatorname{Aut}\left(T_{1}\right) \cong \operatorname{GL}(3,2)$. From 4.3(c), W induces the stabilizer in $\operatorname{GL}\left(T_{1}\right)$ of Z, and so the image of W in $\operatorname{GL}\left(T_{1}\right)$ is maximal. The closure of Z under the action of $\left\langle y_{0}\right\rangle$ is the fours group U, and thus $\mathcal{N}_{0}=\operatorname{GL}\left(T_{1}\right)$. We may therefore assume that $e \geq 1$, and that for all indices e^{\prime} with $0<e^{\prime}<e$:
(*) There exists a unique $y_{e^{\prime}} \in\left\{y_{e^{\prime}-1}, y_{e^{\prime}-1}^{\xi_{e^{\prime}-1}}\right\}$ such that the group $\mathcal{N}_{e^{\prime}}$ of automorphisms of $T_{e^{\prime}+1}$ induced by the action of $\left\langle W, y_{e^{\prime}}\right\rangle$ is isomorphic to $\mathrm{GL}(3,2) \times \mathbf{C}_{2}$.

Set $R=T_{e+1}, x=y_{e-1}$, and denote by \mathcal{N} the image of $\langle W, x\rangle$ in $\operatorname{Aut}(R)$. Applying $(*)$ to $e^{\prime}=e-1$, we have $\mathcal{N} / C_{\mathcal{N}}\left(T_{e}\right) \cong \operatorname{GL}(3,2)$ if $e=1$, and $\operatorname{GL}(3,2) \times$ C_{2} if $e>1$. Let $d \in C_{\mathcal{N}}\left(T_{e}\right)$. Writing

$$
d:[a, b, c] \longrightarrow[\tilde{a}, \tilde{b}, \tilde{c}]
$$

for $[a, b, c] \in R$, we obtain $a^{2}=\varepsilon \widetilde{a}^{2}, b^{2}=\varepsilon \widetilde{b}^{2}$, and $c^{2}=\varepsilon \widetilde{c}^{2}$, for some $\varepsilon \in\{ \pm 1\}$. Thus either $\tilde{u} \in\{u,-u\}$ for all $u \in\{a, b, c\}$, or $\tilde{u} \in\{i u,-i u\}$ for all $u \in\{a, b, c\}$, where i is a square root of -1 . Therefore as

$$
T_{1}=\langle[-1,1,1],[1,-1,1],[i, i, i]\rangle,
$$

d acts trivially on R / T_{1}. Then $d=1+\lambda_{d}$ for some $\lambda_{d} \in \operatorname{Hom}_{\mathbb{Z}}\left(R / T_{e}, T_{1}\right)$, and the mapping

$$
C_{\mathcal{N}}\left(T_{e}\right) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(R / T_{e}, T_{1}\right)
$$

given by $d \mapsto \lambda_{d}$ is an \mathcal{N}-homomorphism. Observe that R / T_{e} and T_{1} are isomorphic as modules for $\langle W, x\rangle$ via the map $\varphi: r T_{e} \mapsto r^{2^{e+1}}$. Thus, there is an \mathcal{N}-equivariant monomorphism $d \mapsto \varphi^{-1} \lambda_{d}$ from $C_{\mathcal{N}}\left(T_{e}\right)$ into $M:=\operatorname{End}_{\mathbb{Z}}\left(T_{1}\right)$. Since \mathcal{N} acts as $\operatorname{GL}(3,2)$ on T_{1}, M may be identified with the \mathcal{N}-module of 3×3 matrices over the field \mathbf{F}_{2} of two elements, and we regard $C_{\mathcal{N}}\left(T_{e}\right)$ as an \mathcal{N}-submodule of M.

Now M is a vector space of dimension 9 over \mathbf{F}_{2}, and the subspace M_{0} of trace-zero matrices is an 8-dimensional \mathcal{N}-submodule of M. Indeed $\mathcal{N} / C_{\mathcal{N}}(M) \cong$ $\mathrm{GL}(3,2)$, and M_{0} is the Steinberg module for $\mathcal{N} / C_{\mathcal{N}}(M)$. The element w_{0} of W inverts R, and hence $\left\langle w_{0}\right\rangle=C_{M}(\mathcal{N})$, and $M=M_{0} \oplus C_{M}(\mathcal{N})$. Further, \mathcal{N} is an
extension of $\mathcal{N}_{M}=\mathcal{N} \cap M$ by $L_{3}(2)$, and as $C_{M}(\mathcal{N})=\left\langle w_{0}\right\rangle \leq \mathcal{N}_{M}$ and \mathcal{N} is irreducible on $M_{0}, \mathcal{N}_{M}=M$ or $C_{M}(\mathcal{N})$. As $W_{S} /\left(W_{S} \cap T\right) \cong \mathbf{Z}_{2} \times D_{8}$ (cf. 4.3), \mathcal{N} / M_{0} or \mathcal{N} is isomorphic to $\mathbf{Z}_{2} \times L_{3}(2)$ in the respective case. Further, in the latter case, we obtain (a) and (b) of 5.4 by setting $y_{e+1}=y_{e}$. Thus we may assume that $\mathcal{N}_{M}=M$.

Set $X=[\mathcal{N}, \mathcal{N}]$. From the previous paragraph, $M_{0}=X \cap M$ and $X / M_{0} \cong$ GL(3,2). Denote by D^{*} the image of W_{S} in \mathcal{N}, and set $D=D^{*} \cap X$. Then $D^{*}=D \times Z(\mathcal{N})$, and D is dihedral of order 8 . Denote by P^{*} and Q^{*} the images in \mathcal{N} of W and $\left\langle W_{S}, y\right\rangle$, respectively, and set $P=P^{*} \cap X$ and $Q=Q^{*} \cap X$. By 5.5(b), $C_{M_{0}}(D)=\langle g\rangle$ is of order 2. By definition \mathcal{N} is generated by P^{*} and Q^{*}, and so X is generated by P and Q. By 5.5(c), $\left\langle P, Q^{g}\right\rangle$ is a complement to M_{0} in X. By construction, ξ_{e-1} centralizes W_{S}, and by $5.3(\mathrm{~b}), \xi_{e-1}$ induces a nontrivial automorphism of R centralizing a subgroup of index 2 containing T_{e}. Then, since $C_{M_{0}}\left(W_{S}\right)=\langle g\rangle$, it follows that the action of g on R is the same as that of ξ_{e-1}. Setting $y_{e}=x^{g}$, we obtain (a) and (b) of Proposition 5.4.

Let $\left\{\lambda_{e} \mid e \geq 0\right\}$ be the sequence of automorphisms of B^{0} defined by $\lambda_{0}=1_{B^{0}}$, and for $e>0$ by the recursive formula

$$
\lambda_{e}=\left\{\begin{aligned}
\lambda_{e-1} & \text { if } y_{e}=y_{e-1} \text { and } \\
\lambda_{e-1} \xi_{e-1} & \text { if } y_{e}=y_{e-1}^{\xi_{e-1}}
\end{aligned}\right.
$$

where y_{e} is as in Proposition 5.4. For $k \geq 0$, take ψ_{k} as defined just prior to 4.3.
Lemma 5.6. Each λ_{e} extends to an automorphism of B which commutes with the element τ of $B-B^{0}$, and with ψ_{k} for each k. Further, for each $e \geq 0$,

$$
\left.\lambda_{e+1}\right|_{C_{B}\left(\psi_{e-1}\right)}=\left.\lambda_{e}\right|_{C_{B}\left(\psi_{e-1}\right)}
$$

Proof. Recall that $\xi_{e}=\xi_{0}^{2^{e}}$, where ξ_{0} is the automorphism of B^{0} given by

$$
\xi_{0}:[[\alpha, \beta, \gamma]] \mapsto\left[\left[\alpha, \beta, \gamma^{\prime}\right]\right]
$$

for the automorphism $\gamma \mapsto \gamma^{\prime}$ of $\mathrm{SL}_{2}(\mathbf{F})$ such that

$$
\psi_{0}:[[\alpha, \beta, \gamma]] \mapsto\left[\left[\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right]\right]
$$

It follows that ξ_{e} commutes with ψ_{k} for all e and k, and also with the automorphism $\tau:[[\alpha, \beta, \gamma]] \mapsto[[\beta, \alpha, \gamma]]$ of B^{0}. In constructing the amalgam \mathscr{A}_{1}, we identified B with the semidirect product $B^{0}\langle\tau\rangle$, so ξ_{e} may now be regarded as an automorphism of B. Since λ_{e} is the product of some elements of $\left\{1, \xi_{0}, \ldots, \xi_{e}\right\}$, we may also regard λ_{e} as an automorphism of B, commuting with ψ_{k}. The proof is then completed by the observation that ξ_{e} centralizes $C_{B}\left(\psi_{e-1}\right)$.

Notice that 4.8 yields

$$
B=\bigcup_{e \geq 0} C_{B}\left(\psi_{e}\right)
$$

By the preceding lemma, we may then define an automorphism λ of B by taking $\left.\lambda\right|_{C_{B}\left(\psi_{e}\right)}=\lambda_{e}$ for each e. Set

$$
\mathscr{A}=\mathscr{A}_{\lambda}=\left(H \stackrel{\iota}{\longleftrightarrow} B \xrightarrow{\lambda^{*}} K\right)
$$

(where ι denotes inclusion) and form the corresponding free amalgamated product $G=G_{\lambda}$.

We may now complete the proof of Theorem 5.2. We have

$$
\Phi=\operatorname{Aut}(\mathbf{F})=\underset{\longleftrightarrow}{\lim } \operatorname{Aut}\left(\mathbf{F}_{p^{2}}\right)
$$

and there is an isomorphism

$$
\mathbb{Z}_{2^{e}} \longrightarrow \operatorname{Aut}\left(\mathbf{F}_{p^{2^{e}}}\right)
$$

given by sending a residue class $[k]$ to the p^{k}-th power map, $0 \leq k<2^{e}$. The sequence of inverses of these isomorphisms then defines an isomorphism of $\operatorname{Aut}(\mathbf{F})$ with the ring $\mathbb{Z}_{(2)}$ of 2 -adic integers.

Let $\mu \in \operatorname{Aut}(\mathbf{F})$, and denote by μ_{e} the restriction of μ to the subfield $\mathbf{F}_{p^{e}}$ of \mathbf{F} of order $p^{2^{e}}$. For any $e \geq 0$, there is then a unique integer $k_{e}, 0 \leq k_{e}<2^{e}$, such that μ_{e} is given by the $p^{k_{e}}$-th power map on $\mathbf{F}_{2^{e}}$. Define a sequence ($\varepsilon_{e} \mid e \geq 0$) of elements of $\{0,1\}$ by taking $\varepsilon_{0}=k_{0}$, and for $e>0$ by

$$
\varepsilon_{e}=\left\{\begin{array}{ll}
0 & \text { if } k_{e}=k_{e-1} \\
1 & \text { if } k_{e}=k_{e-1}+2^{e-1}
\end{array}\right\}
$$

We may represent the action of μ on B^{0} as in 5.1 ; namely μ acts on $\operatorname{SL}(2, \mathbf{F})$ in the natural way, and on B^{0} by

$$
\mu:[[a, b, c]] \longrightarrow\left[\left[a, b, c^{\mu}\right]\right] .
$$

Observe that the restriction μ_{e} of μ to $C_{B^{0}}\left(\psi_{e+1}\right)$ is given by

$$
\mu_{e}=\widetilde{\xi}_{0}^{\varepsilon_{0}} \xi_{1}^{\varepsilon_{1}} \ldots \xi_{e}^{\varepsilon_{e}}
$$

where $\tilde{\xi}_{0}=\xi_{0} \omega_{3}$ if $p \equiv 3 \bmod 8$, and where $\tilde{\xi}_{0}=\xi_{0}$ if $p \equiv 5 \bmod 8$.
Recall from 5.1 that we have identified Φ with a subgroup of $\operatorname{Aut}(B)$, and that parts (b) and (c) of 5.1 show that for any $\mu^{\prime} \in \operatorname{Aut}(B)$ there exists $\mu \in \Phi$ such that $\mathscr{A}_{\mu} \cong \mathscr{A}_{\mu^{\prime}}$. In particular if $\mu^{\prime}=\alpha \mu$ with $\alpha \in \operatorname{Inn}(B)$ then $\mathscr{A}_{\mu} \cong \mathscr{A}_{\mu^{\prime}}$, and hence there is an induced isomorphism $G_{\mu} \cong G_{\mu^{\prime}}$ of universal completions.

Take $\mu=\omega_{3} \lambda$ if both $p \equiv 3 \bmod 8$ and $\lambda_{1}=\xi_{0}$, and take $\mu=\lambda$ otherwise. By our construction of λ we have $\mu \in \Phi$, and then since $\omega_{3} \in B$ we obtain $G_{\mu} \cong G_{\lambda}$. Adopt the notation of 5.2. In particular $N_{\lambda}=\left\langle N_{H}\left(S_{\infty}\right), N_{K}\left(S_{\infty}\right)\right\rangle, N_{\lambda}=\langle W, y\rangle T$,
and $\mathcal{N}_{\lambda}=$ Aut $_{N_{\lambda}}\left(S_{\infty}\right)$. Since ξ_{e} centralizes T_{e+1} by 5.3(b), we have $y_{0 \mid T_{e+1}}^{\lambda}=y_{0}^{\lambda_{e}}$, where λ_{e} is as defined prior to 5.6. By induction on e, we then get

$$
y_{0 \mid T_{e+1}}^{\lambda}=\left\{\begin{array}{cc}
y_{e-1} & \text { if } y_{e}=y_{e-1} \\
y_{e-1}^{\xi_{e-1}} & \text { if } y_{e} \neq y_{e-1}
\end{array}\right\}
$$

and so $y_{0 \mid T_{e+1}}^{\lambda}=y_{e}$. Then 5.4 shows that μ is in the set Λ defined in 5.2.
Now let μ be an arbitrary element of Λ. Set $\nu=\omega_{3} \mu$ if both $p \equiv 3 \bmod 8$ and $\varepsilon_{0}=1$, and otherwise set $\nu=\mu$. Then $G_{\mu} \cong G_{\nu}$ and $N_{\mu} \cong N_{\nu}$. Set $x=v^{-1} y_{0} \nu$, regard x as an automorphism of S_{∞}, and denote by x_{e} the restriction of x to T_{e+1}, $e \geq 0$. Then $x_{0}=y_{0}$ and, by induction on $e, x_{e+1}=x_{e}^{\xi_{e} e}$. As $\mu \in \Lambda$, the uniqueness of the sequence in 5.4 implies that $\varepsilon_{e}=0$ if and only if $y_{e}=y_{e-1}$, and hence that $x=y$. Since $y:[a, b, c] \mapsto\left[c^{\lambda^{-1}}, b, a^{\lambda}\right]$, also $v=\lambda$, establishing 5.2(a). Now 5.2(b) follows from the action of \mathcal{N}_{λ} on T_{∞} in 5.4.

If $A_{H} \neq A_{K}$ then $A_{H} A_{K} \cap \Phi \neq 1$, by 5.1(b), and then 5.1(c) implies that there exists $\mu^{\prime} \in \Phi-\{\mu\}$ with $\mathscr{A}_{\mu} \cong \mathscr{A}_{\mu^{\prime}}$. This is contrary to 5.2(a), so that $A_{H}=A_{K}$ and 5.2(c) holds. Now 5.2(d) follows from (c) and from 5.1(c), and this completes the proof of 5.2.

Regarding H and K as subgroups of $G=G_{\lambda}$ in the canonical way, we have $B=H \cap K$. From 5.6, $\sigma=\psi_{n}$ commutes with λ_{e} for each e, so σ commutes with λ. Since σ commutes with y_{0} and with τ as automorphisms of B^{0}, and since y acts on B^{0} as y_{0}^{λ}, σ commutes with y. Then since K is the semidirect product of B^{0} with $\langle y, \tau\rangle$, it follows that σ induces an automorphism σ_{K} of K, commuting with $\langle y, \tau\rangle$. The universal property of the free amalgamated product now implies that σ induces an automorphism of G, whose restriction to K is σ_{K}. We record this result for future reference.

Lemma 5.7. For each positive integer $n, \psi_{n \mid H}$ extends uniquely to an automorphism σ of G such that $[y, \sigma]=1$.

We next show that the third Conway simple group Co_{3} is the completion of a subamalgam of \mathscr{A}_{λ}, and that this subamalgam generates a fusion system which is isomorphic to that of Co_{3}. These will be key ingredients in our proof of Theorem B.

THEOREM 5.8. Let \bar{G}_{0} be the simple group Co_{3}, let S_{0} be a Sylow 2-subgroup of \bar{G}_{0}, set $Z_{0}=Z\left(S_{0}\right)$, and let U_{0} be the unique normal fours group in S_{0}. Set

$$
H_{0}=C_{\bar{G}_{0}}\left(Z_{0}\right), \quad K_{0}=N_{\bar{G}_{0}}\left(U_{0}\right), \quad B_{0}=H_{0} \cap K_{0}
$$

and let $\mathscr{A}_{0}=\left(H_{0} \longleftarrow B_{0} \longrightarrow K_{0}\right)$ be the amalgam of inclusion maps among these groups, within \bar{G}_{0}. Set $\sigma=\psi$ and set $\lambda_{0}=\left.\lambda\right|_{B_{\sigma}}$, where λ is an automorphism of B which satisfies the conditions of Theorem 5.2. Let $\mathscr{A}_{\lambda_{0}}=\left(H_{\sigma} \stackrel{\iota}{\longleftrightarrow} B_{\sigma} \xrightarrow{\lambda_{0}^{*}} K_{\sigma}\right)$. Then the following hold:
(a) There is a morphism $\varphi: \mathscr{A}_{0} \rightarrow \mathscr{A}_{\lambda_{0}}$ of amalgams, displaying \mathscr{A}_{0} as a subamalgam of $\mathscr{A}_{\lambda_{0}}$.
(b) Let G_{0} be the subgroup of G generated by the images of H_{0} and K_{0} under the morphism φ of part (a), and let \mathscr{F}_{0} be the fusion system $\left\langle\mathscr{F} S_{0}\left(H_{0}\right), \mathscr{F}_{S_{0}}\left(K_{0}\right)\right\rangle$ contained in $\mathscr{F}_{S_{\sigma}}\left(G_{0}\right)$. Then $\mathscr{F}_{0}=\mathscr{F}_{S_{\sigma}}\left(G_{0}\right)=\mathscr{F}_{S_{0}}\left(\bar{G}_{0}\right)$.

Proof. We refer to [Fin73] for the structure of the maximal subgroups of G_{0}. Thus, H_{0} is isomorphic to the covering group of $\mathrm{Sp}_{6}(2)$, which is the perfect central extension of $\mathrm{Sp}_{6}(2)$ by a group of order 2 . Since $\mathrm{Sp}_{6}(2) \times C_{2}$ is a reflection group (namely, the Weyl group of type E_{7}), we have $\operatorname{Sp}_{6}(2) \leq O_{7}(\mathbb{R})$, and then, by taking the standard \mathbb{Z}-form of $O_{7}(\mathbb{R})$ and reducing $\bmod p$, one obtains $\mathrm{Sp}_{6}(2)$ as a subgroup of $\Omega_{7}(p)$. Identifying $\Omega_{7}(p)$ with H_{σ}, we then have an inclusion of H_{0} in H_{σ}. In particular, $Z_{0}=Z$.

Let Λ be $\mathrm{GL}_{2}(3)$) S_{3} and $\bar{\Lambda}=\Lambda / Z(\Lambda)$. Set $B_{1}=O^{2}\left(B_{0}\right)$ and $D=O_{2}\left(B_{0}\right)$. Sylow 2-subgroups of H_{0} and H_{σ} are of order 2^{10}, so conjugating in H_{σ}, we may take $S_{\sigma}=S_{0} \in \operatorname{Syl}_{2}\left(H_{0}\right)$, and $U=U_{0}$. Next, B_{0} is the preimage in H_{0} of the solvable maximal parabolic subgroup of $\mathrm{Sp}_{6}(2)$, so that $B_{0} / O_{2}\left(B_{0}\right)$ is isomorphic to $\operatorname{Sym}(3) \times \operatorname{Sym}(3)$, and B_{1} is isomorphic to a subgroup of index 3 in $O_{2,3}(\bar{\Lambda})$, contained in the $\bar{\Lambda}$-orbit of length 4 on such subgroups. In particular
(1) D is a commuting product of three quaternion groups $Q_{i}, 1 \leq i \leq 3$, with the property that $2=\left\{Q_{1}, Q_{2}, Q_{3}\right\}$ is the set of normal subgroups of B_{1} of order 8. Moreover $C_{D}\left(Q_{i}\right)=Q_{j} \times Q_{k}$ for any ordering (i, j, k) of $(1,2,3)$.

The preimage \widehat{B}_{1} of B_{1} in Λ is the 2 -covering group of B_{1}, and so $\operatorname{Aut}\left(B_{1}\right)$ acts on \widehat{B}_{1}. $\operatorname{By}(1), \operatorname{Aut}\left(B_{1}\right)$ permutes 2 , and hence $\widehat{2}=\left\{\widehat{Q}_{i} \mid 1 \leq i \leq 3\right\}$, where $\widehat{Q}_{i}=\left[\widetilde{Q}_{1}, \widehat{B}_{1}\right]$ and where \widetilde{Q}_{i} is the preimage in Λ of Q_{i}. Therefore $\operatorname{Aut}\left(B_{1}\right)=$ $\operatorname{Aut}_{\bar{\Lambda}}\left(B_{1}\right)$.

Referring once more to [Fin73], we find that $\left|K_{0}: B_{0}\right|=3$. Since $C_{K_{0}}(U) \leq$ B_{0} we have $B_{1} \leq C_{B_{0}}(U) \unlhd K_{0}$, and so $B_{1} \unlhd K_{0}$ and $K_{0} / C_{B_{0}}(U) \cong \operatorname{Sym}(3)$. From the preceding paragraph, $\operatorname{Aut}_{K_{0}}\left(B_{1}\right) \leq \Omega:=\operatorname{Aut}_{\bar{\Lambda}}\left(B_{1}\right)$. Then, since the Sylow 2-subgroup S_{0} of B_{0} is Sylow in K_{0} and contains the kernel U of the map from $N_{\bar{\Lambda}}\left(B_{1}\right)$ onto Ω, we may regard K_{0} as a subgroup of $\bar{\Lambda}$. By (1), 2 is K_{0}-invariant. As $K_{0} / C_{K_{0}}(U) \cong \operatorname{Sym}(3)$, it follows that K_{0} is transitive on 2. Here $\bar{\Lambda} / D \cong \operatorname{Sym}(3)$? $\operatorname{Sym}(3)$, and K_{0} / D is a subgroup of $\bar{\Lambda} / D$ of order $2^{2} \cdot 3^{3}$. Since $K_{0} / C_{K_{0}}(U) \cong \operatorname{Sym}(3)$, it follows that $K_{0} / B_{1} \cong \mathbf{Z}_{2} \times \operatorname{Sym}(3)$, and then that K_{0} is determined up to conjugacy in $\bar{\Lambda}$. The same argument shows that K_{σ} is in this conjugacy class, and so $K_{0} \cong K_{\sigma}$ and we may choose $K_{0}=K_{\sigma}$.

Observe that $\left|N_{\bar{\Lambda}}\left(B_{1}\right): B_{0}\right|=3$ and that B_{0} is equal to its normalizer in $N_{\bar{\Lambda}}\left(B_{1}\right)$. Then
(2) $N_{\operatorname{Aut}\left(B_{1}\right)}\left(B_{0}\right)=\operatorname{Aut}_{\bar{\Lambda}}\left(B_{0}\right)=\operatorname{Inn}\left(B_{0}\right)$.

By (2) we have $\operatorname{Aut}\left(B_{0}\right)=\operatorname{Inn}\left(B_{0}\right) C_{0}$, where $C_{0}=C_{\text {Aut }\left(B_{0}\right)}\left(B_{1}\right)$. Then $\left[C_{0}, B_{0}\right] \leq C_{B_{0}}\left(B_{1}\right)=U$. Let $X_{0} \in \operatorname{Syl}_{3}\left(B_{0}\right)$ and let $X_{0} \leq X \in \operatorname{Syl}_{2}\left(K_{0}\right)$. Then $C_{D}\left(X_{0}\right)=U, C_{D}(X)=1$, and as we saw above $K_{0} / B_{1} \cong \mathbf{Z}_{2} \times \operatorname{Sym}(3)$. It follows that there is a Sylow 2-subgroup R_{0} of $N_{B_{0}}\left(X_{0}\right)$, of the form $U\langle s\rangle \times\langle r\rangle$, where $\langle r, s\rangle$ is a Sylow 2-subgroup of $N_{K_{0}}(X), U\langle s\rangle$ is a dihedral group of order 8 , and $\langle r, s\rangle$ is a fours group.

We have $\left[C_{0}, R_{0}\right] \leq C_{B_{0}}\left(B_{1}\right)=U$, and so R_{0} is C_{0}-invariant. Since $r \in Z\left(R_{0}\right)$ we then have $\left[C_{0}, r\right] \leq U \cap Z\left(R_{0}\right)=Z$. For any $\mu \in C_{0}, s^{\mu}$ is an involution in $s U$, so also $\left[C_{0}, s\right] \leq Z$. Therefore $C_{0} \cong \operatorname{Hom}\left(B_{0} / B_{1}, Z\right) \cong B_{0} / B_{1}$, and so C_{0} is a fours group. Since $\mathbf{Z}_{2} \cong \operatorname{Aut}_{U}\left(B_{0}\right) \leq C_{0}$, we conclude that $\left|\operatorname{Aut}\left(B_{0}\right): \operatorname{Inn}\left(B_{0}\right)\right|=$ $\left|C_{0}: \operatorname{Aut}_{U}\left(B_{0}\right)\right|=2$. Thus
(3) $\operatorname{Aut}\left(B_{0}\right)=\operatorname{Inn}\left(B_{0}\right) \cup \operatorname{Inn}\left(B_{0}\right) \mu_{0}$, where $\mu_{0} \in C_{0}-\operatorname{Aut}_{U}\left(B_{0}\right)$.

It follows from (3) and [Gol70, Lemma 2.7] that there are, up to isomorphism, at most two amalgams $\left(H_{0} \stackrel{\iota}{\longleftrightarrow} B_{0} \xrightarrow{\alpha} K_{0}\right)$ with $B_{0} \alpha=B_{0}$, and that any such amalgam is isomorphic to \mathscr{A}_{0} or to $\mathscr{A}_{0, \mu_{0}}$, where

$$
\mathscr{A}_{0, \mu_{0}}=\left(H_{0} \stackrel{\iota}{\longleftrightarrow} B \xrightarrow{\mu_{0}^{*}} K_{0}\right) .
$$

Thus, either \mathscr{A}_{0} or $\mathscr{A}_{0, \mu_{0}}$ is a subamalgam of the amalgam \mathscr{A}_{σ}.
Referring again to [Fin73], there is a subgroup M of \bar{G}_{0}, containing S_{0}, such that M is a nonsplit extension of E_{16} by $\mathrm{GL}_{4}(2)$. Set $A=O_{2}(M)$, and denote by M_{0} the stabilizer in M of the unique S_{0}-invariant hyperplane E_{0} of A. Then [$O_{2}\left(M_{0}\right), M_{0}$] is homocyclic abelian of exponent 4 and rank 3, and hence $E_{0}=E$ by $4.9(\mathrm{c})$. Since $\left[O_{2}\left(M_{0}\right), E_{0}\right]=1$ we then have $O_{2}\left(M_{0}\right)=T_{2}\left\langle w_{0}\right\rangle$, by 4.3. Moreover

$$
M_{0}=\left\langle C_{M_{0}}(Z), N_{M_{0}}(U)\right\rangle=\left\langle M_{0} \cap H_{0}, M_{0} \cap K_{0}\right\rangle
$$

Let $\alpha: S_{0} \rightarrow N_{K_{\sigma}}\left(T_{2}\right)$ be the embedding of $S_{0}=S_{\sigma}$ in $N_{K_{0}}\left(T_{2}\right)$. Then $S_{0} \alpha=$ $S_{0} \leq K_{0}=K_{\sigma}$, and we have the two amalgams

$$
A_{M_{0}}=\left(M_{0} \cap H_{0} \longleftarrow S_{\sigma} \longrightarrow M_{0} \cap K_{0}\right)
$$

and

$$
\left(N_{H_{\sigma}}\left(T_{2}\right) \stackrel{\iota}{\longleftarrow} S_{0} \xrightarrow{\alpha} N_{K_{\sigma}}\left(T_{2}\right)\right)
$$

On the other hand, the reader will recall from the proof of 5.4 that if $\mathscr{A}_{M_{0}}$ is "twisted" by μ_{0}, to obtain an amalgam

$$
\left(M_{0} \cap H_{0} \stackrel{\iota}{\longleftarrow} S_{\sigma} \xrightarrow{\mu_{0}^{*}} M_{0} \cap K_{0}\right),
$$

then $\left\langle M_{0} \cap H_{0}, x^{\mu_{0}}\right\rangle$ induces on T_{2} the full automorphism group of T_{2}, of order $2^{9}\left|\mathrm{GL}_{3}(2)\right|$. We therefore conclude that, of the two amalgams \mathscr{A}_{0} and $\mathscr{A}_{0, \mu_{0}}$, only the first is a subamalgam of \mathscr{A}_{σ}. This completes the proof of (a).

Set $\mathscr{L}_{0}=z^{G_{0}}$ and denote by \mathscr{E}^{*} the set of elementary abelian subgroups F of S_{0} such that $F^{\#} \subseteq \mathscr{L}_{0}$. Denote by \mathcal{N} the set of subgroups N of \bar{G}_{0} such that $N=N_{\bar{G}_{0}}\left(O_{2}(N)\right), S_{0} \cap N \in \operatorname{Syl}_{2}(N)$, and $C_{S_{0}}\left(O_{2}(N)\right) \leq O_{2}(N)$. It is a property of Co_{3} that $x y \in \mathscr{L}_{0}$ for any two distinct commuting elements x and y of \mathscr{L}_{0} (cf. [Fin73]), from which it follows that for any $N \in \mathcal{N}$ there exists $F \in \mathscr{E}^{*}$ with $F \unlhd N$. By Lemmas 5.8 and 5.9 in [Fin73], all members of \mathscr{E}^{*} of any given order are fused in \bar{G}_{0}, each member of \mathscr{E}^{*} is normal in a Sylow 2-subgroup of \bar{G}_{0}, and if $F \in \mathscr{E}^{*}$ with $|F|=8$ then $N_{\bar{G}_{0}}(F)$ is contained in the normalizer of some $F^{*} \in \mathscr{E}^{*}$ with $\left|F^{*}\right|=16$. Then, for any $N \in \mathcal{N}$, we have $S_{0} \leq N$, and N is contained in one of the groups H_{0}, K_{0}, or M. Then 1.11 yields

$$
\begin{equation*}
\mathscr{F}_{S_{0}}\left(\mathrm{Co}_{3}\right)=\left\langle\mathscr{F} S_{0}\left(H_{0}\right), \mathscr{F}_{S_{0}}\left(K_{0}\right), \mathscr{F}_{S_{0}}(M)\right\rangle . \tag{4}
\end{equation*}
$$

Now $\left(M \cap H_{0}\right) / A$ and $\left(M \cap K_{0}\right) / A$ are distinct maximal parabolic subgroups of $M / A \cong \mathrm{GL}_{4}(2)$, and so by 1.9:

$$
\begin{equation*}
\mathscr{F}_{S_{0}}(M)=\left\langle\mathscr{F} S_{0}\left(M \cap H_{0}\right), \mathscr{F}_{S_{0}}\left(M \cap K_{0}\right)\right\rangle . \tag{5}
\end{equation*}
$$

From (4) and (5) we have $\mathscr{F}_{S_{0}}\left(\bar{G}_{0}\right)=\left\langle\mathscr{F} S_{0}\left(H_{0}\right), \mathscr{F}_{S_{0}}\left(K_{0}\right)\right\rangle$, and it follows that ${ }_{F} S_{0}\left(\bar{G}_{0}\right) \subseteq \mathscr{F}_{S_{0}}\left(G_{0}\right)$. Since \bar{G}_{0} is a homomorphic image of G_{0}, by (a), the reverse inclusion of fusion systems is obvious, and we therefore have (b).

Some well-known properties of Co_{3} (some of which were mentioned in the proof of $5.8(\mathrm{~b})$), which depend only on fusion, now yield corresponding properties of the subgroup G_{0} of G.

Corollary 5.9. Identify H_{0} and K_{0} with subgroups of G, via the morphism φ of 5.8(a), and set $G_{0}=\left\langle H_{0}, K_{0}\right\rangle$. Then
(a) G_{0} has two classes of elements of order 2.
(b) If t and t^{\prime} are distinct, commuting elements of $z^{G_{0}}$, then $t t^{\prime} \in z^{G_{0}}$.
(c) Let F be an elementary abelian 2-subgroup of G_{0}. Then $F \cap z^{G_{0}}$ is the set of nonidentity elements of a subgroup of F.
(d) For any $X \leq G_{0}$, and any subgroup F of X, denote by $\widetilde{\mathscr{E}}(X, F)$ the set of all subgroups P of X such that $F \leq P$ and $P^{\#} \subseteq z^{G_{0}}$. Write $\widetilde{\mathscr{E}}(X)$ for $\tilde{\mathscr{E}}(X, 1)$. Then $\left\{Z, U, E, E\left\langle w_{0}\right\rangle\right\}$ is a set of representatives for the orbits of G_{0} on $\widetilde{\mathscr{E}}\left(G_{0}\right)$, and for the orbits of H_{0} on $\widetilde{\mathscr{C}}\left(H_{0}, Z\right)$.

6. Discrete p-toral groups

The notion of a discrete p-toral group, and the results in this section on such groups, come from [BLO05], particularly Sections 1 and 7 of that paper. As [BLO05] is unpublished at this time, we reproduce some of its definitions and
results here, and supply sketches of proofs in special cases, for the sake of completeness.

Definition 6.1. Let p be a prime and denote by \mathbf{Z} / p^{∞} the group of all complex roots of unity whose order is a power of p. A discrete p-toral group is a p-group P with a normal subgroup P_{0} of finite index, such that P_{0} is the direct product of a finite number of copies of \mathbf{Z} / p^{∞}. Write \mathscr{D}_{p} for the class of discrete p-toral groups.

We record some facts about \mathscr{D}_{p} from [BLO05]:
Lemma 6.2. Let $P \in \mathscr{D}_{p}$. Then
(1) P has unique subgroup P^{0} which is minimal subject to the condition that $\left|P: P^{0}\right|$ be finite. (Call P^{0} the identity component of P.)
(2) P^{0} is the direct product of a finite number r of copies of \mathbf{Z} / p^{∞}. (Write $\operatorname{rk}(P)$ for r and call $\mathrm{rk}(P)$ the rank of P.)
(3) P^{0} has no proper subgroups of finite index.
(4) P is locally finite and Artinian.
(5) Subgroups and homomorphic images of P are in \mathscr{D}_{p}.
(6) Torsion subgroups of $\operatorname{Out}(P)$ are finite.
(7) Each injective homomorphism from P into P is an isomorphism.
(8) If $R \leq P$ then $R^{0} \leq P^{0}$.

Proof. As $P \in \mathscr{D}_{p}, P$ has a normal subgroup P_{0} of finite index which is the direct product of r copies of \mathbf{Z} / p^{∞} for some $0 \leq r \in \mathbf{Z}$. As \mathbf{Z} / p^{∞} has no proper subgroups of finite index, it follows that $P^{0}=P_{0}$, and (1)-(3) hold. Parts (4), (5), and (6) are 1.2, 1.3, and 1.5(a) in [BLO05], respectively. Part (7) follows as P is Artinian, and (8) follows from (3).

Lemma 6.3. Let \mathbf{F} be the field of Section 4, V a finite-dimensional vector space over \mathbf{F}, and $G \leq \mathrm{GL}(V)$. Then
(1) G is locally finite.
(2) All 2-subgroups of G are in \mathscr{D}_{2}.
(3) $\operatorname{Syl}_{2}(G) \neq \varnothing, \operatorname{Syl}_{2}(G)$ is the set of maximal 2-subgroups of G, and G is transitive on $\mathrm{Syl}_{2}(G)$.
(4) Let $S \in \operatorname{Syl}_{2}(G)$ and $P \leq S$. Then P is fully normalized in $\mathscr{F}_{S}(G)$ if and only if $N_{S}(P) \in \operatorname{Syl}_{2}\left(N_{G}(P)\right)$.
(5) $\mathscr{F}_{S}(G)$ is saturated.

Proof. The proof of this lemma comes from [BLO05, §7, particularly Lemma 7.8]. The proof is a bit easier in our special case, and we supply a sketch.

As $\operatorname{GL}(V)$ is the union of the finite groups $\mathrm{GL}(V)_{\sigma}, \sigma \in \operatorname{Aut}(\mathbf{F})$, (1) holds. Then (2) follows from (1) and from [Weh73, 2.6]. By [Weh73, 9.10], G is transitive on its maximal 2-subgroups, and such subgroups exist, and so (3) holds.

Observe that G satisfies the hypotheses of Lemma 1.6: Condition (1) of 1.6 follows from (3) applied to subgroups of $N_{G}(P)$. Condition (2) of 1.6 is satisfied by (1) and 6.2(6). Condition (3) holds by 6.2(4), and (4) holds by (1). Now 1.6 implies (4) and (5).

Remark 6.4. Let H, K, B, S be the groups defined in Sections 4 and 5. Each of these groups has a faithful finite-dimensional representation over \mathbf{F}, and so we can apply Lemma 6.3 to these groups. By 4.9 (b), S is a Sylow 2-subgroup of each of these groups. By 6.3(2), S and each of its subgroups is a discrete 2-toral group. By 6.3(5), $\mathscr{F}_{S}(X)$ is saturated for each $X \in\{H, K, B\}$ and by 6.3(3), X is transitive on $\operatorname{Syl}_{2}(X)$ where $\operatorname{Syl}_{2}(X)$ is the set of maximal 2-subgroups of X.

Let G be the group constructed in Section 5. It will be shown, in Theorem C, that there is a 2-local group $\mathscr{G}=\left(S, \mathscr{F}_{S}(G), \mathscr{L}_{S}(G)\right)$. Since S is a discrete 2-toral group, \mathscr{G} is then a 2 -local compact group, as defined in [BLO05].

7. Local subgroups and fusion in the free amalgamated product

Let \mathscr{A} be the amalgam \mathscr{A}_{λ} constructed in Section 5, and let G be the associated free amalgamated product, $G=H *_{B} K$. We shall view \mathscr{A} as being given by the inclusion maps of H, K and B into G, so that

$$
\mathscr{A}=(H \geq B \leq K) .
$$

Viewed in this way, the key point in the construction of \mathscr{A} is that the element y of K acts on T as $\lambda^{-1} y_{0} \lambda$. That is

$$
y:[a, b, c] \mapsto\left[c \lambda^{-1}, a, b \lambda\right],
$$

for all $[a, b, c] \in T$.
Recall that we have an automorphism $\sigma=\psi_{n}$ of H, with $H_{\sigma} \cong \operatorname{Spin}_{7}\left(\mathbf{F}_{q}\right)$, $q=p^{2^{n}}$, and by 4.8, S_{σ} is a Sylow 2-subgroup of H_{σ}. By 5.7, σ induces an automorphism of \mathscr{A} which induces an automorphism of G. Form the semidirect products $H\langle\sigma\rangle, B\langle\sigma\rangle$, and $K\langle\sigma\rangle$, and the amalgam

$$
\widehat{\mathscr{A}}=(H\langle\sigma\rangle \longleftarrow B\langle\sigma\rangle \longrightarrow K\langle\sigma\rangle),
$$

in which the arrows are inclusion maps. Denote the free amalgamated product of \widehat{A} by \widehat{G}. The inclusion $\mathscr{A} \rightarrow \widehat{\mathscr{A}}$ induces an isomorphism of \widehat{G} with the semidirect product $G\langle\sigma\rangle$, and we identify these groups via that isomorphism.

The following result is trivially verified.

LEMMA 7.1. Let Γ and $\hat{\Gamma}$ be the standard trees associated with the amalgams \mathscr{A} and $\widehat{\mathscr{A}}$, respectively. Then there is an isomorphism $\Gamma \longrightarrow \widehat{\Gamma}$ given by

$$
X g \mapsto X\langle\sigma\rangle g \quad \text { for } X \in\{H, B, K\} \text { and } g \in G
$$

If Γ and $\hat{\Gamma}$ are identified via this isomorphism, then the action of σ on Γ is given by

$$
(X g)^{\sigma}=X g^{\sigma} \quad \text { for } X \in\{H, B, K\} \text { and } g \in G
$$

For any $X \leq G\langle\sigma\rangle$, we write Γ_{X} or $C_{\Gamma}(X)$ for the subgraph of Γ induced on the set of fixed points of X on Γ. If $\Gamma_{X} \neq \varnothing$ then Γ_{X} is a subtree of Γ. For any graph Δ and vertex δ of Δ, we write $\Delta(\delta)$ for the set of vertices γ of Δ such that $\{\gamma, \delta\}$ is an edge of Δ. If $|\Delta(\delta)| \leq 1$ then δ is a boundary vertex of Δ, and otherwise δ is an interior vertex of Δ.

For any subtree Δ of Γ, let $\widetilde{\Delta}$ be the graph obtained by deleting the boundary vertices from Δ. Thus either $\widetilde{\Delta}$ is a tree or Δ has at most one edge, in which case $\widetilde{\Delta}$ is empty.

Set $G_{1}=H$ and $G_{2}=K$, and denote by Γ_{i} the set of vertices of Γ given by the cosets of G_{i} in G. For any vertex γ of Γ, write $Z(\gamma)$ for the largest normal 2-subgroup of G_{γ}. Define γ_{i} to be the vertex of Γ given by the coset G_{i}.

Lemma 7.2. Let γ be a vertex of Γ.
(a) If $\gamma \in \Gamma_{1}$ then $Z(\gamma)=Z\left(G_{\gamma}\right)$ is of order 2.
(b) If $\gamma \in \Gamma_{2}$ then $|\Gamma(\gamma)|=3$, and $Z(\gamma)$ is a fours group, whose nonidentity cyclic subgroups are the groups $Z(\delta), \delta \in \Gamma(\gamma)$.
(c) If $\gamma \in \Gamma_{2}$ then $C_{G_{\gamma}}(Z(\gamma))$ is the pointwise stabilizer in G of $\Gamma(\gamma)$.

Proof. The stabilizer of any vertex in Γ_{i} is conjugate in G to G_{i}, and the stabilizer of any edge is conjugate to B. All parts of the lemma follow trivially from these observations.

Lemma 7.3. Let $X \leq G\langle\sigma\rangle$ and let $\gamma \in \Gamma_{2} \cap \Gamma_{X}$. Then:
(a) γ is an interior vertex of Γ_{X} if and only if X centralizes $Z(\gamma)$.
(b) Either of the following conditions implies that the inclusion maps from $N_{H}(X)$ and $N_{K}(X)$ into $N_{G}(X)$ induce an isomorphism of $N_{H}(X) *_{N_{B}(X)} N_{K}(X)$ with $N_{G}(X)$.
(i) $X \leq B^{0}$, and $X^{H} \cap B=X^{K} \cap B=X^{B}$.
(ii) $X \leq B^{0}\langle\sigma\rangle$ and $X^{H\langle\sigma\rangle} \cap B^{0}\langle\sigma\rangle=X^{K\langle\sigma\rangle} \cap B^{0}\langle\sigma\rangle=X^{B^{0}}$.

Moreover, $N_{G}(X)$ acts edge-transitively on Γ_{X} in case (b)(i), and edge-transitively on $\widetilde{\Gamma}_{X}$ in case (b)(ii).

Proof. Set $\Delta=\Gamma_{X}$. Then γ is an interior vertex of Δ if and only if X fixes at least two distinct vertices α and β in Γ_{X}. Since $Z(\gamma)=Z\left(G_{\gamma}^{0}\right)=Z_{\alpha} Z_{\beta}$, we obtain (a).

Set $N=\left\langle N_{G_{1}}(X), N_{G_{2}}(X)\right\rangle$, and assume that either (i) or (ii) holds. Take $\Lambda=\Delta$ in case (i), and $\Lambda=\widehat{\Delta}$ in case (ii). Then $N_{G}(X)$ acts on Λ, and $N \leq N_{G}(X)$. By hypothesis, $X \leq C_{B\langle\sigma\rangle}(U)=B^{0}\langle\sigma\rangle$, so that X fixes $\Gamma\left(\gamma_{2}\right)$ pointwise, and hence $\gamma_{2} \in \Lambda$. In (i), a standard argument (cf. [Asc86, 5.21]) shows that $N_{G_{i}}(X)$ acts transitively on $\Lambda\left(\gamma_{i}\right)$ for $i=1$ and 2 . Assume that we are in case (ii) and that $\left(\gamma_{i}, \gamma_{3-i}\right)$ is an edge in $\Lambda^{h^{-1}}$ for some $h \in G_{i}\langle\sigma\rangle$. Then $X \leq(B\langle\sigma\rangle)^{h}$, and so $X^{h^{-1}} \leq B\langle\sigma\rangle$. Then $X^{h^{-1}} \leq C_{B\langle\sigma\rangle}(U)=B^{0}\langle\sigma\rangle$ by (a). The hypotheses of (ii) then yield $h \in B^{0}\langle\sigma\rangle N_{G_{i}\langle\sigma\rangle}(X)$, so that $N_{G_{i}\langle\sigma\rangle}(X)$ acts transitively on $\Lambda\left(\gamma_{i}\right)$.

We now claim that N is transitive on the set of edges of Λ. As Λ is connected, it suffices to show for each $\lambda \in \Lambda$ that N_{λ} is transitive on $\Lambda(\lambda)$. Pick i and g with $\lambda=\gamma_{i} g$ and set

$$
d(\lambda)=\min \left\{d\left(\lambda, \gamma_{j}\right) \mid j=1,2\right\}
$$

Choose λ to be a counterexample with $d=d(\lambda)$ minimal. By the preceding paragraph, $d>0$. Thus there exists $\alpha \in \Lambda(\lambda)$ with $d(\alpha)<d$, and N_{α} is transitive on $\Lambda(\alpha)$. Then there is $\beta \in \Lambda(\alpha)$ with $d(\beta)<d$, contrary to the choice of λ. This completes the proof of the claim.

As the stabilizer $N_{B}(X)$ of an edge of Λ is contained in N, we now obtain $N=N_{G}(X)$. Now [Ser80, Th. 6, p. 32] yields the conclusions concerning edgetransitivity, and the identification of $N_{H}(X) *_{N_{B}(X)} N_{K}(X)$ with N.

Lemma 7.4. We have the following.
(a) $C_{\widetilde{H}}(\sigma)=H_{\sigma}$.
(b) The inclusion maps from H_{σ} and K_{σ} into G_{σ} induce an isomorphism of G_{σ} with $H_{\sigma} *_{B_{\sigma}} K_{\sigma}$, and G_{σ} acts edge-transitively on the tree $\widetilde{\Gamma}_{\sigma}$.
(c) Define the subgroups G_{0}, H_{0}, K_{0}, and B_{0} of G_{σ} as in 5.8. Then the inclusion maps from H_{0} and K_{0} into G_{0} induce an isomorphism of G_{0} with $H_{0} *_{B_{0}} K_{0}$, the universal completion of the amalgam \mathscr{A}_{0} of subgroups of Co_{3}.
Proof. Let $h \in H$ such that $\sigma^{h} \in B^{0} \sigma$. By Lang's Theorem there exists $b \in \widetilde{B}^{0}$ such that $\sigma^{h}=\sigma^{b}$. Then $h b^{-1} \in C_{\widetilde{H}}(\sigma)=H_{\sigma}$ as $\sigma=\xi_{n}$. Thus (a) holds and $b \in H$. Here $b \in B^{0}$ since $H \cap \widetilde{B}^{0}=B^{0}$, and so $\sigma^{H} \cap B^{0}=\sigma^{B^{0}}$. Since $K=C_{K}(\sigma) B^{0}$, we also have $\sigma^{K} \cap B^{0}=\sigma^{B^{0}}$. Now by 7.3(b), $G_{\sigma}=\left\langle H_{\sigma}, K_{\sigma}\right\rangle$ and G_{σ} is edgetransitive on the tree $\widetilde{\Gamma}_{\sigma}$. Since H_{σ} and K_{σ} fix adjacent vertices in $\widetilde{\Gamma}_{\sigma}$, the lemma now follows from [Ser80, Th. 6, p. 32]. The same theorem implies (c).

From now on, $G_{0}=H_{0} *_{B_{0}} K_{0}$ is the subgroup of G_{σ} defined in 7.4(c), such that G_{0} is the universal completion of an amalgam of subgroups of Co_{3}.

Lemma 7.5. Let $D \in\left\{G, G_{\sigma}, G_{0}\right\}$, set $D_{i}=D \cap G_{i}, i=1,2$, and set $R=S \cap D$. Then:
(a) Hypotheses 3.4 and 3.8 hold, with D, D_{i} and $D \cap B$ in the roles of G, G_{i} and B, and with R in the role of S.
(b) R is a Sylow 2-subgroup of D.
(c) If D is G or G_{σ} then Hypothesis 3.12 holds.

Proof. When R is finite so is D_{i}, and by construction R is a Sylow 2-subgroup of D_{i} and of $D \cap B$. If R is infinite then $R=S$, and by Remark $6.4, R$ is a Sylow 2-subgroup of D_{i} and of $D \cap B$. In each case Z and U are characteristic subgroups of R, so that $N_{D_{i}}(R) \leq D_{1} \cap D_{2}$. A free amalgamated product decomposition for G_{σ} is given by 7.4(b), and for G and G_{0} by the definition of these groups. Thus, Hypothesis 3.4 holds. The verification of the first three parts of Hypothesis 3.8 is immediate in each case. Part (4) of Hypothesis 3.8 holds by Sylow's Theorem when D is finite, and by Remark 6.4 when $D=G$. Thus (a) is established. By 3.8(4), $R^{D_{i}} \cap B=R^{D_{i} \cap B}$. Part (b) follows from (a), 3.5(c), and this observation. Finally, when $D=G$ or G_{σ}, Hypothesis 3.12 follows from part (a) of Lemma 7.6 below.

For any subgroup X of G, and any elementary abelian 2-subgroup F of X, denote by $\mathscr{E}_{n}(X, F)$ the set of elementary abelian 2 -subgroups of X containing F, of order 2^{n}. Write $\mathscr{E}_{n}(X)$ for $\mathscr{E}_{n}(X, 1)$. Recall from the preceding sections that

$$
Z \leq U \leq E \leq A \in \mathscr{E}_{4}\left(G_{\sigma}\right)
$$

is a chain of elementary abelian 2-groups, where $Z=Z(H)=\langle z\rangle, U=Z\left(B^{0}\right)=$ $\left\langle z, z_{1}\right\rangle, E=\left\{e \in T \mid e^{2}=1\right\}$, and $A=E\left\langle w_{0}\right\rangle$.

Lemma 7.6. The following hold.
(a) $\mathscr{E}_{2}(H, Z)=U^{H}$, and $\mathscr{E}_{2}\left(H_{\sigma}, Z\right)=U^{H_{\sigma}}$.
(b) $\mathscr{E}_{1}(G)=Z^{G}$, and $\mathscr{E}_{1}\left(G_{\sigma}\right)=Z^{G_{\sigma}}$.

Proof. By 4.2 there is a unique class $z_{1}^{\widetilde{H}}$ of noncentral involutions in \tilde{H}. Then since $C_{\tilde{H}}\left(z_{1}\right)=\widetilde{B}^{0}$ is connected, it follows from Lang's Theorem that \widetilde{H}_{σ} has a unique class of noncentral involutions. As $\tilde{H}_{\sigma}=H_{\sigma}$, (a) follows.

Since K_{σ} is transitive on $U^{\#}$, it follows from (a) that all involutions in S (resp. S_{σ}), are fused in $K H$ (resp $K_{\sigma} H_{\sigma}$). By 7.5(b), S and S_{σ} are Sylow in G and G_{σ}, respectively, so (b) holds.

LEMMA 7.7. We have $E^{B^{0}}=\mathscr{E}_{3}(B, U), E^{H}=\mathscr{E}_{3}(H, Z)$, and $E^{G}=\mathscr{E}_{3}(G)$.
Proof. Let $F \in \mathscr{E}_{3}(B, U)$ and $f \in F-U$. Then $C_{B}(U)=B^{0}=L_{1} L_{2} L_{3}$, so that $f=f_{1} f_{2} f_{3}$ with $f_{i} \in L_{i}$, and $1=f^{2}=f_{1}^{2} f_{2}^{2} f_{3}^{2}$. Since $U^{\#}$ is the
set of involutions in $L_{i} L_{j}$ for $i \neq j$, it follows that f_{i} is an element of order 4 in L_{i}. Since L_{i} is transitive on its elements of order 4, involutions in $B^{0}-U$ are conjugate in B^{0}. Thus $E^{B^{0}}=\mathscr{E}_{3}\left(B^{0}, U\right)$. The lemma now follows from 7.6.

Lemma 7.8. Set $B(\sigma)=\left\langle C_{L_{i}}(\sigma) \mid 1 \leq i \leq 3\right\rangle$. Then
(a) There exists an involution v in $S \cap B_{\sigma}^{0}-B(\sigma)$ such that $B_{\sigma}^{0}=B(\sigma)\langle v\rangle$, and v induces a diagonal automorphism on each $C_{L_{i}}(\sigma)$.
(b) $E^{B(\sigma)}=\mathscr{E}_{3}(B(\sigma), U)$ and $\mathscr{E}_{3}\left(B_{\sigma}, U\right)=E^{B_{\sigma}} \cup\left(E^{\prime}\right)^{B(\sigma)}$, where $E^{\prime}=U\langle v\rangle$.
(c) $\mathscr{E}_{3}\left(H_{\sigma}, Z\right)$ is the disjoint union of $E^{H_{\sigma}}$ and $\left(E^{\prime}\right)^{H_{\sigma}}$.
(d) $E E^{\prime}$ is a Sylow 2-subgroup of $C_{H_{\sigma}}\left(E^{\prime}\right)$, and is elementary abelian of order 16.
(e) For each $F \in\left\{E, E^{\prime}\right\}$, we have $\operatorname{Aut}_{H_{\sigma}}(F)=C_{\operatorname{Aut}(F)}(Z)$ and $\operatorname{Aut}_{G_{\sigma}}(F)=$ $\operatorname{Aut}(F)$.

Proof. Recall from Section 4 that we may regard T as a set of equivalence classes $\left[a_{1}, a_{2}, a_{3}\right]$. Let a be a 2-element in \mathbf{F} with $a^{\sigma}=-a$, and set $f=[a, a, a]$. Then $f \in\left(S_{\infty} \cap B_{\sigma}^{0}\right)-B(\sigma)$, and since w_{0} inverts S_{∞}, the element $v:=f w_{0}$ is an involution in $\left(S \cap B_{\sigma}^{0}\right)-B(\sigma)$. Recall from 4.4 that \widetilde{B}^{0} is $\widetilde{J} /\langle i\rangle$, where \widetilde{J} is the direct product of three copies of $\mathrm{SL}_{2}(\overline{\mathbf{F}})$ and i is an involution diagonally embedded in $Z(\widetilde{J})$. Thus \widetilde{J} is simply connected, so that $B(\sigma)=\widetilde{J}_{\sigma} /\langle i\rangle$, and $B(\sigma)$ is of index $|i|=2$ in B_{σ}^{0}. Then $B_{\sigma}^{0}=B(\sigma)\langle v\rangle$, completing the proof of (a).

Let $X \in\left\{\widetilde{B}^{0}, \tilde{H}\right\}$, and set

$$
\Sigma=\left\{(F, \tau) \mid F \in E^{X}, \tau \in \sigma^{X},[F, \tau]=1\right\}
$$

Set

$$
\Sigma_{0}=\left\{\tau \in \sigma^{X} \mid(E, \tau) \in \Sigma\right\} \quad \text { and } \quad \Sigma_{1}=\left\{F \in E^{X} \mid(F, \sigma) \in \Sigma\right\}
$$

There is a natural bijection β between the set of $N_{X}(E)$-orbits on Σ_{0} and the set of $C_{X}(\sigma)$-orbits on Σ_{1}. Explicitly, if $\left\{\sigma^{g_{i}} \mid i \in I\right\}$ is a set of representatives for the orbits of $N_{X}(E)$ on Σ_{0}, then $\left\{E^{g_{i}^{-1}} \mid i \in I\right\}$ is a set of representatives for the orbits of $C_{X}(\sigma)$ on Σ_{1}. By $4.3(\mathrm{~d}), N_{\widetilde{H}}(E)=\widetilde{T} W$, so that $N_{X}(E)=\widetilde{T}(W \cap X)$.

Let $\tau \in \Sigma_{0}$. Then

$$
\tau \in C_{X\langle\sigma\rangle}(E) \cap \sigma^{X} \subseteq \widetilde{T}\left\langle w_{0}\right\rangle \sigma=\widetilde{T} \sigma \cup \widetilde{T} w_{0} \sigma
$$

When we apply Lang's Theorem to the connected algebraic group \widetilde{T}, we find that \widetilde{T} is transitive on $\widetilde{T} \sigma$ and $\widetilde{T} w_{0} \sigma$. Since W centralizes both σ and w_{0}, we conclude that $\widetilde{T} \sigma$ and $\widetilde{T} w_{0} \sigma$ are the orbits for $N_{X}(E)$ on Σ_{0}, with representatives $\left\{\sigma, w_{0} \sigma\right\}$. Applying Lang's Theorem to the connected group \widetilde{B}^{0}, we obtain an element $g \in X$ such that $\left(w_{0} \sigma\right)^{g}=\sigma$.

When we apply the bijection $\beta, C_{X}(\sigma)$ has two orbits on Σ_{1}, with representatives E and E^{g}. By 7.7, $\Sigma_{1}=\mathscr{E}_{3}\left(C_{X}(\langle\sigma, Z(X)\rangle)\right.$. Thus, $C_{X}(\sigma)$ has two orbits on $\mathscr{E}_{3}(X, Z(X))$, with representatives E and E^{g}. In the case that $X=\widetilde{B}^{0}$ we have $C_{X}(\sigma)=B_{\sigma}^{0}$ by 6.4(a), and then since E is in the normal subgroup $B(\sigma)$ of $C_{X}(\sigma)$, but E^{\prime} is not, it follows that E and E^{\prime} are representatives for the two orbits of B_{σ}^{0} on $\mathscr{E}_{3}\left(B_{\sigma}^{0}, U\right)$. Since $\left[E, E^{\prime}\right]=1$, and $B^{0} \sigma=B(\sigma) E^{\prime}$ by (a), these are also the orbits for $B(\sigma)$, establishing (b). In particular, E^{\prime} is fused to E^{g} in B_{σ}, and so E^{\prime} is not fused to E in H_{σ}. In the case that $X=\widetilde{H}$ we get $C_{X}(\sigma)=H_{\sigma}$ by 7.4(a), and this yields (c).

Recall that $\sigma=\psi_{n}$ for some $n \geq 0$. Set $q=p^{2^{n}}$. Let $\delta= \pm 1$ with $q \equiv \delta$ $\bmod 8$. Then T_{σ} is homocyclic abelian of rank 3 and order $(q-\delta)^{3}$, and $C_{H_{\sigma}}(E)=$ $T_{\sigma}\left\langle w_{0}\right\rangle$ by 4.3(d). On the other hand, we have seen that $\left(E, w_{0} \sigma\right) \in \Sigma_{0}$. As w_{0} inverts $\widetilde{T}, C_{T}\left(w_{0} \sigma\right)$ is homocyclic abelian of rank 3 and order $(q+\delta)^{3}$. In particular, E is a Sylow 2-subgroup of $C_{T}\left(w_{0} \sigma\right)$. Therefore a Sylow 2-subgroup of $C_{H}\left(w_{0} \sigma\right) \cap C_{H}(E)$ is of order at most 16 . Since $\left[E, E^{\prime}\right]=1$, (d) follows.

From 4.3, $\operatorname{Aut}_{T W}(E)=C_{\operatorname{Aut}(E)}(Z)$, and hence $\operatorname{Aut}_{T W}(E)=\operatorname{Aut}_{H}(E)$. Similarly, since $W \leq \widetilde{H}_{w_{0} \sigma}$, we have

$$
\operatorname{Aut}_{\tilde{H}_{w_{0} \sigma}}(E)=C_{\operatorname{Aut}(E)}(Z)
$$

Conjugating by the element g of \widetilde{B}^{0} with $\left(w_{0} \sigma\right)^{g}=\sigma$, we obtain

$$
\operatorname{Aut}_{\tilde{H}_{\sigma}}\left(E^{g}\right)=C_{\mathrm{Aut}\left(E^{g}\right)}(Z)
$$

Since $[E, y]=\left[E^{\prime}, y\right]=U$, (e) holds.
Lemma 7.9. The following hold.
(a) $\mathscr{E}_{5}(G)=\varnothing$.
(b) $\mathscr{E}_{4}(X)=A^{X}$ for $X \in\{G, H\}$, and $\mathscr{C}_{4}\left(B^{0}\right)=A^{B^{0}}=A^{K}$.
(c) $\operatorname{Aut}_{H}(A)=C_{\operatorname{Aut}(A)}(Z)$, and $A=C_{H}(A)$.

Proof. Let Y be H or B^{0}, and let A^{\prime} be an elementary abelian subgroup of Y of maximal order. Then $Z(Y) \leq A^{\prime}$, and after conjugation in Y we may assume, by 7.7, that $E \leq A^{\prime}$. Then $A^{\prime} \leq T\left\langle w_{0}\right\rangle$, by $4.3(\mathrm{~d})$, so that $\left|A^{\prime}\right|=16$. Since H contains a Sylow 2 -subgroup of G, by $7.5(\mathrm{~b})$, we obtain (a). Every element of T is a square, so since w_{0} acts on T as inversion, all elements in $T w_{0}$ are fused by T. Thus, A^{\prime} is fused to A via T, and this yields (b).

By 4.3(d), $C_{H}(A)=C_{H}(E) \cap C_{H}\left(w_{0}\right)=C_{T\left\langle w_{0}\right\rangle}\left(w_{0}\right)=A$. Since $w_{0} \in Z(W)$ and $W \leq N_{H}(T) \leq N_{H}(E)$, we have $W \leq N_{H}(A)$. Set $T_{1}=\left\{t \in T \mid t^{4}=1\right\}$. Then $\left[T_{1}, w_{0}\right]=E$, and so $T_{1} \leq N_{H}(A)$ and T_{1} induces on A the subgroup $X(E)$ of $\operatorname{Aut}(A)$ consisting of all transvections with axis E.

Let F be a hyperplane of A containing Z. Then F is conjugate to E in H by 7.7. It follows that $X(F) \leq \operatorname{Aut}_{H}(A)$ for all such F. Since

$$
\left.C_{\text {Aut }(A)}(Z)=\langle X(F)| F \text { a hyperplane of } A \text { over } Z\right\rangle
$$

we obtain (c).
Lemma 7.10. Set $M=N_{G}(A)$, and for any subgroup X of G set $M_{X}=$ $M \cap X$. Then the following hold.
(a) The inclusion maps from M_{H} and M_{K} into M induce an isomorphism $M \longrightarrow$ $M_{H} *_{M_{B}} M_{K}$, and M is edge-transitive on the tree $\widetilde{\Gamma}_{A}$.
(b) M is contained in the subgroup G_{0} of G defined in 5.8(b). In particular $M \leq G_{\sigma}$.
(c) There is a surjective homomorphism $\phi_{A}: M \longrightarrow M_{0}$, where M_{0} is a nonsplit extension of an elementary abelian group of order 16 by GL(4, 2), and such that $\operatorname{ker}\left(\phi_{A}\right) \cap M_{H}=\operatorname{ker}\left(\phi_{A}\right) \cap M_{K}=1$.
(d) For any ϕ_{A} satisfying the conditions in (c), we have $C_{G}(A)=\operatorname{ker}\left(\phi_{A}\right) \times A$, and $\operatorname{ker}\left(\phi_{A}\right)$ acts freely on Γ.

Proof. The induced isomorphism of M with $M_{H} *_{M_{B}} M_{K}$ is immediate from 7.3(b) and 7.9(b). The edge-transitivity of M on $\widetilde{\Gamma}_{A}$ is given by the final statement in 7.3, so that (a) holds.

By 5.8(a), there are maximal subgroups H_{0} and K_{0} of the group Co_{3} such that H_{0} may be regarded as a subgroup of H_{σ}, and K_{0} as a subgroup of K_{σ}, in such a way that the resulting amalgam $\mathscr{A}_{0}=\left(H_{0} \geq B_{0} \leq K_{0}\right)$ of subgroups of G_{σ} is isomorphic to the corresponding amalgam of subgroups of Co_{3}. Set $M_{0}=N_{\mathrm{Co}_{3}}(A)$. Then $M_{0} / A \cong \mathrm{GL}_{4}(2)$, and M_{0} does not split over A, as one finds from the list of maximal subgroups of Co_{3} in [Fin73]. Moreover, as seen in the proof of 5.8 , we have $M_{0}=\left\langle M_{0} \cap H_{0}, M_{0} \cap K_{0}\right\rangle$, as subgroups of Co_{3}. As subgroups of G, we have $M_{0} \cap H=M_{H}$ and $M_{0} \cap K=M_{K}$, so it follows from (a) that $M \leq G_{\psi_{0}} \leq G_{\sigma}$. Moreover, (a) implies that M_{0} is a homomorphic image of M, via a homomorphism ϕ_{A} whose restriction to each of M_{H} and M_{K} is the "identity" map. In particular, the restriction of ϕ_{A} to $M_{H} \cup M_{K}$ is faithful, and this yields (b) and (c).

From (c), it is immediate that $C_{G}(A)=\operatorname{ker}\left(\phi_{A}\right) \times A$. Since M is edgetransitive on Γ_{A}, and since $\operatorname{ker}\left(\phi_{A}\right)$ intersects both H and K trivially, it follows that $\operatorname{ker}\left(\phi_{A}\right)$ acts freely on Γ_{A}. That is, every nonidentity element of $\operatorname{ker}\left(\phi_{A}\right)$ induces a hyperbolic isometry of Γ_{A}, and hence also a hyperbolic isometry of Γ, by 3.3. Thus, (d) holds.

Set $R_{0}=S_{\infty, \sigma}$ and $R_{1}=N_{S_{\infty}}\left(R_{0}\left\langle w_{0}\right\rangle\right)$. Then R_{0} has index 8 in R_{1}. Fix a set \mathbf{X} of coset representatives for R_{0} in R_{1}, and recall that q_{0} denotes the exponent
of R_{0}. Then

$$
\mathbf{X}=\left\{x_{e} \mid e \in E\right\}
$$

where $x_{e}^{q_{0}}=e$. Set

$$
A_{e}=A^{x_{e}}, \quad e \in E
$$

and

$$
\mathscr{E}=\mathscr{E}_{4}\left(R_{0}\left\langle w_{0}\right\rangle\right)
$$

All elements of $R_{0} w_{0}$ are fused by R_{1}, so R_{1} is transitive on \mathscr{E}. Since $N_{R_{1}}(A) \leq$ R_{0}, R_{0} has $\left|R_{1}: R_{0}\right|=8$ orbits on \mathscr{E} and $\left\{A_{e} \mid e \in E\right\}$ is a set of representatives for those orbits.

Every subgroup of T is σ-invariant, so each $\left\langle x_{e}\right\rangle$ is σ-invariant. Since σ centralizes x_{e}^{2} and does not centralize x_{e}, we obtain

$$
\begin{equation*}
\sigma^{x_{e}}=e \sigma \quad \text { and } \quad(e \sigma)^{x_{e}}=\sigma \quad \text { for all } e \in E \tag{*}
\end{equation*}
$$

Lemma 7.11. For each $e \in E$:
(a) $\operatorname{Aut}_{H_{\sigma}}\left(A_{e}\right)=C_{\operatorname{Aut}\left(A_{e}\right)}(\langle z, e\rangle)$,
(b) $\operatorname{Aut}_{K_{\sigma}}\left(A_{e}\right)=N_{\operatorname{Aut}\left(A_{e}\right)}(U) \cap C_{\operatorname{Aut}\left(A_{e}\right)}(e)$, and
(c) $\operatorname{Aut}_{G_{\sigma}}\left(A_{e}\right)=C_{\mathrm{Aut}\left(A_{e}\right)}(e)$.

Proof. For any $e \in E$, set $\sigma_{e}=e \sigma$, regarded as an automorphism of G. By 7.10, $M:=N_{G}(A) \leq G_{\sigma}$ and $\operatorname{Aut}_{G}(A)=\operatorname{Aut}(A)$, so that

$$
\operatorname{Aut}_{G_{\sigma_{e}}}(A)=C_{\operatorname{Aut}_{G}(A)}(e)=C_{\operatorname{Aut}(A)}(e)
$$

Then as $A_{e}=A^{x_{e}}$, conjugating this equality by x_{e} and appealing to $(*)$, we conclude that (c) holds.

Next, $\operatorname{Aut}_{H}(A)=C_{\operatorname{Aut}(A)}(Z)$ by 7.9(c), so that

$$
\operatorname{Aut}_{H_{\sigma_{e}}}(A)=C_{\mathrm{Aut}(A)}(\langle z, e\rangle)
$$

Since x_{e} centralizes $\langle z, e\rangle$, conjugation by x_{e} yields (a).
As $\operatorname{Aut}_{G_{\sigma}}(A)=\operatorname{Aut}_{G}(A)=\operatorname{Aut}(A)$, as $y \in K$, and as $N_{H}(U) \leq K$, we conclude that $\operatorname{Aut}_{K_{\sigma}}(A)=N_{\text {Aut }(A)}(U)$. Then

$$
\operatorname{Aut}_{K_{\sigma_{e}}}(A)=N_{\operatorname{Aut}(A)}(U) \cap C_{\operatorname{Aut}(A)}(e),
$$

and conjugation by x_{e} yields (b).
Lemma 7.12. Let $u \in U-Z$ and let $e \in E-U$. Then
(a) $\left\{A, A_{z}, A_{u}\right\}$ is a set of representatives for the orbits of H_{σ} on $\mathscr{E}_{4}\left(H_{\sigma}\right)$, and H_{σ} fuses A_{u} and A_{e}.
(b) $\left\{A, A_{z}, A_{e}\right\}$ is a set of representatives for the orbits of K_{σ} on $\mathscr{E}_{4}\left(K_{\sigma}, U\right)$, and K_{σ} fuses A_{z} and A_{u}.
(c) $\left\{A, A_{u}\right\}$ is a set of representatives for the orbits of G_{σ} on $\mathscr{E}_{4}\left(G_{\sigma}\right)$.

Proof. Since $S_{\sigma} \in \operatorname{Syl}_{2}\left(G_{\sigma}\right)$, each $A \in \mathscr{E}_{4}\left(G_{\sigma}\right)$ is fused under G_{σ} into S_{σ}, and then by 7.6 , we may take $U \leq A \leq S_{\sigma}$. Then by parts (b) and (d) of 7.8 , we may take $E \leq A$. Since $C_{S_{\sigma}}(E)=R_{0}\left\langle w_{0}\right\rangle$, we are reduced to the problem of fusion via H_{σ}, K_{σ}, and G_{σ} on \mathscr{E}.

Notice that W has the three orbits $\{1\},\{z\}$, and $E-Z$ on E, and that $S_{\sigma}\langle y\rangle$ has the three orbits $\{1\}, U^{\#}$ and $E-U$ on E. Hence there are three orbits for $S_{\sigma} W$ on \mathscr{E}, with representatives A, A_{z}, and A_{u}, and three orbits for $S_{\sigma}\langle y\rangle$ on \mathscr{E}, with representatives A, A_{z}, and A_{e}. Since $\left\langle S_{\sigma}, W, y\right\rangle$ is transitive on $\left\{A_{f} \mid f \in A^{\#}\right\}$, it is now enough to show that there is no further fusion among these groups. As $\operatorname{Aut}_{G_{\sigma}}(A)=\operatorname{Aut}(A), A$ is not fused to A_{z} or to A_{u} in G_{σ}, by 7.11(c). Since A_{z} is not fused to A_{u} in H_{σ} by 7.11(a), and A_{z} is not fused to A_{e} in K_{σ}, by 7.11(b), the lemma is proved.

Lemma 7.13. Set $N=N_{G}\left(T_{2}\right)$, and for any subgroup X of G set $N_{X}=$ $N \cap X$. Let ϕ_{A} be defined as in 7.10, and set $D=C_{\operatorname{ker}\left(\phi_{A}\right)}\left(T_{2}\right)$. Then the following hold.
(a) The inclusion maps from N_{H} and N_{K} into N induce an isomorphism of N with $N_{H} *_{N_{B}} N_{K}$. In particular, N is generated by N_{H} and N_{K}.
(b) N is edge-transitive on the tree $\Gamma_{S_{\infty}}$.
(c) $N=N_{G}(T)=N_{G}\left(T\left\langle w_{0}\right\rangle\right)$.
(d) $C_{G}\left(T_{2}\right)=C_{G}\left(S_{\infty}\right)=O(T) D \times S_{\infty}$, and $O(T) D$ is N-invariant.
(e) $\operatorname{Aut}_{G}\left(S_{\infty}\right) \cong \mathrm{GL}(3,2) \times \mathbf{Z}_{2}$.
(f) $\mathscr{F}_{C S}(E)\left(N_{H}\right)=\mathscr{F}_{C_{S}}(E)\left(C_{N}(Z)\right)$, and $\mathscr{F}_{C_{S \sigma}(E)}\left(N_{H, \alpha}\right)=\mathscr{F}_{C_{S_{\sigma}}(E)}\left(C_{N_{\sigma}}(Z)\right)$.

Proof. By 4.9(b) S is a Sylow 2-subgroup of B, and by 4.9(c) T_{2} is weakly closed in S with respect to G. Therefore

$$
T_{2}^{B}=\left\{T_{2}^{g} \mid T_{2}^{g} \leq B, g \in H \cup K\right\}
$$

Now (a) and (b) follow from 7.3(b).
Set $T^{*}=T\left\langle w_{0}\right\rangle$. Since $N_{H}\left(T_{2}\right) \leq N_{H}(E)=T W$ by 4.3(d), we have $N_{H}=$ $N_{H}(T)=N_{H}\left(T^{*}\right)$. Then $N_{B}=N_{B}(T)=N_{B}\left(T^{*}\right)$, and $N_{K}=N_{B}\langle y\rangle=N_{K}(T)=$ $N_{K}\left(T^{*}\right)$. It follows now from (a) that $N \leq N_{G}(T)$ and $N \leq N_{G}\left(T^{*}\right)$. Since the reverse inclusions are obvious, we obtain (c).

Since $\langle W, y\rangle \leq N_{G}(A) \cap N_{G}\left(T_{2}\right), D$ is $\langle W, y\rangle$-invariant, and evidently so is $O(T)$. Let $x \in C_{G}\left(S_{\infty}\right)$. Then (c) implies that $w_{0}^{x} \in T^{*}-T$, and since T is transitive on $T w_{0}$, there exists $t \in T$ with $w_{0}^{x t}=w_{0}$. Thus $x t \in C_{G}(A)$, so it follows from 7.10(d) that $x t=d a$ for some $d \in \operatorname{ker}\left(\phi_{A}\right)$ and some $a \in A$. Since $T_{2} \leq N_{G}(A)$, we have $\left[T_{2}, d\right] \leq \operatorname{ker}\left(\phi_{A}\right)$, and since $\operatorname{ker}\left(\phi_{A}\right)$ acts freely on Γ we have $T \cap \operatorname{ker}\left(\phi_{A}\right)=1$. Let $s \in T_{2}$. Then

$$
1=[s, x t]=[s, d a]=[s, a][s, d]^{a},
$$

where $[s, a] \in T_{2}$ and where $[s, d]^{a} \in \operatorname{ker}\left(\phi_{A}\right)$. It follows that $\left[T_{2}, a\right]=\left[T_{2}, d\right]=1$, and so $a \in E$ and $d \in D$. Now $x=d a t^{-1} \in D T$, and thus $C_{G}\left(S_{\infty}\right) \leq D T$. By 5.1 and (a), $\left[D, S_{\infty}\right]=1$, so that $C_{G}\left(S_{\infty}\right)=D T$. Since $D \cap T=1$ we have $S_{\infty} \cap O(T) D=1$, and thus $O(T) D$ is a complement to S_{∞} in $C_{G}\left(S_{\infty}\right)$. This completes the proof of (d). Part (e) follows from (a) and Theorem 5.2.

Let $P \leq S$ and let $g \in N_{G}(P, S) \cap C_{N}(Z)$. Then $g=n d$ for some $n \in N_{H}$ and $d \in D$, by (d). But $C_{S}(E)=S_{\infty}\left\langle w_{0}\right\rangle$, and $w_{0} \in A \leq C_{G}(D)$, so $C_{S}(E)$ centralizes D. Thus d centralizes P, so $c_{g}=c_{n}$ on P, establishing (f).

8. Centric subgroups and signalizer functors

We continue the hypotheses and the notation of Sections 4, 5, and 7. Thus \mathscr{A}_{σ} is the amalgam $\left(H_{\sigma} \longleftarrow B_{\sigma} \longrightarrow K_{\sigma}\right)$, and \mathscr{A}_{0} is the amalgam $\left(H_{0} \longleftarrow B_{0} \longrightarrow K_{0}\right)$ given by 5.8. As in 7.4, we regard \mathscr{A}_{0} as a subamalgam of $\mathscr{A}_{\sigma}, H_{0}$ and K_{0} as subgroups of G_{σ}; and we set $G_{0}=\left\langle H_{0}, K_{0}\right\rangle$ and $S_{0}=S \cap G_{0}$.

There is a fair amount of notation which we now need to establish, and which will remain fixed in the remainder. First, we set

$$
\mathscr{F}=\mathscr{F}_{S}(G), \quad \mathscr{F}_{\sigma}=\mathscr{F}_{\sigma}\left(G_{\sigma}\right), \quad \mathscr{F}_{0}=\mathscr{F}_{S_{0}}\left(G_{0}\right) .
$$

Let D be one of the groups G, G_{σ}, or G_{0}, and let \mathscr{D} be the fusion system $\mathscr{D}=\mathscr{F} S \cap D(D)$. For any subgroup Y of G such that $S \cap D$ is a Sylow 2-subgroup of $Y \cap D$, we write Y_{D} for $Y \cap D$, and \mathscr{D}_{Y} for $\mathscr{F}_{S}\left(Y_{D}\right)$.

For any subgroup P of S_{D}, set

$$
Z_{P}=\left\langle z^{D} \cap Z(P)\right\rangle
$$

Thus $Z_{P}=\Omega_{1}(Z(P))$ if $D \neq G_{0}$, by 7.6(b), and in any case we have $Z_{P}^{\#}=$ $z^{D} \cap Z(P)$, by 5.9 (b). Although the definition of Z_{P} depends on D, the reader may think of D as being fixed, so there need be no cause for confusion.

Denote by Γ_{0} the smallest G_{0}-invariant subtree of Γ which contains the edge $\{H, K\}$. Recall that $\Gamma_{i}=\gamma_{i} G$ denotes the subset $G_{i} \backslash G$ of vertices of Γ, where $G_{1}=H$ and $G_{2}=K$. Write also Γ^{D} for the standard tree for D. That is, Γ^{D} is the smallest D-invariant subtree of Γ containing the edge $\{H, K\}$. Thus Γ^{D} is Γ, Γ_{σ}, or Γ_{0}, for D equal to G, G_{σ}, or G_{0}, respectively, and $\Gamma \supseteq \Gamma_{\sigma} \supseteq \Gamma_{0}$.

Lemma 8.1. Let $Y \in\{B, K, H\}$, and let P be a 2 -subgroup of Y. Then $N_{Y}(P, S) \neq \varnothing$.

Proof. This follows from Remark 6.4.
Lemma 8.2. Let P be a subgroup of S_{D}, and let $Y \in\{G, H, K\}$. Then
(a) $P \in \mathscr{D}_{Y}^{c}$ if and only if $Z(P)$ contains every finite 2-subgroup of $C_{Y_{D}}(P)$.
(b) If $P \in \mathscr{D}_{Y}^{\mathrm{rc}}$ then P contains every finite $N_{Y_{D}}(P)$-invariant 2 -subgroup of Y_{D}.

Proof. We first prove (a). By 2.1 and 7.5(b), we may assume $D=G, P$ is infinite, $P \in \mathscr{F}_{Y}^{c}$, and there exists a 2-element x of $C_{Y}(P)$ with $x \notin P$. Set $P^{*}=\langle P, x\rangle$.

Since $C_{\Gamma}(P)$ is x-invariant, and $|x|$ is finite, it follows from 3.2 that x fixes a vertex δ of $C_{\Gamma}(P)$, and we may take $\delta=Y$ if $Y \in\{H, K\}$. Now 8.1 implies that P^{*} is contained in a conjugate of S in G_{δ}, and then $x \in P$ since $P \in \mathscr{F}_{Y}^{c}$. Thus (a) is established.

Now suppose that $P \in \mathscr{D}_{Y}^{\mathrm{rc}}$, set $N=N_{Y_{D}}(P)$, and let R be a finite, N-invariant 2-subgroup of Y_{D}. Set $R_{0}=N_{R}(P)$. Then $R_{0} \unlhd N$, and so $\operatorname{Aut}_{R_{0} P}(P) \leq$ $O_{2}\left(\operatorname{Aut}_{Y_{D}}(P)=\operatorname{Inn}(P)\right.$ as $P \in \mathscr{D}_{Y}^{\text {rc }}$. Then $R_{0} P=C_{R_{0} P}(P) P$, so that $R_{0} \leq$ $C_{R_{0} P}(P) P \leq P$ by (a). Thus $R_{0}=R \cap P$. But the $\underset{\sim}{p}$-group P induces a finite p-group \widetilde{P} of automorphisms on R, and $C_{N_{R}\left(R_{0}\right) / R_{0}}(\widetilde{P}) \leq N_{R}(P) / R_{0}=R_{0} / R_{0}$. It follows that $R \leq P$, proving (b).

For any $P \in \mathscr{D}^{c}$ we have $C_{S_{D}}(P) \leq Z(P)$, and thus $Z \leq Z_{P}$. The following lemma derives most of the remaining information that we shall need, concerning \mathscr{D}-centric subgroups of S_{D}, including everything that is needed for the construction of signalizer functors.

Lemma 8.3. Let $P \leq S_{D}$.
(a) Suppose that $\left|Z_{P}\right|=2$ and that either $P \in \mathscr{D}^{c}$ or $P \in \mathscr{F}_{H}^{c}$. Then $N_{D}(P, S)$ $\subseteq H$, and if $P \in \mathscr{F}_{H}^{c}$ then $N_{G}(P, S) \subseteq H$ and $P \in \mathscr{F}^{c}$.
(b) Suppose that $P \in \mathscr{D}^{c}$ and $\left|Z_{P}\right|=4$. Then $C_{D}(P) \leq H, Z_{P}=U^{h}$, and $N_{D}(P) \leq K^{h}$ for some $h \in H_{D}$. If also $Z_{P}=U$ and $P \in \mathscr{F}_{K}^{c}$, then $N_{G}(P)$ $\leq K$ and $P \in \mathscr{F}^{c}$.
(c) Suppose that $P \in \mathscr{D}^{c}$ and $\left|Z_{P}\right|=8$. Then $Z_{P} \in E^{H_{D}}$. If also $\mathscr{E}_{4}(P)=\varnothing$ then $P=S_{\infty} \cap D$ and P is not \mathscr{D}-radical.
(d) Suppose that $\mathscr{E}_{4}(P) \neq \varnothing$. Then $P \in \mathscr{F}^{c}$ and $O\left(C_{G}(P)\right)=O\left(C_{D}(P)\right)=1$.

Proof. Set $\Sigma=C_{\Gamma}(P)$ and $\Sigma^{\prime}=\Sigma \cap \Gamma^{D}$. Then $\left\{\gamma_{1}, \gamma_{2}\right\}$ is an edge of Σ^{\prime}, since $P \leq S_{D} \leq B_{D}$. Let \mathscr{P} be the set of paths $\pi=\left(\gamma_{1}, \alpha, \beta\right)$ in Σ such that $\beta \neq \gamma_{1}$, and \mathscr{P}^{\prime} the paths in \mathscr{P} contained in Σ^{\prime}. If $\pi \in \mathscr{P}$ then $Z_{\alpha}=Z Z_{\beta} \leq C_{H}(P)$ by 3.11(a), so 8.2 implies that $Z_{\alpha} \leq Z_{P}$ if either $P \in \mathscr{F}_{H}^{c}$ or $\beta \in \Sigma^{\prime}$. In particular, $\left|Z_{P}\right|>2$ and $Z_{P}=Z_{\alpha}$ if $\left|Z_{P}\right|=4$.

Now assume the hypothesis of (a). Then $\mathscr{P}^{\prime}=\varnothing$ by the preceding paragraph, and thus γ_{1} is the unique vertex in $C_{\Gamma_{1}}(P)$. The same is then true for P^{g}, for any $g \in N_{D}(P, S)$, and thus $N_{D}(P, S) \subseteq H$. Similarly $N_{G}(P, S) \subseteq H$ if $P \in \mathscr{F}_{H}^{c}$. Since $C_{G}(P) \subseteq N_{G}(P, S)$, (a) is proved.

Suppose next that $\left|Z_{P}\right|=4$. Since $Z \leq Z_{P}$, we then have $Z_{P}=U^{h}$ for some $h \in H_{D}$, by 7.6(a) and 5.9. We conclude from paragraph one that $\alpha=\gamma_{2}^{h}$ for each $\pi \in \mathscr{P}^{\prime}$, and hence that α is the unique vertex in Γ_{2} which is in the interior
of Σ^{\prime}, so that $N_{D}(P) \leq K^{h}$. Now $C_{D}(P) \leq C_{K^{h}}(Z)=C_{K}(Z)^{h} \leq H$, and the first part of (b) is established. Now suppose that $Z_{P}=U$ and that $P \in \mathscr{F}_{K}^{c}$. Then $C_{H}(P) \leq N_{H}(U) \leq K$, so that $P \in \mathscr{F}_{H}^{c}$ by 8.2. Then from paragraph one, $\alpha=\gamma_{2}$ for each $\pi \in \mathscr{P}$, and so γ_{2} is the unique vertex in Γ_{2} which is in the interior of Σ. Thus $N_{G}(P) \leq K$, and we have (b).

Suppose next that $\left|Z_{P}\right|=8$. If Z_{P} is not conjugate to E in H_{D}, then $D=G_{\sigma}$ by 7.7 and 5.9, and Z_{P} is conjugate in H_{D} to the group E^{\prime} defined in 7.8(a). But in that case we conclude from 7.8(d) that P does not contain every 2-element of $C_{D}(P)$, contrary to $8.2(\mathrm{a})$. Thus, $Z_{P}=E^{h}$ for some $h \in H_{D}$. Set $R=C_{S_{D}}(E)$ and $R_{0}=S_{D} \cap T$. Then $R=R_{0}\left\langle w_{0}\right\rangle$ is a Sylow 2-subgroup of $C_{H_{D}}(E)$, by 4.3(d), and we may choose h so that $P \leq R^{h}$. Suppose further that $\mathscr{E}_{4}(P)=\varnothing$. Since $R-R_{0}$ consists entirely of involutions, we then have $P \leq R_{0}^{h}$. Since P contains all 2-elements in $C_{H_{D}}(P)$ it follows that $P=R_{0}^{h}$. Then $P=R_{0}$ by 4.9(c). Since w_{0} inverts $R_{0}, O_{2}\left(\operatorname{Aut}_{D}(P)\right) \neq \operatorname{Inn}(P)$, and therefore (c) holds.

We now remove the hypothesis that P is \mathscr{D}-centric, and assume that $\mathscr{E}_{4}(P) \neq \varnothing$. Let $F \in \mathscr{E}_{4}(P)$. Then $F \in A^{G}$ by 7.9(b), so that F contains every element of $C_{G}(F)$ of finite order by $7.10(\mathrm{~d})$. The same is then true of P, and so $O\left(C_{D}(P)\right)=1$, and $P \in \mathscr{D}^{c}$ by 2.1. That is, (d) holds.

Corollary 8.4. Let $P \in \mathscr{D}^{c}$, and assume that $\left|Z_{P}\right| \leq 4$. Then $C_{D}(P)=$ $C_{H_{D}}(P)=Z(P) \times O\left(C_{D}(P)\right)$.

Proof. By 8.3, $C_{D}(P) \leq H$, while $O^{2^{\prime}}\left(C_{D}(P)\right)=Z(P)$ by 8.2(a). Let X be a finite subgroup of $C_{D}(P)$ containing $Z(P)$. The Schur-Zassenhaus Theorem then yields $O^{2}(X)=O(X)$. Since H is the union of an ascending chain of finite subgroups, the result follows.

Recall from 7.10 that there is a surjective homomorphism

$$
\phi_{A}: N_{G}(A) \rightarrow M_{0},
$$

where M_{0} is a nonsplit extension of A by $\operatorname{GL}(4,2)$, and that M_{0} may be viewed as a subgroup of $\bar{G}_{0}:=\mathrm{Co}_{3}$. From 7.4(c), G_{0} is the free amalgamated product $H_{0} *_{B_{0}}$ K_{0}. The universal property of G_{0} with respect to \mathscr{A}_{0} yields a homomorphism $\lambda: G_{0} \rightarrow \bar{G}_{0}$. Then $M \lambda=M_{0}$, and we may choose ϕ_{A} to be $\left.\lambda\right|_{M}$. For any $A^{\prime} \in A^{G}$, choose $g \in G$ with $A^{\prime}=A^{g}$ and let $\phi_{A^{\prime}}: N_{G}\left(A^{\prime}\right) \rightarrow M_{0}$ be the homomorphism given by $c_{g^{-1}} \phi_{A}$. Then $\operatorname{ker}\left(\phi_{A^{\prime}}\right)$ does not depend on the choice of the conjugating element g. Set

$$
\mathbf{X}=\bigcup_{g \in G} \operatorname{ker}\left(\phi_{A}\right)^{g}
$$

and for any $P \in \mathscr{F}^{c}$ define a subset $\theta(P)$ of $C_{G}(P)$ by

$$
\theta(P)=C_{\mathbf{X}}(P) O\left(C_{G}(P)\right)
$$

Thus, $\theta(P)$ is a union of cosets of the largest normal subgroup of odd order in $C_{G}(P)$. For $P \in \mathscr{F}_{\sigma}^{c}$, set $\mathbf{X}_{\sigma}=X \cap G_{\sigma}$, and

$$
\theta_{\sigma}(P)=C_{\mathbf{x}_{\sigma}}(P) O\left(C_{G}(P)\right)_{\sigma}
$$

For $P \in \mathscr{F}_{0}^{c}$ set $\mathbf{X}_{0}=\mathbf{X} \cap G_{0}$ and

$$
\theta_{0}(P)=C_{\mathbf{x}_{0}}(P)
$$

Write θ_{D} for $\theta_{0}, \theta_{\sigma}$, when $D=G_{0}, G_{\sigma}$, or G, respectively.
Recall from 7.2 that, for any vertex γ of Γ, the largest normal 2-subgroup of G_{γ} is denoted $Z(\gamma)$.

Lemma 8.5. Let $x \in \mathbf{X}$, and let $A^{\prime} \in A^{G}$ with $x \in C_{G}\left(A^{\prime}\right)$. Denote by $\Lambda(x)$ the intersection of all the x-invariant subtrees of Γ, set $E(x)=\langle Z(\gamma) \mid \gamma \in \Lambda(x)\rangle$, and denote by $G_{\Lambda(x)}$ the vertex-wise stabilizer of $\Lambda(x)$ in G. Then the following hold.
(a) $\Gamma_{x}=\varnothing$, and x induces a hyperbolic isometry on Γ.
(b) $E(x) \leq A^{\prime}$, and $\left|A^{\prime}: E(x)\right| \leq 2$.
(c) Let $\{\gamma, \delta\}$ be an edge of $\Lambda(x)$. Then $G_{\Lambda(x)}=C_{G_{\gamma} \cap G_{\delta}}(E(x))$.
(d) If $E(x) \neq A^{\prime}$, and $\{H, K\}$ is an edge of $\Lambda(x)$, then $G_{\Lambda(x)}$ is a B-conjugate of $T\left\langle w_{0}\right\rangle$.
Proof. By the definition of \mathbf{X} we have $x \in \operatorname{ker}\left(\phi_{A^{*}}\right)$ for some $A^{*} \in A^{G}$. By 7.10(d), x fixes no vertices (and inverts no edges) of Γ. That is, x induces a hyperbolic isometry of Γ, in the sense of Section 3, and we have (a). Then 3.2 shows that $\Lambda(x)$ is a linear subtree of Γ, on which x acts as a translation. Since $\Lambda(x)$ is contained in every x-invariant subtree of Γ, and since x centralizes A^{\prime}, we have $\Lambda(x) \subseteq \Gamma_{A^{\prime}}$. Then 7.2 implies that A^{\prime} centralizes $E(x)$. Since A^{\prime} contains every 2-element in $C_{G}\left(A^{\prime}\right)$, by $7.10(\mathrm{~d})$, we then have $E(x) \leq A^{\prime}$.

Let $\left(\delta_{0}, \delta_{1}, \delta_{2}\right)$ be a geodesic in $\Lambda(x)$ with $\delta_{1} \in \Gamma_{1}$. Then $\delta_{2}=\delta_{0} h$ for some h in $G_{\delta_{1}}-G_{\delta_{0}}$, and so also $Z\left(\delta_{0}\right)^{h}=Z\left(\delta_{2}\right)$. Since $B=N_{H}(U)$, we have $Z\left(\delta_{0}\right) \neq Z\left(\delta_{2}\right)$, and since $Z\left(\delta_{0}\right) Z\left(\delta_{2}\right) \leq E(x)$ we conclude that $|E(x)| \geq 8$. This yields (b). As $G_{\Lambda(x)}$ centralizes $Z(\alpha)$ for each $\alpha \in \Gamma_{1} \cap \Lambda(x)$, we get $G_{\Lambda(x)} \leq$ $J:=C_{G_{\gamma, \delta}}(E(x))$. Conversely $J \leq G_{\Lambda(x)}$ by 3.10 , and this proves (c).

Suppose that $E(x) \neq A^{\prime}$ and that $\{H, K\}$ is an edge of $\Lambda(x)$. Since $\mathscr{E}_{4}(B, U)$ $=A^{B}$ by 7.9(b), we may assume that $A^{\prime}=A$. By 7.9(c), all hyperplanes of A containing U are fused in $N_{B}(A)$, so we may assume also that $E(x)=E$. Then (c) yields $G_{\Lambda(x)}=C_{B}(E)$, and now (d) follows from 4.3(d).

Our aim is to show that θ_{D} is a signalizer functor on \mathscr{D}, as defined in 2.5 . The key to this is the next result.

Lemma 8.6. The following hold.
(a) $C_{\mathbf{X}}(A)=\operatorname{ker}\left(\phi_{A}\right)$.
(b) $C_{\mathbf{X}}\left(S_{\infty}\right)=C_{\mathbf{X}}\left(T_{2}\right) \subseteq C_{\text {ker }\left(\phi_{A}\right)}\left(T_{2}\right) O(T)$.

Proof. Let $x \in C_{\mathbf{X}}(A)$, and suppose that $x \notin \operatorname{ker}\left(\phi_{A}\right)$. Then $x \in \operatorname{ker}\left(\phi_{A^{\prime}}\right)$ for some $A^{\prime} \in \mathscr{E}_{4}(G)-\{A\}$. Let $\Lambda(x)$ and $E(x)$ be as in 8.5. Then 8.5 yields $\Lambda(x) \subseteq \Gamma_{A} \cap \Gamma_{A^{\prime}}, E(x) \leq A \cap A^{\prime}$, and $|E(x)|=8$. Since $N_{G}(A)$ is edge-transitive on $\widetilde{\Gamma}_{A}$, we may assume that $\Lambda(x)$ contains the edge $\{H, K\}$. By $8.5(\mathrm{~d})$ and as T is transitive on $A^{G} \cap C_{B}(E)$, we may then assume also that $G_{\Lambda(x)}=T\left\langle w_{0}\right\rangle$. Thus $T\left\langle w_{0}\right\rangle$ is x-invariant, and then so is T. We then have

$$
\begin{equation*}
x \in N_{G}(T) \cap C_{G}(A)=N_{G}(T) \cap \operatorname{ker}\left(\phi_{A}\right) A=N_{\operatorname{ker}\left(\phi_{A}\right)}(T) A . \tag{1}
\end{equation*}
$$

Since $A=E\left\langle w_{0}\right\rangle$, we have $N_{T}(A)=T_{2}$. Then

$$
\begin{equation*}
N_{\operatorname{ker}\left(\phi_{A}\right)}(T) \leq N_{\operatorname{ker}\left(\phi_{A}\right)}\left(T_{2}\right)=C_{\operatorname{ker}\left(\phi_{A}\right)}\left(T_{2}\right), \tag{2}
\end{equation*}
$$

since $\operatorname{ker}\left(\phi_{A}\right)$ is invariant under T_{2} and intersects T_{2} trivially.
Since all involutions in $T\left\langle w_{0}\right\rangle-E$ are fused by T, there exists $t \in T$ such that $\left(A^{\prime}\right)^{t}=A$. Then $x^{t} \in \operatorname{ker}\left(\phi_{A}\right)$. By (1) and (2), $x=g a$ for some $g \in C_{\operatorname{ker}\left(\phi_{A}\right)}\left(T_{2}\right)$ and $a \in A$. By 7.13(d) we have $g^{t} \in C_{\operatorname{ker}\left(\phi_{A}\right)}\left(T_{2}\right) O(T)$, so that $x^{t} a^{t}=g^{t}=k y$ for some $k \in \operatorname{ker}\left(\phi_{A}\right)$ and $y \in O(T)$. Thus $y a^{t}=k^{-1} x^{t} \in \operatorname{ker}\left(\phi_{A}\right)$, and then since $y a^{t}$ is of finite order and $\operatorname{ker}\left(\phi_{A}\right)$ is torsion-free, we have $y a^{t}=1$. Therefore $y=a=1$, and $x=g \in \operatorname{ker}\left(\phi_{A}\right)$, contrary to our choice of x. This contradiction proves (a).

Let $x \in C_{\mathbf{X}}\left(S_{\infty}\right)$. Then there exists $A^{\prime} \in A^{G}$ with $x \in C_{\operatorname{ker}\left(\phi_{A^{\prime}}\right)}\left(S_{\infty}\right)$. As in the proof of (a), x induces a hyperbolic isometry of Γ, and $\Lambda(x)$ is contained in $\Gamma_{S_{\infty}} \cap \Gamma_{A^{\prime}}$. Setting $F=\left\langle Z_{\delta} \mid \delta \in \Lambda(x)\right\rangle$, we find that $F \leq C_{G}\left(S_{\infty}\right)$, and since $N_{G}\left(S_{\infty}\right)$ is edge-transitive on $\Gamma_{S_{\infty}}, F^{g} \leq C_{H}\left(S_{\infty}\right)$ for some $g \in N_{G}\left(S_{\infty}\right)$. Since all involutions in $C_{H}\left(S_{\infty}\right)$ are contained in E, we conclude that $F=F^{g}=E$. Since $\Lambda(x) \subseteq \Gamma_{A^{\prime}}$ we get $\left[E, A^{\prime}\right]=1$, and then $E \leq A^{\prime}$ since $A^{\prime}=O^{2^{\prime}}\left(C_{G}\left(A^{\prime}\right)\right)$. Again by the edge-transitivity of $N_{G}\left(S_{\infty}\right)$ on $\Gamma_{S_{\infty}}$, we have $A^{\prime g} \leq C_{H}(E)=T^{*}$, for some $g \in N_{G}\left(S_{\infty}\right)$. Then $A^{\prime g t}=A$ for some $t \in T$, and so

$$
C_{\mathrm{ker}\left(\phi_{A^{\prime}}\right)}\left(S_{\infty}\right)=C_{\mathrm{ker}\left(\phi_{A}\right)}\left(S_{\infty}\right)^{(g t)^{-1}} \leq C_{\mathrm{ker}\left(\phi_{A}\right)}\left(S_{\infty}\right) O(T)
$$

by 7.13 (d). This completes the proof of (b).
Proposition 8.7. $\mathbf{X}_{0}=\bigcup \operatorname{ker}\left(\phi_{A}\right)^{G_{0}}$.
Proof. Let $x \in \mathbf{X}_{\mathbf{0}}$. By definition, there exists $A^{\prime} \in \mathscr{A}^{G}$ with $x \in \operatorname{ker}\left(\phi_{A^{\prime}}\right)$. Since $x \in G_{0}$, 8.5(a) implies that the axis $\Lambda(x)$ is contained in $G_{A^{\prime}} \cap \Gamma_{0}$. Set $E^{\prime}=Z(\Lambda(x))$. Then $8.5(\mathrm{~b})$ yields $E^{\prime} \leq A^{\prime}$. We have $Z=Z\left(S_{0}\right)$, and $\left\langle Z^{K_{0}}\right\rangle=U$, so that $U \leq G_{0}$. Since $G_{0}=H_{0} *_{B_{0}} K_{0}, G_{0}$ is edge-transitive on Γ_{0}, and so $Z(\gamma) \leq G_{0}$ for any $\gamma \in \Gamma_{0}$. Thus, $E^{\prime} \leq G_{0}$.

Denote by \mathscr{E}^{*} the set of elementary abelian 2-subgroups F of G_{0} such that $F=\left\langle Z^{G_{0}} \cap F\right\rangle$, and by \mathscr{E}_{n}^{*} the set of all $F \in \mathscr{E}^{*}$ with $|F|=2^{n}$. By construction, $S_{0}:=S \cap B_{0}$ is a Sylow 2-subgroup of G_{0}, and then 5.9 implies that for any n, all members of \mathscr{E}_{n}^{*} are fused in G_{0}. We have $A \in \mathscr{E}_{4}^{*}$ by 7.10 , and evidently $E^{\prime} \in \mathscr{E}^{*}$. If $E^{\prime}=A^{\prime}$ we conclude that $A^{\prime} \in A^{G_{0}}$, and there is nothing more to show. Thus, we may assume henceforth that E^{\prime} is a proper subgroup of A^{\prime}, and then $8.5(\mathrm{~b})$ yields $\left|E^{\prime}\right|=8$. Moreover, E^{\prime} is conjugate to E in G_{0}, since G_{0} is transitive on \mathscr{E}_{3}^{*}.

Since G_{0} is edge-transitive on Γ_{0} we may assume that $\{H, K\}$ is an edge of $\Lambda(x)$. Then $8.5(\mathrm{~d})$ implies that $G_{\Lambda(x)}$ is conjugate in B to $T\left\langle w_{0}\right\rangle$. Let T^{\prime} be the abelian subgroup of index 2 in $G_{\Lambda(x)}$. By $8.5(\mathrm{c}),\left[T^{\prime}, E^{\prime}\right]=1$, so that $E^{\prime} \leq T^{\prime}$ and $G_{\Lambda(x)}=C_{B}\left(E^{\prime}\right)=T^{\prime} A^{\prime}$. Let R be the Sylow 2-subgroup of T^{\prime}, and set $N=N_{G}(R)$. Then 7.13 yields

$$
C_{N}\left(E^{\prime}\right)=\left(O\left(T^{\prime}\right) C_{\mathrm{ker}\left(\phi_{A^{\prime}}\right)}(R) \times R\right) A^{\prime}
$$

and $C_{N}\left(A^{\prime}\right)=C_{\operatorname{ker}\left(\phi_{A^{\prime}}\right)}(R) A^{\prime}$. Since $x \in C_{N}\left(A^{\prime}\right)$, 8.6(a) now yields $x \in C_{\operatorname{ker}\left(\phi_{A^{\prime}}\right)}(R)$. Thus, x centralizes the Sylow 2-subgroup $R A^{\prime}$ of $T^{\prime} A^{\prime}$. Since $O\left(T^{\prime}\right) C_{\operatorname{ker}\left(\phi_{A^{\prime}}\right)}(R)$ contains no nontrival 2-elements, it follows that:
(1) x centralizes every 2-subgroup of $C_{N}\left(E^{\prime}\right)$ that x normalizes.

By 5.8(a), there is a surjective homomorphism $G_{0} \rightarrow \mathrm{Co}_{3}$ whose kernel intersects B_{0} trivially. Then $C_{B_{0}}\left(E^{\prime}\right)$ is isomorphic to a subgroup of $C_{\mathrm{Co}_{3}}\left(E^{\prime}\right)$. Since E^{\prime} is conjugate to E in G_{0}, and since $C_{\mathrm{Co}_{3}}(E)$ is of order 2^{7}, we conclude that $C_{B_{0}}\left(E^{\prime}\right)$ is a 2-group. Since $C_{B_{0}}\left(E^{\prime}\right)=G_{0} \cap G_{\Lambda(x)}$, (1) now yields:
(2) x centralizes $C_{B_{0}}\left(E^{\prime}\right)$.

If there exists $F \in \mathscr{E}_{4}^{*}$ with $F \leq C_{B_{0}}\left(E^{\prime}\right)$ then $x \in \operatorname{ker}\left(\phi_{F}\right)$ by (2) and 8.6(a). Thus, we may assume:
(3) $C_{B_{0}}\left(E^{\prime}\right)$ contains no member of \mathscr{E}_{4}^{*}.

Set $\Sigma=\Gamma_{0} \cap \Gamma_{E^{\prime}}$. Then $\tilde{\Sigma}$ is a subtree of Γ_{0} containing $\Lambda(x)$. For any $d>0$ denote by $\Lambda^{(d)}$ the subtree of $\tilde{\Sigma}$ induced on the set of vertices of $\tilde{\Sigma}$ at distance at most d from $\Lambda(x)$, and set $Z^{(d)}=Z\left(\Lambda^{(d)}\right)$. Thus $E^{\prime}=Z^{0} \leq G_{\Lambda(x)}$, and we claim that $Z^{(d)} \leq G_{\Lambda(x)}$ for all $d \geq 0$. Suppose false, and let d be minimal subject to the condition that, for some vertex γ of $\widetilde{\Sigma}$ at distance d from $\Lambda(x)$, we have $Z(\gamma) \not \subset G_{\Lambda(x)}$. Then $Z^{(d-1)} \leq G_{\Lambda(x)}$, and thus $Z^{(d-1)} \leq G_{0} \cap B=B_{0}$. Now (3) yields $Z^{(d-1)}=E^{\prime}$. Notice that E^{\prime} centralizes $Z(\gamma)$ since E^{\prime} fixes every edge in Γ_{0} at every vertex of $\tilde{\Sigma}$. Thus $Z(\gamma)$ centralizes $Z^{(d-1)}$. Arguing as in the proof of 8.5(c), it follows that $Z(\gamma)$ fixes every vertex of $\Lambda^{(d-1)}$, and thus $Z^{(d)} \leq G_{\Lambda(x)}$ as claimed.

It now follows that $Z(\widetilde{\Sigma}) \leq C_{B_{0}}\left(E^{\prime}\right)$, and then (3) yields $Z(\widetilde{\Sigma})=E^{\prime}$. On the other hand, since E^{\prime} is fused to E in G_{0} there exists $F \in \mathscr{E}_{4}^{*}$ with $E^{\prime} \leq F$.

Then $F \in A^{G_{0}}$. Set $\Theta=\widetilde{\Gamma}_{F} \cap \Gamma_{0}$. Since $\Theta \subseteq \widetilde{\Sigma}$ and $Z(\widetilde{\Sigma})=E^{\prime}$, we conclude that $Z(\Theta)=E^{\prime}$, and hence $E^{\prime} \unlhd N_{G}(F)$. This is contrary to 7.10(c), and the proposition is thereby proved.

THEOREM 8.8. θ_{D} is a signalizer functor on \mathscr{D}.
Proof. Let $P \in \mathscr{D}^{c}$ and set $Y=\mathbf{X} \cap D$. We first verify that $\theta_{D}(P)$ is a complementary subgroup to $Z(P)$ in $C_{D}(P)$. This is the case if $\left|Z_{P}\right| \leq 4$, by 8.4 , so assume that $\left|Z_{P}\right| \geq 8$. Suppose that $\mathscr{E}_{4}(P) \neq \varnothing$ and choose $F \in \mathscr{E}_{4}(P)$. Then every subgroup of P which contains F is in \mathscr{D}^{c}, by 7.3(d). We have $F \in A^{G}$ by 7.9, so that $7.10(\mathrm{~d})$ yields $C_{G}(F)=F \times \operatorname{ker}\left(\phi_{F}\right)$. Since $\operatorname{ker}\left(\phi_{F}\right)=C_{X}(F)$ by 8.6(a), $C_{Y}(F)$ is a subgroup of $C_{D}(F)$, and we get

$$
C_{D}(F)=F \times C_{Y}(F)
$$

In particular $O\left(C_{D}(F)\right)=1$, so $C_{Y}(F)=\theta_{D}(F)$ by definition. Thus $\theta_{D}(F)$ is a complement to F in $C_{D}(F)$.

Let P_{1} be maximal in P subject to the conditions: $F \leq P_{1}$ and $C_{D}\left(P_{1}\right)=$ $Z\left(P_{1}\right) \times \theta_{D}\left(P_{1}\right)$. If $P_{1} \neq P$ then $P_{1}<P_{2}:=N_{P}\left(P_{1}\right)$ and $C_{D}\left(P_{2}\right) \leq C_{D}\left(P_{1}\right)$. Both $Z\left(P_{1}\right)$ and Y are P_{2}-invariant, so that P_{2} also acts on $C_{Y}\left(P_{1}\right)=\theta_{D}\left(P_{1}\right)$. Thus

$$
C_{D}\left(P_{2}\right)=C_{Z\left(P_{1}\right)}\left(P_{2}\right) \times C_{\theta_{D}\left(P_{1}\right)}\left(P_{2}\right)=Z\left(P_{2}\right) \times \theta_{D}\left(P_{2}\right)
$$

contrary to the maximality of P_{1}. Thus $P_{1}=P$ and $\theta_{D}(P)$ is a complement to $Z(P)$ in $C_{D}(P)$.

On the other hand, suppose that $\mathscr{E}_{4}(P)=\varnothing$. Then $P=D \cap S_{\infty}$ by 8.3(c). Set $I=C_{\operatorname{ker}\left(\phi_{A}\right)}\left(T_{2}\right)$. Then $C_{G}(P)=T \times I$ by 7.13(d). Since $\operatorname{ker}\left(\phi_{A}\right) \leq G_{0} \leq G_{\sigma}$, we have $C_{D}(P)=(D \cap T) \times I$. If $D=G_{\sigma}$ then $D \cap T=T_{\sigma}=P \times O\left(C_{D}(P)\right)$, while if $D=G_{0}$ then $D \cap T=T_{2}$. Thus $\theta_{D}(P)=O\left(C_{D}(P)\right) I$ is a complement to P in $C_{D}(P)$ for any $P \in \mathscr{D}^{c}$.

Evidently $\theta_{D}\left(P^{g}\right)=\theta_{D}(P)^{g}$ for any $g \in N_{D}(P, S)$, so that by 2.6 it remains to show, for any $Q \in \mathscr{D}^{c}$ with $P \leq Q$, that $\Delta(Q) \leq \Delta(P)$. Since $C_{Y}(Q) \subseteq$ $C_{Y}(P)$, this amounts to showing that $O\left(C_{D}(Q)\right) \leq O\left(C_{D}(P)\right)$. But $O\left(C_{D}(P)\right)=$ $O^{2}\left(C_{D}(P)\right)$, by 7.4 if $\left|Z_{P}\right| \leq 4$, and by 7.6 if $P=D \cap S_{\infty}$, while in all other cases we have just seen that $O^{2}\left(C_{D}(P)\right)=1$. Thus $O\left(C_{D}(Q)\right) \leq O\left(C_{D}(P)\right)$ as required.

9. Saturation and Theorem A

We continue the notation that was introduced at the start of Section 8 .
Proposition 9.1. Let $D \in\left\{G_{0}, G_{\sigma}, G\right\}$. Then the fusion systems \mathscr{D}_{H} and \mathscr{D}_{K} are saturated.

Proof. If $D=G_{0}$ or G_{σ} then H_{D} and K_{D} are finite, and the result is then immediate from 1.6(c). In the case that $D=G$ we appeal to Remark 6.4.

Until further notice, we take $D \in\left\{G, G_{\sigma}\right\}$.
Proposition 9.2. We have $\mathscr{D}_{H}=\mathscr{F}_{S_{D}}\left(C_{D}(Z)\right)$ and $\mathscr{D}_{K}=\mathscr{F}_{S_{D}}\left(N_{G}(U)\right)$.
Proof. Supposing first that $\mathscr{D}_{H}=\mathscr{F}_{S_{D}}\left(C_{D}(Z)\right)$, we show that

$$
\mathscr{D}_{K}=\mathscr{F}_{S_{D}}\left(N_{G}(U)\right),
$$

as follows. Let $g \in N_{G}(U)$ and let $P \leq S$ with $Q:=P^{g} \leq S$. Then $(P U)^{g}=$ $P^{g} U \leq S$, and we may therefore take $U \leq P$. Since $\operatorname{Aut}_{K}(U)=\operatorname{Aut}(U)$, we may write $g=g^{\prime} k$ with $g^{\prime} \in C_{G}(U)$ and $k \in K$. Set $Q^{\prime}=P^{g^{\prime}}$. Then $Q^{\prime} \leq C_{K}(Z)=B$, so by 8.1 we may choose g^{\prime} so that $Q^{\prime} \leq S$. By assumption, we then have $c_{g^{\prime}}=c_{h}$ for some $h \in N_{H}\left(P, Q^{\prime}\right)$ with $U^{h}=U$. Then $h \in N_{H}(U) \leq K$, and $c_{g}=c_{h} c_{k}=$ $c_{h k}$ where $h k \in K$. We are therefore reduced to proving that $\mathscr{D}_{H}=\mathscr{F}_{S_{D}}\left(C_{D}(Z)\right)$.

Suppose that $\mathscr{D}_{H} \neq \mathscr{F}_{S_{D}}\left(C_{D}(Z)\right)$. By 7.5 and 3.14(c) there then exist $P \leq$ $S_{D}, F \in \mathscr{E}_{3}(Z(P), U)$, and $g \in N_{C_{D}(Z)}(P, S)$, such that
(1) $c_{g} \notin \operatorname{Hom}_{H_{D}}(P, S)$,
(2) $U \leq F \cap F^{g}$, and
(3) $C_{B_{D}}(F)^{g} \leq B_{D}$ and $C_{B_{D}}\left(F^{g}\right) \leq\left(B_{D}\right)^{g}$.

Suppose that both F and F^{g} are conjugate to E in B_{D}, and choose elements b, b^{\prime} in B_{D} with $F^{b}=E=F^{g b^{\prime}}$. Set $g^{\prime}:=b^{-1} g b^{\prime}$. From the first statement in (3), $C_{B_{D}}(E)^{g^{\prime}} \leq C_{B_{D}}(E)$, and thus g^{\prime} normalizes $S_{D} \cap T$ by 4.9(c). We may then adjust b^{\prime} in $T \cap D$ so that g^{\prime} normalizes $\left(S_{D} \cap T\right)\left\langle w_{0}\right\rangle=C_{S_{D}}(E)$. Set $N=N_{D}\left(C_{S_{D}}(E)\right)$. It follows from 7.13(f) that $N \cap H$ controls strong fusion in $C_{N}(Z)$, and so there exists $t \in N \cap H$ with $c_{t}=c_{g^{\prime}}$ on P^{b}. Then $c_{g}=c_{b t\left(b^{\prime}\right)^{-1}}$ on P, contrary to (1).

We may therefore assume that either F or F^{g} is not conjugate to E in B_{D}. Then 7.8 yields $D=G_{\sigma}$, and every member of $\mathscr{E}_{3}\left(B_{D}, U\right)$ is fused in B_{D} to E or to E^{\prime}, where E^{\prime} is as defined in 7.8(b). Suppose that F is fused to E and that F^{g} is fused to E^{\prime} in B_{D}. A Sylow 2-subgroup of $C_{B_{\sigma}}\left(F^{g}\right)$ is elementary abelian, by $7.8(\mathrm{~d})$, whereas a Sylow 2 -subgroup of $C_{B_{\sigma}}(F)$ has exponent 4 , contrary to (3). Similarly if F is conjugate to E^{\prime} then F^{g} is not conjugate to E. Thus we are reduced to the case where both F and F^{g} are fused to E^{\prime} in B_{σ}, and hence in B_{σ}^{0}, by 7.8(b).

Let $b, b^{\prime} \in B_{\sigma}^{0}$ with $F^{b}=E^{\prime}=F^{g b^{\prime}}$. Then $b^{-1} g b^{\prime} \in N_{D}\left(E^{\prime}\right)$. By 7.8(e) there exists $h \in H_{\sigma}$ such that $c_{h}=c_{b^{-1} g b^{\prime}}$ as elements of $\operatorname{Aut}_{D}\left(E^{\prime}\right)$. Then $c_{g}=$ $c_{b h\left(b^{\prime}\right)^{-1}}$ in $N_{D}\left(F, F^{g}\right)$, and so $P \neq F$ by (1). Since $P \leq C_{S}(F)$ and $E E^{\prime}$ is a Sylow 2-subgroup of $C_{H_{\sigma}}\left(E^{\prime}\right)$, we conclude that $P^{b}, P^{g b^{\prime}}$, and $A^{\prime}=E E^{\prime}$ are Sylow in $C_{H_{\sigma}}\left(E^{\prime}\right)$. Thus there exist $a, a^{\prime} \in H_{\sigma}$ with $P^{a}=A^{\prime}=P^{g a^{\prime}}$. Then
$a^{-1} g a^{\prime} \in N_{D}\left(A^{\prime}\right)$. Observe next that A^{\prime} is in the set \mathscr{E} defined just prior to 7.11, so that 7.11 implies there exists $h \in H_{\sigma}$ with $c_{h}=c_{a^{-1} g a^{\prime}}$ as elements of $\operatorname{Aut}_{D}\left(A^{\prime}\right)$. Then $c_{g}=c_{a h\left(a^{\prime}\right)^{-1}}$ on P, contrary to (1).

Lemma 9.3. Let $P \leq S_{D}$, and assume that there exists no $N_{D}(P)$-invariant subgroup X of Z_{P} with $|X|=2$ or 4 . Then one of the following holds.
(a) $P \in E^{D} \cup A^{D}$.
(b) $D=G_{\sigma}$ and P is D-conjugate to the group E^{\prime} defined in 7.8(b).
(c) $P \leq C_{S}(E)$, and either $S_{\infty} \leq P$ or $P \cap T$ is homocyclic of rank 3 and exponent at least 4.

Proof. By hypothesis, $\left|Z_{P}\right| \geq 8$. Suppose first that $\left|Z_{P}\right|>8$. Then $P \in A^{G}$ by 7.9, and if $P \notin A^{D}$ then 7.11(c) and 7.12 show that there is an $N_{D}(P)$-invariant subgroup of P of order 2. Thus $P \in A^{D}$, and (a) holds in this case. Also, if $P \in$ $E^{G}-E^{D}$ then 7.8 yields (b). We may therefore assume that P is not elementary abelian. Then $\left|Z_{P}\right|=8$, and $Z \leq Z_{P}$.

By 7.7 we have $\left(Z_{P}\right)^{h}=E$ for some $h \in H$, and by 8.1 we may choose h so that $P^{h} \leq S$. Let P_{0} be the group generated by the noninvolutions in P. Since $C_{S}(E)-S_{\infty}$ consists entirely of involutions, P_{0} is a characteristic abelian subgroup of P, of index at most 2, containing Z_{P}. Since P has no characteristic subgroups of order 2 or 4 , it follows that either $P=S_{\infty}$ or that P_{0} is homocyclic. Since $P \notin \mathscr{E}(S), P$ contains a conjugate of T_{2}, and then 4.9(c) implies that $P_{0}=T_{n}$ for some $n \geq 2$ or $P_{0}=S_{\infty}$. Thus, (c) holds.

Lemma 9.4. Let $P \leq S_{D}$ and let X be a nonidentity $N_{D}(P)$-invariant subgroup of Z_{P} of minimal order. Then $N_{D}(P)$ acts transitively on $X^{\#}$, and the following hold.
(a) There exists an element $f=h k h^{\prime}$ of D, with $h, h^{\prime} \in H_{D}$ and $k \in K_{D}$, such that $N_{S_{D}}(P)^{f} \leq S_{D}$ and such that either $X^{f} \in\{Z, U, E, A\}$, or $D=G_{\sigma}$ and $X^{f}=E^{\prime}$, where E^{\prime} is as defined in 7.8(b).
(b) If P is fully normalized in \mathscr{D} then so is P^{f}, for any f as in (a).

Proof. We first show that $N_{D}(P)$ acts transitively on $X^{\#}$. This is trivial if $|X|=2$, and is immediate from the minimality of X if $|X|=4$. Suppose that $|X|=8$. If $P \in \mathscr{E}_{4}\left(S_{D}\right)$ then 7.12 and 7.11 (c) show that $\operatorname{Aut}_{D}(P)$ leaves no maximal subgroup of P invariant, while if $X=P \in \mathscr{E}_{3}(D)$ then 7.7 and 7.8(e) show that $N_{D}(P)$ acts transitively on $P^{\#}$. Thus, we may assume that P is not elementary abelian, and then 9.3 yields $P \leq C_{S}(E)$, and either $P=S_{\infty}$ or $P \cap T$ is homocyclic of rank 3 and exponent at least 4. Then $X=E$, and 7.13 implies that $N_{D}(P)$ induces the full automorphism group of X.

We next prove (a). Let $1 \neq x \in C_{X}\left(N_{S_{D}}(P)\right)$ and suppose that $x \neq z$. By 3.13(b) there exist elements $h \in H$ and $k \in K$ such that $x^{h k}=z$ and such that $N_{S_{D}}(P)^{h k} \leq S_{D}$. Thus, we may assume that $z \in X$, after replacing P by a suitable conjugate. Then, by 7.6 through 7.9 , there exists $h^{\prime} \in H_{D}$ with $X^{h^{\prime}} \in\{Z, U, E, A\}$, or else $D=G_{\sigma}$ and there exists $h^{\prime} \in H_{D}$ with $X^{h^{\prime}} \in\left\{E^{\prime}, A_{z}\right\}$. If $X^{h^{\prime}}=A_{z}$ then 7.11(c) contradicts the minimality of X, so that this case does not arise in our context.

Set $Y=X^{h^{\prime}}$. In order to complete the proof of (a) it suffices to show that, in each case, every 2-subgroup of $N_{H_{D}}(Y)$ is fused into $N_{S_{D}}(Y)$ in $N_{H_{D}}(Y)$. But in each case we have $N_{S_{D}}(Y) \in \operatorname{Syl}_{2}\left(N_{H_{D}}(Y)\right.$, and so the required fusion follows from Sylow's Theorem, or from 6.3 and 6.4 when $D=G$ and $N_{S}(Y)$ is infinite. Thus, (a) holds.

Now suppose that P is fully normalized in \mathscr{D}, let f be given as in (a), and set $Q=P^{f}$. Let $R=Q^{g}$ be a \mathscr{D}-conjugate of Q contained in S. Then $R=P^{f g}$, and since P is fully normalized there exists $d \in G$ such that $R^{d}=P$ and $N_{S}(R)^{d} \leq$ $N_{S}(P)$. Also, as P is fully normalized there exists $d^{\prime} \in G$ with $Q^{d^{\prime}}=P$ and with $N_{S}(Q)^{d^{\prime}} \leq N_{S}(P)$. Since $N_{S}(P)^{f} \leq N_{S}(Q)$ we conclude that $N_{S}(Q)^{d^{\prime}}=$ $N_{S}(P)$, and $N_{S}(R)^{d d^{\prime}-1} \leq N_{S}(Q)$. Since $R^{d d^{\prime}}=P$, we have thus shown that Q is fully normalized, proving (b).

Lemma 9.5. Let $P \leq S_{D}$ be fully normalized in \mathscr{D}_{H}. Assume that there exists a minimal, nonidentity, $N_{D}(P)$-invariant subgroup X of Z_{P} with $Z \leq X$. Then P is fully normalized in \mathscr{D}.

Proof. Let $g \in N_{D}\left(P, S_{D}\right)$ and set $Q=P^{g}$ and $Y=X^{g}$. There then exists $y \in Y^{\#}$ such that $\left[y, N_{S_{D}}(Q)\right]=1$, and since $N_{D}(Q)$ acts transitively on $Y^{\#}$, by 9.4 , we may assume that $y=z^{g}$. By 3.13(b) there exist elements $h \in H_{D}$ and $k \in K_{D}$ such that $y^{h k}=z$ and such that $N_{S_{D}}(P)^{h k} \leq S_{D}$. Set $d=h k$ and $R=Q^{d}$. As $g d \in C_{D}(Z)$ it follows from 9.1 and 9.2 that there exists $h^{\prime} \in H_{D}$ with $R^{h^{\prime}}=P$ and with $N_{S}(R)^{h^{\prime}} \leq N_{S}(P)$. Then $Q^{d h^{\prime}}=P$ and $N_{S}(Q)^{d h^{\prime}} \leq N_{S}(P)$. This shows that P is fully normalized in \mathscr{D}.

Lemma 9.6. Let P and Q be subgroups of S, and let $x, y \in G$ such that $P^{x} \leq Q$ and $Q^{y} \leq P$. Then $P^{x}=Q$ and $Q^{y}=P$.

Proof. The map $c_{x y}: P \longrightarrow P$ is injective, so by 6.4 and 6.2(7), $c_{x y}$ is an isomorphism. Thus $P=P^{x y}=Q^{y}$, and similarly $P^{x}=Q$.

Theorem 9.7. \mathscr{D} is saturated.
Proof. Let $1 \neq P \leq S_{D}$ and let X be a minimal, nonidentity, $N_{D}(P)$-invariant subgroup of Z_{P}. By 9.4 there is $g \in D$ with $N_{S_{D}}(P)^{g} \leq S_{D}$ and with $Z \leq$ X^{g}. Adjusting in H and appealing to 9.1 , we may assume that $Q:=P^{g}$ is fully normalized in \mathscr{D}_{H}. Then Q is fully normalized in \mathscr{D}, by 9.5 , and thus \mathscr{D} satisfies the
saturation condition (I) in 1.5. It remains to verify the two parts of condition (II). Thus we may take P to be fully normalized in \mathscr{D}.

By 9.4 there exists a fully normalized conjugate $P^{\prime}=P^{y}$ of P such that $X^{\prime}:=X^{y}$ is in $\left\{Z, U, E, E^{\prime}, A\right\}$. Then y can be chosen so that $N_{S}(P)^{y} \leq N_{S}\left(P^{\prime}\right)$, and similarly (since P is fully normalized) there exists $y^{\prime} \in N_{D}\left(P^{\prime}, P\right)$ such that $N_{S}\left(P^{\prime}\right)^{y^{\prime}} \leq N_{S}(P)$. By $9.6, N_{S}(P)^{y}=N_{S}\left(P^{\prime}\right)$, so that if P^{\prime} satisfies saturation condition (II) then so does P. Thus, we may assume that $X \in\left\{Z, U, E, E^{\prime}, A\right\}$ and, in particular, that $Z \leq X$. Also, since \mathscr{D}_{H} is saturated there exists a $\mathscr{D}_{H^{-}}$ conjugate $P^{\prime \prime}$ of P which is fully normalized in \mathscr{D}_{H}, and hence in \mathscr{D} by 9.4(b); the preceding argument then shows that $N_{S}(P)$ and $N_{S}\left(P^{\prime \prime}\right)$ are \mathscr{D}-isomorphic. We may therefore assume that P is fully normalized in \mathscr{D}_{H}. Then P is fully normalized in $\mathscr{F}_{S_{D}}\left(C_{D}(Z)\right)$, by 9.2.

If $X \in\{Z, U\}$ then fusion in $N_{D}(P)$ is controlled by fusion in $N_{H_{D}}(P)$ or in $N_{K_{D}}(P)$, by 9.2 , and since \mathscr{D}_{H} and \mathscr{D}_{K} are saturated, there is nothing more to prove in these cases. Thus, we may assume that $|X| \geq 8$. By 9.3 we then have $P=X \in\left\{E, E^{\prime}, A\right\}$, or else $P \leq C_{S_{D}}(E)$ with $P \cap T=S_{\infty}$ or with $P \cap T$ homocyclic and of exponent at least 4. In the first case, where P is elementary abelian, we have $\operatorname{Aut}_{S_{D}}(P) \in \operatorname{Syl}_{2}\left(\operatorname{Aut}_{D}(P)\right)$ by 7.8 and 7.10. In the second case we obtain $\operatorname{Aut}_{S_{D}}(P) \in \operatorname{Syl}_{2}\left(\operatorname{Aut}_{D}(P)\right)$ from 7.13. This establishes the saturation condition (IIA).

Now let $\alpha=c_{g} \in \operatorname{Aut}_{\mathscr{D}}(P)$, where $g \in N_{D}(P)$. Set $Z^{\prime}=Z^{g^{-1}}$. By definition, we have $N_{\alpha}^{g} \leq C_{D}(P) S_{D}$. Thus $N_{\alpha} \leq C_{S_{D}}\left(Z^{\prime}\right)$. By 3.13(b) there exists $a \in$ $N_{D}\left(N_{\alpha}, S_{D}\right)$ with $\left(Z^{\prime}\right)^{a}=Z$. Set $Q=P^{a}$ and $b=a^{-1} g$. Then $b \in C_{D}(Z)$ and $Q^{b}=P$. As P is fully normalized in $\mathscr{F}_{S_{D}}\left(C_{D}(Z)\right)$, it follows from the "standard" axioms for saturation in [BLO03] - equivalent to those in 1.5 - that $\beta:=c_{b}$ extends to a \mathscr{D}-morphism \bar{c}_{b} of N_{β} into S_{D}. That is, there exists $d \in N_{D}\left(N_{\beta}, S_{D}\right)$ such that d^{-1} centralizes Q. Set $\bar{g}=a d$. Then

$$
g^{-1} \bar{g}=g^{-1} a d=g^{-1} g b^{-1} d=b^{-1} d,
$$

and so $g^{-1} \bar{g}$ centralizes P. But also $\left(N_{\alpha}\right)^{a} \leq N_{\beta}$ since

$$
\left(N_{\alpha}\right)^{a b}=\left(N_{\alpha}\right)^{a^{-1} a g}=\left(N_{\alpha}\right)^{g}
$$

and $\operatorname{Aut}_{N_{\alpha}}(P)^{c_{g}} \leq \operatorname{Aut}_{S_{D}}(P)$ by definition of N_{α}. Now

$$
\left(N_{\alpha}\right)^{\bar{g}}=\left(N_{\alpha}\right)^{a d} \leq\left(N_{\beta}\right)^{g} \leq S_{D},
$$

and thus $c_{\bar{g}}$ is an extension of c_{g} from P to a \mathscr{D}-morphism of N_{α} into S_{D}. This shows that \mathscr{D} satisfies the saturation condition (IIB), and the proof is thereby complete.

In 2.6 it was shown that if \mathscr{D} is saturated then a \mathscr{D}-signalizer functor θ_{D} determines an associated centric linking system and an associated p-local group
$\mathscr{G}_{S_{D}, \theta_{D}}(D)=\left(S_{D}, \mathscr{F}_{S_{D}}(D), \mathscr{L}_{\theta_{D}}\right)$. Write $\mathscr{C}_{0}=\left(S_{0}, \mathscr{F}_{0}, \mathscr{L}_{0}\right), \mathscr{G}_{\sigma}=\left(S_{\sigma}, \mathscr{F}_{\sigma}, \mathscr{L}_{\sigma}\right)$, $\mathscr{G}=(S, \mathscr{F}, \mathscr{L})$, for $\mathscr{G}_{S_{D}, \theta_{D}}(D)$, when D is G_{0}, G_{σ}, G, respectively. Theorems 8.8 and 9.7 therefore have the following immediate corollary:

COROLLARY 9.8. \mathscr{G}_{σ} is a 2-local finite group, and \mathscr{G} is a 2-local group.
THEOREM 9.9. For any fixed $p, p \equiv 3$ or $5 \bmod 8$, and for any integer of the form $q=p^{2^{n}}$, there is a unique $\sigma=\psi_{n}$ such that the fusion system $\mathscr{F}_{\mathrm{Sol}}(q)$ constructed in [LO02] is isomorphic to \mathscr{F}_{σ}. Moreover the associated 2-local finite group constructed in $[\mathrm{LO} 02]$ is isomorphic to \mathscr{G}_{σ}.

Proof. The fusion system $\mathscr{E}=\mathscr{F}_{\mathrm{Sol}}(q)$ is constructed as

$$
\left\langle\mathscr{F} S_{q}\left(H_{q}\right), \mathscr{F}_{S_{U, q}}\left(K_{q}\right)\right\rangle,
$$

where $H_{q}=H_{\sigma}$ is $\operatorname{Spin}_{7}(q), S_{q}=S_{\sigma}$ is a Sylow 2-group of $H_{q}, S_{U, q}=C_{S_{\sigma}}(U)$, and $K_{q}=K_{\sigma}$, subject to a choice of embedding α of $B_{q}=N_{H_{q}}(U)$ in K_{q} such that, for $I=\left\langle N_{H_{q}}\left(S_{U, q}\right), N_{K_{q}}\left(S_{U, q}\right)\right\rangle, \operatorname{Aut}_{I}\left(S_{U, q}\right) \cong \operatorname{GL}(3,2) \times C_{2}$. By parts (a) and (d) of 9.7, the amalgam $\mathscr{A}_{\alpha}=\left(H \stackrel{\iota}{\longleftarrow} B \xrightarrow{\alpha^{*}} K\right)$ is determined up to isomorphism by these properties, so $\mathscr{A}_{\alpha}=\mathscr{A}_{\lambda, \sigma}=\left(H_{\sigma}>B_{\sigma}<K_{\sigma}\right)$. Thus $\mathscr{E}=\left\langle\mathscr{F} S_{\sigma}\left(H_{\sigma}\right), \mathscr{F}_{C_{S_{\sigma}}(U)}\left(K_{\sigma}\right)\right\rangle$. By 1.10, $\mathscr{F}_{S_{\sigma}}\left(K_{\sigma}\right)=\left\langle\mathscr{F} S_{\sigma}\left(S_{\sigma}\right), \mathscr{F}_{C_{S \sigma}(U)}\left(K_{\sigma}\right)\right\rangle$, so $\mathscr{E}=\left\langle\mathscr{F} S_{\sigma}\left(H_{\sigma}\right), \mathscr{F}_{S}\left(K_{\sigma}\right)\right\rangle$, and then $\mathscr{E}=\mathscr{F}_{S}\left(G_{\sigma}\right)=\mathscr{F}_{\sigma}$ by 3.7, completing the proof of the first part of the theorem. The remainder of the theorem follows from the uniqueness of the 2-local finite group associated to \mathscr{E}, proved in [LO02].

To sum up: parts (1) and (2) of Theorem A are given by the construction of G in Section 5, while parts (3) and (4) of Theorem A are given by the preceding theorem. Part (5) is given by 7.9, 7.10, and the definition of \mathbf{X}. Thus all parts of Theorem A have been proved.

Lemma 9.10. F is frc-generated. That is,

$$
\mathscr{F}=\left\langle A_{\mathscr{F}}(P) \mid P \in \mathscr{F}^{\mathrm{frc}}\right\rangle,
$$

where $\mathscr{F}^{\mathrm{frc}}$ is the set of fully normalized radical centric subgroups in \mathscr{F}, and $A_{\mathscr{F}}(P)$ is the fusion system on P whose morphisms are the restrictions of members of Aut $_{\mathscr{F}}(P)$ to subgroups of P.

Proof. This generalization of Alperin's Fusion Theorem is well known for saturated fusion systems on finite p-groups S; a short proof appears in Theorem A. 10 of [BLO03]. A modification of this proof when S is a discrete p-toral group appears in Theorem 3.6 in [BLO05]. We sketch that proof in our special case, where things are much easier.

Pick $P, P^{\prime} \leq S$ and an \mathscr{F}-isomorphism $\varphi: P \rightarrow P^{\prime}$ such that φ is not in $\mathscr{A}=\left\langle A_{\mathscr{F}}(P) \mid P \in \mathscr{F}^{\mathrm{frc}}\right\rangle$. Then $\varphi=c_{g}$ for some $g \in G$. As in the proof of Theorem A. 10 in [BLO03], using the fact that \mathscr{F} is saturated, we may assume
P^{\prime} is fully normalized in \mathscr{F}. Pick P so that $\left|T_{2} \cap P\right|$ is maximal. If $T_{2} \not 又 P$ then $T_{2} \cap P<N_{T_{2} \cap P}(P)$, and as in the proof of A.10, after we replace P by $N_{T_{2}}(P) P$, the maximality of $\left|T_{2} \cap P\right|$ supplies a contradiction.

As $T_{2} \leq P, 4.9$ (c) says that $g \in N_{G}\left(T_{2}\right)$. As $S_{\infty} \unlhd N_{G}\left(T_{2}\right)$, replacing P, P^{\prime} by $P S_{\infty}, P^{\prime} S_{\infty}$, we may assume $S_{\infty} \leq P$. In particular P is centric. Finally choosing $\left|P: S_{\infty}\right|$ maximal, and arguing as in the proof of Theorem A. 10 in [BLO03], we first reduce to the case where $g \in N_{G}(P)$, and then show P is radical, contradicting the assumption that $c_{g} \notin \mathscr{A}$.

10. Radical centric subgroups

In this section, we determine the members of $\mathscr{D}^{\text {rc }}$, and make the necessary preparations for obtaining embeddings among the 2-local groups constructed in the preceding section.

Lemma 10.1. Let $Y \in\{H, K\}$, and let $P \leq S$ with $N_{D}(P) \leq Y$. Then the following are equivalent.
(a) $P \in \mathscr{D}^{\mathrm{rc}}$.
(b) $P \in \mathscr{D}_{Y}^{\mathrm{rc}}$.
(c) P contains every 2-element in $C_{Y}(P)$, and $O_{2}\left(\operatorname{Out}_{Y_{D}}(P)\right)=1$.

Proof. As $C_{D}(P) \leq Y, 8.2(a)$ says that $P \in \mathscr{D}^{c}$ if and only if P contains every 2-element in $C_{Y_{D}}(P)$, and that this holds if and only if $P \in \mathscr{D}_{Y}^{c}$. Thus we may assume $P \in \mathscr{D}^{c}$. As $N_{D}(P) \leq Y$, we have

$$
O_{2}\left(\operatorname{Aut}_{D}(P)\right)=O_{2}\left(\operatorname{Aut}_{Y_{D}}(P)\right)
$$

Thus $P \in \mathscr{D}^{\mathrm{rc}}$ if and only if $\operatorname{Inn}_{D}(P)=O_{2}\left(\operatorname{Aut}_{D}(P)\right)$ if and only if $\operatorname{Inn}_{D}(P)=$ $O_{2}\left(\operatorname{Aut}_{Y_{D}}(P)\right)$ if and only if $P \in \mathscr{D}_{Y}^{\mathrm{rc}}$ if and only if $O_{2}\left(\operatorname{Out}_{Y_{D}}(P)\right)=1$, completing the proof.

Recall from 4.5 that B^{0} is the commuting product of "components" L_{1}, L_{2}, and L_{3}, where each L_{i} is isomorphic to $\operatorname{SL}(2, \mathbf{F})$.

Lemma 10.2. Let $P \in \mathscr{D}_{K}^{\mathrm{rc}}$, set $N=N_{K_{D}}(P), R=S_{D}, J_{i}=L_{i} \cap D$, and $J=J_{1} J_{2} J_{3}$. For any subgroup X of K_{D}, and any i with $1 \leq i \leq 3$, denote by X_{i} the projection of $X \cap J$ in J_{i}. Denote by 2_{i} the set of subgroups of R_{i} that are isomorphic to the quaternion group \mathbf{Q}_{8}. Then the following hold:
(a) $C_{K}(P) \leq P$.
(b) $Z_{P} \in\{Z, U\}$.
(c) $P \cap J=P_{1} P_{2} P_{3}$, and for each i with $1 \leq i \leq 3$, either $P_{i}=R_{i}$ or $P_{i} \in \mathscr{2}_{i}$.
(d) Either
(i) $P \in\left\{C_{R}(U), R\right\}$,
(ii) $P=P \cap J$ and $P_{i} \in 2_{i}$ for at least two indices i, or
(iii) $P=(P \cap J)\langle s\rangle$ for some $s \in P-C_{P}(U)$, and either $P_{3} \in \mathscr{L}_{3}$ or $P_{i} \in \mathcal{L}_{i}$ for both $i=1$ and 2 . Moreover, if $P_{3} \neq R_{3}$ then $O^{2}\left(N \cap J_{3}\right) \neq 1$.
(e) $P \in \mathscr{F}_{K}^{c}$, and every N-invariant 2 -subgroup of K is contained in S.
(f) If U^{\prime} is a fours group in K such that $\left[P, U^{\prime}\right] \leq Z$, then $U^{\prime}=U$.

Conversely, any subgroup P of S which satisfies (c) and (d) is in $\mathscr{D}_{K}^{\mathrm{rc}}$.
Proof. Set $\mathscr{F}=\left\{J_{i} \mid 1 \leq i \leq 3\right\}$ and set $P_{J}=P_{1} P_{2} P_{3}$. Since \mathscr{F} is $K_{D^{-}}$ invariant, P_{J} is N-invariant, and then $P_{J} \leq P$ by 8.2(b). Thus $P_{i} \leq P$ for all i, and $P_{J}=P \cap J$.

Suppose that $P_{i} \leq U$ for some i. Then $P^{*}:=\left\langle P_{i}^{P}\right\rangle \leq U$, and $R^{*}:=\left\langle R_{i}^{P}\right\rangle$ is a P-invariant 2-group which properly contains P^{*}. Pick $r \in N_{R^{*}}(P)-P$ with $r^{2} \in U$. Then r centralizes the chain $P \geq U \geq 1$, and since $U \unlhd N$ we conclude from 2.2 that $r \in P$. This contradiction shows that no P_{i} is contained in U.

Set $N_{i}^{*}=N_{J_{i}}\left(P_{i}\right)$. Then $N^{*}=N_{1}^{*} N_{2}^{*} N_{3}^{*}$ is N-invariant, so by 8.2(b), $O_{2}\left(N_{i}^{*}\right)=P_{i}$. Let \mathscr{S} be the class of 2-groups each of whose finite subgroups is cyclic. Suppose that $P_{i} \notin 2_{i}$. There is then a unique maximal subgroup X of P_{i} in \mathscr{S} of order at least 8 . Since $|X| \geq 8$ there is also a unique maximal 2 -subgroup V_{i} of J_{i} in \mathscr{S} containing X. Then V_{i} is N_{i}^{*}-invariant, and 8.2(b) yields $V_{i} \leq P_{i}$. Then also $\operatorname{Aut}_{R_{i}}(P) \leq O_{2}\left(\operatorname{Aut}_{K_{D}}(P)\right)$, and $P_{i}=R_{i}$. Thus, (c) is proved. It follows from (c) that $C_{L_{i}}\left(P_{i}\right) \leq P_{i}$, so $C_{B^{0}}\left(P_{J}\right) \leq P_{J}$. Since any element of $K-B^{0}$ acts nontrivially on U, and since $U \leq P_{J}$, we obtain (a) and (b).

Suppose next that no P_{i} is a quaternion group. Then for all i we have $P_{i}=$ $R_{i} \notin 2_{i}$. If $D=G$ then $P_{J}=C_{S}(U)$ is of index 2 in P, and (d)(i) holds. On the other hand, suppose that $D \neq G$. Since $R_{i} \in \mathscr{2}_{i}$ if $D=G_{0}$, we conclude that $D=G_{\sigma}$. By 7.8(a) there exists an element x of S_{D} such that x induces a diagonal outer automorphism on each J_{i}. Here $N \cap J=P_{J}$ and $P_{J}\langle x\rangle \unlhd S_{D}$, so as P is \mathscr{D}_{K}-radical it follows that $x \in P$. Then $P_{J}\langle x\rangle=C_{R}(U) \leq P$, and again (d)(i) holds.

If $C_{P}(U) \neq P_{J}$ then there exists $x \in C_{P}(U)-J$. As in the preceding paragraph, $D \neq G$, and for all i either $J_{i} \cong \operatorname{SL}\left(2, \mathbf{F}_{\sigma}\right)$, or $D=G_{0}$ and $J_{i} \in 2_{i}$. As $\left[N_{i}, x\right] \leq P$ for all $i, O^{2}\left(N_{i}\right)$ is not isomorphic to $\operatorname{SL}(2,3)$, and $P_{i}=R_{i}$ for all i. Thus $P \geq(R \cap J)\langle x\rangle=C_{R}(U)$. Once again, we obtain (d)(i).

Now assume that (d)(i) does not hold. We conclude from the discussion above that $P_{i} \in 2_{i}$ for some i and that $P_{J}=C_{P}(U)$. Suppose next that $P=P_{J}$, and that neither P_{1} nor P_{2} is a quaternion group. Recall that $B=B^{0}\langle s\rangle$ where $s \in S_{0}, s$ centralizes L_{3}, and s interchanges L_{1} and L_{2}. One may now check that $N=(N \cap J)\langle s\rangle$ and that $O^{2}(N \cap J) \leq J_{3}$, whence $P\langle s\rangle \unlhd N$. As P is $\mathscr{D}_{K^{-}}$ radical, $s \in P$, contrary to the assumption that $P=P_{J}$. Thus, either P_{1} or P_{2} is a quaternion group. Since $K / B^{0} \cong \operatorname{Sym}(3)$, a similar argument shows that for any
two distinct indices j and k, at least one of P_{j} and P_{k} is a quaternion group. Thus (d)(ii) holds in this case.

Now suppose that $P \neq P_{J}$. As $P_{J}=C_{P}(U)$ we then have $P=P_{J}\langle s\rangle$ for some $s \in R-C_{R}(U)$. Then s interchanges P_{1} and P_{2}, and since some P_{i} is a quaternion group we get either $P_{3} \in 2_{3}$ or $P_{i} \in \mathscr{2}_{i}$ for both $i=1$ and 2 . If $P_{3}=R_{3}$ then (d)(iii) holds. Thus we may assume $P_{3} \neq R_{3}$, so that $P_{3} \in 2_{3}$. Also $R_{3} \notin 2_{3}$, so that in particular $D \neq G_{0}$. Let $\bar{N}=N / P_{J}$. If $P_{1}=R_{1}$ then $O^{2}(N)=O^{2}\left(C_{N}(\bar{s})\right) \leq O^{2}\left(N_{3}^{*}\right)$, while if $P_{1} \in 2_{1}$ then $O^{2}(N)=P_{J}\langle d\rangle$ or $P_{J}\langle d\rangle O^{2}\left(N_{3}^{*}\right)$ for a suitable element d of order 3 in $N_{1}^{*} N_{2}^{*}$. In particular if $O^{3}\left(N_{3}^{*}\right)$ does not centralize \bar{s}, then $N_{R_{3}}(P) \leq O_{2}(N)$, again contrary to $R_{3} \neq P_{3}$ and $P \in \mathscr{K}_{D}^{r}$. Thus (d)(iii) holds, completing the proof of (d).

Suppose next that x is a 2-element in $K-U$, such that $[P, x] \leq Z$. If $[P, x]=Z$ assume that x is an involution. Since $C_{L_{i}}\left(P_{i}\right)=Z\left(P_{i}\right) \leq U$, and all involutions in L_{3} are in Z, it follows that $x \notin B^{0}$. But then x interchanges P_{i} and P_{j} for some pair of distinct indices i and j, and so $[P, x] \nsubseteq Z$. Thus no such x exists. This proves (f), and shows also that $P \in \mathscr{F}_{K}^{c}$.

Let F be an N-invariant 2-subgroup of K with $F \nsubseteq S$. Then $F P$ is a 2-group. For any i, set $S_{i}=S \cap L_{i}$, and recall F_{i}, N_{i} are the projections of $F \cap B^{0}, N \cap B^{0}$ on L_{i}. Then F_{i} is N_{i}-invariant. It is a property of the group $\bar{L}=\operatorname{PSL}(2, \mathbf{F})$ that the intersection of any pair of distinct Sylow 2-subgroups is abelian (either cyclic or a fours group), and therefore S_{i} is the unique Sylow 2-subgroup of L_{i} containing P_{i}. Thus $F_{i} \leq S_{i}$, and we conclude that $F \cap B^{0} \leq S$.

Now $F=\left(F \cap B^{0}\right)\langle t\rangle$, where t acts nontrivially on $\mathscr{L}:=\left\{L_{1}, L_{2}, L_{3}\right\}$. Thus, there is an ordering $\left(1^{\prime}, 2^{\prime}, 3^{\prime}\right)$ of $\{1,2,3\}$ such that t interchanges $L_{1^{\prime}}$ and $L_{2^{\prime}}$, and fixes $L_{3^{\prime}}$. Suppose that $P \nsubseteq B^{0}$. Then there exists $s \in P$ such that s interchanges L_{1} and L_{2}, and since $\langle s, t\rangle$ is a 2-group it follows that $i=i^{\prime}$ for all i. Without loss, we may assume that $P \leq F$, so that $s t \in F \cap B^{0}$. But then $t \in S$ and $F \leq S$. Thus $P \leq B^{0}$, and it follows from (c) and (d) that $N_{i} \leq N$ for all i.

Suppose that $P \not \leq J$. Then (d) implies that $C_{R}(U) \leq P$, and since $P \leq B^{0}$ we get $P=C_{R}(U)$. The Frattini Argument then implies that there exists an element x of N which permutes the components L_{i} transitively, and then $\langle x, t\rangle$ is not a 2-group. This shows that $P \leq J$, and a similar argument shows that there exists j with $P_{j} \neq R_{j}$.

Since $P_{i}^{t} \leq F \cap B^{0} \leq S$, we have $P_{i}^{t} \leq S \cap S_{i}^{t}$, so that $S_{i}^{t} \leq S$ for all i. Since $\left\langle t^{N_{i}}\right\rangle$ is a 2-group, we obtain $N_{1^{\prime}}=R_{1^{\prime}}$ and $N_{2^{\prime}}=R_{2^{\prime}}$. Then $P_{3^{\prime}} \neq R_{3^{\prime}}$, and so $N_{3^{\prime}} \cong \mathrm{GL}_{2}(3)^{+}$. Then $N_{K}\left(N_{3^{\prime}}\right)=C_{K}\left(O^{2}(N)\right) N_{3^{\prime}}$. Since $N_{3^{\prime}} \unlhd N$ we have $N=C_{N}\left(O^{2}(N)\right) N_{3^{\prime}}$, and since $C_{N}\left(O^{2}(N)\right)$ is a 2-group we get $N=N_{3^{\prime}} P$. Thus, $N=N_{1} N_{2} N_{3}$. On the other hand, there exists an element t^{\prime} of $C_{K_{D}}\left(J_{3^{\prime}}\right)$ such that t^{\prime} interchanges $R_{1^{\prime}}$ and $R_{2^{\prime}}$. Then $t^{\prime} \in P$, by 7.1(b), contradicting $P \leq J$, and completing the proof of (e).

It remains to establish the final statement in the lemma. Thus let $P \leq S$ such that P satisfies (c) and (d). Then there exists $Q \leq P$ such that $Q \geq Q_{i} \cong \mathbf{Q}_{8}$ for all i, and one checks that $C_{K}(Q)=U \leq Q$. Then $Q \in \mathscr{D}_{K}^{c}$, and hence also $P \in \mathscr{D}_{K}^{c}$.

Set $N=N_{K_{D}}(P)$. As $C_{K}(Q)=U$ we have $O(N)=1$, and it remains to show that $P=O_{2}(N)$. If (d)(i) holds, then $P=R$ or $P=C_{R}(U)$, so that $N=R$ or $N / R \cong \operatorname{Sym}(3)$, and in particular $P=O_{2}(N)$. Suppose that (d)(ii) holds. If $P=Q$ then it is easy to check that $P=O_{2}(N)$; so we may assume that $P \neq Q$. Then $P_{j}=R_{j} \notin 2_{j}$ for exactly one index $j, N / P \cong \operatorname{Sym}(3) \imath \mathbf{C}_{2}$, and we are done in this case.

Finally, suppose that (d)(iii) holds, set $P_{J}=P \cap J$, and let $s \in P-J$. Since $P_{J}=C_{P}(U)$ we have $N \leq M:=N_{K_{D}}\left(P_{J}\right)$. Set $\bar{M}=M / P_{J}$; it follows that N is the preimage in M of $C_{\bar{M}}(\bar{s})$. Thus it suffices to show that

$$
\begin{equation*}
\langle\bar{s}\rangle=O_{2}\left(C_{\bar{M}}(\bar{s})\right) . \tag{*}
\end{equation*}
$$

If $R_{i} \in \mathscr{2}_{i}$ then $D \in\left\{G_{0}, G_{\psi_{0}}\right\}, P_{J}=Q, R / Q$ is a 4-group, and every involution in R / Q has nontrivial fixed points on $O_{3}(\bar{M})$. Since $N_{K_{D}}(R)=R$ we conclude that $(*)$ holds in this case. We may therefore assume that $R_{i} \notin \mathscr{L}_{i}$. Suppose that $P_{J}=Q$. Then $\bar{M} \cong \operatorname{Sym}(3)\left\langle\operatorname{Sym}(3)\right.$, and $P_{3} \neq R_{3}$. Then (d)(iii) requires $O^{2}\left(N_{3}\right) \neq 1$, and hence N contains an element g of J_{3} of order 3. Then $\left|O_{3}(\bar{N})\right|=9,\langle\bar{s}\rangle$ is a Sylow 2-subgroup of $C_{\bar{M}}\left(O_{3}(\bar{N})\right)$, and we have (*).

If $P_{3}=R_{3} \notin 2_{3}$ then P_{1} and P_{2} are quaternion groups, $\bar{M} \cong \operatorname{Sym}(3)\left\langle\mathbf{C}_{2}\right.$, and $\bar{N} \cong \mathbf{D}_{12}$. This yields $(*)$, so we are reduced to the case where $P_{i}=R_{i} \notin \mathscr{2}_{i}$ for both $i=1$ and 2. Then $P_{3} \neq R_{3}$, so $O^{2}\left(N \cap J_{3}\right) \neq 1$, and $\bar{M}=\bar{N}$ with $\langle\bar{s}\rangle=O_{2}(\bar{M})$. Again (*) holds, so the proof is complete.

Lemma 10.3. Let $g \in G$ and $R \leq S$ such that $R=R^{1} R^{2} R^{3}$, with $R^{i}=$ $R \cap L_{i}^{g} \cong \mathbf{Q}_{8}$. Then $U=U^{g}=Z(R)$, and R is special of order 2^{8}.

Proof. For each $i \neq j$ we have $R^{i} R^{j}=R^{i} \times R^{j}$, so that R is special with center U^{g}. Thus it remains to show $U=U^{g}$. Set $\widetilde{S}=S / S_{\infty}$. Then \widetilde{S} has no \mathbf{Q}_{8}-subgroups, so that $R^{i} \cap S_{\infty} \neq 1$, and hence $U^{g} \leq S_{\infty}$.

Set $Y=C_{R}(E)$ and $Y_{0}=R \cap S_{\infty}$, and suppose first that $|R / Y| \leq 2$. Then $\left|Y_{0}\right| \geq 64$, so as R has no elements of order 8 it follows that $Y_{0}=T_{2}$. Since $\Phi(R)=Z(R)$, this is a contradiction and so we conclude that $|R / Y| \geq 4$. Since $U^{g} \leq Y, R / Y$ is elementary abelian, and is then a maximal elementary abelian subgroup of $\operatorname{Aut}_{S}(E)$. Since the fixed point groups in E for the two maximal elementary abelian subgroups of $\operatorname{Aut}_{S}(E)$ are Z and U, we conclude $U=U^{g}$.

Lemma 10.4. Let $P \in \mathscr{D}^{\mathrm{rc}}$ with $\left|Z_{P}\right| \leq 4$. Then:
(a) P contains every P-invariant subgroup of D of order 4 .
(b) $Z_{P} \in\{Z, U\}$.

Proof. Let F be a P-invariant subgroup of D of order 4 . Then $|[F, P]| \leq 2$, and so 8.2(a) implies that $[F, P] \leq Z_{P}$. If $\left[Z_{P}, F\right]=1$ then F centralizes the chain $P \geq Z_{P} \geq 1$, whence $F \leq P$ by 8.2(a) and 2.2. On the other hand, suppose that $\left[Z_{P}, F\right] \neq 1$. Then $\left|Z_{P}\right|=4$ and $Z_{P} \nsubseteq \Phi(P)$. By 8.3(b) we have $Z_{P}=U^{h}$ for some $h \in H_{D}$. Then $E^{h} \leq C_{D}\left(Z_{P}\right)$, and so $P \neq Z_{P}$. Thus $\Phi(P) \neq 1$, so that $Z_{P} \cap \Phi(P)=Z$, and F centralizes the chain $P \geq Z_{P} \geq Z \geq 1$ of characteristic subgroups of P. Thus $F \leq P$ by 2.2, and (a) holds.

Now suppose that $Z_{P} \neq Z$. Then $Z_{P}^{g}=U$ for some $g \in H_{D}$, and $P^{g} \leq$ $C_{H_{D}}(U) \leq K_{D}$ by $8.3(\mathrm{~b})$. By 6.4 there exists $k \in K_{D}$ with $P^{g k} \leq S_{D}$, and replacing g by $g k$, we may assume $P^{g} \leq S_{D}$. Then $P^{g} \in \mathscr{D}_{K}^{\text {rc }}$ by 8.3(b) and 10.1, and then 10.2 implies that P contains a subgroup R satisfying the hypothesis of 9.3 , with g^{-1} in the role of g. Then $U=U^{g^{-1}}$ by 10.3 , proving (b).

Lemma 10.5. $P \in \mathscr{D}^{\mathrm{rc}}$ with $\left|Z_{P}\right|>4$ if and only if $P \in A^{D}$ or $P=C_{S_{D}}(E)$.
Proof. Let $P \leq S_{D}$. Suppose that $\left|Z_{P}\right|>8$. Then $P=C_{D}(P)=Z_{P} \in$ $\mathscr{E}_{4}\left(S_{D}\right)$, by 7.9. If $P \in A^{D}$ then 7.10 shows that $O_{2}\left(\operatorname{Aut}_{D}(P)\right)=1$, whence $P \in \mathscr{D}^{\text {rc }}$. On the other hand suppose that $P \notin A^{D}$. Then $D=G_{\sigma}$ by 5.9 and 7.9 , and then 7.12 shows that $P \in A_{u}^{D}$ for some $u \in U-Z . \operatorname{Now~}_{\operatorname{Aut}}^{D}\left(A_{u}\right)=C_{\text {Aut }\left(A_{u}\right)}(u)$ by 7.11 (c). On the other hand, the definition of A_{u} preceding 7.11 shows that $\operatorname{Aut}_{T_{2}}\left(A_{u}\right)$ is an elementary abelian subgroup of $\operatorname{Aut}_{D}\left(A_{u}\right)$ of order 8. It follows that $O_{2}\left(\operatorname{Aut}_{D}\left(A_{u}\right)\right) \neq 1$. Thus $P \notin \mathscr{D}^{\text {rc }}$. Hence the lemma holds when $\left|Z_{P}\right|>8$, so we are reduced to the case where $\left|Z_{P}\right|=8$.

If $\mathscr{E}_{4}(P)=\varnothing$ then $P \notin \mathscr{D}^{\text {rc }}$ by $8.3(\mathrm{c})$. Thus we may assume $\mathscr{E}_{4}(P) \neq \varnothing$.
Suppose $Z_{P} \notin E^{D}$. Then $D \neq G$ by 7.7 , and $D \neq G_{0}$ by 5.9 , so that $D=G_{\sigma}$. Then $C_{S_{D}}\left(Z_{P}\right) \in \mathscr{E}_{4}\left(S_{D}\right)$ by 7.8. But in that case $P=Z_{P}$, and P is not centric. Thus we may assume $Z_{P} \in E^{D}$. Set $R=S_{D}$.

By 5.9, 7.7, and 7.8, H_{D} is transitive on $E^{G} \cap H_{D}$. Since E is normal in the Sylow 2-group R of H_{D}, there is $h \in H_{D}$ with $E^{h}=Z_{P}, P \leq R^{h}$, and $Z_{P} \unlhd R^{h}$. In particular $P \leq C_{R^{h}}\left(Z_{P}\right)$, so that $P_{0}=P \cap S_{\infty}^{h}$ is of index 2 in P.

Now Z_{P} is generated by the involutions in P_{0}, and $P-P_{0}$ consists entirely of involutions, and so P_{0} is a characteristic subgroup of P. Let R_{0} be the unique conjugate of T_{2} in R^{h}. Then R_{0} centralizes the chain $P \geq R_{0} \cap P \geq 1$, and so $R_{0} \leq P$ by 2.2. Thus $R_{0}=T_{2}$ is weakly closed in P by 4.9(c), and so $\left\langle h, N_{D}(P)\right\rangle \leq$ $N_{D}\left(T_{2}\right)$. Then $Z_{P}=E^{h}=E$ and $\operatorname{Aut}_{C_{R}(E)}(P) \leq O_{2}\left(\operatorname{Aut}_{D}(P)\right)$ by 7.13. Thus if $P \in \mathscr{D}^{\text {rc }}$ then $P=C_{R}(E)$. On the other hand if $P=C_{R}(E)$ then 7.13 says $P \in \mathscr{D}^{\mathrm{rc}}$. This completes the proof.

Recall from Section 4 that H acts on an orthogonal space V of dimension 7 over \mathbf{F}, and that there is a distinguished basis $\left\{x_{1}, \ldots, x_{7}\right\}$ of V such that T acts on $\mathbf{F} x_{i}$ for each i. Define \mathbf{F}_{D} to be \mathbf{F} if $D=G, \mathbf{F}_{\sigma}$ if $D=G_{\sigma}$, and $\mathbf{F}_{\psi_{0}}$ if $D=G_{0}$.

Let V_{D} be the \mathbf{F}_{D}-span of $\left\{x_{1}, \ldots, x_{7}\right\}$. Then the quadratic form f associated with V restricts to a quadratic form f_{D} on V_{D}, preserved by H_{D}.

Denote by $\boldsymbol{\Lambda}\left(V_{D}\right)$ the collection of all sets Λ of pairwise orthogonal subspaces of V_{D} whose sum is V_{D}. For any subspace X of V_{D}, denote by $X^{\mathbf{F}}$ the \mathbf{F}-span of X in V. For any $\Lambda \in \boldsymbol{\Lambda}\left(V_{D}\right)$ define $\Lambda^{\mathbf{F}} \in \boldsymbol{\Lambda}(V)$ by

$$
\Lambda^{\mathbf{F}}=\left\{X^{\mathbf{F}} \mid X \in \Lambda\right\}
$$

and define the type of Λ to be the nondecreasing sequence $\tau=\tau(\Lambda)$ of integers given by the dimensions of the members of Λ. We will abbreviate such sequences, using exponential notation. For example, $\tau(\Lambda)=1^{7}$ means that each member of Λ is a 1 -space, while $\tau(\Lambda)=1^{5} 2$ means that Λ consists of five 1 -spaces and one 2-space. Write $\boldsymbol{\Lambda}\left(V_{D}, \tau\right)$ for the set of $\Lambda \in \boldsymbol{\Lambda}\left(V_{D}\right)$ with $\tau(\Lambda)=\tau$. For $\Lambda \in \boldsymbol{\Lambda}(V)$ and X a subgroup (or subset) of $H\langle\sigma\rangle$, write $C_{X}(\Lambda), N_{X}(\Lambda)$ for the set of all $x \in X$ which acts on each member of Λ, and permutes the members of Λ, respectively.

Lemma 10.6. Let $\Lambda \in \boldsymbol{\Lambda}(V)$ with $\sigma \in C_{H \sigma}(\Lambda)$, and set $\tau=\tau(\Lambda)$. Then H acts transitively on $\boldsymbol{\Lambda}(V, \tau)$.

Proof. Since every member of \mathbf{F} is a square, all nondegenerate subspaces of V of a given dimension are isometric, and so the result follows from Witt's Lemma.

Lemma 10.7. Let $D \in\left\{G_{\sigma}, G\right\}$, let $P \in \mathscr{D}_{H}^{\mathrm{rc}}$ with $N_{H_{D}}(P) \notin K$, and set $N=N_{H_{D}}(P)$. Denote by $\mathscr{B}(P)$ the set of N-invariant 2-subgroups of H, and set $\beta(P)=\langle\mathscr{B}(P)\rangle$. Then:
(a) One of the following holds.
(1) There exists $\Lambda \in \Lambda\left(V_{D}, 1^{7}\right)$ such that $N=N_{H_{D}}(\Lambda)$ and $P=C_{H_{D}}(\Lambda)$. Moreover either
(i) $P \cong D_{8}^{3}$, and $N / P \cong \operatorname{Alt}(7)$ if $D=G_{\psi_{0}}$, while $N / P \cong \operatorname{Sym}(7)$ if $D \neq G_{\psi_{0}}$, or
(ii) $D=G_{\sigma}, P \cong \mathbf{Z}_{4} * Q_{8}^{2}$, and $N / P \cong \operatorname{Sym}(6)$.
(2) $D \neq \psi_{0}$, and there exists $\Lambda \in \Lambda\left(V_{D}, 1^{5} 2\right)$ with $N \leq N_{H_{D}}$ ($\left.\Lambda\right)$. More precisely $P=O_{2}\left(N_{H_{D}}(\Lambda)\right)\langle t\rangle$, where t acts as -1 on every point in Λ and as a reflection on the line ℓ in Λ. Further, $\ell^{\mathbf{F}}$ is one of the lines l_{i}, $1 \leq i \leq 3$, from Section 4 , and $N / P \cong \operatorname{Sym}(5)$.
(3) $P=O_{2}\left(N_{H_{D}}(E)\right)$.
(b) $C_{G}(P) \leq P$.
(c) $\beta(P) \leq S$. More precisely: $\beta(P)=O_{2}\left(N_{H}\left(\Lambda^{\mathbf{F}}\right)\right)$ in case (a)(1), $O_{2}\left(N_{H}\left(\Lambda^{\mathbf{F}}\right)\right)\langle t\rangle$ in case (a)(2), and $C_{S}(E)$ in case (a)(3).

Proof. Observe that $U \leq P$ by 10.4(a). Set $H^{*}=H / Z$. We first prove (a).

Let Q^{*} be an $N_{H}(P)$-invariant elementary abelian 2-subgroup of $Z\left(P^{*}\right)$ containing U^{*}; for example as $U^{*} \leq Z\left(P^{*}\right), Q_{U}^{*}=\left\langle U^{* N_{H}(P)}\right\rangle$ is such a subgroup. Let $\Lambda=\Lambda(Q)$ be the set of weight spaces of Q^{*} on V_{D}; then $\Lambda \in\left(V_{D}\right)$ and $N_{H_{D}}(P) \leq N_{H_{D}}(\Lambda)=N_{H_{D}}\left(\Lambda^{\mathbf{F}}\right)$. Let $R=O_{2}\left(N_{H}\left(\Lambda^{\mathbf{F}}\right)\right)$. As $N_{H_{D}}(P) \leq$ $N_{H}\left(\Lambda^{\mathbf{F}}\right) \leq N_{H}(R)$,

$$
R \cap D \leq O_{2}\left(N_{H_{D}}\left(\Lambda^{\mathbf{F}}\right)\right) \leq O_{2}\left(N_{H_{D}}(P)\right) \leq P
$$

by 8.2(b). On the other hand P^{*} centralizes Q^{*} and hence stabilizes each member of $\Lambda^{\mathbf{F}}$. Further if $\operatorname{Aut}_{P}(Y) \leq\left\langle-1_{Y}\right\rangle$ for each $Y \in \Lambda$, then $P \leq R \cap D$, so that $P=R \cap D=O_{2}\left(N_{H_{D}}\left(\Lambda^{\mathbf{F}}\right)\right)=O_{2}\left(N_{H_{D}}(P)\right)$.

Suppose Λ is of type 1^{7}. Then each $Y \in \Lambda$ is a 1-dimensional P-invariant orthogonal space, so that $\operatorname{Aut}_{P}(Y) \leq\left\langle-1_{Y}\right\rangle$, and hence $P=R \cap D=O_{2}\left(N_{H_{D}}(P)\right)$ by the previous paragraph. Further, $\Lambda=\Lambda(P)$, so that $N_{H_{D}}(P)=N_{H_{D}}(\Lambda)$, and as $P=O_{2}\left(N_{H_{D}}\left(\Lambda^{\mathbf{F}}\right)\right), P=C_{H_{D}}(\Lambda)$. If $D=G$ it follows that (a)(1.i) holds, so we may take $D=G_{\sigma}$. As $[\sigma, P]=1, \sigma \in C_{H\langle\sigma\rangle}\left(\Lambda^{\mathbf{F}}\right)$, so by 10.6 there exists $h \in H, \Theta \in \Lambda(H)$, and $\sigma^{\prime} \in \sigma^{H}$ such that σ centralizes $N_{H}(\Theta)=N$ modulo Z, σ^{\prime} centralizes Θ, and $\left(\sigma, \Lambda^{\mathbf{F}}\right)^{h}=\left(\sigma^{\prime}, \Theta\right)$. In particular $N_{H_{D}}(P) \cong N_{H_{\sigma^{\prime}}}\left(P^{h}\right)$. As σ^{\prime} centralizes $\Theta, \sigma^{\prime}=r \sigma$ for some $r \in R_{0}=O_{2}\left(N_{H}(\Theta)\right)$. We may regard R_{0}^{*} as the core of the permutation module for $S_{7} \cong N_{H}(\Theta) / R_{0}$. Thus r^{*} is of weight $0,2,4$, or 6 in R_{0}^{*}. If $\sigma=\psi_{0}$ then $[\sigma, g]=z$ for $g \in N-O^{2}(N)$, so that $O^{2}(N)=C_{N}(\sigma)$, and hence if in addition r^{*} is of weight 0 then $N_{H_{D}}(P) \cong O^{2}(N)$. In this case (a) holds, so we may assume one of the remaining cases holds. Then N centralizes σ^{\prime} if $r \in Z$ and $r z \in r^{R_{0}}$ if $r \notin Z$, so that $C_{N^{*}}\left(r^{*}\right)=R_{0}^{*} C_{N}(r \sigma)^{*}$ by a Frattini argument. Further, σ centralizes R_{0}, so that

$$
P \cong C_{R_{0}}(r \sigma) \cong C_{R_{0}}(r) \cong D_{8}^{3}, \mathbf{Z}_{4} * Q_{8}^{2}, \mathbf{Z}_{2} \times Q_{8}^{2}, \text { or } \mathbf{Z}_{4} * Q_{8}^{2}
$$

for the respective choices of r^{*}, and $N_{H_{D}}(P)^{*} / P^{*}$ is isomorphic to the stabilizer in S_{7} of r^{*}, and hence is $S_{7}, S_{5} \times \mathbf{Z}_{2}, S_{4} \times S_{3}, S_{6}$, respectively. So as $R \cap D=$ $O_{2}\left(N_{H_{D}}(P)\right), r^{*}$ is of weight 0 or 6 , and hence (1) holds.

Assume next that Λ is of type $1^{5} 2$, and let l be the line in Λ. Then

$$
O_{2}\left(N_{H_{D}}(P)\right) \leq P
$$

and P acts on each member of Λ. Let $\Theta \in \Lambda(V)$ be of type $1^{5} 2, l_{N}$ the line in Θ, and $N_{H}(\Theta)=N$. Then $N=N_{1} N_{2}\left\langle t_{N}\right\rangle$, where $N_{1}=C_{G}\left(l_{N}\right), N_{2}=C_{N}\left(l_{N}^{\perp}\right), t_{N}$ inverts l_{N}^{\perp} and induces a reflection on $l_{N}, O_{2}\left(N_{1}\right) \cong Q_{8} D_{8}$, and $N_{1} / O_{2}\left(N_{1}\right) \cong S_{5}$. If $D=G_{\sigma}$, then as above we can pick Θ so that $\left(\sigma, \Lambda^{\mathbf{F}}\right)$ is conjugate in H to $(r \sigma, \Theta)$ such that σ centralizes $O^{2}\left(N_{1}\right)$, and r fixes each member of Θ. Thus $r=r_{1} r_{2}$ with $r_{1} \in O_{2}\left(N_{1}\right), r_{2} \in N_{2}$, and r_{1}^{*} is of weight 0,2 , or 4 in the permutation module $O_{2}\left(N_{1}\right)^{*}$ for $N_{1} / O_{2}\left(N_{1}\right) \cong S_{5}$. But again if $r_{1}^{*} \neq 1$ then $O_{2}\left(C_{N}(r \sigma)\right)$ does not act on each point in Θ, contrary to an earlier remark.

Thus we may take $\Theta=\Lambda^{\mathbf{F}}$ and $H_{1}=O^{2}\left(C_{H_{D}}(l)\right) \cong O_{2}\left(N_{1}\right) \cong A_{5} / Q_{8} D_{8}$ with $P_{1}=O_{2}\left(H_{1}\right) \leq P$ by $8.2\left(\right.$ b). Let $H_{2}=C_{H_{D}}\left(l^{\perp}\right)$. Then H_{2} is cyclic and $P_{2}=O_{2}\left(H_{2}\right) \leq P$ by 8.2(b). Also there is $t \in N_{H_{D}}(\Lambda)$ inverting l^{\perp} and inducing a reflection on l. Then t induces an automorphism in $O_{2}\left(\operatorname{Aut}_{H_{D}}(P)\right)$ on P, so that $t \in P$ as $P \in \mathscr{D}_{H}^{\mathrm{rc}}$. Indeed $P=P_{1} P_{2}\langle t\rangle$.

If $\left|P_{2}^{*}\right| \leq 2$ then P^{*} is elementary abelian with weight spaces of dimension 1 , and we obtain a contradiction from our treatment of the case Λ of type 1^{7}. Thus $\left|P_{2}^{*}\right|>2$, and if $D=G_{\sigma}$ then $\left|P_{2}^{*}\right|=(q-\varepsilon)_{2} / 2$ where $q=\left|\mathbf{F}_{D}\right| \equiv \varepsilon= \pm 1 \bmod 4$. It follows that $\sigma \neq \psi_{0}$. Next $U \leq Q \leq P_{1} P_{3}$ where P_{3} is the subgroup of P_{2} of order 4, so $P_{2} C_{P_{1}}(U) \leq C_{S}(U)$. As Aut $C_{S}(U)\left(S_{\infty}\right) \cong E_{8}, P_{4}=\Phi\left(P_{2}\right) \leq S_{\infty}$. As $\left|P_{4}\right|>2, l^{\perp}=C_{V_{D}}\left(P_{4}\right)$, and then as $P_{4} \leq S_{\infty} \cap D, l^{\mathbf{F}}$ is one of the three lines l_{i} from Section 4. Thus (2) holds in this case.

Suppose $N_{H_{D}}(P) \leq B_{D}^{h}$ for some $h \in H_{D}$. Arguing as in the first few paragraphs of the proof of 9.2 , there is $R_{+} \leq P$ such that $R_{+}=R_{+}^{1} R_{+}^{2} R_{+}^{3}$ with $R_{+}^{i}=R_{+} \cap L_{i}^{h} \cong Q_{8}$. Then by $10.3, U=U^{h}$, contrary to our hypothesis that $N_{H_{D}}(P) \not \subset K$. Thus we may assume $N_{H_{D}}(P)$ is contained in no H_{D}-conjugate of B_{D}.

Suppose $Z \neq P_{0} \leq P$ is normal in $N_{H_{D}}(P)$ with $\Phi\left(P_{0}\right)=1$. By the previous paragraph, $m_{2}\left(P_{0}\right)>2$, and so $m_{2}\left(P_{0}\right)=3$ or 4 . If $m_{2}\left(P_{0}\right)=4$ then by 7.11, 7.12, and as $N_{H_{D}}\left(P_{0}\right)$ acts on no 4-subgroup of $P_{0}, \operatorname{Aut}_{H_{D}}\left(P_{0}\right)=C_{\mathrm{GL}\left(P_{0}\right)}(z)$. Thus $P=O_{2}\left(N_{H_{D}}\left(P_{0}\right)\right)$ by $8.2(\mathrm{~b})$, and $P^{*} \cong E_{64}$, so that $\Lambda(P) \in(D)$ is of type 1^{7}, and we obtain a contradiction from our treatment of this case. Therefore $m_{2}\left(P_{0}\right)=3$. Hence by $7.8, P_{0}$ is B_{D}-conjugate to E or E^{\prime}, and in the latter case $E E^{\prime} \cong E_{16}$ is Sylow in $C_{H_{D}}\left(E^{\prime}\right)$. In the latter case a P-invariant Sylow 2-subgroup P_{1} of $C_{H_{D}}\left(P_{0}\right)$ satisfies $\left[P, P_{1}\right] \leq P_{0} \leq C_{P}\left(P_{1}\right)$; so $P_{1} \leq P$ by 2.2 , and we obtain a contradiction from our treatment of the case $m_{2}\left(P_{0}\right)=4$. Thus $P_{0}=E^{g}$ for some $g \in B_{D}$. Let $S_{1}=S_{\infty} \cap D$. Then $\left[S_{1}^{g}, P\right] \leq S_{1}^{g} \cap P \unlhd N_{H_{D}}(P)$; so $S_{1}^{g} \leq P$ by 2.2. Hence $S_{1}=S_{1}^{g}$ by 4.9(c), and so $P_{0}=E$. Similarly $C_{S_{D}}(E) \leq P$, and then (3) holds by $8.2(\mathrm{~b})$.

We have reduced to the case where Z is the largest elementary abelian 2-subgroup of P normal in $N_{H_{D}}(P)$. It follows that Q is of symplectic type and hence (cf. [Asc86, 23.9]) $Q=Q_{0} * Z(Q)$ with Q_{0} extraspecial and $Z(Q)$ cyclic of order 2 or 4 . Further we may choose Q_{0} with $U \leq Q_{0}$. As $\operatorname{Inn}\left(Q_{0}\right)=C_{\text {Aut }\left(Q_{0}\right)}\left(Q_{0}^{*}\right)$, $P=Q_{0} C_{P}\left(Q_{0}\right)$.

As $[E, P] \leq[E, S] \leq U \leq P, E$ acts on P, and similarly E acts on Q_{0}. Thus $\left[E, C_{P}\left(Q_{0}\right)\right] \leq C_{U}\left(Q_{0}\right)=Z$ and if E does not centralize P^{*} then E does not centralize Q^{*}. Then as E acts on Q_{0}, E induces a transvection on the orthogonal space Q_{0}^{*} with center U^{*}. This is impossible as U^{*} is a singular point in Q_{0}^{*}. Thus E centralizes P^{*}, so that $E \leq P$ by 2.2 , and hence $E^{*} \leq Z\left(P^{*}\right)$; so replacing Q by $Q\left\langle E^{N_{H_{D}}(P)}\right\rangle$, we may assume $E \leq Q$.

Finally let $\Theta \in \Lambda(V)$ be of type 1^{7} such that each member of $\Lambda^{\mathbf{F}}$ is a sum of points in Θ, and let $R_{0}=O_{2}\left(N_{H}(\Theta)\right)$. Thus Q centralizes $\Theta, Q \leq R_{0}$, and we view R_{0}^{*} as the core of the permutation module for $N_{H}(\Theta) / R_{0} \cong S_{7}$ on Θ. Thus we identify $f^{*} \in Q^{*}$ with the points of Θ inverted by f. Observe $\Lambda^{\mathbf{F}}(E)=$ $\left\{l_{0}, l_{1}, l_{2}, l_{3}\right\}$, where $l_{0}=C_{V}(E)$ is a point. As $Z(Q)$ is cyclic, for each $e \in E-Z$ there is $f \in Q$ with $[e, f]=z$, and hence $\left|f^{*} \cap e^{*}\right|$ is odd. It follows that for at least two $i \in\{1,2,3\}$, the eigenspaces of f on l_{i} are 1-dimensional. Hence Λ is of type $1^{5} 2$ or 1^{7}, cases we have already handled. This completes the proof of (a).

Set $X=C_{H}(P)$. Since $Z=Z_{P}$ by (a), we conclude from 8.3(a) that if $X \leq P$ then $X=C_{H}(P)$, so that (b) holds. Thus to prove (b), it suffices to show $X \leq P$. If $P=C_{S_{D}}(E)$ then $A \leq P$, and then $X \leq P$ since $C_{H}(A)=A$. On the other hand, if P satisfies (a)(1) then $X \leq C_{H}\left(\Lambda^{\mathbf{F}}\right)$. If Λ is of type 1^{7} then P has index at most 2 in $O_{2}\left(N_{H}\left(\Lambda^{\mathbf{F}}\right)\right)$ and $X=Z$. If Λ is of type $1^{5} 2$ then $P=P_{0}\langle t\rangle$ where $P_{0}=O_{2}\left(N_{H_{D}}\left(\Lambda^{\mathbf{F}}\right)\right.$ and where t inverts every element of $C_{H}\left(P_{0}\right)$. Thus $X \leq P$ in all cases, establishing (b).

Let $Q \in \mathscr{B}(P), R_{1}$ our candidate for $\beta(P)$ in (c), $R_{2}=N_{R_{1}}(Q)$, and $Q_{2}=$ $N_{Q}\left(R_{1}\right)$. Then Q_{2} acts on R_{2}. Observe that $P \in \mathscr{F}_{H}^{c}$ and $Z_{P}=Z$ by (a) and (b), so $P \in \mathscr{F}^{c}$ by 8.3(a). Thus the same holds for any overgroup Q^{\prime} of P in S; so $Q^{\prime} \in \mathscr{F}^{c}$ and $N_{G}\left(Q^{\prime}\right) \leq H$ by 8.3(a). In particular Q_{2} and $N_{Q}\left(R_{2}\right)$ are contained in H.

We claim that $N_{Q}\left(R_{2}\right)$ acts on R_{1}, so that $Q_{2}=N_{Q}\left(R_{2}\right)$. In case (a)(1), from the treatment of that case above, each of R_{1} and P, and hence also R_{2} has Λ as its set of weight spaces, so Q_{2} acts on $O_{2}\left(N_{H}(\Lambda)\right)=R_{1}$. Similarly in case (a)(2), each of R_{1} and P, and hence also R_{2} has the same set of 1-dimensional weight spaces, so again Q_{2} acts on $R_{3}=O_{2}\left(N_{H}(\Lambda)\right)$, and hence also on $R_{1}=R_{3}\langle t\rangle$ as $t \in P$ acts on Q_{2}. Finally in case (3), Q_{2} acts on T_{2} by 4.9 (c), so that Q_{2} acts on $S_{\infty} R_{2}=R_{1}$. This completes the proof of the claim.

Next from the structure of $N_{H}\left(R_{1}\right)$ and $N_{H_{D}}(P), N_{H_{D}}(P)$ acts on no nontrivial 2-subgroup of $N_{H}\left(R_{1}\right) / R_{1}$; so $Q_{2} \leq R_{1}$, and hence also $Q_{2} \leq R_{2}$. Therefore as Q is finite, $Q=Q_{2} \leq R_{1}$, completing the proof of the lemma.

Lemma 10.8. Let $D=G_{0}$ and $H_{0}^{*}=H_{0} / Z$. Write $\mathscr{R}\left(H_{0}\right)$ for the set of $P_{0} \leq S$ such that $Z \leq P$ and P^{*} is the radical of some proper parabolic of $H_{0}^{*} \cong \mathrm{Sp}_{6}(2)$ containing S_{0}^{*}.
(1) If $P \in \mathscr{D}^{\mathrm{rc}}$ and $N_{D}(P) \leq H$ then $P \in \mathscr{R}\left(H_{0}\right)$.
(2) $\mathscr{R}\left(H_{0}\right) \subseteq \mathscr{D}^{\mathrm{rc}}$.
(3) $B_{0}^{*}=C_{H_{0}^{*}}\left(a^{*}\right)$, where a^{*} is the involution of type a_{2} in $Z\left(S_{0}^{*}\right)$. For each $P \in \mathscr{R}\left(H_{0}\right)$ with $O_{2}\left(B_{0}\right) \leq P, N_{D}(P) \leq K_{0}$.
(4) $N_{D}(P) \leq H_{0}$ and $P \in \mathscr{F}_{S_{\psi_{0}}}^{\mathrm{rc}}\left(H_{\psi_{0}}\right)$ for each $P \in \mathscr{R}\left(H_{0}\right)$ with $O_{2}\left(B_{0}\right) \not \pm P$.
(5) $N_{H_{0}}(A)^{*}$ is the maximal parabolic isomorphic to $L_{3}(2) / E_{64}$.
(6) $N_{H_{0}}(E)^{*}$ is the minimal parabolic not contained in B_{0}^{*}.

Proof. Assume the hypothesis of (1). Then by 10.1, P contains each 2-element in $C_{H_{0}}(P)$, and $O_{2}\left(N_{H_{0}}(P) / P C_{H_{0}}(P)\right)=1$. Hence as $H_{0}^{*} \cong \operatorname{Sp}_{6}(2), P \in \mathscr{R}\left(H_{0}\right)$ by the Borel-Tits Theorem. Thus (1) holds.

Next U is the unique normal 4-subgroup of S_{0}, so that U^{*} is generated by the unique involution in $Z\left(S_{0}^{*}\right)$ lifting to an involution of H_{0}. As H_{0} is the covering group of $\mathrm{Sp}_{6}(2)$ and $B_{0}=N_{H_{0}}(U)$, it follows that the first statement in (3) holds. By $10.3, O_{2}\left(B_{0}\right)$ is weakly closed in S_{0} with respect to D and so the remaining statement in (3) follows.

Next, by $7.10, \operatorname{Aut}_{D}(A) \cong L_{4}(2)$ and so $N_{H_{0}}(A) / A \cong L_{3}(2)$. This implies (5). Also $N_{H_{0}}(A)^{*}$ contains two minimal parabolics: $N_{B_{0}}(A)^{*}$ and Y_{0}^{*}, where $Y_{0}=$ $N_{H_{0}}(A) \cap N_{D}(E)=N_{H_{0}}(E)$. Thus (6) holds.

Let $P \in \mathscr{R}\left(H_{0}\right)$ with $O_{2}\left(B_{0}\right) \not \leq P$. Then $N_{H_{0}}(P)^{*}$ contains the minimal parabolic Y_{0}^{*}; so $N_{H_{0}}(P)$ is $Y_{0}, N_{H_{0}}(A)$, or the preimage of the third maximal parabolic of H_{0}^{*}, isomorphic to S_{6} / E_{32}. In the first two cases $Z=Z_{P}$ from the action of $N_{D}(A)$ on A, and in the third case $P \cong \mathbf{Z}_{4} * Q_{8}^{2}$ and again $Z=Z_{P}$. Thus $N_{D}(P) \leq N_{D}(Z)$. As $S_{0} \leq N_{D}(P)$ and $S_{0} \in \operatorname{Syl}_{2}(D), P$ contains each element in $C_{D}(P)$ by 5.8 and so $P \in \mathscr{D}^{c}$ by 8.2(a). Then $N_{D}(P) \leq H_{0}$ by 8.3(a). Also $S_{0}=S_{\psi_{0}}$ acts on P and as $C_{S_{0}}(P) \leq P, P \in \mathscr{F}_{S_{\psi_{0}}}^{c}\left(H_{\psi_{0}}\right)$. Similarly $N_{D}(P) \leq$ $H_{\psi_{0}}$ and $P=O_{2}\left(N_{D}(P)\right)$, so that $P \in \mathscr{F}_{S_{\psi_{0}}}\left(H_{\psi_{0}}\right)$ which completes the proof of (4). Then (2) follows from (3) and (4).

Proposition 10.9. Let $P \in \mathscr{D}^{\mathrm{rc}}$. Then
(a) There is no nontrivial $N_{D}(P)$-invariant subgroup of $C_{G}(P)$ of odd order.
(b) $P \in \mathscr{F} c$.
(c) One of the following holds.
(1) $P \in A^{D}$,
(2) $P=C_{S_{D}}(E)$, or
(3) $P \in \mathscr{D}_{Y}^{\text {re }}$ for some $Y \in\{H, K\}$, and $N_{G}(P) \leq Y$.

Conversely, every subgroup P of S_{D} which satisfies one of the conditions in (c) is in $\mathscr{D}^{\mathrm{rc}}$.

Proof. Suppose first that $\left|Z_{P}\right|=2$. Then $N_{D}(P) \leq H$ by 8.3(a), so that $P \in \mathscr{D}_{H}^{\mathrm{rc}}$ by 10.1. Assume that $N_{D}(P) \notin B$. Then $10.7(\mathrm{~b})$ and $10.8(4)$ say that $C_{G}(P) \leq P$, so that (a) and (b) hold and $P \in \mathscr{F}_{H}^{c}$. Then (3)(c) follows from 8.3(a).

Suppose next that either $\left|Z_{P}\right|=2$ and $N_{D}(P) \leq B$, or $\left|Z_{P}\right|=4$. In the latter case, $Z_{P}=U$ and $N_{D}(P) \leq K$ by 10.4 and 8.3(b); certainly $N_{D}(P) \leq K$ in the former case. Thus in any event, $N_{D}(P) \leq K$, so that $P \in \mathscr{D}_{K}^{\mathrm{rc}}$ by 10.1. Then
$C_{K}(P) \leq P$ by 10.2(a), and $P \in \mathscr{F}_{K}^{c}$ by 10.2(e). Then as $U \leq P, C_{H}(P) \leq$ $C_{H}(U) \leq K$; so $C_{H}(P) \leq C_{K}(P) \leq P$, and hence $P \in \mathscr{F}_{H}^{c}$. Now it follows from parts (a) and (b) of 8.3 that $C_{G}(P) \leq P$ and (a)-(c) hold.

If $\left|Z_{P}\right|=8$ then $P=C_{S_{D}}(E)$ by 9.5 . Then $A \leq P$, and so $P \in \mathscr{F}^{c}$ by 8.3 (d). Also, it follows from 7.13 that (a) holds, and we have (a) through (c).

If $\left|Z_{P}\right|>8$ then $P \in A^{D}$ by 9.5 . Then 8.3 (d) yields (b), and 7.10 yields (a). Thus, we are reduced to establishing the final statement in the theorem.

If $P \in A^{D}$ or $P=C_{S_{D}}(E)$ then $P \in \mathscr{D}^{\text {rc }}$, and $N_{D}(P) \nsubseteq H \cup K$, by 7.10 and 7.13. Finally assume $P \in \mathscr{D}_{Y}^{\text {rc }}$ for some $Y \in\{H, K\}$ with $N_{G}(P) \leq Y$. Then 10.2, 10.7, and 10.8 yield $Z_{P} \in\{Z, U\}$ and $P \in \mathscr{F}_{Y}^{c}$, so that $P \in \mathscr{F}^{c}$ by 8.2(a), and $P \in \mathscr{D}^{\text {rc }}$ by 10.1.

Proposition 10.10. Let $P \in \mathscr{D}^{\text {rc }}$, let $\mathscr{B}(P)$ be the set of finite $N_{D}(P)$-invariant 2-subgroups of G, and set $\beta(P)=\langle\mathscr{B}(P)\rangle$. Then $\beta(P) \leq S$, and one of the following holds.
(1) $P \in A^{D}$ and $\beta(P)=P$.
(2) $P=C_{S_{D}}(E)$ and $\beta(P)=C_{S}(E)$.
(3) There exists $Y \in\{H, K\}$ such that $P \in \mathscr{D}_{Y}^{\mathrm{rc}}, N_{D}(P) \leq Y, \beta(P) \in \mathscr{F} S(Y)^{\mathrm{rc}}$, and $N_{G}(\beta(P)) \leq Y$.

Proof. Set $N=N_{D}(P)$, let R be a finite N-invariant 2-subgroup of G containing P, and set $R_{0}=N_{R}(P)$.

If $P \in A^{D}$ then $N=N_{G}(P)$ by 7.10; so $R_{0} \leq O_{2}(N)=P$, and (1) holds. Suppose that $P=C_{S_{D}}(E)$. Define R_{i} by $R_{i}=N_{R}\left(R_{i-1}\right)$ for $i \geq 1$, and set $M_{i}=N_{G}\left(R_{i}\right)$. Set $M=N_{G}\left(C_{S}(E)\right)$. By 7.13, $C_{M}(E)=X \times O_{2}(M)$, where X is a free normal subgroup of $M, M / C_{M}(E) \cong \mathrm{GL}(3,2)$, and $M=\left(X \times C_{S}(E)\right) N$. As R_{0} is N-invariant, we get $R_{0} \leq C_{S}(E)$, and $R_{0}=T_{k}\left\langle w_{0}\right\rangle$ for some $k \geq 2$. By 4.9(a) and 7.13, $N_{G}\left(R_{i}\right) \leq M$. Then a straightforward induction argument yields $R_{i} \leq C_{S}(E)$ for all i, and thus $\beta(P) \leq C_{S}(E)$. Since $C_{S}(E)$ is the union of finite N-invariant subgroups, we conclude that $\beta(P)=C_{S}(E)$, and (2) holds.

By 10.9 (c) we are reduced to the case where there exists $Y \in\{H, K\}$ with $P \in \mathscr{D}_{Y}^{\mathrm{rc}}$ and $N_{G}(P) \leq Y$. Suppose further that $\beta(P) \leq S$, and set $M=N_{G}(\beta(P))$. As $P \leq \beta(P)$, and since $P \in \mathscr{F}^{c}$ by $10.9\left(\right.$ b), we conclude $\beta(P) \in \mathscr{F}^{c}$ and $Z_{\beta(P)} \leq$ Z_{P}. If $N \leq H$ and $N \not \subset K$ then 10.7 yields $Z_{P}=Z$, and so $Z_{\beta(P)}=Z$, and then $M \leq H$ by 8.3(a). On the other hand, suppose that $N \leq K$. Then U is the unique 4 -group in K which centralizes P / Z, by $10.2(\mathrm{f})$. Since we are assuming that $\beta(P) \leq S$, it follows that also U is the unique 4-group in $\beta(P)$ which centralizes $\beta(P) / Z$, and hence U is the unique 4 -group in $\beta(P)$ which is normal in M. Then 8.3 says M is contained in H or K, and since $N_{H}(U) \leq K$ we get $M \leq K$. Thus, $M \leq Y$.

We now show that $\beta(P) \leq S$. If $N \leq H$ and $N \not \pm K$, this follows from 10.7(c) and 10.8(4). Suppose $N \leq K$, and set $R_{1}=R \cap K$. Then $R_{0} \leq R_{1} \leq S$ by 10.2(e). Also, 10.2(e) says that $P \in \mathscr{F}_{K}^{c}$, and hence $R_{1} \in \mathscr{F}_{K}^{c}$. As U is the unique normal 4-subgroup of R_{1}, we have $N_{R}\left(R_{1}\right) \leq N_{R}(U)$. Since $Z_{R_{1}} \leq Z_{P} \leq U$, it follows from 8.3 that $N_{R}\left(R_{1}\right)$ is contained in H or K, and since $N_{H}(U) \leq K$ we get $N_{R}\left(R_{1}\right) \leq K$. Then $R=R_{1}$, and so $R \leq S$ for each $R \in \mathscr{B}(P)$. That is, $\beta(P) \leq S$.

In order to complete the proof of (3), it remains to show that $\beta(P) \in \mathscr{F}_{Y}^{r}$. Let Q be the preimage in M of $O_{2}\left(\operatorname{Aut}_{M}(\beta(P))\right)$. As $M \leq Y$ we have $\theta(\beta(P))=$ $O\left(C_{G}(\beta(P))\right)=1$, by 8.4 and $10.9($ a). Thus Q is a 2-group, $Q \in \mathscr{B}(P)$, and $Q=\beta(P) \in \mathscr{F}^{r}$ as required.

11. Theorem B and embeddings

We begin the section with a refinement of Theorem 5.8.
THEOREM 11.1. Let \bar{G}_{0} be the group Co_{3}, identify S_{0} with a Sylow 2-subgroup of \bar{G}_{0} as in Theorem 5.8, and set $\overline{\mathscr{F}}_{0}=\mathscr{F}_{S_{0}}\left(\bar{G}_{0}\right)$. Let $\lambda: G_{0} \rightarrow \bar{G}_{0}$ be the canonical homomorphism $\lambda: g \mapsto \bar{g}$ induced by the inclusion maps of H_{0} and K_{0} into \bar{G}_{0}, and let \bar{G}_{0} be the 2-local finite group $\left(S_{0}, \overline{\mathscr{F}}_{0}, \overline{\mathscr{L}}_{0}^{c}\right)$ associated with \bar{G}_{0} as in Proposition 2.7. Then there is an isomorphism (in the sense of 2.10)

$$
(\alpha, \beta): \mathscr{G}_{0} \rightarrow \overline{\mathscr{G}}_{0}
$$

in which $\alpha: \mathscr{F}_{0} \rightarrow \overline{\mathscr{F}}_{0}$ is the identity map on objects and, on morphisms, $\alpha: c_{g} \mapsto c_{\bar{g}}$; and where $\beta: \mathscr{L}_{0}^{\mathrm{rc}} \rightarrow \overline{\mathscr{L}}_{0}^{\mathrm{rc}}$ is the identity map on objects, and

$$
\beta_{P, Q}: \operatorname{Mor}_{\mathscr{L}_{0}}(P, Q) \rightarrow \operatorname{Mor}_{\overline{\mathscr{L}}_{0}}(P, Q)
$$

is given by $\theta_{0}(P) g \mapsto \bar{g}$ for P and Q in \mathscr{L}_{0} and $g \in N_{G_{0}}(P, Q)$.
Proof. Recall from the discussion following 8.4 that there is a surjection $\lambda: G_{0} \rightarrow \bar{G}_{0}$, where λ may be regarded as the "identity map" on $H_{0} \cup K_{0}$, and $\operatorname{ker}\left(\phi_{A}\right)=\operatorname{ker}(\lambda)_{\mid M} . \operatorname{As} \operatorname{ker}\left(\phi_{A}\right)=\operatorname{ker}(\lambda)_{\mid M} \leq \operatorname{ker}(\lambda), 8.7$ yields $X_{0} \subseteq \operatorname{ker}(\lambda)$. Thus $\theta_{0}(P) \leq \operatorname{ker}(\lambda)$ for any $P \in \mathscr{F}_{0}^{c}$. Then since $O\left(C_{\bar{G}_{0}}(P)\right)=1$, the lemma follows from 5.8 and the last paragraph of 2.13.

We may now establish Theorem B. Part (1) of Theorem B follows from the construction of G_{0} in 5.8, and part (3) follows from 10.1. Part (2a) holds since H_{0} and K_{0} are finite while the nontrivial elements of X are torsion-free. Thus it only remains to verify part (2b) of Theorem B.

As we just saw during the proof of 11.1 , there is a surjective homomorphism $\lambda: G_{0} \rightarrow \bar{G}_{0}=\mathrm{Co}_{3}$ induced by the inclusion maps of H_{0} and K_{0} into \bar{G}_{0}. Set $M_{0}:=N_{\bar{G}_{0}}(A)$, and denote by \widetilde{C} the colimit of the subgroup amalgam defined by the inclusion maps among the intersections of the members of $\mathcal{M}:=\left\{H_{0}, K_{0}, M_{0}\right\}$.

Then there is a surjective homomorphism $\beta: \widetilde{C} \rightarrow \bar{G}_{0}$ and a surjection $\delta: G_{0} \rightarrow \widetilde{C}$ with $\delta \beta=\lambda$. Set $M=N_{G}(A)$. As seen in the proof of $7.5, M \leq G_{0}$ and $\phi_{A}: M \rightarrow$ M_{0} is the restriction of λ to M. Thus $\operatorname{ker}(\delta)=\left\langle\operatorname{ker}\left(\phi_{A}\right)^{G_{0}}\right\rangle$, and then part (2b) of Theorem B follows from 8.7.

For any $i>0$, set $m_{i}=2^{i-1}, \sigma_{i}=\psi_{0}^{m_{i}}, G_{i}=G_{\sigma_{i}}, S_{i}=S \cap G_{i}$, and $\mathscr{F}_{i}=\mathscr{F}_{S_{i}}\left(G_{i}\right)$. Write Λ for the poset \mathbb{N}, under the usual total ordering. There is then a directed system of embeddings of fusion systems

$$
\mathfrak{F}=\left(\iota_{i, j}: \mathscr{F}_{i} \rightarrow \mathscr{F}_{j}\right)_{i \leq j \in \Lambda},
$$

where $\iota_{i, j}$ is an inclusion map, and $\mathscr{F}_{0}=\mathscr{F}_{S_{0}}\left(G_{0}\right)$ is the fusion system of Co_{3}.
Let $\iota_{i}: \mathscr{F}_{i} \rightarrow \mathscr{F}$ be the inclusion, and observe that $\iota_{j} \circ \iota_{i, j}=\iota_{i}$ for $i \leq j$. For $i, j \in \Lambda$ with $i \leq j$ and $P \in \mathscr{F}_{i}^{\mathrm{rc}}$, write $\mathscr{B}_{i}(P)$ for the set of finite $N_{G_{i}}(P)$-invariant 2-subgroups of G, and set $\beta_{i}(P)=\left\langle\mathscr{B}_{i}(P)\right\rangle$ and $\beta_{i, j}(P)=\beta_{i}(P) \cap G_{j}$.

Lemma 11.2. Let $i, j \in \Lambda$ with $i \leq j$, and let $P \in \mathscr{F}_{i}^{\mathrm{rc}}$. Then
(a) $\beta_{i}(P) \in \mathscr{F}^{\mathrm{rc}}$,
(b) $\beta_{i, j}(P) \in \mathscr{F}_{j}^{\mathrm{rc}}$ and
(c) $\beta_{i, i}(P)=P$.

Proof. Set $D=G_{i}, \mathscr{D}=\mathscr{F}_{i}, N=N_{D}(P)$, and $\beta=\beta_{i}$. Also set $Q=\beta(P)$, $\widetilde{D}=G_{j}, \widetilde{\mathscr{D}}=\mathscr{F}_{j}, \widetilde{P}=\beta_{i, j}(P)=Q \cap \widetilde{D}$, and $\widetilde{N}=N_{\widetilde{D}}(\widetilde{P})$. Since $P \in \mathscr{F}^{c}$ by 10.9 (b), it follows from 8.2(a) that $\widetilde{P} \in \widetilde{\mathscr{D}}^{c}$ and that $Q \in \mathscr{F}^{c}$. If $P \in A^{D}$ or $P=C_{S_{D}}(P)$ then $Q_{\sim}=P$ or $C_{S}(E)$ by 10.10 . Then 10.5 says $Q \in \mathscr{F}^{\mathrm{rc}}, \widetilde{P}=P$ or $C_{S_{j}}(E)$, and $\widetilde{P} \in \widetilde{\mathscr{D}}^{\text {rc }}$. That is, the lemma holds in these two cases.

By 10.9 we may assume that $N_{D}(P) \leq Y$ for some $Y \in\{H, K\}$, and that $P \in \mathscr{D}_{Y}^{\mathrm{rc}}$. Then (a) is given by 10.9 and 10.10. In order to complete the proof of (b), it remains to show that $\widetilde{P} \in \mathscr{F} r$. Let R be the pre-image in Y of $O_{2}\left(\operatorname{Aut}_{\tilde{N}}(\widetilde{P})\right)$. As in the final lines of the proof of 10.10 , we find that $\theta_{j}(\widetilde{P})=1$; hence R is a 2 -group, and since R is N-invariant we get $R \leq Q$. Then $R=\widetilde{P}$ and $\widetilde{P} \in \mathscr{F}_{j}^{r}$ as required.

Finally suppose $i=j$. Here $P \leq \widetilde{P}$ and $N_{G_{i}}(P) \leq N_{G_{i}}(\widetilde{P})$, and since $P \in \mathscr{F}_{i}^{r}$ we get $\operatorname{Aut}_{\widetilde{P}}(P) \leq O_{p}\left(\operatorname{Aut}_{G_{i}}(P)\right)=\operatorname{Inn}(P)$. Then $\widetilde{P}=P C_{\widetilde{P}}(P)=P$ as $P \in \mathscr{F}_{i}^{c}$, and (c) holds.

LEMMA 11.3. Let θ, θ_{0}, and $\theta_{i}=\theta_{\sigma_{i}}$ be the signalizer functors on $\mathscr{F}, \mathscr{F}_{0}$, and \mathscr{F}_{i}, respectively, given by 8.8. Let $i, j \in \Lambda$ with $i \leq j$, and let $P \in \mathscr{F}_{i}^{\mathrm{rc}}$. Then

$$
\theta_{i}(P)=\theta\left(\beta_{i}(P)\right) \cap G_{i}=\theta_{j}\left(\beta_{i, j}(P)\right) \cap G_{i}
$$

Proof. Recall that by definition,

$$
\theta(P)=O\left(C_{G}(P)\right) C_{\mathbf{X}}(P) \quad \text { and } \quad \theta_{i}(P)=O\left(C_{G_{i}}(P)\right) C_{\mathbf{X} \cap G_{i}}(P)
$$

But $O\left(C_{G}(P)\right)=O\left(C_{G_{i}}(P)\right)=1$ by 10.9(a), so that $\theta_{i}(P)=\theta(P) \cap G_{i}$. If $P \in A^{G_{i}}$ then $\beta_{i}(P)=\beta_{i, j}(P)=P$, and the lemma follows from the preceding observation. If $P=C_{S_{i}}(E)$ then $\beta(P)=C_{S}(E)$ and $\beta_{i, j}(P)=C_{S_{j}}(P)$ by 10.10, and the lemma then follows from 7.13(d). If $P \in \mathscr{F} S_{i}\left(Y \cap G_{i}\right)^{\text {rc }}$ for some $Y \in\{H, K\}$ then also $\beta(P) \in \mathscr{F}_{S}(Y)^{\mathrm{rc}}$ by 10.10 , and $\theta_{i}(P)=\theta(\beta(P))=1$. The lemma holds trivially in this case, and there are no more cases to consider, by 10.9.

LEMMA 11.4. $\mathscr{F}^{\mathrm{rc}}=\left\{\beta_{i}(P) \mid P \in \mathscr{F}_{i}^{\mathrm{rc}}, i \geq 0\right\}$.
Proof. Let $\mathscr{B}=\left\{\beta_{i}(P): P \in \mathscr{F}_{i}^{\mathrm{rc}}, i \geq 0\right\}$. Then $\mathscr{B} \subseteq \mathscr{F}^{\mathrm{rc}}$ by 11.2(a). Let $\widetilde{P} \in \mathscr{F}^{\mathrm{rc}}$. If $\widetilde{P} \in A^{G}$ then $\widetilde{P} \leq G_{i}$ for some i, and $\widetilde{P}=\beta_{i}(\widetilde{P})$. If $\widetilde{P}=C_{S}(E)$ then $\widetilde{P}=\beta_{0}\left(C_{S_{0}}(E)\right)$ by 10.10. Suppose that $\widetilde{P} \in \mathscr{F}_{S}(H)^{\mathrm{rc}}$, such that $N_{G}(\widetilde{P}) \leq H$ and $N_{G}(\widetilde{P}) \not \subset K$. The possibilities for $N_{G}(\widetilde{P})$ are listed in 10.7(a), and we shall deal with them case by case.

In case (1) and (2) of 10.7(a), $N_{G}(\widetilde{P})=N_{H}(\underset{\sim}{\Lambda})$ for some $\Lambda \in \Lambda(V, \tau)$, with $\tau=1^{7}$ or 1^{5}, 2. Let $\widetilde{Q}=\Omega_{2}\left(O_{2}\left(N_{H}(\Lambda)\right)\right)$. Then \widetilde{Q} is finite; so $\widetilde{Q} \leq G_{i}$ for some $i>0$. Further $\Lambda=\Lambda(\widetilde{Q})$ is the set of weight spaces of \widetilde{Q} on V, and as $\widetilde{Q} \leq G_{i}$, $\Lambda={\underset{\Theta}{\Theta}}^{\mathbf{F}}$, where Θ is the set of weight spaces for \widetilde{Q} on $V_{i}=V_{\mathbf{F}_{\sigma}}$. If $\tau=1^{7}$, let $P=\widetilde{Q}=\widetilde{P}$, while if $\tau=1^{5}, 2$, let $P=O_{2}\left(N_{H_{i}}(\Theta)\right)\langle t\rangle$, where t is as in 10.7(a). Then $P \in \mathscr{F}_{i}^{\mathrm{rc}}$ and $\widetilde{P}=\beta_{i}(\widetilde{P})$ by 10.7(c).

It remains to consider case (3), where $\widetilde{P}=O_{2}\left(N_{H}(E)\right)$. We take $P=$ $O_{2}\left(N_{H \cap G_{1}}(E)\right)$, obtaining $\beta_{1}(P)=\widetilde{P}$; again from 10.7(c).

By $10.9(\underset{\sim}{c})$ we may now assume that $N_{G}(\underset{\sim}{P}) \leq K$, so that $\widetilde{P} \in \mathscr{F} S(K)^{\text {rc }}$. By 10.2 we have $\widetilde{P} \cap B^{0}=\widetilde{P}_{1} \widetilde{P}_{2} \widetilde{P}_{3}$, where $\widetilde{P}_{k}=\widetilde{P} \cap L_{k}$ is either a quaternion group or a Sylow 2-subgroup of L_{k}. Since K is locally finite, and since 10.2 shows that $N_{G}(\widetilde{P}) / \widetilde{P}$ is finite, we may choose i sufficiently large so that $P:=\widetilde{P} \cap G_{i}$ has the following properties:
(1) For all k for which $\widetilde{P}_{k} \in \operatorname{Syl}_{2}\left(L_{k}\right)$ we have $\left|P \cap L_{k}\right| \geq 16$, and for all other k we have $P \cap L_{k}=\widetilde{P}_{k}$.
(2) $N_{G}(\widetilde{P})=N_{K}(\widetilde{P})=N_{G_{i}}(P) \widetilde{P}$.

Set $N=N_{K \cap G_{i}}(P)$ and $\tilde{N}=N_{K}(\widetilde{P})$. It follows from (1) and (2), and from the final statement in 10.2, that $P \in \mathscr{F}_{S_{i}}\left(K \cap G_{i}\right)^{\text {rc }}$ and that $N \leq \tilde{N}$. As $N \leq \tilde{N}$, $\widetilde{P} \leq \beta_{i}(P)$, so that it remains to show $\beta_{i}(P) \leq \widetilde{P}$.

Let $P \leq R \in \mathscr{B}(P)$ and set $R_{0}=R \cap K$. Then $R \leq S$ by 10.2(e). As $\tilde{N}=N_{G_{i}}(\underset{\sim}{P}) \widetilde{P},\left\langle R_{0}, \widetilde{P}\right\rangle$ is an \tilde{N}-invariant 2-group, so since $\widetilde{P} \in \mathscr{F}^{r}$ we conclude that $R_{0} \leq \widetilde{P}$. By 10.9(b), $P \in \mathscr{F}^{c}$, so $R_{0} \in \mathscr{F}^{c}$. By 10.2(f), U is the unique normal fours group in R_{0}, and since $Z_{R_{0}} \leq Z_{P}$ it follows from 8.3 that $N_{G}\left(R_{0}\right) \leq K$. Then $R_{0}=R$, and the proof is complete.

12. Limits, and Theorem \mathbf{C}

Our aim in this section is to introduce limits of directed systems of p-local groups, and to obtain Theorem C as an application. See for example [Jac80, §2.5] for a discussion of directed systems and their limits. Theorem D will then be obtained as a corollary to [LO02, Th. 4.5].

Let (Λ, \leq) be a directed set. For $\lambda \in \Lambda$, write $\Lambda(\lambda)$ for $\{\mu \in \Lambda \mid \lambda \leq \mu\}$. A subset Ω of Λ is closed if $\Lambda(\lambda) \subseteq \Omega$ for all $\lambda \in \Omega$. In particular, each of the sets $\Lambda(\lambda)$ is closed.

Recall the notion of "pre-local group" from 2.4. Fix a prime p, and assume that for each $\lambda \in \Lambda$ we are given a pre-local group $\mathscr{G}_{\lambda}=\left(S_{\lambda}, \mathscr{F}_{\lambda}, \mathscr{L}_{\lambda}\right)$, where each S_{λ} is a p-group. We write \mathscr{E}_{λ} for $\operatorname{Obj}\left(\mathscr{L}_{\lambda}\right)$, and given subgroups P and Q of S_{λ} we write $\operatorname{Hom}_{\lambda}(P, Q)$ for $\operatorname{Hom}_{\mathscr{F}_{\lambda}}(P, Q)$, and $\operatorname{Mor}_{\lambda}(P, Q)$ for $\operatorname{Mor}_{\mathscr{L}_{\lambda}}(P, Q)$ if P and Q are in \mathscr{E}_{λ}. Assume that for all pairs (λ, μ) with $\lambda \leq \mu$ in Λ, we are given an embedding

$$
\left(\iota_{\lambda, \mu}, \beta_{\lambda, \mu}\right): \mathscr{G}_{\lambda} \longrightarrow \mathscr{G}_{\mu}
$$

of pre-local groups (cf. 2.10). We may write simply $\beta_{\lambda, \mu}$ for the pair ($\iota_{\lambda, \mu}, \beta_{\lambda, \mu}$). We assume further that

$$
\mathfrak{G}=\left(\beta_{\lambda, \mu}: \mathscr{G}_{\lambda} \longrightarrow \mathscr{G}_{\mu}\right)_{\lambda \leq \mu \in \Lambda}
$$

is a directed system of pre-local groups. That is, we have $\beta_{\mu, \nu} \circ \beta_{\lambda, \mu}=\beta_{\lambda, v}$ whenever $\lambda \leq \mu \leq \nu$ in Λ, and each $\beta_{\lambda, \lambda}$ is the "identity morphism" on \mathscr{G}_{λ}, consisting of a pair of identity functors.

Let $S:=S_{\infty}$ be the limit of the Λ-directed system of p-groups

$$
\left(\iota_{\lambda, \mu}: S_{\lambda} \longrightarrow S_{\mu}\right)_{\lambda \leq \mu} .
$$

By [Jac80, 2.8], the limit exists and is a group, and there are monomorphisms $\iota_{\lambda}: S_{\lambda} \rightarrow S$, compatible with the monomorphisms $\iota_{\lambda, \mu}$. We may then view all of these monomorphisms as ordinary inclusion maps, in order to obtain the following result:

Lemma 12.1. $S=\bigcup_{\lambda \in \Lambda} S_{\lambda}$, and S is a p-group.
Let P and Q be subgroups of S. For any $\phi \in \operatorname{Inj}(P, Q)$ and any $\lambda \in \Lambda$, define ϕ_{λ} to be the restriction of ϕ to $P \cap S_{\lambda}$, and set

$$
\Lambda_{\phi}=\left\{\lambda \in \Lambda \mid \phi_{\lambda} \in \operatorname{Hom}_{\lambda}\left(P \cap S_{\lambda}, Q \cap S_{\lambda}\right)\right\}
$$

Define $\operatorname{Hom}_{\infty}(P, Q)$ to be the set of all $\phi \in \operatorname{Inj}(P, Q)$ such that Λ_{ϕ} contains a nonempty closed subset of Λ. As Λ is a directed set, each pair of elements of Λ has an upper bound, and it follows that the composition of $\phi \in \operatorname{Hom}_{\infty}(P, Q)$ with $\psi \in \operatorname{Hom}_{\infty}(Q, R)$ is in $\operatorname{Hom}_{\infty}(P, R)$. Thus we may form the category \mathscr{F}_{∞}, whose objects are the subgroups of S, and whose morphisms are given by the sets
$\operatorname{Hom}_{\infty}(P, Q)$. Moreover, if P and Q are subgroups of S_{λ} and $\phi \in \operatorname{Hom}_{\lambda}(P, Q)$, then $\phi \in \operatorname{Hom}_{\infty}(P, Q)$. This natural inclusion of sets may be denoted

$$
\iota_{\lambda}: \operatorname{Hom}_{\lambda}(P, Q) \rightarrow \operatorname{Hom}_{\infty}(P, Q)
$$

Allowing P and Q to vary over the set of all subgroups of $S_{\lambda}, \iota_{\lambda}$ is then an embedding of fusion systems (cf. 2.9). We record this in the following lemma, whose proof is straightforward and left to the reader.

Lemma 12.2. \mathscr{F}_{∞} is a fusion system on S and $\iota_{\lambda}: \mathscr{F}_{\lambda} \rightarrow \mathscr{F}_{\infty}$ is an embedding of fusion systems.

Recall that \mathscr{E}_{λ} is the set of objects of the linking system \mathscr{L}_{λ}. For $P \in \mathscr{E}_{\lambda}$ there is then a subgroup $\beta_{\lambda}(P)$ of S defined by

$$
\beta_{\lambda}(P)=\bigcup_{\mu \in \Lambda(\lambda)} \beta_{\lambda, \mu}(P)
$$

Note that for any $\mu \in \Lambda(\lambda)$, we have $\beta_{\lambda}(P)=\beta_{\mu}\left(\beta_{\lambda, \mu}(P)\right)$. Set

$$
\mathscr{E}_{\infty}=\left\{\beta_{\lambda}(P) \mid \lambda \in \Lambda, P \in \mathscr{E}_{\lambda}\right\}
$$

Definition 12.3. Let \mathscr{C} be a category and $\Delta=\left(C_{\lambda}, c_{\lambda, \mu}: \lambda \leq \mu\right)$ a directed system in \mathscr{C}. A family $\Sigma=\left(\gamma_{\lambda}: C_{\lambda} \rightarrow C: \lambda \in \Lambda\right)$ of morphisms in \mathscr{C} is said to be compatible with Δ if for all $\lambda \leq \mu$ in $\Lambda, \gamma_{\lambda}=\gamma_{\mu} \circ c_{\lambda, \mu}$.

Now specialize to the case where \mathscr{C} is the category of sets. A compatible family Σ is said to be nearly injective on Δ if

$$
C=\bigcup_{\lambda \in \Lambda} \gamma_{\lambda}\left(C_{\lambda}\right)
$$

and for each $\lambda \in \Lambda$, whenever $a, b \in C_{\lambda}$ with $\gamma_{\lambda}(a)=\gamma_{\lambda}(b)$, then there exists $\mu \in \Lambda(\lambda)$ with $\beta_{\lambda, \mu}(a)=\beta_{\lambda, \mu}(b)$. For example if $\gamma_{\lambda}: C_{\lambda} \rightarrow C$ is injective for each $\lambda \in \Lambda$, then Σ is nearly injective.

Now take $\Delta=\Delta(\mathfrak{G})$ to be $\left(\mathscr{E}_{\lambda}, \beta_{\lambda, \mu}: \lambda \leq \mu\right)$, and observe Δ is a directed system in the category of sets, if we regard $\beta_{\lambda, \mu}$ as the function from \mathscr{E}_{λ} to \mathscr{E}_{μ} defined by $\beta_{\lambda, \mu}: P \rightarrow \beta_{\lambda, \mu}(P)$. We say that Δ is nearly injective if $\Sigma(\Delta)$ is nearly injective on $\Delta(\mathfrak{G})$, where $\Sigma(\Delta)=\left(\beta_{\lambda}: \mathscr{E}_{\lambda} \rightarrow O b\left(\mathscr{L}_{\infty}\right): \lambda \in \Lambda\right)$. Similarly define \mathfrak{G} to be nearly injective if $\Delta(\mathfrak{G})$ is nearly injective.

Lemma 12.4. Assume $\Sigma=\left(\gamma_{\lambda}: \mathscr{E}_{\lambda} \rightarrow C: \lambda \in \Lambda\right)$ is nearly injective on $\Delta(\mathfrak{G})$ and $\Gamma=\left(\delta_{\lambda}: \mathscr{E}_{\lambda} \rightarrow D: \lambda \in \Lambda\right)$ is a family of functions compatible with $\Delta(\mathfrak{G})$.
(1) Suppose $\lambda, \nu \in \Lambda, P \in \mathscr{E}_{\lambda}$, and $Q \in \mathscr{E}_{\nu}$ such that $\beta_{\lambda}(P)=c=\beta_{\nu}(Q)$. Then there exists $\mu \in \Lambda(\lambda) \cap \Lambda(v)$ such that $R=\beta_{\lambda, \mu}(P)=\beta_{\lambda, \mu}(Q)$. Moreover $\beta_{\mu}(R)=c$.
(2) $\delta: C \rightarrow D$ is a well-defined function, where $\delta(c)=\delta_{\lambda}(P)$ for $\lambda \in \Lambda$ and $P \in \mathscr{E}_{\lambda}$ such that $\gamma_{\lambda}(P)=c$.
(3) If Γ is also nearly injective on $\Delta(\mathfrak{G})$ then δ is a bijection.

Proof. As Λ is directed there is $\eta \in \Lambda(\lambda) \cap \Lambda(v)$. Set $P^{\prime}=\beta_{\lambda, \eta}(P)$ and $Q^{\prime}=\beta_{v, \eta}(Q)$. Then

$$
\beta_{\eta}\left(P^{\prime}\right)=\beta_{\lambda}(P)=\hat{P}=\beta_{v}(Q)=\beta_{\eta}\left(Q^{\prime}\right)
$$

As Σ is nearly injective, there exists $\mu \geq \eta$ with $\beta_{\eta, \mu}\left(P^{\prime}\right)=R=\beta_{\eta, \mu}\left(Q^{\prime}\right)$. Then $\beta_{\lambda, \mu}(P)=\beta_{\eta, \mu}\left(\beta_{\lambda, \eta}(P)\right)=R$, and similarly $\beta_{\nu, \mu}(Q)=R$. Since $\beta_{\mu}(R)=$ $\beta_{\mu}\left(\beta_{\lambda, \mu}(P)\right)=\beta_{\lambda}(P)=c$, (1) holds.

To see that δ is well defined, suppose that $\delta_{\lambda}(P)=\delta_{\nu}(Q)$ for some v and some $Q \in \mathscr{E}_{\nu}$. Choose μ as in (1). Then $\delta_{\lambda}(P)=\delta_{\mu}\left(\beta_{\lambda, \mu}(P)\right)=\delta_{\mu}\left(\beta_{\nu, \mu}(Q)\right)=\delta_{\mu}(Q)$ and so γ is well defined, establishing (2).

Assume the hypothesis of (3). Then by (2) applied to Γ, the map $\alpha: \gamma_{\lambda}(P) \mapsto$ $\delta_{\lambda}(P)$ is a well-defined function from D to C, and visibly α is an inverse for δ; so (3) holds.

We now assume that \mathfrak{G} is nearly injective, and define a category \mathscr{L}_{∞} whose set of objects is \mathscr{E}_{∞}, and which will be shown to be the direct limit of the directed $\operatorname{system}\left(\beta_{\lambda, \mu}: \mathscr{L}_{\lambda} \longrightarrow \mathscr{L}_{\mu}\right)_{\lambda \leq \mu}$ of categories.

Let $\widehat{P}, \widehat{Q} \in \mathscr{E}_{\infty}$. Then there exist $\lambda \in \Lambda$, and $P, Q \in \mathscr{E}_{\lambda}$, such that $\widehat{P}=\beta_{\lambda}(P)$ and $\widehat{Q}=\beta_{\lambda}(Q)$. In the following discussion, leading up to 12.5 , we take λ, P, and Q to be fixed. Define $\operatorname{Mor}_{\infty}(\widehat{P}, \widehat{Q})$ to be the set of equivalence classes $[f]$ of mappings

$$
f: \Omega_{f} \longrightarrow \bigcup_{\mu \in \Omega_{f}} \operatorname{Mor}_{\mu}\left(\beta_{\lambda, \mu}(P), \beta_{\lambda, \mu}(Q)\right)
$$

where
(i) Ω_{f} is a nonempty closed subset of $\Lambda(\lambda)$,
(ii) $f(\mu) \in \operatorname{Mor}_{\mu}\left(\beta_{\lambda, \mu}(P), \beta_{\lambda, \mu}(Q)\right)$ for all $\mu \in \Omega_{f}$,
(iii) $\beta_{\mu, \nu}(f(\mu))=f(\nu)$ whenever $\mu \leq \nu$,
and where two such mappings f and f^{\prime} are defined to be equivalent if they agree on a nonempty closed set. There is then a well-defined composition

$$
\operatorname{Mor}_{\infty}(\widehat{Q}, \widehat{R}) \times \operatorname{Mor}_{\infty}(\hat{P}, \widehat{Q}) \longrightarrow \operatorname{Mor}_{\infty}(\hat{P}, \widehat{R})
$$

for any $\hat{R} \in \mathscr{E}_{\infty}$. Namely, one may assume λ chosen so that also $\hat{R}=\beta_{\lambda}(R)$ for some $R \in \mathscr{E}_{\lambda}$. Then, for any $[g] \in \operatorname{Mor}_{\infty}\left(\beta_{\lambda}(Q), \beta_{\lambda}(R)\right)$, define $[g] \cdot[f]$ to be the equivalence class of the mapping $g \cdot f$, where $(g \cdot f)(\mu)=g(\mu) f(\mu)$. This defines the category \mathscr{L}_{∞}. Notice, using 12.4 and increasing λ if necessary, that
these definitions are independent of the choice of P, Q, and R. Thus \mathscr{L}_{∞} is well defined.

For any $\psi \in \operatorname{Mor}_{\lambda}(P, Q)$, there is an element $\left[f_{\psi}\right]$ of $\operatorname{Mor}_{\infty}(\hat{P}, \widehat{Q})$, defined by $f_{\psi}(\mu)=\beta_{\lambda, \mu}(\psi)$ for any $\mu \in \Lambda(\lambda)$. The map $\beta_{\lambda}: \mathscr{E}_{\lambda} \rightarrow \mathscr{E}_{\infty}$ extends to a functor $\beta_{\lambda}: \mathscr{L}_{\lambda} \longrightarrow \mathscr{L}_{\infty}$, where β_{λ} is defined on morphisms by $\beta_{\lambda}(\psi)=\left[f_{\psi}\right]$.

Lemma 12.5. $\left(\beta_{\lambda}: \mathscr{L}_{\lambda} \longrightarrow \mathscr{L}_{\infty}\right)_{\lambda \in \Lambda}$ is the direct limit of the nearly injective directed system $L=\left(\beta_{\lambda, \mu}: \mathscr{L}_{\lambda} \longrightarrow \mathscr{L}_{\mu}\right)_{\lambda \leq \mu}$ of categories.

Proof. Let $\left(\gamma_{\lambda}: \mathscr{L}_{\lambda} \rightarrow \mathscr{C}\right)_{\lambda \in \Lambda}$ be a family of functors compatible with the directed system L of categories. By 12.4.2, we can define a function $\gamma: \mathscr{E}_{\infty} \rightarrow$ $\operatorname{Obj}(\mathscr{C})$ by $\gamma(\widehat{P})=\gamma_{\lambda}(P)$ for $\hat{P} \in \mathscr{E}_{\infty}$, where $P \in \mathscr{E}_{\lambda}$ and $\hat{P}=\beta_{\lambda}(P)$.

A similar argument allows us to define γ on morphisms: Let $[f] \in \operatorname{Mor}_{\infty}(\hat{P}, \hat{Q})$ and pick a representative f of $[f]$. We may choose λ so that $\widehat{P}=\beta_{\lambda}(P)$ and $\hat{Q}=\beta_{\lambda}(Q)$ for some $P, Q \in \mathscr{E}_{\lambda}$, and so that $\lambda \in \Omega_{f}$. Setting $\psi=f(\lambda)$, we have $\psi \in \operatorname{Mor}_{\lambda}(P, Q)$ and $\beta_{\lambda}(\psi)=[f]$. We now "define" $\gamma([f])$ to be $\gamma_{\lambda}(\psi)$. As in the preceding paragraph, if $\gamma_{\lambda}(\psi)=\gamma_{\nu}(\phi)$ for some ν and some \mathscr{L}_{ν}-morphism ϕ, we may replace ψ and ϕ by their images under the maps $\beta_{\lambda, \mu}$ and $\beta_{\nu, \mu}$, and reduce to the case where $\lambda=v$. Then $\beta_{\lambda}(\psi)=\beta_{\lambda}(\phi)=[f]$, whence $f(\lambda)=\psi=\phi$, and γ is well defined on morphisms.

It is now straightforward to check that γ is a functor, and γ is then visibly the unique functor such that $\gamma_{\lambda}=\gamma \circ \beta_{\lambda}$ for all $\lambda \in \Lambda$.

There is a functor $\pi_{\infty}: \mathscr{L}_{\infty} \rightarrow \mathscr{F}_{\infty}$, defined as follows. As a map from $\operatorname{Obj}\left(\mathscr{L}_{\infty}\right)$ to $\operatorname{Obj}\left(\mathscr{F}_{\infty}\right)$ we take π_{∞} to induce the identity map on \mathscr{E}_{∞}. As a map of morphisms, define $\pi_{\infty}([f]): \widehat{P} \rightarrow \widehat{Q}$ by

$$
\pi_{\infty}([f]): x \mapsto \pi_{\mu}(f(\mu))(x)
$$

for any $\mu \in \Omega_{f}$ such that $x \in \beta_{\lambda, \mu}(P)$. The definition is independent of μ, and the verification that $\pi_{\infty}([f])$ is in $\operatorname{Hom}_{\infty}(\widehat{P}, \widehat{Q})$ is straightforward, as is the verification of functoriality.

Next, define a family of monomorphisms of groups

$$
\delta=\delta_{\infty}=\left(\delta_{\hat{P}}: \widehat{P} \rightarrow \operatorname{Aut}_{\mathscr{L}_{\infty}}(\widehat{P})\right)_{{\widehat{P} \in \mathscr{E}_{\infty}}}
$$

as follows. Let $P \in \mathscr{E}_{\lambda}$ with $\widehat{P}=\beta_{\lambda}(P)$, and let $x \in \widehat{P}$. Then $x \in \beta_{\lambda, \mu}(P)=P_{\mu}$ for some $\mu \in \Lambda(\lambda)$. Define $\delta_{\hat{P}}(x)$ to be $\left[g_{x}\right]$, where $g_{x}(v)=\beta_{\mu, v}\left(\delta_{\mu}(x)\right)$ for $v \in \Lambda(\mu)$. The verification that each $\delta_{\hat{P}}(x)$ is in $\left.\operatorname{Aut}_{\mathscr{L}_{\infty}}(\hat{P})\right)$ and that $\delta_{\hat{P}}$ is a monomorphism reduces to the corresponding facts concerning the family δ_{μ} of monomorphisms associated with \mathscr{G}_{μ}.

Henceforth \mathscr{L}_{∞} will denote the triple consisting of the category \mathscr{L}_{∞}, the functor π_{∞}, and the collection δ_{∞} of monomorphisms.

Lemma 12.6. Let $\hat{P}, \widehat{Q} \in \mathscr{E}_{\infty}$.
(a) \widehat{P} acts semiregularly on $\operatorname{Mor}_{\infty}(\widehat{P}, \widehat{Q})$ via $x:[f] \mapsto \delta_{\hat{P}}\left(x^{-1}\right) \cdot[f]$.
(b) The orbits of $Z(\hat{P})$ on $\operatorname{Mor}_{\infty}(\widehat{P}, \widehat{Q})$ are the fibers of π_{∞}.

Proof. As $\delta_{\hat{P}}: \hat{P} \rightarrow \operatorname{Aut}_{\mathscr{L}_{\infty}}(\hat{P})$ is a monomorphism, the action in (1) defines an injective representation of \hat{P} on $\operatorname{Mor}_{\infty}(\hat{P}, \hat{Q})$. Let $[f] \in \operatorname{Mor}_{\infty}(\hat{P}, \hat{Q}), \lambda \in \Lambda$, and $P, Q \in \mathscr{E}_{\lambda}$ with $\widehat{P}=\beta_{\lambda}(P)$ and $\widehat{Q}=\beta_{\lambda}(Q)$. Let $x \in \widehat{P}$, and suppose that $[f]$ is a fixed point for $\delta_{\hat{P}}(x)$. Without loss of generality, we may assume that $x \in P_{\lambda}$ and that $\lambda \in \Omega_{f}$. Set $\psi=f(\lambda)$ and $\phi=\pi_{\lambda}(\psi)$. Then $\delta_{\lambda, P}(x) \cdot \psi=\psi$, and hence by conditions (B) and (C) in 2.4, $\phi=\pi\left(\delta_{\lambda, P}(x) \cdot \psi\right)=c_{x} \phi$. Thus as ϕ is injective, it follows that $x \in Z(P)$, and then 2.4(A) yields $x=1$. Thus (a) holds.

We next prove (b). Let $[f],[h] \in \operatorname{Mor}_{\infty}(\widehat{P}, \widehat{Q})$. We may assume that $\Lambda(\lambda)=$ $\Omega_{f}=\Omega_{h}$. Then $\pi_{\infty}[f]=\pi_{\infty}[h]$ if and only if for each $\mu \in \Lambda(\lambda), \pi_{\mu}(f(\mu))=$ $\pi_{\mu}(h(\mu))$. As \mathscr{G}_{μ} is a pre-local group, this holds if and only if there exists $z_{\mu} \in$ $Z\left(P_{\mu}\right)$ with $h(\mu)=\delta_{\mu, P_{\mu}}\left(z_{\mu}\right) \cdot f(\mu)$. (cf. 2.4(A)). But

$$
\begin{aligned}
\delta_{\mu, P_{\mu}}\left(z_{\mu}\right) \cdot f(\mu)=h(\mu) & =\beta_{\lambda, \mu}(h(\lambda))=\beta_{\lambda, \mu}\left(\delta_{\lambda, P_{\lambda}}\left(z_{\lambda}\right) \cdot f(\lambda)\right) \\
& =\beta_{\lambda, \mu}\left(\delta_{\lambda, P_{\lambda}}\left(z_{\lambda}\right)\right) \cdot \beta_{\lambda, \mu}(f(\lambda))=\delta_{\mu, P_{\mu}}\left(z_{\lambda}\right) \cdot f(\mu)
\end{aligned}
$$

By (1) applied in \mathscr{G}_{μ} this holds if and only if $z_{\mu}=z_{\lambda}$. Therefore we have shown that $\pi_{\infty}[f]=\pi_{\infty}[h]$ if and only if for all $\mu \in \Lambda(\lambda), z_{\lambda}=z_{\mu} \in Z\left(P_{\mu}\right)$ and $h(\mu)=$ $\delta_{\mu, P_{\mu}} \cdot f(\mu)$. Since \hat{P} is the union of the groups P_{μ} for $\mu \in \Lambda(\lambda)$, we conclude that $\pi_{\infty}[f]=\pi_{\infty}[h]$ if and only if $z_{\lambda}=z \in Z(\hat{P})$ and $[h]=\delta_{\hat{P}}(z) \cdot[f]=[f] z$. Thus (b) holds.

The fusion system \mathscr{F}_{∞} is in general "too large", in various ways. In particular, π_{∞} need not map morphism sets in \mathscr{L}_{∞} onto homomorphism sets in \mathscr{F}_{∞}, and as a result these homomorphism sets are in general too large for \mathscr{F}_{∞} to serve as the fusion system in the limit of the direct system \mathfrak{G}.

The smallest fusion system on S_{∞} containing $\pi_{\infty}\left(\operatorname{Mor}_{\infty}(\widehat{P}, \widehat{Q})\right.$) for all \widehat{P} and \widehat{Q} in \mathscr{E}_{∞} will be denoted $\operatorname{Im}\left(\pi_{\infty}\right)$. If each \mathscr{G}_{λ} is a p-local finite group then $\operatorname{Im}\left(\pi_{\infty}\right)$ will contain $\iota_{\lambda}\left(\mathscr{F}_{\lambda}\right)$ for all λ, as a consequence of Alperin's Fusion Theorem. More generally, set

$$
\mathscr{F}_{\mathfrak{H}}=\left\langle\operatorname{Im}\left(\pi_{\infty}\right), \iota_{\lambda}\left(\mathscr{F}_{\lambda}\right) \mid \lambda \in \Lambda\right\rangle .
$$

Set

$$
\mathscr{G}_{\infty}=\left(S_{\infty}, \mathscr{F}_{\infty}, \mathscr{L}_{\infty}\right) \quad \text { and } \quad \mathscr{G}_{\mathfrak{H}}=\left(S_{\infty}, \mathscr{F}_{\mathfrak{G}}, \mathscr{L}_{\infty}\right)
$$

Let $\phi \in \operatorname{Hom}_{\lambda}(P, Q)$, with P and Q in \mathscr{E}_{λ}. By 2.4(A) there is $\psi \in \operatorname{Mor}_{\lambda}(P, Q)$ such that $\pi_{\lambda}(\psi)=\phi$. Let $\lambda \leq \mu \leq v$ in Λ. Condition (MG2) in 2.10 yields:

$$
\begin{equation*}
\left.\pi_{\nu}\left(\beta_{\lambda, \nu}(\psi)\right)\right|_{P_{\mu}}=\left.\pi_{\nu}\left(\beta_{\mu, \nu}\left(\beta_{\lambda, \mu}(\psi)\right)\right)\right|_{P_{\mu}}=\pi_{\mu}\left(\beta_{\lambda, \mu}(\psi)\right) \tag{12.7}
\end{equation*}
$$

Definition 12.8. We say that the element μ of $\Lambda(\lambda)$ is ϕ-good provided that, for all $\nu \in \Lambda(\mu), \pi_{\nu}\left(\beta_{\lambda, \nu}(\psi)\right)$ is the unique member of $\operatorname{Hom}_{\nu}\left(P_{\nu}, Q_{\nu}\right)$ which restricts to $\pi_{\mu}\left(\beta_{\lambda, \mu}(\psi)\right)$ on P_{μ}. Denote by E_{ϕ} the set of all ϕ-good elements of Λ_{ϕ}.

LEMMA 12.9. (a) Either of the following conditions implies that \mathscr{G}_{∞} is a pre-local group.
(1) $\pi_{\infty}: \operatorname{Mor}_{\infty}(\widehat{P}, \widehat{Q}) \rightarrow \operatorname{Hom}_{\infty}(\widehat{P}, \widehat{Q})$ is a surjection, for all $\widehat{P}, \widehat{Q} \in \mathscr{E} \infty$.
(2) For every λ, and for every \mathscr{F}_{λ}-morphism ϕ, E_{ϕ} is nonempty.
(b) If \mathscr{G}_{∞} is a pre-local group, then so is $\mathscr{G}_{\mathfrak{G}}$.

Proof. In order to show that \mathscr{G}_{∞} is a pre-local group, we must verify conditions (A) through (C) in 2.4, and that $\mathscr{E}_{\infty} \subseteq \mathscr{F}_{\infty}^{c}$. Under the hypothesis of (1), Condition (A) is an immediate consequence of 12.6 ; we leave the remaining verifications in (1) to the reader.

Assume next that \mathscr{G}_{∞} is a pre-local group. Then

$$
\pi_{\infty}\left(\operatorname{Mor}_{\infty}(\hat{P}, \hat{Q})\right)=\operatorname{Hom}_{\infty}(\hat{P}, \hat{Q})
$$

and so $\operatorname{Hom}_{\mathscr{F}_{\mathscr{E}}}(\hat{P}, \widehat{Q})=\pi_{\infty}\left(\operatorname{Mor}_{\infty}(\hat{P}, \widehat{Q})\right)$. The argument of the preceding paragraph then yields (b).

Finally assume the hypothesis of (2). Let $\phi \in \operatorname{Hom}_{\infty}(\hat{P}, \widehat{Q})$. We may assume $\lambda \in \Lambda_{\phi}$, and thus the restriction ϕ_{μ} of ϕ to P_{μ} is in $\operatorname{Hom}_{\mu}\left(P_{\mu}, Q_{\mu}\right)$ for all $\mu \in \Lambda(\lambda)$. Further, we may assume that $\lambda \in \mathscr{E}_{\phi_{\lambda}}$. Choose $\psi \in \pi_{\lambda}^{-1}\left(\phi_{\lambda}\right)$, and consider the map $f=f_{\lambda}$ on $\Lambda(\lambda)$ defined before 12.5, such that $[f] \in \operatorname{Hom}_{\infty}(\hat{P}, \hat{Q})$ and $\beta_{\lambda}(\psi)=[f]$. Thus $f(\mu)=\beta_{\lambda, \mu}(\psi)$, and so $\mu_{\mu}(f(\mu))=\pi_{\mu}\left(\beta_{\lambda, \mu}(\psi)\right)$ on P_{λ}. Thus as $\lambda \in E_{\phi_{\lambda}}, \pi_{\mu}(f(\mu))=\phi_{\mu}$, so that $\pi_{\infty}([f])=\phi$. Thus we have verified the hypothesis of (1). Therefore by (1), \mathscr{G}_{∞} is a pre-local group, and the proof of (a) is complete.

Lemma 12.10. Assume that \mathfrak{G} is nearly injective.
(a) If $\mathscr{G}_{\mathfrak{G}}$ is a pre-local group then $\beta_{\lambda}=\left(\iota_{\lambda}, \beta_{\lambda}\right): \mathscr{G}_{\lambda} \rightarrow \mathscr{G}_{\mathfrak{G}}$ is an embedding of pre-local groups, and $\left(\beta_{\lambda}: \mathscr{G}_{\lambda} \rightarrow \mathscr{G}_{\mathfrak{F}}\right)_{\lambda \in \Lambda}$ is the direct limit of \mathfrak{G} in the category of pre-local groups and embeddings.
(b) Assume that there exists a pre-local group $\widetilde{\mathscr{G}}=(\widetilde{S}, \widetilde{\mathscr{F}}, \widetilde{\mathscr{L}})$, and a family Σ of embeddings

$$
\gamma_{\lambda}=\left(\alpha_{\lambda}, \gamma_{\lambda}\right): \mathscr{G}_{\lambda} \rightarrow \widetilde{\mathscr{G}}, \lambda \in \Lambda
$$

of pre-local groups compatible with \mathfrak{G}. Assume that the following conditions hold for all λ.
(i) $\widetilde{S}=\bigcup_{\lambda \in \Lambda} \alpha_{\lambda}\left(S_{\lambda}\right)$.
(ii) For each \mathscr{F}_{λ}-morphism $\phi, E_{\phi} \neq \varnothing$.
(iii) For all $P \in \mathscr{E}_{\lambda}$,

$$
\gamma_{\lambda}(P)=\bigcup_{\lambda \leq \mu} \alpha_{\mu}\left(\beta_{\lambda, \mu}(P)\right)
$$

(iv) For each $\widetilde{P}, \widetilde{Q} \in \widetilde{\mathscr{E}}$ and $\tilde{\phi} \in \operatorname{Hom}_{\tilde{\mathscr{F}}}^{\tilde{Q}}(\widetilde{P}, \widetilde{Q})$, there exist $\lambda \in \Lambda$ and $P, Q \in \mathscr{E}_{\lambda}$ such that $\gamma_{\lambda}(P)=\widetilde{P}, \gamma_{\lambda}(Q)=\widetilde{Q}$, and such that for each $\mu \in \Lambda(\lambda)$,

$$
\widetilde{\phi}_{\mid \alpha_{\mu}\left(\beta_{\lambda, \mu} P\right)} \in \alpha_{\mu}\left(\operatorname{Hom}_{\mu}\left(\beta_{\lambda, \mu}(P), \beta_{\lambda, \mu}(Q)\right)\right)
$$

(v) $\widetilde{\mathscr{F}}$ has the Alperin generation property with respect to $\widetilde{\mathscr{E}}$ (cf. 2.14).
(vi) Σ is nearly injective on $\Delta(\mathfrak{G})$.

Then $\mathscr{G}_{\mathfrak{G}}$ is a pre-local group, $\mathscr{G}_{\mathfrak{G}}$ is the limit of \mathfrak{G}, and $\widetilde{\mathscr{G}} \cong \mathscr{\varphi}_{\mathfrak{G}}$ as pre-local groups.
Proof. Assume that $\mathscr{G}_{\mathfrak{G}}$ is a pre-local group. We check that β_{λ} satisfies the conditions (MG1) through (MG3) in 2.10. We have (MG1) since, for any $P \in \mathscr{E}_{\lambda}$,

$$
P=\beta_{\lambda, \lambda}(P) \leq \bigcup_{\mu \in \Lambda(\lambda)} \beta_{\lambda, \mu}(P)=\beta_{\lambda}(P)
$$

Let $\psi \in \operatorname{Mor}_{\lambda}(P, Q)$. Then $\pi_{\infty}\left(\beta_{\lambda}(\psi)\right)_{\mid P}=\pi_{\lambda}(\psi)$ by definition of π_{∞}, and thus (MG2) holds. Condition (MG3) is the assertion that $\beta_{\lambda} \circ \delta_{\lambda, P}=\delta_{\beta_{\lambda}(P)}$ on P, which holds by definition of δ_{P}. Thus β_{λ} is a morphism of pre-local groups. Recall that $\beta_{\lambda}(\psi)=\left[f_{\psi}\right]$, where $f_{\psi}(\mu)=\beta_{\lambda, \mu}(\psi)$ for all $\mu \in \Lambda(\lambda)$. In particular by (ii), β_{λ} is injective as a mapping from $\operatorname{Mor}_{\lambda}(P, Q)$ into \mathscr{L}_{∞}-morphisms, and β_{λ} is therefore an embedding.

Let $\widetilde{\mathscr{G}}$ satisfy the initial hypothesis in (b), but for the moment do not assume the conditions (i) through (vi) in (b). Define the functor $\gamma: \mathscr{L}_{\infty} \rightarrow \widetilde{\mathscr{L}}$ as in the proof of 12.5. That is, $\gamma(\widehat{P})=\gamma_{\lambda}(P)$ and $\gamma([f])=\gamma_{\lambda}(f(\lambda))$, where $\beta_{\lambda}(P)=\widehat{P}$ and $\beta_{\lambda}(f(\lambda))=[f]$. Then γ is the unique functor satisfying $\gamma_{\lambda}=\gamma \circ \beta_{\lambda}$ for all $\lambda \in \Lambda$.

Let $\lambda \in \Lambda$. Define $\alpha_{0}: S_{\infty} \rightarrow \widetilde{S}$ by $\alpha_{0 \mid S_{\lambda}}=\alpha_{\lambda}$. As each α_{λ} is injective, α_{0} is an injective homomorphism. For any pair of subgroups P, Q of S, and any $\phi \in \operatorname{Hom}_{\mathscr{F}_{\mathcal{E}}}(P, Q)$, define $\alpha(\phi)$ to be the homomorphism

$$
\alpha_{0}^{-1} \circ \phi \circ \alpha_{0}: P \alpha_{0} \longrightarrow Q \alpha_{0}
$$

Then α is a morphism of fusion systems if and only if the following condition holds for all $P, Q \leq S_{\infty}$:
$(*) \alpha(\phi) \in \operatorname{Hom}_{\tilde{\mathscr{F}}}\left(\alpha_{0}(P), \alpha_{0}(Q)\right)$.
If $P, Q \leq S_{\lambda}$ and $\phi \in \operatorname{Hom}_{\lambda}(P, Q)$, then $(*)$ holds as α_{λ} is a morphism of fusion systems. If $P, Q \in \mathscr{E}_{\infty}$, then $\phi=\pi_{\infty}\left(\beta_{\lambda}(f)\right)$ for some $f \in \operatorname{Mor}_{\lambda}\left(P_{\lambda}, Q_{\lambda}\right)$. Write ϕ_{λ} for the restriction of ϕ to P_{λ}. Then on P_{λ} :

$$
\left.\tilde{\pi}\left(\gamma\left(\beta_{\lambda}(f)\right)\right)=\tilde{\pi}\left(\gamma_{\lambda}(f)\right)=\alpha_{\lambda}\left(\pi_{\lambda}(f)\right)=\alpha_{\lambda}\left(\phi_{\lambda}\right)\right)=\alpha_{\lambda} \circ \phi_{\lambda} \circ \alpha_{\lambda}^{-1}
$$

and as this holds for all λ in a closed subset of Λ, we conclude that $\tilde{\pi}\left(\gamma\left(\beta_{\lambda}(f)\right)\right)=$ $\alpha \circ \phi \circ \alpha^{-1}=\alpha(\phi)$, and we again obtain $(*)$. Since, by definition, $\mathscr{F}_{\mathfrak{G}}$ is generated by such morphisms, $(*)$ holds in general, and α is a morphism of fusion systems. We leave it to the reader to check that (α, γ) satisfies the axioms in Definition 2.10, and hence is a morphism of pre-local groups, yielding (a).

Now assume all of the hypotheses of (b). Then by (b)(ii) and $12.9, \mathscr{\varphi}_{\mathfrak{G}}$ is prelocal group. Then (a) says that $\mathscr{G}_{\mathfrak{G}}$ is the limit of \mathfrak{G}, and supplies the morphism $\gamma=(\alpha, \gamma): \mathscr{C}_{\infty} \rightarrow \widetilde{\mathscr{G}}$ described above. By (b)(i) and the definition of $\alpha, \alpha_{0}: S_{\infty} \rightarrow \widetilde{S}$ is an isomorphism of groups.

The key step in the proof of (b) is to show that each of the sets $\operatorname{Hom}_{\tilde{F}}(\widetilde{P}, \widetilde{Q})$, with \widetilde{P} and \widetilde{Q} in $\widetilde{\mathscr{E}}$, lies in the image of α. So let $\widetilde{P}, \widetilde{Q} \in \widetilde{E}$ and $\tilde{\phi} \in \operatorname{Hom}_{\tilde{\mathscr{F}}}(\widetilde{P}, \widetilde{Q})$. Let λ, P, and Q be as in (iv). By (iii),

$$
\begin{equation*}
\alpha\left(\beta_{\lambda}(P)\right)=\bigcup_{\lambda \leq \mu} \alpha_{\mu}\left(\beta_{\lambda, \mu}(P)\right)=\gamma_{\lambda}(P)=\widetilde{P} \tag{**}
\end{equation*}
$$

so that, in particular, $\widetilde{\mathscr{E}} \subseteq \alpha\left(\mathscr{E}_{\infty}\right)$.
For $\mu \in \Lambda(\lambda)$ write P_{μ} for $\beta_{\lambda, \mu}(P)$ and Q_{μ} for $\beta_{\lambda, \mu}(Q)$, and set $\tilde{\phi}_{\mu}=$ $\tilde{\phi}_{\mid \alpha_{\mu}\left(P_{\mu}\right)}$. Then (iv) says that for all such μ there exists $\phi_{\mu} \in \operatorname{Hom}_{\mu}\left(P_{\mu}, Q_{\mu}\right)$ with $\alpha_{\mu}\left(\phi_{\mu}\right)=\tilde{\phi}_{\mu}$. By (ii), we may assume λ is chosen so that $\lambda \in E_{\phi_{\lambda}}$. Let $\psi_{\lambda} \in \pi_{\lambda}^{-1}\left(\phi_{\lambda}\right)$ and set $\tilde{\psi}=\gamma_{\lambda}\left(\psi_{\lambda}\right), \tilde{\eta}=\tilde{\pi}(\tilde{\psi})$, and $\psi_{\mu}=\beta_{\lambda, \mu}\left(\psi_{\lambda}\right)$. Then arguing as in the proof of (a), we get $\tilde{\eta}=\alpha_{\mu}\left(\pi_{\mu}\left(\psi_{\mu}\right)\right)$ on $\alpha_{\mu}\left(P_{\mu}\right)$, so that, in particular, $\tilde{\eta}=\tilde{\phi}_{\lambda}$ on $\alpha_{\lambda}(P)$. But also $\tilde{\eta}_{\lambda}=\pi_{\lambda}\left(\psi_{\lambda}\right)=\pi_{\mu}\left(\psi_{\mu}\right)$ on P. As $\lambda \in E_{\phi_{\lambda}}$ we conclude that $\pi_{\mu}\left(\psi_{\mu}\right)$ is the unique extension of ϕ_{λ} to P_{μ}. Then

$$
\tilde{\phi}_{\mu}=\alpha_{\mu}\left(\phi_{\mu}\right)=\alpha_{\mu}\left(\pi_{\mu}\left(\psi_{\mu}\right)\right)=\tilde{\eta}
$$

on $\alpha_{\mu}\left(P_{\mu}\right)$. That is $\tilde{\eta}=\tilde{\phi}$. Thus $\tilde{\phi}=\tilde{\pi}\left(\gamma\left(\beta_{\lambda}(\psi)\right)\right)=\alpha\left(\pi_{\infty}\left(\beta_{\lambda}(\psi)\right)\right.$ on $\alpha\left(\beta_{\lambda}\left(P_{\lambda}\right)\right.$ $=\widetilde{P}$, so indeed $\tilde{\phi}$ is in $\alpha\left(\operatorname{Hom}_{\mathfrak{G}}\left(P_{\lambda}, Q_{\lambda}\right)\right)$.
$\operatorname{Next} \alpha\left(\operatorname{Hom}_{\mathfrak{G}}(P, Q)\right) \subseteq \operatorname{Hom}_{\tilde{\mathscr{F}}}(\alpha(P), \alpha(Q))$ as α is a morphism of fusion systems; further, this map is injective by definition. In particular $\alpha\left(\operatorname{Im}\left(\pi_{\infty}\right)\right) \subseteq \widetilde{\mathscr{F}}$ and of course $\alpha\left(\iota_{\lambda}\left(\mathscr{F}_{\lambda}\right)\right) \subseteq \widetilde{\mathscr{F}}$, so that by definition of $\mathscr{F}_{\mathfrak{G}}$,

$$
\alpha\left(\mathscr{F}_{\mathfrak{F}}\right)=\alpha\left(\left\langle\operatorname{Im}\left(\pi_{\infty}\right), \iota_{\lambda}\left(\mathscr{F}_{\lambda}\right) \mid \lambda \in \Lambda\right\rangle\right)=\left\langle\alpha\left(\operatorname{Im}\left(\pi_{\infty}\right)\right), \alpha\left(\iota_{\lambda}\left(\mathscr{F}_{\lambda}\right)\right) \mid \lambda \in \Lambda\right\rangle \subseteq \widetilde{\mathscr{F}}
$$

By the preceding paragraph, $\operatorname{Hom}_{\tilde{\mathscr{F}}}(\alpha(P), \alpha(Q)) \subseteq \alpha\left(\operatorname{Hom}_{\mathfrak{G}}(P, Q)\right.$), and so $A_{\widetilde{\mathscr{F}}}(\widetilde{P}) \subseteq \alpha\left(\mathscr{F}_{\mathfrak{G}}\right)$ (cf. 2.14). Thus by $(\mathrm{v}), \alpha\left(\mathscr{F}_{\mathfrak{G}}\right)=\widetilde{\mathscr{F}}$. Therefore α induces a bijection $\operatorname{Hom}_{\mathfrak{G}}(P, Q) \rightarrow \operatorname{Hom}_{\tilde{\mathscr{F}}}(\widetilde{P}, \widetilde{Q})$ for all \widetilde{P} and \widetilde{Q} in $\widetilde{\mathscr{F}}$, and hence $\alpha: \mathscr{F}_{\mathfrak{G}} \rightarrow \widetilde{\mathscr{F}}$ is an isomorphism of fusion systems.

By (a), $\gamma: \mathscr{G}_{\mathfrak{G}} \rightarrow \widetilde{\mathscr{G}}$ is an embedding, and $\gamma_{\lambda}=\gamma_{\mu} \circ \beta_{\lambda, \mu}$ for $\lambda \leq \mu$. In order to show that γ is an isomorphism, it remains to show that γ defines a bijection $\mathscr{E}_{\infty} \rightarrow \widetilde{\mathscr{E}}$, and defines bijections on morphism sets. The first condition is a consequence of (vi) and 12.4(c), so it remains to verify the second condition.

Let $\widetilde{\psi} \in \operatorname{Mor}_{\widetilde{L}}(\widetilde{P}, \widetilde{Q})$ be an $\widetilde{\mathscr{L}}$-morphism. Set $\widetilde{\phi}=\tilde{\pi}(\widetilde{\psi})$. As α is an isomorphism of fusion systems we may choose \hat{P}, \hat{Q}, and $\phi \in \operatorname{Hom}_{\mathfrak{G}}(\hat{P}, \hat{Q})$ so that $\alpha(\phi)=\widetilde{\phi}$. Choose $\psi \in \pi_{\infty}^{-1}(\phi)$. Then $\gamma(\psi)$ lies in the $\widetilde{\pi}$-fiber over $\widetilde{\phi}$, as γ satisfies (MG2) and $\alpha(\widehat{P})=\widetilde{P}$. As $\widetilde{\mathscr{G}}$ is a pre-local group there then exists $y \in Z(\widetilde{P})$ such that $\gamma(\psi)=\widetilde{\delta}_{\widetilde{P}}(y) \cdot \widetilde{\phi}$. Let x be the element of $Z(\widehat{P})$ which is mapped to y^{-1} by α_{0}. As γ satisfies (MG3) we obtain $\gamma\left(\delta_{\widehat{P}}(x) \circ \psi\right)=\widetilde{\psi}$, and thus γ is surjective on morphism sets.

Finally, let $[f],[h] \in \operatorname{Mor}_{\infty}(\hat{P}, \hat{Q})$ with $\gamma([f])=\gamma([h])$. As α is injective on homomorphisms, it follows from (MG2) that $[f]$ and $[h]$ lie in the same $\pi_{\infty^{-}}$ fiber, and thus $[h]=\delta_{\hat{P}}(z) \cdot[f]$ for some $z \in Z(\widehat{P})$. We may choose λ so that $z \in \widehat{P} \cap S_{\lambda}:=P$, and also so that $\lambda \in \Omega_{f} \cap \Omega_{h}$ for suitable representatives f and h of the given morphisms. Then $z \in Z(P)$ and

$$
\begin{aligned}
\gamma([f]) & =\gamma([h])=\gamma_{\lambda}(h(\lambda))=\gamma_{\lambda}\left(\delta_{\lambda, P}(z) \cdot f(\lambda)\right)=\gamma_{\lambda}\left(\delta_{\lambda, P}(z)\right) \cdot \gamma_{\lambda}(f(\lambda)) \\
& =\tilde{\delta}_{\widetilde{P}}\left(\alpha_{0}(z)\right) \cdot \gamma([f])
\end{aligned}
$$

As $\tilde{\delta}_{\widetilde{P}}$ defines a free action of $Z(\widetilde{P})$ on $\operatorname{Mor}_{\widetilde{L}}(\widetilde{P}, \widetilde{Q})$, we conclude that $z=1$, and that γ is bijective on morphism sets. Thus γ is an isomorphism of categories, and (b) is proved.

Theorem C is the following result:
THEOREM 12.11. Take Λ to be the set of nonnegative integers, and for each $i \in \Lambda$ let $\mathscr{G}_{i}=\left(S_{i}, \mathscr{F}_{i}, \mathscr{L}_{i}\right)$ and $\mathscr{G}=(S, \mathscr{F}, \mathscr{L})$ be the 2 -local groups defined prior to 11.2. Let θ and θ_{i} be the signalizer functors in 11.3, and let $\beta_{i, j}: \mathscr{F}_{i}^{\mathrm{rc}} \rightarrow \mathscr{F}_{j}^{\mathrm{rc}}$ and $\beta_{i}: \mathscr{F}_{i}^{\mathrm{rc}} \rightarrow \mathscr{F}^{\mathrm{rc}}$ be the mappings defined prior to 11.2. Then the following hold:
(a) For each $i, j \in \Lambda$, with $i \leq j$, the mappings $\beta_{i, j}$ and β_{i} extend to embeddings

$$
\beta_{i, j}=\left(\iota_{i, j}, \beta_{i, j}\right): \mathscr{G}_{i} \rightarrow \mathscr{G}_{j} \quad \text { and } \quad \beta_{i}=\left(\iota_{i}, \beta_{i}\right): \mathscr{G}_{i} \rightarrow \mathscr{G}
$$

of 2-local groups, and $\beta_{j} \circ \beta_{i, j}=\beta_{i}$.
(b) $\mathfrak{G}:=\left(\beta_{i, j}: \mathscr{G}_{i} \longrightarrow \mathscr{G}_{j}\right)_{i \leq j \in \Lambda}$ is a directed system of embeddings of 2-local finite groups.
(c) The direct limit $\mathscr{G}_{\mathfrak{G}}$ of \mathfrak{G}, in the category of pre-local groups and embeddings, admits the structure of a 2-local group isomorphic to \mathscr{G}.

Proof. Write $\mathscr{L}_{i}^{\text {rc }}$ and $\mathscr{L}^{\text {rc }}$ for the restriction of the centric linking systems \mathscr{L}_{i} and \mathscr{L} to radical centric linking systems on $\mathscr{F}_{i}^{\mathrm{rc}}$ and $\mathscr{F}^{\mathrm{rc}}$, respectively.

First, 11.2 and 11.3 show that the mappings β_{i} and $\beta_{i, j}$ are well defined and satisfy conditions (1^{\prime}) and (2^{\prime}) in Proposition 2.12, relative to the appropriate signalizer functors. Then 2.11 and 2.12 yield embeddings of 2-local groups, as in (a), in which β_{i} and $\beta_{i, j}$ act on $\mathscr{L}_{i}^{\mathrm{rc}}$-morphisms via

$$
\beta_{i}: \theta_{i}(P) g \mapsto \theta(\beta(P)) g \quad \text { and } \quad \beta_{i, j}: \theta_{i}(P) g \mapsto \theta\left(\beta_{j}(P)\right) g
$$

for $P \in \mathscr{F}_{i}^{\mathrm{rc}}$ and $g \in N_{G_{i}}(P, S)$. In order to check that $\beta_{j} \circ \beta_{i, j}=\beta_{i}$ in the category of 2-local groups, it suffices to check the equality on objects. This follows from 10.10 in cases (1) and (2) of 10.9 (c), and from 10.7 in case (3) when $Y=H$. Suppose $Y=K$. By construction, $N_{G_{i}}(P) \leq N_{G_{j}}\left(\beta_{i, j}(P)\right)$, so that $\left(\beta_{j} \circ \beta_{i, j}\right)(P) \leq \beta_{i}(P)$. We check from 10.2 that no proper $N_{G_{i}}(P)$-invariant subgroup of $\beta_{i}(P)$ is in $\mathscr{F}^{\mathrm{rc}}$, completing the proof of (a).

The equality $\beta_{j} \circ \beta_{i, j}=\beta_{i}$ implies that

$$
\left(\beta_{j, k} \circ \beta_{i, j}\right)(P)=\beta_{j, k}\left(\beta_{i, j}(P)\right)=\beta_{j}\left(\beta_{i, j}(P)\right) \cap G_{k}=\beta_{i}(P) \cap G_{k}=\beta_{i, k}(P)
$$

so that $\beta_{j, k} \circ \beta_{i, j}=\beta_{i, k}$. Also $\beta_{i, i}=1$ by 11.12(c). Hence (b) holds.
We next check that the hypotheses of 12.10 (b) are satisfied with $\mathscr{G}, \mathscr{L}_{i}^{\text {rc }}, \beta_{i}$, $i \in \Lambda$, in the roles of $\widetilde{\mathscr{G}}, \widetilde{\mathscr{E}}, \gamma_{\lambda}, \lambda \in \Lambda$, respectively.

First, S is the union of the groups S_{i} for $i \in \Lambda$, so that condition (i) of 12.10(b) holds. Second, for any $\phi=c_{g} \in \operatorname{Hom}_{\mathscr{F}}(P, Q)$ we have $g \in G_{i}$ for some i, so that $\phi_{\mid S_{j}} \in \operatorname{Hom}_{\mathscr{F}_{j}}\left(P \cap S_{j}, Q \cap S_{j}\right)$ for all $j \geq i$, and hence condition (iv) holds.

Let $P \in \mathscr{F}_{i}^{\mathrm{rc}}$, and for $j \geq i$ set $P_{j}=\beta_{i, j}\left(P_{i}\right)$. We have $P_{j}=\beta_{i}\left(P_{i}\right) \cap G_{j}$ for such j, and S is the union of its subgroups S_{j}, and so condition (iii) of 12.10(b) holds.

We claim that there exists $j \geq i$ such that $C_{G}\left(P_{j}\right)$ centralizes P_{k} for all $k \geq j$. Suppose first that $\left|Z_{P_{i}}\right| \leq 4$. Then from the proof of $10.9, C_{G}\left(P_{i}\right) \leq P_{i}$. But $Z\left(\beta_{i}\left(P_{i}\right)\right)$ is finite, and $P_{k}=\beta_{i}(P) \cap G_{k}$ for $k \geq i$ and so, from (ii), we may choose $j \geq i$ with $Z\left(P_{j}\right)=Z\left(\beta_{i}\left(P_{i}\right)\right)$. Thus $C_{G}\left(P_{j}\right)=Z\left(P_{k}\right)$ for $k \geq j$. On the other hand if $\left|Z_{P_{i}}\right|>4$ then $P_{i} \in A^{G}$ or $P_{i}=C_{S_{i}}(E)$ by 10.5 . In the first of these two cases, $P_{i}=P_{k}$ for all $k \geq i$, while in the second $C_{G}\left(P_{i}\right)=E C_{\theta(A)}\left(T_{2}\right)=C_{G}\left(P_{k}\right)$ for any $k \geq i$, by 7.10 and 7.13. Thus the claim is established.

We now verify condition (ii) of 12.10 (b). Let $\phi \in \operatorname{Hom}_{\mathscr{F}_{j}}\left(P_{j}, Q_{j}\right)$ and suppose that for some $k \geq j$, we have $\phi_{1}, \phi_{2} \in \operatorname{Hom}_{\mathscr{F}_{k}}\left(P_{k}, Q_{k}\right)$ extending ϕ. Then ϕ_{r} is the restriction of $c_{g_{r}}$ to P_{k} for some $g_{r} \in G, r=1,2$. Then $g_{1} g_{2}^{-1} \in C_{G}\left(P_{j}\right) \leq$ $C_{G}\left(P_{k}\right)$ by the claim, so $\phi_{1}=\phi_{2}$. This yields (ii).

Condition (v) of 12.10 (b) follows from 9.10. Finally each β_{i} is injective on objects, since $\beta_{i}(P) \cap S_{i}=P$ by 11.12(c). Thus \mathfrak{G} is nearly injective, and condition (vi) of 12.10 (b) holds. Therefore we conclude from 12.10 (b) that $\left(S, \mathscr{F}, \mathscr{L}^{\text {rc }}\right) \cong \mathscr{G}_{\mathfrak{G}}$ as pre-local groups, via the isomorphism $\gamma=(\alpha, \gamma)$ constructed in the proof of 12.5 and 12.10. In particular $\alpha(\mathscr{E})=\mathscr{F}^{\text {rc }}$, so as $\alpha: \mathscr{F}_{\mathfrak{G}} \rightarrow \mathscr{F}$ is an isomorphism of
fusion systems, $\mathscr{E}=\mathscr{F}_{\mathfrak{G}}^{\mathrm{rc}}$, and $\mathscr{F}_{\mathfrak{G}}$ is saturated as \mathscr{F} is saturated. Transferring the centric linking system \mathscr{L} on \mathscr{F} to $\mathscr{F}_{\mathfrak{F}}$ via α, we may regard $\mathscr{G}_{\mathfrak{G}}$ as a 2-local group, and the isomorphism γ of pre-local groups is then also an isomorphism of 2-local groups. This completes the proof of (c).

Theorem D is essentially the following result. We thank Ran Levi and Bob Oliver for guiding us through a proof.

THEOREM 12.12. The 2 -completed nerve $\left|\mathscr{L}_{\mathfrak{G}}\right|_{2}^{\wedge}$ is homotopy equivalent to $B \mathrm{DI}(4)$.

Proof. Let $\mathscr{L}_{m}^{c c}$ be the full subcategory of \mathscr{L}_{m}^{c} whose objects are centric in \mathscr{F}_{n}^{c} for all $n \geq m$. Then $\mathscr{F}_{m}^{\mathrm{rc}} \subseteq \operatorname{Obj}\left(\mathscr{L}_{m}^{c c}\right)$ for all m, by $10.9(\mathrm{~b})$. Set $\gamma_{m}=\beta_{m, m+1}$, and consider the diagram of categories and functors
(*)

where ι is in every instance an inclusion functor. We claim that this diagram commutes up to a natural homomorphism $\mu: \iota^{c c} \circ \iota_{m} \rightarrow \iota_{m+1} \circ \gamma_{m}$. Since $\iota^{c c} \circ \iota_{m}$ is the identity map on objects, what this means is that for all $P, Q \in \mathscr{L}_{m}^{\mathrm{rc}}$, there are \mathscr{L}_{m+1}-morphisms μ_{P} and μ_{Q} such that, for each $\psi \in \operatorname{Mor}_{m}(P, Q)$, the following diagram commutes.

Indeed, for any $R \in \mathscr{L}_{m}^{\text {rc }}$ define μ_{R} to be $\theta_{m+1}(R)$. Recall that $\psi=\theta_{m}(P) g$ for some $g \in N_{G_{m}}(P, Q)$, by the definition of \mathscr{L}_{m}. The functor $\iota^{c c}$ sends ψ to ψ regarded as an element of $\operatorname{Mor}_{m+1}(P, Q)$. That is, we have $\iota^{c c}(\psi)=\theta_{m+1}(P) g$, and hence (in our mix of left- and right-hand notation, as set forth in $\S 1$)

$$
\iota^{c c}\left(\iota_{m}(\psi)\right) \cdot \mu_{Q}=\theta_{m+1}(P) g \theta_{m+1}(Q)=\theta_{m+1}(P) g
$$

while also

$$
\mu_{P} \cdot \iota_{m+1}\left(\gamma_{m}(\psi)\right)=\theta_{m+1}(P) \theta_{m+1}\left(\gamma_{m}(P)\right) g=\theta_{m+1}(P) g .
$$

Thus μ is a natural transformation as desired, and the claim is proved.
Recall that the nerve of a small category \mathscr{C} is a simplicial set (or equivalently, the topological realization of a simplicial set) whose k-simplices are chains
$\left(\alpha_{0}, \ldots, \alpha_{k}\right)$ of composable morphisms in \mathscr{C}. If $f: \mathscr{C} \rightarrow \mathscr{D}$ is a functor of small categories, then there is a continuous map $|f|:|\mathscr{C}| \rightarrow|\mathscr{D}|$ of spaces, given by $\left(\alpha_{0}, \ldots, \alpha_{k}\right) \mapsto\left(f\left(\alpha_{0}\right), \ldots, f\left(\alpha_{k}\right)\right)$.

Set $X_{m}=\left|\mathscr{L}_{m}^{\mathrm{rc}}\right|, Y_{m}=\left|\mathscr{L}_{m}^{c c}\right|$, and consider the following diagram of spaces and continuous maps.

Here, we are taking $f_{m}:=\left|\iota_{m}\right|$ and $f_{m}^{c c}:=\left|\iota_{m}^{c c}\right|$. Each $f_{m}^{c c}$ may be viewed as inclusion, since $\iota_{m}^{c c}$ induces an inclusion of $\operatorname{Mor}_{m}(P, Q)$ into $\operatorname{Mor}_{m+1}(P, Q)$ for any $P, Q \in \mathscr{L}_{m}^{c c}$. Similarly, since each γ_{m} is an embedding, γ_{m} induces an injective mapping $\operatorname{Mor}_{m}(P, Q) \rightarrow \operatorname{Mor}_{m+1}(P, Q)$ for $P, Q \in \mathscr{L}_{m}^{\mathrm{rc}}$, and hence $\left|\gamma_{m}\right|$ is injective. There is then no harm in viewing each $\left|\gamma_{m}\right|$ as an ordinary inclusion of topological spaces (and in adjusting the vertical arrows by suitable homeomorphisms, to compensate for this). The direct limit X of the top row in $(* * *)$ is then the union of the spaces X_{n}. No such adjustment is necessary for the bottom row, whose union we denote by Y.

It is the content of [LO02, Prop. 4.3] that the 2-completion $(Y)_{2}^{\wedge}$ of Y is $B \mathrm{DI}(4)$, up to homotopy equivalence. That this is so requires some explanation, since the union taken in [LOO2] is that of a somewhat different collection of spaces than $\left\{Y_{m}\right\}_{m>0}$. Namely, Levi and Oliver choose a sequence $\left(n_{i}\right)_{i>0}$ of positive integers, so that each n_{i} divides n_{i+1} and so that every positive integer divides some n_{i}. They then show that $B \mathrm{DI}(4)$ is the 2 -completion of the union of the spaces $\left|\mathscr{L}_{\text {Sol }}\left(q^{n_{i}}\right)^{c c}\right|$, for any odd prime power q. We may take $q=p$, and may take the sequence $\left(n_{i}\right)_{i>0}$ so that 2^{i} is the highest power of 2 dividing n_{i}. Then $\mathscr{F}_{\mathrm{Sol}}\left(p^{n_{i}}\right)$ is a fusion system over the Sylow 2 -subgroup S_{i} of $\operatorname{Spin}_{7}\left(p^{n_{i}}\right)$. As the 2 -shares of $\operatorname{Spin}_{7}\left(p^{n_{i}}\right)$ and $\operatorname{Spin}_{7}\left(p^{2^{i}}\right)$ are the same, $\operatorname{Spin}_{7}\left(p^{n_{i}}\right)$ has the same Sylow 2 -subgroup as $\operatorname{Spin}_{7}\left(p^{2^{i}}\right)$. By a result in [COS06] the fusion systems $\mathscr{F}_{\mathrm{Sol}}\left(p^{n_{i}}\right)$ and $\mathscr{F}_{\mathrm{Sol}}\left(p^{2^{i}}\right)$ are isomorphic, and their corresponding linking systems are then isomorphic [LO02, Lemma 3.2]. Thus, the union of the nerves $\left|\mathscr{L}_{\text {Sol }}\left(p^{n_{i}}\right)^{c c}\right|$ is homeomorphic to Y, and $(Y)_{2}$ may be identified with $B \mathrm{DI}(4)$.

Since it is obvious from the definitions that the nerve of an increasing union of categories is the union of the nerves, it follows from 12.5 that the space X is homeomorphic to $\left|\mathscr{L}_{\mathfrak{G}}\right|$. Thus, it remains only to show that X is homotopy equivalent to Y.

The existence of a natural transformation μ as in $(* *)$ implies that each of the squares in $(* * *)$ commutes up to homotopy (cf. [Dwy01, Prop. 5.2]. For
any m, the inclusion of the simplicial set X_{m} in X_{m+1} is a CW-pair, and so the homotopy extension property for CW-pairs [Hat02, Prop. 0.16] implies that f_{2} may be replaced by a map f_{2}^{\prime} which is homotopic to f_{2} and which extends f_{1}. We continue up the chain, replacing f_{m+1} by a map f_{m+1}^{\prime} which is homotopic to f_{m+1} and extends f_{m}^{\prime}. Now define $f: X \rightarrow Y$ to be the union of the maps f_{m}^{\prime}.

Observe that every finite subcomplex of the CW-complex X (or Y) is contained in some X_{i} (or Y_{i}). Since every compact subset of a CW-complex is contained in a finite subcomplex, every compact subset of X or Y is contained in some X_{i} or Y_{i}. From this, it follows directly from the definition of homotopy groups that for each $n, \pi_{n}(X)$ is the direct limit of the $\pi_{n}\left(X_{i}\right)$, and similarly for $\pi_{n}(Y)$. That each f_{m} (and hence also each f_{m}^{\prime}) is a homotopy equivalence is given by $\left[\mathrm{BCG}^{+} 05, \mathrm{Th} . \mathrm{B}\right]$, and thus $\pi_{n}(f)$ is an isomorphism for all n. Then f is a homotopy equivalence by Whitehead's Theorem, and the proof is complete.

We close with an example.
Example 12.13. Let p be a prime and let $G=G(F)$ be a Chevalley group over the algebraic closure F of \mathbf{F}_{p} of Lie rank l. Let Σ be the set of positive integers, partially ordered by $n \leq m$ if n divides m. Set $I=\{1, \ldots, l\}$ and let $\left(P_{J} \mid \varnothing \neq J \subseteq I\right)$ be the set of proper parabolic subgroups of G over a fixed Borel subgroup $B=P_{I}$. For $J \subseteq I$ let S_{J} be the unipotent radical of P_{J}, and set $S=S_{I}$. Let $\psi_{1}: a \mapsto a^{p}$ be the Frobenius map on F, and regard ψ_{1} also as a field automorphism of G. For $k \geq 1$ set $\psi_{k}=\psi_{1}^{k}$, and let $G_{k}=G_{\psi_{k}}$ be the group of fixed points of ψ_{k} on G. Set $S_{k}=S \cap G_{k}, S_{J, k}=S_{J} \cap G_{k}$, and let

$$
\mathscr{G}_{k}=\mathscr{G}_{S_{k}}\left(G_{k}\right)=\left(S_{k}, \mathscr{F}_{k}, \mathscr{L}_{k}\right)
$$

be the p-local finite group associated with G_{k}.
By Borel-Tits, $\mathscr{F}_{k}^{\mathrm{rc}}=\left(S_{J, k}: J \subseteq I\right)$, and $\theta_{k}(P):=O^{p}\left(C_{G_{k}}(P)\right)=1$ for all $P \in \mathscr{F}_{k}^{\mathrm{rc}}$. When k divides j, we have the inclusion map $\beta_{k, j}: \mathscr{G}_{k} \rightarrow \mathscr{G}_{j}$ with $\beta_{k, j}\left(S_{J, k}\right)=S_{J, j}$. It follows from 2.11 that $\mathfrak{G}:=\left(\mathscr{\varphi}_{k}, \beta_{k, j}: k \leq j\right)$ is a directed system of p-local finite groups. Further one can check that the hypotheses of 12.10(b) are satisfied by \mathfrak{G}, so, as in the proof of Theorem 12.11 , the limit $\mathscr{G}_{\mathfrak{G}}$ of \mathfrak{G} is isomorphic to $\mathscr{G}(G)=\left(\mathscr{F} S(G), \mathscr{F}_{S}^{\mathrm{rc}}(G), \mathscr{L}\right)$, where $\mathscr{F}_{S}^{\mathrm{rc}}(G)$ has object set $\left(S_{J}: J\right), \operatorname{Mor}\left(S_{J}, S_{K}\right)=\operatorname{Hom}\left(S_{J}, S_{K}\right)=N_{G}\left(S_{J}, S_{K}\right)$, and π and δ are identity maps.

References

[Asc86] M. Aschbacher, Finite Group Theory, Cambridge Stud. Adv. Math. 10, Cambridge Univ. Press, Cambridge, 1986. MR 89b:20001 Zbl 0583.20001
[Ben94] D. Benson, Conway's group Co_{3} and the Dickson invariants, Manuscripta Math. 85 (1994), 177-193. MR 95h:55018 Zbl 0853.55018
$\left[\mathrm{BCG}^{+} 05\right]$ C. Broto, N. Castellana, J. Grodal, R. Levi, and B. Oliver, Subgroup families controlling p-local finite groups, Proc. London Math. Soc. 91 (2005), 325-354. MR 2007e:20111 Zbl 1090.20026
[BLO03] C. Broto, R. Levi, and B. Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), 779-856. MR 2004k:55016 Zbl 1033.55010
[BLO05] , Discrete models for the p-local homotopy theory of compact Lie groups, 2005. Zbl 1135.55008
[COS06] A. Chermak, B. Oliver, and S. Shpectorov, The simple connectivity of $\operatorname{Sol}(q)$, preprint, 2006.
[Che97] C. Chevalley, The Algebraic Theory of Spinors and Clifford Algebras, Collected Works, Vol. 2, Springer-Verlag, New York, 1997. MR 99f:01028 Zbl 0899.01032
[Dwy01] W. G. Dwyer, Classifying spaces and homology decompositions, in Homotopy Theoretic Methods in Group Cohomology (W. Dwyer and H. Hans-Werner, eds.), Advanced Courses in Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2001, pp. 3-53.
[DW93] W. G. DWYer and C. W. Wilkerson, A new finite loop space at the prime two, J. Amer. Math. Soc. 6 (1993), 37-64. MR 93d:55011 Zbl 0769.55007
[Fin73] L. Finkelstein, The maximal subgroups of Conway's group C_{3} and McLaughlin's group, J. Algebra 25 (1973), 58-89. MR 49 \#10772 Zbl 0263.20010
[Gol70] D. M. Goldschmidt, A conjugation family for finite groups, J. Algebra 16 (1970), 138-142. MR 41 \#5489 Zbl 0198.04306
[Gol80] , Automorphisms of trivalent graphs, Ann. of Math. 111 (1980), 377-406. MR 82a: 05052 Zbl 0475.05043
[GLS94] D. Gorenstein, R. Lyons, and R. Solomon, The classification of the finite simple groups, Math. Surveys and Monogr. 40, Amer. Math. Soc., Providence, RI, 1994. MR 95m:20014 Zbl 1069.20011
[Hat02] A. HATCHER, Algebraic topology, Cambridge Univ. Press, Cambridge, 2002. MR 2002k: 55001 Zbl 1044.55001
[Jac80] N. Jacobson, Basic Algebra. II, W. H. Freeman and Co., San Francisco, CA, 1980. MR 81g:00001 Zbl 0441.16001
[Kan85] W. M. Kantor, Some exceptional 2-adic buildings, J. Algebra 92 (1985), 208-223. MR 86j:51007 Zbl 0562.51006
[KS04] H. Kurzweil and B. Stellmacher, The Theory of Finite Groups. An Introduction, Universitext Springer-Verlag, New York, 2004. MR 2004h:20001 Zbl 1047.20011
[LS] I. Leary and R. Stancu, Realizing fusion systems, preprint, 2006.
[LO02] R. LEVI and B. OLIVER, Construction of 2-local finite groups of a type studied by Solomon and Benson, Geom. Topol. 6 (2002), 917-990. MR 2003k:55016 Zbl 1021. 55010
[Pui06] L. Puig, Frobenius categories, J. Algebra 303 (2006), 309-357. MR 2007j:20011 Zbl 1110.20011
[Rob07] G. R. Robinson, Amalgams, blocks, weights, fusion systems and finite simple groups, J. Algebra 314 (2007), 912-923. MR 2008f:20046 Zbl 05201709
[Ser80] J.-P. SERRE, Trees, Springer-Verlag, New York, 1980. MR 82c:20083 Zbl 1013.20001
[Sol74] R. Solomon, Finite groups with Sylow 2-subgroups of type 3, J. Algebra 28 (1974), 182-198. MR 49 \#9077 Zbl 0293.20022
[Ste] R. Steinberg, Lecture Notes on Chevalley Groups, Yale Univ. Lecture Notes, New Haven, CT, 1967.
[Tit70] J. Tits, Sur le groupe des automorphismes d'un arbre, in Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer-Verlag, New York, 1970, pp. 188-211. MR 45 \#8582 Zbl 0214.51301
[Weh73] B. A. F. Wehrfritz, Infinite Linear Groups. An Account of the Group-Theoretic Properties of Infinite Groups of Matrices, Ergeb. Mat. Grensg. 76, Springer-Verlag, New York, 1973. MR 49 \#436 Zbl 0261.20038
(Received January 12, 2006)
(Revised December 14, 2006)

E-mail address: asch@caltech.edu
Mathematics 253-37, California Institute of Technology, Pasadena CA 91125, United States

E-mail address: chermak@math.ksu.edu
Department of Mathematics, Kansas State University, 138 Cardwell Hall, Manhattan KS 66506-2602, United States

