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Abstract

We extend the notion of a p-local finite group (defined in [BLOO3]) to the
notion of a p-local group. We define morphisms of p-local groups, obtaining
thereby a category, and we introduce the notion of a representation of a p-local
group via signalizer functors associated with groups. We construct a chain & =
(%0 — 91 — ---) of 2-local finite groups, via a representation of a chain * =
(Go — G1 — ---) of groups, such that 9 is the 2-local finite group of the third
Conway sporadic group Cos, and for n > 0, §,, is one of the 2-local finite groups
constructed by Levi and Oliver in [LO02]. We show that the direct limit 4 of
& exists in the category of 2-local groups, and that it is the 2-local group of the
union of the chain *. The 2-completed classifying space of 4 is shown to be the
classifying space B D 1(4) of the exotic 2-compact group of Dwyer and Wilkerson
[DW93].

Introduction

In [BLOO3], Broto, Levi, and Oliver introduced the notion of a p-local finite
group 9, consisting of a finite p-group S and a pair of categories ¥ and £ (the
fusion system and the centric linking system) whose objects are subgroups of §,
and which satisfy axioms which encode much of the structure that one expects
from a finite group having S as a Sylow p-subgroup. If indeed G is a finite group
with Sylow p-subgroup S, then there is a canonical construction which associates
to G a p-local finite group 9 = 45 (G), such that the p-completed nerve of & is
homotopically equivalent to the p-completed classifying space of G. A p-local
finite group % is said to be exotic if %4 is not equal to Yg(G) for any finite group G
with Sylow group S.

From the work of various authors (cf. [BLOO03, §9]), it has begun to appear
that for p odd, exotic p-local finite groups are plentiful. On the other hand, exotic
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2-local finite groups are — as things stand at this date — quite exceptional. In fact,
the known examples of exotic 2-local finite groups fall into a single family 9sqi(q),
q an odd prime power, constructed by Ran Levi and Bob Oliver [LO02]. With
hindsight, the work of Ron Solomon [Sol74] in the early 1970’s may be thought of
as a proof that g, (q) # 9s (G) for any finite simple group G with Sylow group S.
Solomon considered finite simple groups G having a Sylow 2-subgroup iso-
morphic to that of Cos (the smallest of the three sporadic groups discovered by John
Conway), and he showed that any such G is isomorphic to Cosz. While proving this,
he was also led to consider the situation in which G has a single conjugacy class
28 of involutions, and Cg (z) has a subgroup H with the following properties:

H =~ Spin,y(q), ¢ =r", g=3o0or5mod8, and Cg(z) = O(Cg(z))H.

Here Spin,(g) is a perfect central extension of the simple orthogonal group €27(q)
by a group of order 2, and for any group X, O(X) denotes the largest normal
subgroup of X all of whose elements are of odd order.

Solomon showed that there is no finite simple group G which satisfies the
above conditions — but he was not able to do this by means of “2-local analy-
sis” (i.e. the study of the normalizers of 2-subgroups of G). Indeed a potential
counterexample possessed a rich and internally consistent 2-local structure. It was
only after turning from 2-local subgroups to local subgroups for the prime r that a
contradiction was reached.

One of the achievements of [LO02] is to suggest that the single “sporadic”
object Cos in the category of groups is a member of an infinite family of exceptional
objects in the category of 2-local groups. But in addition, [LO02] establishes a
special relationship between the 9so1(¢)’s and the exotic 2-adic finite loop space
D1(4) of Dwyer and Wilkerson [DW93]. Namely, in [LO02] it is shown that the
classifying space B D 1(4) is homotopy equivalent to the 2-completion of the nerve
of a union of subcategories of the linking systems $so1(¢”), with the union taken
for any fixed ¢ as n goes to infinity. (This result was prefigured in, and motivated
by, work of David Benson [Ben94]. Benson showed, first, that the 2-cohomology
ring H*(B D1(4);2) is finitely generated over H *(Cos; 2), and second, that the 2-
cohomology of the space of fixed points in B D1(4) of an unstable Adams operation
V¥4, would be that of the “Solomon groups”, if such groups existed.) Moreover
[BLOOS] introduces the notion of a “p-local compact group”, and Theorem 9.8
in [BLOOS] shows that each p-compact group supports the structure of a p-local
compact group. As a special case, D I(4) supports such a structure. We give here
an alternate, constructive proof of this fact.

Our paper is built around an alternate construction (Theorem A) of the 2-local
finite groups

2k+l
Gk = Yk,r = Gsol(r™ ) = (Sk, Fi, Lk)
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where r is a prime congruent to 3 or 5 mod 8. The construction is based on a notion
of the “representation” of a p-local finite group 4 = (S, %, ¥) as the p-local group
of a not necessarily finite group G, by means of a “signalizer functor” 6. This
means, first of all, that S is a Sylow p-subgroup of G (in a sense which we shall
make precise), and that the fusion system & may be identified with the fusion
system % g (G) consisting of all the maps between subgroups of S that are induced
by conjugation by elements of G. Second, it means that whenever P is a subgroup
of S which contains every p-element of its G-centralizer (i.e. whenever P is centric
in %), there is a direct-product factorization

CG(P)=Z(P)x0(P)

where the operator 6 is inclusion-reversing and conjugation-equivariant. Then 6
gives rise to a centric linking system £y associated with %, with the property that

Autg, (P) = Ng(P)/6(P)

for any F-centric subgroup P of S. One says that § is represented in G via 0 if
the p-local groups % and (S, %, $y) are isomorphic.

The notions of p-local finite group and of representation via a signalizer func-
tor can be generalized to obtain a representation of the 2-local compact group of
D1(4), by allowing S to be an infinite 2-group. We also introduce a notion of
morphism, to obtain a category of p-local groups, having p-local finite groups as
a full subcategory. As an application we show in Theorem B that the 2-local finite
group 9 associated with Cosz is a “subgroup” of each 9.

In the final section of this paper we introduce a notion of direct limit of a
directed system of embeddings of p-local groups, and in this way obtain (Theo-
rem C) a 2-local compact group $g which is the direct limit of a directed system
& = (Y — Yk+1)k>0 of embeddings of 2-local finite groups. The identification of
Y with the 2-local compact group of DI(4) (Theorem D) is a corollary of results
in [LOO02], obtained by setting up a homotopy equivalence between the nerve of
our direct limit and the nerve of a category &5 | (p°) constructed in [LO02]. The
2-completion of the latter category is shown in [LO02] to be homotopy equivalent
to BDI(4).

In view of the length of this paper, the reader may find the following outline
helpful. The first three sections are concerned with general principles and support-
ing results. Then in Section 4, which provides information on certain spin groups,
the argument actually begins to take shape.

Let p be an odd prime. For reasons which will not be immediately apparent, it
will be necessary to take p to be congruent to 3 or 5 mod 8. Let F be an algebraic
closure of the field of p elements. There is a subfield F of F, obtained as the union
of the tower of subfields of F of order p2", n > 0. Take H to be the group Spin, (F)
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— the universal covering group of the simple orthogonal group $27(F). Let ¥ be an
endomorphism of H such that Cz(¥) = Spin,(p), and set

H=|]Czw?).
n>0
Then H is a group of F-rational points of H. One finds that all fours groups in
H containing Z(H) are conjugate, and that if U is such a fours group then the
identity component B of the group B = Ny (U) is a commuting product of three
copies of SL; (F).

In Section 5 we show that there is an automorphism y of B of order 3, which
transitively permutes the three SL»(F) components of B, and which when chosen
carefully, interacts in a special way (to be described shortly) with the normalizer
in H of a maximal torus 7" of B. It is at this point, in choosing an appropriate
automorphism y, that we require that p be congruent to 3 or 5 mod 8. Once
¥ has been fixed in the appropriate way, we form a group K = (B, y) which is
isomorphic to a split extension of B? by the symmetric group of degree 3. We
then form the amalgam & = (H > B < K), and its associated free amalgamated
product

G =H % B K.

This is the group which informs and guides our investigation.

We need the following notion of “Sylow 2-subgroup”: A subgroup S of G is
a Sylow 2-subgroup of G if every element of S has order a power of 2 (i.e. S is
a 2-group), S is maximal with respect to inclusion among the 2-subgroups of G,
and every finite 2-subgroup of G is conjugate to a subgroup of S. It turns out that
the normalizer in H of a maximal torus 7 of B® contains a Sylow 2-subgroup S
of G. Moreover, if T is chosen to be y-invariant then S is a Sylow 2-subgroup of
each of the groups H, B, and K. The special way in which y interacts with S may
be summarized as follows: for the Sylow 2-subgroup Soo = S N T of T, we have

(*) NG (Seo) = NH(Soo) * N (Soo) Nk (Seo).  and

(%%) AUt (Sso) := NG (Ss0)/Cg (Soo) = GL(3,2) x Ca.

The effect of (xx) is that S/Ss may be identified with a Sylow 2-subgroup of
Autg (Seo), and it is this property which, as is made clear in [LO02], turns out to
be the key to fulfilling the axioms for “saturation” (defined in 1.5, below).

One feature of our treatment is the use of amalgams (cf. §3) to keep track
of the various fusion systems which can be constructed from H, B, and K, and
to distinguish the system with property (x*). We prove in Theorem 5.2 that the
amalgam & with property (*%) is unique. Then we carry out the remainder of
our analysis in the universal completion G of #, using the “standard tree” of G
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as a source of geometric intuition, and as the basis for geometric arguments. The
formalization by means of the amalgam & and its free amalgamated product G
provides, at the very least, a useful system of bookkeeping. For example, the
language of amalgams provides a conceptual framework within which one can
rigorously consider the question of which of the fusion systems constructed from
H, B, and K is the “right” system. We mention that amalgams have also been
used in recent work of G. Robinson [Rob07], and of Ian Leary and Radu Stancu
[LS] as a tool for studying abstract fusion systems.

Setting Z = Z(H ) one has |Z| =2, and Cg (Z) is in fact a rather complicated
subgroup of G, properly containing H. Our proof that the fusion system Fg(G)
is saturated is modeled on the proof of saturation in [LLO02] for the fusion systems
Fso1(q) defined over finite 2-groups. Thus, the main step is to establish that H
controls Cg(Z)-fusion in S. That is, the fusion system Fg(H) is equal to the
a priori larger system Fg(Cg(Z)).

The proof of saturation in G is accompanied by the construction of a linking
system by means of a signalizer functor. These steps require information on fu-
sion among the centric subgroups of S, obtained in Sections 6 through 8. After
this, in order to prepare the way for the construction of morphisms, we determine
in complete detail the radical centric subgroups of S and of S4, where o is an
automorphism of G which fixes S and which induces a Frobenius endomorphism
of H. Here a subgroup P of S is defined to be radical if Inn(P) = O, (Autg(P)).

One of the radical centric subgroups of S is an elementary abelian group A
of order 16 which has the property, as in (*), that

NG (A) = Ny (A) * Ny a) Nk (A).

Here one can do better than to determine Autg(A) in analogy with (). Indeed,
there is a surjective homomorphism

$4:Ng(A) — L,

with Cg(A) = A x ker(¢4), where L is a maximal subgroup of the sporadic group
Cojs, isomorphic to a nonsplit extension of 4 by Aut(A). We then define a normal
subset X of G by

X = | ker(¢q)®.

geG

For any centric subgroup P of S we define a subset 8(P) of Cg(P) by
0(P) = Cx(P)O(Cg(P)).

It turns out that 8(P) is a subgroup of Cg(P) and that € is a signalizer functor (cf.
Theorem 8.8 below).
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We next consider the groups G of fixed points of automorphisms o of G,
such that o fixes both H and K, and such that the restriction of o to H is a
Frobenius map with H, = Spin,(Fy), ¢ = p?". The groups G, for n > 0, provide
representations of the 2-local finite groups of [LOO02]. In particular, for each such
o (chosen so that Sy is a Sylow 2- subgroup of G), the fusion system Fg_(G¢)
is saturated, and the signalizer functor 6, given by

0o (P) = Cx,(P)O(Cq, (P)),

for centric subgroups P of S, defines a centric linking system £q_(Sy) associated
with Fg_(Gy).

This completes our outline of the proof of Theorem A. One aim of this pa-
per is thus to suggest the possibility that many p-local finite groups may best be
studied via a representation in terms of free amagalmated products and signalizer
functors. For example, to study the fusion system & on a p-group S generated
by systems Fg(G;) for some family § = (G; | i € I') of finite groups with Sylow
group S, perhaps one should study the various amalgams s obtained from %, and
the corresponding free amalgamated products G = G(sA). If o is well chosen,
then S is Sylow in G and & = % g(G) is saturated. Then one can consider suitable
overamalgams % of s, and the kernels of surjections from subgroups G(%) of G
onto suitable finite groups and use these kernels to construct a signalizer functor 6
and the corresponding p-local finite group from &. If o is the amalgam of some
family of subgroups generating a finite group G, then the kernel of the surjection
G — G will be (0(P)8 | P eF°, g e G), whence F =~ %S((’;\) (cf. Example 2.13,
below). But in other cases one may hope for exotic p-local finite groups, such as

gsol (C])
Now here are the main theorems.

THEOREM A. Let p be a prime, p = 3 or 5 mod 8, let F be an algebraic
closure of the field ¥, of p elements, and let F be the union of the subfields of F
of order g, = p%", n > 0. Then there is a group G = G(p), an automorphism
of G, a Sylow 2-subgroup S of G, and a Vg-invariant normal subset X of G such
that, for any power o of Vg of the form lﬂg”, we have the following.

(1) G = H xp K is the free amalgamated product of an amalgam
A=(H<«—B—K),

where H is a group of F-rational points in Spin,(F), B is the normalizer in H
of a fours group U of H containing Z(H ), and K is a group which contains B
as a subgroup of index 3 where K has the property that Autg (U) = GL(2, 2).
(2) Yo leaves invariant each of the subgroups H, K, and B of G; the restriction
of Yo to H is the restriction of a Frobenius automorphism of Spin, (F), and

Cr (Yo) = Spin;(p).
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(3) The group S = Cs(0) is a finite Sylow 2-subgroup of the group G5 = Cg(0),
and there exists a unique choice of the amalgam s such that, for all o, the
fusion system F, = Fgs,(Gg) is isomorphic to the fusion system Fso(q) of
[LO02], (¢ = p*").

(4) For any F4-centric subgroup P of Sy, the set

05 (P) := Cxng, (P)O(Cq, (P))

is a group, and is a complement to Z(P) in Cg, (P). Moreover, 0, defines a
2-local finite group 4 = (So, Fo, L) isomorphic to the 2-local finite group
gsol(Q) Of [LOOZ]

(5) The order of a maximal elementary abelian 2-subgroup A of S is 16, and all
maximal elementary abelian 2-subgroups of G are conjugate in G. Moreover,
Cg(A) = A x Cx(A), where Cx(A) is a free normal subgroup of Cg(A),
Ng(A)/ Cx(A) is isomorphic to a nonsplit extension of A by Aut(A), and X
is the union of the conjugates of Cx(A) in G.

THEOREM B. Let p, A, G, Vo, and X be as in Theorem A. Then there exist
subgroups Hy, Ko, and Bo = Ho N Ko of Hy,,, Ky, and By,,, respectively, such
that the following hold.

(1) Hy is isomorphic to a perfect central extension of Sp(6,2) by Z,, Ky is a

group of order 21933, and By is of index 3 in K.

(2) Setting Go = (Ho, Ko), we have
(a) XNHy=XNKy={1},and
(b) Go/{X N Gy) is isomorphic to the colimit of the amalgam M of maximal
subgroups of Cos containing a fixed Sylow 2-subgroup of Cos.
(3) Let S|, be a Sylow 2-subgroup of Coz and So a Sylow 2-subgroup of Bo. Then
there is an isomorphism of 2-local finite groups

Gs;(Coz) = Y5, (Go).

THEOREM C. For any positive integer i, let §; be the 2-local finite group

4 p2i! of Theorem A, and let §g be the 2-local finite group associated with Cos
0

as in Theorem B. Let § be the 2-local group (S, %, <) associated with G via the

fusion system F = F5(G) and via the signalizer functor 0 defined by the subset X

of G. Then there exists a directed system
& = (Bi,j:% — Yj)o<i<j

of embeddings of 2-local finite groups, possessing a limit g which is canonically
isomorphic to the 2-local group .

The 2-local group 94(G) is a 2-local compact group, as defined in [BLOOS].
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It will be proved in [COS06] that the exotic fusion systems g, (g) of Levi
and Oliver, defined over 2-groups Sy, are determined by the isomorphism type of
Sg4. This implies that for any odd prime power ¢, and any prime p =3 or 5 mod 8,
there is a unique o such that the Levi-Oliver fusion system Fgo(¢) is isomorphic
to Fs.(Gy), where G = G(p) is the group in characteristic p constructed here.
This is needed for the proof of the following result.

THEOREM D. Let ¥ := ¥5 ¢(G) be the centric linking system over ¥ as
given in Theorem C. Then the 2-completed nerve |¥ |; is homotopy equivalent to
B DI(4). In particular, D1(4) may be given the structure of the 2-local group §,
and D 1(4) is then a 2-local compact group.

We are grateful to Bob Oliver for many helpful conversations about the 2-local
finite groups Yso1(g) which he and Ran Levi constructed, and for his help in under-
standing the space B D 1(4) of Dwyer and Wilkerson. The proof of Theorem D was
communicated to us by Levi and Oliver. We would also like to thank Ron Solomon
and the other members of his seminar at Ohio State, for suggesting improvements
to an earlier version of this manuscript.

Remarks and questions.

(1) One might imagine that the normal subgroup (X) of G leads to an interesting
factor group G/(X). But the fact is that (X) = G. Moreover, G5/ (Xs) =1
for any automorphism ¢ of G as in Theorem A, while Go/(X N Gg) is in fact
isomorphic to Cos. These results will appear in [COS06].

(2) To what extent can our method of construction of the Levi-Oliver fusion and
linking systems be carried out in a characteristic 0 context? For example,
one might consider a subring O of the field of complex numbers, and ask
whether there is a 7-dimensional quadratic space over O, yielding a group
Hg = Spin,(0), from which to build up a suitable free amalgamated product
and linking system as we do here in characteristic p. One requires 1/2 € O
in order to have an isomorphism of PSL,(0) with a suitable 3-dimensional
orthogonal group. The rings

Om =Zw/2],
where w is a primitive 2”-th root of unity, are possible candidates for this,
and there may be others.

(3) The sporadic group O’N (or rather, the 2-local finite group associated with
O’ N) can be shown to occur as a subgroup of some of the 2-local finite groups
constructed here. Since O’N and its subgroup J; are “pariahs”, i.e. are not
among the twenty sporadic simple groups which are involved in the Monster,
it is of some interest to have a context in which these groups, and Coz (which
is not a pariah) can live together in harmony. This will be the subject of
another paper.
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1. Fusion systems and Sylow subgroups

We shall need to consider fusion systems both over finite p-groups, and over
certain infinite p-groups. In the finite case the definitions are due first of all to Lluis
Puig [Pui06], and then to Broto, Levi, and Oliver [BLOO3]. The latter three authors
also consider a class of infinite p-groups which they call discrete p-toral groups,
in [BLOOS], and this class includes all of the p-groups that will be studied here.
For reasons of exposition, however, we shall present the definitions in a somewhat
more general context — but we emphasize that the main concepts, and the proofs
of the basic lemmas, come from the above-cited works.

We follow the practice, peculiar to finite group theory, of using right-hand
notation for conjugation within a group, and for group homomorphisms. But we
use left-hand notation for functors, and for auxiliary mappings associated with
some of our functors. It may also be worth mentioning that if X is a set admitting
action by a group G, and g is an element of G, then the set of fixed points for g
in X is denoted Xy, rather than the topologist’s X &.

If G is a group, g an element of G, and X a subset or an element of G, we
write X & for the image of X under the conjugation automorphism

1

cg:G—>G, (cg:xr>x8%:=g 'xg forall x €G).

We also write cg: P — Q for the mapping of P into Q given by g-conjugation,
whenever P and Q are subgroups of G with P& < Q. The transporter of P into
Q is the set

N P, = (S G Pg E )
and we define ¢(F.Q) 8 | 9

Homg (P, Q) :={cg : P > Q| g € N(P. Q)}.

Denote by Inj(P, Q) the set of all injective homomorphisms of P into Q. If
a: P — Q is an isomorphism, write a* for the isomorphism from Aut(P) to
Aut(Q) defined by a*: B — o~ ! Ba.

Definition 1.1. A fusion system ¥ over a group S is a category whose ob-
jects are the subgroups of S, and whose morphism-sets Homg (P, Q) satisfy the
following two conditions.

(1) Homg (P, Q) C Homg(P, Q) C Inj(P, Q).
(2) If & € Homg (P, Q) then the isomorphisms «: P — Pa and o~ ': Pa — P
are morphisms in %.

Example 1.2. Let G be a group and S a subgroup of G. For subgroups P and
Q of S, set

Then % is a fusion system over S, denoted Fg5(G).
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Let & be a fusion system over S, let P be a subgroup of S, and let o €
Autg(P). Set
Ne = {x € Ns(P) | (cx)a™ € Autg(P)}.

Thus, Ny is the largest subgroup R of Ng(P) having the property that, in the group
Autg(P), the conjugation map ¢, carries Autg(P) into Autg(P).

LEMMA 1.3. Let S be a subgroup of a group G, and let P be a subgroup of S.
Set F = F5(G), let g € NG(P), and set o = cg € Autg(P).

(@) (No)® =S8N (Ce(P)Ns(P)).

(b) If S is a p-group, and every p-subgroup of Cg(P)Ngs(P) is conjugate via
Cg(P) to a subgroup of Ns(P), then there exists & € Autg(Ny, Ns(P))
extending «.

Proof. Set R = Ng. By definition, R® consists of those x € Ng (P) such that
x € S% and cx|p € Autg(P). Butcx|p € Autg(P) if and only if x € Cg (P)Ns(P),
and thus (a) holds.

Assume the hypothesis of (b). Then R¢ is a p-subgroup of Cg(P)Ns(P), by
(a), so that by the hypothesis of (b) there exists 7 € Cg(P) such that R <N s(P).
Now « is the restriction to P of @ = cgp: R —> Ng(P), and we have (b). O

Definition 1.4. Let p be a prime. A group S is a p-group if for every x € §,
the order of x is a power of p. A p-subgroup S of a group G is a Sylow p-subgroup
of G if

(1) S is maximal (with respect to inclusion) among all p-subgroups of G, and
(2) S contains a conjugate of every finite p-subgroup of G.
The set of all Sylow p-subgroups of G is denoted Syl,(G). The group generated

by the set of normal p-subgroups of G is itself a normal p-subgroup of G, and is
denoted O, (G).

Definition 1.5. Let p be a prime, let S be a p-group, and let & be a fusion
system over S. A subgroup P of S is fully normalized in ¥ if, for every ¢ €
Homg (P, S), there exists ¢ € Homg(Ng(P¢), Ns(P)) such that v maps P¢
to P. We say that % is saturated if the following two conditions hold for every
subgroup P of S.

(I) There exists ¢ € Homg (P, S) such that P¢ is fully normalized in %F.
(I) If P is fully normalized in % then:

(A) Autg(P) € Syl,(Autz(P)), and
(B) each o € Autg(P) extends to a member of Homg (N, S).
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The preceding definition of saturation is formulated so as to make no mention
of |[Ng(P)| for P < S, and it is equivalent to the standard definition (cf. [BLOO03])
in the case that S is finite. This follows from [BCGT05, Lemma 2.3], and it is then
easy to check that our definition of “fully normalized” is equivalent to the usual
one, in a saturated fusion system over a finite p-group.

LEMMA 1.6. Let p be a prime and G a group. Let %Y be the set of subgroups
Y of G such that the set $(Y') of maximal p-subgroups of Y is nonempty, and such
that Y is transitive on ¥(Y') by conjugation. Assume for each p-subgroup P of G
that:

(1) Ng(P),Cg(P)P,and Cg(P)T arein¥ for T € F(Ng(P)).
(2) Outg(P) is finite.
(3) P is Artinian (i.e., any descending chain of subgroups of P stabilizes).
@) If P # 1 then Ng(P) is locally finite.
Then

(a) G has a Sylow p-subgroup S.
(b) A subgroup P of S is fully normalized in %5 (G) if and only if Ns(P) is a
Sylow p-subgroup of Ng(P).

(c) Fs(G) is saturated.

Proof. We have G € %Y, by (1) as applied to P = 1. Thus ¥(G) = Syl,(G),
and (a) holds.

Let P < S and set L = Ng(P), K = Cg(P),and T = Ng(P). Applying
(1) to P, we obtain 7' < X for some X € Syl,(L). Let Q < S and g € G with
Q& = P. Then Ng(Q)? is a p-subgroup of L, and since L € %Y there exists / € L
with Ng(0Q)8! < X. We conclude that P is fully normalized if T = X. Further,
as G € %Y there exists h € G with X < S, and so X" € Sylp(Lh) and hence P"
is fully normalized. This verifies axiom (I) in the definition 1.5 of saturation.

Assume that P is fully normalized. Then there exists y € G with P hy = p
and with XV < T < X. Then X" < X for all n > 0, and it follows from (3)
that X = X", and then that X = T'. This completes the proof of (b).

Set L = L/PK. We have T € Syl, (L) by (b), and L is finite by (2). Let ¥
be the pre-image in L of a Sylow p-subgroup of L containing T. By (4) there is a
finite subgroup U of ¥ with Y = U. As U is a p-group we have U = V for some
V €Syl (U). As L €% there exists @ € L with V¢ <T. Then |Y|=|V|<|T|<|Y|,
so that Y = T, and we have verified axiom (ITA) in 1.5.

Finally, set % = #g(G) and let « € Autz(P). As TK €Y, by (1), we conclude
from 1.3(b) that o extends to an element of Homg (N, S), verifying axiom (IIB)
for saturation, and completing the proof of (c). O
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Notice that if G is a finite group then the hypotheses of 1.6 are satisfied by G.
Thus, it is a corollary of 1.6 that for any finite group G and S € Syl,(G), the fusion
system Fg(G) is saturated.

Let ¥;, i = 1,2, be fusion systems over subgroups S; of a group S. We
say that &; is a fusion subsystem of ¥, (and write &1 < %;) if S1 < S, and
Homg, (P, Q) € Homg, (P, Q) forall P, Q < .

Given a set F of fusion systems over S, there is a largest fusion system

9’7F = m F

FeF

which is a subsystem of each & € F. Thus
Homg . (P, Q) = ﬂ Homg(P, Q).

FeF
Given a set E of fusions systems, each of which is defined over a subgroup of S,
define (E) — the fusion system generated by E — to be the fusion system g, where
F is the set of all fusion systems over S which contain each member of E. The
proof of the following result is straightforward:

LEMMA 1.7. Let S be a group and let (S;:i € I) be a collection of subgroups
of S. For eachi € I, let F; be a fusion system over S;, and set F = (¥; |i € I).
Assume that S; = S for at least one index i, and define a fusion system 6 on S by
taking Homg( P, Q) to consist of the maps ay . . . oy such that, for each 0 < j <r,
there exists i(j) € I, Pj < S;(jy, and aj € Homg;, ; (P}, S;(;)), such that Pj 41 =
Pjaj, Po = P,and Pry1 = Q. Then (F) = 4. a

LEMMA 1.8. Let G be a group, S € Syl,(G), and let X be a normal sub-
group of G of index p in S, such that S/X = Ng;x(S/X). Then F5(G) =
(Fs(S5), Fx(G)).

Proof. Set G* = G/X and € = (Fs(S),Fx(G)). As Fs(S) and Fx (G)
are contained in & = Fg(G), we have € C F by definition of ¢, and it remains to
establish the opposite inclusion. Let P, O < S and « € Homg(P, Q). If P £ X
then as S* is of order p and is equal to its normalizer in G* we get Q £ X
and @ € Homgg(s)(P, Q). Similarly if P < X but Q £ X then a = By where
B € Homg (P, PB), PB < X, and y: PB — Q is the inclusion map. Thus it
remains to show that Homg (P, Q) € Homg (P, Q) for P, Q < X, which follows
since Fx (G) C €. |

The next lemma states a weak form of the Alperin-Goldschmidt fusion theo-
rem [Gol70], in the language of fusion systems. This result will be of use in the
proof of Theorem B.

LEMMA 1.9. Let G be a finite group, S € Syl,,(G), and denote by N the set
of subgroups N of G having the following properties.
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(1) N = Ng(Op(N)),
(2) SNN €Syl,(N), and
(3) Cs(Op(N)) = Op(N).
Let No be the set of minimal members of N, with respect to inclusion. Then
Fs(G) = (Fsnn(N) | N € No).
We end this section with a generalization of a well-known result concerning
finite p-groups.
LEMMA 1.10. Let P be a p-group, set A = Aut(P), and let
€=(P=Po=P1z=P=1)
be a chain of normal subgroups of P. Let A be a subgroup of the group
Ciq(@)={acA|[Pi,a] < Piy1 foralli,0<i <k},
and assume that either A is a torsion group or that Py is of bounded exponent.
Then A is a p-group.

Proof. Apply induction on k. The lemma is trivial when k = 1, so take k > 1
and set P* = P/Pr_y. Then A centralizes the chain €* = (Pg >---> P’ =1).
By induction, Auty (€*) is a p-group, so it remains to show that Cp(P*) is a
p-group. Thus, we may take k = 2. Let @ € A, x € P, and set ¢ = [x,«]. Then
¢ € Py <Cp(a), so that x¥" = xc", and hence |loej(xy| = |c|. If a is of finite order,
or P is of bounded exponent, we conclude that

|| = lem{|[x,«]| | x € P}

is a power of p. O

2. Linking systems, signalizer functors, and p-local groups

Let & be a fusion system over a p-group S. A subgroup P of S is F-centric if
Cs(P¢)=Z(P¢)forevery ¢ e Homg(P,S), and P is F-radical if Op(Autg(P))
= Inn(P). Write F€ for the set of F-centric subgroups of S, " for the set of -
radical subgroups of S, and ¥ for F¢ N F".

LEMMA 2.1. Let S be a Sylow p-subgroup of a group G, set ¥ = F5(G),
and let P < S.

(@ If P e F,and g € G with P < S8, then Csz(P) < P.
(b) If P contains every finite p-subgroup of Cg(P) then P € F€.
(c) If P is finite and P € F€, then Z(P) contains every p-subgroup of Cg(P).



894 MICHAEL ASCHBACHER and ANDREW CHERMAK

Proof. Part (a) is immediate from the definition of %¢. Now suppose that
Z(P) contains every finite p-subgroup of Cg(P), and let g € Ng(P, S). Then
every element of Cs(P¥) is contained in Z(P¥), and thus P € ¥, proving (b).

Finally, assume that P is finite and that P € %, and let R be a finite p-sub-
group of Cg(P). Then RP is a finite p-subgroup of G. Since S is a Sylow p-sub-
group of G, there exists g € G with (RP)8 < S. As P € ¢ we have Cg(P¢¥) =
Z(P8),and so R < Z(P). Thus Z(P) contains every finite p-subgroup of Cg(P),
and since every p-group is the union of its finite subgroups, we obtain (c). O

LEMMA 2.2. Let S be a Sylow p-subgroup of a group G, and set F = F5(G).
Let P € ¥ such that P contains every p-element of Cg(P), and let

€=(P=Po=P1>->P=1)

be a chain of Ng(P)-invariant subgroups of P. Suppose that P1 is of bounded
exponent. Then P contains every finite P-invariant p-subgroup R of Cg(%6).

Proof. First, let R be a p-subgroup of Cg(P)P. Then RoP = Cr,p(P)P
by the Dedekind Lemma. As P <ICg(P)P, RoP is a p-group, and then Cg,p (P)
< P by hypothesis. Thus

(*) Ro < RoP <Cpg,p(P)P < P.

Now let R be a p-subgroup of Cg (). Set A = Cpy;(p)(€). Then A J Autg (P),
and A is a p-group by 1.10. As P is F-radical, it follows that Autg(P) < Inn(P),
and thus R < Cg(P)P. Then R < P by (*). |

A set % of objects in a fusion system & is closed under F-conjugation if P¢ € Fg
for all P € ¢ and all morphisms ¢ € ¥ defined on P.

LEMMA 2.3. Let F be a fusion system on S. Then F¢, F", and F* are closed
under F-conjugation.

Proof. Let P < S and let ¢ € Homg(P,S). Then P € F° if and only if
P¢ € F€, by definition. Now let P € F. The natural map ¢*: Autg(P) —
Autgz(P¢) is an isomorphism, and since Inn(P) = Op(Autgz(P)), it follows that
Inn(P¢) = Op(Autg(P¢)). Thus, P € F" if and only if P € F". |

Definition 2.4. Let S be a p-group, let & be a fusion system over S, and let
€ be a subset of F€. An €-linking system (or linking system on €), consists of

(1) a category & with Obj(¥) = € and composition - (read from left to right),

(2) a functor 7: ¥ — F, for which the associated map of objects induces the
identity map Obj(¥) — ¢, and

(3) acollection § = {§p: P — Aute(P) | P € €} of injective group homomor-
phisms,

such that the following three conditions hold for any P and Q in €.
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(A) The left action of Z(P) on Mor¢(P, Q) given by
z2p > 8p(z7Y) ¢

is free (i.e. Morg (P, Q) is a union of regular orbits for Z(P)), and the map
Z(P)¢p — m(¢) is a bijection of Z(P)\Morg(P, Q) with Homg(P, Q). In
particular, 7 is surjective on morphism sets, and 7 () is a full subcategory
of F.

(B) Forall g € P,

m(6p(g)) =cg € Autg(P).

(C) For each y € Mor¢(P, Q) and each g € P, the following square commutes

in&:

P——ib——)Q

8P(8)J/ Pg(g'ﬂ(lﬁ))
v

P —— 0.
A centric linking system on % is a linking system on F€. A pre-local group consists
of a triple § = (S, %, ¥) where S is a p-group, F is a fusion system over S, and
¥ = (¥, m,0§) is a linking system on a subset € of F¢. If F is saturated, and &£
is a centric linking system, then 4 is a p-local group. A p-local finite group is a
p-local group % in which S is finite.

We are following the notational conventions in [BLOO03] in writing Mor« (P, Q)
(rather than Homg (P, Q)) for the set of morphisms in & from P to Q, in order to
emphasize that in general, $£-morphisms are not mappings.

Definition 2.5. Let G be a group, let S be a Sylow p-subgroup of G, and set
F =%g(G). Let T(G) be the set of all subgroups of G. An F-signalizer functor
is a mapping

0:F — J(G)

satisfying the following three conditions:
(1) 8(P) is a complement to Z(P) in Cg(P).
(2) 6(P8)=0(P)8 forall g € Ng(P,S).
(3) 6(Q) <O(P)forall Q with P <Q <S.

Remark. Signalizer functors are bona fide contravariant functors. Namely, in
2.5, view I = J(G) as a category whose morphism sets are given by

Morg(X,Y) = Ng(X,Y),

for any subgroups X and Y of G, and where composition is given by multiplication
in G. Let J¢ be the full subcategory of J whose set of objects is %¢. Condition (2)
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in 2.5 implies that an %-signalizer functor 6 is a contravariant functor from J¢ to 7,
if we define
0:Morge (P, Q) — Morg(6(P), 0(Q))

by 0(g) =g . O

Given the setup of 2.5, define &£ = £y to be the category whose objects are
the J-centric subgroups of S, with morphisms

Morg (P, Q) = 0(P)\Ng(P, Q).
The composition of morphisms is defined by
0(P)g-0(Q)h =0(P)gh,

for g € Ng(P, Q) and h € Ng(Q, R). In fact, this composition is no more than
ordinary multiplication of subsets of G. To see this, notice that if P& < Q, then
the signalizer functor axioms (2) and (3) yield 8(Q) < 6(P&) = 6(P)%E. Thus

1

0(Q)%  <0O(P),and so
(O(P)2)(B(Q)h) = B(P)O(Q)* ' gh = O(P)gh.
Next, define a functor
7 =mg: %y —> F
by m(P) = P and by 7(6(P)g) = cg for g € Ng(P, Q). Finally, define a family
8 =8¢ ={6p | P € F°} of monomorphisms
dp =0pg: P — Autg(P)
by ép(g) =0(P)g, for P € F*.

LEMMA 2.6. Let S be a Sylow p-subgroup of a group G, set ¥ = F5(G),
and let 6 be an %F-signalizer functor. Then

(a) ($£y,my,89) is a centric linking system on F.
(b) If F is saturated then 45 ¢(G) := (S, Fs(G),¥y) is a p-local group.

Proof. Let P, Q € %°, let z be a nonidentity element of Z(P), and let g €
Ng(P, Q). Then 8(P)g € Morg(P, Q), and

6p(z)-0(P)g =0(P)z-0(P)g = 0(P)zg.

Here 6(P)zg # 0(P)g since 8(P) N Z(P) = 1. Thus, Z(P) acts freely on
Homg (P, Q). Similarly, since Cg(P) = 6(P) x Z(P), the map

Z(P)O(P)g = cg = m(0(P)g)

is a bijection from Homg (P, Q)/Z(P) to Homg (P, Q). Thus, condition (A) in
Definition 2.4 is satisfied in our setup.
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Now suppose that g € P. By construction, we then have

n(8p(g)) =n(0(P)g) = cq,
and so condition (B) is satisfied. Finally, let f = 8(P)x € Morg (P, Q). We then
have w(f) =cx: P — Q, and g (f) = g*. Since also §g(g*) = 0(Q)g*, we
obtain
f-8o((gn(f)) =06(P)x-0(Q)g* =0(P)xg”
=0(P)gx =0(P)g-0(P)x =6ép(g)- /.

Thus, condition (C) is satisfied, and (a) is proved. Part (b) follows from (a), by the
definition of p-local group. |

PROPOSITION 2.7. Let S be a Sylow p-subgroup of a group G and set & =
Fs(G). Suppose that Ng (P) is finite for every P € F°.
(a) There is a unique F-signalizer functor 6 given by 6(P) = OP(Cg(P)).
(b) Set £5(G) = Ly, and suppose that F is saturated. Then
4s5(G) :=(S,Fs5(G), £5(G))
is a p-local finite group.
Proof. Part (a) follows from 2.1(c), and then (b) follows from (a) and from
2.6(b). O

The following lemma is intended as a remark, to point out the connection
between Definition 2.5 and the usual notion of “balanced signalizer functor” in
finite group theory. It will not be used in the sequel.

LEMMA 2.8. Let 0 be an F-signalizer functor, where F is a fusion system
over a finite p-group. Then, for any P, Q € F° with P < Q,

(@) Z(Q) = Z(P), and
(b) 0(Q) = Co(p)(Q).

Proof. Part (a) is immediate from 2.1(c). By definition,
0(Q) = Cop)(Q) = C6(Q) = 0(Q) x Z(Q),
so that Cy(py(Q)=0(Q)x(Z(Q)NBO(P)). Since Z(Q)<Z(P), we obtain (b). [
Definition 2.9. Let & and F be fusion systems over the groups S and S,
respectively. A morphism a:F — F of fusion systems consists of a functor o;:

% —> %, and a homomorphism «g: S — S of groups, satisfying the following two
conditions.

(MF1) For every subgroup P of S, a;(P) = ag(P), and

(MF2) for each ¢ € Homg (P, Q), we have og o a(¢p) = ¢ o g (in right-hand
notation).
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We most often write o for both g and 1. In the case that ag is given by inclusion
of S into S, and a is given by inclusion of Homg (P, Q) into Homz (P, Q) for
all P, Q € &, we say that « is an embedding. We reserve the symbol ¢ to denote
an embedding of fusion systems.

In general, if & and F are fusion systems over finite p-groups S and S, re-
spectively, then a morphism «: &% — F of fusion systems need not send F-centric
subgroups of S to F-centric subgroups of S For example, let G be a finite group,
take G to be the direct product of G with a nonidentity p-group R, let Shbea Sylow
p-subgroup of G, and take S = SN G. Then the inclusion mapo: Fs(G) — @5(6)
carries no centric subgroup to a centric subgroup.

Recall that if F is a saturated fusion system over a p-group S, then ™ denotes
the set of subgroups of S which are both F-centric and F-radical. Given a p-local
group 4 = (S, %, &), denote by £ the full subcategory of £ whose objects are
the objects of %", Thus &' is a linking system on %",

By [BCG05, Th. B], the classifying spaces |£| and || are homotopy equiv-
alent in the case that S is finite. This provides some justification for the following
definition of morphism of p-local groups.

Definition 2.10. Let ¢ = (S, %, &) and G = (§, F, §~B) be pre-local groups. A
morphism of pre-local groups from 9 to G is a pair (ar, B), where a: F — F is a
morphism of fusion systems, and 8: ¥ — &£ is a functor which, for each pair P, O
of objects of &, satisfies the following conditions.

(MG1) «(P) = B(P).
(MG?2) For each v € Morg( P, Q), the restriction of 7 (8(1)) to a(P) maps «(P)
into a(Q), and (7 () = T (B(Y)) la(p)-
(MG3) Bodp =ég(p)oao.
We say that the morphism (o, 8) is an embedding if « is an embedding of fusion
systems and
B:Morg (P, Q) — Morz(a(P),a(Q))

is an injection for all P, Q € £. We say that G is a pre-subgroup of@ if there is an
embedding (¢, B) of  into %, and in this case one may say simply that 8:9 — G
is an embedding. If % and % are p-local groups, then a morphism of p-local groups
from G to G is a morphism of pre-local groups

(. B): (S.F, £°) — (5. F, F").

Such a morphism is an embedding of p-local groups if it is an embedding of pre-
local groups, and if « is given by inclusion, we say that % is a subgroup of 4.

The next two results provide tools for carrying out the construction of mor-
phisms, and particularly of embeddings, of p-local groups.



2-LOCAL FINITE GROUPS 899

PROPOSITION 2.11. Let Gy be a subgroup of a group G», and assume that
there are Sylow p-subgroups S; of G; with S1 = G1 N S»2. Assume that for
each i, the fusion system F; := Fg,(G;) is saturated, and that we are given an
F;-signalizer functor 0;. In addition, assume given a mapping B: ¥y — F5 such
that the following conditions hold for every P € FY.

(1) P =B(P).

(2) Foreach g € Ng, (P, S1) we have B(P&) = B(P)5.

(3) Foreach Q € ¥ with P < Q we have B(P) < B(Q).

4 02(B(P)) NG = 01(P).
Let 1: F1 — F» be the inclusion functor, and write 4; = (S;, F;,¥;) for the p-
local group which is canonically associated with %; and 6; (cf. 2.6). Then for any
P, Q € FY there is a mapping

() Bp,o:Morg, (P, Q) —> Morg, (P, Q)
given by 01(P)g +— 6,(B(P))g; and (1, B) is an embedding of 41 into 4,. That is,
%1 is a p-local subgroup of 9,.

Proof. Let P,Q € ¥Y and let g € Ng,(P, Q). Then P¥ € F by 2.3,
Since P& < 0, (3) yields B(P¥) < B(Q). Then f(P)® < B(Q) by (2), and so
g € Ng,(B(P), B(Q)). We have 01 (P)g = 61 (P)h if and only if hg=! € 0;(P),
while by (4), hg™! € 0;(P) if and only if hg~! € 6,(B(P)) N G, which holds if
and only if 6(B(P))g = 02(B(P))h. This shows that the mappings Bp g in (x)
are well-defined injections. Visibly, 8 preserves composition, so that 8 is a functor

from &7 to &».
Axiom (MG1) in 2.10 is an immediate consequence of (1). Next,

a(m1(01(P)g)) = alcg) = cgip = m2(02(B(P)g)|p = m2(B(61(P)g))| P,
so that (MG?2) holds. Finally, for any g € P,

B(81,p(8)) = B(61(P)g) = 02(B(P))g = 81,8(P)(8) = 81,8(P)((g)),
and so (MG?3) holds. O
PROPOSITION 2.12. Let G be a subgroup of a group G, assume that there
are Sylow p-subgroups S; of G; with S1 = G1 N Sz, and let 0; be a signalizer
functor on the fusion system F; := Fg,(G;). Assume also that each F; is saturated.
For P € Y, denote by B(P) the set of Ng, (P)-invariant p-subgroups of G,
and set B(P) = (B(P)). Assume that the following two conditions hold for each
P € FY.
(1) B(P) € F5. (In particular, B(P) < S>.)
(2) 61(P) = 02(B(P)) NGy
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Then B satisfies conditions (1) through (4) of 2.11, and defines an embedding
(t, B): %61 —> 95 of p-local groups.

Proof: By (1), B is indeed a map from & to F5. Let P € F. As P € B(P),
condition (1) of 2.11 holds. We have B(P)& = B(P¥) for any g € Ng, (P, S1),
so that condition (2) holds.

Let O € ¥ with P < Q. For any x € Ng,(Q) we have P* < S;. Then
P* € ¥, and so B(P)* = B(P*) < S by (2). Thus (B(P)N6 (Q)) is a p-group,
invariant under Ng, (Q), and hence contained in 8(Q). Thus condition (3) holds.
Condition (4) is equivalent to (2'), and so the proof is complete. O

Example 2.13. Let G be a group and K < G such that G := G/K is finite. Let
S be a p-subgroup of G such that SNK =1, S € Syl (K S), and § € Syl (G). Set
F:=%Fg(G), and for P € F€ set O(P) = O,/ (C5(P)). Let 0(P) be the preimage
in Cg(P) of H(P).

Set F = %g(é). Then 6 is an JF-signalizer functor, and %4 := %5,5(6) is
the natural p-local group ‘§§(5). Let ag: S —> S be the restriction to S of the
quotient map G —> G. For P < S define o1 on Homg (P, S) by a7: cg = Cz.

Observe that for P < S, ap: Ng(P, S) — N@(IS, S) is a surjection. Namely,
if g € G with P& < S then, as S € Sylp(KS), there is k € K with P8% < S, and
we have g = gk. Similarly Cé(ﬁ) = Cg(P). Also, if g,h € Ng(P, S) with
ai(cg) =aq(cy) then P8 <§ > P" with gh™! centralizing P, so gh~! € Ng(P)
with [P, gh~!]< PNK = 1. Thus a1 : Homg(P, S) —>Hom@(ﬁ, S) is a bijection.
Therefore (g, 1) is an isomorphism of F with F, and since F is saturated, so is
F. It is now easy to check that @ is an F-signalizer functor, and then % := %s5.0(G)
is a p-local finite group by 2.7(b).

Define f: ¥ —> £ by B(P) = P (on objects), and by B:0(P)g — 0(P)g
(on morphisms). One may now check that («, 8): ¢ — 4 is an isomorphism of
p-local finite groups.

The hypothesis that S € Syl,(KS) was used only to verify that the maps
ag: Ng(P,S) — NG([_’, S) are surjective, and that 8(P) < Cg (P) for each P €
%', Thus, that hypothesis may be replaced by the hypothesis that «g: Ng (P, S) —>
Ng (P, S) is surjective and O(P) = 1 for each P € F'.

3. Amalgams

In this section, an amalgam of groups will always mean a pair
= (A <& 410 > 4y)

of injective group homomorphisms. A morphism from the amalgam s to an amal-

gam B = (B; <ﬁ—1 Bi> ﬁ) By)isatriple y = (ys | @ # J C{1,2}) of injective

group homomorphisms yj: Ay — By, such that o; y; = y1,26; fori =1,2.
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For example, if G is a group with subgroups G and G, and G, is a sub-
group of G1 N Gy, then there is a subgroup amalgam % given by the inclusion maps
a;: G120 — G;. A completion of an amalgam s is an isomorphism y: d — 9§ of
A with a subgroup amalgam % in a group G, such that G = (G, G2). One often
abuses the terminology and says simply that G is a completion of .

Let

‘gﬁz(Gl(—B—)Gz)

be an amalgam and let G = G1 *p G5 be the associated free amalgamated product.
Then G is a completion of s, and indeed the universal completion of si. We
identify s¢ with the subgroup amalgam of G which is the image of s under this
completion, and in particular regard G1, G and B as subgroups of G with G1 N
G, =B.

For any subgroup X of G, denote by X\ G the set of right cosets of X in G.
Set I'; = G;\G. Then I = I'(#) is the graph whose vertex set is the disjoint union
V(') =Ty || 'z, and whose set of edges is the set E(I") of 2-subsets {G1x, Gax}
with x € G. We call I' = I'(s4) the standard tree associated with & and with G, and
we refer to [Se] for the fact that I" really is a tree. Observe that G is represented
as a group of automorphisms of I' via right multiplication, and that the kernel of
this representation is the largest normal subgroup of G which is contained in B.
Evidently, G acts transitively on E(I"), while I'; and I', are the (distinct) orbits for
G on V(I'). It is also evident that G is locally transitive on T'; that is the stabilizer
G of any vertex § acts transitively on the set I'(§) defined by

@) ={yel'[{s.y}e EI)j.

For any subgroup or element X of G, write I'y for the subgraph of I" induced on
the set of vertices which are fixed by X. For any connected graph A, and vertices
a and B of A, the length of the shortest geodesic path from « to 8 in A is denoted
d(a, B). Then (A, d) is a discrete metric space, and automorphisms of A are
isometries. An isometry of a tree is said to be hyperbolic if it fixes no vertices or
edges. The following two results, noticed first by J. Tits [Tit70], are elementary.

LEMMA 3.1. Let h be an automorphism of a tree I, and denote by A(h) the

intersection of all the h-invariant subtrees of I'. Suppose that there exists an edge
{y. 8} of I such that

(1) d(y,yh) =4d(68,8h) # 0 and
(2) {y. 8} is not fixed by h.

Then h is hyperbolic, and the set of all edges {y, 8} which satisfy condition (1) is
the edge set of A(h). O
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LEMMA 3.2. Let I" be a tree, let g be a hyperbolic isometry of I, and define
A =A(g)asin3.1. Setd =min{d(6,6%) |6 € V(I')}. Then:
(a) A is isomorphic to the graph Z whose vertex set is the set 7 of integers, and
whose edges are the pairs {n,n + 1} forn € Z.
(b) There is an isomorphism Wr: A — Z such that ' gy:n+>n+d foralln € Z.
(c) For any vertex y of T, the geodesic in T from y to y& has length d + 2e,
where e is the minimal distance from y to a vertex of A. a

LEMMA 3.3. Let I" be a tree, and let x,y € Aut(I'), § € I'y, y € I'y, and
(g, ...,0aq) the geodesic from y to 8. Suppose x does not fix . = ag_q1 and y
does not fix a1. Then xy is hyperbolic.

Proof. Observe first of all that («gy,...,agy) is the geodesic from y = agy
to 8y, so that the path p = (g y, ..., @0y, ®1,...,0,) contains a geodesic g from
8y to 8. Indeed as @y # a1y, g = pis of length 2d. Then g’ = (¢g_1y....,x0Y,
a1, ...,0g) is the geodesic from ay to §, and since B = ax~! # «, it follows that
g’B is the geodesic of length 2d from ay to 8. But §y = §xy and Sxy = ay, and
so d(8,6xy) =d(B, Bxy). The lemma now follows from 3.1. |

We will work under the following hypothesis for the remainder of this section.

HYPOTHESIS 3.4. G = G xp G, is the free amalgamated product associated

with an amalgam
ﬂI(Gl <—B—>G2),

and Gy, Gy, and B are regarded as subgroups of G in the canonical way. Let I" be
the standard tree associated with A and G, and let T'; be the subset G;\G of the
vertex set of I'. Assume
(1) There is a subgroup S of G such that S is a (possibly infinite) Sylow p-sub-
group of each of the groups G1, G, and B.
(2) Ng;(S) < B #Gi,fori =1and2.

The vertex G; of I' will most often be denoted y;.

LEMMA 3.5. Assume Hypothesis 3.4, and assume also that
(%) (S8 |g€G1UG,, S8 <B}=S5.
Then:

(@) I's = {y1,y2}, and
(b) S €Syl (G).

Proof. It follows from (*) and from [Asc86, 5.21] that Ng, (S) is transitive
on I's (y;). Since Ng,;(S) < B, by 3.4, we obtain (a).

Let S* be a p-subgroup of G containing S and let x € S*. Then |x| is finite,
so that 3.2 implies that Ty # @. Choose § € I'y and y € I's with d := d (6, y)
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minimal. Suppose that d > 0 and let (8,6, ..., y’,y) be the geodesic from § to y
in I'. Then x ¢ G/, and there exists y € S — G,. As |xy]| is finite, this contradicts
3.3, and so we conclude that d = 0. Then (a) yields S* < G; for some i. Since
S is a maximal p-subgroup of G; we then have $* = S, and thus S is a maximal
p-subgroup of G.

Let P be a finite p-subgroup of G, and let Py be a subgroup of P which fixes a
vertex of I', and which is maximal for this condition. Then Np (Pg) acts on the tree
I'o =I'p,, and no element of Np (Po)— Py fixes a vertex of I'g. Now, Np(Po)— Po
consists of hyperbolic isometries on I'g, by 3.2, and hence Np(Py) = Py = P.
Since G is edge-transitive on I, it follows that P is conjugate to a subgroup of
G1 or G,. Then P is conjugate to a subgroup of S, by 3.4(1), and S is a Sylow
p-subgroup of G. O

LEMMA 3.6. Assume Hypothesis 3.4, let P be a finite subgroup of S, and
let g € Ng(P,S). Set Fy = P. Then there exists a positive integer n, elements
g1,....8n of Gy, elements hy, ..., hy of Ga, and subgroups E; and F; of S, 1 <
i <n, such that the following conditions hold.

(a) gi¢ Bforl<i<n,andh; ¢ B for1 <i <n.
(b) E; = F& and F; = E™ forall i with 1 <i <n.
(©) g=2g1h1...gnhn.

Moreover, the minimal length of g as a word in the generating set G{ UGy is 2n—2
if g1, hy € B, 2n — 1 if exactly one of g1 and hy, is in B, and 2n if neither g1 nor
hy isin B.

Proof. Since G and G5 generate G, we may choose elements g; € G; and
h; € Gy, satisfying the conditions in (a) and (c). Set «g = y2, Bo = Y1/n, and for
l<i<nsetw; =gn—i+1hn—i+1-..&nhn, ;i = y2w;, and B; = y1hy—;w;. Then
q = (o, Bo, ..., Bn—1) is apathin T with 8; # B;4+1 and o; # aj4+1 fori <n—1.
Thus ¢ is a geodesic from «g to 8,1, and if g1 ¢ B then also the path g, is a
geodesic. In particular if n > 1 or g1 ¢ B then d(ag,a,) >0, and w, ¢ B.

Take (b) as the definition of the groups E; and F; for i > 0. We now show
that these groups are contained in B. Let x € Fy, set yo = x,and for 1 <i <n
define x; and y; recursively, by
hi

— 8 -
xi =yl and  y; =x;

Suppose that for some j, either x; or y; is notin B, and let j be the smallest such
index. Suppose that x; ¢ B. Then y;_1 € B, and so x; = yfil € G; — B. Then

x& =h;1g;1...h;1x/hj...gnhn
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is an alternating product of elements of G, and G1, in which none of the factors
lies in B except possibly for the first and the last. It follows from paragraph one
that x& ¢ B, whereas x& € § < B. A similar argument shows y; € B. Therefore
x; and y; are in B for all i, and so each of the groups E; and F; is contained in B.
Since S is a Sylow p-subgroup of B, we may adjust our choices of the elements
gi and h;, via right multiplication by elements of B, to ensure that £; and F; are
in S forall ;.

It remains to prove the final statement in the lemma. This follows since, by
paragraph one, the length £(g) of g as a word in the generating set G; U G, for G
is equal to the shortest distance in the tree I'(s4) from a vertex in {y; g, y2g} toa
vertex in {y1, ¥2}. d

We have the following immediate consequence of 3.6.

COROLLARY 3.7. Assume Hypothesis 3.4. Then

Fs(G) = (Fs5(G1), Fs(G2)). O

For any subgroup X of G, and any elementary abelian p-subgroup A4 of X,
denote by €, (X, A) the set of elementary abelian p-subgroups of X which have
order p" and which contain A. Write €, (X) for ¢, (X, 1).

In the remainder of this section we assume the following hypothesis.

HYPOTHESIS 3.8. Hypothesis 3.4 holds, and so do the following conditions.

(1) There is a normal subgroup Z of G1 of order p, and Z is the unique subgroup
of order p in Z(S).

(2) There exists U € €5(Ga, Z) with U < G, and G, acts transitively on €1(U).
(3) B=Ng,(U) = Ng,(2).
(4) Foreach X € {H, K, B}, X is transitive on its set of maximal p-subgroups.

LEMMA 3.9. Let P be a subgroup of S and let X be a subgroup of Z(P) of
order p.
(a) Let g € G with P8 < S. Then one of the following holds.

(i) g € B, and neither P nor P& is contained in Cg(U).

(i) P <Cg(U).
(b) If X # Z and X < U then there exists g € G, with X& = Z and with P& < S.

Proof. Let g be asin (a), and set O = P8, Since U < G,, we have P <Cg(U)
if and only if Q < Cg(U). Since conclusion (ii) of (a) does not hold, neither P nor
Q is contained in Cg(U). Set G2 = G2/Cg,(U). Then P and Q are nontrivial
p-subgroups of S. Hence by 3.8(2), G, is isomorphic to a subgroup of GL»(p)
containing SL>(p), and B = Ng,(Z) has index p +1in G2. Thus P = Q = §,
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and B = N52(§). Since P& = Q, we then have g € B. Thus g € B and (a) is
proved.

Suppose that Z # X < U. By 3.8(2) there exists g € G, with X& = Z.
Since X < Z(P), we have P& < Cg,(Z) < B. By 3.8(4) there exists h € B with
P&" < §. Replacing g with gh, we obtain (b). O

For § e I" and g € G with § = y; g for some i, Zg will denote Z8 if i =1,
and U¢ if i = 2. This notation is well defined as a consequence of 3.8(3).

LEMMA 3.10. Let X be a subtree of I and let yeX. Set Y =(Zs|§e X).
Then Cg,, (Y) fixes X vertex-wise.

Proof. Lety € X, set X = Cg,,(Y), and assume that X £ Gx. Among all
pairs (8, x) with § € ¥ and x € X with §x # §, choose (3, x) so that d := d(§, §x)
is minimal. Let o € X(§) be of distance d — 1 from y. Then X fixes o and
centralizes Y, so X centralizes Zg. Thus X < Cg,(Zs) < Gs by 3.8(3), and
contrary to our choice of §. O

LEMMA 3.11. Let § and y be distinct vertices in I'y with Zs = Z,,. Then
d(8,y) = 6. Moreover, the following hold.

(a) Let a, B € I'y with d(«, B) = 2, and let X be a subgroup of G fixing B and
centralizing Zy and Zg. Then X fixes a.

(b) Let g, a4 € I'y with d(ag, ats) = 4, and such that Z,, centralizes Zy,. Then
Z,, fixes ayp.

Proof. Suppose d :=d(5,y) <6. Thend =2 or 4. If d =2, and (8, 8, y)
is the geodesic from § to y, then Zg = Z5Z, is of order p, which is not the case.
Thus d = 4. Write (8, B,6’, B’, y) for the geodesic from § to y. Then

Zg =257y =ZyZs =Zp.

By edge-transitivity, we may take §' = y; and B’ = y». Then U = Zg, = Zg, and
by local transitivity there exists g € Gy with 88 = B’. Then U = U¥, so g € B,
and B = B’. Then d < 4, and we have a contradiction.

Assume the hypothesis of (a). Without loss, 8 = y; and {y»} = I'(a) N T'(B).
As X fixes B and centralizes Zy and Zg, we obtain X < Cy(ZyZg) =Cq(U) <
B < G, establishing (a).

Now assume the hypothesis of (b), and take X to be Z,,. Let (xo, . ...x4)
be the geodesic from ag to ag. Then X < Z,, = Zy,Z4, < CG(Zy,), and so X
fixes oz by (a). Then, since dist(xg, o2) = 2 and X centralizes Z,, fori = 0,2, X
fixes ag by another application of (a). O

HYPOTHESIS 3.12. Hypothesis 3.8 holds, and every subgroup of G of order
p is conjugate in G to a subgroup of U.
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LEMMA 3.13. Assume Hypothesis 3.12. Let P be a subgroup of S and let X
be a subgroup of Z(P) of order p.

(@) If X £ U then there exists g € G, with X8 < U and with P8 < S.

(b) If X # Z then there exists g € G with X8 = Z,(XZ)8 =U, (PU)8 < 8§,
and g = g1g2 where gi € G; and P8!' < §.

Proof. Suppose that X £ U. By 3.12 there exists g € G with X8 < U. Set
Y = X&. Then YZ = U, so that P < Cg,(U) < B, and by 3.8(4) there exists
h € B such that P&" < Cg(Y). Replacing g with gh, we obtain (a).

Now assume that X # Z. If X < U we appeal to 3.9(b), with PU in the role
of P, in order to obtain g € G, with X82 = Z and (PU)82 < §. With g; =1, (b)
holds in this case. So assume that X £ U. If U centralizes X we apply (a) to PU,
obtaining g1 € G such that X8! <U and (PU)8! <S. Then (XZ)8! = U, and by
3.9(b) there exists g» € G, with X882 = Z and (P U)%'82 < §. Thus (b) also holds
in this case, and we are reduced to the case where U does not centralize X . Since
P < §,3.8(3) implies that [U, X] = [U,S] = Z. Then XZ < PU. By 3.12 there
exists g1 € Gy with X&' <U. Then (XZ)&' =U,so that (PU)#' < Ng,(U)=B.
By 3.8(4) we may assume that g1 was chosen so that (PU)#! < §. Then (a) applies,
and completes the proof of (b). O

The next result amounts to a re-working of [LO02, Lemma 1.4] in our tree-
theoretic setup. The formulation given here is different in several respects from
the one in [LOO02], but the main idea of the proof has not been altered. We remark
that we shall only use part (c) of 3.14, and this will occur only once, in the proof
of 9.2.

PROPOSITION 3.14. Assume Hypothesis 3.12. Set D = Ng(Z) and assume
that Fs(D) # Fs(G1). Denote by A the set of all pairs (P, g) such that P is a
finite subgroup of S, g € Np(P, S), and cg ¢ Homg, (P, S). Set

P={P|(P,g) e A forsomege D},

and let P € . Choose (P, g) € A so that the length £(g) of g, as a word in the set
G1 U Gy of generators of G, is minimal. Then [P,U] =1, (PU, g) € A, and upon
replacing P with a suitable subgroup of Cs(P)P containing P, we have

(a) L(g)=5,and g = g182838485 where g; € G, fori odd, and g; € G for i
even.

(b) The elements g1 through gs in (a) may be chosen so that U < Z(P81--8i),
and P&'8 < § foralli,1 <i <5,

(¢) There exists E € €3(Z(P),U) suchthat U < E¢,Cg(E)% < B, and Cg(E¥)
< BS.
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Proof. Set Q = P8. Since g € D, also g € Np(PZ, QZ), so that we may
assume Z < P.

By 3.6 we have g = g1...gn, where each g; is in G; U G5, and where
ps&t-8& < § foralli, 1 <i <n. Moreover, the sequence (g1,...,gn) may be
chosen so that £(g) = n.

Set Pp=P,Zo=Z,andfor1 <i <nset P;=P% andZ; =Z% . IfZ; =
Z for some i with 0 <i < n, then the minimality of n implies that, forx = g; ... g;
and y = gj+1...8n, we have ¢y € Homg, (P, P;) and ¢, € Homg, (P;, Q). But
in that case we get cg = cxcy € Homg, (P, Q), contrary to hypothesis. Thus:

(1) Z; =Z ifand only if i =0 or n.
By 3.13(b) there exist elements vy through v,—; of G1G,, such that
(2) 2" =Z,(ZZ;)" =U, and (P;U)" < §.

Set vg = v, = 1, and for each i, 0 <i <n, choose r; € G; and s; € G, with
v, =ris;. Setk; = vl-__llg,- v; fori > 1, and set P/ = Pl-vi fori > 0. Then P/ < S
for all 7, by (2), and (Pi’_l)ki = P/ fori > 1. Notice that

(%) g1...8n=k1...kn.

Suppose that, for all i > 1, we have ¢, € Homg, (P/_,. P/). Choose t; € Gy
so that kiti_1 € Cg(P/_,), and sett =ty ...t,. Then gt~! € Cg(P) by (%), so
that ¢, € Homg, (P, Q), contrary to hypothesis. Thus, ¢k, ¢ Homg, (P/_,, P/)
for some i > 1. Since k; = (ri_lsi_l)_lgi r;s; is of length 5, it follows from the
minimality of n that n <5.

Set « = o9 = 1, and define vertices «; through o, by o; = o;—1g;. Let
Y. be the subtree of ' generated by {wyg,...,a,}, and let X; be the subtree of X
generated by ap and «;. Thus X is the union of its subtrees ¥;, and %; is the
geodesic from o to ¢; in I,

Minimality of n implies that g; € G, — G, as otherwise we may replace
(P, g) with (P&, g5 ...gy). Then g; is in G, — G for i odd, and in G1 — G5 for
i even. Observe that

i+1 ifiisodd, and

() dla,o) =9 . . ..
i ifiiseven.
Notice that Z; = Z,,;. Then 3.11 implies that Zs # Z for any § € V(X) with
d(w,8) <5. Since n <5, it now follows from (*x*) that n = 5.

The reader may find it convenient to have a “picture” of X, at this point, as a
visual reference for the remainder of the argument.
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Since P; < § < Gq,, P; fixes every vertex of %;, and then 3.10 implies that
[Zs, Pi] =1 for every § € ¥;. Set f = y,. Then from paragraph one of the proof
of 3.6, for i odd, X; is the tree induced on the geodesic («, B, «g;, Bgi—1&i,-- -,
ag1...&i). In particular, B is a vertex of ¥; for i odd. Since Zg = U, it follows
that [U, P;] = 1 for i odd. But for i odd we also have g; € G, < Ng(U), and then
since P; = Pl.f’z 1» we conclude that:

(3) [U, P;]=1foralli,0 <i <5.

From the description of X5 above, g is the vertex of X5 at distance 5 from
o, and ag # a1g € T'(Bg). Set B’ = Bg, let &’ be the vertex in I'g at distance 4
from o, and let ” be the vertex of X5 at distance 2 from «. By (3), U centralizes
Zo,soas Zg = ZZy > Z§, we get Z§ < Cq(U) < Cg(Zyr). Then Z§
fixes a”, by 3.11(b). Also [Z§, Z] = 1, so that 3.11(a) implies Z{ fixes . Since
U =(Z7,)% = ZZf, we conclude that U8 < G, N Gg. Thatis, U8 < B, and so
QU? is a p-subgroup of B. By 3.8(4) there exists & € B with (QU&)" < S, and
we may replace (P, g) with (PU, gh), without increasing the length n. Thus, we
may assume henceforth that U < P. By symmetry between (P, g) and (Q, g™ 1)),
we may assume also that U < Q. Then since g; € Ng(U)), also U < P;. Since
g5 € Ng(U) we then obtain U < Py.

As g2,24€ Gy and U < Py N P4, we have Z < P, N P3. Since g3 € Ng(U),
we have U < P, if and only if U < P3. Suppose that U £ P,. Then

Z8B =(UNP)3=UNP3=12,
contrary to g3 € G, — G1. Therefore U < P; for all i. Then by (3):

4) U <Z(P;) foralli,0<i <5.
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SetUp=U =U_q,andfor1 <i <5,letU; = U818 _ For0<i <5 set
E; =U;_1U;. As g1 € G, we have U = U; < E3, and so

7 = 784 < U84 = 8384 < E§3g4 = E4.

Also gs € Gy — Gy, so that Z # 785 < E;' = E4. Then U = ZZ585 ' < Ej.
Since g5 € Gy, also U < Es.

Set F = Cg(Ey). Then F& = Cgs(Es), and B¥ is the stabilizer in G of the
edge {as, Bg} of 5. Next U8 < EO‘g = Es,and U8 = Zg,, so that '8 centralizes
Zgg. Then F¥ fixes the vertex a’ of X5, by 3.11(a). Denote by B” the vertex of
Y5 at distance 3 from «, and hence adjacent to «’. From an earlier remark, we
have B” = Bg4gs, and so

Zﬂ,, = 8485 = [J838485 < E2g3g4g5 = Es.

Thus F# centralizes Zg~, and so F¥ fixes every vertex in I'(8”) by 3.11(a). In
particular, F8 fixes «”. Since [U, F8] = 1, F¥ fixes every vertex in I'(8) by
3.11(a). Thus, F& fixes « and B, and so F& < B. This yields the first part of (c),
with Ey in the role of E. Since Zg»Zg/ < Es, 3.11(a) yields Cg(Es) < B, and
thus all parts of 3.14 have been established. O

4. Spin,(F)

Let p be an odd prime, let F be an algebraic closure of the field of p elements,
let V be a vector space over F (of finite dimension d), and let f be a syrnrnetrlc,
nondegenerate bilinear form on V. The form fis essentlally unique, as V has an
orthonormal basis with respect to f. The isometry group O(V, f) will be denoted
also 0(17) (and Od (F)). The identity component of 0(17) is denoted Q(V), and
has index 2 in O(V) Indeed, we have O(V) Q(V)(t), where 7 is a reflection
on V. In the case that d is odd, we have O(V) Q(V) x {£I}. The universal
covering group of Q(V) is denoted Spln(V) (or Spiny (F)).

There is a rational representation ¢: Spin(V) —> Q(V), with kernel contained
in Z(Spin(V)). From [C], one has |ker(¢)| = 2, and ker(¢) = Z(Spin(V)) if d is
odd.

For any subset or element D of Spin(l7), we write C(D) and [17 D] for
Cy(D¢) and [V, D], respectively.

Let 7 be a maximal torus of Spln(V) By a weight of T on V we mean a
homomorphism A: T —> F* such that the space V,=f{veV | va = A(a)v for all
ae T} is nonzero. The set of such weights is denoted A(T).

A hyperbolic line in Visa nondegenerate subspace ¢ of V of dimension 2.
Such a subspace has exactly two 1-dimensional singular subspaces (or points), and
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from this one may easily deduce that Q(£) = F* and that O(£) = Q(£){t), where
¢ is an involution which interchanges the singular points of £.
The following result is well known, and its proof is elementary.

LEMMA 4.1. Let (17, f) be a nondegenerate orthogonal space over F of
dimension d, and let T be a maximal torus of 9(17). Then there exists a set
E(T) ={l1,.... 0} of T -invariant, pairwise orthogonal hyperbolic lines in v,
such that the following hold.

(@) d =2k ord =2k +1.
(b) [V,T] =€y + -+ Ly, and either Cy(T) =0or Cf;(f) is a nonsingular
1-space, orthogonal to [17 f]

(¢) Each {; is a sum of two weight spaces V; and 17,1—1 , where A # A7, These
weight spaces are the singular points of {;.

The set E(T) is uniquely determined by the conditions (a) and (c). Conversely, for
any maximal set W of pairwise orthogonal, hyperbolic lines in V, there is a unique
maximal torus T in Q(V') with £(T) = .

From now on, let V be a vector space of dimension 7 over F, and set H =
Spin(I7). Write Z for the kernel of ¢p. Then Z = (z) where z is of order 2.

It is well known that an involution ¢ in an orthogonal group (over a field of
characteristic different from 2) lifts to an involution in the corresponding spin group
if and only if the dimension of the commutator space of ¢ is divisible by 4. This
implies the following result.

LEMMA 4.2. Let x € H with |¢(x)| = 2. Then |x| = 2 if and only if
dim([V, x]) = 4.

Let T be a maximal torus of H. By 4.1, the commutator space [17, T] is the
orthogonal direct sum of three hyperbolic lines €1, 5, and {3, where each ¢; is
a sum of two weight spaces for T, with weights A; and )Ll._l. Fori =1,2,3, fix
a basis {x3;_1, x2; } for £; of singular vectors, with f(x2;—1,x2;) = 1. Then 4.1
yields

(4.2.1) [V.T] =1+ s+ L3.
Let x7 € CV(T), with f(x7,x7) = 1. Then
Cy(T) =[V.T]+ =Fx;.

Identify V with F(, via the ordered basis (x1,...,x7).

The semidirect product V H is an algebraic group in which T is a maximal
torus, and in which V is the unipotent radical. Let { be a Frobenius endomorphism
of V H which induces the p™-power map on T. Then ¢ fixes «T) pointwise, and
fixes the vectors x; through x7.
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Denote also by ¢ the p™-power automorphism of F, and set

F=J G,
k>0
Evidently, F is a subfield of F. Denote by V the F-span of {x1,...,x7} in 17, and
by H the group of F-rational points in H, with respect to the matrix representation
given by the chosen basis for V. The restriction of f to V xV defines an orthogonal
form on V, and ¢(H) is contained in O(V). Set T = TNH,andset E = {x €
T|x?=1}.

Since O(V) = Q(V)(t) for any reflection 1 € O(V), it follows that (V) is the
group SO (V) of determinant 1 isometries. Any element x of O([V, T]) extends
to an element of Q(V), since we are free to adjust the action of x on Cj; (T) by
+1. In particular, there exists an element wqg of H such that wg acts on [17 T] by
the permutation (x; x2)(x3 x4)(x5 x¢) of the basis vectors; and then x7wy = —x7.
Evidently wo commutes with ¢, so wg € H. By 4.1, wg € Ng(T), and one can
check that wg acts on ¢(7T') by inversion. Since every element of F is a square, it
follows that wg acts on T by inversion.

Similarly we choose elements w;, wy, w3, w, and p of Ny (T') so that:

¢(w) = (x1 X3 x5)(x2 X4 X),
#(p) = (x1 x3)(x2 x4), and
d(wi) = (x2i—1 x2i), 1=<i<3.
Thus, we may take wo = wiwows.

(4.2.2) Fix n > 0 and set g = pzn. Denote by w both the inner automorphism
of H induced by wy, and the identity map on F. For any k > 0, let ¥/ be the
automorphism of H defined by

(§a))2k if p=3 mod4, and
Vi = * .
¢ if p=1 mod 4.

We now fix n, and set
o = l/fn.
Notice that since w? = 1, we in fact have o = Ezn unless n =0 and p =3 mod 4.

The restriction of o to H will again be denoted o. For any subgroup D of H,
write Dy for Cp(0), and write F; for Cg(0).

LEMMA 4.3. Set W = (z, w1, w2, w3, w, p). Then W < H, and the follow-
ing hold.

(a) T =Cy(T), and wg acts on T as inversion.



912 MICHAEL ASCHBACHER and ANDREW CHERMAK

(b) Nu(T) =

(c) Auty(T) = Sym(4) x Ca.

(d) Set E ={x € T | x> =1}. Then E is an elementary abelian subgroup of Ty
of rank 3, Cy (E) = T (wo), Ng(E) =TW,and Ny (E) = Ny (T).

Proof. Set £ = {£1,4,, 63} and denote by T* the pointwise stabilizer of &
in H. Thus T < T*, and ¢(T*) is contained in the direct product of the orthogonal
groups O(£;), so that T* = T(wy, wa, w3).

By 4.1, Cyz (T)<T* and~Nﬁ (T) permutes &. Since Autz(¢;) contains its
centralizer in GL(¢;), we have T' = Cz(T'). Similarly Cy (T) =

Evidently, each of the elements w;, w, and p commutes with both o and
wo, and so W < Ng_(T). From the definitions of these elements, we obtain
d(wo) € Z(p(W)), p({w1, wa, wz)) is elementary abelian of order 8, ¢ ((w, p)) =
Sym(3), and {w, p) acts naturally on ¢ ({w;, w2, w3}) and on &. We conclude that
WT contains HNT*, WTI' = Ny (T), that WT /T =~ Sym(4) x C,, and that
(wo)T/T = Z(WT/T). As wo inverts T, it inverts 7. Thus, parts (a) through (c)
hold.

Notice that Cg ([V, T]) = Z since ¢ (H) contains no reflections. As w inverts
T and ¢ induces a power map on T, Ty contains the group E={teT|t?>=1}.
From 4.2, ¢(E) is a fours group and E is elementary abelian of order 8. The
lines ¢; are the fixed point spaces for the three involutions in ¢ (E) on [17, El,
so that Nz (E) = Nﬁ(f), and hence Ng(E) = Ng(T). Since wy inverts T,
wo € Cg (E)

Since Cy (E) < T*, we have Cg (E) = T (w1, w2, w3). By4.2,for{i, j, k} =
{1,2,3} and x € E such that [17, x] =4 4+ £y, each of w;, w; x, w; wg, and w; wgx
is of order 4. Then x does not centralize w; or w;wg, and Cyx(E) = T (wo),
completing the proof of (d). O

We may choose z1 € T so that Z1 acts as thejcalar —lont;+ €~2, and as 1
on £3. Then z; centralizes x7. Set U = (z,z1), B = NH(U) B =BNH, and
denote the identity component of B by B". BO. Set B=B°nNH.

LEMMA 4.4. The following hold.

(a) V is the orthogonal direct sum of[l7, U] and Ci(U), of dimensions 4 and 3,

respectively, over F.

(b) B is the stabilizer in H of[l7, Ul and of Cy(U).
(c) B®=Cgz(U)=L\L>L3, where L; = SL,(F) and where L; L; =~ SL;(F) x

SL, (F) for all distinct i and j. Moreover, the indexing may be chosen so that

(i) L centralizes [V, U] and L3¢ = QCyU)).
(ii) L1Lx centralizes Cy3(U) and LyLa¢ = Q([V, U]).
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(iii) The maximal singular subspaces of [V U] spanned by {x1,x4} and
{x2,x3} over F are natural SL, (F) modules for L1, and the maximal
singular subspaces spanned by {x1, x3} and {x2, x4} are natural SL (F)-
modules for Lo.

dU=2 (EO), and notation may be chosen so that z; € Zl. When z; is the
involution in L;, then

Z =1Z1Zp = Z3.

(e) B = Eo(wl) = Eo(wz), where both wy and wy interchange Ly and L, by
conjugation.

Proof. As [V,U]=[V,z] and Cy(U) = Cy(21), part (a) is immediate from
our choice of z;. The stabilizer in H of [17, U] normalizes the unique subgroup U
of H containing Z which acts as —I on [V, U] and as I on [V, U]*. Similarly,
the stabilizer in H of Ci 7#(U) normalizes U, establishing (b).

Set K = CH(C (U))° and L3 = H([V U])°. From the Steinberg rela-
tions, K = L1 X Lz, and L, =~ SL,(F) fori =1,2,3. Thus BY%isa commuting
product of these three copies of SL,(F), and U < Z(B°). Here [V, U] is a natural
Q4(F)-module for L1L2, and is therefore a direct sum of two natural SL,(F)-
modules for each of L1 and L2 Observe that T < B° since T is connected.
Then T is a maximal torus of BY, B°, and hence T = T1 Tz T3, where T =Tn L
Since [Ly, L2L3] = 1, the irreducible L1T submodules of [V, U] are weight
spaces for T2 T3 Since these irreducible L1 T -submodules are also maximal sin-
gular subspaces of [V, U], the only possibilities are that the two irreducible L4T-
submodules of [V, U] are

{(x1,x3), (x2,x4)} or {{x1,x4), (x2,x3)}.

We may therefore choose the indexing so that (c¢)(iii) holds.

To complete the proof of (c), it remains to show that BY=C 7(U). This
will follow from (e), and since (d) is immediate from the parts of (c¢) which have
already been established, we now need only prove (e).

The group O([I7 U)) is generated by Q([V, U]) together with a reflection
interchanging ¢(L1) and ¢(L2) Similarly, O(CV (U)) is generated by Q(CV 0))
together with a reflection on Cy (U). Since ¢(H ) contains no reflections on V, we
have |B. B 0| = 2, and then (e) follows from the definitions of w1 and ws. O

Notice that each of the groups Liis C-invariant. Set L; = LiNnH,1<i<3.
The following result should then be evident:

LEMMA 4.5. All parts of 4.4 hold, with B, B°, F, and L; in place of B, B,
F,and L;. O



914 MICHAEL ASCHBACHER and ANDREW CHERMAK

Given a basis vy, ..., vy, of an F-space V, and elements d; of F, 1 <i <m,
we write d(dy, da, ..., dy) for the diagonal map v; — d;v; for each i.

LEMMA 4.6. Let V be a 2-dimensional F-space with basis B = {v1, V»}, set

L = SL(V), and let T be the maximal torus {d(a,a=") | a € F} of L determined

by B. Set X = LxLxL,set[[X]]=X/{(—1,—1,-1)), and write [[a, b, c]] for

the image of (a, b, ¢) € X under the canonical surjection X — [[X]]. Finally, let

v1,01, Y2, and 83 be maps from B into V which send the ordered basis (V1, v3) to
the pairs (x1, X4), (x3, X2), (x1, X3), and (x4, x2), respectively.
(a) There are isomorphisms a;: L — L;,i = 1,2,3, such that

(1) a1, y1 and a1, 81 are quasi-equivalences of the representation of L on V
with the representations of L1 on (x1, x4) and (x3, x2), respectively.
(il) ap, Y2 and az, 62 are quasi-equivalences of the representation of L on V
with the representations of Lo on (x1, x3) and (x4, x2), respectively.
(iii) The map as is the 3-dimensional orthogonal representation of L in which
d(c, c™ Yy acts as 3(c? 1,c72) with respect to the ordered basis (x5, X7, X¢)
of Cy(U).

(b) The map oy x az x az: X — B given by
(a,b,c) > (aay)(baz)(caz)

induces an isomorphism of [[X]] with B°.

(c) (TﬂL,-)ozl-_1 is the set of diagonal maps in L. For eachi,let Bi: F — T NL; be
the composition of d with o;. Set Y = FxFxF,and [Y]=Y/{(—1,—1,-1)),
with [a, b, ¢] the image of (a,b,c) € Y in [Y]. Then the map B1 X B2 X Ba:
Y — T induces an isomorphism [a, b, c] +— (aB1)(bB2)(cB3) of [Y] with T.

Proof. This is straightforward, given 4.4. O
From now on we use 4.6 to identify B with the set of equivalence classes
[[a,b,c]] = [[—a,—b,—c]], a,b,c € SLy(F),
and identify T with the set of equivalence classes
la,b,c] =[-a,—b,—c] a,b,c € F*.
LEMMA 4.7. (a) The element [a,b, c] of T acts diagonally as
a(ab,a_lb_l,ab_l,a_lb, 2,72, 1)

with respect to the ordered basis (x1, X2, X3, X4, X5, X¢, X7) of V.
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(b) The action of W on T is given as follows.
wiifa,b,c]— [~ a1t ],
wa:la,b,c]+— [b,a,c],
wa:la, b, c] > [a,b,c7 1,
w:[az, b2, cz] — [abcz,a_lb_lcz,ab_l],
pila, b, c]l[a, b7}, cl.
Proof. Again, this is straightforward, given 4.6. O

Denote by Soo the set of elements of 7 whose order is a power of 2. Set
Ws = (wy, wa, w3, p), and set S = Soo Ws. Also, for any k > 1 set

T ={teT |t =1.

Thus T is a subgroup of S, and 77 is the group E appearing in 4.2.

We shall henceforth take p to be congruent to 3 or 5 mod 8. One reason for
this choice is that it allows us to keep track of the structure of Sylow 2-subgroups
of the groups H and Hy, as in the following two lemmas.

LEMMA 4.8. Let k be a nonnegative integer, and set = Yrx.. Then Cs__ (V)
= Tk is homocyclic abelian of rank 3 and exponent 2k+2,

Proof. For any integer m, and any k > 1,

2kl

m? —1=m® "+ )m* " -1).

A straightforward induction argument then yields the following fact.

(*) For any integer m with m =5 mod 8, and for any nonnegative integer k, we
have

m2k =1+ 2k+2  mod 2k 3,

Set D ={d €F |d?* 7 =1}, set D' = {f e F| f27° =1}, and fix
f €D’ —D. Then D’ = D U Df. SetQk_{[abc]eT|a b,c € D} and
Ry = Ty1». Thatis Ry ={x €T | x? 2k+2 =1}. As [a, b, c]2 =11in T if and only
if a2 = b2 = ¢2" = £1, it follows that R = Oy \J OkLf. £, f]. Thus Qj has
index 2 in Rg. Let A be a homocyclic abelian group of rank 3 and exponent 2K+2.
Since [a, b, c] = [—a, —b, —c], there is an exact sequence

1 —C,—A— QO — 1,

and thus |A| = 2| Qx| = |Rx|. Since Ry is abelian of rank 3, exponent 252, and
order |A|, it follows from the fundamental theorem of finite abelian groups that
R, =~ A.
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Suppose that p =3 mod 8 and that k = 0. For [a,b,c] €T,
[a,b,c]y =[aP,b7P,c7P],

sothat [a, b, c] € Ty ifand only if a? T =pPFTl =Pl =41 As p=3 mod 8, 4
is the largest power of 2 dividing p + 1, and it follows from the preceding paragraph
that Cs__ () = Ry in this case. On the other hand, suppose that p =5 mod 8 or
that k > 0. Then

2k 2k 2k

[a,b,cly =[a?” ,bP" ,cP" .

Notice that if p =3 mod 8 then —p =5 mod 8, while for k > 0 we have pzk =
(— p)zk. Now (x) shows that, in any case, we have Cs__ () = Rj. This yields
the lemma. O

LEMMA 4.9. The following hold.

(@) So = Cs_(0)Ws, and Sy is a Sylow 2-subgroup of Hy.
(b) S is a Sylow 2-subgroup of every subgroup X of H which contains S.

(¢c) T is the unique homocyclic abelian subgroup of S of rank 3 and exponent 4.
Moreover, we have T = Cy (T2), and Ty < Ty = Ch, (T2).

(d) SB is the set of maximal 2-subgroups of B containing a subgroup isomorphic
to T>.

Proof. For any subgroup P of S, denote by #(P) the set of homocyclic
abelian subgroups of P of rank 3 and exponent 4. Let ¢ and Ry be defined as in
the preceding lemma, set Q = Wg Ry, and set Q¢ = (wo) R.

Suppose first that that there exists A € d(Q) with A # T,. Then A £ T.
Suppose that A N Q¢ has rank 3 and exponent 4. Since wg inverts Ry, we then
have AN Q¢ < Ry, and A contains the unique elementary abelian subgroup E of
Ry, of order 8. By 4.3, O/ Qg acts faithfully on E, so that A < Q¢, andthen A <T.
This is a contradiction, and so we conclude that A N Q¢ has exponent less than 4 or
has rank less than 3. Since Q/Qy is dihedral of order 8, it follows that AQo/ Qo
is cyclic of order 4. Then A N Q¢ is homocyclic of rank 2 and exponent 4. Again,
AN Q¢ < Ry, and now |A N E| = 4. The faithful action of Q/ Q¢ on E implies
that Cg/0,(A N E) has exponent 2. Since AQo/ Qo centralizes A N E, we again
have a contradiction, and thus A < Ry. That is, A4(Q) = {T»}.

Let P be a Sylow 2-subgroup of (the finite group) Hy containing Q. By
the preceding paragraph, 7> << Np(Q). It follows from 4.1 that Np (Q) preserves
the set {£1, {2, £} of hyperbolic lines, and hence Np(Q) normalizes T. Then
Np(Q) <TW by 4.3. Since Q is a Sylow 2-subgroup of (W T'),, we conclude that

Np(Q) = Q. Then P = Q, and so Q € Syl,(Hy). We recall that = 3 = é‘zk
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or (Cwg)?" for some k, and that

H = Cu(wp.

k>0

Then S is the union of its subgroups S N Hy, , and so A(S) = {T2}.
By Zorn’s Lemma, there is a maximal 2-subgroup S* of H containing S. We
have

X = U Xy
k>0

for any subgroup X of H. Taking X = S*, we conclude that S = S*. Taking X
to be an arbitrary subgroup of H containing S, we note that every finite subgroup
of X is contained in Xy, for some k, so that every finite 2-subgroup of X is
X -conjugate into S. Thus, S is a Sylow 2-subgroup of X, and we have (a) and (b).

Notice that o = ;. for some k. Then (c) follows as 7o < Cg (o), A(S) =
{T2}, and Ny (T2) = Nu (T).

By (c) and 4.3.b, Ng(T2) = TWs = TS. Let S, be a subgroup of B iso-
morphic to 7>, and X a maximal 2-subgroup of B containing S>. By (b), S is
Sylow in B, and so Sé’ < § for some b € B, and by (c), sb = T>. Thus we may
take 75 = S,. Similarly for each k, Xy, is contained in a conjugate of .S, and so
by (¢c), Xy, < Np(T>) =TS. Hence X is a maximal 2-subgroup of 'S, X € ST,
establishing (d). O

5. The amalgam s, and an amalgam for Co;

We now undertake the construction of the amalgam which provides the focus
for this work. (See the beginning of Section 3 for a discussion of amalgams.)

We continue the setup and notation of the preceding section. In particular, we
have p =3 or 5 (mod 8). Let i be a square root of —1 in F, and let t be the element
w>[1,1,i] of B. Then B = B%(z), by 4.4(e). By definition, w; interchanges the
two singular points of 5, centralizes £1 and {3, and acts as —1 on Cy (7). Then
tactsas —1 on Cy(U) = €3+ Cy(T), and acts as a transvection on [V, U]. In
particular, T commutes with ¢(L3), hence also with L3 (since L3 is perfect), and
7 is an involution by 4.2. Further, 7 acts as wy on [V, T], and then 4.4(c)(iii) yields

o, B,y = (1B, @, V1],

for all [[o, B, y]] € B°.
Define y to be the automorphism of B® given by

(5.0) yo:[le, B, ¥]1 = [[y. @, B]I.
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Then |yo| = 3, and (yg, T) acts faithfully as the symmetric group Sym(3) on the
set ¥ ={L1, Lp, L3}. In the semidirect product

K = B%(yo,7),
we may then identify B with the subgroup B%(z) of K, and form the amalgam
A =(H > B <K).

For any A € Aut(B), denote by A* the composition of A with the inclusion map of
B into K, and form the amalgam

A’*
Ay=(H>B —— K).
The corresponding free amalgamated product will be denoted G . Subject to the
usual identifications, H and K are subgroups of G, with H N K = B. Here it is
important to note that the inclusion map of B into K, within G, is obtained by
“twisting” via A the “ordinary” inclusion map occurring in ;.

LEMMA 5.1. For X € {H, K}, write Ax for Autyy(x)(B). Set ® = Aut(F),
and regard ® as the group of field automorphisms of SL, (F). Define a representa-
tion of ® on B® by

Al B Y1l > [l B,y for A € .

Then ® commutes with T on B, and the representation of ® on B® extends thereby
to a representation on B. Moreover:

(a) Inn(B) < Ay N Ag.
(b) Foreach X € {H, K} we have Aut(B) = Ax® = Ag Ag P, and Ax NP = 1.
(c) For w, A € Aut(B), we have i) = s, ifand only if AgAxkA = Ag Ak L.

Proof. Identify ® with a subgroup of Aut(B?) via the prescribed representa-
tion. Evidently [®, ] = 1, so we may even regard ® as a subgroup of Aut(B). As
B = HNK, (a)holds. Asis well known (cf. [Ste]), Aut(SL,(F)) = Inn(SL, (F))®.
Then, since B is the central product of three copies of SL,(F), Aut(B?) is the
split extension of Aut(SL;(F))3 by Sym(3), where Sym(3) permutes the three
components of B faithfully.

Recall that B = B°(t), where t centralizes L3 and interchanges L1 and L.
For X € {H, K} we have Ax = Inn(B)®y, where ®y =~ ® and Py is diago-
nally embedded in the subgroup ®> of Aut(SL,(F))?3, and centralizes t. Similarly,
Aut(B) = Inn(B)(dy x ®), where  centralizes L L, and acts faithfully as & on
L3. Now (b) follows, and Aut(B) = Ag Ax ®. By [Gol80, Lemma 2.7], s} = A,
if and only if AgAAx = AguAg, and now (c) follows from (b). O

We may now state the first main result of this section.
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THEOREM 5.2. Let Soo be the Sylow 2-subgroup of T, and for any A € Aut(B)
set Ny = (Ng(Seo), Nk (Seo)), where H and K are regarded as subgroups of G,
in the canonical way. Set N'j = Auty, (Seo), define ® as in 5.1, and set

A={Aed|N;=GL(3,2) xCl.

Then the following hold.
(@) [Al=1
(b) For A € A,
CN,(Sx) ife>=2, and
Cn, (Te)=1{ .~ o
CnN, (Seo)(wo) ife=1
(¢c) Ag = Ak.

(d) The map ¢ — sy is a bijection of ® with the set of isomorphism classes of
amalgams 1, with € Aut(B).

Remark. It can be shown, by means of a lengthy computation based on 4.7(b),
that the unique A in the set A of Theorem 5.2 is not an algebraic endomorphism
of B.

Let w3 be the automorphism of B? induced by conjugation by wsz. By 4.7(b),
w3 € L3 and w3 inverts T N L3. Denote by {3 the automorphism of B® which
induces the p™ power Frobenius map on L3 and which centralizes L; and L.
Then let & be the automorphism of B given by

3wz if p=3 mod 8,
S0 = & ifp=5 modS8.

Thus,
([, B, 7"3]] if p=3 mod 8,

EO: [[Ol, /39 )/]] = { [[O{, ,8’ )7]] lfp =5 mod 8,

where 7 is the element of SL,(F) whose entries are the p™ powers of the corre-
sponding entries of y. For any e € N, set

2e
§e= 0 -

Notice that T is invariant under &, that [Lq L,,&.] =1, and that £, = ¢ %e fore > 1.
Recall from 4.8 that we have defined subgroups 7, of To by

T,={teT|i* =1}, e>1,

and that 7, is homocyclic abelian of rank 3.

2¢t3 _

LEMMA 5.3. Let e be a nonnegative integer, and let ¢ € F with ¢ 1.

Then
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() [a,b,clée =a,b,c] ifcze+2 = 1, and otherwise [a, b, c]&é = [a, b, —c].

(b) & centralizes a subgroup of index 2 in Teo containing Te41, and [Te+2, &e|
=Z.

Proof. Suppose first that e = 0 and that p =3 mod 8. Then ¢® = 1, and
[a.b.clée =[a.b,c™P] =[a.b,c].

Since ¢® = —c if |c| =8, and ¢ = ¢ if ¢* = 1, (a) holds in this case. On the other
hand, suppose that either e > 0 or p =5 mod 8. We saw in the proof of 4.8 that
for any integer m withm =5 mod 8,

m2 = 14+29t2 mod 2¢13,

Taking m = p if p =5 mod 8, and taking m = —p if p =3 mod &, we then
have s -

[a.b,clée =[a,b,c™ ]=[a.b, ']
Thus (a) holds in every case. Part (b) follows from (a) and the fact that Z =
([1,1,=1]) and To42 = ([c%, 1, 1],[1, 2, 1], [c, ¢, c]), where |c| = 2¢73. |

PROPOSITION 5.4. There is a uniquely determined sequence (ye | e > 0) of
automorphisms of B®, with yq as in 5.0, and having the following two properties.

(@) ye € {ye-1, yfe__l' } for e > 0.

(b) The group N of automorphisms of Te+1 induced by the action of (W, ye)
is isomorphic to GL(3,2) x Cy for e > 0, and is isomorphic to GL(3, 2) for
e=0.

The proof of 5.4 will be based on the following result.

LEMMA 5.5. Let N be the Steinberg module for GL(3,2) over the field [
of two elements, and let X be an extension of N by GL(3,2). Then the following
hold:

(a) X splits over N.

(b) Let D be a complement to N in a Sylow 2-subgroup of X. Then Cy (D) = (g)
is of order 2.

(c) Let D be as in (b), and denote by P the set of subgroups P of X such that
D < P ~Sym(4). Then ? = {P1, P2, Q1, Q2}, where Q; = Pigfori:1,2,
(P;, Qi) is a complement to N in X, and {P1, Q2)=(P2, 01)=X.

Proof. Let R € Syl,(X). Then N is a free F; R/N-module, so that Cx (R) =
(g) is of order 2, and for each overgroup ¥ of R in X we have H'(Y/N,N) =0
for i = 1,2. In particular, (a) and (b) hold.

Choose R so that R = DN and let P and O be maximal subgroups of X such
that P/N and Q/N are the maximal parabolic subgroups of X /N over R/N. It



2-LOCAL FINITE GROUPS 921

follows from the preceding paragraph that for each Y € {X, P, Q, R}, Y splits over
N and is transitive on its complements to N. Thus the set Py of complements to
N in Y containing D is nonempty for ¥ € {X, P, O}, and by a standard argument
(cf. 5.2.1 in [Asc86]), Ny (D) is transitive on Py. Then as Nx(D) = D x (g),
Py ={Y1, Y} with Y¥ =Y,. Since Cy (Y)=0for Y € {P, O}, each P; and each
Q; is contained in a unique complement to N in X. In particular X; = GL(3,2)
and the indexing may be chosen so that X; is generated by P; and Q; € Pg. Then
M; = (P;, Q3—;) is not a complement to N in X. Since X is irreducible on N,
M; = N. This completes the proof. O

We may now prove Proposition 5.4. Since T is elementary abelian of order 8,
we have Aut(7T7) = GL(3, 2). From 4.3(c), W induces the stabilizer in GL(T}) of
Z, and so the image of W in GL(T}) is maximal. The closure of Z under the
action of (yg) is the fours group U, and thus Ny = GL(T7). We may therefore
assume that e > 1, and that for all indices e’ with 0 < ¢’ < e:

(%) There exists a unique yer € {Ver—1, ygf’__ll} such that the group N/ of au-
tomorphisms of T4 induced by the action of (W, ys) is isomorphic to
GL(3,2) x Ca.

Set R = Te41, X = Ye—1, and denote by N the image of (W, x) in Aut(R).
Applying (%) to e’ =e—1, we have N/ Cx(Te) = GL(3,2) if e = 1, and GL(3, 2) x
Cyife> 1. Letd € Cy(T,). Writing

d:la,b,c]—>[a.b,].

for [a, b, c] € R, we obtain a? = a2, b* = 852, and ¢? = ¢2, for some ¢ € {+1}.
Thus either % € {u, —u} for all u € {a,b,c}, or € {iu,—iu} forall u € {a, b, c},
where 7 is a square root of —1. Therefore as

Ty =([-1,1,1],[1,—-1,1], [, i,i]),

d acts trivially on R/Ty. Thend =1+ A4 for some A; € Homz(R/Te, T1), and
the mapping
Cx(Te) — Homgz(R/Te, T1)

given by d > A4 is an N-homomorphism. Observe that R/ T, and T; are isomor-
phic as modules for (W, x) via the map ¢: rT, — P2 Thus, there is an N-equi-
variant monomorphism d + ¢!, from Cy(T,) into M := Endz(T7). Since N
acts as GL(3, 2) on T7, M may be identified with the N-module of 3 x 3 matrices
over the field F; of two elements, and we regard Cy(T,) as an N-submodule of M .

Now M is a vector space of dimension 9 over F5, and the subspace My of
trace-zero matrices is an 8-dimensional N-submodule of M. Indeed N/Cy(M) =
GL(3,2), and My is the Steinberg module for N'/Cx(M). The element wqy of W
inverts R, and hence (wg) = Cpr(N), and M = My & Cps (N). Further, N is an



922 MICHAEL ASCHBACHER and ANDREW CHERMAK

extension of N3y = NN M by L3(2), and as Cpr(N) = (wo) < Nps and N is
irreducible on My, Npy = M or Cpyy(N). As Wg/(Ws NT) = Z; x Dg (cf. 4.3),
N/ My or N is isomorphic to Z, x L3(2) in the respective case. Further, in the latter
case, we obtain (a) and (b) of 5.4 by setting y.4+1 = Y. Thus we may assume that
Ny =M.

Set X = [N, N]. From the previous paragraph, My = X N M and X /M, =
GL(3,2). Denote by D* the image of Wg in N, and set D = D* N X. Then
D* = D x Z(N), and D is dihedral of order 8. Denote by P* and Q* the images
in N of W and (Wg, y), respectively, and set P = P*NX and Q = Q* N X. By
5.5(b), Cp, (D) = (g) is of order 2. By definition N is generated by P* and Q*,
and so X is generated by P and Q. By 5.5(c), (P, Q8) is a complement to My in
X . By construction, &, centralizes Wy, and by 5.3(b), £,—; induces a nontrivial
automorphism of R centralizing a subgroup of index 2 containing T,. Then, since
Cm,(Ws) = (g), it follows that the action of g on R is the same as that of &, 1.
Setting y, = x&, we obtain (a) and (b) of Proposition 5.4. a

Let {1, | e > 0} be the sequence of automorphisms of B® defined by A = 10,
and for e > 0 by the recursive formula

Ae—1 if Yo = ye—1 and
e = . _
Ae—1be—1 if ye = yfe_l'

where y, is as in Proposition 5.4. For k > 0, take v as defined just prior to 4.3.

LEMMA 5.6. Each A, extends to an automorphism of B which commutes with
the element t of B — BY, and with Yk for each k. Further, for each e > 0,

k€+1 |CB(Wg_1): A’e |CB(W€—1) .

Proof. Recall that &, = 536, where &g is the automorphism of B? given by

§o: [[or. B. ¥l = [[er, B. V11,

for the automorphism y > y’ of SL,(F) such that

Yo: [lo. B.¥1l = o', B, ¥']].

It follows that &, commutes with ¥ for all e and k, and also with the automorphism
v [[ee, B, y]] = [[B. . y]] of B®. In constructing the amalgam s4;, we identified
B with the semidirect product B%(z), so & may now be regarded as an automor-
phism of B. Since A is the product of some elements of {1, &, ..., &}, we may
also regard A, as an automorphism of B, commuting with ¥;. The proof is then
completed by the observation that &, centralizes Cp(¥e—1). |
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Notice that 4.8 yields
B =] Ccae).

e>0
By the preceding lemma, we may then define an automorphism A of B by taking
Alcp(pe)= Ae for each e. Set

A’*
A=ol; =(H «— B K)

(where ¢ denotes inclusion) and form the corresponding free amalgamated product
G =G,.
We may now complete the proof of Theorem 5.2. We have

® = Aut(F) = lim Aut(F,2¢ ),

and there is an isomorphism
Ze —> Aut(F ,2¢)

given by sending a residue class [k] to the pF-th power map, 0 < k < 2¢. The
sequence of inverses of these isomorphisms then defines an isomorphism of Aut(F)
with the ring Z,) of 2-adic integers.

Let i € Aut(F), and denote by i the restriction of p to the subfield Fpe of
F of order pze. For any e > 0, there is then a unique integer k, 0 < k, < 2¢, such
that 1. is given by the pKe-th power map on Fae. Define a sequence (. | e > 0)
of elements of {0, 1} by taking g9 = k¢, and for e > 0 by

0 if ke = ke_l
1 ifke =ke—y +2¢7!

Ee =

We may represent the action of 42 on B as in 5.1; namely p acts on SL(2, F) in
the natural way, and on B® by

p:lla.b.cll — [la. b, c"]].

Observe that the restriction e of i to Cpo(Ye+1) is given by
Me = ggosfl “ o :e,

where §0 = §ows if p = 3 mod 8, and where 50 =§p if p = 5 mod 8.

Recall from 5.1 that we have identified ® with a subgroup of Aut(B), and
that parts (b) and (c) of 5.1 show that for any u’ € Aut(B) there exists u € ® such
that s1,, = sl,,. In particular if 4’ = au with o € Inn(B) then s, = s,,, and
hence there is an induced isomorphism G;, = G,/ of universal completions.

Take u = w3 A if both p = 3 mod 8 and A1 = &y, and take u = A otherwise. By
our construction of A we have v € ®, and then since w3 € B we obtain G, = G,.
Adopt the notation of 5.2. In particular N; = (Ng (Seo), Nx (Seo)), Ny = (W, y)T,
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and Ny = Auty;, (Soo). Since &, centralizes T, 11 by 5.3(b), we have y(’}|T€Jrl = y('}e,
where A, is as defined prior to 5.6. By induction on e, we then get

Ye—1 if ye = ye—1
YOI+ yf"_]‘ iff ye 7# ye—1 ’
and so yé|Te+l = Y. Then 5.4 shows that u is in the set A defined in 5.2.

Now let i be an arbitrary element of A. Set v = w3 if both p = 3 mod 8 and
€0 = 1, and otherwise set v = u. Then G, = G, and N, = N,,. Set x = v_lyov,
regard x as an automorphism of S, and denote by x. the restriction of x to Te41,
e > 0. Then xg = yo and, by induction on e, x4+ = xe‘fe. As € A, the
uniqueness of the sequence in 5.4 implies that ¢, = 0 if and only if y, = ye_1,
and hence that x = y. Since y:[a, b, c] — [c)‘_1 ,b,a*], also v = A, establishing
5.2(a). Now 5.2(b) follows from the action of N'j on T in 5.4.

If Ay # Ag then Ag Ax N® # 1, by 5.1(b), and then 5.1(c) implies that there
exists u’ € ® —{u} with s{,, = o, This is contrary to 5.2(a), so that Ay = Ag
and 5.2(c) holds. Now 5.2(d) follows from (c) and from 5.1(c), and this completes
the proof of 5.2. d

Regarding H and K as subgroups of G = G in the canonical way, we have
B = HN K. From 5.6, 0 = {,, commutes with A, for each ¢, so ¢ commutes
with A. Since o commutes with yo and with t as automorphisms of B°, and since
y acts on B? as yé, o commutes with y. Then since K is the semidirect product
of BY with (y, t), it follows that o induces an automorphism og of K, commuting
with (y, 7). The universal property of the free amalgamated product now implies
that o induces an automorphism of G, whose restriction to K is og. We record
this result for future reference.

LEMMA 5.7. For each positive integer n, Y, g extends uniquely to an auto-
morphism o of G such that [y,o] = 1. a

We next show that the third Conway simple group Cos is the completion of a
subamalgam of s, and that this subamalgam generates a fusion system which is
isomorphic to that of Cos. These will be key ingredients in our proof of Theorem B.

THEOREM 5.8. Let G be the simple group Cos, let So be a Sylow 2-subgroup
of Go, set Zo = Z(So), and let Uy be the unique normal fours group in Sg. Set

Ho = Cg,(Zo). Ko=Ng,(Us). Bo= HoN Ko,

and let Ao = (Hy <— By —> Ky) be the amalgam of inclusion maps among these
groups, within Go. Set 0 = and set Ao = A |, where A is an automorphism of

A*
B which satisfies the conditions of Theorem 5.2. Let A, = (Hy < By LN Ky).
Then the following hold.:
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(@) There is a morphism ¢: Ao — A, of amalgams, displaying sy as a subamal-
gam of Ay,.

(b) Let Gg be the subgroup of G generated by the images of Hy and Ko under the
morphism ¢ of part (a), and let Fo be the fusion system (Fs,(Ho), Fs,(Ko))
contained in Fs,(Go). Then Fo = Fs_(Go) = Fs,(Go).

Proof. We refer to [Fin73] for the structure of the maximal subgroups of
Go. Thus, Hy is isomorphic to the covering group of Spg(2), which is the perfect
central extension of Spg(2) by a group of order 2. Since Spg(2) x C; is a reflection
group (namely, the Weyl group of type E7), we have Spg(2) < O7(R), and then,
by taking the standard Z-form of O7(R) and reducing mod p, one obtains Spg(2)
as a subgroup of Q27(p). Identifying Q27(p) with Hs, we then have an inclusion
of Hy in Hy. In particular, Zg = Z.

Let A be GL,(3)?.S3 and A= AN/Z(A). Set By = 02(30) and D = O5(By).
Sylow 2-subgroups of Ho and H,, are of order 219, so conjugating in H,, we may
take S¢ = So € Syl,(Hop), and U = Up. Next, By is the preimage in Hy of the
solvable maximal parabolic subgroup of Spg(2), so that Bo/O2(By) is isomorphic
to Sym(3) x Sym(3), and B; is isomorphic to a subgroup of index 3 in 02,3([_\),
contained in the A-orbit of length 4 on such subgroups. In particular

(1) D is a commuting product of three quaternion groups Q;, 1 <i < 3, with the
property that & = {Q1, Q2, O3} is the set of normal subgroups of B; of order
8. Moreover Cp(Q;) = Q; x Qy for any ordering (i, j, k) of (1,2, 3).

The preimage By of By in A is the 2- -covering group of By, and so Aut(Bq)
acts on B1 By (1), Aut(B1) permutes 2, and hence 9= {Q, | 1 <i <3}, where
Q, =[01, Bl] and where (; is the preimage in A of Q;. Therefore Aut(B;) =
AutA (B1).

Referring once more to [Fin73], we find that | Ko : Bg| = 3. Since Ck,(U) <
Bo we have B < Cp,(U) < Ko, and so B; < Ko and Ko/ Cp,(U) = Sym(3).
From the preceding paragraph, Autg,(B1) < 2 := Autz(B1). Then, since the
Sylow 2-subgroup So of Bg is Sylow in K¢ and contains the kernel U of the
map from Nz (Bp) onto €2, we may regard Ko as a subgroup of A. By (1), 9 is
Ko-invariant. As Ko/Cg,(U) = Sym(3), it follows that Ky is transitive on 9.
Here A/D 2 Sym(3):Sym(3), and Ko/ D is a subgroup of A/D of order 22 -33.
Since Ko/Ck,(U) = Sym(3), it follows that Ko/B1 = Z> x Sym(3), and then that
Ky is determined up to conjugacy in A. The same argument shows that K is in
this conjugacy class, and so K¢9 = K, and we may choose K¢ = K.

Observe that [Nz (B1) : Bo| = 3 and that By is equal to its normalizer in
N[\(Bl)- Then

(2) Nauws,)(Bo) = Autg (Bo) = Inn(By).
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By (2) we have Aut(Bg) = Inn(Bo)Co, where Co = Cypy(B,)(B1). Then
[Co, Bo] < CBO(BI) =U. Let Xg € Sy13(B()) and let Xg < X € Sylz(K()). Then
Cp(Xo)=U, Cp(X)=1, and as we saw above Ko/B1 = Z, x Sym(3). It follows
that there is a Sylow 2-subgroup Rg of Np,(Xo), of the form U (s) x (r), where
(r,s) is a Sylow 2-subgroup of Nk, (X), U (s) is a dihedral group of order 8, and
(r,s) is a fours group.

We have [Co, Ro] < Cp,(B1)="U, and so R is Co-invariant. Since r € Z(Ro)
we then have [Co, 7] <U N Z(Rp) = Z. For any p € Cyp, s is an involution in sU,
so0 also [Cy, s] < Z. Therefore Cyp = Hom(By/B1,Z) =~ By/B1, and so Cy is a
fours group. Since Z, =~ Auty (Bg) < Cyp, we conclude that |Aut(By) : Inn(By)| =
|Co : Auty (Bg)| = 2. Thus

(3) Aut(Bg) = Inn(Bp) U Inn(Bg) o, where o € Cop — Auty (Byp).

It follows from (3) and [Gol70, Lemma 2.7] that there are, up to isomorphism,
at most two amalgams (Hy < By N Kyp) with Boae = By, and that any such
amalgam is isomorphic to &g or to Ao, y,, Where

M*
Ao = (Ho <— B —> Ko).

Thus, either dg or g,y is a subamalgam of the amalgam .

Referring again to [Fin73], there is a subgroup M of G, containing Sp, such
that M is a nonsplit extension of Ej¢ by GL4(2). Set A = O>(M), and denote
by My the stabilizer in M of the unique Sp-invariant hyperplane Eg of A. Then
[O2(My), My] is homocyclic abelian of exponent 4 and rank 3, and hence Ey = F
by 4.9(c). Since [O2(My), Eg] = 1 we then have Or(My) = T>(wyp), by 4.3.
Moreover

Mo = (Cmy(Z), Nmo(U)) = (Mo N Ho, Mo N Ko).
Let a: Sog — Nk, (T2) be the embedding of Sop = Sy in Nk, (72). Then Soor =
So < Ko = Ky, and we have the two amalgams
-ﬂMo =(MoNHy<«— S¢ — My N Kp)
and
L o
(NH, (T2) <— So —> Nk, (12)).

On the other hand, the reader will recall from the proof of 5.4 that if sy, is
“twisted” by po, to obtain an amalgam

M*
(Mo N Hy <— Sy —> Mo N Ko),

then (Mo N Hy, x*0) induces on T the full automorphism group of 75, of order
2°|GL3(2)|. We therefore conclude that, of the two amalgams sdo and s, wo» only
the first is a subamalgam of . This completes the proof of (a).
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Set %o = 290 and denote by €* the set of elementary abelian subgroups F
of So such that F* C %,. Denote by N the set of subgroups N of Gy such that
N = N60(02(N))’ SoNN €8yl,(N), and Cg,(O2(N)) < O2(N). Itis a property
of Cos that xy € % for any two distinct commuting elements x and y of % (cf.
[Fin73]), from which it follows that for any N € N there exists F € €* with F <IN.
By Lemmas 5.8 and 5.9 in [Fin73], all members of €* of any given order are fused
in Gg, each member of €* is normal in a Sylow 2-subgroup of Gy, and if F € €*
with |F| = 8 then NGO(F ) is contained in the normalizer of some F* € €* with
| F*| = 16. Then, for any N € N, we have Sg < N, and N is contained in one of
the groups Hyp, Ko, or M. Then 1.11 yields

(4) F50(Co3) = (Fs,(Ho). Fs,(Ko), Fse(M)).

Now (M N Hg)/A and (M N Ky)/A are distinct maximal parabolic subgroups of
M/A = GL4(2), and so by 1.9:

(%) Fso(M) = (Fs,(M N Ho), Fs, (M N Ko)).
From (4) and (5) we have Fg, (Go) = (Fs,(Ho), Fs,(Ko)), and it follows that

Fs, (Go) < F5,(Go). Since Gy is a homomorphic image of G, by (a), the reverse
inclusion of fusion systems is obvious, and we therefore have (b). O

Some well-known properties of Cos (some of which were mentioned in the
proof of 5.8(b)), which depend only on fusion, now yield corresponding properties
of the subgroup Gg of G.

COROLLARY 5.9. Identify Hy and Ko with subgroups of G, via the morphism
¢ of 5.8(a), and set Gy = (Ho, Ko). Then

(a) Go has two classes of elements of order 2.
(b) Ift and t' are distinct, commuting elements of z°°, then tt' € z©0.

(¢) Let F be an elementary abelian 2-subgroup of Go. Then F N z90 is the set of
nonidentity elements of a subgroup of F.

(d) For any X < Gy, and any subgroup F of X, denote by %(X , F) the set of
all subgroups P of X such that F < P and P* C z90. Write %(X) for
%(X, 1). Then {Z,U, E, E{wg)} is a set of representatives for the orbits of
Go on %(Go), and for the orbits of Hy on %(Ho, 7).

6. Discrete p-toral groups

The notion of a discrete p-toral group, and the results in this section on such
groups, come from [BLOOS], particularly Sections 1 and 7 of that paper. As
[BLOOS5] is unpublished at this time, we reproduce some of its definitions and
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results here, and supply sketches of proofs in special cases, for the sake of com-
pleteness.

Definition 6.1. Let p be a prime and denote by Z/ p®° the group of all complex
roots of unity whose order is a power of p. A discrete p-toral group is a p-group
P with a normal subgroup Py of finite index, such that Py is the direct product
of a finite number of copies of Z/p®°. Write %, for the class of discrete p-toral
groups.

We record some facts about %, from [BLOOS]:
LEMMA 6.2. Let P € 9. Then

(1) P has unique subgroup P° which is minimal subject to the condition that
| P : PO| be finite. (Call P° the identity component of P.)

(2) PO is the direct product of a finite number r of copies of Z] p™. (Write tk(P)
for r and call tk(P) the rank of P.)

(3) P has no proper subgroups of finite index.

(4) P is locally finite and Artinian.

(5) Subgroups and homomorphic images of P are in 9.

(6) Torsion subgroups of Out(P) are finite.

(7) Each injective homomorphism from P into P is an isomorphism.

(8) If R < P then R® < PO,

Proof. As P € 9, P has a normal subgroup Py of finite index which is the

direct product of r copies of Z/p®> for some 0 < r € Z. As Z/ p®° has no proper
subgroups of finite index, it follows that P9 = Py, and (1)~(3) hold. Parts (4), (5),

and (6) are 1.2, 1.3, and 1.5(a) in [BLOOS], respectively. Part (7) follows as P is
Artinian, and (8) follows from (3). O

LEMMA 6.3. Let F be the field of Section 4, V a finite-dimensional vector
space over ¥, and G < GL(V). Then

(1) G is locally finite.

(2) All 2-subgroups of G are in 9.

(3) Syl,(G) # @, Syl,(G) is the set of maximal 2-subgroups of G, and G is
transitive on Syl, (G).

(4) Let S €Syl,(G) and P < S. Then P is fully normalized in ¥ g (G) if and only
if Ns(P) € Syl,(Ng (P)).

(5) Fs(G) is saturated.
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Proof. The proof of this lemma comes from [BLOO0S, §7, particularly Lemma
7.8]. The proof is a bit easier in our special case, and we supply a sketch.

As GL(V) is the union of the finite groups GL(V)s, o € Aut(F), (1) holds.
Then (2) follows from (1) and from [Weh73, 2.6]. By [Weh73, 9.10], G is transitive
on its maximal 2-subgroups, and such subgroups exist, and so (3) holds.

Observe that G satisfies the hypotheses of Lemma 1.6: Condition (1) of 1.6
follows from (3) applied to subgroups of Ng(P). Condition (2) of 1.6 is satisfied
by (1) and 6.2(6). Condition (3) holds by 6.2(4), and (4) holds by (1). Now 1.6
implies (4) and (9). O

Remark 6.4. Let H, K, B, S be the groups defined in Sections 4 and 5. Each
of these groups has a faithful finite-dimensional representation over F, and so we
can apply Lemma 6.3 to these groups. By 4.9(b), S is a Sylow 2-subgroup of
each of these groups. By 6.3(2), S and each of its subgroups is a discrete 2-toral
group. By 6.3(5), #s(X) is saturated for each X € {H, K, B} and by 6.3(3), X is
transitive on Syl, (X) where Syl,(X) is the set of maximal 2-subgroups of X.

Let G be the group constructed in Section 5. It will be shown, in Theorem C,
that there is a 2-local group G = (S, Fs(G), Ls(G)). Since S is a discrete 2-toral
group, 9 is then a 2-local compact group, as defined in [BLOOS].

7. Local subgroups and fusion in the free amalgamated product

Let o be the amalgam 4 constructed in Section 5, and let G be the associated
free amalgamated product, G = H xp K. We shall view o as being given by the
inclusion maps of H, K and B into G, so that

A=(H > B <K).

Viewed in this way, the key point in the construction of « is that the element y of
K actson T as A~ LypA. That is

yila,b, ] [eA7Y a,bA],

forall [a,b,c]eT.

Recall that we have an automorphism o = v, of H, with H; = Spin,(Fy),
g = p%", and by 4.8, S, is a Sylow 2-subgroup of Hy,. By 5.7, o induces an
automorphism of & which induces an automorphism of G. Form the semidirect
products H (o), B{c), and K{c), and the amalgam

d=(H(o)«— B(o) — K(0)),

in which the arrows are 1nclu51on maps. Denote the free amalgamated product of
s by G. The inclusion s¢ — s induces an isomorphism of G with the semidirect
product G (o), and we identify these groups via that isomorphism.

The following result is trivially verified.
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LEMMA 7.1. Let T and T be the standard trees associated with the amalgams
A and A, respectively. Then there is an isomorphism I' — I" given by

Xg+—> X(o)g forX e{H,B,K}andgecQG.

IfT" and T are identified via this isomorphism, then the action of 0 on T is given
by
(Xg)’ =Xg° forX e{H,B,K}and g €G. O

For any X < G (o), we write 'y or Cr(X) for the subgraph of I" induced
on the set of fixed points of X on I'. If 'y # @ then I'y is a subtree of I'. For
any graph A and vertex & of A, we write A(8) for the set of vertices y of A such
that {y, 8} is an edge of A. If |A(8)| < 1 then § is a boundary vertex of A, and
otherwise § is an interior vertex of A.

For any subtree A of T, let A be the graph obtained by deleting the boundary

vertices from A. Thus either A is a tree or A has at most one edge, in which case
A is empty.

Set G1 = H and G, = K, and denote by I'; the set of vertices of I" given by
the cosets of G; in G. For any vertex y of ', write Z(y) for the largest normal

2-subgroup of G, . Define y; to be the vertex of I' given by the coset G;.
LEMMA 7.2. Let y be a vertex of T'.
(@) Ify € 'y then Z(y) = Z(Gy) is of order 2.
(b) If y € 'z then |T'(y)| = 3, and Z(y) is a fours group, whose nonidentity cyclic
subgroups are the groups Z(8), § € I'(y).
(c) If y € 'y then Cg,,(Z(y)) is the pointwise stabilizer in G of I'(y).
Proof. The stabilizer of any vertex in [ is conjugate in G to G;, and the

stabilizer of any edge is conjugate to B. All parts of the lemma follow trivially
from these observations. O

LEMMA 7.3. Let X < G (o) and lety € ', N T'x. Then:

(a) y is an interior vertex of Uy if and only if X centralizes Z(y).

(b) Either of the following conditions implies that the inclusion maps from Ng (X)
and Nk (X) into NG (X) induce an isomorphism of Ny (X) *n(x) Nk (X)
with Ng (X).

(i) X<B% and XHNnB=XKnB=X8.
(ii) X < B%(0) and XH'9) N BO(s) = XK(o0) 0 BO(5) = X B

Moreover, Ng(X) acts edge-transitively on Iy in case (b)(i), and edge-tran-
sitively on I'y in case (b)(ii).
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Proof. Set A = T'x. Then y is an interior vertex of A if and only if X fixes
at least two distinct vertices & and 8 in I'y. Since Z(y) = Z(GB) =ZyZg, we
obtain (a).

Set N = (Ng,(X), NG, (X)), and assume that either (i) or (ii) holds. Take
A = Aincase (i), and A = A in case (ii). Then Ng (X)actson A, and N < Ng(X).
By hypothesis, X < Cp(s)(U) = B%(0), so that X fixes I'(y,) pointwise, and
hence y, € A. In (i), a standard argument (cf. [Asc86, 5.21]) shows that Ng, (X)
acts transitively on A(y;) fori = 1 and 2. Assume that we are in case (ii) and that
(vi, y3—i) is an edge in A" for some & € G;(o). Then X < (B(o))", and so
X" < B(o). Then X"~ < Cp(s)(U) = B%(0) by (a). The hypotheses of (ii)
then yield & € BO(O')NG[ (0)(X), so that Ng, (5)(X) acts transitively on A(y;).

We now claim that N is transitive on the set of edges of A. As A is connected,
it suffices to show for each A € A that N, is transitive on A(A). Pick i and g with
A = yig and set

d(A) =min{d(A,y;) | j =1,2}.

Choose A to be a counterexample with d = d(A) minimal. By the preceding
paragraph, d > 0. Thus there exists & € A(A) with d(«) < d, and Ny is transitive
on A(w). Then there is 8 € A(a) with d(B) < d, contrary to the choice of A. This
completes the proof of the claim.

As the stabilizer Np(X) of an edge of A is contained in N, we now obtain
N = Ng(X). Now [Ser80, Th. 6, p. 32] yields the conclusions concerning edge-
transitivity, and the identification of Ny (X) * y,(x) Nk (X) with N. d

LEMMA 7.4. We have the following.

(@) C (o) = Hp.

(b) The inclusion maps from Hy and Ky into G4 induce an isomorphism of G4
with Hy g, Ky, and G acts edge-transitively on the tree I';.

(¢c) Define the subgroups Go, Ho, Ko, and Bo of G4 as in 5.8. Then the inclusion

maps from Ho and Ko into Go induce an isomorphism of Go with Ho *, Ko,
the universal completion of the amalgam g of subgroups of Cos.

Proof. Let h € H such that 6" € B%. By Lang’s Theorem there exists b € B°
such that 0" = ob. Then hb~ ! € Cy (0)=Hyaso=E§&,. Thus (a) holdsand b € H.
Here b € B since H N B® = BY, and so o7 N B® = 08°. Since K = Ck(c)B°,
we also have 0K N B® = 0B°. Now by 7.3(b), G = (Hy, K5) and G is edge-
transitive on the tree f'g. Since H, and K, fix adjacent vertices in fg, the lemma
now follows from [Ser80, Th. 6, p. 32]. The same theorem implies (c). O

From now on, Go = Hy * g, Ko is the subgroup of G, defined in 7.4(c), such
that Gy is the universal completion of an amalgam of subgroups of Cos.
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LEMMA 7.5. Let D € {G, Gy, Go}, set D; = D NGy, i = 1,2, and set
R=SND. Then:

(a) Hypotheses 3.4 and 3.8 hold, with D, D; and D N B in the roles of G, G; and
B, and with R in the role of S.

(b) R is a Sylow 2-subgroup of D.
(c) If D is G or G4 then Hypothesis 3.12 holds.

Proof. When R is finite so is D;, and by construction R is a Sylow 2-subgroup
of D; and of D N B. If R is infinite then R = S, and by Remark 6.4, R is a Sylow
2-subgroup of D; and of D N B. In each case Z and U are characteristic subgroups
of R, so that Np, (R) < D1 N D>. A free amalgamated product decomposition for
G is given by 7.4(b), and for G and G¢ by the definition of these groups. Thus,
Hypothesis 3.4 holds. The verification of the first three parts of Hypothesis 3.8
is immediate in each case. Part (4) of Hypothesis 3.8 holds by Sylow’s Theorem
when D is finite, and by Remark 6.4 when D = G. Thus (a) is established. By
3.8(4), RPinN B = RDPiNB_ pyrt (b) follows from (a), 3.5(c), and this observation.
Finally, when D = G or G4, Hypothesis 3.12 follows from part (a) of Lemma 7.6
below. |

For any subgroup X of G, and any elementary abelian 2-subgroup F of X,
denote by €, (X, F) the set of elementary abelian 2-subgroups of X containing F,
of order 2". Write €, (X) for €, (X, 1). Recall from the preceding sections that

Z<U<E=<A€e¥4(Gy)
is a chain of elementary abelian 2-groups, where Z = Z(H) = (z), U = Z(B°) =
(z,z1), E={eeT |e?>=1},and A = E (wy).
LEMMA 7.6. The following hold.
(@) €(H.Z)=UH and ¢5(Hy, Z) = UHo.
() €1(G)=Z%, and €,(Gy) = ZC.
Proof. By 4.2 there is a unique class Zlﬁ of noncentral involutions in A . Then

since Cz(z1) = B is connected, it follows from Lang’s Theorem that H,; has a
unique class of noncentral involutions. As HM(7 = H,, (a) follows.

Since K is transitive on U¥, it follows from (a) that all involutions in S
(resp. S¢), are fused in KH (resp K5 Hy). By 7.5(b), S and S; are Sylow in G
and G, respectively, so (b) holds. O

LEMMA 7.7. We have EB® =€5(B,U), EH =%5(H, Z), and EC =%€5(G).

Proof. Let F € €3(B,U) and f € F —U. Then Cg(U) = B® = L, L, L,
sothat f = fifofs with f; € L;, and 1 = f2 = f2f7f#. Since U* is the
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set of involutions in L;L; for i # j, it follows that f; is an element of order 4
in L;. Since L; is transitive on its elements of order 4, involutions in B® — U are
conjugate in BC. Thus EB’ = €3(B%, U). The lemma now follows from 7.6. [

LEMMA 7.8. Set B(o) = (Cr,(0) |1 <i <3). Then

(a) There exists an involution v in S N B — B(o) such that BY = B(o)(v), and
v induces a diagonal automorphism on each Cp,; (o).

(b) EB© =<¢3(B(0),U) and €3(By,U) = EBo U (E")B©) where E' = U (v).
(c) €3(Hy. Z) is the disjoint union of E™o and (E")Ho .

(d) EE’ is a Sylow 2-subgroup of Cu,(E’), and is elementary abelian of or-
der 16.

(e) For each F € {E, E'}, we have Auty, (F) = Cay(r)(Z) and Autg, (F) =
Aut(F).

Proof. Recall from Section 4 that we may regard T as a set of equivalence
classes [a1,as,as]. Let a be a 2-element in F with ¢° = —a, and set f = [a,a,a].
Then f € (Seo N BY) — B(0), and since wy inverts S, the element v := fwq
is an involution in (S N B2) — B(o). Recall from 4.4 that B® is J/(i), where J
is the direct product of three copies of SL,(F) and i is an involution diagonally
embedded in Z(J). Thus J is simply connected, so that B(o) = Js/ (i), and B(0)
is of index |i| =2 in B2. Then B2 = B(0)(v), completing the proof of (a).

Let X € {EO, ﬁ}, and set

S ={(F,7)| FeEX teoX, [F.1]=1}.
Set
YSo={rcoX|(E,71)eX} and X, ={FecEX|(F,0)eXx}.
There is a natural bijection 8 between the set of Nx (F)-orbits on X and the set

of Cx (0)-orbits on X;. Explicitly, if {o8/ | i € I} is a set of representatives for
1

the orbits of Ny (E) on X, then {E 7 | i € I} is a set of representatives for the
orbits of Cx (0) on X1. By 4.3(d), Ng(E) = TW, so that Nx (E) = T(W N X).
Let T € ¥¢. Then

T € Cx(g)(E)N oX € T{wo)o = To U Twyo.

When we apply Lang’s Theorem to the connected algebraic group T, we find that
T is transitive on 7o and Twoo*. Since W centralizes both o and wg, we conclude
that To and Twqo are the orbits for Ny (E) on X, with representatives {o, woo}.
Applying Lang’s Theorem to the connected group B°, we obtain an element geX
such that (wgo)® = 0.
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When we apply the bijection 8, Cx (o) has two orbits on X1, with represen-
tatives E and E€. By 7.7, ¥1 = ¢é3(Cx ({0, Z(X))). Thus, Cx (0) has two orbits
on ¢3(X, Z(X)), with representatives £ and E$. In the case that X = B® we
have Cx (o) = B2 by 6.4(a), and then since E is in the normal subgroup B(c) of
Cx (0), but E’ is not, it follows that E and E’ are representatives for the two orbits
of BY on ¢3(B2,U). Since [E, E'] =1, and B%s = B(0)E’ by (a), these are also
the orbits for B(o), establishing (b). In particular, E’ is fused to E& in B, and
so E’ is not fused to E in Hy. In the case that X = H we get Cx (o) = Hy by
7.4(a), and this yields (c).

Recall that o = ¥, for some n > 0. Set g = p?". Let § = +1 with g = §
mod 8. Then 7} is homocyclic abelian of rank 3 and order (¢ —8)3, and Cg, (E) =
Ts{wo) by 4.3(d). On the other hand, we have seen that (£, wgo) € Xg. As
wo inverts 7, C7(woo) is homocyclic abelian of rank 3 and order (¢ + §)3. In
particular, E is a Sylow 2-subgroup of C7(wgo). Therefore a Sylow 2-subgroup
of Cy(woo) N Cy (E) is of order at most 16. Since [E, E'] = 1, (d) follows.

From 4.3, Autzw (E) = Cawg)(Z), and hence Autrwy (E) = Auty (E).
Similarly, since W < ﬁwog, we have

Autﬁwoﬁ (E) = Cawg)(2).
Conjugating by the element g of B with (woo)8 = o, we obtain
Autg (E¥®) = Caw(E2)(Z).
Since [E, y] = [E’, y] = U, (e) holds. O
LEMMA 7.9. The following hold.

(a) é5(G) = @.
(b) €4(X) = AX for X € {G, H}, and €4(B®) = AB° = 4K,
(©) Autg(A) = Caw(a)(Z), and A = Cg (A).

Proof. Let Y be H or B?, and let A’ be an elementary abelian subgroup of ¥
of maximal order. Then Z(Y) < A’, and after conjugation in ¥ we may assume,
by 7.7, that E < A’. Then A’ < T'(wy), by 4.3(d), so that |A’| = 16. Since H
contains a Sylow 2-subgroup of G, by 7.5(b), we obtain (a). Every element of T is
a square, so since wg acts on 7" as inversion, all elements in 7 wq are fused by 7.
Thus, A’ is fused to A via T, and this yields (b).

By 4.3(d), Cg(A4) = Cy (E)NCh (wo) = Cr (1) (wo) = A. Since wo € Z(W)
and W < Ny(T) < Ng(E), we have W < Ny (A). Set Ty ={t € T |t* =1}.
Then [T7, wo] = E, and so T1 < Ny (A) and T; induces on A the subgroup X(E)
of Aut(A) consisting of all transvections with axis E.
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Let F be a hyperplane of A containing Z. Then F is conjugate to E in H by
7.7. It follows that X (F) < Autg (A) for all such F. Since

Cau(4)(Z) = (X(F) | F ahyperplane of A over Z ),
we obtain (c). O

LEMMA 7.10. Set M = Ng(A), and for any subgroup X of G set My =
M N X. Then the following hold.

(a) The inclusion maps from My and Mg into M induce an isomorphism M —
My *pp Mg, and M is edge-transitive on the tree T'4.

(b) M is contained in the subgroup Go of G defined in 5.8(b). In particular
M < Gg.

(c) There is a surjective homomorphism ¢p4: M —> My, where My is a nonsplit
extension of an elementary abelian group of order 16 by GL(4,2), and such
that ker(¢p4) N Mg =ker(¢pq) N Mg = 1.

(d) For any ¢4 satisfying the conditions in (c), we have Cg(A)=ker(¢4)x A, and
ker(¢p4) acts freely on T'.

Proof. The induced isomorphism of M with Mg *p7, Mg is immediate from
7.3(b) and 7.9(b). The edge-transitivity of M on fA is given by the final statement
in 7.3, so that (a) holds.

By 5.8(a), there are maximal subgroups Hy and K¢ of the group Cos such
that Hp may be regarded as a subgroup of Hys, and K¢ as a subgroup of K,
in such a way that the resulting amalgam g = (Ho > By < Kp) of subgroups
of G4 is isomorphic to the corresponding amalgam of subgroups of Cos. Set
My = Nco;(A). Then My/A = GL4(2), and M, does not split over A, as one
finds from the list of maximal subgroups of Cos in [Fin73]. Moreover, as seen in
the proof of 5.8, we have My = (Mo N Ho, My N Ko), as subgroups of Cos. As
subgroups of G, we have My N H = Mg and My N K = Mk, so it follows from
(a) that M < Gy,, < G5. Moreover, (a) implies that Mg is a homomorphic image
of M, via a homomorphism ¢4 whose restriction to each of Mg and Mk is the
“identity” map. In particular, the restriction of ¢4 to Mg U Mk is faithful, and this
yields (b) and (c).

From (c), it is immediate that Cg(A4) = ker(¢4) x A. Since M is edge-
transitive on I'4, and since ker(¢4) intersects both H and K trivially, it follows that
ker(¢y4) acts freely on I'4. That is, every nonidentity element of ker(¢4) induces
a hyperbolic isometry of I'4, and hence also a hyperbolic isometry of I', by 3.3.
Thus, (d) holds. O

Set Rgp = Soo,0 and Ry = Ng__ (Ro{wo)). Then Rg has index 8 in R;. Fix a
set X of coset representatives for Ry in R1, and recall that g¢ denotes the exponent
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of Rg. Then

X={x.|eeFE}
where x2° = e. Set

A, = A%, ec E,
and

€ = €4(Ro(wo))-

All elements of Rowg are fused by Ry, so R; is transitive on €. Since Ng, (A4) <
Ro, Ro has |Ry : Rg| = 8 orbits on € and {4, | e € E} is a set of representatives
for those orbits.

Every subgroup of T is o-invariant, so each (x.) is o-invariant. Since o
centralizes x2 and does not centralize x,., we obtain

(*) oc¥ =eo0c and (eo)** =0 foralleeE.

LEMMA 7.11. For eache € E:
(@) Autp, (Ae) = Cauya,)((z.€)),
(b) Autg, (Ae) = Nau(a,)(U) N Cayya,)(e), and
(©) Autg, (Ae) = Cauya,)(e).
Proof. For any e € E, set 0, = eo, regarded as an automorphism of G. By
7.10, M := Ng(A) < G5 and Autg(A) = Aut(A), so that
Autg,, (A) = Cayg (a)(€) = Cayya(e).

Then as A, = A¥¢, conjugating this equality by x. and appealing to (), we con-
clude that (c) holds.
Next, Autg (A) = Cpy(4)(Z) by 7.9(c), so that

Autg,, (A) = Cau(a) (2. €)).

Since x, centralizes (z, e), conjugation by x, yields (a).
As Autg, (A) = Autg(A) = Aut(A), as y € K, and as Ng(U) < K, we
conclude that Autg, (A) = Nayi4)(U). Then

Autg,, (A) = Nay(a)(U) N Cayya)(e),
and conjugation by x. yields (b). O

LEMMA 7.12. Letu € U — Z and lete € E —U. Then

(a) {A, Az, Ay} is a set of representatives for the orbits of Hy on €4(Hy), and
Hy fuses Ay and Ae.

(b) {A, Az, A} is a set of representatives for the orbits of Ky on €4(Ky,U), and
Ky fuses A; and Ay.

(c) {A, Ay} is a set of representatives for the orbits of Gg on €4(Gg).
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Proof. Since Sy € Syl,(Gy), each A € €4(Gy) is fused under G4 into Sy,
and then by 7.6, we may take U < A < S,. Then by parts (b) and (d) of 7.8, we
may take £ < A. Since Cg_(E) = Ro(wop), we are reduced to the problem of
fusion via Hs, Ks, and G4 on €.

Notice that W has the three orbits {1}, {z}, and £ — Z on E, and that S, (y)
has the three orbits {1}, U# and E — U on E. Hence there are three orbits for Sy W
on €, with representatives A, A;, and A,, and three orbits for S, (y) on €, with
representatives A, Az, and A.. Since (Sy, W, y) is transitive on {A7 | f € A"y,
it is now enough to show that there is no further fusion among these groups. As
Autg, (A) = Aut(A), A is not fused to A, or to Ay in G4, by 7.11(c). Since A,
is not fused to A, in Hy by 7.11(a), and A; is not fused to A, in K, by 7.11(b),
the lemma is proved. O

LEMMA 7.13. Set N = Ng(T3), and for any subgroup X of G set Ny =
N N X. Let ¢4 be defined as in 7.10, and set D = Cyer(g,4)(T2). Then the following
hold.
(a) The inclusion maps from Ng and Nk into N induce an isomorphism of N
with Ng * N, Nk. In particular, N is generated by Ny and Nk.
(b) N is edge-transitive on the tree I's__.
(¢) N =Ng(T) = Ng(T{wo)).
(d) Cg(T2) =Cg(Seo) = O(T)D X Soo, and O(T) D is N -invariant.
(e) Autg(Seo) = GL(3,2) X Z5.

0 Fese)(NH)=F c5(E)(CN(Z2)), and Fcg (E)(NH.o)=F Cs, (E)(CN, (Z)).
Proof. By 4.9(b) S is a Sylow 2-subgroup of B, and by 4.9(c) T3 is weakly
closed in S with respect to G. Therefore

T2 ={Tf |Tf <B, ge HUK}.

Now (a) and (b) follow from 7.3(b).

Set T* = T(wyg). Since N (T>) < Ny (E) =T W by 4.3(d), we have Ny =
Np(T)= Ng(T*). Then Ng = Np(T) = Np(T*), and Nk = Np(y) = Nx(T) =
Ng (T*). It follows now from (a) that N < Ng(T') and N < Ng(T™*). Since the
reverse inclusions are obvious, we obtain (c).

Since (W, y) < Ng(A) N Ng(T»), D is (W, y)-invariant, and evidently so
is O(T). Let x € CG(Seo). Then (c) implies that wy € T* — T, and since T is
transitive on Twy, there exists ¢ € T with w§’ = wg. Thus xt € Cg(A4), so it
follows from 7.10(d) that xt = da for some d € ker(¢4) and some a € A. Since
T, < Ng(A), we have [T, d] < ker(¢4), and since ker(¢4) acts freely on I we
have T Nker(¢pyq) = 1. Let s € T,. Then

1 =[s,xt] =[s.da] = [s,d][s, d]?,
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where [s,a] € T> and where [s, d]* eker(¢4). It follows that [T>,a]=[T>,d]=1,
andsoa € Eandd € D. Now x =dat™! € DT, and thus Cg(Seo) < DT. By
5.1 and (a), [D, Seo] = 1, so that Cg(Se) = DT. Since D N T = 1 we have
Seo NO(T)D =1, and thus O(T)D is a complement to So in Cg(Seo). This
completes the proof of (d). Part (e) follows from (a) and Theorem 5.2.

Let P<S andlet g € Ng(P,S)NCnN(Z). Then g = nd for some n € Ny
and d € D, by (d). But Cs(E) = Seo{wo), and wg € A < Cg(D), so Cs(FE)
centralizes D. Thus d centralizes P, so cg = ¢, on P, establishing (f). O

8. Centric subgroups and signalizer functors

We continue the hypotheses and the notation of Sections 4, 5, and 7. Thus A4
is the amalgam (Hy <— By —> Ky), and sy is the amalgam (Hy <— By —> Ko)
given by 5.8. As in 7.4, we regard sd¢p as a subamalgam of s, Ho and Ko as
subgroups of G; and we set Go = (Ho, Ko) and So = S N Gy.

There is a fair amount of notation which we now need to establish, and which
will remain fixed in the remainder. First, we set

F=Fs(G), Fo=%5,(Gs), Fo=Fs,(Go).

Let D be one of the groups G, G4, or Gy, and let & be the fusion system
9 = Fgnp (D). For any subgroup Y of G such that S N D is a Sylow 2-subgroup
of Y N D, we write Yp for Y N D, and @y for Fg,(Yp).

For any subgroup P of Sp, set

Zp = (P nz(P)).

Thus Zp = Q1(Z(P)) if D # Gy, by 7.6(b), and in any case we have Z% =
zP N Z(P), by 5.9(b). Although the definition of Zp depends on D, the reader
may think of D as being fixed, so there need be no cause for confusion.

Denote by ['g the smallest Gy-invariant subtree of I" which contains the edge
{H, K}. Recall that I'; = y; G denotes the subset G;\G of vertices of I', where
G1 = H and G, = K. Write also I'D for the standard tree for D. That is, I'? is
the smallest D-invariant subtree of " containing the edge {H, K}. Thus T'? is T,
Iy, or Ty, for D equal to G, G4, or Gy, respectively, and I' D I'y D I'g.

LEMMA 8.1. Let Y € {B,K, H}, and let P be a 2-subgroup of Y. Then
Ny(P,S) # @.

Proof. This follows from Remark 6.4. O
LEMMA 8.2. Let P be a subgroup of Sp, and letY € {G, H, K}. Then

(@) P €95 ifand only if Z(P) contains every finite 2-subgroup of Cy,, (P).

(b) If P €%y then P contains every finite Ny, (P )-invariant 2-subgroup of Yp.
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Proof. We first prove (a). By 2.1 and 7.5(b), we may assume D = G, P
is infinite, P € Y, and there exists a 2-element x of Cy (P) with x ¢ P. Set
P*=(P,x).

Since Cr(P) is x-invariant, and |x| is finite, it follows from 3.2 that x fixes
a vertex ¢ of Cr(P), and we may take § =Y if Y € {H, K}. Now 8.1 implies that
P* is contained in a conjugate of S in Gg, and then x € P since P € F5. Thus
(a) is established.

Now suppose that P € 9, set N = Ny, (P), and let R be a finite, N -invariant
2-subgroup of Yp. Set Rg = Ng(P). Then Ry < N, and so Autg,p(P) <
O>(Auty,, (P) = Inn(P) as P € 9. Then RoP = Cgr,p(P)P, so that Ry <
CROP(P)P < P by (a). Thus Rop = RN P. But the p-group P induces a finite
p-group P of automorphisms on R, and CNR(RO)/RO(P) < Ngr(P)/Ro = Ro/Ro.
It follows that R < P, proving (b). O

For any P € %€ we have Cg, (P) < Z(P), and thus Z < Zp. The following
lemma derives most of the remaining information that we shall need, concerning
9-centric subgroups of Sp, including everything that is needed for the construction
of signalizer functors.

LEMMA 8.3. Let P < Sp.

(a) Suppose that |Zp| = 2 and that either P € %€ or P € 4. Then Np(P, S)
C H,andif P E@% then Ng(P,S) C H and P € F°.

(b) Suppose that P € %€ and |Zp| = 4. Then Cp(P) < H, Zp = U", and
Np(P) < K" for some h € Hp. Ifalso Zp = U and P € F% then N (P)
< K and P € F°.

(c) Suppose that P € %€ and |Zp| = 8. Then Zp € EHD It also €4(P) =
then P = Soo N D and P is not %-radical.

(d) Suppose that €4(P)#@. Then P € F° and O(Cg(P))=0(Cp(P))=1.

Proof. Set ¥ = Cr(P) and &’ = X NT'P. Then {y1,y2} is an edge of X',
since P < Sp < Bp. Let P be the set of paths 7 = (y;1, &, B) in X such that B8 # y,
and &’ the paths in % contained in X’. If 7 € P then Zy, = ZZg < Cy(P) by
3.11(a), so 8.2 1mp11es that Z, < Zp if either P € F; or B € X'. In particular,
|Zp| > 2 and ZP =Zy 1f|Zp| =4.

Now assume the hypothesis of (a). Then %’ = & by the preceding paragraph,
and thus y; is the unique vertex in Cr, (P). The same is then true for P&, for any
g € Np(P,S), and thus Np(P,S) € H. Similarly Ng(P,S) C H if P € Y.
Since Cg(P) € Ng (P, S), (a) is proved.

Suppose next that | Zp| = 4. Since Z < Zp, we then have Zp = U" for
some i € Hp, by 7.6(a) and 5.9. We conclude from paragraph one that o« = )/é’ for
each m € %/, and hence that « is the unique vertex in I'; which is in the interior
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of ¥/, so that Np(P) < K. Now Cp(P) < Cxn(Z) = Cx(Z)" < H, and the
first part of (b) is established. Now suppose that Zp = U and that P € F%. Then
Cha(P) < Ng(U) < K, sothat P € % by 8.2. Then from paragraph one, & = y»
for each m € P, and so y» is the unique vertex in I', which is in the interior of X.
Thus Ng(P) < K, and we have (b).

Suppose next that | Zp| = 8. If Zp is not conjugate to E in Hp, then D = G,
by 7.7 and 5.9, and Zp is conjugate in Hp to the group E’ defined in 7.8(a). But
in that case we conclude from 7.8(d) that P does not contain every 2-element of
Cp(P), contrary to 8.2(a). Thus, Zp = E" for some h € Hp. Set R = Cs,(E)
and Ry =SpNT. Then R = Ro(wo) is a Sylow 2-subgroup of Cx,, (E), by 4.3(d),
and we may choose & so that P < R”. Suppose further that é4(P) = &. Since
R — Ry consists entirely of involutions, we then have P < Rg. Since P contains
all 2-elements in Cpg,, (P) it follows that P = Rg. Then P = R by 4.9(c). Since
wo inverts Rg, O2(Autp (P)) # Inn(P), and therefore (c) holds.

We now remove the hypothesis that P is 9-centric, and assume that €4(P) # .
Let F € €4(P). Then F € AS by 7.9(b), so that F contains every element of
Cg (F) of finite order by 7.10(d). The same is then true of P, and so O(Cp(P))=1,
and P € 9¢ by 2.1. That is, (d) holds. O

COROLLARY 8.4. Let P € 9¢, and assume that |Zp| < 4. Then Cp(P) =
CH,(P)=Z(P)x O(Cp(P)).

Proof. By 8.3, Cp(P) < H, while 0% (Cp(P)) = Z(P) by 8.2(a). Let X
be a finite subgroup of Cp (P) containing Z(P). The Schur-Zassenhaus Theorem
then yields O%(X) = O(X). Since H is the union of an ascending chain of finite
subgroups, the result follows. O

Recall from 7.10 that there is a surjective homomorphism
$a: Ng(A) — Mo,

where M is a nonsplit extension of A by GL(4, 2), and that M may be viewed as a
subgroup of Go := Cos. From 7.4(c), Go is the free amalgamated product Hy *p,
Kp. The universal property of Gg with respect to o yields a homomorphism
A:Go— Gg. Then M A = My, and we may choose ¢4 to be A 7. Forany A’ € A9,
choose g € G with A’ = A& and let ¢4/: Ng(A") — My be the homomorphism
given by c,—14. Then ker(¢4) does not depend on the choice of the conjugating
element g. Set
X = | ker(ga)*.

geG
and for any P € % define a subset 8(P) of Cg(P) by

0(P) = Cx(P)O(Cs(P)).
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Thus, 6(P) is a union of cosets of the largest normal subgroup of odd order in
Cg(P). For P € ¥¢, set Xo = X N Gy, and

0o (P) = Cx, (P)O(CG(P))o-
For P € F( set Xg = XN Go and
0o(P) = Cx,(P).

Write 6p for 6y, 65, when D = Gy, G, or G, respectively.
Recall from 7.2 that, for any vertex y of I', the largest normal 2-subgroup of
Gy is denoted Z(y).

LEMMA 8.5. Let x € X, and let A’ € AC with x € Cg(A’). Denote by A(x)
the intersection of all the x-invariant subtrees of I', set E(x) = (Z(y) | y € A(x)),
and denote by G p (x) the vertex-wise stabilizer of A(x) in G. Then the following
hold.

(a) I'yx = &, and x induces a hyperbolic isometry on T'.
(b) E(x)<A',and |A": E(x)| <2.
(c) Let {y,8} be an edge of A(x). Then G p(x)y = Cg,nGs(E(x)).

(d) If E(x) # A', and {H, K} is an edge of A(x), then G p(x) is a B-conjugate of
T(w()>.

Proof. By the definition of X we have x € ker(¢y+) for some A* € AC.
By 7.10(d), x fixes no vertices (and inverts no edges) of I'. That is, x induces a
hyperbolic isometry of I', in the sense of Section 3, and we have (a). Then 3.2
shows that A(x) is a linear subtree of I', on which x acts as a translation. Since
A(x) is contained in every x-invariant subtree of I", and since x centralizes A’, we
have A(x) € I'y.. Then 7.2 implies that A’ centralizes E(x). Since A’ contains
every 2-element in Cg (A’), by 7.10(d), we then have E(x) < A'.

Let (6¢0,61,82) be a geodesic in A(x) with §; € I';. Then 6, = Joh for
some & in Gg, — Gg,,, and so also Z(80)" = Z(8,). Since B = Ny (U), we have
Z(80) # Z(82), and since Z(89)Z(82) < E(x) we conclude that | E(x)| > 8. This
yields (b). As G (y) centralizes Z(«) for each o € I'y N A(x), we get G (x) <
J :=Cg, s(E(x)). Conversely J < Gx(x) by 3.10, and this proves (c).

Suppose that E(x) # A’ and that { H, K} is an edge of A(x). Since €4(B,U)
= AB by 7.9(b), we may assume that A’ = A. By 7.9(c), all hyperplanes of A
containing U are fused in Ng(A4), so we may assume also that £(x) = E. Then
(c) yields G 5 (x) = Cg(E), and now (d) follows from 4.3(d). O

Our aim is to show that fp is a signalizer functor on 9, as defined in 2.5. The
key to this is the next result.

LEMMA 8.6. The following hold.
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(@) Cx(A) =ker(¢a).
(b) Cx(Seo) = Cx(T2) € Cyer(g0)(T2) O(T).

Proof. Let x € Cx(A), and suppose that x ¢ ker(¢4). Then x € ker(¢y/)
for some A’ € €4(G) — {A}. Let A(x) and E(x) be as in 8.5. Then 8.5 yields
A(x)CT4NTy, E(x) <ANA’, and |E(x)| = 8. Since Ng(A) is edge-transitive
on Ty, we may assume that A(x) contains the edge {H, K}. By 8.5(d) and as T is
transitive on A% N Cg(E), we may then assume also that G A (x) = T {(wo). Thus
T (wg) is x-invariant, and then so is 7. We then have

(1) x € Ng(T)NCg(A) = Ng(T) Nker(pa) A = Nyer(pa)(T)A.
Since A = E(wq), we have N7 (A) = T,. Then

(2) Nker(¢A)(T) = Nker(¢A)(T2) = Cker(qu)(TZ)»

since ker(¢p4) is invariant under 75 and intersects 7> trivially.

Since all involutions in 7' (wg) — E are fused by T, there exists ¢ € T such that
(A")! = A. Then x’ e ker(¢4). By (1) and (2), x = ga for some g € Cyer(g,,)(T2)
and a € A. By 7.13(d) we have g’ € Cyer(g,)(T2) O(T), so that x'a’ = g' =ky
for some k € ker(¢4) and y € O(T). Thus ya’ =k~ 1x' € ker(¢4), and then since
yal! is of finite order and ker(¢4) is torsion-free, we have ya’ = 1. Therefore
y=a=1,and x = g € ker(¢4), contrary to our choice of x. This contradiction
proves (a).

Let x € Cx(Sso). Then there exists A’ € A9 with x € Crer(¢ ) (So0). As in
the proof of (a), x induces a hyperbolic isometry of I, and A(x) is contained in
I's.. NTy. Setting F = (Zs | 6 € A(x)), we find that F' < Cg(S), and since
NG (Sxo) is edge-transitive on I's__, F'¥ < CH(Sxo) for some g € Ng(Sx). Since
all involutions in Cg (Sso) are contained in E, we conclude that F = F& = E.
Since A(x) € Ty we get [E, A'] =1, and then E < A’ since A’ = 0% (Cg(A)).
Again by the edge-transitivity of Ng(Soo) on I's__, we have A’ < Cy(E) =T¥,
for some g € Ng(Sxo). Then A’8" = A for some ¢ € T, and so

—1
Crer(@4) (So0) = Crer(9)(S00) ™ < Cher(g)(S00) O(T),
by 7.13(d). This completes the proof of (b). O
PROPOSITION 8.7. X = | ker(¢,)%°.

Proof. Let x € Xo. By definition, there exists 4’ € s4¢ with x € ker(¢4/).
Since x € Gy, 8.5(a) implies that the axis A(x) is contained in G4 N Ty. Set
E' = Z(A(x)). Then 8.5(b) yields E’ < A’. We have Z = Z(Sy), and (Z¥0) = U,
so that U < Gy. Since Go = Hp *p, Ko, Go is edge-transitive on I'gp, and so
Z(y) < Gy for any y € T'g. Thus, E’ < Gy.
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Denote by €* the set of elementary abelian 2-subgroups F of G such that
F =(Z% N F), and by € the set of all F € ¢* with |F| = 2". By construction,
So := S N By is a Sylow 2-subgroup of Gy, and then 5.9 implies that for any 7, all
members of €; are fused in Go. We have A € €} by 7.10, and evidently E' € €*. If
E' = A’ we conclude that A’ € A90, and there is nothing more to show. Thus, we
may assume henceforth that £’ is a proper subgroup of A’, and then 8.5(b) yields
|E’| = 8. Moreover, E’ is conjugate to E in Gy, since Gy is transitive on €3.

Since Gy is edge-transitive on 'y we may assume that { H, K} is an edge of
A(x). Then 8.5(d) implies that Gy is conjugate in B to T'(wo). Let T’ be the
abelian subgroup of index 2 in G (y). By 8.5(c), [T',E’] =1, so that E' < T’
and Gp(x) = Cp(E’) = T'A’. Let R be the Sylow 2-subgroup of 7”, and set
N = Ng(R). Then 7.13 yields

CN(E') = (O(T") Cyer(4) (R) X R)A',

and Cn (A")=Cyer(g,,) (R)A’. Since x € Cy(A’), 8.6(a) now yields x€Cyer(g ) (R).
Thus, x centralizes the Sylow 2-subgroup RA’ of T’ A’. Since O(T")Cyer(g,,)(R)
contains no nontrival 2-elements, it follows that:

(1) x centralizes every 2-subgroup of Cy (E’) that x normalizes.

By 5.8(a), there is a surjective homomorphism Gog — Cos whose kernel inter-
sects By trivially. Then Cp,(E’) is isomorphic to a subgroup of Cco,(E’). Since
E' is conjugate to E in Gy, and since Cco, (E) is of order 27, we conclude that
Cg,(E’) is a 2-group. Since Cp,(E’) = Go N G A(x), (1) now yields:

(2) x centralizes Cp,(E’).

If there exists F € €} with F < Cp,(E’) then x € ker(¢F) by (2) and 8.6(a).
Thus, we may assume:

(3) CB,(E’) contains no member of €}.

Set & =y NTg . Then £ is a subtree of I'y containing A(x) Forany d >0
denote by A@) the subtree of S induced on the set of vertices of % at distance at
most d from A(x), and set Z(@ = Z(A@). Thus E' = Z° < G A(x)» and we
claim that Z@) < G A(x) for all d > 0. Suppose false, and let d be minimal subject
to the condition that, for some vertex y of T at distance d from A(x), we have
Z(y) £ G- Then Z@=D < G, (), and thus Z@~D < GoN B = By. Now (3)
yields Z@~1 = E’. Notice that E' centralizes Z(y) since E’ fixes every edge in
"o at every vertex of $. Thus Z () centralizes Z @-1), Arguing as in the proof of
8.5(c), it follows that Z(y) fixes every vertex of A@~1_ and thus Z(@ < GA®)
as claimed.

It now follows that Z(2) < Cp,(E’), and then (3) yields Z(X) = E’. On
the other hand, since E’ is fused to E in Gg there exists F € €, with E "< F.
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Then F € A%, Set ® = I'r NT. Since ® C S and Z(f]) = E’, we conclude
that Z(®) = E’, and hence E’ < Ng(F). This is contrary to 7.10(c), and the
proposition is thereby proved. |

THEOREM 8.8. Op is a signalizer functor on 9.

Proof. Let P € %€ and set Y = X N D. We first verify that 8p(P) is a
complementary subgroup to Z(P) in Cp(P). This is the case if | Zp| < 4, by 8.4,
so assume that |Zp| > 8. Suppose that €4(P) # @ and choose F € €4(P). Then
every subgroup of P which contains F is in %€, by 7.3(d). We have F € AS by
7.9, so that 7.10(d) yields Cg(F) = F x ker(¢F). Since ker(¢pr) = Cx (F) by
8.6(a), Cy (F) is a subgroup of Cp (F'), and we get

Cp(F)=F xCy(F).

In particular O(Cp(F)) = 1, so Cy (F) = 0p (F) by definition. Thus 0p (F) is a
complement to F in Cp (F).

Let P; be maximal in P subject to the conditions: F < P; and Cp(Py) =
Z(Pl) X QD(Pl). If Py 75 P then P; < Py .= NP(Pl) and CD(Pz) < CD(Pl).
Both Z(P;) and Y are Ps-invariant, so that P, also acts on Cy (P1) = 0p(Py).
Thus

Cp(P2) = Czp,)(P2) x Cypp(py)(P2) = Z(P2) X Op(P2),

contrary to the maximality of P;. Thus P; = P and 6p(P) is a complement to
Z(P)in Cp(P).

On the other hand, suppose that €4(P) = &. Then P = D N Seo by 8.3(c).
Set I = Cyer(p,)(T2). Then Cg(P) =T x I by 7.13(d). Since ker(¢4) < Go < G,
wehave Cp(P)=(DNT)xI.If D=Gsthen DNT =T5s = P x O(Cp(P)),
while if D = Gg then D NT = T,. Thus 6p(P) = O(Cp(P))I is a complement
to P in Cp(P) for any P € 9°.

Evidently 8p (P&) = 0p(P)& forany g € Np(P, S), so that by 2.6 it remains
to show, for any Q € 9¢ with P < @, that A(Q) < A(P). Since Cy(Q) C
Cy (P), this amounts to showing that O(Cp(Q)) < O(Cp(P)). But O(Cp(P)) =
0?(Cp(P)), by 7.4if |Zp| < 4, and by 7.6 if P = D N Sw, while in all other
cases we have just seen that 0%(Cp(P)) = 1. Thus O(Cp(Q)) < O(Cp(P)) as
required. O

9. Saturation and Theorem A
We continue the notation that was introduced at the start of Section 8.

PROPOSITION 9.1. Let D € {Go, Go, G}. Then the fusion systems Dy and
9% are saturated.
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Proof. It D = Gg or G4 then Hp and Kp are finite, and the result is then
immediate from 1.6(c). In the case that D = G we appeal to Remark 6.4. O

Until further notice, we take D € {G, G }.
PROPOSITION 9.2. We have 9y =%s,(Cp(Z)) and Dx =F s, (Ng(U)).
Proof. Supposing first that 9y = Fg,,(Cp(Z)), we show that

Dk = Fsp, (Na(U)),

as follows. Let ge Ng(U) and let P < S with Q := P8 < §. Then (PU)% =
P&U < §, and we may therefore take U < P. Since Autg (U) = Aut(U), we may
write g = g’k with g’ € Cq(U) and k € K. Set Q' = P&’. Then Q' < Cx(Z) = B,
so by 8.1 we may choose g’ so that O’ < S. By assumption, we then have c¢g' = ¢},
for some h € Ng (P, Q') with U" = U. Then h € Ny (U) < K, and Cg = CpCk =
chk Where hk € K. We are therefore reduced to proving that 9y = Fgs,,(Cp(Z)).

Suppose that B # Fs,(Cp(Z)). By 7.5 and 3.14(c) there then exist P <
Sp, F €€3(Z(P),U), and g € Nc,,(z)(P, S), such that

(1) ¢cg ¢ Hompy, (P, S),
2) U< FNF&, and
(3) Cp,(F)® < Bp and Cp, (F¥) < (Bp)%.

Suppose that both F and F'& are conjugate to E in Bp, and choose elements
b,b’ in Bp with F® = E = F&Y_ Set g’ := b~'gb’. From the first statement
in (3), Cp, (E)¢ < Cg, (E), and thus g’ normalizes Sp N T by 4.9(c). We may
then adjust &’ in T N D so that g’ normalizes (Sp N T){wo) = Cs,, (E). Set
N = Np(Cs, (E)). It follows from 7.13(f) that N N H controls strong fusion in
Cn(Z), and so there exists t € N N H with ¢; = cg on P?. Then ¢ = Chr(b')—!
on P, contrary to (1).

We may therefore assume that either F' or F'€ is not conjugate to £ in Bp.
Then 7.8 yields D = G, and every member of €3(Bp, U) is fused in Bp to E
orto E’, where E’ is as defined in 7.8(b). Suppose that F is fused to E and that
F$ is fused to E" in Bp. A Sylow 2-subgroup of Cp_(F¥) is elementary abelian,
by 7.8(d), whereas a Sylow 2-subgroup of Cp_(F) has exponent 4, contrary to
(3). Similarly if F is conjugate to E’ then F$ is not conjugate to E. Thus we are
reduced to the case where both F and F¥& are fused to E’ in By, and hence in BGO,
by 7.8(b).

Let b, b’ € BY with F® = E’ = F&b' Then b~'gb’ € Np(E’). By 7.8(e)
there exists 1 € Hy such that ¢, = ¢p—14; as elements of Autp (E’). Then cg =
Chnpy-1 in Np(F, F8), and so P # F by (1). Since P < Cs(F) and EE’ is
a Sylow 2-subgroup of Cg,_ (E’), we conclude that P?, P& and A’ = EE’ are
Sylow in Cg, (E’). Thus there exist a,a’ € Hy with P4 = A’ = P8%. Then
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a~lga' € Np(A’). Observe next that A’ is in the set ¢ defined just prior to 7.11,
so that 7.11 implies there exists & € Hg with ¢, = ¢4—14, as elements of Autp (A4)).
Then ¢g = ¢4 (q7)-1 On P, contrary to (1). |

LEMMA 9.3. Let P < Sp, and assume that there exists no Np (P)-invariant
subgroup X of Zp with |X| = 2 or 4. Then one of the following holds.

(a) P e EPuAD,
(b) D = Gy and P is D-conjugate to the group E' defined in 7.8(b).

(¢) P < Cs(E), and either Soo < P or P N T is homocyclic of rank 3 and
exponent at least 4.

Proof. By hypothesis, | Zp| > 8. Suppose first that |Zp| > 8. Then P € AY
by 7.9, and if P ¢ AP then 7.11(c) and 7.12 show that there is an Np (P )-invariant
subgroup of P of order 2. Thus P € AP, and (a) holds in this case. Also, if P €
ESG — EP then 7.8 yields (b). We may therefore assume that P is not elementary
abelian. Then |Zp| =8, and Z < Zp.

By 7.7 we have (Zp)* = E for some h € H, and by 8.1 we may choose
h so that P? < S. Let Py be the group generated by the noninvolutions in P.
Since Cg(E) — S consists entirely of involutions, Py is a characteristic abelian
subgroup of P, of index at most 2, containing Zp. Since P has no characteristic
subgroups of order 2 or 4, it follows that either P = S or that Py is homocyclic.
Since P ¢ €(S), P contains a conjugate of 7>, and then 4.9(c) implies that Py = T},
for some n > 2 or Py = Soo. Thus, (c¢) holds. O

LEMMA 9.4. Let P < Sp and let X be a nonidentity Np (P )-invariant sub-

group of Zp of minimal order. Then Np(P) acts transitively on X*, and the
following hold.

(a) There exists an element f = hkh' of D, with h,h’ € Hp and k € Kp, such
that Ns,, (P)/ < Sp and such that either X/ € {Z,U, E, A}, or D = G,
and X7 = E’, where E’ is as defined in 7.8(b).

(b) If P is fully normalized in 9 then so is P/, forany f asin (a).

Proof. We first show that Np(P) acts transitively on X*. This is trivial if
|X| = 2, and is immediate from the minimality of X if |X| = 4. Suppose that
|X| =8. If P € €4(Sp) then 7.12 and 7.11(c) show that Autp(P) leaves no
maximal subgroup of P invariant, while if X = P € €3(D) then 7.7 and 7.8(e)
show that Np(P) acts transitively on P¥. Thus, we may assume that P is not
elementary abelian, and then 9.3 yields P < Cg(E), and either P = Soc or PN T
is homocyclic of rank 3 and exponent at least 4. Then X = E, and 7.13 implies
that Np (P) induces the full automorphism group of X.



2-LOCAL FINITE GROUPS 947

We next prove (a). Let 1 # x € Cx(Ns, (P)) and suppose that x # z. By
3.13(b) there exist elements # € H and k € K such that xk = 7 and such that
Ng, (P )% < Sp. Thus, we may assume that z € X, after replacing P by a suitable
conjugate. Then, by 7.6 through 7.9, there exists i’ € Hp with X e {Z,U,E, A},
or else D = G, and there exists ' € Hp with XM e {E', Az} If XM = Az then
7.11(c) contradicts the minimality of X, so that this case does not arise in our
context.

Set Y = X" In order to complete the proof of (a) it suffices to show that, in
each case, every 2-subgroup of Ng, (Y) is fused into Ns, (Y) in Ny, (Y). But
in each case we have Ng,, (Y') € Syl,(Ng,, (Y), and so the required fusion follows
from Sylow’s Theorem, or from 6.3 and 6.4 when D = G and Ng(Y) is infinite.
Thus, (a) holds.

Now suppose that P is fully normalized in %, let f be given as in (a), and set
0= P/ LetR= Q¢ be a Y-conjugate of Q contained in S. Then R = P/ and
since P is fully normalized there exists d € G such that R¢ = P and Ng(R)? <
Ns(P). Also, as P is fully normalized there exists d’ € G with Qd/ = P and
with Ng(0)?" < Ng(P). Since Ns(P)/ < Ng(Q) we conclude that Ng(Q)4 =
Ns(P), and Ng (R)dd/_1 < Ng(Q). Since R4 — P, we have thus shown that
Q is fully normalized, proving (b). O

LEMMA 9.5. Let P < Sp be fully normalized in D . Assume that there exists
a minimal, nonidentity, Np (P)-invariant subgroup X of Zp with Z < X. Then P
is fully normalized in 9.

Proof. Let g € Np(P,Sp) and set Q = P& and Y = X&. There then exists
y € Y*such that [y, Ns,, (Q)] = 1, and since Np (Q) acts transitively on Y #, by 9.4,
we may assume that y = z&. By 3.13(b) there exist elements 7 € Hp and k € Kp
such that y"* = 7 and such that Ns,, (P)"k < Sp. Setd = hk and R = Q%. As
gd € Cp(Z) it follows from 9.1 and 9.2 that there exists 4’ € Hp with R* = P
and with Ng(R)" < Ng(P). Then Q%" = P and Ns(Q)%" < Ng(P). This
shows that P is fully normalized in %. O

LEMMA 9.6. Let P and Q be subgroups of S, and let x,y € G such that
P* < Qand QY < P. Then P* = Q and QY = P.

Proof. The map cyy: P —> P is injective, so by 6.4 and 6.2(7), cxy is an
isomorphism. Thus P = P*Y = Q7, and similarly P* = Q. O

THEOREM 9.7. 9 is saturated.

Proof. Let 1 #£ P < Sp and let X be a minimal, nonidentity, Np (P )-invariant
subgroup of Zp. By 9.4 there is g € D with Ng,(P)% < Sp and with Z <

X&. Adjusting in H and appealing to 9.1, we may assume that Q := P¥ is fully
normalized in @ g . Then Q is fully normalized in 9, by 9.5, and thus & satisfies the
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saturation condition (I) in 1.5. It remains to verify the two parts of condition (II).
Thus we may take P to be fully normalized in 9.

By 9.4 there exists a fully normalized conjugate P’ = PY of P such that
X':=X”isin{Z,U, E, E’, A}. Then y can be chosen so that Ng(P)” < Ng(P’),
and similarly (since P is fully normalized) there exists y’ € Np(P’, P) such that
Ns(P’)”" < Ng(P). By 9.6, Ns(P)” = Ns(P’), so that if P’ satisfies saturation
condition (IT) then so does P. Thus, we may assume that X € {Z,U, E, E’, A}
and, in particular, that Z < X. Also, since @ g is saturated there exists a Dy -
conjugate P” of P which is fully normalized in 9, and hence in % by 9.4(b);
the preceding argument then shows that Ng(P) and Ng(P") are %-isomorphic.
We may therefore assume that P is fully normalized in @ g. Then P is fully
normalized in %g,(Cp(Z)), by 9.2.

If X € {Z, U} then fusion in Np(P) is controlled by fusion in Ng,, (P) or
in Nk, (P), by 9.2, and since 9y and D g are saturated, there is nothing more to
prove in these cases. Thus, we may assume that | X| > 8. By 9.3 we then have
P=X€e{E E A},orelse P < Cs,(E) with PNT = Se or with PN T
homocyclic and of exponent at least 4. In the first case, where P is elementary
abelian, we have Autg,, (P) € Syl,(Autp(P)) by 7.8 and 7.10. In the second case
we obtain Autg,, (P) € Syl,(Autp (P)) from 7.13. This establishes the saturation
condition (ITA).

Now let & = ¢g € Autg(P), where g € Np(P). Set Z/ = Z& . By definition,
we have N§ < Cp(P)Sp. Thus N, < Cs,,(Z'). By 3.13(b) there exists a €
Np(Ny, Sp) with (Z)* =Z.Set Q = P* andb=a"'g. Then b € Cp(Z) and
Qb = P. As P is fully normalized in g 5 (Cp(Z)), it follows from the “standard”
axioms for saturation in [BLOO03] — equivalent to those in 1.5 — that 8 := ¢} extends
to a @-morphism ¢ of Ng into Sp. That is, there exists d € Np(Ng, Sp) such
that d ! centralizes Q. Set § = ad. Then

g lg=g¢glad =g ghTd =b7d,
and so g~!g centralizes P. But also (Ng)* < N g since
(N2)® = (No)™ %8 = (Na)¥,
and Auty, (P)°s < Autg,, (P) by definition of Ny. Now
(Na)® = (No)* < (Np)® < Sp,

and thus ¢z is an extension of c¢g from P to a @-morphism of Ny into Sp. This
shows that & satisfies the saturation condition (IIB), and the proof is thereby com-
plete. O

In 2.6 it was shown that if 9 is saturated then a %@-signalizer functor 6p
determines an associated centric linking system and an associated p-local group
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(gSD,OD (D) = (SD, @SD (D), §£9D). Write Cgo = (S(), 9’70, 30), ng = (So', 9’70, ENPU),
Y= (S,% %), forYs, ¢,(D), when D is Go, G5, G, respectively. Theorems 8.8
and 9.7 therefore have the following immediate corollary:

COROLLARY 9.8. 4 is a 2-local finite group, and § is a 2-local group. [

THEOREM 9.9. For any fixed p, p = 3 or 5 mod 8, and for any integer of
the form q = p?", there is a unique o = ,, such that the fusion system %Fso(q)
constructed in [LO02] is isomorphic to 5. Moreover the associated 2-local finite
group constructed in [LO02] is isomorphic to 4.

Proof. The fusion system € = Fgo (q) is constructed as

(Fs,(Hg). Fsy ,(Kg)),

where Hy; = Hy is Spiny(q), Sq = So is a Sylow 2-group of Hy, Sy,4 = Cs, (U),
and K; = Ky, subject to a choice of embedding o of B; = Np,(U) in K4 such
that, for I = (Ng,(Su,¢). Nk, (Su,q)), Auty(Su,q) = GL(3,2) x C3. By parts

(a) and (d) of 9.7, the amalgam o = (H PRI BN K) is determined up to
isomorphism by these properties, so dg = Ay o = (Hy > By < K5). Thus
€ = (Fs,(Hs), Fcs, (v)(Ko)). By 1.10, Fs, (Ko) = (Fs, (S0), Fcs, ) (Ko))s
s0 €= (Fs, (Hy), Fs,(Ky)), and then € = F5(Gy) = F, by 3.7, completing the
proof of the first part of the theorem. The remainder of the theorem follows from
the uniqueness of the 2-local finite group associated to €, proved in [LO02]. [

To sum up: parts (1) and (2) of Theorem A are given by the construction of
G in Section 5, while parts (3) and (4) of Theorem A are given by the preceding
theorem. Part (5) is given by 7.9, 7.10, and the definition of X. Thus all parts of
Theorem A have been proved.

LEMMA 9.10. %F is frc-generated. That is,
F = (Ag(P) | P € "),

where F is the set of fully normalized radical centric subgroups in %, and Ag(P)
is the fusion system on P whose morphisms are the restrictions of members of
Autg (P) to subgroups of P.

Proof. This generalization of Alperin’s Fusion Theorem is well known for
saturated fusion systems on finite p-groups S; a short proof appears in Theorem
A.10 of [BLOO3]. A modification of this proof when § is a discrete p-toral group
appears in Theorem 3.6 in [BLOO0S5]. We sketch that proof in our special case,
where things are much easier.

Pick P, P’ < S and an %-isomorphism ¢: P — P’ such that ¢ is not in
A = (Ag(P) | P € F). Then ¢ = cg for some g € G. As in the proof of
Theorem A.10 in [BLOO3], using the fact that F is saturated, we may assume
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P’ is fully normalized in %. Pick P so that |7, N P| is maximal. If 7, £ P then
TN P <Nr,np(P), and as in the proof of A.10, after we replace P by Nr,(P)P,
the maximality of |75 N P| supplies a contradiction.

As Tr < P, 4.9(c) says that g € NG (T3). As Soo < Ng(T3), replacing P, P’
by PSco, P'Sco, We may assume Soo < P. In particular P is centric. Finally
choosing |P : Seo| maximal, and arguing as in the proof of Theorem A.10 in
[BLOO3], we first reduce to the case where g € Ng(P), and then show P is
radical, contradicting the assumption that cg ¢ . O

10. Radical centric subgroups

In this section, we determine the members of %', and make the necessary
preparations for obtaining embeddings among the 2-local groups constructed in
the preceding section.

LEMMA 10.1. Let Y € {H, K}, and let P < S with Np(P) <Y. Then the
following are equivalent.
(a) Peg™
(b) P €9¥.
(c) P contains every 2-element in Cy (P), and O,(Outy,, (P)) = 1.
Proof. As Cp(P) <Y, 8.2(a) says that P € %° if and only if P contains

every 2-element in Cy,, (P), and that this holds if and only if P € %},. Thus we
may assume P € %¢. As Np(P) <Y, we have

02(Autp (P)) = Oz(Auty, (P)).

Thus P € 9™ if and only if Innp (P) = Oz (Autp (P)) if and only if Innp (P) =
O2(Auty,, (P)) if and only if P € 9} if and only if O»(Outy,, (P)) = 1, completing
the proof. O

Recall from 4.5 that B? is the commuting product of “components” L1, Lo,
and L3, where each L; is isomorphic to SL(2, F).

LEMMA 10.2. Let P € 9%, set N = Nk, (P), R =S8p, Ji = L; N D, and
J = J1J2J3. For any subgroup X of Kp, and any i with 1 <i < 3, denote by
X; the projection of X N J in J;. Denote by 9; the set of subgroups of R; that are
isomorphic to the quaternion group Qg. Then the following hold.:

(@) Ckx(P) =< P.
(b) Zpel{Z,U}.
(c) PNJ = Py Py P3,and for each i with 1 <i <3, either P; = R; or P; € ;.
(d) Either
) P e{Cr(U), R},
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(i) P =P NJ and P; € 9; for at least two indices i, or

(iii)) P = (P NJ)(s) for somes € P—Cp(U), and either P3 € 93 or P; € 9;
for both i =1 and 2. Moreover, if P3 # R3 then O%>(N N J3) # 1.

(e) P € F%, and every N -invariant 2-subgroup of K is contained in S.
(f) If U’ is a fours group in K such that [P,U'| < Z,then U’ = U.
Conversely, any subgroup P of S which satisfies (c) and (d) is in Dg.

Proof. Set $ =1{J; |1 <i <3} andset Py = P;P,P3. Since $is Kp-
invariant, Py is N-invariant, and then Py < P by 8.2(b). Thus P; < P for all i,
and Py=PNJ.

Suppose that P; < U for some i. Then P* := (Pl.P) <U,and R* := (RZ-P)
is a P-invariant 2-group which properly contains P*. Pick r € Ng«(P) — P with
r2 € U. Then r centralizes the chain P > U > 1, and since U < N we conclude
from 2.2 that r € P. This contradiction shows that no P; is contained in U.

Set N* = Ny, (P;). Then N* = NN} N3 is N-invariant, so by 8.2(b),
O2(N;*) = P;. Let ¥ be the class of 2-groups each of whose finite subgroups is
cyclic. Suppose that P; ¢ 9;. There is then a unique maximal subgroup X of P; in
& of order at least 8. Since | X | > 8 there is also a unique maximal 2-subgroup V;
of J; in & containing X. Then V; is Nl.*-invariant, and 8.2(b) yields V; < P;. Then
also Autg, (P) < Ox(Autg,, (P)), and P; = R;. Thus, (c) is proved. It follows
from (c) that Cr, (P;) < P;, so Cgo(Py) < Pj. Since any element of K — BO acts
nontrivially on U, and since U < Py, we obtain (a) and (b).

Suppose next that no P; is a quaternion group. Then for all i we have P; =
Ri ¢9;. If D =G then Py = Cg(U) is of index 2 in P, and (d)(i) holds. On
the other hand, suppose that D # G. Since R; € 9; if D = Gy, we conclude that
D = G4. By 7.8(a) there exists an element x of Sp such that x induces a diagonal
outer automorphism on each J;. Here N NJ = Py and Py(x) < Sp, so as P
is @ g-radical it follows that x € P. Then Pj(x) = Cr(U) < P, and again (d)(i)
holds.

If Cp(U) # Py then there exists x € Cp(U) — J. As in the preceding para-
graph, D # G, and for all i either J; = SL(2,F;), or D = Gy and J; € 9;. As
[N;,x] < P for all i, O%(N;) is not isomorphic to SL(2, 3), and P; = R; for all i.
Thus P > (RN J){x) = Cr(U). Once again, we obtain (d)(i).

Now assume that (d)(i) does not hold. We conclude from the discussion above
that P; € 9; for some i and that P; = Cp(U). Suppose next that P = Py,
and that neither P; nor P, is a quaternion group. Recall that B = B(s) where
s € So, s centralizes L3, and s interchanges L and L,. One may now check that
N = (N N J){s) and that O>(N N J) < J3, whence P(s) < N. As P is Dg-
radical, s € P, contrary to the assumption that P = P;. Thus, either Py or P, is a
quaternion group. Since K/B® = Sym(3), a similar argument shows that for any
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two distinct indices j and k, at least one of P; and Py is a quaternion group. Thus
(d)(ii) holds in this case.

Now suppose that P # Pj. As Py = Cp(U) we then have P = Pj(s)
for some s € R — Cr(U). Then s interchanges P; and P,, and since some P;
is a quaternion group we get either Pz € 93 or P; € 9; for bothi =1 and 2. If
P3 = R3 then (d)(iii) holds. Thus we may assume P3 # R3, so that P3 € 23.
Also Rz ¢ 93, so that in particular D # Gg. Let N = N/Py. If P{ = R then
O2%(N) = 0%(Cn(35)) < O%(N}), while if P; € 2, then O*(N) = P;(d) or
Py (d)Oz(N3* ) for a suitable element d of order 3 in NN,. In particular if
03(N3* ) does not centralize 5, then Ng,(P) < O>(N), again contrary to R3 # P3
and P € J7,. Thus (d)(iii) holds, completing the proof of (d).

Suppose next that x is a 2-element in K — U, such that [P, x|<Z. If [P, x]=Z
assume that x is an involution. Since Cr, (P;) = Z(P;) < U, and all involutions in
L3 are in Z, it follows that x ¢ BY. But then x interchanges P; and P; for some
pair of distinct indices i and j, and so [P, x] £ Z. Thus no such x exists. This
proves (f), and shows also that P € %%

Let F be an N -invariant 2-subgroup of K with F' £ S. Then FP is a 2-group.
For any i, set S; = SN L;, and recall F;, N; are the projections of F N B°, NN B
on L;. Then F; is N;-invariant. It is a property of the group L = PSL(2, F) that the
intersection of any pair of distinct Sylow 2-subgroups is abelian (either cyclic or
a fours group), and therefore S; is the unique Sylow 2-subgroup of L; containing
P;. Thus F; < S;, and we conclude that F N B% < §S.

Now F = (F N B%)(t), where ¢ acts nontrivially on & := {L1, Ly, L3}. Thus,
there is an ordering (1/,2’,3") of {1, 2, 3} such that ¢ interchanges L1/ and L,/, and
fixes L3. Suppose that P £ B°. Then there exists s € P such that s interchanges
Ly and L,, and since (s,1) is a 2-group it follows that i = i’ for all i. Without
loss, we may assume that P < F, so that st € F N B%. Butthent € S and F < S.
Thus P < B9, and it follows from (c) and (d) that N; < N for all ;.

Suppose that P £ J. Then (d) implies that Cg(U) < P, and since P < B® we
get P = Cr(U). The Frattini Argument then implies that there exists an element
x of N which permutes the components L; transitively, and then (x,?) is not a
2-group. This shows that P < J, and a similar argument shows that there exists j
with P; #R -

Since P/ < F N B% < S, we have P! < S NS, sothat Sf < S for all .
Since (tVi) is a 2-group, we obtain N = Ry and Noy = Ry . Then Py # Ry,
and so N3 = GL,(3)". Then Nx(N3) = Cx(O?(N))N3. Since N3 < N we
have N = Cy (O?(N)) N3, and since Cy (O%(N)) is a 2-group we get N = N3/ P.
Thus, N = N1 N2 N3. On the other hand, there exists an element ¢’ of Ck,, (J3/)
such that ¢’ interchanges Ry’ and Ry/. Thent’ € P, by 7.1(b), contradicting P < J,
and completing the proof of (e).
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It remains to establish the final statement in the lemma. Thus let P < S such
that P satisfies (c) and (d). Then there exists Q < P such that 0 > Q; =~ Qg
for all i, and one checks that Cx(Q) = U < Q. Then Q € 9%, and hence also
P € 9%.

Set N = Nk, (P). As Ck(Q) = U we have O(N) = 1, and it remains to
show that P = O, (N). If (d)(i) holds, then P = Ror P = Cr(U), sothat N = R
or N/R = Sym(3), and in particular P = O,(N). Suppose that (d)(ii) holds. If
P = Q then it is easy to check that P = O,(N); so we may assume that P # Q.
Then P; = R; ¢ 2; for exactly one index j, N/P = Sym(3)?C,, and we are done
in this case.

Finally, suppose that (d)(iii) holds, set Py = PN J, and lets € P — J. Since
Py =Cp(U) we have N < M := Nk, (Py). Set M = M/ Py; it follows that N
is the preimage in M of C;(5). Thus it suffices to show that

(%) (5) = 02(Cz (5)).

If R; €9; then D €{Go, Gy, }, Py =0, R/Q is a 4-group, and every involution in
R/ Q has nontrivial fixed points on O3(M). Since N K (R) = R we conclude that
() holds in this case. We may therefore assume that R; ¢ 2;. Suppose that Py = Q.
Then M = Sym(3) : Sym(3), and P3 # R3. Then (d)(iii) requires O%(N3) # 1,
and hence N contains an element g of J3 of order 3. Then |O3(N)| =9, (5)is a
Sylow 2-subgroup of C; (03 (N)), and we have ().

If P3 = R3 ¢ 93 then P and P, are quaternion groups, M = Sym(3)? C»,
and N = Dy,. This yields (), so we are reduced to the case where P; = R; ¢ 9;
for both i = 1 and 2. Then P3 # R3, so O>(N N J3) # 1, and M = N with
(5) = O»(M). Again () holds, so the proof is complete. d

LEMMA 10.3. Let g € G and R < S such that R = RYR2R3, with R' =
RN L;g =~ Qg. Then U = U8 = Z(R), and R is special of order 28.

Proof. For each i # j we have R' R/ = R’ x R/, so that R is special with
center U€. Thus it remains to show U = U%. Set S = §/Soo. Then S has no
Qs-subgroups, so that R' N Soe # 1, and hence UE < Soo.

Set Y = Cr(E) and Yp = RN Seo, and suppose first that |R/Y | < 2. Then
|Yo| > 64, so as R has no elements of order 8 it follows that Yo = 7. Since
®(R) = Z(R), this is a contradiction and so we conclude that |[R/Y | > 4. Since
U& <Y, R/Y is elementary abelian, and is then a maximal elementary abelian
subgroup of Autg(E). Since the fixed point groups in E for the two maximal
elementary abelian subgroups of Autg(E) are Z and U, we conclude U = U¢. O

LEMMA 10.4. Let P € 9™ with |Zp| < 4. Then:
(a) P contains every P -invariant subgroup of D of order 4.
(b) Zpel{Z,U}.
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Proof. Let F be a P-invariant subgroup of D of order 4. Then |[F, P]| <2,
and so 8.2(a) implies that [F, P] < Zp. If [Zp, F] = 1 then F centralizes the
chain P > Zp > 1, whence F < P by 8.2(a) and 2.2. On the other hand, suppose
that [Zp, F]# 1. Then |Zp| =4 and Zp £ ®(P). By 8.3(b) we have Zp = U"
for some h € Hp. Then E? < Cp(Zp), and so P # Zp. Thus ®(P) # 1, so that
ZpN®(P)= Z, and F centralizes the chain P > Zp > Z > 1 of characteristic
subgroups of P. Thus F < P by 2.2, and (a) holds.

Now suppose that Zp # Z. Then Z3 = U for some g € Hp, and P8 <
Cu,(U) < Kp by 8.3(b). By 6.4 there exists k € Kp with P8k < Sp, and
replacing g by gk, we may assume P& < Sp. Then P¢ € 9 by 8.3(b) and 10.1,
and then 10.2 implies that P contains a subgroup R satisfying the hypothesis of
9.3, with g1 in the role of g. Then U = v by 10.3, proving (b). O

LEMMA 10.5. P € 9™ with |Zp| > 4 ifand only if P € AP or P = Cs, (E).

Proof. Let P < Sp. Suppose that |Zp| > 8. Then P = Cp(P) = Zp €
€4(Sp), by 7.9. If P € AP then 7.10 shows that O,(Autp(P)) = 1, whence
P €9™. On the other hand suppose that P ¢ AP . Then D = G, by 5.9 and 7.9, and
then 7.12 shows that P € AE for some u € U —Z. Now Autp (Ay) = Caya,) )
by 7.11(c). On the other hand, the definition of A4, preceding 7.11 shows that
Autr, (Ay) is an elementary abelian subgroup of Autp(A4,) of order 8. It follows
that Oz (Autp(Ay)) # 1. Thus P ¢ 9. Hence the lemma holds when |Zp| > 8,
so we are reduced to the case where |Zp| = 8.

If €4(P) = @ then P ¢ 9™ by 8.3(c). Thus we may assume €4(P) # @.

Suppose Zp ¢ EP. Then D # G by 7.7, and D # Gg by 5.9, so that D = G4.
Then Cs,, (Zp) € €4(Sp) by 7.8. But in that case P = Zp, and P is not centric.
Thus we may assume Zp € ED SetR = Sp.

By 5.9, 7.7, and 7.8, Hp is transitive on EC N Hp. Since E is normal in the
Sylow 2-group R of Hp, there is h € Hp with E* = Zp, P < R" and Zp < R".
In particular P < Crn(Zp), so that Po = P N Sé’o is of index 2 in P.

Now Zp is generated by the involutions in Py, and P — Py consists entirely
of involutions, and so Py is a characteristic subgroup of P. Let Rg be the unique
conjugate of 73 in R". Then R centralizes the chain P>RoNP>1,and so Ro<P
by 2.2. Thus Ry = T is weakly closed in P by 4.9(c), and so (h, Np(P)) <
Np(T»). Then Zp = E" = E and Autc,(g)(P) < O2(Autp (P)) by 7.13. Thus
if P € 9™ then P = Cgr(E). On the other hand if P = Cr(FE) then 7.13 says
P € 9™, This completes the proof. |

Recall from Section 4 that H acts on an orthogonal space V' of dimension 7
over F, and that there is a distinguished basis {x1, ..., x7} of V such that T acts on
Fx; for each i. Define Fp tobe Fif D = G, Fy if D = G4, and Fy,, if D = Gy.
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Let Vp be the Fp-span of {x1,...,x7}. Then the quadratic form f associated
with V restricts to a quadratic form fp on Vp, preserved by Hp.

Denote by A (Vp) the collection of all sets A of pairwise orthogonal subspaces
of Vp whose sum is Vp. For any subspace X of Vp, denote by X¥ the F-span of
X in V. For any A € A(Vp) define A¥ € A(V) by

A ={X¥ | X e A},

and define the type of A to be the nondecreasing sequence T = 7(A) of integers
given by the dimensions of the members of A. We will abbreviate such sequences,
using exponential notation. For example, 7(A) = 17 means that each member of
A is a 1-space, while 7(A) = 1°2 means that A consists of five 1-spaces and one
2-space. Write A (Vp, t) for the set of A € A(Vp) with t(A) =1t. For A e A(V)
and X a subgroup (or subset) of H (o), write Cx (A), Nx (A) for the set of all x € X
which acts on each member of A, and permutes the members of A, respectively.

LEMMA 10.6. Let A € A(V) with o € Cgy(A), and set T = t(A). Then H
acts transitively on A(V, T).

Proof. Since every member of F is a square, all nondegenerate subspaces of
V of a given dimension are isometric, and so the result follows from Witt’s Lemma.
O

LEMMA 10.7. Let D € {Gy,G}, let P € @y with Ny, (P) £ K, and set
N = Ny, (P). Denote by B(P) the set of N -invariant 2-subgroups of H , and set
B(P) = (B(P)). Then:

(a) One of the following holds.

(1) There exists A € A(Vp,17) such that N = Nu,(A) and P = Cygj, (A).
Moreover either
() P = D3, and N/P = Al(7) if D = Gy, while N/P = Sym(7) if
D # Gy,, or
(i) D = Go, P = Zs * Q}, and N/ P = Sym(6).

(2) D # Vo, and there exists A € A(Vp,1°2) with N < Ng,(A). More
precisely P = O2(Np,, (A))(t), where t acts as —1 on every point in A
and as a reflection on the line £ in A. Further, ¥ is one of the lines I;,
1 <i <3, from Section 4, and N/ P = Sym(5).

(3) P = 02(Np,, (E)).

(b) Ce(P) = P.

(c) B(P) < S. More precisely: B(P) = O(Ng (AY)) in case (a)(1),
O>(Ng (A))(t) in case (a)(2), and Cs(E) in case (a)(3).

Proof. Observe that U < P by 10.4(a). Set H* = H/Z. We first prove (a).
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Let O* be an Ny (P)-invariant elementary abelian 2-subgroup of Z(P*)
containing U™; for example as U* < Z(P*), O, = (U*Nu Py s such a sub-
group. Let A = A(Q) be the set of weight spaces of Q* on Vp; then A € (Vp)
and Ny, (P) < Ng,(A) = Ng, (AF). Let R = O2(Ng (AY)). As Ny, (P) <
Ny (AY) < Ng(R),

RN D < 02(Nu,(AY)) < 02(Ng,, (P)) < P

by 8.2(b). On the other hand P* centralizes Q* and hence stabilizes each member
of A¥. Further if Autp(Y) < (—1y) foreach Y € A, then P < RN D, so that
P = RN D = O2(Nu, (AY)) = O2(Ng,, (P)).

Suppose A is of type 17. Then each Y € A is a 1-dimensional P-invariant or-
thogonal space, so that Autp(Y) < (—1y), and hence P = RN D = O»(Nu, (P))
by the previous paragraph. Further, A = A(P), so that Ny, (P) = N, (A), and
as P = 02(Ng,(AY)), P = Cg,(A). If D = G it follows that (a)(1.i) holds,
so we may take D = G4. As [0, P]=1,0 € CH(U)(AF), so by 10.6 there exists
heH,®eA(H),and o’ € 0 such that o centralizes Ng (®) = N modulo Z, o’
centralizes ©, and (o, AF)" = (07, ©). In particular Ng,, (P) = Ng,, (P"). As o’
centralizes ®, 0’ = ro for some r € Ry = O2(Np (®)). We may regard Ry as the
core of the permutation module for S7 = Ng (®)/Ro. Thus r* is of weight 0, 2, 4,
or6in Ry. If o =g then [0, g] =z for g € N —O?(N), so that 0?(N) =Cy (0),
and hence if in addition r* is of weight 0 then Ng,, (P) = O?(N). In this case (a)
holds, so we may assume one of the remaining cases holds. Then N centralizes
o'ifreZandrzerRoifr ¢ Z, sothat Cy«(r*) = R;Cpn(ro)* by a Frattini
argument. Further, o centralizes Ry, so that

P = Cp,(ro) = Cp,(r) = Dg’, Z,4 % Q%, 7, x Q%, or Z4 % Q%,

for the respective choices of r*, and Ng,, (P)*/P* is isomorphic to the stabilizer
in S7 of r*, and hence is S7, S5 X Z3, S4 x S3, S¢, respectively. Soas RN D =
O2(Nu, (P)), r* is of weight 0 or 6, and hence (1) holds.

Assume next that A is of type 1°2, and let / be the line in A. Then

O>(Nmp(P)) = P

and P acts on each member of A. Let ® € A(V) be of type 1°2, [y the line in ©,
and Ng (©) = N. Then N = N1 N;(ty), where Ny = Cg(In), N2 = Cn(I3), tn
inverts IZJ\; and induces a reflection on /7, O2(N1) =~ QgDg, and N1/ O (N1) = Ss.
If D = G, then as above we can pick ® so that (o, A¥) is conjugate in H to (ro, ®)
such that o centralizes O2(N1), and r fixes each member of ®. Thus r = ryr, with
r1 € O2(N1), r2 € N2, and r{ is of weight 0, 2, or 4 in the permutation module
O>(N1)* for N1/O2(N1) = Ss. But again if ] # 1 then O2(Cy (ro)) does not
act on each point in ©, contrary to an earlier remark.
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Thus we may take ® = A¥ and H, = OZ(CHD (1)) = O2(N1) =~ A5/ Qg Dg
with P = O,(H1) < P by 8.2(b). Let H, = Cy,, (I1). Then H, is cyclic and
P> = O2(H>) < P by 8.2(b). Also there is t € Ny, (A) inverting I+ and inducing
a reflection on /. Then ¢ induces an automorphism in O, (Autg, (P)) on P, so
thatz € P as P € 9. Indeed P = Py P>(t).

If | P;’| <2then P* is elementary abelian with weight spaces of dimension 1,
and we obtain a contradiction from our treatment of the case A of type 17. Thus
|Py|>2,andif D = Gq then | Py’| = (g—¢)2/2 where g = |[Fp|=e==+1 mod 4.
It follows that o # . Next U < Q < P; P3 where Pz is the subgroup of P, of
order 4, so P,Cp (U) < Cs(U). As Autcg)(Seo) = Eg, P4 = O(P2) < Seo.
As | P4| > 2, 1+ = Cy, (Ps),and then as P4 < Soc N D, I¥ is one of the three lines
[; from Section 4. Thus (2) holds in this case.

Suppose Ny, (P) < Bh for some 7 € Hp. Arguing as in the first few para-
graphs of the proof of 9.2, there is Ry < P such that R} = R1 R2 R3 with
R, =Ry N Lh >~ Qg. Thenby 10.3, U =U h , contrary to our hypothes1s that
NHD (P) £ K. Thus we may assume Ng, (P) is contained in no Hp-conjugate
of Bp.

Suppose Z # Py < P is normal in Ny, (P) with ®(Pp) = 1. By the previous
paragraph, m,(Po) > 2, and so m,(Po) =3 or 4. If my(Py) =4 then by 7.11, 7.12,
and as Ny, (Po) acts on no 4-subgroup of Py, Auty,, (Po) = Cgr(p,)(z). Thus
P = 02(Ng, (Po)) by 8.2(b), and P* = Eg4, so that A(P) € (D) is of type 17, and
we obtain a contradiction from our treatment of this case. Therefore m,(Py) = 3.
Hence by 7.8, Py is Bp-conjugate to E or E’, and in the latter case EE’ =~ E1¢
is Sylow in Cg,, (E’). In the latter case a P-invariant Sylow 2-subgroup P; of
CH/, (Pp) satisfies [P, P1] < Po < Cp(P1); so P; < P by 2.2, and we obtain a
contradiction from our treatment of the case m,(Py) = 4. Thus Py = E¥ for some
g€ Bp. LetS1 =S80 ND. Then [S‘lg, Pl < S‘lg NP Ny, (P); so Slg < P by
2.2. Hence S; = Slg by 4.9(c), and so Py = E. Similarly Cs,, (E) < P, and then
(3) holds by 8.2(b).

We have reduced to the case where Z is the largest elementary abelian 2-sub-
group of P normal in Ny, (P). It follows that Q is of symplectic type and hence
(cf. [Asc86, 23.9]) O = Q¢ * Z(Q) with Qg extraspecial and Z(Q) cyclic of order
2 or 4. Further we may choose Q¢ with U < Q. As Inn(Q0) = Cau(0,)(Q4)-
P = QoCp(Qo).

As [E,P]|<[E,S]<U < P, E acts on P, and similarly E acts on Q¢. Thus
[E,Cp(Qo)] < Cy(Qp) = Z and if E does not centralize P* then E does not
centralize Q*. Then as E acts on Qg, E induces a transvection on the orthogonal
space Qg with center U*. This is impossible as U™ is a singular point in Q. Thus
E centralizes P*, so that E < P by 2.2, and hence E* < Z(P*); so replacing Q
by Q(ENHD(P)), we may assume E < Q.
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Finally let ® € A(V) be of type 17 such that each member of AF is a sum
of points in ®, and let Ry = O2(Ng (®)). Thus Q centralizes ®, Q < Ry, and
we view R as the core of the permutation module for Ny (©)/Ro = S7 on ©.
Thus we identify f* € Q* with the points of ® inverted by f. Observe A¥(E) =
{lo, 11, 2,13}, where l[o = Cy (E) is a point. As Z(Q) is cyclic, foreache € E—Z
there is f € Q with [e, f] = z, and hence | f* Ne*| is odd. It follows that for at
least two i € {1,2, 3}, the eigenspaces of f on /; are 1-dimensional. Hence A is
of type 1°2 or 17, cases we have already handled. This completes the proof of (a).

Set X = Cy(P). Since Z = Zp by (a), we conclude from 8.3(a) that if
X < P then X = Cg (P), so that (b) holds. Thus to prove (b), it suffices to show
X<P.If P=Cg,(E)then A< P, and then X < P since Cy(A) = A. On the
other hand, if P satisfies (a)(1) then X < Cy (AF). If A is of type 17 then P has
index at most 2 in O2(Ng (AF)) and X = Z. If A is of type 1°2 then P = Py (t)
where Py = O»(Ng,, (A¥) and where ¢ inverts every element of Cg (Py). Thus
X < P in all cases, establishing (b).

Let Q € B(P), Ry our candidate for B(P) in (c), R, = Ng,(Q), and Q2 =
Ng(R1). Then Q> acts on R;. Observe that P € %fq and Zp = Z by (a) and
(b), so P € ¥ by 8.3(a). Thus the same holds for any overgroup Q’ of P in S; so
Q' € ¥ and Ng(Q’) < H by 8.3(a). In particular Q> and No(R>) are contained
in H.

We claim that Ng (R>2) acts on Ry, so that Q2 = Ng(R>). In case (a)(1), from
the treatment of that case above, each of R; and P, and hence also R, has A as
its set of weight spaces, so Q5 acts on O>(Ng(A)) = R;. Similarly in case (2)(2),
each of Ry and P, and hence also R, has the same set of 1-dimensional weight
spaces, so again Q» acts on R3 = O2(Ng(A)), and hence also on R} = R3(t) as
t € P acts on Q,. Finally in case (3), O, acts on 7> by 4.9(c), so that O, acts on
ScoR2 = R;. This completes the proof of the claim.

Next from the structure of Ny (R1) and Ny, (P), Nu,, (P) acts on no nontriv-
ial 2-subgroup of Ngg(R1)/R1; so Q> < Ry, and hence also Q» < R». Therefore
as Q is finite, Q = O, < R, completing the proof of the lemma. O

LEMMA 10.8. Let D = Gg and HY = Hy/Z. Write R(Hy) for the set of
Py < S such that Z < P and P* is the radical of some proper parabolic of
H{§ = Spe(2) containing S§.
(1) If P e9™ and Np(P) < H then P € R(Hy).
(2) R(Ho) € D™

3) By = CH; (a*), where a* is the involution of type ay in Z(Sy). For each
P € R(Hy) with O2(By) < P, Np(P) < Kp.

(4) Np(P)<Hpand P € 9?591[/0 (Hy,) for each P € R(Hg) with O2(Bg) £ P.
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(5) NH,(A)* is the maximal parabolic isomorphic to L3(2)/Eea.
(6) NH,(E)* is the minimal parabolic not contained in B{.

Proof. Assume the hypothesis of (1). Then by 10.1, P contains each 2-element
in Cg,(P),and O2(Np,(P)/PCh,(P))=1. Hence as Hj = Sp¢(2), P € R(Ho)
by the Borel-Tits Theorem. Thus (1) holds.

Next U is the unique normal 4-subgroup of Sy, so that U* is generated by the
unique involution in Z(S{) lifting to an involution of Hy. As Hy is the covering
group of Spg(2) and Bg = Ny, (U), it follows that the first statement in (3) holds.
By 10.3, O2(By) is weakly closed in S¢ with respect to D and so the remaining
statement in (3) follows.

Next, by 7.10, Autp (A) = L4(2) and so Ny, (A)/A = L3(2). This implies (5).
Also N, (A)* contains two minimal parabolics: Np,(A4)* and Y, where Yo =
Nu,(A) N Np(E) = Ng,(E). Thus (6) holds.

Let P € R(Hp) with O2(Bo) £ P. Then Ng,(P)* contains the minimal
parabolic Y;'; so Ng,(P) is Yo, Nu,(A), or the preimage of the third maximal
parabolic of H, isomorphic to S/ E3,. In the first two cases Z = Zp from the
action of Np(A) on A, and in the third case P =~ Z4 * Q§ and again Z = Zp. Thus
Np(P) < Np(Z). As So < Np(P) and Sp € Syl,(D), P contains each element
in Cp(P) by 5.8 and so P € %€ by 8.2(a). Then Np(P) < Hgy by 8.3(a). Also
So = Sy, actson P and as Cs,(P) < P, P € 9?%% (Hy,). Similarly Np(P) <
Hy, and P = O>(Np(P)), so that P € 9gw0 (Hy,) which completes the proof
of (4). Then (2) follows from (3) and (4). O

PROPOSITION 10.9. Let P € 9. Then

(a) There is no nontrivial Np (P)-invariant subgroup of Cg(P) of odd order.
(b) P e F*.
(c) One of the following holds.

(1) Pe AP,

(2) P =Cs,(E),or

(3) P € 9¥ for someY € {H,K},and Ng(P) <Y.

Conversely, every subgroup P of Sp which satisfies one of the conditions in (c) is
in 9,

Proof. Suppose first that |Zp| = 2. Then Np(P) < H by 8.3(a), so that
P € 9 by 10.1. Assume that Np(P) £ B. Then 10.7(b) and 10.8(4) say that
Cg(P) < P, so that (a) and (b) hold and P € ;. Then (3)(c) follows from 8.3(a).

Suppose next that either |Zp| = 2 and Np(P) < B, or |Zp| = 4. In the
latter case, Zp = U and Np(P) < K by 10.4 and 8.3(b); certainly Np(P) < K
in the former case. Thus in any event, Np(P) < K, so that P € Qbrlg by 10.1. Then
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Ck(P) < P by 10.2(a), and P € F% by 10.2(e). Thenas U < P, Cy(P) <
Cu(U) <K;s0Cy(P)<Cg(P)=<P,and hence P € F¢;. Now it follows from
parts (a) and (b) of 8.3 that Cg(P) < P and (a)-(c) hold.

If |Zp| =8then P =Cg,(E) by 9.5. Then A < P, and so P € ¢ by 8.3(d).
Also, it follows from 7.13 that (a) holds, and we have (a) through (c).

If |Zp| > 8then P € AP by 9.5. Then 8.3(d) yields (b), and 7.10 yields (a).
Thus, we are reduced to establishing the final statement in the theorem.

IfPecAP or P = Cs,(E) then P € 9™, and Np(P) £ H UK, by 7.10
and 7.13. Finally assume P € 9y for some Y € {H, K} with Ng(P) <Y. Then
10.2, 10.7, and 10.8 yield Zp € {Z,U} and P € FY,, so that P € F° by 8.2(a),
and P € 9 by 10.1. |

PROPOSITION 10.10. Let P € 9™, let B(P) be the set of finite Np (P)-in-
variant 2-subgroups of G, and set B(P) = (B(P)). Then B(P) < S, and one of
the following holds.

(1) P € AP and B(P) = P.
(2) P =Cs,(E) and p(P) = Cs(E).

(3) There exists Y € {H, K} such that P € 9%, Np(P) <Y, B(P) € Fg(Y)™,
and Ng (B(P)) <Y.

Proof. Set N = Np(P), let R be a finite N -invariant 2-subgroup of G con-
taining P, and set Ry = Nr(P).

If P € AP then N = Ng(P) by 7.10; so Ry < O»(N) = P, and (1) holds.
Suppose that P = Cg,, (E). Define R; by R; = Ngr(R;—1) fori > 1, and set
M; = NG (R;). Set M = Ng(Cs(E)). By 7.13, Cpp (E) = X x O2(M), where X
is a free normal subgroup of M, M/Cyr(E) = GL(3,2),and M = (X xCgs(E))N.
As Ry is N-invariant, we get Rg < Cg(FE), and Ry = Ty {wo) for some k > 2. By
4.9(a) and 7.13, Ng(R;) < M. Then a straightforward induction argument yields
R; <Cg(FE) for all i, and thus S(P) < Cs(E). Since Cg(FE) is the union of finite
N -invariant subgroups, we conclude that 8(P) = Cs(FE), and (2) holds.

By 10.9(c) we are reduced to the case where there exists ¥ € {H, K} with
P €9y and Ng(P) <Y . Suppose further that B(P) < S, and set M = NG (B(P)).
As P < B(P), and since P € F° by 10.9(b), we conclude B(P) € F and Zg(p) <
Zp.If N <H and N £ K then 10.7 yields Zp = Z, and so Zg(p) = Z, and then
M < H by 8.3(a). On the other hand, suppose that N < K. Then U is the unique
4-group in K which centralizes P/Z, by 10.2(f). Since we are assuming that
B(P) < S, it follows that also U is the unique 4-group in S(P) which centralizes
B(P)/Z, and hence U is the unique 4-group in B(P) which is normal in M. Then
8.3 says M is contained in H or K, and since Ny (U) < K we get M < K. Thus,
M<Y.
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We now show that S(P) < S. If N < H and N £ K, this follows from
10.7(c) and 10.8(4). Suppose N < K, and set R; = RN K. Then Rg < R; < S by
10.2(e). Also, 10.2(e) says that P € %, and hence Ry € F%. As U is the unique
normal 4-subgroup of Ry, we have Nr(R;) < Nr(U). Since Zg, < Zp < U,
it follows from 8.3 that Ng(R;) is contained in H or K, and since N (U) < K
we get NR(R1) < K. Then R = Ry, and so R < S for each R € B(P). That is,
B(P)<S.

In order to complete the proof of (3), it remains to show that B(P) € FY. Let
O be the preimage in M of O, (Autps(B(P))). As M <Y we have 0(B8(P)) =
O(Cg(B(P))) =1, by 8.4 and 10.9(a). Thus Q is a 2-group, Q € B(P), and
0 = B(P) € F" as required. O

11. Theorem B and embeddings

We begin the section with a refinement of Theorem 5.8.

THEOREM 11.1. Let G be the group Cos, identify So with a Sylow 2-sub-
group of Gy as in Theorem 5.8, and set Fo = Fs (Go). Let A: Gy — Gy be the
canonical homomorphism A: g — g induced by the inclusion maps of Hy and K
into Gy, and let Gy be the 2-local finite group (S, Fo, 928) associated with G as
in Proposition 2.77. Then there is an isomorphism (in the sense of 2.10)

(e, B): %o — %o,

in which o: Fg — % is the identity map on objects and, on morphisms, o Cg > Cg;
and where B: £§ — L is the identity map on objects, and

Bp,o:Morg, (P, Q) — Morg, (P, Q)
is given by 0g(P)g +— g for P and Q in £y and g € Ng,(P, Q).

Proof. Recall from the discussion following 8.4 that there is a surjection
A:Gog — G, where A may be regarded as the “identity map” on Ho U Ko, and
ker(¢p4) = ker(A)|pr. As ker(¢pq) = ker(A)ps < ker(4), 8.7 yields Xo C ker(A).
Thus 6p(P) < ker(A) for any P € %(. Then since 0(Cg,(P)) =1, the lemma
follows from 5.8 and the last paragraph of 2.13. U

We may now establish Theorem B. Part (1) of Theorem B follows from the
construction of Gg in 5.8, and part (3) follows from 10.1. Part (2a) holds since Hy
and Ky are finite while the nontrivial elements of X are torsion-free. Thus it only
remains to verify part (2b) of Theorem B.

As we just saw during the proof of 11.1, there is a surjective homomorphism
A:Go — Go = Cos induced by the inclusion maps of Hy and Ky into Go. Set
My =N Go (A), and denote by C the colimit of the subgroup amalgam defined by
the inclusion maps among the intersections of the members of J := {Hy, K¢, Mo}.
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Then there is a surjective homomorphism f: C > Gpanda surjection §: Go — C
with §8 = A. Set M = Ng(A). As seen in the proof of 7.5, M < G and ¢p4: M —
My is the restriction of A to M. Thus ker(8) = (ker(¢4)©°), and then part (2b) of
Theorem B follows from 8.7. d

For any i > 0, set m; = 2/71, o; = Vo', Gi = Go;, Si = SN Gj, and
F; = Fs,;(G;). Write A for the poset N, under the usual total ordering. There is
then a directed system of embeddings of fusion systems

§ =i, Fi = Fjli<jen.

where (; ; is an inclusion map, and Fo = Fg,(Go) is the fusion system of Cos.

Let ¢;: F; — & be the inclusion, and observe that ¢; ot; ; = (; fori < j. For
i,j € Awithi <jand P € F, write %; (P) for the set of finite Ng, (P )-invariant
2-subgroups of G, and set B; (P) = (®B;(P)) and B; ; (P) = Bi(P) N G;.

LEMMA 11.2. Leti, j € Awithi < j, and let P € F°. Then
(@) Bi(P) e F,
(b) Bi.; (P) € T and
(©) Bii(P)=P

Proof. Set D = G;, % = %;, N = Np(P), and B = B;. Also set Q = B(P),
D=Gj,9=%, P=p;;(P)=0QND,and N = Nj(P). Since P € F°
by 10.9(b), it follows from 8.2(a) that P € %¢ and that Q € F¢. If P € AP o
P = Cg, (P) then Q P or Cg(F) by 10.10. Then 10.5 says Q € ¥, P = P
or Cs; (E), and P € 9. That is, the lemma holds in these two cases.

By 10.9 we may assume that Np(P) <Y for some Y € {H, K}, and that
P € 9y . Then (a) is given by 10.9 and 10.10. In order to complete the proof of
(b), it remains to show that P € @Jr . Let R be the pre-image in ¥ of O,(Aut ]V(ﬁ ).
As in the final lines of the proof of 10.10, we find that 6; (ﬁ) = 1; hence R is a
2-group, and since R is N-invariant we get R < 0. Then R = P and P € 9?]’ as
required.

Finally suppose i = j. Here P < P and Ng, (P) < Ng,;(P), and since P € ¥}
we get Autz(P) < Op(Autg; (P)) =Inn(P). Then P= PCp(P)=Pas P €%y,
and (c) holds. O

LEMMA 11.3. Let 8, 6o, and 0; = 85, be the signalizer functors on F, F,
and %F;, respectively, given by 8.8. Leti, j € A withi < j, and let P € F°. Then

0:i(P)=0(Bi(P) NG =06;(Bi,;(P)NG;.
Proof. Recall that by definition,
0(P) = O0(Cg(P))Cx(P) and 0;(P)= O(Cg,;(P))Cxng, (P).
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But O(Cg(P)) = O(Cg;(P)) = 1 by 10.9(a), so that 6;(P) = 0(P) N G;. If
P € A% then B;(P) = Bi,j(P) = P, and the lemma follows from the preceding
observation. If P = Cg;(E) then B(P) = Cg(E) and B; ;(P) = Cs;(P) by
10.10, and the lemma then follows from 7.13(d). If P € Fg, (Y N G;)™ for some
Y € {H, K} then also B(P) € Fs(Y)™ by 10.10, and 6; (P) = 0(B(P)) = 1. The
lemma holds trivially in this case, and there are no more cases to consider, by 10.9.

O

LEMMA 11.4. F° ={B;(P) | P € FF, i > 0}.

Proof. Let B = {,3,(P) P € FF,i > 0}. Then B C F° by 11.2(a). Let
PeF* If P € AC then P < G; for some i, and P = ,Bl(P) If P= CS(E) then
P = ,BO(CSO(E)) by 10.10. Suppose that P € Fg (H)'™, such that Ng(P) <H
and Ng(P) £ K. The possibilities for Ng(P) are listed in 10.7(a), and we shall
deal with them case by case.

In case (1) and (2) of 10.7(a), Ng(P) = NH(A) for some A € A(V, t), with
t=170r15,2. Let O = Q2(02(Ng (A))). Then Q is finite; so O < G; for some
i > 0. Further A = A(Q) is the set of weight spaces of Q on V, and as Q <Gy,
A = OF where O is the set of weight spaces for QOonV= Ve, If =17, let
P=Q =P, whileif t = 17,2, let P = O2(Ng, (®))(t), where ¢ is as in 10.7(a).
Then P € % and P = B;(P) by 10.7(c).

It remains to consider case (3), where P = O>(Ng(E)). We take P =
O2(NHunG, (E)), obtaining B1(P) = P again from 10.7(c).

By 10.9(c) we may now assume that Ng (P) < K, sothat P € Fg(K)*©. By
10.2 we have P N BY = P, P, P3, where Pk =PNL & 18 either a quaternion group
or a Sylow 2-subgroup of L. Since K is locally finite, and since 10.2 shows that
Ng ([5) / P is finite, we may choose i sufficiently large so that P := P N G; has
the following properties:

(1) For all k& for which ﬁk € Syl,(Lg) we have |P N Lg| > 16, and for all other
k wehave PN Lj = Pg.

(2) Ng(P) = Ng(P) = Ng,(P)P.

Set N = Ngng, (P) and N = Ng(P). It follows from (1) and (2), and from the
final statement in 10.2, that P € Fg, (K N G;)™ and that N < N. AsN <N,
P < Bi(P), so that it remains to show §; (P) < P.

Let P <R € 973(P) and set Rp = RN K. Then R < § by 10.2(e). As
N = Ng, (P)P (Ro, P) is an N -invariant 2- -group, so since P € F" we conclude
that Ry < P. By 10.9(b), P € F¢, so Rp € F°. By 10.2(f), U is the unique normal
fours group in Rp, and since Zg, < Zp it follows from 8.3 that Ng(Rp) < K.
Then Rp = R, and the proof is complete. O
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12. Limits, and Theorem C

Our aim in this section is to introduce limits of directed systems of p-local
groups, and to obtain Theorem C as an application. See for example [Jac80, §2.5]
for a discussion of directed systems and their limits. Theorem D will then be
obtained as a corollary to [LO02, Th. 4.5].

Let (A, <) be a directed set. For A € A, write A(A) for{u e A | A < u}. A
subset 2 of A is closed if A(A) C Q for all A € Q. In particular, each of the sets
A(R) is closed.

Recall the notion of “pre-local group” from 2.4. Fix a prime p, and assume
that for each A € A we are given a pre-local group 9, = (S, %,,£,), where each
S is a p-group. We write €, for Obj(£}), and given subgroups P and Q of S}
we write Hom, (P, Q) for Homg, (P, Q), and Mor, (P, Q) for Morg, (P, Q) if P
and Q are in €. Assume that for all pairs (4, u) with A < in A, we are given
an embedding

(‘A,u» IBA,M): G — G,
of pre-local groups (cf. 2.10). We may write simply 8, ,, for the pair (¢4 ;. B, .)-
We assume further that

6= (,B)L,mcgk - (QM)ASMGA

is a directed system of pre-local groups. That is, we have ,,., 0 B, ,, = B3, when-
ever A < u <vin A, and each 8, , is the “identity morphism” on 9, , consisting
of a pair of identity functors.

Let S := S be the limit of the A-directed system of p-groups

(A S — SWa<p-
By [Jac80, 2.8], the limit exists and is a group, and there are monomorphisms
ty: Sy — §, compatible with the monomorphisms ¢, ,,. We may then view all of

these monomorphisms as ordinary inclusion maps, in order to obtain the following
result:

LEMMA 12.1. S = J;cp Sa, and S is a p-group. O

Let P and Q be subgroups of S. For any ¢ € Inj(P, Q) and any A € A, define
¢, to be the restriction of ¢ to P N Sy, and set

Ay ={L € A|¢) e Homy (P NS, 0NSH}.

Define Homeo (P, Q) to be the set of all ¢ € Inj(P, Q) such that Ay contains a
nonempty closed subset of A. As A is a directed set, each pair of elements of
A has an upper bound, and it follows that the composition of ¢ € Homeo (P, Q)
with ¢ € Homeo (@, R) is in Hom (P, R). Thus we may form the category oo,
whose objects are the subgroups of .S, and whose morphisms are given by the sets
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Homeo (P, Q). Moreover, if P and Q are subgroups of Sj and ¢ € Homy (P, Q),
then ¢ € Homo (P, Q). This natural inclusion of sets may be denoted

t):Homy (P, Q) — Homuo (P, Q).

Allowing P and Q to vary over the set of all subgroups of S}, ¢, is then an em-
bedding of fusion systems (cf. 2.9). We record this in the following lemma, whose
proof is straightforward and left to the reader.

LEMMA 12.2. % is a fusion system on S and 1): F ) — F o is an embedding
of fusion systems.

Recall that € is the set of objects of the linking system &£, . For P € €, there
is then a subgroup B, (P) of S defined by

BrP)= ) Biu(P).

HeA(A)
Note that for any u € A(A), we have B, (P) = B, (Ba,,(P)). Set

oo ={Ba(P) | A €A, P €€,

Definition 12.3. Let 6 be a category and A = (Cy, ¢y, ,: A < ) a directed
system in €. A family ¥ = (y,: Cy — C: A € A) of morphisms in € is said to be
compatible with A if forall A < pwin A, y; =yuocy -

Now specialize to the case where €€ is the category of sets. A compatible
family X is said to be nearly injective on A if

c = Jn@,
A€A
and for each A € A, whenever a,b € C, with y,(a) = y, (b), then there exists
u € A(A) with B, (a) = B, (b). For example if y,: C; — C is injective for
each A € A, then X is nearly injective.

Now take A = A(®) to be (€,, B4, ;A < ), and observe A is a directed
system in the category of sets, if we regard f, , as the function from €, to €,
defined by B, ,,: P — B3, (P). We say that A is nearly injective if X (A) is nearly
injective on A(®), where X (A) = (8,:€) — Ob(£x): A € A). Similarly define
& to be nearly injective if A(®) is nearly injective.

LEMMA 12.4. Assume X = (y,:€, — C: A € A) is nearly injective on A(®)
and ' = (8,:€, — D: A € A) is a family of functions compatible with A(®).

(1) Suppose A,v e A, P €€y, and Q €€, such that By(P) =c = By(Q). Then
there exists 1 € A(A) N A(v) such that R = By ,(P) = B, (Q). Moreover

Bu(R) =c.
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(2) 6:C — D is a well-defined function, where 6(c) = §;(P) for A € A and
P €€, such that y,(P) = c.

(3) If T is also nearly injective on A(®) then § is a bijection.

Proof. As A is directed there is n € A(A) N A(v). Set P’ = B, ,(P) and
Q/ = ﬂv,n(Q)- Then
Bn(P') = Bi(P) = P = B.(Q) = By (Q").
As X is nearly injective, there exists ;> n with 8, ,(P’) = R = f,,,(Q’). Then
,B)L,M(P) = ﬂn,u(ﬂk,n(}))) = R, and similarly 8, ,(Q) = R. Since B, (R) =

Bu(Ba,u(P)) = Pa(P) = c, (1) holds.

To see that § is well defined, suppose that §; (P) = 8, (Q) for some v and some
Q €%¢,. Choose p as in (1). Then 83 (P) =8, (B, u(P)) = 8u(Bv,u(Q)) =8.(Q)
and so y is well defined, establishing (2).

Assume the hypothesis of (3). Then by (2) applied to I', the map a: v, (P) —
8, (P) is a well-defined function from D to C, and visibly « is an inverse for §; so
(3) holds. |

We now assume that & is nearly injective, and define a category £, whose
set of objects is €0, and which will be shown to be the direct limit of the directed
system (B ;.0 L1 —> Lu)a<, of categories.

Let P, Q € 0. Then there exist A € A, and P, Q € €, such that P= Bai(P)
and Q = 8,(Q). In the following discussion, leading up to 12.5, we take A, P,
and Q to be fixed. Define Moroo(ﬁ , Q) to be the set of equivalence classes [ /] of
mappings

[:Qr — | Moru(By,u(P). B3, (Q))

HESy

where

(i) 7 is a nonempty closed subset of A(4),

(i) /(1) € Moru (B, (P). B1.,.(Q)) for all pt € 2y,
(iii) Bu,v(f (1)) = f(v) whenever p < v,

and where two such mappings f and f’ are defined to be equivalent if they agree
on a nonempty closed set. There is then a well-defined composition

Moroo(QA, 13) X Moroo(ﬁ, Q) —> Moroo(ﬁ, ﬁ)

for any R €. Namely, one may assume A chosen so that also R= B (R) for
some R € €. Then, for any [g] € Moreo(B(Q), BA(R)), define [g] - [f] to be
the equivalence class of the mapping g - f, where (g- f)(i) = g(u) f (). This
defines the category £o. Notice, using 12.4 and increasing A if necessary, that
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these definitions are independent of the choice of P, Q, and R. Thus £, is well
defined.

For any y € Mor, (P, Q), there is an element [ fy] of Moroo(ﬁ, Q), defined
by fy(u) = Ba,,(¥) for any u € A(A). The map B,:€, — € extends to a
functor B: £ — Lo, Where B is defined on morphisms by B, (V) = [ fy].

LEMMA 12.5. (By: ¥ —> Loo)ren is the direct limit of the nearly injective
directed system L = (B, ;- £3 —> £,.) <y, of categories.

Proof. Let (yy: &) — 6)ca be a family of functors compatible with the
directed system L of categories. By 12.4.2, we can define a function y:€és, —
Obj(€) by y(P) = y,(P) for P € €o, where P €€, and P = B, (P).

A similar argument allows us to define y on morphisms: Let [ f]€Morso (13, Q)
and pick a representative f of [ f]. We may choose A so that P = Bi(P) and
Q = B,(Q) for some P, Q € €,, and so that A € Q. Setting = f(A), we have
Y € Mory (P, Q) and B, (¥) = [f]. We now “define” y([ f]) to be y;(¥). As in
the preceding paragraph, if y; (1) = y,,(¢) for some v and some ¥, -morphism ¢,
we may replace ¥ and ¢ by their images under the maps 8, , and B, ., and reduce
to the case where A = v. Then B, (V) = Br(¢) = [f], whence f(A) =¥ = ¢,
and y is well defined on morphisms.

It is now straightforward to check that y is a functor, and y is then visibly the
unique functor such that y; =y o 8, forall A € A. O

There is a functor 7e0: oo — Foo, defined as follows. As a map from
Obj(¥0) to Obj(Foo) We take 7o to induce the identity map on €oo. As a map
of morphisms, define 7o ([ f]): P — Q by

oo ([f D x = 7 (f (1)) (x)

for any u € Qf such that x € B, ,,(P). The definition is independent of u, and
the verification that 7o ([ f]) is in Home (P, Q ) is straightforward, as is the veri-
fication of functoriality.

Next, define a family of monomorphisms of groups

§=b00=(p: P — Autg(P)py .

as follows. Let P € €, with P = Bi(P), and let x € P.Then x € Ba,u(P)= Py
for some u € A(A). Define §5(x) to be [gx], where gx(v) = B,v(8,(x)) for
v € A(n). The verification that each §5(x) is in Autg,, (13)) and that §5 is a
monomorphism reduces to the corresponding facts concerning the family §,, of
monomorphisms associated with ¢, .

Henceforth £, will denote the triple consisting of the category %o, the func-
tor 7o, and the collection §o, of monomorphisms.
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LEMMA 12.6. Let P, Q € €.
(a) P acts semiregularly on Moroo(ﬁ, Q) viax:[f]+6p x~H-[f].
(b) The orbits of Z(ﬁ) on Morw(ﬁ, Q) are the fibers of To.

Proof. As 8 p: J N Autg_ (ﬁ) is a monomorphism, the action in (1) defines
an injective representation of P on Morg (P, Q). Let[f] e Moroo (P, Q), AeA,
and P, Q €€, with P= BA(P) and Q =,(0). Letx € P, and suppose that [ f]
is a fixed point for & 5 (xx). Without loss of generality, we may assume that x € Py
and that A € Q¢. Set ¢y = f(A) and ¢ = 7 (¥). Then 6, p(x)-3¥ = ¥, and hence
by conditions (B) and (C) in 2.4, ¢ = (8, p(x)-¥) = cx¢. Thus as ¢ is injective,
it follows that x € Z(P), and then 2.4(A) yields x = 1. Thus (a) holds.

We next prove (b). Let [ f], [h] € Morw(ﬁ, Q) We may assume that A(1) =
Qr = Qp. Then neo[ f] = moo[h] if and only if for each € A(X), m, (f (1)) =
mu(h()). As 9§y, is a pre-local group, this holds if and only if there exists z,, €
Z(Py) with h(p) = 8y,p, (z) - f(1). (cf. 2.4(A)). But

810,p, (zp) - f () = h() = B . (h(Q)) = Ba,u(@Ba,p, (z2) - f(X))
= Baur,p, (22) - Ba,u(f (X)) =8u,p,(22) - f(1).

By (1) applied in %, this holds if and only if z;, = z,. Therefore we have shown
that oo [ f] = oo [h] if and only if for all u € A(A), zy =z, € Z(Py) and h(p) =
8u,p, - f(u). Since P is the union of the groups P, for u € A(A), we conclude
that oo f] = 7eolh] if and only if z; = z € Z(P) and [h] = §p(2)-[f1=1[f]z
Thus (b) holds. O

The fusion system o is in general “too large”, in various ways. In particular,
oo Need not map morphism sets in £, onto homomorphism sets in %, and as
a result these homomorphism sets are in general too large for ¥, to serve as the
fusion system in the limit of the direct system &.

The smallest fusion system on So, containing 7o (Moroo(ﬁ, @)) for all P
and @ in €5 Will be denoted Im(7so). If each 9§, is a p-local finite group then
Im(so) will contain ¢y (%)) for all A, as a consequence of Alperin’s Fusion The-
orem. More generally, set

Fe = (Im(700), 1A (F) | A € A).

Set
Let ¢ € Homy (P, Q), with P and Q in €,. By 2.4(A) there is ¥ € Mor, (P, Q)
such that )y () = ¢. Let A < u <v in A. Condition (MG2) in 2.10 yields:

(12.7) Ty (Baw W) [Py = 70 (B (Br,u (W) Iy =70 (Ba,n(¥)).
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Definition 12.8. We say that the element u of A(1) is ¢-good provided that,
for all v € A(u), my(Ba,,(¥)) is the unigue member of Hom, (P, Q) which
restricts to (B84, (¥)) on Py,. Denote by Ey the set of all ¢-good elements
of Ag.

LEMMA 12.9. (a) Either of the following conditions implies that Y is a
pre-local group.

(1) 7o Moroo(ﬁ, Q) — Homoo(ﬁ, Q) is a surjection, for all P, Q € €0
(2) For every A, and for every & ) -morphism ¢, Eg is nonempty.

(b) If 6o is a pre-local group, then so is Gg.

Proof. In order to show that G is a pre-local group, we must verify conditions
(A) through (C) in 2.4, and that €5, € FS,. Under the hypothesis of (1), Condition
(A) is an immediate consequence of 12.6; we leave the remaining verifications in
(1) to the reader.

Assume next that Y, is a pre-local group. Then

TToo(More (P, 0)) = Homeo (P, 0),

and so Homg, (1’5 , Q) = TToo (Moroo(l3 , Q)) The argument of the preceding para-
graph then yields (b).

Finally assume the hypothesis of (2). Let ¢ € Homc,o(l73 , Q). We may assume
A € Ay, and thus the restriction ¢, of ¢ to P, is in Hom,, (P, Q) forall ue A(R).
Further, we may assume that A € €4,. Choose ¥ € n;l(qu), and consider the
map f = f; on A(A) defined before 12.5, such that [f] € Homoo(ﬁ, Q) and

Ba(¥) = [f]. Thus f(u) = Ba,.(¥), and so pup(f (1)) = 7u(Ba,u(¥)) on Py
Thus as A € Eg, , 7, (f (1)) = ¢y, so that meo ([ f]) = ¢. Thus we have verified

the hypothesis of (1). Therefore by (1), 9 is a pre-local group, and the proof of
(a) is complete. O

LEMMA 12.10. Assume that ® is nearly injective.

(a) If G is a pre-local group then B) = (1), B1):9) — G is an embedding
of pre-local groups, and (B):9) — Ys)ren s the direct limit of & in the
category of pre-local groups and embeddings.

(b) Assume that there exists a pre-local group G = (§, F, Eé), and a family ¥ of
embeddings

Ya= (2. 72): 6 >4 L eA,
of pre-local groups compatible with &. Assume that the following conditions
hold for all A.

() §=Uzea @2(Sh).
(ii) For each & -morphism ¢, E¢ # @.
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(iii) Forall P € €,
ya(P) = | au(Bru(P)).

AZp
(iv) Foreach P, Q €€ and(; € Hom@(ﬁ, Q), there exist A € A and P, Q €€,
such that y;(P) = P, y;(Q) = O, and such that for each i € A()),

Plai By P) € p(Homy (B 1 (P). B, (0))).

(v) F has the Alperin generation property with respect to € (cf. 2.14).

(vi) X is nearly injective on A(®).

Then % is a pre-local group, 6 is the limit of &, and G~ G as pre-local
groups.

Proof. Assume that 9 is a pre-local group. We check that 8, satisfies the
conditions (MG1) through (MG3) in 2.10. We have (MG1) since, for any P € €,

P=pg2P)< | Bau(P)=pBr(P).
neA(d)

Let ¢ € Mor, (P, Q). Then moo(Br(¥))p = my(¥) by definition of 7, and
thus (MG2) holds. Condition (MG3) is the assertion that 8, 08, p = g, (p) on
P, which holds by definition of §p. Thus 8, is a morphism of pre-local groups.
Recall that 8, (V) = [ fy ], where fy (u) = B, ,,(¥) for all u € A(A). In particular
by (ii), B, is injective as a mapping from Mor (P, Q) into Lo,-morphisms, and
B, is therefore an embedding.

Let % satisfy the initial hypothesis in (b), but for the moment do not assume
the conditions (i) through (vi) in (b). Define the functor y: £, — % as in the proof
of 12.5. That is, y(ﬁ) =yx(P) and y([f]) = ya(f (X)), where B, (P) = P and
BA(f(A)) =[f]. Then y is the unique functor satisfying y; =y o8, forall A € A.

Let A € A. Define ag: Soo — S by ag|s, = ay. As each ay is injective,
oo is an injective homomorphism. For any pair of subgroups P, Q of S, and any
¢ € Homg, (P, Q), define a(¢) to be the homomorphism

aal opowg: Pag — Quyp.

Then « is a morphism of fusion systems if and only if the following condition holds
for all P, Q < Seo:

(%) a(¢) € Homz(ao(P). a0(Q)).

If P,Q <8, and ¢ € Hom, (P, Q), then () holds as « is a morphism of fusion

systems. If P, Q € €0, then ¢p = 7w50(B,,(f)) for some f € Mory (P, Q). Write
¢, for the restriction of ¢ to P). Then on Py:

FBa(f)) =FWa(f) = (@ (f) = ax($n) = apo¢roa;’,
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and as this holds for all A in a closed subset of A, we conclude that 7 (y(8,(f))) =
aogpoa~! =a(p), and we again obtain (). Since, by definition, F is generated
by such morphisms, (*) holds in general, and « is a morphism of fusion systems.
We leave it to the reader to check that (¢, y) satisfies the axioms in Definition 2.10,
and hence is a morphism of pre-local groups, yielding (a).

Now assume all of the hypotheses of (b). Then by (b)(ii) and 12.9, 9 is pre-
local group. Then (a) says that 9 is the limit of &, and supplies the morphism
y=(,y): %0 — % described above. By (b)(i) and the definition of &, otg: Soo — S
is an isomorphism of groups.

The key step in the proof of (b) is to show that each of the sets Homg(ﬁ, Q),
with P and Q in €, lies in the image of . So let P, Q € E and 5 € Homg(ﬁ, Q).
Let A, P, and Q be as in (iv). By (iii),

(%) a(Br(P) = | ¢u(Bau(P) =yi(P) =P,

A<it

so that, in particular, € C a(€0).

For n € A(A) write P, for B, ,(P) and Q, for B, ,(Q), and set $M =
$|05M(Pu)' Then (iv) says that for all such u there exists ¢, € Hom,, (P, Q)
with o, (¢) = &5”. By (ii), we may assume A is chosen so that A € Ey,. Let

Yy € 73 N (¢p) and set ¥ = yu(Yp), 7= T(Y), and ¥y, = B, (¥2). Then
arguing as in the proof of (a), we get ) = o (7, (¥y)) on ay(Py), so that, in
particular, 7 = ¢, on a; (P). But also 7j; = () = wu(Yu)on P. As A € Eg,
we conclude that () is the unique extension of ¢, to P,,. Then

$u = au(Pp) = au(mu(Yu) =17

on ¢, (Py). Thatis 7= §. Thus § = 7 (¢ (B1(¥))) = (oo (B1 (%)) on (B (P2)
= P, soindeed ¢ is in «(Homg(Py, Qy)).

Next a(Homg (P, Q)) € Homz(a(P),x(Q)) as a is a morphism of fusion
systems; further, this map is injective by definition. In particular o(Im(7s0)) C F
and of course (1) (%,)) € F, so that by definition of %,

a(Fe)=a({Im(oo), 14 (F2) | 2 € A))=(a(Im(0)), ¢ (14 (F2)) [ A € A) € F.

By the preceding paragraph, Homgz(a(P),a(Q)) € a(Homg(P, Q)), and so
A@(ﬁ) C a(Feg) (cf. 2.14). Thus by (v), a(Fe) = F. Therefore o induces a bijec-
tion Homg (P, Q) — Horn@(ls, Q) for all P and Q in &, and hence o: Fo — F
is an isomorphism of fusion systems.
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By (a), v:%¢ — % is an embedding, and y, = y, 0 By, for A < pu. In
order to show that y is an isomorphism, it remains to show that y defines a bijec-
tion €oo — €, and defines bijections on morphism sets. The first condition is a
consequence of (vi) and 12.4(c), so it remains to verify the second condition.

Let J € Morgg(ﬁ, Q) be an @—morphism. Set 5 = 7?(1;). As « is an iso-
morphism of fusion systems we may choose P, Q and ¢ € Hom@(ﬁ Q) so that
a(p) = ¢ Choose ¥ € 1(qb) Then y () lies in the 77-fiber over d) as y satisfies
(MG?2) and a(P) =P . As%Gisa pre-local group there then exists y € Z (P) such
that y(y) = 85 () é. Let x be the element of Z(P) which is mapped to y~! by
op. As y satlsﬁes (MG3) we obtain y(§5(x) oY) = w, and thus y is surjective on
morphism sets.

Finally, let [ f], [/] € Moroo (P, Q) with y([f]) = y([h]). As « is injective
on homomorphisms, it follows from (MG2) that [ /] and [%] lie in the same 7 oo-
fiber, and thus [h] = 65(z) - [f] for some z € Z (13). We may choose A so that
ze PNS, :=P,andalso so that A € # Ny, for suitable representatives f* and
h of the given morphisms. Then z € Z(P) and

YLD = y(hD) = ya(h(R) = ya(x,p(2) - f(A)) = ya(82,p(2)) - va(f (1))
=385(0(2) - ¥(fD.
As gﬁ defines a free action of Z (ﬁ) on Morgf(lS , Q), we conclude that z = 1, and

that y is bijective on morphism sets. Thus y is an isomorphism of categories, and
(b) is proved. O
Theorem C is the following result:
THEOREM 12.11. Take A to be the set of nonnegative integers, and for each
i €Aletg =(S;,Fi, L) and 6§ = (S,F, <L) be the 2-local groups defined prior
to 11.2. Let 0 and 0; be the signalizer functors in 11.3, and let B; j: F;* — %;C and
Bi: Fi¢ — F' be the mappings defined prior to 11.2. Then the following hold:

(a) Foreachi,j € A, withi < j, the mappings B; ;j and B; extend to embeddings
,3,',]' = (Li,j,ﬂi,j)I(gl' —>(§j and /3,' = (Li,ﬂi)icgi — %
of 2-local groups, and B o B;i,; = Bi.
(b) & :=(Bi,j:% — 9Y))i<jen is a directed system of embeddings of 2-local
finite groups.

(¢) The direct limit g of ®, in the category of pre-local groups and embeddings,
admits the structure of a 2-local group isomorphic to .

Proof. Write £5° and &' for the restriction of the centric linking systems &;
and ¥ to radical centric linking systems on ¥° and &', respectively.
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First, 11.2 and 11.3 show that the mappings B; and B; ; are well defined
and satisfy conditions (1”) and (2’) in Proposition 2.12, relative to the appropriate
signalizer functors. Then 2.11 and 2.12 yield embeddings of 2-local groups, as in
(a), in which B; and B;,; act on &£;*-morphisms via

Bi:6:(P)g— 0(B(P))g and i ;:0;(P)g— 0(B;(P)g

for P € ¥ and g € Ng, (P, S). In order to check that B;0f;, j =p; in the category of
2-local groups, it suffices to check the equality on objects. This follows from 10.10
in cases (1) and (2) of 10.9(c), and from 10.7 in case (3) when Y = H. Suppose
Y = K. By construction, Ng; (P) < Ng, (Bi,j (P)), so that (Bj0B; ;)(P) < Bi (P).
We check from 10.2 that no proper Ng, (P )-invariant subgroup of B; (P) is in F",
completing the proof of (a).

The equality B; o B; ; = B; implies that

(BjkoPij)(P)=Bjk(Bij(P)) = B;(Bi;(P) NGk =pi(P)NGi = P r(P),

so that B; x o Bi ; = Bi k- Also B;; =1 by 11.12(c). Hence (b) holds.

We next check that the hypotheses of 12.10(b) are satisfied with 4, £5°, B;,
i € A, in the roles of 4, €, V1, A € A, respectively.

First, S is the union of the groups S; for i € A, so that condition (i) of 12.10(b)
holds. Second, for any ¢ = c¢g € Homg(P, Q) we have g € G; for some i, so that
¢|s; € Homg, (P N S;j, Q0 NS;) forall j > i, and hence condition (iv) holds.

Let P € ¥°, and for j > i set P; = B;, j(P;). We have P; = B;(P;) N G; for
such j, and S is the union of its subgroups S;, and so condition (iii) of 12.10(b)
holds.

We claim that there exists j > i such that Cg(P;) centralizes Py for all
k > j. Suppose first that | Z p, | < 4. Then from the proof of 10.9, Cg (P;) < P;. But
Z(B; (P;)) is finite, and Py = B; (P)N Gy for k >1i and so, from (ii), we may choose
J =i with Z(P;) = Z(Bi(P;)). Thus Cg(P;) = Z(Py) for k > j. On the other
hand if |Zp,| > 4 then P; € A% or P; = Cs; (E) by 10.5. In the first of these two
cases, P; = Py forall k > i, while in the second Cg (P;) = ECg(4)(T2) = Cg (Py)
for any k > i, by 7.10 and 7.13. Thus the claim is established.

We now verify condition (ii) of 12.10(b). Let ¢ € Homg, (P;, Q) and sup-
pose that for some k > j, we have ¢1, ¢ € Homg, (Pk, Q) extending ¢. Then ¢,
is the restriction of cg, to Py for some g, € G, r =1,2. Then g1g2_1 €eCg(Pj) <
Cg (Py) by the claim, so ¢ = ¢». This yields (ii).

Condition (v) of 12.10(b) follows from 9.10. Finally each f; is injective on ob-
jects, since B;(P) N S; = P by 11.12(c). Thus & is nearly injective, and condition
(vi) of 12.10(b) holds. Therefore we conclude from 12.10(b) that (S, &, £) = G
as pre-local groups, via the isomorphism y = («, y) constructed in the proof of
12.5 and 12.10. In particular «(€) = F, so as «: Fg — F is an isomorphism of
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fusion systems, € = F3, and F is saturated as F is saturated. Transferring the
centric linking system & on & to ¥ via o, we may regard G as a 2-local group,
and the isomorphism y of pre-local groups is then also an isomorphism of 2-local
groups. This completes the proof of (c). O

Theorem D is essentially the following result. We thank Ran Levi and Bob
Oliver for guiding us through a proof.

THEOREM 12.12. The 2-completed nerve |££q5|§ is homotopy equivalent to
BDI4).

Proof. Let £5¢ be the full subcategory of £, whose objects are centric in F¢,
for all n > m. Then &, € Obj(L5Y) for all m, by 10.9(b). Set Y = Bm,m+1, and
consider the diagram of categories and functors

Ym
rc N rC
£ m ‘gm +1

(%) Lml ltm+1

cc
e~ ey,
where ¢ is in every instance an inclusion functor. We claim that this diagram com-
mutes up to a natural homomorphism p: (€€ 0ty —> Ly 41 © Ym. Since (°€ o1y, is
the identity map on objects, what this means is that for all P, Q € £}, there are
£Lm+1-morphisms pp and o such that, for each ¥y € Mor,, (P, Q), the following

diagram commutes.

P L m (W) 0
(k) MPl lMQ
tm+1(v(¥))

Ym(P) ———— ym(Q).

Indeed, for any R € ¥;; define g to be 0,41(R). Recall that = 6,,(P)g
for some g € Ng,, (P, Q), by the definition of &£,,. The functor (° sends ¥ to ¥
regarded as an element of Mory,+1(P, Q). That is, we have (°“ (/) = 0,,,+1(P)g,
and hence (in our mix of left- and right-hand notation, as set forth in §1)

m(W) 1o = Om+1(P)gOm+1(Q) = Om+1(P)g.

while also

WP tm+1(Ym(¥)) = Om+1(P)Om+1(ym(P))g = Om+1(P)g.

Thus w is a natural transformation as desired, and the claim is proved.
Recall that the nerve of a small category € is a simplicial set (or equiva-
lently, the topological realization of a simplicial set) whose k-simplices are chains
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(xo, ..., ar) of composable morphisms in €. If f:€ — % is a functor of small
categories, then there is a continuous map | f|:|€] — |9| of spaces, given by
(@0, ..., o) = (f(ao), ..., flag)).

Set X = |L5|, Ym = |£57|, and consider the following diagram of spaces
and continuous maps.

X A X, y2l Xs ly3l
(5 %) | | I
v 1y E oy
Here, we are taking fy, := |i,] and f,5€ := |5F]. Each f,5¢ may be viewed as

inclusion, since ;¢ induces an inclusion of Mor,, (P, Q) into Mory, 41 (P, Q) for
any P, Q € ¥5¢. Similarly, since each yy, is an embedding, y,, induces an injec-
tive mapping Mory, (P, Q) — Mor,,+1(P, Q) for P, Q € £;5, and hence |y, | is
injective. There is then no harm in viewing each |y,,| as an ordinary inclusion
of topological spaces (and in adjusting the vertical arrows by suitable homeomor-
phisms, to compensate for this). The direct limit X of the top row in ( * *) is then
the union of the spaces X,. No such adjustment is necessary for the bottom row,
whose union we denote by Y.

It is the content of [LO02, Prop. 4.3] that the 2-completion (Y); of Y is
B DI(4), up to homotopy equivalence. That this is so requires some explana-
tion, since the union taken in [LOO02] is that of a somewhat different collection
of spaces than {Y};, }»>0. Namely, Levi and Oliver choose a sequence (7;);>¢ of
positive integers, so that each n; divides n;4+1 and so that every positive integer
divides some n;. They then show that B D1(4) is the 2-completion of the union
of the spaces |£so1(¢")€¢|, for any odd prime power ¢. We may take ¢ = p, and
may take the sequence (1;);>o so that 2 is the highest power of 2 dividing ;.
Then g1 (p™i) is a fusion system over the Sylow 2-subgroup S; of Spin,(p™).
As the 2-shares of Spin,(p") and Spin7(p2’) are the same, Spin,(p") has the
same Sylow 2-subgroup as Spin,( pzl). By a result in [COS06] the fusion sys-
tems Fsor(p™) and Fgo( pzl) are isomorphic, and their corresponding linking
systems are then isomorphic [LO02, Lemma 3.2]. Thus, the union of the nerves
|Lso1(p")€€| is homeomorphic to Y, and (Y); may be identified with B D1(4).

Since it is obvious from the definitions that the nerve of an increasing union
of categories is the union of the nerves, it follows from 12.5 that the space X
is homeomorphic to |£g|. Thus, it remains only to show that X is homotopy
equivalent to Y.

The existence of a natural transformation p as in (%) implies that each of
the squares in (x**) commutes up to homotopy (cf. [DwyOl1, Prop. 5.2]. For
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any m, the inclusion of the simplicial set X, in X,;,+1 is a CW-pair, and so the
homotopy extension property for CW-pairs [Hat02, Prop. 0.16] implies that f;
may be replaced by a map f; which is homotopic to f> and which extends fj.
We continue up the chain, replacing f,41 by amap f,, 41 Which is homotopic to
Jfm+1 and extends f,,. Now define f: X — Y to be the union of the maps f,,.
Observe that every finite subcomplex of the CW-complex X (or Y) is con-
tained in some X; (or Y;). Since every compact subset of a CW-complex is
contained in a finite subcomplex, every compact subset of X or Y is contained
in some X; or Y;. From this, it follows directly from the definition of homotopy
groups that for each n, 7, (X) is the direct limit of the 7, (X;), and similarly for
7 (Y). That each f, (and hence also each f,),) is a homotopy equivalence is given
by [BCG™05, Th. B], and thus 7, (f) is an isomorphism for all n. Then f is a
homotopy equivalence by Whitehead’s Theorem, and the proof is complete.  [J

We close with an example.

Example 12.13. Let p be a prime and let G = G(F') be a Chevalley group
over the algebraic closure F of F, of Lie rank /. Let X be the set of positive
integers, partially ordered by n < m if n divides m. Set I = {1,...,/} and let
(Py | @ # J C I) be the set of proper parabolic subgroups of G over a fixed
Borel subgroup B = P;. For J C [ let Sy be the unipotent radical of P, and set
S = S7. Let ¥1:a — a? be the Frobenius map on F, and regard y; also as a field
automorphism of G. For k > 1 set Y, = W{‘ , and let G = Gy, be the group of
fixed points of ¥; on G. Set S = S NGy, Sy = Sy NG, and let

G =95, (Gr) = (Sk. Fr, Lk)

be the p-local finite group associated with Gy.

By Borel-Tits, ;" = (Syx : J € I), and 6, (P) := OP(Cg, (P)) = 1 for
all P € F)’. When k divides j, we have the inclusion map By ;: 9 — §; with
Bi,j (Syk) =Sy, ;. It follows from 2.11 that & := (9, By, : k < j) is a directed
system of p-local finite groups. Further one can check that the hypotheses of
12.10(b) are satisfied by &, so, as in the proof of Theorem 12.11, the limit §g
of & is isomorphic to 4(G) = (Fs(G), F5(G), £), where FG(G) has object set
(Sy:J),Mor(Sy,Skg) =Hom(Sy, Sg) = Ng(Sy, Sk), and 7 and § are identity
maps.
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