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Abstract

We extend the notion of a p-local finite group (defined in [BLO03]) to the
notion of a p-local group. We define morphisms of p-local groups, obtaining
thereby a category, and we introduce the notion of a representation of a p-local
group via signalizer functors associated with groups. We construct a chain G D

.G0 ! G1 ! � � � / of 2-local finite groups, via a representation of a chain G� D

.G0! G1! � � � / of groups, such that G0 is the 2-local finite group of the third
Conway sporadic group Co3, and for n > 0, Gn is one of the 2-local finite groups
constructed by Levi and Oliver in [LO02]. We show that the direct limit G of
G exists in the category of 2-local groups, and that it is the 2-local group of the
union of the chain G�. The 2-completed classifying space of G is shown to be the
classifying space B D I.4/ of the exotic 2-compact group of Dwyer and Wilkerson
[DW93].

Introduction

In [BLO03], Broto, Levi, and Oliver introduced the notion of a p-local finite
group G, consisting of a finite p-group S and a pair of categories F and L (the
fusion system and the centric linking system) whose objects are subgroups of S ,
and which satisfy axioms which encode much of the structure that one expects
from a finite group having S as a Sylow p-subgroup. If indeed G is a finite group
with Sylow p-subgroup S , then there is a canonical construction which associates
to G a p-local finite group GD GS .G/, such that the p-completed nerve of L is
homotopically equivalent to the p-completed classifying space of G. A p-local
finite group G is said to be exotic if G is not equal to GS .G/ for any finite group G
with Sylow group S .

From the work of various authors (cf. [BLO03, �9]), it has begun to appear
that for p odd, exotic p-local finite groups are plentiful. On the other hand, exotic
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2-local finite groups are – as things stand at this date – quite exceptional. In fact,
the known examples of exotic 2-local finite groups fall into a single family GSol.q/,
q an odd prime power, constructed by Ran Levi and Bob Oliver [LO02]. With
hindsight, the work of Ron Solomon [Sol74] in the early 1970’s may be thought of
as a proof that GSol.q/ 6D GS .G/ for any finite simple group G with Sylow group S .

Solomon considered finite simple groups G having a Sylow 2-subgroup iso-
morphic to that of Co3 (the smallest of the three sporadic groups discovered by John
Conway), and he showed that any such G is isomorphic to Co3. While proving this,
he was also led to consider the situation in which G has a single conjugacy class
zG of involutions, and CG.z/ has a subgroup H with the following properties:

H Š Spin7.q/; q D r
n; q � 3 or 5mod 8; and CG.z/DO.CG.z//H:

Here Spin7.q/ is a perfect central extension of the simple orthogonal group �7.q/
by a group of order 2, and for any group X , O.X/ denotes the largest normal
subgroup of X all of whose elements are of odd order.

Solomon showed that there is no finite simple group G which satisfies the
above conditions – but he was not able to do this by means of “2-local analy-
sis” (i.e. the study of the normalizers of 2-subgroups of G). Indeed a potential
counterexample possessed a rich and internally consistent 2-local structure. It was
only after turning from 2-local subgroups to local subgroups for the prime r that a
contradiction was reached.

One of the achievements of [LO02] is to suggest that the single “sporadic”
object Co3 in the category of groups is a member of an infinite family of exceptional
objects in the category of 2-local groups. But in addition, [LO02] establishes a
special relationship between the GSol.q/’s and the exotic 2-adic finite loop space
D I.4/ of Dwyer and Wilkerson [DW93]. Namely, in [LO02] it is shown that the
classifying space B D I.4/ is homotopy equivalent to the 2-completion of the nerve
of a union of subcategories of the linking systems LSol.q

n/, with the union taken
for any fixed q as n goes to infinity. (This result was prefigured in, and motivated
by, work of David Benson [Ben94]. Benson showed, first, that the 2-cohomology
ring H�.B D I.4/I 2/ is finitely generated over H�.Co3I 2/, and second, that the 2-
cohomology of the space of fixed points in B D I.4/ of an unstable Adams operation
 q , would be that of the “Solomon groups”, if such groups existed.) Moreover
[BLO05] introduces the notion of a “p-local compact group”, and Theorem 9.8
in [BLO05] shows that each p-compact group supports the structure of a p-local
compact group. As a special case, D I.4/ supports such a structure. We give here
an alternate, constructive proof of this fact.

Our paper is built around an alternate construction (Theorem A) of the 2-local
finite groups

Gk D Gk;r D GSol.r
2kC1/D .Sk;Fk;Lk/
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where r is a prime congruent to 3 or 5 mod 8. The construction is based on a notion
of the “representation” of a p-local finite group GD .S;F;L/ as the p-local group
of a not necessarily finite group G, by means of a “signalizer functor” � . This
means, first of all, that S is a Sylow p-subgroup of G (in a sense which we shall
make precise), and that the fusion system F may be identified with the fusion
system FS .G/ consisting of all the maps between subgroups of S that are induced
by conjugation by elements of G. Second, it means that whenever P is a subgroup
of S which contains every p-element of itsG-centralizer (i.e. whenever P is centric
in F), there is a direct-product factorization

CG.P /DZ.P /� �.P /

where the operator � is inclusion-reversing and conjugation-equivariant. Then �
gives rise to a centric linking system L� associated with F, with the property that

AutL� .P /DNG.P /=�.P /

for any F-centric subgroup P of S . One says that G is represented in G via � if
the p-local groups G and .S;F;L� / are isomorphic.

The notions of p-local finite group and of representation via a signalizer func-
tor can be generalized to obtain a representation of the 2-local compact group of
D I.4/, by allowing S to be an infinite 2-group. We also introduce a notion of
morphism, to obtain a category of p-local groups, having p-local finite groups as
a full subcategory. As an application we show in Theorem B that the 2-local finite
group G0 associated with Co3 is a “subgroup” of each Gk .

In the final section of this paper we introduce a notion of direct limit of a
directed system of embeddings of p-local groups, and in this way obtain (Theo-
rem C) a 2-local compact group GG which is the direct limit of a directed system
GD .Gk!GkC1/k�0 of embeddings of 2-local finite groups. The identification of
GG with the 2-local compact group of D I.4/ (Theorem D) is a corollary of results
in [LO02], obtained by setting up a homotopy equivalence between the nerve of
our direct limit and the nerve of a category LcSol.p

1/ constructed in [LO02]. The
2-completion of the latter category is shown in [LO02] to be homotopy equivalent
to B D I.4/.

In view of the length of this paper, the reader may find the following outline
helpful. The first three sections are concerned with general principles and support-
ing results. Then in Section 4, which provides information on certain spin groups,
the argument actually begins to take shape.

Let p be an odd prime. For reasons which will not be immediately apparent, it
will be necessary to take p to be congruent to 3 or 5 mod 8. Let xF be an algebraic
closure of the field of p elements. There is a subfield F of xF, obtained as the union
of the tower of subfields of xF of order p2

n

, n� 0. Take xH to be the group Spin7.xF/
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– the universal covering group of the simple orthogonal group �7.xF/. Let  be an
endomorphism of xH such that C xH . /Š Spin7.p/, and set

H D
[
n�0

C xH . 
2n/:

Then H is a group of F-rational points of xH . One finds that all fours groups in
H containing Z.H/ are conjugate, and that if U is such a fours group then the
identity component B0 of the group B DNH .U / is a commuting product of three
copies of SL2.F/.

In Section 5 we show that there is an automorphism y of B0 of order 3, which
transitively permutes the three SL2.F/ components of B , and which when chosen
carefully, interacts in a special way (to be described shortly) with the normalizer
in H of a maximal torus T of B . It is at this point, in choosing an appropriate
automorphism y, that we require that p be congruent to 3 or 5 mod 8. Once
y has been fixed in the appropriate way, we form a group K D hB; yi which is
isomorphic to a split extension of B0 by the symmetric group of degree 3. We
then form the amalgam AD .H > B <K/, and its associated free amalgamated
product

G DH �B K:

This is the group which informs and guides our investigation.
We need the following notion of “Sylow 2-subgroup”: A subgroup S of G is

a Sylow 2-subgroup of G if every element of S has order a power of 2 (i.e. S is
a 2-group), S is maximal with respect to inclusion among the 2-subgroups of G,
and every finite 2-subgroup of G is conjugate to a subgroup of S . It turns out that
the normalizer in H of a maximal torus T of B0 contains a Sylow 2-subgroup S
of G. Moreover, if T is chosen to be y-invariant then S is a Sylow 2-subgroup of
each of the groups H , B , and K. The special way in which y interacts with S may
be summarized as follows: for the Sylow 2-subgroup S1 D S \T of T , we have

.�/ NG.S1/DNH .S1/�NB.S1/NK.S1/; and

.��/ AutG.S1/ WDNG.S1/=CG.S1/Š GL.3; 2/�C2:

The effect of .��/ is that S=S1 may be identified with a Sylow 2-subgroup of
AutG.S1/, and it is this property which, as is made clear in [LO02], turns out to
be the key to fulfilling the axioms for “saturation” (defined in 1.5, below).

One feature of our treatment is the use of amalgams (cf. �3) to keep track
of the various fusion systems which can be constructed from H , B , and K, and
to distinguish the system with property .��/. We prove in Theorem 5.2 that the
amalgam A with property .��/ is unique. Then we carry out the remainder of
our analysis in the universal completion G of A, using the “standard tree” of G
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as a source of geometric intuition, and as the basis for geometric arguments. The
formalization by means of the amalgam A and its free amalgamated product G
provides, at the very least, a useful system of bookkeeping. For example, the
language of amalgams provides a conceptual framework within which one can
rigorously consider the question of which of the fusion systems constructed from
H , B , and K is the “right” system. We mention that amalgams have also been
used in recent work of G. Robinson [Rob07], and of Ian Leary and Radu Stancu
[LS] as a tool for studying abstract fusion systems.

Setting ZDZ.H/ one has jZj D 2, and CG.Z/ is in fact a rather complicated
subgroup of G, properly containing H . Our proof that the fusion system FS .G/

is saturated is modeled on the proof of saturation in [LO02] for the fusion systems
FSol.q/ defined over finite 2-groups. Thus, the main step is to establish that H
controls CG.Z/-fusion in S . That is, the fusion system FS .H/ is equal to the
a priori larger system FS .CG.Z//.

The proof of saturation in G is accompanied by the construction of a linking
system by means of a signalizer functor. These steps require information on fu-
sion among the centric subgroups of S , obtained in Sections 6 through 8. After
this, in order to prepare the way for the construction of morphisms, we determine
in complete detail the radical centric subgroups of S and of S� , where � is an
automorphism of G which fixes S and which induces a Frobenius endomorphism
of H . Here a subgroup P of S is defined to be radical if Inn.P /DO2.AutG.P //.

One of the radical centric subgroups of S is an elementary abelian group A
of order 16 which has the property, as in .�/, that

NG.A/DNH .A/�NB.A/NK.A/:

Here one can do better than to determine AutG.A/ in analogy with .��/. Indeed,
there is a surjective homomorphism

�AWNG.A/ �! L;

with CG.A/D A� ker.�A/, where L is a maximal subgroup of the sporadic group
Co3, isomorphic to a nonsplit extension of A by Aut.A/. We then define a normal
subset X of G by

XD
[
g2G

ker.�A/g :

For any centric subgroup P of S we define a subset �.P / of CG.P / by

�.P /D CX.P /O.CG.P //:

It turns out that �.P / is a subgroup of CG.P / and that � is a signalizer functor (cf.
Theorem 8.8 below).
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We next consider the groups G� of fixed points of automorphisms � of G,
such that � fixes both H and K, and such that the restriction of � to H is a
Frobenius map with H� Š Spin7.Fq/, qD p2

n

. The groups G� , for n� 0, provide
representations of the 2-local finite groups of [LO02]. In particular, for each such
� (chosen so that S� is a Sylow 2- subgroup of G� ), the fusion system FS� .G� /

is saturated, and the signalizer functor �� given by

�� .P /D CX� .P /O.CG� .P //;

for centric subgroups P of S� , defines a centric linking system L�� .S� / associated
with FS� .G� /.

This completes our outline of the proof of Theorem A. One aim of this pa-
per is thus to suggest the possibility that many p-local finite groups may best be
studied via a representation in terms of free amagalmated products and signalizer
functors. For example, to study the fusion system F on a p-group S generated
by systems FS .Gi / for some family GD .Gi j i 2 I / of finite groups with Sylow
group S , perhaps one should study the various amalgams A obtained from G, and
the corresponding free amalgamated products G D G.A/. If A is well chosen,
then S is Sylow in G and FDFS .G/ is saturated. Then one can consider suitable
overamalgams B of A, and the kernels of surjections from subgroups G.B/ of G
onto suitable finite groups and use these kernels to construct a signalizer functor �
and the corresponding p-local finite group from F. If A is the amalgam of some
family of subgroups generating a finite group yG, then the kernel of the surjection
G! yG will be h�.P /g j P 2Fc ; g 2Gi, whence FŠFS . yG/ (cf. Example 2.13,
below). But in other cases one may hope for exotic p-local finite groups, such as
Lsol.q/.

Now here are the main theorems.

THEOREM A. Let p be a prime, p � 3 or 5 mod 8, let xF be an algebraic
closure of the field Fp of p elements, and let F be the union of the subfields of xF
of order qn D p2

n

, n� 0. Then there is a group G DG.p/, an automorphism  0
of G, a Sylow 2-subgroup S of G, and a  0-invariant normal subset X of G such
that, for any power � of  0 of the form  2

n

0 , we have the following.
(1) G DH �B K is the free amalgamated product of an amalgam

AD .H  � B �!K/;

whereH is a group of F-rational points in Spin7.xF/, B is the normalizer inH
of a fours group U ofH containingZ.H/, andK is a group which contains B
as a subgroup of index 3 where K has the property that AutK.U /Š GL.2; 2/.

(2)  0 leaves invariant each of the subgroups H , K, and B of G; the restriction
of  0 to H is the restriction of a Frobenius automorphism of Spin7.xF/, and
CH . 0/Š Spin7.p/.
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(3) The group S� DCS .�/ is a finite Sylow 2-subgroup of the group G� DCG.�/,
and there exists a unique choice of the amalgam A such that, for all � , the
fusion system F� D FS� .G� / is isomorphic to the fusion system FSol.q/ of
[LO02], .q D p2

n

/.
(4) For any F� -centric subgroup P of S� , the set

�� .P / WD CX\G� .P /O.CG� .P //

is a group, and is a complement to Z.P / in CG� .P /. Moreover, �� defines a
2-local finite group G� D .S� ;F� ;L� / isomorphic to the 2-local finite group
Lsol.q/ of [LO02].

(5) The order of a maximal elementary abelian 2-subgroup A of S is 16, and all
maximal elementary abelian 2-subgroups of G are conjugate in G. Moreover,
CG.A/ D A � CX.A/, where CX.A/ is a free normal subgroup of CG.A/,
NG.A/=CX.A/ is isomorphic to a nonsplit extension of A by Aut.A/, and X
is the union of the conjugates of CX.A/ in G.

THEOREM B. Let p, A, G,  0, and X be as in Theorem A. Then there exist
subgroups H0, K0, and B0 DH0\K0 of H 0 , K 0 , and B 0 , respectively, such
that the following hold.

(1) H0 is isomorphic to a perfect central extension of Sp.6; 2/ by Z2, K0 is a
group of order 21033, and B0 is of index 3 in K0.

(2) Setting G0 D hH0; K0i, we have

(a) X \H0 DX \K0 D f1g, and
(b) G0=hX \G0i is isomorphic to the colimit of the amalgam M of maximal

subgroups of Co3 containing a fixed Sylow 2-subgroup of Co3.

(3) Let S 00 be a Sylow 2-subgroup of Co3 and S0 a Sylow 2-subgroup of B0. Then
there is an isomorphism of 2-local finite groups

GS 00.Co3/Š GS0.G0/:

THEOREM C. For any positive integer i , let Gi be the 2-local finite group
G
 2
i�1

0

of Theorem A, and let G0 be the 2-local finite group associated with Co3
as in Theorem B. Let G be the 2-local group .S;F;L/ associated with G via the
fusion system FD FS .G/ and via the signalizer functor � defined by the subset X
of G. Then there exists a directed system

GD .ˇi;j WGi �! Gj /0�i�j

of embeddings of 2-local finite groups, possessing a limit GG which is canonically
isomorphic to the 2-local group G.

The 2-local group G.G/ is a 2-local compact group, as defined in [BLO05].
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It will be proved in [COS06] that the exotic fusion systems FSol.q/ of Levi
and Oliver, defined over 2-groups Sq , are determined by the isomorphism type of
Sq . This implies that for any odd prime power q, and any prime p� 3 or 5 mod 8,
there is a unique � such that the Levi-Oliver fusion system FSol.q/ is isomorphic
to FS� .G� /, where G D G.p/ is the group in characteristic p constructed here.
This is needed for the proof of the following result.

THEOREM D. Let L WD LS;� .G/ be the centric linking system over F as
given in Theorem C. Then the 2-completed nerve jLj

^

2 is homotopy equivalent to
B D I.4/. In particular, D I.4/ may be given the structure of the 2-local group G,
and D I.4/ is then a 2-local compact group.

We are grateful to Bob Oliver for many helpful conversations about the 2-local
finite groups GSol.q/ which he and Ran Levi constructed, and for his help in under-
standing the space B D I.4/ of Dwyer and Wilkerson. The proof of Theorem D was
communicated to us by Levi and Oliver. We would also like to thank Ron Solomon
and the other members of his seminar at Ohio State, for suggesting improvements
to an earlier version of this manuscript.

Remarks and questions.
(1) One might imagine that the normal subgroup hXi of G leads to an interesting

factor group G=hXi. But the fact is that hXi D G. Moreover, G�=hX� i D 1
for any automorphism � of G as in Theorem A, while G0=hX\G0i is in fact
isomorphic to Co3. These results will appear in [COS06].

(2) To what extent can our method of construction of the Levi-Oliver fusion and
linking systems be carried out in a characteristic 0 context? For example,
one might consider a subring O of the field of complex numbers, and ask
whether there is a 7-dimensional quadratic space over O, yielding a group
HO D Spin7.O/, from which to build up a suitable free amalgamated product
and linking system as we do here in characteristic p. One requires 1=2 2 O

in order to have an isomorphism of PSL2.O/ with a suitable 3-dimensional
orthogonal group. The rings

Om D ZŒ!=2�;

where ! is a primitive 2m-th root of unity, are possible candidates for this,
and there may be others.

(3) The sporadic group O 0N (or rather, the 2-local finite group associated with
O 0N ) can be shown to occur as a subgroup of some of the 2-local finite groups
constructed here. Since O 0N and its subgroup J1 are “pariahs”, i.e. are not
among the twenty sporadic simple groups which are involved in the Monster,
it is of some interest to have a context in which these groups, and Co3 (which
is not a pariah) can live together in harmony. This will be the subject of
another paper.
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1. Fusion systems and Sylow subgroups

We shall need to consider fusion systems both over finite p-groups, and over
certain infinite p-groups. In the finite case the definitions are due first of all to Lluis
Puig [Pui06], and then to Broto, Levi, and Oliver [BLO03]. The latter three authors
also consider a class of infinite p-groups which they call discrete p-toral groups,
in [BLO05], and this class includes all of the p-groups that will be studied here.
For reasons of exposition, however, we shall present the definitions in a somewhat
more general context – but we emphasize that the main concepts, and the proofs
of the basic lemmas, come from the above-cited works.

We follow the practice, peculiar to finite group theory, of using right-hand
notation for conjugation within a group, and for group homomorphisms. But we
use left-hand notation for functors, and for auxiliary mappings associated with
some of our functors. It may also be worth mentioning that if X is a set admitting
action by a group G, and g is an element of G, then the set of fixed points for g
in X is denoted Xg , rather than the topologist’s Xg .

If G is a group, g an element of G, and X a subset or an element of G, we
write Xg for the image of X under the conjugation automorphism

cg WG!G; .cg W x 7! xg WD g�1xg for all x 2G/:

We also write cg WP !Q for the mapping of P into Q given by g-conjugation,
whenever P and Q are subgroups of G with P g �Q. The transporter of P into
Q is the set

NG.P;Q/ WD fg 2G j P
g
�Qg;

and we define

HomG.P;Q/ WD fcg W P !Q j g 2NG.P;Q/g:

Denote by Inj.P;Q/ the set of all injective homomorphisms of P into Q. If
˛WP ! Q is an isomorphism, write ˛� for the isomorphism from Aut.P / to
Aut.Q/ defined by ˛�Wˇ 7! ˛�1ˇ˛.

Definition 1.1. A fusion system F over a group S is a category whose ob-
jects are the subgroups of S , and whose morphism-sets HomF.P;Q/ satisfy the
following two conditions.

(1) HomS .P;Q/� HomF.P;Q/� Inj.P;Q/.
(2) If ˛ 2 HomF.P;Q/ then the isomorphisms ˛WP ! P˛ and ˛�1WP˛! P

are morphisms in F.

Example 1.2. Let G be a group and S a subgroup of G. For subgroups P and
Q of S , set

HomF.P;Q/D HomG.P;Q/:

Then F is a fusion system over S , denoted FS .G/.
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Let F be a fusion system over S , let P be a subgroup of S , and let ˛ 2
AutF.P /. Set

N˛ D fx 2NS .P / j .cx/˛
�
2 AutS .P /g:

Thus, N˛ is the largest subgroup R of NS .P / having the property that, in the group
AutF.P /, the conjugation map c˛ carries AutR.P / into AutS .P /.

LEMMA 1.3. Let S be a subgroup of a group G, and let P be a subgroup of S .
Set FD FS .G/, let g 2NG.P /, and set ˛ D cg 2 AutF.P /.

(a) .N˛/g D Sg \ .CG.P /NS .P //.

(b) If S is a p-group, and every p-subgroup of CG.P /NS .P / is conjugate via
CG.P / to a subgroup of NS .P /, then there exists N̨ 2 AutF.N˛; NS .P //
extending ˛.

Proof. Set RDN˛ . By definition, Rg consists of those x 2NG.P / such that
x 2Sg and cx jP 2AutS .P /. But cx jP 2AutS .P / if and only if x 2CG.P /NS .P /,
and thus (a) holds.

Assume the hypothesis of (b). Then Rg is a p-subgroup of CG.P /NS .P /, by
(a), so that by the hypothesis of (b) there exists h 2 CG.P / such that Rh �NS .P /.
Now ˛ is the restriction to P of N̨ D cghWR �!NS .P /, and we have (b). �

Definition 1.4. Let p be a prime. A group S is a p-group if for every x 2 S ,
the order of x is a power of p. A p-subgroup S of a group G is a Sylow p-subgroup
of G if

(1) S is maximal (with respect to inclusion) among all p-subgroups of G, and

(2) S contains a conjugate of every finite p-subgroup of G.

The set of all Sylow p-subgroups of G is denoted Sylp.G/. The group generated
by the set of normal p-subgroups of G is itself a normal p-subgroup of G, and is
denoted Op.G/.

Definition 1.5. Let p be a prime, let S be a p-group, and let F be a fusion
system over S . A subgroup P of S is fully normalized in F if, for every � 2
HomF.P; S/, there exists  2 HomF.NS .P�/;NS .P // such that  maps P�
to P . We say that F is saturated if the following two conditions hold for every
subgroup P of S .

(I) There exists � 2 HomF.P; S/ such that P� is fully normalized in F.

(II) If P is fully normalized in F then:

(A) AutS .P / 2 Sylp.AutF.P //, and
(B) each ˛ 2 AutF.P / extends to a member of HomF.N˛; S/.
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The preceding definition of saturation is formulated so as to make no mention
of jNS .P /j for P � S , and it is equivalent to the standard definition (cf. [BLO03])
in the case that S is finite. This follows from [BCGC05, Lemma 2.3], and it is then
easy to check that our definition of “fully normalized” is equivalent to the usual
one, in a saturated fusion system over a finite p-group.

LEMMA 1.6. Let p be a prime and G a group. Let Y be the set of subgroups
Y of G such that the set S.Y / of maximal p-subgroups of Y is nonempty, and such
that Y is transitive on S.Y / by conjugation. Assume for each p-subgroup P of G
that:

(1) NG.P /, CG.P /P , and CG.P /T are in Y for T 2 S.NG.P //.

(2) OutG.P / is finite.

(3) P is Artinian (i.e., any descending chain of subgroups of P stabilizes).

(4) If P ¤ 1 then NG.P / is locally finite.

Then

(a) G has a Sylow p-subgroup S .

(b) A subgroup P of S is fully normalized in FS .G/ if and only if NS .P / is a
Sylow p-subgroup of NG.P /.

(c) FS .G/ is saturated.

Proof. We have G 2 Y, by (1) as applied to P D 1. Thus S.G/D Sylp.G/,
and (a) holds.

Let P � S and set L D NG.P /, K D CG.P /, and T D NS .P /. Applying
(1) to P , we obtain T � X for some X 2 Sylp.L/. Let Q � S and g 2 G with
Qg D P . Then NS .Q/g is a p-subgroup of L, and since L 2Y there exists l 2 L
with NS .Q/gl � X . We conclude that P is fully normalized if T D X . Further,
as G 2 Y there exists h 2 G with Xh � S , and so Xh 2 Sylp.L

h/ and hence P h

is fully normalized. This verifies axiom (I) in the definition 1.5 of saturation.
Assume that P is fully normalized. Then there exists y 2G with P hy D P

and with Xhy � T � X . Then X .hy/
n

� X for all n > 0, and it follows from (3)
that X DXhy , and then that X D T . This completes the proof of (b).

Set xLD L=PK. We have T 2 Sylp.L/ by (b), and xL is finite by (2). Let Y
be the pre-image in L of a Sylow p-subgroup of xL containing xT . By (4) there is a
finite subgroup U of Y with xY D xU . As xU is a p-group we have xU D xV for some
V 2Sylp.U /. AsL2Y there exists a2Lwith V a�T . Then j xY jD j xV j� j xT j� j xY j,
so that xY D xT , and we have verified axiom (IIA) in 1.5.

Finally, set FDFS .G/ and let ˛ 2AutF.P /. As TK 2Y, by (1), we conclude
from 1.3(b) that ˛ extends to an element of HomF.N˛; S/, verifying axiom (IIB)
for saturation, and completing the proof of (c). �
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Notice that if G is a finite group then the hypotheses of 1.6 are satisfied by G.
Thus, it is a corollary of 1.6 that for any finite group G and S 2 Sylp.G/, the fusion
system FS .G/ is saturated.

Let Fi , i D 1; 2, be fusion systems over subgroups Si of a group S . We
say that F1 is a fusion subsystem of F2 (and write F1 � F2) if S1 � S2 and
HomF1.P;Q/� HomF2.P;Q/ for all P;Q � S1.

Given a set F of fusion systems over S , there is a largest fusion system

FF WD
\
F2F

F

which is a subsystem of each F 2 F. Thus

HomFF .P;Q/D
\

F2F

HomF.P;Q/:

Given a set E of fusions systems, each of which is defined over a subgroup of S ,
define hEi – the fusion system generated by E – to be the fusion system FF, where
F is the set of all fusion systems over S which contain each member of E. The
proof of the following result is straightforward:

LEMMA 1.7. Let S be a group and let .Si W i 2 I / be a collection of subgroups
of S . For each i 2 I , let Fi be a fusion system over Si , and set F D .Fi j i 2 I /.
Assume that Si D S for at least one index i , and define a fusion system G on S by
taking HomG.P;Q/ to consist of the maps ˛0 : : : ˛r such that, for each 0� j � r ,
there exists i.j / 2 I , Pj � Si.j /, and j̨ 2HomFi.j /.Pj ; Si.j //, such that PjC1 D
Pj j̨ , P0 D P , and PrC1 DQ. Then hF i D G.

LEMMA 1.8. Let G be a group, S 2 Sylp.G/, and let X be a normal sub-
group of G of index p in S , such that S=X Š NG=X .S=X/. Then FS .G/ D

hFS .S/;FX .G/i.

Proof. Set G� D G=X and E D hFS .S/;FX .G/i. As FS .S/ and FX .G/

are contained in FD FS .G/, we have E� F by definition of E, and it remains to
establish the opposite inclusion. Let P;Q � S and ˛ 2 HomF.P;Q/. If P — X
then as S� is of order p and is equal to its normalizer in G� we get Q — X
and ˛ 2 HomFS .S/.P;Q/. Similarly if P � X but Q — X then ˛ D ˇ where
ˇ 2 HomF.P; Pˇ/, Pˇ � X , and  WPˇ ! Q is the inclusion map. Thus it
remains to show that HomF.P;Q/� HomE.P;Q/ for P;Q �X , which follows
since FX .G/� E. �

The next lemma states a weak form of the Alperin-Goldschmidt fusion theo-
rem [Gol70], in the language of fusion systems. This result will be of use in the
proof of Theorem B.

LEMMA 1.9. Let G be a finite group, S 2 Sylp.G/, and denote by N the set
of subgroups N of G having the following properties.
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(1) N DNG.Op.N //,

(2) S \N 2 Sylp.N /, and

(3) CS .Op.N //�Op.N /.

Let N0 be the set of minimal members of N, with respect to inclusion. Then
FS .G/D hFS\N .N / jN 2 N0i.

We end this section with a generalization of a well-known result concerning
finite p-groups.

LEMMA 1.10. Let P be a p-group, set AD Aut.P /, and let

CD .P D P0 � P1 � � � � � Pk D 1/

be a chain of normal subgroups of P . Let ƒ be a subgroup of the group

CA.C/D f˛ 2 A j ŒPi ; ˛�� PiC1 for all i , 0� i < kg;

and assume that either ƒ is a torsion group or that P1 is of bounded exponent.
Then ƒ is a p-group.

Proof. Apply induction on k. The lemma is trivial when k D 1, so take k > 1
and set P �DP=Pk�1. Then ƒ centralizes the chain C�D .P �0 � � � � �P

�
k�1
D 1/.

By induction, Autƒ.C�/ is a p-group, so it remains to show that Cƒ.P �/ is a
p-group. Thus, we may take k D 2. Let ˛ 2 ƒ, x 2 P , and set c D Œx; ˛�. Then
c 2 P1 � CP .˛/, so that x˛

n

D xcn, and hence j˛jhxij D jcj. If ˛ is of finite order,
or P1 is of bounded exponent, we conclude that

j˛j D lcmfjŒx; ˛�j j x 2 P g

is a power of p. �

2. Linking systems, signalizer functors, and p-local groups

Let F be a fusion system over a p-group S . A subgroup P of S is F-centric if
CS .P�/DZ.P�/ for every � 2HomF.P; S/, and P is F-radical ifOp.AutF.P //
D Inn.P /. Write Fc for the set of F-centric subgroups of S , Fr for the set of F-
radical subgroups of S , and Frc for Fc \Fr .

LEMMA 2.1. Let S be a Sylow p-subgroup of a group G, set F D FS .G/,
and let P � S .

(a) If P 2 Fc , and g 2G with P � Sg , then CSg.P /� P .

(b) If P contains every finite p-subgroup of CG.P / then P 2 Fc .

(c) If P is finite and P 2 Fc , then Z.P / contains every p-subgroup of CG.P /.
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Proof. Part (a) is immediate from the definition of Fc . Now suppose that
Z.P / contains every finite p-subgroup of CG.P /, and let g 2 NG.P; S/. Then
every element of CS .P g/ is contained in Z.P g/, and thus P 2 Fc , proving (b).

Finally, assume that P is finite and that P 2 Fc , and let R be a finite p-sub-
group of CG.P /. Then RP is a finite p-subgroup of G. Since S is a Sylow p-sub-
group of G, there exists g 2G with .RP /g � S . As P 2 Fc we have CS .P g/D
Z.P g/, and so R�Z.P /. Thus Z.P / contains every finite p-subgroup of CG.P /,
and since every p-group is the union of its finite subgroups, we obtain (c). �

LEMMA 2.2. Let S be a Sylow p-subgroup of a group G, and set FDFS .G/.
Let P 2 Fr such that P contains every p-element of CG.P /, and let

CD .P D P0 � P1 � � � � � Pk D 1/

be a chain of NG.P /-invariant subgroups of P . Suppose that P1 is of bounded
exponent. Then P contains every finite P -invariant p-subgroup R of CG.C/.

Proof. First, let R0 be a p-subgroup of CG.P /P . Then R0P D CR0P .P /P
by the Dedekind Lemma. As P ECG.P /P , R0P is a p-group, and then CR0P .P /
� P by hypothesis. Thus

.�/ R0 �R0P � CR0P .P /P � P:

Now let R be a p-subgroup of CG.C/. Set ƒDCAutG.P /.C/. Then ƒEAutG.P /,
and ƒ is a p-group by 1.10. As P is F-radical, it follows that AutR.P /� Inn.P /,
and thus R � CG.P /P . Then R � P by .�/. �
A set F0 of objects in a fusion system F is closed under F-conjugation if P� 2F0
for all P 2 F0 and all morphisms � 2 F defined on P .

LEMMA 2.3. Let F be a fusion system on S . Then Fc , Fr , and Frc are closed
under F-conjugation.

Proof. Let P � S and let � 2 HomF.P; S/. Then P 2 Fc if and only if
P� 2 Fc , by definition. Now let P 2 Fr . The natural map ��WAutF.P / !
AutF.P�/ is an isomorphism, and since Inn.P /DOp.AutF.P //, it follows that
Inn.P�/DOp.AutF.P�//. Thus, P 2 Fr if and only if P� 2 Fr . �

Definition 2.4. Let S be a p-group, let F be a fusion system over S , and let
E be a subset of Fc . An E-linking system (or linking system on E), consists of

(1) a category L with Obj.L/D E and composition � (read from left to right),
(2) a functor � WL ! F, for which the associated map of objects induces the

identity map Obj.L/ �! E, and
(3) a collection ı D fıP WP ! AutL.P / j P 2 Eg of injective group homomor-

phisms,

such that the following three conditions hold for any P and Q in E.
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(A) The left action of Z.P / on MorL.P;Q/ given by

zW� 7! ıP .z
�1/ ��

is free (i.e. MorL.P;Q/ is a union of regular orbits for Z.P /), and the map
Z.P /� 7! �.�/ is a bijection of Z.P /nMorL.P;Q/ with HomF.P;Q/. In
particular, � is surjective on morphism sets, and �.L/ is a full subcategory
of F.

(B) For all g 2 P ,
�.ıP .g//D cg 2 AutF.P /:

(C) For each  2MorL.P;Q/ and each g 2 P , the following square commutes
in L:

P
 

����! Q

ıP .g/

??y ??yıQ.g ��. //
P

 
����! Q :

A centric linking system on F is a linking system on Fc . A pre-local group consists
of a triple GD .S;F;L/ where S is a p-group, F is a fusion system over S , and
L D .L; �; ı/ is a linking system on a subset E of Fc . If F is saturated, and L

is a centric linking system, then G is a p-local group. A p-local finite group is a
p-local group G in which S is finite.

We are following the notational conventions in [BLO03] in writing MorL.P;Q/

(rather than HomL.P;Q/) for the set of morphisms in L from P to Q, in order to
emphasize that in general, L-morphisms are not mappings.

Definition 2.5. Let G be a group, let S be a Sylow p-subgroup of G, and set
FD FS .G/. Let T.G/ be the set of all subgroups of G. An F-signalizer functor
is a mapping

� WFc �! T.G/

satisfying the following three conditions:

(1) �.P / is a complement to Z.P / in CG.P /.

(2) �.P g/D �.P /g for all g 2NG.P; S/.

(3) �.Q/� �.P / for all Q with P �Q � S .

Remark. Signalizer functors are bona fide contravariant functors. Namely, in
2.5, view TD T.G/ as a category whose morphism sets are given by

MorT.X; Y /DNG.X; Y /;

for any subgroups X and Y of G, and where composition is given by multiplication
in G. Let Tc be the full subcategory of T whose set of objects is Fc . Condition (2)
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in 2.5 implies that an F-signalizer functor � is a contravariant functor from Tc to T,
if we define

� WMorTc .P;Q/!MorT.�.P /; �.Q//

by �.g/D g�1.

Given the setup of 2.5, define LD L� to be the category whose objects are
the F-centric subgroups of S , with morphisms

MorL.P;Q/D �.P /nNG.P;Q/:

The composition of morphisms is defined by

�.P /g � �.Q/hD �.P /gh;

for g 2 NG.P;Q/ and h 2 NG.Q;R/. In fact, this composition is no more than
ordinary multiplication of subsets of G. To see this, notice that if P g �Q, then
the signalizer functor axioms (2) and (3) yield �.Q/ � �.P g/ D �.P /g . Thus
�.Q/g

�1

� �.P /, and so

.�.P /g/.�.Q/h/D �.P /�.Q/g
�1

ghD �.P /gh:

Next, define a functor

� D �� WL� ! Fc

by �.P /D P and by �.�.P /g/D cg for g 2NG.P;Q/. Finally, define a family
ı D ı� D fıP j P 2 Fcg of monomorphisms

ıP D ıP;� WP ! AutL.P /

by ıP .g/D �.P /g, for P 2 Fc .

LEMMA 2.6. Let S be a Sylow p-subgroup of a group G, set F D FS .G/,
and let � be an F-signalizer functor. Then

(a) .L� ; �� ; ı� / is a centric linking system on F.

(b) If F is saturated then GS;� .G/ WD .S;FS .G/;L� / is a p-local group.

Proof. Let P;Q 2 Fc , let z be a nonidentity element of Z.P /, and let g 2
NG.P;Q/. Then �.P /g 2MorL.P;Q/, and

ıP .z/ � �.P /g D �.P /z � �.P /g D �.P /zg:

Here �.P /zg ¤ �.P /g since �.P / \ Z.P / D 1. Thus, Z.P / acts freely on
HomL.P;Q/. Similarly, since CG.P /D �.P /�Z.P /, the map

Z.P /�.P /g 7! cg D �.�.P /g/

is a bijection from HomL.P;Q/=Z.P / to HomF.P;Q/. Thus, condition (A) in
Definition 2.4 is satisfied in our setup.
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Now suppose that g 2 P . By construction, we then have

�.ıP .g//D �.�.P /g/D cg ;

and so condition (B) is satisfied. Finally, let f D �.P /x 2MorL.P;Q/. We then
have �.f /D cx WP �!Q, and g�.f /D gx . Since also ıQ.gx/D �.Q/gx , we
obtain

f � ıQ..g�.f //D �.P /x � �.Q/g
x
D �.P /xgx

D �.P /gx D �.P /g � �.P /x D ıP .g/ �f:

Thus, condition (C) is satisfied, and (a) is proved. Part (b) follows from (a), by the
definition of p-local group.

PROPOSITION 2.7. Let S be a Sylow p-subgroup of a group G and set FD

FS .G/. Suppose that NG.P / is finite for every P 2 Fc .

(a) There is a unique F-signalizer functor � given by �.P /DOp.CG.P //.
(b) Set LS .G/D L� , and suppose that F is saturated. Then

GS .G/ WD .S;FS .G/;LS .G//

is a p-local finite group.

Proof. Part (a) follows from 2.1(c), and then (b) follows from (a) and from
2.6(b). �

The following lemma is intended as a remark, to point out the connection
between Definition 2.5 and the usual notion of “balanced signalizer functor” in
finite group theory. It will not be used in the sequel.

LEMMA 2.8. Let � be an F-signalizer functor, where F is a fusion system
over a finite p-group. Then, for any P;Q 2 Fc with P �Q,
(a) Z.Q/�Z.P /, and
(b) �.Q/D C�.P /.Q/.

Proof. Part (a) is immediate from 2.1(c). By definition,

�.Q/� C�.P /.Q/� CG.Q/D �.Q/�Z.Q/;

so that C�.P /.Q/D�.Q/�.Z.Q/\�.P //. SinceZ.Q/�Z.P /, we obtain (b). �

Definition 2.9. Let F and zF be fusion systems over the groups S and zS ,
respectively. A morphism ˛WF! zF of fusion systems consists of a functor ˛1W
F �! zF, and a homomorphism ˛0WS ! zS of groups, satisfying the following two
conditions.

(MF1) For every subgroup P of S , ˛1.P /D ˛0.P /, and

(MF2) for each � 2 HomF.P;Q/, we have ˛0 ı ˛.�/ D � ı ˛0 (in right-hand
notation).
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We most often write ˛ for both ˛0 and ˛1. In the case that ˛0 is given by inclusion
of S into zS , and ˛1 is given by inclusion of HomF.P;Q/ into HomzF.P;Q/ for
all P;Q 2 F, we say that ˛ is an embedding. We reserve the symbol � to denote
an embedding of fusion systems.

In general, if F and zF are fusion systems over finite p-groups S and zS , re-
spectively, then a morphism ˛WF! zF of fusion systems need not send F-centric
subgroups of S to zF-centric subgroups of zS . For example, let G be a finite group,
take zG to be the direct product of G with a nonidentity p-group R, let zS be a Sylow
p-subgroup of zG, and take SD zS\G. Then the inclusion map ˛WFS .G/!F zS .

zG/

carries no centric subgroup to a centric subgroup.
Recall that if F is a saturated fusion system over a p-group S , then Frc denotes

the set of subgroups of S which are both F-centric and F-radical. Given a p-local
group GD .S;F;L/, denote by Lrc the full subcategory of L whose objects are
the objects of Frc. Thus Lrc is a linking system on Frc.

By [BCGC05, Th. B], the classifying spaces jLj and jLrcj are homotopy equiv-
alent in the case that S is finite. This provides some justification for the following
definition of morphism of p-local groups.

Definition 2.10. Let GD .S;F;L/ and zGD . zS; zF; zL/ be pre-local groups. A
morphism of pre-local groups from G to zG is a pair .˛; ˇ/, where ˛WF! zF is a
morphism of fusion systems, and ˇWL! zL is a functor which, for each pair P;Q
of objects of L, satisfies the following conditions.

(MG1) ˛.P /� ˇ.P /.

(MG2) For each  2MorL.P;Q/, the restriction of z�.ˇ. // to ˛.P / maps ˛.P /
into ˛.Q/, and ˛.�. //D z�.ˇ. // j˛.P /.

(MG3) ˇ ı ıP D ıˇ.P / ı˛0.
We say that the morphism .˛; ˇ/ is an embedding if ˛ is an embedding of fusion
systems and

ˇWMorL.P;Q/!MorzL.˛.P /; ˛.Q//

is an injection for all P;Q 2 L. We say that G is a pre-subgroup of zG if there is an
embedding .�; ˇ/ of G into zG, and in this case one may say simply that ˇWG �! zG
is an embedding. If G and zG are p-local groups, then a morphism of p-local groups
from G to zG is a morphism of pre-local groups

.˛; ˇ/W .S;F;Lrc/ �! . zS; zF; zLrc/:

Such a morphism is an embedding of p-local groups if it is an embedding of pre-
local groups, and if ˛ is given by inclusion, we say that G is a subgroup of zG.

The next two results provide tools for carrying out the construction of mor-
phisms, and particularly of embeddings, of p-local groups.
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PROPOSITION 2.11. Let G1 be a subgroup of a group G2, and assume that
there are Sylow p-subgroups Si of Gi with S1 D G1 \ S2. Assume that for
each i , the fusion system Fi WD FSi .Gi / is saturated, and that we are given an
Fi -signalizer functor �i . In addition, assume given a mapping ˇWFrc

1 !Frc
2 such

that the following conditions hold for every P 2 Frc
1 .

(1) P � ˇ.P /.

(2) For each g 2NG1.P; S1/ we have ˇ.P g/D ˇ.P /g .

(3) For each Q 2 Frc
1 with P �Q we have ˇ.P /� ˇ.Q/.

(4) �2.ˇ.P //\G1 D �1.P /.

Let �WF1 ! F2 be the inclusion functor, and write Gi D .Si ;Fi ;Li / for the p-
local group which is canonically associated with Fi and �i (cf. 2.6). Then for any
P;Q 2 Frc

1 there is a mapping

.�/ ˇP;QWMorL1.P;Q/ �!MorL2.P;Q/

given by �1.P /g 7! �2.ˇ.P //g; and .�; ˇ/ is an embedding of G1 into G2. That is,
G1 is a p-local subgroup of G2.

Proof. Let P;Q 2 Frc
1 and let g 2 NG1.P;Q/. Then P g 2 Frc

1 by 2.3.
Since P g � Q, (3) yields ˇ.P g/ � ˇ.Q/. Then ˇ.P /g � ˇ.Q/ by (2), and so
g 2NG2.ˇ.P /; ˇ.Q//. We have �1.P /g D �1.P /h if and only if hg�1 2 �1.P /,
while by (4), hg�1 2 �1.P / if and only if hg�1 2 �2.ˇ.P //\G, which holds if
and only if �2.ˇ.P //g D �2.ˇ.P //h. This shows that the mappings ˇP;Q in .�/
are well-defined injections. Visibly, ˇ preserves composition, so that ˇ is a functor
from L1 to L2.

Axiom (MG1) in 2.10 is an immediate consequence of (1). Next,

˛.�1.�1.P /g//D ˛.cg/D cgjP D �2.�2.ˇ.P /g/jP D �2.ˇ.�1.P /g//jP ;

so that (MG2) holds. Finally, for any g 2 P ,

ˇ.ı1;P .g//D ˇ.�1.P /g/D �2.ˇ.P //g D ı1;ˇ.P /.g/D ı1;ˇ.P /.˛.g//;

and so (MG3) holds. �

PROPOSITION 2.12. Let G1 be a subgroup of a group G2, assume that there
are Sylow p-subgroups Si of Gi with S1 D G1 \ S2, and let �i be a signalizer
functor on the fusion system Fi WDFSi .Gi /. Assume also that each Fi is saturated.
For P 2 Frc

1 , denote by B.P / the set of NG1.P /-invariant p-subgroups of G2,
and set ˇ.P /D hB.P /i. Assume that the following two conditions hold for each
P 2 Frc

1 .

(10) ˇ.P / 2 Frc
2 . .In particular, ˇ.P /� S2:/

(20) �1.P /D �2.ˇ.P //\G1.
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Then ˇ satisfies conditions (1) through (4) of 2.11, and defines an embedding
.�; ˇ/WG1 �! G2 of p-local groups.

Proof. By (10), ˇ is indeed a map from Frc
1 to Frc

2 . Let P 2Frc
1 . As P 2B.P /,

condition (1) of 2.11 holds. We have B.P /g D B.P g/ for any g 2 NG1.P; S1/,
so that condition (2) holds.

Let Q 2 Frc
1 with P � Q. For any x 2 NG1.Q/ we have P x � S1. Then

P x 2Frc
1 , and so ˇ.P /x D ˇ.P x/� S2 by (2). Thus hˇ.P /NG1 .Q/i is a p-group,

invariant under NG1.Q/, and hence contained in ˇ.Q/. Thus condition (3) holds.
Condition (4) is equivalent to (20), and so the proof is complete. �

Example 2.13. Let G be a group andKEG such that xG WDG=K is finite. Let
S be a p-subgroup of G such that S\KD 1, S 2 Sylp.KS/, and xS 2 Sylp. xG/. Set
F WDFS .G/, and for P 2Fc set N�.P /DOp0.C xG.P //. Let �.P / be the preimage
in CG.P / of N�.P /.

Set xF D F xS .
xG/. Then N� is an xF-signalizer functor, and NG WD G xS; N� .

xG/ is
the natural p-local group G xS .

xG/. Let ˛0WS �! xS be the restriction to S of the
quotient map G �! xG. For P � S define ˛1 on HomG.P; S/ by ˛1W cg 7! c Ng .

Observe that for P � S , ˛0WNG.P; S/�!N xG.
xP ; xS/ is a surjection. Namely,

if g 2G with xP Ng � xS then, as S 2 Sylp.KS/, there is k 2K with P gk � S , and
we have Ng D Ngk. Similarly C xG. xP / D CG.P /. Also, if g; h 2 NG.P; S/ with
˛1.cg/D ˛1.ch/ then P g � S �P h with gh�1 centralizing xP , so gh�1 2NG.P /
with ŒP; gh�1��P\KD1. Thus ˛1WHomF.P; S/�!HomxF. xP ; xS/ is a bijection.
Therefore .˛0; ˛1/ is an isomorphism of F with xF, and since xF is saturated, so is
xF. It is now easy to check that � is an F-signalizer functor, and then G WD GS;� .G/

is a p-local finite group by 2.7(b).
Define ˇWL �! NL by ˇ.P / D xP (on objects), and by ˇW �.P /g 7! N�. xP / Ng

(on morphisms). One may now check that .˛; ˇ/WG �! NG is an isomorphism of
p-local finite groups.

The hypothesis that S 2 Sylp.KS/ was used only to verify that the maps
˛0WNG.P; S/�!N xG.

xP ; xS/ are surjective, and that N�. xP /�CG.P / for each P 2
Frc. Thus, that hypothesis may be replaced by the hypothesis that ˛0WNG.P; S/�!
N xG.

xP ; xS/ is surjective and N�. xP /D 1 for each xP 2 xFrc.

3. Amalgams
In this section, an amalgam of groups will always mean a pair

AD .A1
˛1
 � A1;2

˛2
�! A2/

of injective group homomorphisms. A morphism from the amalgam A to an amal-

gam BD .B1
ˇ1
 � B1;2

ˇ2
�! B2/ is a triple  D .J j¿ 6D J � f1; 2g/ of injective

group homomorphisms J WAJ ! BJ , such that ˛ii D 1;2ˇi for i D 1; 2.
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For example, if G is a group with subgroups G1 and G2, and G1;2 is a sub-
group of G1\G2, then there is a subgroup amalgam G given by the inclusion maps
˛i WG1;2! Gi . A completion of an amalgam A is an isomorphism  WA! G of
A with a subgroup amalgam G in a group G, such that G D hG1; G2i. One often
abuses the terminology and says simply that G is a completion of A.

Let

AD .G1 � B �!G2/

be an amalgam and let G DG1 �B G2 be the associated free amalgamated product.
Then G is a completion of A, and indeed the universal completion of A. We
identify A with the subgroup amalgam of G which is the image of A under this
completion, and in particular regard G1, G2 and B as subgroups of G with G1\
G2 D B .

For any subgroup X of G, denote by XnG the set of right cosets of X in G.
Set �i DGinG. Then � D �.A/ is the graph whose vertex set is the disjoint union
V.�/D �1

`
�2, and whose set of edges is the set E.�/ of 2-subsets fG1x;G2xg

with x 2G. We call � D�.A/ the standard tree associated with A and with G, and
we refer to [Se] for the fact that � really is a tree. Observe that G is represented
as a group of automorphisms of � via right multiplication, and that the kernel of
this representation is the largest normal subgroup of G which is contained in B .
Evidently, G acts transitively on E.�/, while �1 and �2 are the (distinct) orbits for
G on V.�/. It is also evident that G is locally transitive on �; that is the stabilizer
Gı of any vertex ı acts transitively on the set �.ı/ defined by

�.ı/D f 2 � j fı; g 2E.�/g:

For any subgroup or element X of G, write �X for the subgraph of � induced on
the set of vertices which are fixed by X . For any connected graph �, and vertices
˛ and ˇ of �, the length of the shortest geodesic path from ˛ to ˇ in � is denoted
d.˛; ˇ/. Then .�; d/ is a discrete metric space, and automorphisms of � are
isometries. An isometry of a tree is said to be hyperbolic if it fixes no vertices or
edges. The following two results, noticed first by J. Tits [Tit70], are elementary.

LEMMA 3.1. Let h be an automorphism of a tree � , and denote by ƒ.h/ the
intersection of all the h-invariant subtrees of � . Suppose that there exists an edge
f; ıg of � such that

(1) d.; h/D d.ı; ıh/¤ 0 and

(2) f; ıg is not fixed by h.

Then h is hyperbolic, and the set of all edges f; ıg which satisfy condition .1/ is
the edge set of ƒ.h/.
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LEMMA 3.2. Let � be a tree, let g be a hyperbolic isometry of � , and define
ƒDƒ.g/ as in 3.1. Set d Dminfd.ı; ıg/ j ı 2 V.�/g. Then:
(a) ƒ is isomorphic to the graph NZ whose vertex set is the set Z of integers, and

whose edges are the pairs fn; nC 1g for n 2 Z.
(b) There is an isomorphism  Wƒ! NZ such that  �1g Wn 7! nCd for all n2Z.
(c) For any vertex  of � , the geodesic in � from  to g has length d C 2e,

where e is the minimal distance from  to a vertex of ƒ.

LEMMA 3.3. Let � be a tree, and let x; y 2 Aut.�/, ı 2 �x ,  2 �y , and
.˛0; : : : ; ˛d / the geodesic from  to ı. Suppose x does not fix ˛ D ˛d�1 and y
does not fix ˛1. Then xy is hyperbolic.

Proof. Observe first of all that .˛0y; : : : ; ˛dy/ is the geodesic from  D ˛0y

to ıy, so that the path �D .˛dy; : : : ; ˛0y; ˛1; : : : ; ˛d / contains a geodesic g from
ıy to ı. Indeed as ˛1 ¤ ˛1y, g D � is of length 2d . Then g0 D .˛d�1y; : : : ; ˛0y;
˛1; : : : ; ˛d / is the geodesic from ˛y to ı, and since ˇ D ˛x�1 6D ˛, it follows that
g0ˇ is the geodesic of length 2d from ˛y to ˇ. But ıy D ıxy and ˇxy D ˛y, and
so d.ı; ıxy/D d.ˇ; ˇxy/. The lemma now follows from 3.1. �

We will work under the following hypothesis for the remainder of this section.

HYPOTHESIS 3.4. G DG1 �B G2 is the free amalgamated product associated
with an amalgam

AD .G1 � B �!G2/;

and G1, G2, and B are regarded as subgroups of G in the canonical way. Let � be
the standard tree associated with A and G, and let �i be the subset GinG of the
vertex set of � . Assume
(1) There is a subgroup S of G such that S is a (possibly infinite) Sylow p-sub-

group of each of the groups G1, G2, and B .
(2) NGi .S/� B ¤Gi , for i D 1 and 2.

The vertex Gi of � will most often be denoted i .

LEMMA 3.5. Assume Hypothesis 3.4, and assume also that

.�/ fSg j g 2G1[G2; S
g
� Bg D SB :

Then:
(a) �S D f1; 2g, and
(b) S 2 Sylp.G/.

Proof. It follows from .�/ and from [Asc86, 5.21] that NGi .S/ is transitive
on �S .i /. Since NGi .S/� B , by 3.4, we obtain (a).

Let S� be a p-subgroup of G containing S and let x 2 S�. Then jxj is finite,
so that 3.2 implies that �x 6D ¿. Choose ı 2 �x and  2 �S with d WD d.ı; /
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minimal. Suppose that d > 0 and let .ı; ı0; : : : ;  0; / be the geodesic from ı to 
in � . Then x …Gı 0 , and there exists y 2 S �G 0 . As jxyj is finite, this contradicts
3.3, and so we conclude that d D 0. Then (a) yields S� � Gi for some i . Since
S is a maximal p-subgroup of Gi we then have S� D S , and thus S is a maximal
p-subgroup of G.

Let P be a finite p-subgroup ofG, and let P0 be a subgroup of P which fixes a
vertex of � , and which is maximal for this condition. Then NP .P0/ acts on the tree
�0D�P0 , and no element ofNP .P0/�P0 fixes a vertex of �0. Now, NP .P0/�P0
consists of hyperbolic isometries on �0, by 3.2, and hence NP .P0/ D P0 D P .
Since G is edge-transitive on � , it follows that P is conjugate to a subgroup of
G1 or G2. Then P is conjugate to a subgroup of S , by 3.4(1), and S is a Sylow
p-subgroup of G. �

LEMMA 3.6. Assume Hypothesis 3.4, let P be a finite subgroup of S , and
let g 2 NG.P; S/. Set F0 D P . Then there exists a positive integer n, elements
g1; : : : ; gn of G1, elements h1; : : : ; hn of G2, and subgroups Ei and Fi of S , 1�
i � n, such that the following conditions hold.

(a) gi … B for 1 < i � n, and hi … B for 1� i < n.

(b) Ei D F
gi
i�1 and Fi DE

hi
i for all i with 1� i � n.

(c) g D g1h1 : : : gnhn.

Moreover, the minimal length of g as a word in the generating setG1[G2 is 2n�2
if g1; hn 2 B , 2n� 1 if exactly one of g1 and hn is in B , and 2n if neither g1 nor
hn is in B .

Proof. Since G1 and G2 generate G, we may choose elements gi 2 G1 and
hi 2G2, satisfying the conditions in (a) and (c). Set ˛0 D 2, ˇ0 D 1hn, and for
1� i � n set wi D gn�iC1hn�iC1 : : : gnhn, ˛i D 2wi , and ˇi D 1hn�iwi . Then
qD .˛0; ˇ0; : : : ; ˇn�1/ is a path in � with ˇi 6D ˇiC1 and ˛i 6D ˛iC1 for i < n�1.
Thus q is a geodesic from ˛0 to ˇn�1, and if g1 … B then also the path q˛n is a
geodesic. In particular if n > 1 or g1 … B then d.a0; an/ > 0, and wn … B .

Take (b) as the definition of the groups Ei and Fi for i > 0. We now show
that these groups are contained in B . Let x 2 F0, set y0 D x, and for 1 � i � n
define xi and yi recursively, by

xi D y
gi
i�1 and yi D x

hi
i :

Suppose that for some j , either xj or yj is not in B , and let j be the smallest such
index. Suppose that xj … B . Then yj�1 2 B , and so xj D y

gj
j�1 2G1�B . Then

xg D h�1n g�1n : : : h�1j xjhj : : : gnhn
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is an alternating product of elements of G2 and G1, in which none of the factors
lies in B except possibly for the first and the last. It follows from paragraph one
that xg … B , whereas xg 2 S � B . A similar argument shows yj 2 B . Therefore
xi and yi are in B for all i , and so each of the groups Ei and Fi is contained in B .
Since S is a Sylow p-subgroup of B , we may adjust our choices of the elements
gi and hi , via right multiplication by elements of B , to ensure that Ei and Fi are
in S for all i .

It remains to prove the final statement in the lemma. This follows since, by
paragraph one, the length `.g/ of g as a word in the generating set G1[G2 for G
is equal to the shortest distance in the tree �.A/ from a vertex in f1g; 2gg to a
vertex in f1; 2g.

We have the following immediate consequence of 3.6.

COROLLARY 3.7. Assume Hypothesis 3.4. Then

FS .G/D hFS .G1/;FS .G2/i: �

For any subgroup X of G, and any elementary abelian p-subgroup A of X ,
denote by En.X;A/ the set of elementary abelian p-subgroups of X which have
order pn and which contain A. Write En.X/ for En.X; 1/.

In the remainder of this section we assume the following hypothesis.

HYPOTHESIS 3.8. Hypothesis 3.4 holds, and so do the following conditions.

(1) There is a normal subgroup Z of G1 of order p, and Z is the unique subgroup
of order p in Z.S/.

(2) There exists U 2 E2.G2; Z/ with U EG2, and G2 acts transitively on E1.U /.

(3) B DNG1.U /DNG2.Z/.

(4) For each X 2 fH;K;Bg, X is transitive on its set of maximal p-subgroups.

LEMMA 3.9. Let P be a subgroup of S and let X be a subgroup of Z.P / of
order p.

(a) Let g 2G2 with P g � S . Then one of the following holds.

(i) g 2 B , and neither P nor P g is contained in CG.U /.
(ii) P � CG.U /.

(b) If X ¤Z and X �U then there exists g 2G2 with Xg DZ and with P g � S .

Proof. Let g be as in (a), and setQDP g . SinceU EG2, we have P �CG.U /
if and only if Q�CG.U /. Since conclusion (ii) of (a) does not hold, neither P nor
Q is contained in CG.U /. Set xG2 D G2=CG2.U /. Then xP and xQ are nontrivial
p-subgroups of xS . Hence by 3.8(2), xG2 is isomorphic to a subgroup of GL2.p/
containing SL2.p/, and B DNG2.Z/ has index pC 1 in G2. Thus xP D xQD xS ,
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and xB D N xG2.
xS/. Since P g D Q, we then have Ng 2 xB . Thus g 2 B and (a) is

proved.
Suppose that Z ¤ X � U . By 3.8(2) there exists g 2 G2 with Xg D Z.

Since X �Z.P /, we have P g � CG2.Z/� B . By 3.8(4) there exists h 2 B with
P gh � S . Replacing g with gh, we obtain (b). �

For ı 2 � and g 2 G with ı D ig for some i , Zı will denote Zg if i D 1,
and U g if i D 2. This notation is well defined as a consequence of 3.8(3).

LEMMA 3.10. Let † be a subtree of � and let  2†. Set Y DhZı jı2 †i.
Then CG .Y / fixes † vertex-wise.

Proof. Let  2 †, set X D CG .Y /, and assume that X — G†. Among all
pairs .ı; x/ with ı 2† and x 2X with ıx ¤ ı, choose .ı; x/ so that d WD d.ı; ıx/
is minimal. Let ˛ 2 †.ı/ be of distance d � 1 from  . Then X fixes ˛ and
centralizes Y , so X centralizes Zı . Thus X � CG˛ .Zı/ � Gı by 3.8(3), and
contrary to our choice of ı. �

LEMMA 3.11. Let ı and  be distinct vertices in �1 with Zı D Z . Then
d.ı; /� 6. Moreover, the following hold.

(a) Let ˛; ˇ 2 �1 with d.˛; ˇ/ D 2, and let X be a subgroup of G fixing ˇ and
centralizing Z˛ and Zˇ . Then X fixes ˛.

(b) Let ˛0; ˛4 2 �1 with d.˛0; ˛4/D 4, and such that Z˛4 centralizes Z˛0 . Then
Za4 fixes a0.

Proof. Suppose d WD d.ı; / < 6. Then d D 2 or 4. If d D 2, and .ı; ˇ; /
is the geodesic from ı to  , then Zˇ DZıZ is of order p, which is not the case.
Thus d D 4. Write .ı; ˇ; ı0; ˇ0; / for the geodesic from ı to  . Then

Zˇ DZıZı 0 DZZı 0 DZˇ 0 :

By edge-transitivity, we may take ı0 D 1 and ˇ0 D 2. Then U DZˇ 0 DZˇ , and
by local transitivity there exists g 2 G1 with ˇg D ˇ0. Then U D U g , so g 2 B ,
and ˇ D ˇ0. Then d < 4, and we have a contradiction.

Assume the hypothesis of (a). Without loss, ˇ D 1 and f2g D �.˛/\�.ˇ/.
As X fixes ˇ and centralizes Z˛ and Zˇ , we obtain X �CH .Z˛Zˇ /DCH .U /�
B �G˛, establishing (a).

Now assume the hypothesis of (b), and take X to be Z˛4 . Let .˛0; : : : ; ˛4/
be the geodesic from ˛0 to ˛4. Then X �Za3 DZ˛2Za4 � CG.Z˛2/, and so X
fixes ˛2 by (a). Then, since dist.˛0; ˛2/D 2 and X centralizes Z˛i for i D 0; 2, X
fixes ˛0 by another application of (a). �

HYPOTHESIS 3.12. Hypothesis 3.8 holds, and every subgroup of G1 of order
p is conjugate in G1 to a subgroup of U .
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LEMMA 3.13. Assume Hypothesis 3.12. Let P be a subgroup of S and let X
be a subgroup of Z.P / of order p.

(a) If X — U then there exists g 2G1 with Xg � U and with P g � S .

(b) If X ¤ Z then there exists g 2 G with Xg D Z, .XZ/g D U , .PU /g � S ,
and g D g1g2 where gi 2Gi and P g1 � S .

Proof. Suppose that X — U . By 3.12 there exists g 2G1 with Xg � U . Set
Y D Xg . Then YZ D U , so that P g � CG1.U / � B , and by 3.8(4) there exists
h 2 B such that P gh � CS .Y /. Replacing g with gh, we obtain (a).

Now assume that X ¤Z. If X � U we appeal to 3.9(b), with PU in the role
of P , in order to obtain g2 2G2 with Xg2 DZ and .PU /g2 � S . With g1D 1, (b)
holds in this case. So assume that X — U . If U centralizes X we apply (a) to PU ,
obtaining g1 2G1 such thatXg1 �U and .PU /g1 �S . Then .XZ/g1DU , and by
3.9(b) there exists g2 2G2 withXg1g2DZ and .PU /g1g2 �S . Thus (b) also holds
in this case, and we are reduced to the case where U does not centralize X . Since
P � S , 3.8(3) implies that ŒU;X�D ŒU; S�DZ. Then XZ E PU . By 3.12 there
exists g1 2G1 with Xg1 �U . Then .XZ/g1 DU , so that .PU /g1 �NG1.U /DB .
By 3.8(4) we may assume that g1 was chosen so that .PU /g1 �S . Then (a) applies,
and completes the proof of (b). �

The next result amounts to a re-working of [LO02, Lemma 1.4] in our tree-
theoretic setup. The formulation given here is different in several respects from
the one in [LO02], but the main idea of the proof has not been altered. We remark
that we shall only use part (c) of 3.14, and this will occur only once, in the proof
of 9.2.

PROPOSITION 3.14. Assume Hypothesis 3.12. Set D DNG.Z/ and assume
that FS .D/ ¤ FS .G1/. Denote by � the set of all pairs .P; g/ such that P is a
finite subgroup of S , g 2ND.P; S/, and cg … HomG1.P; S/. Set

PD fP j .P; g/ 2� for some g 2Dg;

and let P 2 P. Choose .P; g/ 2� so that the length `.g/ of g, as a word in the set
G1[G2 of generators of G, is minimal. Then ŒP; U �D 1, .PU; g/ 2�, and upon
replacing P with a suitable subgroup of CS .P /P containing P , we have

(a) `.g/D 5, and g D g1g2g3g4g5 where gi 2 G2 for i odd, and gi 2 G1 for i
even.

(b) The elements g1 through g5 in (a) may be chosen so that U � Z.P g1:::gi /,
and P g1:::gi � S for all i , 1� i � 5.

(c) There existsE 2E3.Z.P /; U / such that U �Eg , CB.E/g �B , and CB.Eg/
� Bg .
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Proof. Set Q D P g . Since g 2D, also g 2 ND.PZ;QZ/, so that we may
assume Z � P .

By 3.6 we have g D g1 : : : gn, where each gi is in G1 [ G2, and where
P g1:::gi � S for all i , 1 � i � n. Moreover, the sequence .g1; : : : ; gn/ may be
chosen so that `.g/D n.

Set P0DP ,Z0DZ, and for 1� i �n set Pi DP
gi
i�1 andZi DZ

gi
i�1. IfZi D

Z for some i with 0< i <n, then the minimality of n implies that, for xD g1 : : : gi
and y D giC1 : : : gn, we have cx 2 HomG1.P; Pi / and cy 2 HomG1.Pi ;Q/. But
in that case we get cg D cxcy 2 HomG1.P;Q/, contrary to hypothesis. Thus:

(1) Zi DZ if and only if i D 0 or n.

By 3.13(b) there exist elements v1 through vn�1 of G1G2, such that

(2) Zvii DZ, .ZZi /vi D U , and .PiU/vi � S .

Set v0 D vn D 1, and for each i , 0� i � n, choose ri 2G1 and si 2G2 with
vi D risi . Set ki D v�1i�1givi for i � 1, and set P 0i D P

vi
i for i � 0. Then P 0i � S

for all i , by (2), and .P 0i�1/
ki D P 0i for i � 1. Notice that

.�/ g1 : : : gn D k1 : : : kn:

Suppose that, for all i � 1, we have cki 2 HomG1.P
0
i�1; P

0
i /. Choose ti 2 G1

so that ki t�1i 2 CG.P
0
i�1/, and set t D t1 : : : tn. Then gt�1 2 CG.P / by .�/, so

that cg 2 HomG1.P;Q/, contrary to hypothesis. Thus, cki … HomG1.P
0
i�1; P

0
i /

for some i � 1. Since ki D .ri�1si�1/�1girisi is of length 5, it follows from the
minimality of n that n� 5.

Set ˛ D ˛0 D 1, and define vertices ˛1 through ˛n by ˛i D ˛i�1gi . Let
† be the subtree of � generated by f˛0; : : : ; ˛ng, and let †i be the subtree of †
generated by ˛0 and ˛i . Thus † is the union of its subtrees †i , and †i is the
geodesic from ˛ to ˛i in � .

Minimality of n implies that g1 2 G2 �G1, as otherwise we may replace
.P; g/ with .P g1 ; g2 : : : gn/. Then gi is in G2�G1 for i odd, and in G1�G2 for
i even. Observe that

.��/ d.˛; ˛i /D

(
i C 1 if i is odd, and

i if i is even:

Notice that Zi D Z˛i . Then 3.11 implies that Zı ¤ Z for any ı 2 V.†/ with
d.˛; ı/� 5. Since n� 5, it now follows from .��/ that nD 5.

The reader may find it convenient to have a “picture” of †, at this point, as a
visual reference for the remainder of the argument.



908 MICHAEL ASCHBACHER and ANDREW CHERMAK
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ı ˛1

j j

˛4��ı��ı��ı��˛��ˇ��ı��ı��ı��ı��˛5
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ı

j

ı

j

˛3

Since Pi � S �G˛0 , Pi fixes every vertex of †i , and then 3.10 implies that
ŒZı ; Pi �D 1 for every ı 2†i . Set ˇ D 2. Then from paragraph one of the proof
of 3.6, for i odd, †i is the tree induced on the geodesic .˛; ˇ; ˛gi ; ˇgi�1gi ; : : : ;
˛g1 : : : gi /. In particular, ˇ is a vertex of †i for i odd. Since Zˇ D U , it follows
that ŒU; Pi �D 1 for i odd. But for i odd we also have gi 2G2 �NG.U /, and then
since Pi D P

gi
i�1, we conclude that:

(3) ŒU; Pi �D 1 for all i , 0� i � 5.

From the description of †5 above, ˇg is the vertex of †5 at distance 5 from
˛, and ˛g 6D ˛1g 2 �.ˇg/. Set ˇ0 D ˇg, let ˛0 be the vertex in �ˇ 0 at distance 4
from ˛, and let ˛00 be the vertex of †5 at distance 2 from ˛. By (3), U centralizes
Z˛0 , so as Zˇ 0 D ZZ˛0 � Z

g
1 , we get Zg1 � CG.U / � CG.Z˛00/. Then Zg1

fixes ˛00, by 3.11(b). Also ŒZg1 ; Z�D 1, so that 3.11(a) implies Zg1 fixes ˛. Since
U g D .ZZ1/

g DZZ
g
1 , we conclude that U g �G˛\Gˇ . That is, U g �B , and so

QU g is a p-subgroup of B . By 3.8(4) there exists h 2 B with .QU g/h � S , and
we may replace .P; g/ with .PU; gh/, without increasing the length n. Thus, we
may assume henceforth that U � P . By symmetry between .P; g/ and .Q; g�1/),
we may assume also that U �Q. Then since g1 2NG.U /), also U � P1. Since
g5 2NG.U / we then obtain U � P4.

As g2; g4 2G1 and U �P1\P4, we have Z �P2\P3. Since g3 2NG.U /,
we have U � P2 if and only if U � P3. Suppose that U — P2. Then

Zg3 D .U \P2/
g3 D U \P3 DZ;

contrary to g3 2G2�G1. Therefore U � Pi for all i . Then by (3):

(4) U �Z.Pi / for all i , 0� i � 5.



2-LOCAL FINITE GROUPS 909

Set U0 D U D U�1, and for 1 � i � 5, let Ui D U g1:::gi . For 0 � i � 5 set
Ei D Ui�1Ui . As g1 2G2, we have U D U1 �E2, and so

Z DZg4 � U g4 D U g3g4 �E
g3g4
2 DE4:

Also g5 2 G2 �G1, so that Z 6D Zg
�1
5 � E�15 D E4. Then U D ZZg

�1
5 � E4.

Since g5 2G2, also U �E5.
Set F D CB.E0/. Then F g D CBg.E5/, and Bg is the stabilizer in G of the

edge f˛5; ˇgg of †5. Next U g �Eg0 DE5, and U g DZˇg , so that F g centralizes
Zˇg . Then F g fixes the vertex ˛0 of †5, by 3.11(a). Denote by ˇ00 the vertex of
†5 at distance 3 from ˛, and hence adjacent to ˛0. From an earlier remark, we
have ˇ00 D ˇg4g5, and so

Zˇ 00 D U
g4g5 D U g3g4g5 �E

g3g4g5
2 DE5:

Thus F g centralizes Zˇ 00 , and so F g fixes every vertex in �.ˇ00/ by 3.11(a). In
particular, F g fixes ˛00. Since ŒU; F g � D 1, F g fixes every vertex in �.ˇ/ by
3.11(a). Thus, F g fixes ˛ and ˇ, and so F g � B . This yields the first part of (c),
with E0 in the role of E. Since Zˇ 00Zˇ 0 �E5, 3.11(a) yields CB.E5/� Bg , and
thus all parts of 3.14 have been established. �

4. Spin7.F/

Let p be an odd prime, let xF be an algebraic closure of the field of p elements,
let zV be a vector space over xF (of finite dimension d ), and let f be a symmetric,
nondegenerate bilinear form on zV . The form f is essentially unique, as zV has an
orthonormal basis with respect to f . The isometry group O. zV ; f / will be denoted
also O. zV / (and Od .xF/). The identity component of O. zV / is denoted �. zV /, and
has index 2 in O. zV /. Indeed, we have O. zV /D�. zV /h�i, where � is a reflection
on zV . In the case that d is odd, we have O. zV / D �. zV /� f˙I g. The universal
covering group of �. zV / is denoted Spin. zV / (or Spind .xF/).

There is a rational representation �WSpin. zV /�!�. zV /, with kernel contained
in Z.Spin. zV //. From [C], one has jker.�/j D 2, and ker.�/DZ.Spin. zV // if d is
odd.

For any subset or element D of Spin. zV /, we write C zV .D/ and Œ zV ;D� for
C zV .D�/ and Œ zV ;D��, respectively.

Let zT be a maximal torus of Spin. zV /. By a weight of zT on zV we mean a
homomorphism �W zT �! xF� such that the space zV� D fv 2 zV j vaD �.a/v for all
a 2 zT g is nonzero. The set of such weights is denoted ƒ. zT /.

A hyperbolic line in zV is a nondegenerate subspace ` of zV of dimension 2.
Such a subspace has exactly two 1-dimensional singular subspaces (or points), and
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from this one may easily deduce that �.`/Š xF� and that O.`/D�.`/hti, where
t is an involution which interchanges the singular points of `.

The following result is well known, and its proof is elementary.

LEMMA 4.1. Let . zV ; f / be a nondegenerate orthogonal space over xF of
dimension d , and let zT be a maximal torus of �. zV /. Then there exists a set
`. zT / D f`1; : : : ; `kg of zT -invariant, pairwise orthogonal hyperbolic lines in zV ,
such that the following hold.

(a) d D 2k or d D 2kC 1.

(b) Œ zV ; zT � D `1 C � � � C `k , and either C zV .T / D 0 or C zV . zT / is a nonsingular
1-space, orthogonal to Œ zV ; zT �.

(c) Each `i is a sum of two weight spaces zV� and zV��1 , where �¤ ��1. These
weight spaces are the singular points of `i .

The set `. zT / is uniquely determined by the conditions (a) and (c). Conversely, for
any maximal set U of pairwise orthogonal, hyperbolic lines in zV , there is a unique
maximal torus zT in �. zV / with `. zT /DU.

From now on, let zV be a vector space of dimension 7 over xF, and set zH D
Spin. zV /. Write Z for the kernel of �. Then Z D hzi where z is of order 2.

It is well known that an involution t in an orthogonal group (over a field of
characteristic different from 2) lifts to an involution in the corresponding spin group
if and only if the dimension of the commutator space of t is divisible by 4. This
implies the following result.

LEMMA 4.2. Let x 2 zH with j�.x/j D 2. Then jxj D 2 if and only if
dim.Œ zV ; x�/D 4.

Let zT be a maximal torus of zH . By 4.1, the commutator space Œ zV ; zT � is the
orthogonal direct sum of three hyperbolic lines `1, `2, and `3, where each `i is
a sum of two weight spaces for zT , with weights �i and ��1i . For i D 1; 2; 3, fix
a basis fx2i�1; x2ig for `i of singular vectors, with f .x2i�1; x2i /D 1. Then 4.1
yields

.4:2:1/ Œ zV ; zT �D `1C `2C `3:

Let x7 2 C zV . zT /, with f .x7; x7/D 1. Then

C zV .
zT /D Œ zV ; zT �? D xFx7:

Identify zV with xF.7/, via the ordered basis .x1; : : : ; x7/.
The semidirect product zV zH is an algebraic group in which zT is a maximal

torus, and in which zV is the unipotent radical. Let � be a Frobenius endomorphism
of zV zH which induces the pth-power map on zT . Then � fixes `. zT / pointwise, and
fixes the vectors x1 through x7.
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Denote also by � the pth-power automorphism of xF, and set

FD
[
k�0

CxF.�
2k /:

Evidently, F is a subfield of xF. Denote by V the F-span of fx1; : : : ; x7g in zV , and
by H the group of F-rational points in zH , with respect to the matrix representation
given by the chosen basis for zV . The restriction of f to V �V defines an orthogonal
form on V , and �.H/ is contained in O.V /. Set T D zT \H , and set E D fx 2
T j x2 D 1g.

SinceO. zV /D�. zV /hti for any reflection t 2O. zV /, it follows that�. zV / is the
group SO. zV / of determinant 1 isometries. Any element x of O.Œ zV ; zT �/ extends
to an element of �. zV /, since we are free to adjust the action of x on C zV . zT / by
˙1. In particular, there exists an element w0 of zH such that w0 acts on Œ zV ; zT � by
the permutation .x1 x2/.x3 x4/.x5 x6/ of the basis vectors; and then x7w0 D�x7.
Evidently w0 commutes with �, so w0 2H . By 4.1, w0 2 NH .T /, and one can
check that w0 acts on �.T / by inversion. Since every element of F is a square, it
follows that w0 acts on T by inversion.

Similarly we choose elements w1, w2, w3, w, and � of NH .T / so that:

�.w/D .x1 x3 x5/.x2 x4 x6/;

�.�/D .x1 x3/.x2 x4/; and

�.wi /D .x2i�1 x2i /; 1� i � 3:

Thus, we may take w0 D w1w2w3.

(4.2.2) Fix n � 0 and set q D p2
n

. Denote by ! both the inner automorphism
of zH induced by w0, and the identity map on xF. For any k � 0, let  k be the
automorphism of zH defined by

 k D

8<: .�!/
2k if p � 3 mod 4, and

�2
k

if p � 1 mod 4:

We now fix n, and set
� D  n:

Notice that since !2 D 1, we in fact have � D �2
n

unless nD 0 and p� 3 mod 4.
The restriction of � to H will again be denoted � . For any subgroup D of H ,

write D� for CD.�/, and write F� for CF.�/.

LEMMA 4.3. Set W D hz; w1; w2; w3; w; �i. Then W �H� , and the follow-
ing hold.

(a) T D CH .T /, and w0 acts on T as inversion.
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(b) NH .T /DW T .

(c) AutH .T /Š Sym.4/�C2.

(d) Set E D fx 2 T j x2 D 1g. Then E is an elementary abelian subgroup of T�
of rank 3, CH .E/D T hw0i, N zH .E/D zTW , and NH .E/DNH .T /.

Proof. Set LD f`1; `2; `3g, and denote by zT � the pointwise stabilizer of L

in zH . Thus T � zT �, and �. zT �/ is contained in the direct product of the orthogonal
groups O.`i /, so that zT � D zT hw1; w2; w3i.

By 4.1, C zH . zT / � zT
� and N zH . zT / permutes L. Since Aut zT .`i / contains its

centralizer in GL.`i /, we have zT D C zH . zT /. Similarly CH .T /D T .
Evidently, each of the elements wi , w, and � commutes with both � and

w0, and so W � NH� .T /. From the definitions of these elements, we obtain
�.w0/2Z.�.W //, �.hw1; w2; w3i/ is elementary abelian of order 8, �.hw; �i/Š
Sym.3/, and hw; �i acts naturally on �.fw1; w2; w3g/ and on L. We conclude that
W T contains H \ T �, W T D NH .T /, that W T=T Š Sym.4/ � C2, and that
hw0iT=T DZ.W T=T /. As w0 inverts zT , it inverts T . Thus, parts (a) through (c)
hold.

Notice that CH .ŒV; T �/DZ since �.H/ contains no reflections. As ! inverts
T and � induces a power map on zT , T� contains the group E D ft 2 T j t2 D 1g.
From 4.2, �.E/ is a fours group and E is elementary abelian of order 8. The
lines `i are the fixed point spaces for the three involutions in �.E/ on Œ zV ;E�,
so that N zH .E/ D N zH .

zT /, and hence NH .E/ D NH .T /. Since w0 inverts T ,
w0 2 CH .E/.

Since CH .E/� zT �, we have CH .E/DT hw1; w2; w3i. By 4.2, for fi; j; kgD
f1; 2; 3g and x 2E such that Œ zV ; x�D j̀C`k , each of wi , wix, wjwk , and wjwkx
is of order 4. Then x does not centralize wi or wjwk , and CH .E/ D T hw0i,
completing the proof of (d). �

We may choose z1 2 zT so that z1 acts as the scalar �1 on `1C `2, and as 1
on `3. Then z1 centralizes x7. Set U D hz; z1i, zB D N zH .U /, B D zB \H , and
denote the identity component of zB by zB0. Set B0 D zB0\H .

LEMMA 4.4. The following hold.

(a) zV is the orthogonal direct sum of Œ zV ;U � and C zV .U /, of dimensions 4 and 3,

respectively, over NzF .

(b) zB is the stabilizer in zH of Œ zV ;U � and of C zV .U /.

(c) zB0 D C zH .U /D zL1 zL2 zL3, where zLi Š SL2.xF/ and where zLi zLj Š SL2.xF/�
SL2.xF/ for all distinct i and j . Moreover, the indexing may be chosen so that
(i) zL3 centralizes Œ zV ;U � and zL3� D�.C zV .U //.

(ii) zL1 zL2 centralizes C zV .U / and zL1 zL2� D�.Œ zV ;U �/.
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(iii) The maximal singular subspaces of Œ zV ;U � spanned by f x1; x4 g and
fx2; x3g over xF are natural SL2.xF/-modules for zL1, and the maximal
singular subspaces spanned by fx1; x3g and fx2; x4g are natural SL2.xF/-
modules for zL2.

(d) U D Z. zB0/, and notation may be chosen so that z1 2 zL1. When zi is the
involution in zLi , then

z D z1z2 D z3:

(e) zB D zB0hw1i D zB0hw2i, where both w1 and w2 interchange zL1 and zL2 by
conjugation.

Proof. As Œ zV ;U �D Œ zV ; z1� and C zV .U /D C zV .z1/, part (a) is immediate from
our choice of z1. The stabilizer in zH of Œ zV ;U � normalizes the unique subgroup U
of zH containing Z which acts as �I on Œ zV ;U � and as I on Œ zV ;U �?. Similarly,
the stabilizer in zH of C zV .U / normalizes U , establishing (b).

Set zK D C zH .C zV .U //
0 and zL3 D C zH .Œ

zV ;U �/0. From the Steinberg rela-
tions, zK D zL1 � zL2, and zLi Š SL2.F/ for i D 1; 2; 3. Thus zB0 is a commuting
product of these three copies of SL2.xF/, and U �Z. zB0/. Here Œ zV ;U � is a natural
�4.xF/-module for zL1 zL2, and is therefore a direct sum of two natural SL2.xF/-
modules for each of zL1 and zL2. Observe that zT � zB0 since zT is connected.
Then zT is a maximal torus of zB0, and hence zT D zT1 zT2 zT3, where zTi WD zT \ zLi .
Since ŒzL1; zL2 zL3� D 1, the irreducible zL1 zT -submodules of Œ zV ;U � are weight
spaces for zT2 zT3. Since these irreducible zL1 zT -submodules are also maximal sin-
gular subspaces of Œ zV ;U �, the only possibilities are that the two irreducible zL1 zT -
submodules of Œ zV ;U � are

fhx1; x3i; hx2; x4ig or fhx1; x4i; hx2; x3ig:

We may therefore choose the indexing so that (c)(iii) holds.
To complete the proof of (c), it remains to show that zB0 D C zH .U /. This

will follow from (e), and since (d) is immediate from the parts of (c) which have
already been established, we now need only prove (e).

The group O.Œ zV ;U �/ is generated by �.Œ zV ;U �/ together with a reflection
interchanging �.zL1/ and �.zL2/. Similarly, O.C zV .U // is generated by �.C zV .U //
together with a reflection on C zV .U /. Since �. zH/ contains no reflections on zV , we
have j zBW zB0j D 2, and then (e) follows from the definitions of w1 and w2. �

Notice that each of the groups zLi is �-invariant. Set LiD zLi \H , 1�i�3.
The following result should then be evident:

LEMMA 4.5. All parts of 4.4 hold, with B , B0, F, and Li in place of zB , zB0,
xF, and zLi .
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Given a basis v1; : : : ; vm of an F-space V, and elements di of F, 1� i �m,
we write @.d1; d2; : : : ; dm/ for the diagonal map vi 7! divi for each i .

LEMMA 4.6. Let V be a 2-dimensional F-space with basis BD fv1; v2g, set
L D SL.V/, and let T be the maximal torus f@.a; a�1/ j a 2 Fg of L determined
by B. Set X D L�L�L, set ŒŒX��D X=h.�I;�I;�I /i, and write ŒŒa; b; c�� for
the image of .a; b; c/ 2 X under the canonical surjection X ! ŒŒX��. Finally, let
1; ı1; 2; and ı2 be maps from B into V which send the ordered basis .v1; v2/ to
the pairs .x1; x4/, .x3; x2/, .x1; x3/, and .x4; x2/, respectively.

(a) There are isomorphisms ˛i WL! Li , i D 1; 2; 3, such that

(i) ˛1; 1 and ˛1; ı1 are quasi-equivalences of the representation of L on V
with the representations of L1 on hx1; x4i and hx3; x2i, respectively.

(ii) ˛2; 2 and ˛2; ı2 are quasi-equivalences of the representation of L on V
with the representations of L2 on hx1; x3i and hx4; x2i, respectively.

(iii) The map ˛3 is the 3-dimensional orthogonal representation of L in which
@.c; c�1/ acts as @.c2; 1; c�2/ with respect to the ordered basis .x5;x7;x6/
of CV .U /.

(b) The map ˛1 �˛2 �˛3WX ! B0 given by

.a; b; c/ 7! .a˛1/.b˛2/.c˛3/

induces an isomorphism of ŒŒX�� with B0.

(c) .T \Li /˛�1i is the set of diagonal maps in L. For each i , let ˇi WF!T \Li be
the composition of @ with ˛i . Set Y D F�F�F, and ŒY �D Y=h.�1;�1;�1/i,
with Œa; b; c� the image of .a; b; c/ 2 Y in ŒY �. Then the map ˇ1 � ˇ2 � ˇ2W
Y ! T induces an isomorphism Œa; b; c� 7! .aˇ1/.bˇ2/.cˇ3/ of ŒY � with T .

Proof. This is straightforward, given 4.4. �

From now on we use 4.6 to identify B0 with the set of equivalence classes

ŒŒa; b; c��D ŒŒ�a;�b;�c��; a; b; c 2 SL2.F/;

and identify T with the set of equivalence classes

Œa; b; c�D Œ�a;�b;�c� a; b; c 2 F�:

LEMMA 4.7. (a) The element Œa; b; c� of T acts diagonally as

@.ab; a�1b�1; ab�1; a�1b; c2; c�2; 1/

with respect to the ordered basis .x1; x2; x3; x4; x5; x6; x7/ of V .
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(b) The action of W on T is given as follows.

w1WŒa; b; c� 7! Œb�1; a�1; c�;

w2WŒa; b; c� 7! Œb; a; c�;

w3WŒa; b; c� 7! Œa; b; c�1�;

wWŒa2; b2; c2� 7! Œabc2; a�1b�1c2; ab�1�;

�WŒa; b; c� 7! Œa; b�1; c�:

Proof. Again, this is straightforward, given 4.6. �

Denote by S1 the set of elements of T whose order is a power of 2. Set
WS D hw1; w2; w3; �i, and set S D S1WS . Also, for any k � 1 set

Tk D ft 2 T j t
2k
D 1g:

Thus Tk is a subgroup of S1, and T1 is the group E appearing in 4.2.
We shall henceforth take p to be congruent to 3 or 5 mod 8. One reason for

this choice is that it allows us to keep track of the structure of Sylow 2-subgroups
of the groups H and H� , as in the following two lemmas.

LEMMA 4.8. Let k be a nonnegative integer, and set  D  k . Then CS1. /
D TkC2 is homocyclic abelian of rank 3 and exponent 2kC2.

Proof. For any integer m, and any k � 1,

m2
k

� 1D .m2
k�1

C 1/.m2
k�1

� 1/:

A straightforward induction argument then yields the following fact.

.�/ For any integer m with m� 5 mod 8, and for any nonnegative integer k, we
have

m2
k

� 1C 2kC2 mod 2kC3:

Set D D fd 2 F j d2kC2 D 1g, set D0 D ff 2 F j f 2kC3 D 1g, and fix
f 2 D0 �D. Then D0 D D [Df . Set Qk D fŒa; b; c� 2 T j a; b; c 2 Dg and
Rk D TkC2. That is Rk D fx 2 T j x2

kC2

D 1g. As Œa; b; c�2
k

D 1 in T if and only
if a2

k

D b2
k

D c2
k

D˙1, it follows that Rk DQk
S
QkŒf; f; f �. Thus Qk has

index 2 in Rk . Let A be a homocyclic abelian group of rank 3 and exponent 2kC2.
Since Œa; b; c�D Œ�a;�b;�c�, there is an exact sequence

1 �! C2 �! A �!Qk �! 1;

and thus jAj D 2jQkj D jRkj. Since Rk is abelian of rank 3, exponent 2kC2, and
order jAj, it follows from the fundamental theorem of finite abelian groups that
Rk Š A.
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Suppose that p � 3 mod 8 and that k D 0. For Œa; b; c� 2 T ,

Œa; b; c� D Œa�p; b�p; c�p�;

so that Œa; b; c�2T if and only if apC1DbpC1DcpC1D˙1. As p�3 mod 8, 4
is the largest power of 2 dividing pC1, and it follows from the preceding paragraph
that CS1. /DRk in this case. On the other hand, suppose that p � 5 mod 8 or
that k > 0. Then

Œa; b; c� D Œap
2k

; bp
2k

; cp
2k

�:

Notice that if p � 3 mod 8 then �p � 5 mod 8, while for k > 0 we have p2
k

D

.�p/2
k

. Now .�/ shows that, in any case, we have CS1. / D Rk . This yields
the lemma. �

LEMMA 4.9. The following hold.

(a) S� D CS1.�/WS , and S� is a Sylow 2-subgroup of H� .

(b) S is a Sylow 2-subgroup of every subgroup X of H which contains S .

(c) T2 is the unique homocyclic abelian subgroup of S of rank 3 and exponent 4.
Moreover, we have T D CH .T2/, and T2 � T� D CH� .T2/.

(d) SB is the set of maximal 2-subgroups of B containing a subgroup isomorphic
to T2.

Proof. For any subgroup P of S , denote by A.P / the set of homocyclic
abelian subgroups of P of rank 3 and exponent 4. Let  and Rk be defined as in
the preceding lemma, set QDWSRk , and set Q0 D hw0iRk .

Suppose first that that there exists A 2 A.Q/ with A ¤ T2. Then A — T .
Suppose that A\Q0 has rank 3 and exponent 4. Since w0 inverts Rk , we then
have A\Q0 �Rk , and A contains the unique elementary abelian subgroup E of
Rk of order 8. By 4.3, Q=Q0 acts faithfully on E, so that A�Q0, and then A� T .
This is a contradiction, and so we conclude that A\Q0 has exponent less than 4 or
has rank less than 3. Since Q=Q0 is dihedral of order 8, it follows that AQ0=Q0
is cyclic of order 4. Then A\Q0 is homocyclic of rank 2 and exponent 4. Again,
A\Q0 � Rk , and now jA\Ej D 4. The faithful action of Q=Q0 on E implies
that CQ=Q0.A\E/ has exponent 2. Since AQ0=Q0 centralizes A\E, we again
have a contradiction, and thus A�Rk . That is, A.Q/D fT2g.

Let P be a Sylow 2-subgroup of (the finite group) H containing Q. By
the preceding paragraph, T2 ENP .Q/. It follows from 4.1 that NP .Q/ preserves
the set f`1; `2; `2g of hyperbolic lines, and hence NP .Q/ normalizes T . Then
NP .Q/�T W by 4.3. SinceQ is a Sylow 2-subgroup of .W T / , we conclude that
NP .Q/DQ. Then P DQ, and so Q 2 Syl2.H /. We recall that  D  k D �2

k
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or .�w0/2
k

for some k, and that

H D
[
k�0

CH .. k/:

Then S is the union of its subgroups S \H k , and so A.S/D fT2g.
By Zorn’s Lemma, there is a maximal 2-subgroup S� of H containing S . We

have

X D
[
k�0

X k

for any subgroup X of H . Taking X D S�, we conclude that S D S�. Taking X
to be an arbitrary subgroup of H containing S , we note that every finite subgroup
of X is contained in X k for some k, so that every finite 2-subgroup of X is
X -conjugate into S . Thus, S is a Sylow 2-subgroup of X , and we have (a) and (b).

Notice that � D  k for some k. Then (c) follows as T2 � CH . 0/, A.S/D

fT2g, and NH .T2/DNH .T /.
By (c) and 4.3.b, NB.T2/ D T WS D TS . Let S2 be a subgroup of B iso-

morphic to T2, and X a maximal 2-subgroup of B containing S2. By (b), S is
Sylow in B , and so Sb2 � S for some b 2 B , and by (c), Sb2 D T2. Thus we may
take T2 D S2. Similarly for each k, X k is contained in a conjugate of S , and so
by (c), X k �NB.T2/D TS . Hence X is a maximal 2-subgroup of TS , X 2 ST ,
establishing (d). �

5. The amalgam A�, and an amalgam for Co3

We now undertake the construction of the amalgam which provides the focus
for this work. (See the beginning of Section 3 for a discussion of amalgams.)

We continue the setup and notation of the preceding section. In particular, we
have p� 3 or 5 (mod 8). Let i be a square root of �1 in F, and let � be the element
w2Œ1; 1; i � of B . Then B D B0h�i, by 4.4(e). By definition, w2 interchanges the
two singular points of `2, centralizes `1 and `3, and acts as �1 on CV .T /. Then
� acts as �I on CV .U / D `3CCV .T /, and acts as a transvection on ŒV; U �. In
particular, � commutes with �.L3/, hence also with L3 (since L3 is perfect), and
� is an involution by 4.2. Further, � acts as w2 on ŒV; T �, and then 4.4(c)(iii) yields

� W ŒŒ˛; ˇ; �� 7! ŒŒˇ; ˛; ��;

for all ŒŒ˛; ˇ; �� 2 B0.
Define y0 to be the automorphism of B0 given by

(5.0) y0W ŒŒ˛; ˇ; �� 7! ŒŒ; ˛; ˇ��:
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Then jy0j D 3, and hy0; �i acts faithfully as the symmetric group Sym.3/ on the
set LD fL1; L2; L3g. In the semidirect product

K D B0hy0; �i;

we may then identify B with the subgroup B0h�i of K, and form the amalgam

A1 D .H � B �K/:

For any � 2 Aut.B/, denote by �� the composition of � with the inclusion map of
B into K, and form the amalgam

A� D .H � B
��

����! K/:

The corresponding free amalgamated product will be denoted G�. Subject to the
usual identifications, H and K are subgroups of G�, with H \K D B . Here it is
important to note that the inclusion map of B into K, within G�, is obtained by
“twisting” via � the “ordinary” inclusion map occurring in A1.

LEMMA 5.1. For X 2 fH;Kg, write AX for AutAut.X/.B/. Set ˆD Aut.F/,
and regard ˆ as the group of field automorphisms of SL2.F/. Define a representa-
tion of ˆ on B0 by

�W ŒŒ˛; ˇ; �� 7! ŒŒ˛; ˇ; ��� for � 2ˆ:

Then ˆ commutes with � on B0, and the representation of ˆ on B0 extends thereby
to a representation on B . Moreover:

(a) Inn.B/� AH \AK .

(b) For each X 2 fH;Kg we have Aut.B/DAXˆDAHAKˆ, and AX \ˆD 1.

(c) For �; � 2 Aut.B/, we have A� ŠA� if and only if AHAK�D AHAK�.

Proof. Identify ˆ with a subgroup of Aut.B0/ via the prescribed representa-
tion. Evidently Œˆ; ��D 1, so we may even regard ˆ as a subgroup of Aut.B/. As
B DH \K, (a) holds. As is well known (cf. [Ste]), Aut.SL2.F//D Inn.SL2.F//ˆ.
Then, since B0 is the central product of three copies of SL2.F/, Aut.B0/ is the
split extension of Aut.SL2.F//3 by Sym.3/, where Sym.3/ permutes the three
components of B0 faithfully.

Recall that B D B0h�i, where � centralizes L3 and interchanges L1 and L2.
For X 2 fH;Kg we have AX D Inn.B/ˆX , where ˆX Š ˆ and ˆX is diago-
nally embedded in the subgroup ˆ3 of Aut.SL2.F//3, and centralizes � . Similarly,
Aut.B/D Inn.B/.ˆX �ˆ/, where ˆ centralizes L1L2 and acts faithfully as ˆ on
L3. Now (b) follows, and Aut.B/DAHAKˆ. By [Gol80, Lemma 2.7], A�ŠA�

if and only if AH�AK D AH�AK , and now (c) follows from (b). �

We may now state the first main result of this section.
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THEOREM 5.2. Let S1 be the Sylow 2-subgroup of T , and for any �2Aut.B/
set N� D hNH .S1/; NK.S1/i, where H and K are regarded as subgroups of G�
in the canonical way. Set N� D AutN�.S1/, define ˆ as in 5.1, and set

ƒD f� 2ˆ j N� Š GL.3; 2/�C2g:

Then the following hold.

(a) jƒj D 1.

(b) For � 2ƒ,

CN�.Te/D

(
CN�.S1/ if e � 2, and

CN�.S1/hw0i if e D 1.

(c) AH D AK .

(d) The map � 7! A� is a bijection of ˆ with the set of isomorphism classes of
amalgams A� with � 2 Aut.B/.

Remark. It can be shown, by means of a lengthy computation based on 4.7(b),
that the unique � in the set ƒ of Theorem 5.2 is not an algebraic endomorphism
of B .

Let !3 be the automorphism of B0 induced by conjugation by w3. By 4.7(b),
w3 2 L3 and w3 inverts T \L3. Denote by �3 the automorphism of B0 which
induces the pth power Frobenius map on L3 and which centralizes L1 and L2.
Then let �0 be the automorphism of B0 given by

�0 D

(
�3!3 if p � 3 mod 8,

�3 if p � 5 mod 8:

Thus,

�0W ŒŒ˛; ˇ; �� 7!

(
ŒŒ˛; ˇ; Nw3 �� if p � 3 mod 8,

ŒŒ˛; ˇ; N�� if p � 5 mod 8,

where N is the element of SL2.F/ whose entries are the pth powers of the corre-
sponding entries of  . For any e 2 N, set

�e D �
2e

0 :

Notice that T is invariant under �e , that ŒL1L2; �e�D 1, and that �e D �2
e

3 for e � 1.
Recall from 4.8 that we have defined subgroups Te of T0 by

Te D ft 2 T j t
2e
D 1g; e � 1;

and that Te is homocyclic abelian of rank 3.

LEMMA 5.3. Let e be a nonnegative integer, and let c 2 F with c2
eC3

D 1.
Then
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(a) Œa; b; c��e D Œa; b; c� if c2
eC2

D 1, and otherwise Œa; b; c��e D Œa; b;�c�.

(b) �e centralizes a subgroup of index 2 in TeC2 containing TeC1, and ŒTeC2; �e�
DZ.

Proof. Suppose first that e D 0 and that p � 3 mod 8. Then c8 D 1, and

Œa; b; c��e D Œa; b; c
�p�D Œa; b; c5�:

Since c5 D�c if jcj D 8, and c5 D c if c4 D 1, (a) holds in this case. On the other
hand, suppose that either e > 0 or p � 5 mod 8. We saw in the proof of 4.8 that
for any integer m with m� 5 mod 8,

m2
e

� 1C 2eC2 mod 2eC3:

Taking m D p if p � 5 mod 8, and taking m D �p if p � 3 mod 8, we then
have

Œa; b; c��e D Œa; b; c
m2
e

�D Œa; b; c1C2
eC2

�:

Thus (a) holds in every case. Part (b) follows from (a) and the fact that Z D
hŒ1; 1;�1�i and TeC2 D hŒc2; 1; 1�; Œ1; c2; 1�; Œc; c; c�i, where jcj D 2eC3. �

PROPOSITION 5.4. There is a uniquely determined sequence .ye j e � 0/ of
automorphisms of B0, with y0 as in 5.0, and having the following two properties.

(a) ye 2 fye�1; y
�e�1
e�1 g for e > 0.

(b) The group Ne of automorphisms of TeC1 induced by the action of hW; yei
is isomorphic to GL.3; 2/�C2 for e > 0, and is isomorphic to GL.3; 2/ for
e D 0.

The proof of 5.4 will be based on the following result.

LEMMA 5.5. Let N be the Steinberg module for GL.3; 2/ over the field F2

of two elements, and let X be an extension of N by GL.3; 2/. Then the following
hold:

(a) X splits over N .

(b) LetD be a complement to N in a Sylow 2-subgroup of X . Then CN .D/D hgi
is of order 2.

(c) Let D be as in (b), and denote by P the set of subgroups P of X such that
D � P Š Sym.4/. Then PD fP1; P2;Q1;Q2g, where Qi D P

g
i for iD1; 2,

hPi ;Qi i is a complement to N in X , and hP1;Q2iDhP2;Q1iDX .

Proof. Let R 2 Syl2.X/. Then N is a free F2R=N -module, so that CN .R/D
hgi is of order 2, and for each overgroup Y of R in X we have H i .Y=N;N /D 0

for i D 1; 2. In particular, (a) and (b) hold.
Choose R so that RDDN and let P and Q be maximal subgroups of X such

that P=N and Q=N are the maximal parabolic subgroups of X=N over R=N . It
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follows from the preceding paragraph that for each Y 2 fX;P;Q;Rg, Y splits over
N and is transitive on its complements to N . Thus the set PY of complements to
N in Y containing D is nonempty for Y 2 fX;P;Qg, and by a standard argument
(cf. 5.2.1 in [Asc86]), NY .D/ is transitive on PY . Then as NX .D/ D D � hgi,
PY DfY1; Y2g with Y g1 D Y2. Since CN .Y /D 0 for Y 2 fP;Qg, each Pi and each
Qi is contained in a unique complement to N in X . In particular Xi Š GL.3; 2/
and the indexing may be chosen so that Xi is generated by Pi and Qi 2 PQ. Then
Mi D hPi ;Q3�i i is not a complement to N in X . Since X is irreducible on N ,
Mi DN . This completes the proof. �

We may now prove Proposition 5.4. Since T1 is elementary abelian of order 8,
we have Aut.T1/Š GL.3; 2/. From 4.3(c), W induces the stabilizer in GL.T1/ of
Z, and so the image of W in GL.T1/ is maximal. The closure of Z under the
action of hy0i is the fours group U , and thus N0 D GL.T1/. We may therefore
assume that e � 1, and that for all indices e0 with 0 < e0 < e:

.�/ There exists a unique ye0 2 fye0�1; y
�e0�1
e0�1 g such that the group Ne0 of au-

tomorphisms of Te0C1 induced by the action of hW; ye0i is isomorphic to
GL.3; 2/�C2.

Set R D TeC1, x D ye�1, and denote by N the image of hW; xi in Aut.R/.
Applying .�/ to e0D e�1, we have N=CN.Te/ŠGL.3; 2/ if eD 1, and GL.3; 2/�
C2 if e > 1. Let d 2 CN.Te/. Writing

d W Œa; b; c� �! Œza; zb; zc�;

for Œa; b; c� 2R, we obtain a2 D "za2, b2 D "zb2, and c2 D "zc2, for some " 2 f˙1g.
Thus either zu 2 fu;�ug for all u 2 fa; b; cg, or zu 2 fiu;�iug for all u 2 fa; b; cg,
where i is a square root of �1. Therefore as

T1 D hŒ�1; 1; 1�; Œ1;�1; 1�; Œi; i; i �i;

d acts trivially on R=T1. Then d D 1C�d for some �d 2 HomZ.R=Te; T1/, and
the mapping

CN.Te/ �! HomZ.R=Te; T1/

given by d 7! �d is an N-homomorphism. Observe that R=Te and T1 are isomor-
phic as modules for hW; xi via the map 'W rTe 7! r2

eC1

. Thus, there is an N-equi-
variant monomorphism d 7! '�1�d from CN.Te/ into M WD EndZ.T1/. Since N

acts as GL.3; 2/ on T1, M may be identified with the N-module of 3� 3 matrices
over the field F2 of two elements, and we regard CN.Te/ as an N-submodule of M .

Now M is a vector space of dimension 9 over F2, and the subspace M0 of
trace-zero matrices is an 8-dimensional N-submodule of M . Indeed N=CN.M/Š

GL.3; 2/, and M0 is the Steinberg module for N=CN.M/. The element w0 of W
inverts R, and hence hw0i D CM .N/, and M DM0˚CM .N/. Further, N is an
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extension of NM D N \M by L3.2/, and as CM .N/ D hw0i � NM and N is
irreducible on M0, NM DM or CM .N/. As WS=.WS \T /Š Z2 �D8 (cf. 4.3),
N=M0 or N is isomorphic to Z2�L3.2/ in the respective case. Further, in the latter
case, we obtain (a) and (b) of 5.4 by setting yeC1 D ye . Thus we may assume that
NM DM .

Set X D ŒN;N�. From the previous paragraph, M0 D X \M and X=M0 Š

GL.3; 2/. Denote by D� the image of WS in N, and set D D D� \ X . Then
D� DD �Z.N/, and D is dihedral of order 8. Denote by P � and Q� the images
in N of W and hWS ; yi, respectively, and set P D P �\X and QDQ�\X . By
5.5(b), CM0.D/D hgi is of order 2. By definition N is generated by P � and Q�,
and so X is generated by P and Q. By 5.5(c), hP;Qgi is a complement to M0 in
X . By construction, �e�1 centralizes WS , and by 5.3(b), �e�1 induces a nontrivial
automorphism of R centralizing a subgroup of index 2 containing Te . Then, since
CM0.WS /D hgi, it follows that the action of g on R is the same as that of �e�1.
Setting ye D xg , we obtain (a) and (b) of Proposition 5.4.

Let f�e j e� 0g be the sequence of automorphisms of B0 defined by �0D 1B0 ,
and for e > 0 by the recursive formula

�e D

(
�e�1 if ye D ye�1 and

�e�1�e�1 if ye D y
�e�1
e�1

where ye is as in Proposition 5.4. For k � 0, take  k as defined just prior to 4.3.

LEMMA 5.6. Each �e extends to an automorphism of B which commutes with
the element � of B �B0, and with  k for each k. Further, for each e � 0,

�eC1 jCB. e�1/D �e jCB. e�1/ :

Proof. Recall that �e D �2
e

0 , where �0 is the automorphism of B0 given by

�0W ŒŒ˛; ˇ; �� 7! ŒŒ˛; ˇ;  0��;

for the automorphism  7!  0 of SL2.F/ such that

 0W ŒŒ˛; ˇ; �� 7! ŒŒ˛0; ˇ0;  0��:

It follows that �e commutes with  k for all e and k, and also with the automorphism
� W ŒŒ˛; ˇ; �� 7! ŒŒˇ; ˛; �� of B0. In constructing the amalgam A1, we identified
B with the semidirect product B0h�i, so �e may now be regarded as an automor-
phism of B . Since �e is the product of some elements of f1; �0; : : : ; �eg, we may
also regard �e as an automorphism of B , commuting with  k . The proof is then
completed by the observation that �e centralizes CB. e�1/. �
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Notice that 4.8 yields
B D

[
e�0

CB. e/:

By the preceding lemma, we may then define an automorphism � of B by taking
� jCB. e/D �e for each e. Set

ADA� D .H
�

 ���� B
��

����! K/

(where � denotes inclusion) and form the corresponding free amalgamated product
G DG�.

We may now complete the proof of Theorem 5.2. We have

ˆD Aut.F/D lim
 �

Aut.Fp2e /;

and there is an isomorphism

Z2e �! Aut.Fp2e /

given by sending a residue class Œk� to the pk-th power map, 0 � k < 2e. The
sequence of inverses of these isomorphisms then defines an isomorphism of Aut.F/
with the ring Z.2/ of 2-adic integers.

Let � 2 Aut.F/, and denote by �e the restriction of � to the subfield Fpe of
F of order p2

e

. For any e � 0, there is then a unique integer ke , 0� ke < 2e , such
that �e is given by the pke -th power map on F2e . Define a sequence ."e j e � 0/
of elements of f0; 1g by taking "0 D k0, and for e > 0 by

"e D

(
0 if ke D ke�1

1 if ke D ke�1C 2e�1

)
:

We may represent the action of � on B0 as in 5.1; namely � acts on SL.2;F/ in
the natural way, and on B0 by

�W ŒŒa; b; c�� �! ŒŒa; b; c���:

Observe that the restriction �e of � to CB0. eC1/ is given by

�e D z�
"0
0 �

"1
1 : : : �"ee ;

where z�0 D �0!3 if p � 3 mod 8, and where z�0 D �0 if p � 5 mod 8.
Recall from 5.1 that we have identified ˆ with a subgroup of Aut.B/, and

that parts (b) and (c) of 5.1 show that for any �0 2 Aut.B/ there exists � 2ˆ such
that A� Š A�0 . In particular if �0 D ˛� with ˛ 2 Inn.B/ then A� Š A�0 , and
hence there is an induced isomorphism G� ŠG�0 of universal completions.

Take �D!3� if both p� 3mod 8 and �1D �0, and take �D� otherwise. By
our construction of � we have � 2ˆ, and then since !3 2 B we obtain G� Š G�.
Adopt the notation of 5.2. In particularN�DhNH .S1/; NK.S1/i,N�DhW; yiT ,
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and N�DAutN�.S1/. Since �e centralizes TeC1 by 5.3(b), we have y�
0jTeC1

Dy
�e
0 ,

where �e is as defined prior to 5.6. By induction on e, we then get

y�0jTeC1 D

(
ye�1 if ye D ye�1

y
�e�1
e�1 if ye ¤ ye�1

)
;

and so y�
0jTeC1

D ye. Then 5.4 shows that � is in the set ƒ defined in 5.2.
Now let � be an arbitrary element of ƒ. Set �D!3� if both p� 3 mod 8 and

"0 D 1, and otherwise set � D �. Then G� ŠG� and N� ŠN� . Set x D ��1y0�,
regard x as an automorphism of S1, and denote by xe the restriction of x to TeC1,
e � 0. Then x0 D y0 and, by induction on e, xeC1 D x

�
"e
e
e . As � 2 ƒ, the

uniqueness of the sequence in 5.4 implies that "e D 0 if and only if ye D ye�1,
and hence that x D y. Since yW Œa; b; c� 7! Œc�

�1

; b; a��, also � D �, establishing
5.2(a). Now 5.2(b) follows from the action of N� on T1 in 5.4.

If AH ¤AK then AHAK\ˆ¤ 1, by 5.1(b), and then 5.1(c) implies that there
exists �0 2ˆ�f�g with A� ŠA�0 . This is contrary to 5.2(a), so that AH D AK
and 5.2(c) holds. Now 5.2(d) follows from (c) and from 5.1(c), and this completes
the proof of 5.2.

Regarding H and K as subgroups of G DG� in the canonical way, we have
B D H \K. From 5.6, � D  n commutes with �e for each e, so � commutes
with �. Since � commutes with y0 and with � as automorphisms of B0, and since
y acts on B0 as y�0 , � commutes with y. Then since K is the semidirect product
of B0 with hy; �i, it follows that � induces an automorphism �K of K, commuting
with hy; �i. The universal property of the free amalgamated product now implies
that � induces an automorphism of G, whose restriction to K is �K . We record
this result for future reference.

LEMMA 5.7. For each positive integer n,  njH extends uniquely to an auto-
morphism � of G such that Œy; ��D 1.

We next show that the third Conway simple group Co3 is the completion of a
subamalgam of A�, and that this subamalgam generates a fusion system which is
isomorphic to that of Co3. These will be key ingredients in our proof of Theorem B.

THEOREM 5.8. Let xG0 be the simple group Co3, let S0 be a Sylow 2-subgroup
of xG0, set Z0 DZ.S0/, and let U0 be the unique normal fours group in S0. Set

H0 D C xG0.Z0/; K0 DN xG0.U0/; B0 DH0\K0;

and let A0 D .H0 �B0 �!K0/ be the amalgam of inclusion maps among these
groups, within xG0. Set � D  and set �0 D � jB� , where � is an automorphism of

B which satisfies the conditions of Theorem 5.2. Let A�0 D .H�
�
 � B�

��0
�!K� /.

Then the following hold:
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(a) There is a morphism 'WA0!A�0 of amalgams, displaying A0 as a subamal-
gam of A�0 .

(b) Let G0 be the subgroup of G generated by the images of H0 and K0 under the
morphism ' of part (a), and let F0 be the fusion system hFS0.H0/;FS0.K0/i
contained in FS� .G0/. Then F0 D FS� .G0/D FS0. xG0/.

Proof. We refer to [Fin73] for the structure of the maximal subgroups of
G0. Thus, H0 is isomorphic to the covering group of Sp6.2/, which is the perfect
central extension of Sp6.2/ by a group of order 2. Since Sp6.2/�C2 is a reflection
group (namely, the Weyl group of type E7), we have Sp6.2/ � O7.R/, and then,
by taking the standard Z-form of O7.R/ and reducing mod p, one obtains Sp6.2/
as a subgroup of �7.p/. Identifying �7.p/ with H� , we then have an inclusion
of H0 in H� . In particular, Z0 DZ.

Let ƒ be GL2.3/ oS3 and NƒDƒ=Z.ƒ/. Set B1DO2.B0/ and DDO2.B0/.
Sylow 2-subgroups of H0 and H� are of order 210, so conjugating in H� , we may
take S� D S0 2 Syl2.H0/, and U D U0. Next, B0 is the preimage in H0 of the
solvable maximal parabolic subgroup of Sp6.2/, so that B0=O2.B0/ is isomorphic
to Sym.3/� Sym.3/, and B1 is isomorphic to a subgroup of index 3 in O2;3. Nƒ/,
contained in the Nƒ-orbit of length 4 on such subgroups. In particular

(1) D is a commuting product of three quaternion groups Qi , 1� i � 3, with the
property that QD fQ1;Q2;Q3g is the set of normal subgroups of B1 of order
8. Moreover CD.Qi /DQj �Qk for any ordering .i; j; k/ of .1; 2; 3/.

The preimage yB1 of B1 in ƒ is the 2-covering group of B1, and so Aut.B1/
acts on yB1. By (1), Aut.B1/ permutes Q, and hence yQD f yQi j 1� i � 3g, where
yQi D Œ zQ1; yB1� and where zQi is the preimage in ƒ of Qi . Therefore Aut.B1/D

Autxƒ.B1/.
Referring once more to [Fin73], we find that jK0 W B0j D 3. Since CK0.U /�

B0 we have B1 � CB0.U / E K0, and so B1 E K0 and K0=CB0.U / Š Sym.3/.
From the preceding paragraph, AutK0.B1/ � � WD Autxƒ.B1/. Then, since the
Sylow 2-subgroup S0 of B0 is Sylow in K0 and contains the kernel U of the
map from Nxƒ.B1/ onto �, we may regard K0 as a subgroup of xƒ. By (1), Q is
K0-invariant. As K0=CK0.U / Š Sym.3/, it follows that K0 is transitive on Q.
Here xƒ=D Š Sym.3/ oSym.3/, and K0=D is a subgroup of xƒ=D of order 22 � 33.
Since K0=CK0.U /Š Sym.3/, it follows that K0=B1ŠZ2�Sym.3/, and then that
K0 is determined up to conjugacy in xƒ. The same argument shows that K� is in
this conjugacy class, and so K0 ŠK� and we may choose K0 DK� .

Observe that jNxƒ.B1/ W B0j D 3 and that B0 is equal to its normalizer in
Nxƒ.B1/. Then

(2) NAut.B1/.B0/D Autxƒ.B0/D Inn.B0/.
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By (2) we have Aut.B0/ D Inn.B0/C0, where C0 D CAut.B0/.B1/. Then
ŒC0; B0� � CB0.B1/D U . Let X0 2 Syl3.B0/ and let X0 � X 2 Syl2.K0/. Then
CD.X0/DU , CD.X/D 1, and as we saw aboveK0=B1ŠZ2�Sym.3/. It follows
that there is a Sylow 2-subgroup R0 of NB0.X0/, of the form U hsi � hri, where
hr; si is a Sylow 2-subgroup of NK0.X/, U hsi is a dihedral group of order 8, and
hr; si is a fours group.

We have ŒC0; R0��CB0.B1/DU , and soR0 isC0-invariant. Since r 2Z.R0/
we then have ŒC0; r��U \Z.R0/DZ. For any �2C0, s� is an involution in sU ,
so also ŒC0; s� � Z. Therefore C0 Š Hom.B0=B1; Z/ Š B0=B1, and so C0 is a
fours group. Since Z2ŠAutU .B0/� C0, we conclude that jAut.B0/ W Inn.B0/j D
jC0 W AutU .B0/j D 2. Thus

(3) Aut.B0/D Inn.B0/[ Inn.B0/�0, where �0 2 C0�AutU .B0/.

It follows from (3) and [Gol70, Lemma 2.7] that there are, up to isomorphism,
at most two amalgams .H0

�
 � B0

˛
�! K0/ with B0˛ D B0, and that any such

amalgam is isomorphic to A0 or to A0;�0 , where

A0;�0 D .H0
�
 � B

��0
�!K0/:

Thus, either A0 or A0;�0 is a subamalgam of the amalgam A� .
Referring again to [Fin73], there is a subgroup M of xG0, containing S0, such

that M is a nonsplit extension of E16 by GL4.2/. Set A D O2.M/, and denote
by M0 the stabilizer in M of the unique S0-invariant hyperplane E0 of A. Then
ŒO2.M0/;M0� is homocyclic abelian of exponent 4 and rank 3, and hence E0 DE
by 4.9(c). Since ŒO2.M0/; E0� D 1 we then have O2.M0/ D T2hw0i, by 4.3.
Moreover

M0 D hCM0.Z/;NM0.U /i D hM0\H0;M0\K0i:

Let ˛WS0 ! NK� .T2/ be the embedding of S0 D S� in NK0.T2/. Then S0˛ D
S0 �K0 DK� , and we have the two amalgams

AM0 D .M0\H0 � S� �!M0\K0/

and
.NH� .T2/

�
 � S0

˛
�!NK� .T2//:

On the other hand, the reader will recall from the proof of 5.4 that if AM0 is
“twisted” by �0, to obtain an amalgam

.M0\H0
�
 � S�

��0
�!M0\K0/;

then hM0\H0; x
�0i induces on T2 the full automorphism group of T2, of order

29jGL3.2/j. We therefore conclude that, of the two amalgams A0 and A0;�0 , only
the first is a subamalgam of A� . This completes the proof of (a).
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Set Z0 D z
G0 and denote by E� the set of elementary abelian subgroups F

of S0 such that F # � Z0. Denote by N the set of subgroups N of xG0 such that
N DN xG0.O2.N //, S0\N 2Syl2.N /, and CS0.O2.N //�O2.N /. It is a property
of Co3 that xy 2 Z0 for any two distinct commuting elements x and y of Z0 (cf.
[Fin73]), from which it follows that for any N 2N there exists F 2E� with F EN .
By Lemmas 5.8 and 5.9 in [Fin73], all members of E� of any given order are fused
in xG0, each member of E� is normal in a Sylow 2-subgroup of xG0, and if F 2 E�

with jF j D 8 then N xG0.F / is contained in the normalizer of some F � 2 E� with
jF �j D 16. Then, for any N 2 N, we have S0 �N , and N is contained in one of
the groups H0, K0, or M . Then 1.11 yields

.4/ FS0.Co3/D hFS0.H0/;FS0.K0/;FS0.M/i:

Now .M \H0/=A and .M \K0/=A are distinct maximal parabolic subgroups of
M=AŠ GL4.2/, and so by 1.9:

.5/ FS0.M/D hFS0.M \H0/;FS0.M \K0/i:

From (4) and (5) we have FS0. xG0/ D hFS0.H0/;FS0.K0/i, and it follows that
FS0. xG0/�FS0.G0/. Since xG0 is a homomorphic image of G0, by (a), the reverse
inclusion of fusion systems is obvious, and we therefore have (b). �

Some well-known properties of Co3 (some of which were mentioned in the
proof of 5.8(b)), which depend only on fusion, now yield corresponding properties
of the subgroup G0 of G.

COROLLARY 5.9. Identify H0 and K0 with subgroups of G, via the morphism
' of 5.8(a), and set G0 D hH0; K0i. Then

(a) G0 has two classes of elements of order 2.

(b) If t and t 0 are distinct, commuting elements of zG0 , then t t 0 2 zG0 .

(c) Let F be an elementary abelian 2-subgroup of G0. Then F \ zG0 is the set of
nonidentity elements of a subgroup of F .

(d) For any X � G0, and any subgroup F of X , denote by zE.X; F / the set of
all subgroups P of X such that F � P and P # � zG0 . Write zE.X/ for
zE.X; 1/. Then fZ;U;E;Ehw0ig is a set of representatives for the orbits of
G0 on zE.G0/, and for the orbits of H0 on zE.H0; Z/.

6. Discrete p-toral groups

The notion of a discrete p-toral group, and the results in this section on such
groups, come from [BLO05], particularly Sections 1 and 7 of that paper. As
[BLO05] is unpublished at this time, we reproduce some of its definitions and
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results here, and supply sketches of proofs in special cases, for the sake of com-
pleteness.

Definition 6.1. Let p be a prime and denote by Z=p1 the group of all complex
roots of unity whose order is a power of p. A discrete p-toral group is a p-group
P with a normal subgroup P0 of finite index, such that P0 is the direct product
of a finite number of copies of Z=p1. Write Dp for the class of discrete p-toral
groups.

We record some facts about Dp from [BLO05]:

LEMMA 6.2. Let P 2 Dp. Then

(1) P has unique subgroup P 0 which is minimal subject to the condition that
jP W P 0j be finite. (Call P 0 the identity component of P .)

(2) P 0 is the direct product of a finite number r of copies of Z=p1. (Write rk.P /
for r and call rk.P / the rank of P .)

(3) P 0 has no proper subgroups of finite index.

(4) P is locally finite and Artinian.

(5) Subgroups and homomorphic images of P are in Dp.

(6) Torsion subgroups of Out.P / are finite.

(7) Each injective homomorphism from P into P is an isomorphism.

(8) If R � P then R0 � P 0.

Proof. As P 2 Dp, P has a normal subgroup P0 of finite index which is the
direct product of r copies of Z=p1 for some 0� r 2 Z. As Z=p1 has no proper
subgroups of finite index, it follows that P 0 D P0, and (1)–(3) hold. Parts (4), (5),
and (6) are 1.2, 1.3, and 1.5(a) in [BLO05], respectively. Part (7) follows as P is
Artinian, and (8) follows from (3). �

LEMMA 6.3. Let F be the field of Section 4, V a finite-dimensional vector
space over F, and G � GL.V /. Then

(1) G is locally finite.

(2) All 2-subgroups of G are in D2.

(3) Syl2.G/ 6D ¿, Syl2.G/ is the set of maximal 2-subgroups of G, and G is
transitive on Syl2.G/.

(4) Let S 2 Syl2.G/ and P � S . Then P is fully normalized in FS .G/ if and only
if NS .P / 2 Syl2.NG.P //.

(5) FS .G/ is saturated.
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Proof. The proof of this lemma comes from [BLO05, �7, particularly Lemma
7.8]. The proof is a bit easier in our special case, and we supply a sketch.

As GL.V / is the union of the finite groups GL.V /� , � 2 Aut.F/, (1) holds.
Then (2) follows from (1) and from [Weh73, 2.6]. By [Weh73, 9.10], G is transitive
on its maximal 2-subgroups, and such subgroups exist, and so (3) holds.

Observe that G satisfies the hypotheses of Lemma 1.6: Condition (1) of 1.6
follows from (3) applied to subgroups of NG.P /. Condition (2) of 1.6 is satisfied
by (1) and 6.2(6). Condition (3) holds by 6.2(4), and (4) holds by (1). Now 1.6
implies (4) and (5). �

Remark 6.4. Let H;K;B; S be the groups defined in Sections 4 and 5. Each
of these groups has a faithful finite-dimensional representation over F, and so we
can apply Lemma 6.3 to these groups. By 4.9(b), S is a Sylow 2-subgroup of
each of these groups. By 6.3(2), S and each of its subgroups is a discrete 2-toral
group. By 6.3(5), FS .X/ is saturated for each X 2 fH;K;Bg and by 6.3(3), X is
transitive on Syl2.X/ where Syl2.X/ is the set of maximal 2-subgroups of X .

Let G be the group constructed in Section 5. It will be shown, in Theorem C,
that there is a 2-local group GD .S;FS .G/;LS .G//. Since S is a discrete 2-toral
group, G is then a 2-local compact group, as defined in [BLO05].

7. Local subgroups and fusion in the free amalgamated product

Let A be the amalgam A� constructed in Section 5, and letG be the associated
free amalgamated product, G DH �B K. We shall view A as being given by the
inclusion maps of H , K and B into G, so that

AD .H � B �K/:

Viewed in this way, the key point in the construction of A is that the element y of
K acts on T as ��1y0�. That is

yW Œa; b; c� 7! Œc��1; a; b��;

for all Œa; b; c� 2 T .
Recall that we have an automorphism � D  n of H , with H� Š Spin7.Fq/,

q D p2
n

, and by 4.8, S� is a Sylow 2-subgroup of H� . By 5.7, � induces an
automorphism of A which induces an automorphism of G. Form the semidirect
products H h�i, Bh�i, and Kh�i, and the amalgam�AD .H h�i  � Bh�i �!Kh�i/;

in which the arrows are inclusion maps. Denote the free amalgamated product of�A by yG. The inclusion A! �A induces an isomorphism of yG with the semidirect
product Gh�i, and we identify these groups via that isomorphism.

The following result is trivially verified.
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LEMMA 7.1. Let � and y� be the standard trees associated with the amalgams
A and �A, respectively. Then there is an isomorphism � �! y� given by

Xg 7!Xh�ig for X 2 fH;B;Kg and g 2G.

If � and y� are identified via this isomorphism, then the action of � on � is given
by

.Xg/� DXg� for X 2 fH;B;Kg and g 2G.

For any X � Gh�i, we write �X or C�.X/ for the subgraph of � induced
on the set of fixed points of X on � . If �X ¤ ¿ then �X is a subtree of � . For
any graph � and vertex ı of �, we write �.ı/ for the set of vertices  of � such
that f; ıg is an edge of �. If j�.ı/j � 1 then ı is a boundary vertex of �, and
otherwise ı is an interior vertex of �.

For any subtree � of � , let z� be the graph obtained by deleting the boundary
vertices from �. Thus either z� is a tree or � has at most one edge, in which case
z� is empty.

Set G1 DH and G2 DK, and denote by �i the set of vertices of � given by
the cosets of Gi in G. For any vertex  of � , write Z./ for the largest normal
2-subgroup of G . Define i to be the vertex of � given by the coset Gi .

LEMMA 7.2. Let  be a vertex of � .

(a) If  2 �1 then Z./DZ.G / is of order 2.

(b) If  2 �2 then j�./j D 3, and Z./ is a fours group, whose nonidentity cyclic
subgroups are the groups Z.ı/, ı 2 �./.

(c) If  2 �2 then CG .Z.// is the pointwise stabilizer in G of �./.

Proof. The stabilizer of any vertex in �i is conjugate in G to Gi , and the
stabilizer of any edge is conjugate to B . All parts of the lemma follow trivially
from these observations. �

LEMMA 7.3. Let X �Gh�i and let  2 �2\�X . Then:

(a)  is an interior vertex of �X if and only if X centralizes Z./.

(b) Either of the following conditions implies that the inclusion maps from NH .X/

and NK.X/ into NG.X/ induce an isomorphism of NH .X/ �NB.X/ NK.X/
with NG.X/.

(i) X � B0, and XH \B DXK \B DXB .
(ii) X � B0h�i and XH h�i\B0h�i DXKh�i\B0h�i DXB

0

.

Moreover, NG.X/ acts edge-transitively on �X in case (b)(i), and edge-tran-
sitively on z�X in case (b)(ii).
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Proof. Set �D �X . Then  is an interior vertex of � if and only if X fixes
at least two distinct vertices ˛ and ˇ in �X . Since Z./D Z.G0 /D Z˛Zˇ , we
obtain (a).

Set N D hNG1.X/;NG2.X/i, and assume that either (i) or (ii) holds. Take
ƒD� in case (i), andƒD y� in case (ii). ThenNG.X/ acts onƒ, andN �NG.X/.
By hypothesis, X � CBh�i.U / D B0h�i, so that X fixes �.2/ pointwise, and
hence 2 2ƒ. In (i), a standard argument (cf. [Asc86, 5.21]) shows that NGi .X/
acts transitively on ƒ.i / for i D 1 and 2. Assume that we are in case (ii) and that
.i ; 3�i / is an edge in ƒh

�1

for some h 2 Gi h�i. Then X � .Bh�i/h, and so
Xh
�1

� Bh�i. Then Xh
�1

� CBh�i.U / D B
0h�i by (a). The hypotheses of (ii)

then yield h 2 B0h�iNGi h�i.X/, so that NGi h�i.X/ acts transitively on ƒ.i /.
We now claim that N is transitive on the set of edges of ƒ. As ƒ is connected,

it suffices to show for each � 2ƒ that N� is transitive on ƒ.�/. Pick i and g with
�D ig and set

d.�/Dminfd.�; j / j j D 1; 2g:

Choose � to be a counterexample with d D d.�/ minimal. By the preceding
paragraph, d > 0. Thus there exists ˛ 2ƒ.�/ with d.˛/ < d , and N˛ is transitive
on ƒ.˛/. Then there is ˇ 2ƒ.˛/ with d.ˇ/ < d , contrary to the choice of �. This
completes the proof of the claim.

As the stabilizer NB.X/ of an edge of ƒ is contained in N , we now obtain
N DNG.X/. Now [Ser80, Th. 6, p. 32] yields the conclusions concerning edge-
transitivity, and the identification of NH .X/�NB.X/NK.X/ with N . �

LEMMA 7.4. We have the following.

(a) C zH .�/DH� .

(b) The inclusion maps from H� and K� into G� induce an isomorphism of G�
with H� �B� K� , and G� acts edge-transitively on the tree z�� .

(c) Define the subgroups G0, H0, K0, and B0 of G� as in 5.8. Then the inclusion
maps from H0 and K0 into G0 induce an isomorphism of G0 with H0 �B0 K0,
the universal completion of the amalgam A0 of subgroups of Co3.

Proof. Let h2H such that �h 2B0� . By Lang’s Theorem there exists b 2 zB0

such that �hD�b . Then hb�1 2C zH .�/DH� as �D �n. Thus (a) holds and b 2H .
Here b 2 B0 since H \ zB0 D B0, and so �H \B0 D �B

0

. Since K D CK.�/B0,
we also have �K \B0 D �B

0

. Now by 7.3(b), G� D hH� ; K� i and G� is edge-
transitive on the tree z�� . Since H� and K� fix adjacent vertices in z�� , the lemma
now follows from [Ser80, Th. 6, p. 32]. The same theorem implies (c). �

From now on, G0 DH0 �B0 K0 is the subgroup of G� defined in 7.4(c), such
that G0 is the universal completion of an amalgam of subgroups of Co3.
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LEMMA 7.5. Let D 2 fG;G� ; G0g, set Di D D \ Gi , i D 1; 2, and set
RD S \D. Then:

(a) Hypotheses 3.4 and 3.8 hold, with D, Di and D\B in the roles of G, Gi and
B , and with R in the role of S .

(b) R is a Sylow 2-subgroup of D.

(c) If D is G or G� then Hypothesis 3.12 holds.

Proof. When R is finite so is Di , and by construction R is a Sylow 2-subgroup
of Di and of D\B . If R is infinite then RD S , and by Remark 6.4, R is a Sylow
2-subgroup of Di and of D\B . In each case Z and U are characteristic subgroups
of R, so that NDi .R/�D1\D2. A free amalgamated product decomposition for
G� is given by 7.4(b), and for G and G0 by the definition of these groups. Thus,
Hypothesis 3.4 holds. The verification of the first three parts of Hypothesis 3.8
is immediate in each case. Part (4) of Hypothesis 3.8 holds by Sylow’s Theorem
when D is finite, and by Remark 6.4 when D D G. Thus (a) is established. By
3.8(4), RDi \B DRDi\B . Part (b) follows from (a), 3.5(c), and this observation.
Finally, when D DG or G� , Hypothesis 3.12 follows from part (a) of Lemma 7.6
below. �

For any subgroup X of G, and any elementary abelian 2-subgroup F of X ,
denote by En.X; F / the set of elementary abelian 2-subgroups of X containing F ,
of order 2n. Write En.X/ for En.X; 1/. Recall from the preceding sections that

Z � U �E � A 2 E4.G� /

is a chain of elementary abelian 2-groups, where Z DZ.H/D hzi, U DZ.B0/D
hz; z1i, E D fe 2 T j e2 D 1g, and ADEhw0i.

LEMMA 7.6. The following hold.

(a) E2.H;Z/D U
H , and E2.H� ; Z/D U

H� .

(b) E1.G/DZ
G , and E1.G� /DZ

G� .

Proof. By 4.2 there is a unique class z zH1 of noncentral involutions in zH . Then
since C zH .z1/D zB

0 is connected, it follows from Lang’s Theorem that zH� has a
unique class of noncentral involutions. As zH� DH� , (a) follows.

Since K� is transitive on U #, it follows from (a) that all involutions in S
(resp. S� ), are fused in KH (resp K�H� ). By 7.5(b), S and S� are Sylow in G
and G� , respectively, so (b) holds. �

LEMMA 7.7. We have EB
0

DE3.B; U /, EH DE3.H;Z/, and EG DE3.G/.

Proof. Let F 2 E3.B; U / and f 2 F �U . Then CB.U / D B0 D L1L2L3,
so that f D f1f2f3 with fi 2 Li , and 1 D f 2 D f 21 f

2
2 f

2
3 . Since U # is the
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set of involutions in LiLj for i ¤ j , it follows that fi is an element of order 4
in Li . Since Li is transitive on its elements of order 4, involutions in B0�U are
conjugate in B0. Thus EB

0

D E3.B
0; U /. The lemma now follows from 7.6. �

LEMMA 7.8. Set B.�/D hCLi .�/ j 1� i � 3i. Then

(a) There exists an involution v in S \B0� �B.�/ such that B0� D B.�/hvi, and
v induces a diagonal automorphism on each CLi .�/.

(b) EB.�/D E3.B.�/; U / and E3.B� ; U /DE
B� [ .E 0/B.�/, where E 0DU hvi.

(c) E3.H� ; Z/ is the disjoint union of EH� and .E 0/H� .

(d) EE 0 is a Sylow 2-subgroup of CH� .E
0/, and is elementary abelian of or-

der 16.

(e) For each F 2 fE;E 0g, we have AutH� .F / D CAut.F /.Z/ and AutG� .F / D
Aut.F /.

Proof. Recall from Section 4 that we may regard T as a set of equivalence
classes Œa1; a2; a3�. Let a be a 2-element in F with a� D�a, and set f D Œa; a; a�.
Then f 2 .S1 \B0� /�B.�/, and since w0 inverts S1, the element v WD f w0
is an involution in .S \B0� /�B.�/. Recall from 4.4 that zB0 is zJ=hii, where zJ
is the direct product of three copies of SL2.xF/ and i is an involution diagonally
embedded in Z. zJ /. Thus zJ is simply connected, so that B.�/D zJ�=hii, and B.�/
is of index ji j D 2 in B0� . Then B0� D B.�/hvi, completing the proof of (a).

Let X 2 f zB0; zH g, and set

†D f.F; �/ j F 2EX ; � 2 �X ; ŒF; ��D 1g:

Set

†0 D f� 2 �
X
j .E; �/ 2†g and †1 D fF 2E

X
j .F; �/ 2†g:

There is a natural bijection ˇ between the set of NX .E/-orbits on †0 and the set
of CX .�/-orbits on †1. Explicitly, if f�gi j i 2 I g is a set of representatives for

the orbits of NX .E/ on †0, then fEg
�1

i j i 2 I g is a set of representatives for the
orbits of CX .�/ on †1. By 4.3(d), N zH .E/D zTW , so that NX .E/D zT .W \X/.

Let � 2†0. Then

� 2 CXh�i.E/\ �
X
� zT hw0i� D zT � [ zTw0�:

When we apply Lang’s Theorem to the connected algebraic group zT , we find that
zT is transitive on zT � and zTw0� . Since W centralizes both � and w0, we conclude
that zT � and zTw0� are the orbits for NX .E/ on †0, with representatives f�;w0�g.
Applying Lang’s Theorem to the connected group zB0, we obtain an element g 2X
such that .w0�/g D � .
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When we apply the bijection ˇ, CX .�/ has two orbits on †1, with represen-
tatives E and Eg . By 7.7, †1 D E3.CX .h�;Z.X/i/. Thus, CX .�/ has two orbits
on E3.X;Z.X//, with representatives E and Eg . In the case that X D zB0 we
have CX .�/D B0� by 6.4(a), and then since E is in the normal subgroup B.�/ of
CX .�/, but E 0 is not, it follows that E and E 0 are representatives for the two orbits
of B0� on E3.B

0
� ; U /. Since ŒE;E 0�D 1, and B0� DB.�/E 0 by (a), these are also

the orbits for B.�/, establishing (b). In particular, E 0 is fused to Eg in B� , and
so E 0 is not fused to E in H� . In the case that X D zH we get CX .�/ DH� by
7.4(a), and this yields (c).

Recall that � D  n for some n � 0. Set q D p2
n

. Let ı D ˙1 with q � ı
mod 8. Then T� is homocyclic abelian of rank 3 and order .q�ı/3, and CH� .E/D
T� hw0i by 4.3(d). On the other hand, we have seen that .E;w0�/ 2 †0. As
w0 inverts zT , CT .w0�/ is homocyclic abelian of rank 3 and order .qC ı/3. In
particular, E is a Sylow 2-subgroup of CT .w0�/. Therefore a Sylow 2-subgroup
of CH .w0�/\CH .E/ is of order at most 16. Since ŒE;E 0�D 1, (d) follows.

From 4.3, AutTW .E/ D CAut.E/.Z/, and hence AutTW .E/ D AutH .E/.
Similarly, since W � zHw0� , we have

Aut zHw0�
.E/D CAut.E/.Z/:

Conjugating by the element g of zB0 with .w0�/g D � , we obtain

Aut zH� .E
g/D CAut.Eg/.Z/:

Since ŒE; y�D ŒE 0; y�D U , (e) holds. �

LEMMA 7.9. The following hold.

(a) E5.G/D¿.

(b) E4.X/D A
X for X 2 fG;H g, and E4.B

0/D AB
0

D AK .

(c) AutH .A/D CAut.A/.Z/, and AD CH .A/.

Proof. Let Y be H or B0, and let A0 be an elementary abelian subgroup of Y
of maximal order. Then Z.Y / � A0, and after conjugation in Y we may assume,
by 7.7, that E � A0. Then A0 � T hw0i, by 4.3(d), so that jA0j D 16. Since H
contains a Sylow 2-subgroup of G, by 7.5(b), we obtain (a). Every element of T is
a square, so since w0 acts on T as inversion, all elements in Tw0 are fused by T .
Thus, A0 is fused to A via T , and this yields (b).

By 4.3(d), CH .A/DCH .E/\CH .w0/DCT hw0i.w0/DA. Sincew02Z.W /
and W � NH .T / � NH .E/, we have W � NH .A/. Set T1 D ft 2 T j t4 D 1g.
Then ŒT1; w0�DE, and so T1 �NH .A/ and T1 induces on A the subgroup X.E/
of Aut.A/ consisting of all transvections with axis E.
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Let F be a hyperplane of A containing Z. Then F is conjugate to E in H by
7.7. It follows that X.F /� AutH .A/ for all such F . Since

CAut.A/.Z/D hX.F / j F a hyperplane of A over Z i;

we obtain (c). �

LEMMA 7.10. Set M D NG.A/, and for any subgroup X of G set MX D
M \X . Then the following hold.

(a) The inclusion maps from MH and MK into M induce an isomorphism M �!

MH �MB MK , and M is edge-transitive on the tree z�A.

(b) M is contained in the subgroup G0 of G defined in 5.8(b). In particular
M �G� .

(c) There is a surjective homomorphism �AWM �!M0, where M0 is a nonsplit
extension of an elementary abelian group of order 16 by GL.4; 2/, and such
that ker.�A/\MH D ker.�A/\MK D 1.

(d) For any �A satisfying the conditions in (c), we have CG.A/Dker.�A/�A, and
ker.�A/ acts freely on � .

Proof. The induced isomorphism of M with MH �MB MK is immediate from
7.3(b) and 7.9(b). The edge-transitivity of M on z�A is given by the final statement
in 7.3, so that (a) holds.

By 5.8(a), there are maximal subgroups H0 and K0 of the group Co3 such
that H0 may be regarded as a subgroup of H� , and K0 as a subgroup of K� ,
in such a way that the resulting amalgam A0 D .H0 � B0 � K0/ of subgroups
of G� is isomorphic to the corresponding amalgam of subgroups of Co3. Set
M0 D NCo3.A/. Then M0=A Š GL4.2/, and M0 does not split over A, as one
finds from the list of maximal subgroups of Co3 in [Fin73]. Moreover, as seen in
the proof of 5.8, we have M0 D hM0 \H0;M0 \K0i, as subgroups of Co3. As
subgroups of G, we have M0\H DMH and M0\K DMK , so it follows from
(a) that M �G 0 �G� . Moreover, (a) implies that M0 is a homomorphic image
of M , via a homomorphism �A whose restriction to each of MH and MK is the
“identity” map. In particular, the restriction of �A to MH [MK is faithful, and this
yields (b) and (c).

From (c), it is immediate that CG.A/ D ker.�A/ � A. Since M is edge-
transitive on �A, and since ker.�A/ intersects both H and K trivially, it follows that
ker.�A/ acts freely on �A. That is, every nonidentity element of ker.�A/ induces
a hyperbolic isometry of �A, and hence also a hyperbolic isometry of � , by 3.3.
Thus, (d) holds. �

Set R0 D S1;� and R1 DNS1.R0hw0i/. Then R0 has index 8 in R1. Fix a
set X of coset representatives for R0 in R1, and recall that q0 denotes the exponent
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of R0. Then
XD fxe j e 2Eg

where xq0e D e. Set
Ae D A

xe ; e 2E;

and
ED E4.R0hw0i/:

All elements of R0w0 are fused by R1, so R1 is transitive on E. Since NR1.A/�
R0, R0 has jR1 WR0j D 8 orbits on E and fAe j e 2Eg is a set of representatives
for those orbits.

Every subgroup of T is �-invariant, so each hxei is �-invariant. Since �
centralizes x2e and does not centralize xe, we obtain

.�/ �xe D e� and .e�/xe D � for all e 2E:

LEMMA 7.11. For each e 2E:
(a) AutH� .Ae/D CAut.Ae/.hz; ei/,

(b) AutK� .Ae/DNAut.Ae/.U /\CAut.Ae/.e/, and

(c) AutG� .Ae/D CAut.Ae/.e/.

Proof. For any e 2 E, set �e D e� , regarded as an automorphism of G. By
7.10, M WDNG.A/�G� and AutG.A/D Aut.A/, so that

AutG�e .A/D CAutG.A/.e/D CAut.A/.e/:

Then as Ae D Axe , conjugating this equality by xe and appealing to .�/, we con-
clude that (c) holds.

Next, AutH .A/D CAut.A/.Z/ by 7.9(c), so that

AutH�e .A/D CAut.A/.hz; ei/:

Since xe centralizes hz; ei, conjugation by xe yields (a).
As AutG� .A/ D AutG.A/ D Aut.A/, as y 2 K, and as NH .U / � K, we

conclude that AutK� .A/DNAut.A/.U /. Then

AutK�e .A/DNAut.A/.U /\CAut.A/.e/;

and conjugation by xe yields (b). �

LEMMA 7.12. Let u 2 U �Z and let e 2E �U . Then
(a) fA;Az; Aug is a set of representatives for the orbits of H� on E4.H� /, and

H� fuses Au and Ae.

(b) fA;Az; Aeg is a set of representatives for the orbits of K� on E4.K� ; U /, and
K� fuses Az and Au.

(c) fA;Aug is a set of representatives for the orbits of G� on E4.G� /.
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Proof. Since S� 2 Syl2.G� /, each A 2 E4.G� / is fused under G� into S� ,
and then by 7.6, we may take U � A � S� . Then by parts (b) and (d) of 7.8, we
may take E � A. Since CS� .E/ D R0hw0i, we are reduced to the problem of
fusion via H� , K� , and G� on E.

Notice that W has the three orbits f1g, fzg, and E �Z on E, and that S� hyi
has the three orbits f1g, U # and E�U on E. Hence there are three orbits for S�W
on E, with representatives A, Az , and Au, and three orbits for S� hyi on E, with
representatives A, Az , and Ae. Since hS� ; W; yi is transitive on fAf j f 2 A#g,
it is now enough to show that there is no further fusion among these groups. As
AutG� .A/D Aut.A/, A is not fused to Az or to Au in G� , by 7.11(c). Since Az
is not fused to Au in H� by 7.11(a), and Az is not fused to Ae in K� , by 7.11(b),
the lemma is proved. �

LEMMA 7.13. Set N D NG.T2/, and for any subgroup X of G set NX D
N \X . Let �A be defined as in 7.10, and set D D Cker.�A/.T2/. Then the following
hold.

(a) The inclusion maps from NH and NK into N induce an isomorphism of N
with NH �NB NK . In particular, N is generated by NH and NK .

(b) N is edge-transitive on the tree �S1 .

(c) N DNG.T /DNG.T hw0i/.

(d) CG.T2/D CG.S1/DO.T /D �S1, and O.T /D is N -invariant.

(e) AutG.S1/Š GL.3; 2/�Z2.

(f) FCS .E/.NH /DFCS .E/.CN .Z//, and FCS� .E/.NH;˛/DFCS� .E/.CN� .Z//.

Proof. By 4.9(b) S is a Sylow 2-subgroup of B , and by 4.9(c) T2 is weakly
closed in S with respect to G. Therefore

T B2 D fT
g
2 j T

g
2 � B; g 2H [Kg:

Now (a) and (b) follow from 7.3(b).
Set T �D T hw0i. Since NH .T2/�NH .E/D T W by 4.3(d), we have NH D

NH .T /DNH .T
�/. ThenNBDNB.T /DNB.T �/, andNKDNBhyiDNK.T /D

NK.T
�/. It follows now from (a) that N �NG.T / and N �NG.T �/. Since the

reverse inclusions are obvious, we obtain (c).
Since hW; yi � NG.A/\NG.T2/, D is hW; yi-invariant, and evidently so

is O.T /. Let x 2 CG.S1/. Then (c) implies that wx0 2 T
� � T , and since T is

transitive on Tw0, there exists t 2 T with wxt0 D w0. Thus xt 2 CG.A/, so it
follows from 7.10(d) that xt D da for some d 2 ker.�A/ and some a 2 A. Since
T2 � NG.A/, we have ŒT2; d � � ker.�A/, and since ker.�A/ acts freely on � we
have T \ ker.�A/D 1. Let s 2 T2. Then

1D Œs; xt �D Œs; da�D Œs; a�Œs; d �a;
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where Œs; a�2T2 and where Œs; d �a2ker.�A/. It follows that ŒT2; a�D ŒT2; d �D1,
and so a 2 E and d 2D. Now x D dat�1 2DT , and thus CG.S1/ �DT . By
5.1 and (a), ŒD; S1� D 1, so that CG.S1/ D DT . Since D \ T D 1 we have
S1 \O.T /D D 1, and thus O.T /D is a complement to S1 in CG.S1/. This
completes the proof of (d). Part (e) follows from (a) and Theorem 5.2.

Let P � S and let g 2NG.P; S/\CN .Z/. Then g D nd for some n 2NH
and d 2 D, by (d). But CS .E/ D S1hw0i, and w0 2 A � CG.D/, so CS .E/
centralizes D. Thus d centralizes P , so cg D cn on P , establishing (f). �

8. Centric subgroups and signalizer functors

We continue the hypotheses and the notation of Sections 4, 5, and 7. Thus A�

is the amalgam .H� �B� �!K� /, and A0 is the amalgam .H0 �B0�!K0/

given by 5.8. As in 7.4, we regard A0 as a subamalgam of A� , H0 and K0 as
subgroups of G� ; and we set G0 D hH0; K0i and S0 D S \G0.

There is a fair amount of notation which we now need to establish, and which
will remain fixed in the remainder. First, we set

FD FS .G/; F� D FS� .G� /; F0 D FS0.G0/:

Let D be one of the groups G, G� , or G0, and let D be the fusion system
DDFS\D.D/. For any subgroup Y of G such that S \D is a Sylow 2-subgroup
of Y \D, we write YD for Y \D, and DY for FSD .YD/.

For any subgroup P of SD , set

ZP D hz
D
\Z.P /i:

Thus ZP D �1.Z.P // if D ¤ G0, by 7.6(b), and in any case we have Z#
P D

zD \Z.P /, by 5.9(b). Although the definition of ZP depends on D, the reader
may think of D as being fixed, so there need be no cause for confusion.

Denote by �0 the smallest G0-invariant subtree of � which contains the edge
fH;Kg. Recall that �i D iG denotes the subset GinG of vertices of � , where
G1 DH and G2 DK. Write also �D for the standard tree for D. That is, �D is
the smallest D-invariant subtree of � containing the edge fH;Kg. Thus �D is � ,
�� , or �0, for D equal to G, G� , or G0, respectively, and � � �� � �0.

LEMMA 8.1. Let Y 2 fB;K;H g, and let P be a 2-subgroup of Y . Then
NY .P; S/¤¿.

Proof. This follows from Remark 6.4. �

LEMMA 8.2. Let P be a subgroup of SD , and let Y 2 fG;H;Kg. Then

(a) P 2 DcY if and only if Z.P / contains every finite 2-subgroup of CYD .P /.

(b) If P 2Drc
Y then P contains every finite NYD .P /-invariant 2-subgroup of YD .
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Proof. We first prove (a). By 2.1 and 7.5(b), we may assume D D G, P
is infinite, P 2 FcY , and there exists a 2-element x of CY .P / with x … P . Set
P � D hP; xi.

Since C�.P / is x-invariant, and jxj is finite, it follows from 3.2 that x fixes
a vertex ı of C�.P /, and we may take ı D Y if Y 2 fH;Kg. Now 8.1 implies that
P � is contained in a conjugate of S in Gı , and then x 2 P since P 2 FcY . Thus
(a) is established.

Now suppose that P 2Drc
Y , setN DNYD .P /, and letR be a finite,N -invariant

2-subgroup of YD . Set R0 D NR.P /. Then R0 E N , and so AutR0P .P / �
O2.AutYD .P / D Inn.P / as P 2 Drc

Y . Then R0P D CR0P .P /P , so that R0 �
CR0P .P /P � P by (a). Thus R0 D R\P . But the p-group P induces a finite
p-group zP of automorphisms on R, and CNR.R0/=R0. zP /�NR.P /=R0 DR0=R0.
It follows that R � P , proving (b). �

For any P 2Dc we have CSD .P /�Z.P /, and thus Z �ZP . The following
lemma derives most of the remaining information that we shall need, concerning
D-centric subgroups of SD , including everything that is needed for the construction
of signalizer functors.

LEMMA 8.3. Let P � SD .

(a) Suppose that jZP j D 2 and that either P 2 Dc or P 2 FcH . Then ND.P; S/
�H , and if P 2 FcH then NG.P; S/�H and P 2 Fc .

(b) Suppose that P 2 Dc and jZP j D 4. Then CD.P / � H , ZP D U h, and
ND.P / �K

h for some h 2HD . If also ZP D U and P 2 FcK , then NG.P /
�K and P 2 Fc .

(c) Suppose that P 2 Dc and jZP j D 8. Then ZP 2 EHD . If also E4.P / D ¿
then P D S1\D and P is not D-radical.

(d) Suppose that E4.P /¤¿. Then P 2 Fc and O.CG.P //DO.CD.P //D1.

Proof. Set † D C�.P / and †0 D †\ �D . Then f1; 2g is an edge of †0,
since P �SD �BD . Let P be the set of paths �D .1; ˛; ˇ/ in† such that ˇ¤ 1,
and P0 the paths in P contained in †0. If � 2 P then Z˛ D ZZˇ � CH .P / by
3.11(a), so 8.2 implies that Z˛ � ZP if either P 2 FcH or ˇ 2 †0. In particular,
jZP j> 2 and ZP DZ˛ if jZP j D 4.

Now assume the hypothesis of (a). Then P0 D¿ by the preceding paragraph,
and thus 1 is the unique vertex in C�1.P /. The same is then true for P g , for any
g 2 ND.P; S/, and thus ND.P; S/ � H . Similarly NG.P; S/ � H if P 2 FcH .
Since CG.P /�NG.P; S/, (a) is proved.

Suppose next that jZP j D 4. Since Z � ZP , we then have ZP D U h for
some h 2HD , by 7.6(a) and 5.9. We conclude from paragraph one that ˛ D h2 for
each � 2 P0, and hence that ˛ is the unique vertex in �2 which is in the interior
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of †0, so that ND.P / � Kh. Now CD.P / � CKh.Z/ D CK.Z/
h � H , and the

first part of (b) is established. Now suppose that ZP D U and that P 2 FcK . Then
CH .P /�NH .U /�K, so that P 2FcH by 8.2. Then from paragraph one, ˛D 2
for each � 2 P, and so 2 is the unique vertex in �2 which is in the interior of †.
Thus NG.P /�K, and we have (b).

Suppose next that jZP j D 8. If ZP is not conjugate to E inHD , thenDDG�
by 7.7 and 5.9, and ZP is conjugate in HD to the group E 0 defined in 7.8(a). But
in that case we conclude from 7.8(d) that P does not contain every 2-element of
CD.P /, contrary to 8.2(a). Thus, ZP DEh for some h 2HD . Set RD CSD .E/
and R0DSD\T . Then RDR0hw0i is a Sylow 2-subgroup of CHD .E/, by 4.3(d),
and we may choose h so that P � Rh. Suppose further that E4.P / D ¿. Since
R�R0 consists entirely of involutions, we then have P �Rh0 . Since P contains
all 2-elements in CHD .P / it follows that P DRh0 . Then P DR0 by 4.9(c). Since
w0 inverts R0, O2.AutD.P //¤ Inn.P /, and therefore (c) holds.

We now remove the hypothesis thatP is D-centric, and assume that E4.P /¤¿.
Let F 2 E4.P /. Then F 2 AG by 7.9(b), so that F contains every element of
CG.F / of finite order by 7.10(d). The same is then true of P , and soO.CD.P //D1,
and P 2 Dc by 2.1. That is, (d) holds. �

COROLLARY 8.4. Let P 2 Dc , and assume that jZP j � 4. Then CD.P / D
CHD .P /DZ.P /�O.CD.P //.

Proof. By 8.3, CD.P / � H , while O2
0

.CD.P // D Z.P / by 8.2(a). Let X
be a finite subgroup of CD.P / containing Z.P /. The Schur-Zassenhaus Theorem
then yields O2.X/DO.X/. Since H is the union of an ascending chain of finite
subgroups, the result follows. �

Recall from 7.10 that there is a surjective homomorphism

�AWNG.A/!M0;

whereM0 is a nonsplit extension of A by GL.4; 2/, and thatM0 may be viewed as a
subgroup of xG0 WD Co3. From 7.4(c), G0 is the free amalgamated product H0 �B0
K0. The universal property of G0 with respect to A0 yields a homomorphism
�WG0! xG0. ThenM�DM0, and we may choose �A to be � jM . For any A0 2AG ,
choose g 2 G with A0 D Ag and let �A0 WNG.A0/!M0 be the homomorphism
given by cg�1�A. Then ker.�A0/ does not depend on the choice of the conjugating
element g. Set

XD
[
g2G

ker.�A/g ;

and for any P 2 Fc define a subset �.P / of CG.P / by

�.P /D CX.P /O.CG.P //:



2-LOCAL FINITE GROUPS 941

Thus, �.P / is a union of cosets of the largest normal subgroup of odd order in
CG.P /. For P 2 Fc� , set X� DX \G� , and

�� .P /D CX� .P /O.CG.P //� :

For P 2 Fc0 set X0 D X\G0 and

�0.P /D CX0.P /:

Write �D for �0, �� , when D DG0, G� , or G, respectively.
Recall from 7.2 that, for any vertex  of � , the largest normal 2-subgroup of

G is denoted Z./.

LEMMA 8.5. Let x 2 X, and let A0 2 AG with x 2 CG.A0/. Denote by ƒ.x/
the intersection of all the x-invariant subtrees of � , set E.x/D hZ./ j  2ƒ.x/i,
and denote by Gƒ.x/ the vertex-wise stabilizer of ƒ.x/ in G. Then the following
hold.

(a) �x D¿, and x induces a hyperbolic isometry on � .

(b) E.x/� A0, and jA0 WE.x/j � 2.

(c) Let f; ıg be an edge of ƒ.x/. Then Gƒ.x/ D CG\Gı .E.x//.

(d) If E.x/¤ A0, and fH;Kg is an edge of ƒ.x/, then Gƒ.x/ is a B-conjugate of
T hw0i.

Proof. By the definition of X we have x 2 ker.�A�/ for some A� 2 AG .
By 7.10(d), x fixes no vertices (and inverts no edges) of � . That is, x induces a
hyperbolic isometry of � , in the sense of Section 3, and we have (a). Then 3.2
shows that ƒ.x/ is a linear subtree of � , on which x acts as a translation. Since
ƒ.x/ is contained in every x-invariant subtree of � , and since x centralizes A0, we
have ƒ.x/ � �A0 . Then 7.2 implies that A0 centralizes E.x/. Since A0 contains
every 2-element in CG.A0/, by 7.10(d), we then have E.x/� A0.

Let .ı0; ı1; ı2/ be a geodesic in ƒ.x/ with ı1 2 �1. Then ı2 D ı0h for
some h in Gı1 �Gı0 , and so also Z.ı0/h DZ.ı2/. Since B DNH .U /, we have
Z.ı0/¤Z.ı2/, and since Z.ı0/Z.ı2/�E.x/ we conclude that jE.x/j � 8. This
yields (b). As Gƒ.x/ centralizes Z.˛/ for each ˛ 2 �1 \ƒ.x/, we get Gƒ.x/ �
J WD CG;ı .E.x//. Conversely J �Gƒ.x/ by 3.10, and this proves (c).

Suppose that E.x/¤A0 and that fH;Kg is an edge of ƒ.x/. Since E4.B; U /

D AB by 7.9(b), we may assume that A0 D A. By 7.9(c), all hyperplanes of A
containing U are fused in NB.A/, so we may assume also that E.x/D E. Then
(c) yields Gƒ.x/ D CB.E/, and now (d) follows from 4.3(d). �

Our aim is to show that �D is a signalizer functor on D, as defined in 2.5. The
key to this is the next result.

LEMMA 8.6. The following hold.
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(a) CX.A/D ker.�A/.

(b) CX.S1/D CX.T2/� Cker.�A/.T2/O.T /.

Proof. Let x 2 CX.A/, and suppose that x … ker.�A/. Then x 2 ker.�A0/
for some A0 2 E4.G/� fAg. Let ƒ.x/ and E.x/ be as in 8.5. Then 8.5 yields
ƒ.x/� �A\�A0 , E.x/�A\A0, and jE.x/j D 8. Since NG.A/ is edge-transitive
on z�A, we may assume that ƒ.x/ contains the edge fH;Kg. By 8.5(d) and as T is
transitive on AG \CB.E/, we may then assume also that Gƒ.x/ D T hw0i. Thus
T hw0i is x-invariant, and then so is T . We then have

.1/ x 2NG.T /\CG.A/DNG.T /\ ker.�A/ADNker.�A/.T /A:

Since ADEhw0i, we have NT .A/D T2. Then

.2/ Nker.�A/.T /�Nker.�A/.T2/D Cker.�A/.T2/;

since ker.�A/ is invariant under T2 and intersects T2 trivially.
Since all involutions in T hw0i�E are fused by T , there exists t 2 T such that

.A0/t D A. Then xt 2 ker.�A/. By (1) and (2), x D ga for some g 2 Cker.�A/.T2/

and a 2 A. By 7.13(d) we have gt 2 Cker.�A/.T2/O.T /, so that xtat D gt D ky
for some k 2 ker.�A/ and y 2O.T /. Thus yat D k�1xt 2 ker.�A/, and then since
yat is of finite order and ker.�A/ is torsion-free, we have yat D 1. Therefore
y D aD 1, and x D g 2 ker.�A/, contrary to our choice of x. This contradiction
proves (a).

Let x 2 CX.S1/. Then there exists A0 2 AG with x 2 Cker.�A0 /.S1/. As in
the proof of (a), x induces a hyperbolic isometry of � , and ƒ.x/ is contained in
�S1 \�A0 . Setting F D hZı j ı 2 ƒ.x/i, we find that F � CG.S1/, and since
NG.S1/ is edge-transitive on �S1 , F g �CH .S1/ for some g 2NG.S1/. Since
all involutions in CH .S1/ are contained in E, we conclude that F D F g D E.
Since ƒ.x/� �A0 we get ŒE;A0�D 1, and then E � A0 since A0 DO2

0

.CG.A
0//.

Again by the edge-transitivity of NG.S1/ on �S1 , we have A0g � CH .E/D T �,
for some g 2NG.S1/. Then A0gt D A for some t 2 T , and so

Cker.�A0 /.S1/D Cker.�A/.S1/
.gt/�1

� Cker.�A/.S1/O.T /;

by 7.13(d). This completes the proof of (b). �

PROPOSITION 8.7. X0 D
S

ker.�A/G0 .

Proof. Let x 2 X0. By definition, there exists A0 2 AG with x 2 ker.�A0/.
Since x 2 G0, 8.5(a) implies that the axis ƒ.x/ is contained in GA0 \ �0. Set
E 0DZ.ƒ.x//. Then 8.5(b) yields E 0 �A0. We have ZDZ.S0/, and hZK0iDU ,
so that U � G0. Since G0 D H0 �B0 K0, G0 is edge-transitive on �0, and so
Z./�G0 for any  2 �0. Thus, E 0 �G0.
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Denote by E� the set of elementary abelian 2-subgroups F of G0 such that
F D hZG0 \F i, and by E�n the set of all F 2 E� with jF j D 2n. By construction,
S0 WD S \B0 is a Sylow 2-subgroup of G0, and then 5.9 implies that for any n, all
members of E�n are fused in G0. We have A2E�4 by 7.10, and evidently E 0 2E�. If
E 0 D A0 we conclude that A0 2 AG0 , and there is nothing more to show. Thus, we
may assume henceforth that E 0 is a proper subgroup of A0, and then 8.5(b) yields
jE 0j D 8. Moreover, E 0 is conjugate to E in G0, since G0 is transitive on E�3 .

Since G0 is edge-transitive on �0 we may assume that fH;Kg is an edge of
ƒ.x/. Then 8.5(d) implies that Gƒ.x/ is conjugate in B to T hw0i. Let T 0 be the
abelian subgroup of index 2 in Gƒ.x/. By 8.5(c), ŒT 0; E 0� D 1, so that E 0 � T 0

and Gƒ.x/ D CB.E
0/ D T 0A0. Let R be the Sylow 2-subgroup of T 0, and set

N DNG.R/. Then 7.13 yields

CN .E
0/D .O.T 0/Cker.�A0 /.R/�R/A

0;

and CN.A0/DCker.�A0 /.R/A
0. Since x 2CN.A0/, 8.6(a) now yields x2Cker.�A0 /.R/.

Thus, x centralizes the Sylow 2-subgroup RA0 of T 0A0. Since O.T 0/Cker.�A0 /.R/

contains no nontrival 2-elements, it follows that:

(1) x centralizes every 2-subgroup of CN .E 0/ that x normalizes.

By 5.8(a), there is a surjective homomorphism G0! Co3 whose kernel inter-
sects B0 trivially. Then CB0.E

0/ is isomorphic to a subgroup of CCo3.E
0/. Since

E 0 is conjugate to E in G0, and since CCo3.E/ is of order 27, we conclude that
CB0.E

0/ is a 2-group. Since CB0.E
0/DG0\Gƒ.x/, (1) now yields:

(2) x centralizes CB0.E
0/.

If there exists F 2 E�4 with F � CB0.E
0/ then x 2 ker.�F / by (2) and 8.6(a).

Thus, we may assume:

(3) CB0.E
0/ contains no member of E�4 .

Set †D �0\�E 0 . Then z† is a subtree of �0 containing ƒ.x/. For any d > 0
denote by ƒ.d/ the subtree of z† induced on the set of vertices of z† at distance at
most d from ƒ.x/, and set Z.d/ D Z.ƒ.d//. Thus E 0 D Z0 � Gƒ.x/, and we
claim that Z.d/ �Gƒ.x/ for all d � 0. Suppose false, and let d be minimal subject
to the condition that, for some vertex  of z† at distance d from ƒ.x/, we have
Z./—Gƒ.x/. Then Z.d�1/ �Gƒ.x/, and thus Z.d�1/ �G0\B DB0. Now (3)
yields Z.d�1/ DE 0. Notice that E 0 centralizes Z./ since E 0 fixes every edge in
�0 at every vertex of z†. Thus Z./ centralizes Z.d�1/. Arguing as in the proof of
8.5(c), it follows that Z./ fixes every vertex of ƒ.d�1/, and thus Z.d/ �Gƒ.x/
as claimed.

It now follows that Z.z†/ � CB0.E
0/, and then (3) yields Z.z†/ D E 0. On

the other hand, since E 0 is fused to E in G0 there exists F 2 E�4 with E 0 � F .
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Then F 2 AG0 . Set ‚ D z�F \ �0. Since ‚ � z† and Z.z†/ D E 0, we conclude
that Z.‚/ D E 0, and hence E 0 E NG.F /. This is contrary to 7.10(c), and the
proposition is thereby proved. �

THEOREM 8.8. �D is a signalizer functor on D.

Proof. Let P 2 Dc and set Y D X \D. We first verify that �D.P / is a
complementary subgroup to Z.P / in CD.P /. This is the case if jZP j � 4, by 8.4,
so assume that jZP j � 8. Suppose that E4.P /¤¿ and choose F 2 E4.P /. Then
every subgroup of P which contains F is in Dc , by 7.3(d). We have F 2 AG by
7.9, so that 7.10(d) yields CG.F / D F � ker.�F /. Since ker.�F / D CX .F / by
8.6(a), CY .F / is a subgroup of CD.F /, and we get

CD.F /D F �CY .F /:

In particular O.CD.F //D 1, so CY .F /D �D.F / by definition. Thus �D.F / is a
complement to F in CD.F /.

Let P1 be maximal in P subject to the conditions: F � P1 and CD.P1/D
Z.P1/� �D.P1/. If P1 ¤ P then P1 < P2 WD NP .P1/ and CD.P2/ � CD.P1/.
Both Z.P1/ and Y are P2-invariant, so that P2 also acts on CY .P1/ D �D.P1/.
Thus

CD.P2/D CZ.P1/.P2/�C�D.P1/.P2/DZ.P2/� �D.P2/;

contrary to the maximality of P1. Thus P1 D P and �D.P / is a complement to
Z.P / in CD.P /.

On the other hand, suppose that E4.P /D ¿. Then P DD \S1 by 8.3(c).
Set I DCker.�A/.T2/. Then CG.P /D T �I by 7.13(d). Since ker.�A/�G0�G� ,
we have CD.P /D .D\T /� I . If D DG� then D\T D T� D P �O.CD.P //,
while if D DG0 then D\T D T2. Thus �D.P /DO.CD.P //I is a complement
to P in CD.P / for any P 2 Dc .

Evidently �D.P g/D �D.P /g for any g 2ND.P; S/, so that by 2.6 it remains
to show, for any Q 2 Dc with P � Q, that �.Q/ � �.P /. Since CY .Q/ �
CY .P /, this amounts to showing thatO.CD.Q//�O.CD.P //. ButO.CD.P //D
O2.CD.P //, by 7.4 if jZP j � 4, and by 7.6 if P D D \ S1, while in all other
cases we have just seen that O2.CD.P //D 1. Thus O.CD.Q//�O.CD.P // as
required. �

9. Saturation and Theorem A

We continue the notation that was introduced at the start of Section 8.

PROPOSITION 9.1. Let D 2 fG0; G� ; Gg. Then the fusion systems DH and
DK are saturated.
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Proof. If D D G0 or G� then HD and KD are finite, and the result is then
immediate from 1.6(c). In the case that D DG we appeal to Remark 6.4. �

Until further notice, we take D 2 fG;G�g.

PROPOSITION 9.2. We have DHDFSD .CD.Z// and DKDFSD .NG.U //.

Proof. Supposing first that DH D FSD .CD.Z//, we show that

DK D FSD .NG.U //;

as follows. Let g2NG.U / and let P � S with Q WD P g � S . Then .PU /g D
P gU � S , and we may therefore take U �P . Since AutK.U /DAut.U /, we may
write gD g0k with g0 2CG.U / and k 2K. SetQ0DP g

0

. ThenQ0�CK.Z/DB ,
so by 8.1 we may choose g0 so that Q0 � S . By assumption, we then have cg 0 D ch
for some h 2NH .P;Q0/ with U h D U . Then h 2NH .U /�K, and cg D chck D
chk where hk 2K. We are therefore reduced to proving that DH DFSD .CD.Z//.

Suppose that DH ¤ FSD .CD.Z//. By 7.5 and 3.14(c) there then exist P �
SD , F 2 E3.Z.P /; U /, and g 2NCD.Z/.P; S/, such that

(1) cg … HomHD .P; S/,

(2) U � F \F g , and

(3) CBD .F /
g � BD and CBD .F

g/� .BD/
g .

Suppose that both F and F g are conjugate to E in BD , and choose elements
b; b0 in BD with F b D E D F gb

0

. Set g0 WD b�1gb0. From the first statement
in (3), CBD .E/

g 0 � CBD .E/, and thus g0 normalizes SD \T by 4.9(c). We may
then adjust b0 in T \D so that g0 normalizes .SD \ T /hw0i D CSD .E/. Set
N DND.CSD .E//. It follows from 7.13(f) that N \H controls strong fusion in
CN .Z/, and so there exists t 2N \H with ct D cg 0 on P b . Then cg D cbt.b0/�1
on P , contrary to (1).

We may therefore assume that either F or F g is not conjugate to E in BD .
Then 7.8 yields D D G� , and every member of E3.BD; U / is fused in BD to E
or to E 0, where E 0 is as defined in 7.8(b). Suppose that F is fused to E and that
F g is fused to E 0 in BD . A Sylow 2-subgroup of CB� .F

g/ is elementary abelian,
by 7.8(d), whereas a Sylow 2-subgroup of CB� .F / has exponent 4, contrary to
(3). Similarly if F is conjugate to E 0 then F g is not conjugate to E. Thus we are
reduced to the case where both F and F g are fused to E 0 in B� , and hence in B0� ,
by 7.8(b).

Let b; b0 2 B0� with F b D E 0 D F gb
0

. Then b�1gb0 2 ND.E 0/. By 7.8(e)
there exists h 2H� such that ch D cb�1gb0 as elements of AutD.E 0/. Then cg D
cbh.b0/�1 in ND.F; F g/, and so P ¤ F by (1). Since P � CS .F / and EE 0 is
a Sylow 2-subgroup of CH� .E

0/, we conclude that P b , P gb
0

, and A0 DEE 0 are
Sylow in CH� .E

0/. Thus there exist a; a0 2 H� with P a D A0 D P ga
0

. Then
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a�1ga0 2ND.A
0/. Observe next that A0 is in the set E defined just prior to 7.11,

so that 7.11 implies there exists h2H� with chD ca�1ga0 as elements of AutD.A0/.
Then cg D cah.a0/�1 on P , contrary to (1). �

LEMMA 9.3. Let P � SD , and assume that there exists no ND.P /-invariant
subgroup X of ZP with jX j D 2 or 4. Then one of the following holds.

(a) P 2ED [AD .

(b) D DG� and P is D-conjugate to the group E 0 defined in 7.8(b).

(c) P � CS .E/, and either S1 � P or P \ T is homocyclic of rank 3 and
exponent at least 4.

Proof. By hypothesis, jZP j � 8. Suppose first that jZP j> 8. Then P 2 AG

by 7.9, and if P …AD then 7.11(c) and 7.12 show that there is an ND.P /-invariant
subgroup of P of order 2. Thus P 2 AD , and (a) holds in this case. Also, if P 2
EG �ED then 7.8 yields (b). We may therefore assume that P is not elementary
abelian. Then jZP j D 8, and Z �ZP .

By 7.7 we have .ZP /h D E for some h 2 H , and by 8.1 we may choose
h so that P h � S . Let P0 be the group generated by the noninvolutions in P .
Since CS .E/�S1 consists entirely of involutions, P0 is a characteristic abelian
subgroup of P , of index at most 2, containing ZP . Since P has no characteristic
subgroups of order 2 or 4, it follows that either P D S1 or that P0 is homocyclic.
Since P …E.S/, P contains a conjugate of T2, and then 4.9(c) implies that P0DTn
for some n� 2 or P0 D S1. Thus, (c) holds. �

LEMMA 9.4. Let P � SD and let X be a nonidentity ND.P /-invariant sub-
group of ZP of minimal order. Then ND.P / acts transitively on X#, and the
following hold.

(a) There exists an element f D hkh0 of D, with h; h0 2HD and k 2 KD , such
that NSD .P /

f � SD and such that either Xf 2 fZ;U;E;Ag, or D D G�
and Xf DE 0, where E 0 is as defined in 7.8(b).

(b) If P is fully normalized in D then so is P f , for any f as in (a).

Proof. We first show that ND.P / acts transitively on X#. This is trivial if
jX j D 2, and is immediate from the minimality of X if jX j D 4. Suppose that
jX j D 8. If P 2 E4.SD/ then 7.12 and 7.11(c) show that AutD.P / leaves no
maximal subgroup of P invariant, while if X D P 2 E3.D/ then 7.7 and 7.8(e)
show that ND.P / acts transitively on P #. Thus, we may assume that P is not
elementary abelian, and then 9.3 yields P � CS .E/, and either P D S1 or P \T
is homocyclic of rank 3 and exponent at least 4. Then X D E, and 7.13 implies
that ND.P / induces the full automorphism group of X .
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We next prove (a). Let 1 ¤ x 2 CX .NSD .P // and suppose that x ¤ z. By
3.13(b) there exist elements h 2 H and k 2 K such that xhk D z and such that
NSD .P /

hk �SD . Thus, we may assume that z 2X , after replacing P by a suitable
conjugate. Then, by 7.6 through 7.9, there exists h0 2HD with Xh

0

2 fZ;U;E;Ag,
or else D DG� and there exists h0 2HD with Xh

0

2 fE 0; Azg. If Xh
0

D Az then
7.11(c) contradicts the minimality of X , so that this case does not arise in our
context.

Set Y DXh
0

. In order to complete the proof of (a) it suffices to show that, in
each case, every 2-subgroup of NHD .Y / is fused into NSD .Y / in NHD .Y /. But
in each case we have NSD .Y / 2 Syl2.NHD .Y /, and so the required fusion follows
from Sylow’s Theorem, or from 6.3 and 6.4 when D DG and NS .Y / is infinite.
Thus, (a) holds.

Now suppose that P is fully normalized in D, let f be given as in (a), and set
QDP f . Let RDQg be a D-conjugate of Q contained in S . Then RDP fg , and
since P is fully normalized there exists d 2G such that Rd D P and NS .R/d �
NS .P /. Also, as P is fully normalized there exists d 0 2 G with Qd

0

D P and
with NS .Q/d

0

�NS .P /. Since NS .P /f �NS .Q/ we conclude that NS .Q/d
0

D

NS .P /, and NS .R/dd
0�1

�NS .Q/. Since Rdd
0�1

D P , we have thus shown that
Q is fully normalized, proving (b). �

LEMMA 9.5. Let P � SD be fully normalized in DH . Assume that there exists
a minimal, nonidentity, ND.P /-invariant subgroup X of ZP with Z �X . Then P
is fully normalized in D.

Proof. Let g 2ND.P; SD/ and set QD P g and Y DXg . There then exists
y 2Y # such that Œy;NSD .Q/�D 1, and sinceND.Q/ acts transitively on Y #, by 9.4,
we may assume that y D zg . By 3.13(b) there exist elements h 2HD and k 2KD
such that yhk D z and such that NSD .P /

hk � SD . Set d D hk and RDQd . As
gd 2 CD.Z/ it follows from 9.1 and 9.2 that there exists h0 2HD with Rh

0

D P

and with NS .R/h
0

� NS .P /. Then Qdh
0

D P and NS .Q/dh
0

� NS .P /. This
shows that P is fully normalized in D. �

LEMMA 9.6. Let P and Q be subgroups of S , and let x; y 2 G such that
P x �Q and Qy � P . Then P x DQ and Qy D P .

Proof. The map cxy WP �! P is injective, so by 6.4 and 6.2(7), cxy is an
isomorphism. Thus P D P xy DQy , and similarly P x DQ. �

THEOREM 9.7. D is saturated.

Proof. Let 1¤P � SD and let X be a minimal, nonidentity, ND.P /-invariant
subgroup of ZP . By 9.4 there is g 2 D with NSD .P /

g � SD and with Z �
Xg . Adjusting in H and appealing to 9.1, we may assume that Q WD P g is fully
normalized in DH . ThenQ is fully normalized in D, by 9.5, and thus D satisfies the
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saturation condition (I) in 1.5. It remains to verify the two parts of condition (II).
Thus we may take P to be fully normalized in D.

By 9.4 there exists a fully normalized conjugate P 0 D P y of P such that
X 0 WDXy is in fZ;U;E;E 0; Ag. Then y can be chosen so that NS .P /y �NS .P 0/,
and similarly (since P is fully normalized) there exists y0 2ND.P 0; P / such that
NS .P

0/y
0

�NS .P /. By 9.6, NS .P /y DNS .P 0/, so that if P 0 satisfies saturation
condition (II) then so does P . Thus, we may assume that X 2 fZ;U;E;E 0; Ag
and, in particular, that Z � X . Also, since DH is saturated there exists a DH -
conjugate P 00 of P which is fully normalized in DH , and hence in D by 9.4(b);
the preceding argument then shows that NS .P / and NS .P 00/ are D-isomorphic.
We may therefore assume that P is fully normalized in DH . Then P is fully
normalized in FSD .CD.Z//, by 9.2.

If X 2 fZ;U g then fusion in ND.P / is controlled by fusion in NHD .P / or
in NKD .P /, by 9.2, and since DH and DK are saturated, there is nothing more to
prove in these cases. Thus, we may assume that jX j � 8. By 9.3 we then have
P D X 2 fE;E 0; Ag, or else P � CSD .E/ with P \ T D S1 or with P \ T
homocyclic and of exponent at least 4. In the first case, where P is elementary
abelian, we have AutSD .P / 2 Syl2.AutD.P // by 7.8 and 7.10. In the second case
we obtain AutSD .P / 2 Syl2.AutD.P // from 7.13. This establishes the saturation
condition (IIA).

Now let ˛D cg 2AutD.P /, where g 2ND.P /. SetZ0DZg
�1

. By definition,
we have N g

˛ � CD.P /SD . Thus N˛ � CSD .Z
0/. By 3.13(b) there exists a 2

ND.N˛; SD/ with .Z0/a DZ. Set QD P a and b D a�1g. Then b 2 CD.Z/ and
Qb DP . As P is fully normalized in FSD .CD.Z//, it follows from the “standard”
axioms for saturation in [BLO03] – equivalent to those in 1.5 – that ˇ WD cb extends
to a D-morphism Ncb of Nˇ into SD . That is, there exists d 2 ND.Nˇ ; SD/ such
that d�1 centralizes Q. Set Ng D ad . Then

g�1 Ng D g�1ad D g�1gb�1d D b�1d;

and so g�1 Ng centralizes P . But also .N˛/a �Nˇ since

.N˛/
ab
D .N˛/

a�1ag
D .N˛/

g ;

and AutN˛ .P /
cg � AutSD .P / by definition of N˛. Now

.N˛/
Ng
D .N˛/

ad
� .Nˇ /

g
� SD;

and thus c Ng is an extension of cg from P to a D-morphism of N˛ into SD . This
shows that D satisfies the saturation condition (IIB), and the proof is thereby com-
plete. �

In 2.6 it was shown that if D is saturated then a D-signalizer functor �D
determines an associated centric linking system and an associated p-local group
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GSD ;�D .D/D .SD;FSD .D/;L�D /. Write G0D .S0;F0;L0/, G� D .S� ;F� ;L� /,
GD .S;F;L/, for GSD ;�D .D/, when D is G0, G� , G, respectively. Theorems 8.8
and 9.7 therefore have the following immediate corollary:

COROLLARY 9.8. G� is a 2-local finite group, and G is a 2-local group.

THEOREM 9.9. For any fixed p, p � 3 or 5 mod 8, and for any integer of
the form q D p2

n

, there is a unique � D  n such that the fusion system FSol.q/

constructed in [LO02] is isomorphic to F� . Moreover the associated 2-local finite
group constructed in [LO02] is isomorphic to G� .

Proof. The fusion system ED FSol.q/ is constructed as

hFSq .Hq/;FSU;q .Kq/i;

where Hq DH� is Spin7.q/, Sq D S� is a Sylow 2-group of Hq , SU;q DCS� .U /,
and Kq DK� , subject to a choice of embedding ˛ of Bq DNHq .U / in Kq such
that, for I D hNHq .SU;q/; NKq .SU;q/i, AutI .SU;q/ Š GL.3; 2/ � C2. By parts

(a) and (d) of 9.7, the amalgam A˛ D .H
�
 � B

˛�

�! K/ is determined up to
isomorphism by these properties, so A˛ D A�;� D .H� > B� < K� /. Thus
ED hFS� .H� /;FCS� .U /.K� /i. By 1.10, FS� .K� /D hFS� .S� /;FCS� .U /.K� /i,
so ED hFS� .H� /;FS� .K� /i, and then EDFS .G� /DF� by 3.7, completing the
proof of the first part of the theorem. The remainder of the theorem follows from
the uniqueness of the 2-local finite group associated to E, proved in [LO02]. �

To sum up: parts (1) and (2) of Theorem A are given by the construction of
G in Section 5, while parts (3) and (4) of Theorem A are given by the preceding
theorem. Part (5) is given by 7.9, 7.10, and the definition of X. Thus all parts of
Theorem A have been proved.

LEMMA 9.10. F is frc-generated. That is,

FD hAF.P / j P 2 Ffrc
i;

where Ffrc is the set of fully normalized radical centric subgroups in F, and AF.P /

is the fusion system on P whose morphisms are the restrictions of members of
AutF.P / to subgroups of P .

Proof. This generalization of Alperin’s Fusion Theorem is well known for
saturated fusion systems on finite p-groups S ; a short proof appears in Theorem
A.10 of [BLO03]. A modification of this proof when S is a discrete p-toral group
appears in Theorem 3.6 in [BLO05]. We sketch that proof in our special case,
where things are much easier.

Pick P;P 0 � S and an F-isomorphism 'WP ! P 0 such that ' is not in
A D hAF.P / j P 2 Ffrci. Then ' D cg for some g 2 G. As in the proof of
Theorem A.10 in [BLO03], using the fact that F is saturated, we may assume
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P 0 is fully normalized in F. Pick P so that jT2\P j is maximal. If T2 — P then
T2\P <NT2\P .P /, and as in the proof of A.10, after we replace P by NT2.P /P ,
the maximality of jT2\P j supplies a contradiction.

As T2 �P , 4.9(c) says that g 2NG.T2/. As S1 E NG.T2/, replacing P;P 0

by PS1; P 0S1, we may assume S1 � P . In particular P is centric. Finally
choosing jP W S1j maximal, and arguing as in the proof of Theorem A.10 in
[BLO03], we first reduce to the case where g 2 NG.P /, and then show P is
radical, contradicting the assumption that cg …A. �

10. Radical centric subgroups

In this section, we determine the members of Drc, and make the necessary
preparations for obtaining embeddings among the 2-local groups constructed in
the preceding section.

LEMMA 10.1. Let Y 2 fH;Kg, and let P � S with ND.P / � Y . Then the
following are equivalent.
(a) P 2 Drc.

(b) P 2 Drc
Y .

(c) P contains every 2-element in CY .P /, and O2.OutYD .P //D 1.

Proof. As CD.P / � Y , 8.2(a) says that P 2 Dc if and only if P contains
every 2-element in CYD .P /, and that this holds if and only if P 2 DcY . Thus we
may assume P 2 Dc . As ND.P /� Y , we have

O2.AutD.P //DO2.AutYD .P //:

Thus P 2 Drc if and only if InnD.P /DO2.AutD.P // if and only if InnD.P /D
O2.AutYD .P // if and only ifP 2Drc

Y if and only ifO2.OutYD .P //D1, completing
the proof. �

Recall from 4.5 that B0 is the commuting product of “components” L1, L2,
and L3, where each Li is isomorphic to SL.2;F/.

LEMMA 10.2. Let P 2 Drc
K , set N D NKD .P /, R D SD , Ji D Li \D, and

J D J1J2J3. For any subgroup X of KD , and any i with 1 � i � 3, denote by
Xi the projection of X \J in Ji . Denote by Qi the set of subgroups of Ri that are
isomorphic to the quaternion group Q8. Then the following hold:
(a) CK.P /� P .

(b) ZP 2 fZ;U g.

(c) P \J D P1P2P3, and for each i with 1� i � 3, either Pi DRi or Pi 2 Qi .

(d) Either
(i) P 2 fCR.U /;Rg,
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(ii) P D P \J and Pi 2 Qi for at least two indices i , or

(iii) P D .P \J /hsi for some s 2 P �CP .U /, and either P3 2 Q3 or Pi 2 Qi
for both i D 1 and 2. Moreover, if P3 ¤R3 then O2.N \J3/¤ 1.

(e) P 2 FcK , and every N -invariant 2-subgroup of K is contained in S .

(f) If U 0 is a fours group in K such that ŒP; U 0��Z, then U 0 D U .

Conversely, any subgroup P of S which satisfies (c) and (d) is in Drc
K .

Proof. Set J D fJi j 1 � i � 3g and set PJ D P1P2P3. Since J is KD-
invariant, PJ is N -invariant, and then PJ � P by 8.2(b). Thus Pi � P for all i ,
and PJ D P \J .

Suppose that Pi � U for some i . Then P � WD hPPi i � U , and R� WD hRPi i
is a P -invariant 2-group which properly contains P �. Pick r 2NR�.P /�P with
r2 2 U . Then r centralizes the chain P � U � 1, and since U EN we conclude
from 2.2 that r 2 P . This contradiction shows that no Pi is contained in U .

Set N �i D NJi .Pi /. Then N � D N �1 N
�
2 N
�
3 is N -invariant, so by 8.2(b),

O2.N
�
i /D Pi . Let S be the class of 2-groups each of whose finite subgroups is

cyclic. Suppose that Pi … Qi . There is then a unique maximal subgroup X of Pi in
S of order at least 8. Since jX j � 8 there is also a unique maximal 2-subgroup Vi
of Ji in S containing X . Then Vi is N �i -invariant, and 8.2(b) yields Vi � Pi . Then
also AutRi .P / � O2.AutKD .P //, and Pi D Ri . Thus, (c) is proved. It follows
from (c) that CLi .Pi /� Pi , so CB0.PJ /� PJ . Since any element of K �B0 acts
nontrivially on U , and since U � PJ , we obtain (a) and (b).

Suppose next that no Pi is a quaternion group. Then for all i we have Pi D
Ri … Qi . If D D G then PJ D CS .U / is of index 2 in P , and (d)(i) holds. On
the other hand, suppose that D ¤G. Since Ri 2 Qi if D DG0, we conclude that
D DG� . By 7.8(a) there exists an element x of SD such that x induces a diagonal
outer automorphism on each Ji . Here N \ J D PJ and PJ hxi E SD , so as P
is DK-radical it follows that x 2 P . Then PJ hxi D CR.U /� P , and again (d)(i)
holds.

If CP .U /¤ PJ then there exists x 2 CP .U /�J . As in the preceding para-
graph, D ¤ G, and for all i either Ji Š SL.2;F� /, or D D G0 and Ji 2 Qi . As
ŒNi ; x�� P for all i , O2.Ni / is not isomorphic to SL.2; 3/, and Pi DRi for all i .
Thus P � .R\J /hxi D CR.U /. Once again, we obtain (d)(i).

Now assume that (d)(i) does not hold. We conclude from the discussion above
that Pi 2 Qi for some i and that PJ D CP .U /. Suppose next that P D PJ ,
and that neither P1 nor P2 is a quaternion group. Recall that B D B0hsi where
s 2 S0, s centralizes L3, and s interchanges L1 and L2. One may now check that
N D .N \ J /hsi and that O2.N \ J / � J3, whence P hsi E N . As P is DK-
radical, s 2 P , contrary to the assumption that P D PJ . Thus, either P1 or P2 is a
quaternion group. Since K=B0 Š Sym.3/, a similar argument shows that for any
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two distinct indices j and k, at least one of Pj and Pk is a quaternion group. Thus
(d)(ii) holds in this case.

Now suppose that P ¤ PJ . As PJ D CP .U / we then have P D PJ hsi

for some s 2 R � CR.U /. Then s interchanges P1 and P2, and since some Pi
is a quaternion group we get either P3 2 Q3 or Pi 2 Qi for both i D 1 and 2. If
P3 D R3 then (d)(iii) holds. Thus we may assume P3 6D R3, so that P3 2 Q3.
Also R3 … Q3, so that in particular D 6D G0. Let xN D N=PJ . If P1 D R1 then
O2.N / D O2.CN .Ns// � O

2.N �3 /, while if P1 2 Q1 then O2.N / D PJ hd i or
PJ hd iO

2.N �3 / for a suitable element d of order 3 in N �1 N
�
2 . In particular if

O3.N �3 / does not centralize Ns, then NR3.P /�O2.N /, again contrary to R3 6D P3
and P 2 KrD . Thus (d)(iii) holds, completing the proof of (d).

Suppose next that x is a 2-element inK�U , such that ŒP; x��Z. If ŒP; x�DZ
assume that x is an involution. Since CLi .Pi /DZ.Pi /�U , and all involutions in
L3 are in Z, it follows that x … B0. But then x interchanges Pi and Pj for some
pair of distinct indices i and j , and so ŒP; x� — Z. Thus no such x exists. This
proves (f), and shows also that P 2 FcK .

Let F be an N -invariant 2-subgroup of K with F — S . Then FP is a 2-group.
For any i , set Si DS\Li , and recall Fi , Ni are the projections of F \B0, N \B0

on Li . Then Fi is Ni -invariant. It is a property of the group xLD PSL.2;F/ that the
intersection of any pair of distinct Sylow 2-subgroups is abelian (either cyclic or
a fours group), and therefore Si is the unique Sylow 2-subgroup of Li containing
Pi . Thus Fi � Si , and we conclude that F \B0 � S .

Now F D .F \B0/hti, where t acts nontrivially on L WD fL1; L2; L3g. Thus,
there is an ordering .10; 20; 30/ of f1; 2; 3g such that t interchanges L10 and L20 , and
fixes L30 . Suppose that P — B0. Then there exists s 2 P such that s interchanges
L1 and L2, and since hs; ti is a 2-group it follows that i D i 0 for all i . Without
loss, we may assume that P � F , so that st 2 F \B0. But then t 2 S and F � S .
Thus P � B0, and it follows from (c) and (d) that Ni �N for all i .

Suppose that P — J . Then (d) implies that CR.U /�P , and since P �B0 we
get P D CR.U /. The Frattini Argument then implies that there exists an element
x of N which permutes the components Li transitively, and then hx; ti is not a
2-group. This shows that P � J , and a similar argument shows that there exists j
with Pj ¤Rj .

Since P ti � F \ B
0 � S , we have P ti � S \ S

t
i , so that S ti � S for all i .

Since htNi i is a 2-group, we obtain N10 D R10 and N20 D R20 . Then P30 ¤ R30 ,
and so N30 Š GL2.3/C. Then NK.N30/ D CK.O2.N //N30 . Since N30 E N we
have N DCN .O2.N //N30 , and since CN .O2.N // is a 2-group we get N DN30P .
Thus, N D N1N2N3. On the other hand, there exists an element t 0 of CKD .J30/
such that t 0 interchanges R10 and R20 . Then t 0 2P , by 7.1(b), contradicting P � J ,
and completing the proof of (e).
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It remains to establish the final statement in the lemma. Thus let P � S such
that P satisfies (c) and (d). Then there exists Q � P such that Q � Qi Š Q8
for all i , and one checks that CK.Q/ D U �Q. Then Q 2 DcK , and hence also
P 2 DcK .

Set N D NKD .P /. As CK.Q/ D U we have O.N/ D 1, and it remains to
show that P DO2.N /. If (d)(i) holds, then P DR or P DCR.U /, so that N DR
or N=R Š Sym.3/, and in particular P D O2.N /. Suppose that (d)(ii) holds. If
P DQ then it is easy to check that P DO2.N /; so we may assume that P ¤Q.
Then Pj DRj … Qj for exactly one index j , N=P Š Sym.3/ oC2, and we are done
in this case.

Finally, suppose that (d)(iii) holds, set PJ D P \J , and let s 2 P �J . Since
PJ D CP .U / we have N �M WDNKD .PJ /. Set xM DM=PJ ; it follows that N
is the preimage in M of C xM .Ns/. Thus it suffices to show that

.�/ hNsi DO2.C xM .Ns//:

IfRi 2Qi thenD 2fG0; G 0g, PJ DQ, R=Q is a 4-group, and every involution in
R=Q has nontrivial fixed points on O3. xM/. Since NKD .R/DR we conclude that
.�/ holds in this case. We may therefore assume thatRi …Qi . Suppose that PJ DQ.
Then xM Š Sym.3/ o Sym.3/, and P3 ¤ R3. Then (d)(iii) requires O2.N3/ ¤ 1,
and hence N contains an element g of J3 of order 3. Then jO3. xN/j D 9, hNsi is a
Sylow 2-subgroup of C xM .O3. xN//, and we have .�/.

If P3 D R3 … Q3 then P1 and P2 are quaternion groups, xM Š Sym.3/ oC2,
and xN Š D12. This yields .�/, so we are reduced to the case where Pi DRi … Qi
for both i D 1 and 2. Then P3 ¤ R3, so O2.N \ J3/ ¤ 1, and xM D xN with
hNsi DO2. xM/. Again .�/ holds, so the proof is complete. �

LEMMA 10.3. Let g 2 G and R � S such that R D R1R2R3, with Ri D
R\L

g
i ŠQ8. Then U D U g DZ.R/, and R is special of order 28.

Proof. For each i 6D j we have RiRj D Ri �Rj , so that R is special with
center U g . Thus it remains to show U D U g . Set zS D S=S1. Then zS has no
Q8-subgroups, so that Ri \S1 ¤ 1, and hence U g � S1.

Set Y D CR.E/ and Y0 D R\S1, and suppose first that jR=Y j � 2. Then
jY0j � 64, so as R has no elements of order 8 it follows that Y0 D T2. Since
ˆ.R/DZ.R/, this is a contradiction and so we conclude that jR=Y j � 4. Since
U g � Y , R=Y is elementary abelian, and is then a maximal elementary abelian
subgroup of AutS .E/. Since the fixed point groups in E for the two maximal
elementary abelian subgroups of AutS .E/ are Z and U , we conclude U DU g . �

LEMMA 10.4. Let P 2 Drc with jZP j � 4. Then:

(a) P contains every P -invariant subgroup of D of order 4.

(b) ZP 2 fZ;U g.
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Proof. Let F be a P -invariant subgroup of D of order 4. Then jŒF; P �j � 2,
and so 8.2(a) implies that ŒF; P � � ZP . If ŒZP ; F � D 1 then F centralizes the
chain P �ZP � 1, whence F � P by 8.2(a) and 2.2. On the other hand, suppose
that ŒZP ; F �¤ 1. Then jZP j D 4 and ZP —ˆ.P /. By 8.3(b) we have ZP D U h

for some h 2HD . Then Eh � CD.ZP /, and so P ¤ZP . Thus ˆ.P /¤ 1, so that
ZP \ˆ.P /DZ, and F centralizes the chain P �ZP �Z � 1 of characteristic
subgroups of P . Thus F � P by 2.2, and (a) holds.

Now suppose that ZP ¤ Z. Then ZgP D U for some g 2 HD , and P g �
CHD .U / � KD by 8.3(b). By 6.4 there exists k 2 KD with P gk � SD , and
replacing g by gk, we may assume P g � SD . Then P g 2 Drc

K by 8.3(b) and 10.1,
and then 10.2 implies that P contains a subgroup R satisfying the hypothesis of
9.3, with g�1 in the role of g. Then U D U g

�1

by 10.3, proving (b). �

LEMMA 10.5. P 2Drc with jZP j> 4 if and only if P 2AD or P D CSD .E/.

Proof. Let P � SD . Suppose that jZP j > 8. Then P D CD.P / D ZP 2
E4.SD/, by 7.9. If P 2 AD then 7.10 shows that O2.AutD.P // D 1, whence
P 2Drc. On the other hand suppose that P …AD . ThenDDG� by 5.9 and 7.9, and
then 7.12 shows that P 2ADu for some u 2U �Z. Now AutD.Au/DCAut.Au/.u/

by 7.11(c). On the other hand, the definition of Au preceding 7.11 shows that
AutT2.Au/ is an elementary abelian subgroup of AutD.Au/ of order 8. It follows
that O2.AutD.Au//¤ 1. Thus P … Drc. Hence the lemma holds when jZP j> 8,
so we are reduced to the case where jZP j D 8.

If E4.P /D¿ then P … Drc by 8.3(c). Thus we may assume E4.P /¤¿.
Suppose ZP …ED . ThenD 6DG by 7.7, andD 6DG0 by 5.9, so thatDDG� .

Then CSD .ZP / 2 E4.SD/ by 7.8. But in that case P DZP , and P is not centric.
Thus we may assume ZP 2ED . Set RD SD .

By 5.9, 7.7, and 7.8, HD is transitive on EG \HD . Since E is normal in the
Sylow 2-group R of HD , there is h 2HD with EhDZP , P �Rh, and ZP ERh.
In particular P � CRh.ZP /, so that P0 D P \Sh1 is of index 2 in P .

Now ZP is generated by the involutions in P0, and P �P0 consists entirely
of involutions, and so P0 is a characteristic subgroup of P . Let R0 be the unique
conjugate of T2 inRh. ThenR0 centralizes the chain P�R0\P�1, and soR0�P
by 2.2. Thus R0 D T2 is weakly closed in P by 4.9(c), and so hh;ND.P /i �
ND.T2/. Then ZP DEh DE and AutCR.E/.P /�O2.AutD.P // by 7.13. Thus
if P 2 Drc then P D CR.E/. On the other hand if P D CR.E/ then 7.13 says
P 2 Drc. This completes the proof. �

Recall from Section 4 that H acts on an orthogonal space V of dimension 7
over F, and that there is a distinguished basis fx1; : : : ; x7g of V such that T acts on
Fxi for each i . Define FD to be F if D DG, F� if D DG� , and F 0 if D DG0.
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Let VD be the FD-span of fx1; : : : ; x7g. Then the quadratic form f associated
with V restricts to a quadratic form fD on VD , preserved by HD .

Denote by ƒ.VD/ the collection of all setsƒ of pairwise orthogonal subspaces
of VD whose sum is VD . For any subspace X of VD , denote by XF the F-span of
X in V . For any ƒ 2ƒ.VD/ define ƒF 2ƒ.V / by

ƒF
D fXF

jX 2ƒg;

and define the type of ƒ to be the nondecreasing sequence � D �.ƒ/ of integers
given by the dimensions of the members of ƒ. We will abbreviate such sequences,
using exponential notation. For example, �.ƒ/D 17 means that each member of
ƒ is a 1-space, while �.ƒ/D 152 means that ƒ consists of five 1-spaces and one
2-space. Write ƒ.VD; �/ for the set of ƒ 2ƒ.VD/ with �.ƒ/D � . For ƒ 2ƒ.V /

andX a subgroup (or subset) ofH h�i, write CX .ƒ/,NX .ƒ/ for the set of all x 2X
which acts on each member of ƒ, and permutes the members of ƒ, respectively.

LEMMA 10.6. Let ƒ 2ƒ.V / with � 2 CH� .ƒ/, and set � D �.ƒ/. Then H
acts transitively on ƒ.V; �/.

Proof. Since every member of F is a square, all nondegenerate subspaces of
V of a given dimension are isometric, and so the result follows from Witt’s Lemma.

�

LEMMA 10.7. Let D 2 fG� ; Gg, let P 2 Drc
H with NHD .P / — K, and set

N DNHD .P /. Denote by B.P / the set of N -invariant 2-subgroups of H , and set
ˇ.P /D hB.P /i. Then:

(a) One of the following holds.

(1) There exists ƒ 2ƒ.VD; 1
7/ such that N D NHD .ƒ/ and P D CHD .ƒ/.

Moreover either
(i) P Š D38 , and N=P Š Alt.7/ if D D G 0 , while N=P Š Sym.7/ if
D ¤G 0 , or
(ii) D DG� , P Š Z4 �Q28, and N=P Š Sym.6/.

(2) D ¤  0, and there exists ƒ 2 ƒ.VD; 1
52/ with N � NHD .ƒ/. More

precisely P DO2.NHD .ƒ//hti, where t acts as �1 on every point in ƒ
and as a reflection on the line ` in ƒ. Further, `F is one of the lines li ,
1� i � 3, from Section 4, and N=P Š Sym.5/.

(3) P DO2.NHD .E//.

(b) CG.P /� P .

(c) ˇ.P /� S . More precisely: ˇ.P /DO2.NH .ƒF// in case (a)(1),
O2.NH .ƒ

F//hti in case (a)(2), and CS .E/ in case (a)(3).

Proof. Observe that U � P by 10.4(a). Set H� DH=Z. We first prove (a).
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Let Q� be an NH .P /-invariant elementary abelian 2-subgroup of Z.P �/
containing U �; for example as U � � Z.P �/, Q�U D hU

�NH .P /i is such a sub-
group. Let ƒD ƒ.Q/ be the set of weight spaces of Q� on VD; then ƒ 2 .VD/
and NHD .P / � NHD .ƒ/ D NHD .ƒ

F/. Let R D O2.NH .ƒF//. As NHD .P / �
NH .ƒ

F/�NH .R/,

R\D �O2.NHD .ƒ
F//�O2.NHD .P //� P

by 8.2(b). On the other hand P � centralizes Q� and hence stabilizes each member
of ƒF. Further if AutP .Y / � h�1Y i for each Y 2 ƒ, then P � R \D, so that
P DR\D DO2.NHD .ƒ

F//DO2.NHD .P //.
Suppose ƒ is of type 17. Then each Y 2ƒ is a 1-dimensional P -invariant or-

thogonal space, so that AutP .Y /� h�1Y i, and hence P DR\DDO2.NHD .P //
by the previous paragraph. Further, ƒDƒ.P /, so that NHD .P /DNHD .ƒ/, and
as P D O2.NHD .ƒ

F//, P D CHD .ƒ/. If D D G it follows that (a)(1.i) holds,
so we may take D DG� . As Œ�; P �D 1, � 2 CH h�i.ƒF/, so by 10.6 there exists
h2H , ‚2ƒ.H/, and � 0 2 �H such that � centralizes NH .‚/DN modulo Z, � 0

centralizes ‚, and .�;ƒF/h D .� 0; ‚/. In particular NHD .P /ŠNH�0 .P
h/. As � 0

centralizes ‚, � 0 D r� for some r 2R0 DO2.NH .‚//. We may regard R�0 as the
core of the permutation module for S7 ŠNH .‚/=R0. Thus r� is of weight 0, 2, 4,
or 6 in R�0 . If � D 0 then Œ�; g�D z for g 2N �O2.N /, so thatO2.N /DCN .�/,
and hence if in addition r� is of weight 0 then NHD .P /ŠO

2.N /. In this case (a)
holds, so we may assume one of the remaining cases holds. Then N centralizes
� 0 if r 2 Z and rz 2 rR0 if r … Z, so that CN�.r�/D R�0CN .r�/

� by a Frattini
argument. Further, � centralizes R0, so that

P Š CR0.r�/Š CR0.r/ŠD
3
8 ; Z4 �Q28; Z2 �Q28; or Z4 �Q28;

for the respective choices of r�, and NHD .P /
�=P � is isomorphic to the stabilizer

in S7 of r�, and hence is S7, S5 �Z2, S4 �S3, S6, respectively. So as R\D D
O2.NHD .P //, r

� is of weight 0 or 6, and hence (1) holds.
Assume next that ƒ is of type 152, and let l be the line in ƒ. Then

O2.NHD .P //� P

and P acts on each member of ƒ. Let ‚ 2ƒ.V / be of type 152, lN the line in ‚,
and NH .‚/DN . Then N DN1N2htN i, where N1DCG.lN /, N2DCN .l?N /, tN
inverts l?N and induces a reflection on lN , O2.N1/ŠQ8D8, andN1=O2.N1/ŠS5.
IfDDG� , then as above we can pick‚ so that .�;ƒF/ is conjugate inH to .r�;‚/
such that � centralizes O2.N1/, and r fixes each member of ‚. Thus r D r1r2 with
r1 2 O2.N1/, r2 2 N2, and r�1 is of weight 0, 2, or 4 in the permutation module
O2.N1/

� for N1=O2.N1/Š S5. But again if r�1 6D 1 then O2.CN .r�// does not
act on each point in ‚, contrary to an earlier remark.
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Thus we may take ‚DƒF and H1 DO2.CHD .l//ŠO2.N1/Š A5=Q8D8
with P1 D O2.H1/ � P by 8.2(b). Let H2 D CHD .l

?/. Then H2 is cyclic and
P2DO2.H2/�P by 8.2(b). Also there is t 2NHD .ƒ/ inverting l? and inducing
a reflection on l . Then t induces an automorphism in O2.AutHD .P // on P , so
that t 2 P as P 2 Drc

H . Indeed P D P1P2hti.
If jP �2 j � 2 then P � is elementary abelian with weight spaces of dimension 1,

and we obtain a contradiction from our treatment of the case ƒ of type 17. Thus
jP �2 j>2, and ifDDG� then jP �2 jD .q�"/2=2 where qDjFDj� "D˙1 mod 4.
It follows that � 6D  0. Next U �Q � P1P3 where P3 is the subgroup of P2 of
order 4, so P2CP1.U / � CS .U /. As AutCS .U /.S1/ Š E8, P4 D ˆ.P2/ � S1.
As jP4j> 2, l?DCVD .P4/, and then as P4 � S1\D, lF is one of the three lines
li from Section 4. Thus (2) holds in this case.

Suppose NHD .P /� B
h
D for some h 2HD . Arguing as in the first few para-

graphs of the proof of 9.2, there is RC � P such that RC D R1
C
R2
C
R3
C

with
Ri
C
D RC \L

h
i ŠQ8. Then by 10.3, U D U h, contrary to our hypothesis that

NHD .P /—K. Thus we may assume NHD .P / is contained in no HD-conjugate
of BD .

Suppose Z 6DP0 �P is normal in NHD .P / with ˆ.P0/D 1. By the previous
paragraph, m2.P0/ > 2, and so m2.P0/D 3 or 4. If m2.P0/D 4 then by 7.11, 7.12,
and as NHD .P0/ acts on no 4-subgroup of P0, AutHD .P0/ D CGL.P0/.z/. Thus
P DO2.NHD .P0// by 8.2(b), and P �ŠE64, so thatƒ.P /2 .D/ is of type 17, and
we obtain a contradiction from our treatment of this case. Therefore m2.P0/D 3.
Hence by 7.8, P0 is BD-conjugate to E or E 0, and in the latter case EE 0 Š E16
is Sylow in CHD .E

0/. In the latter case a P -invariant Sylow 2-subgroup P1 of
CHD .P0/ satisfies ŒP; P1� � P0 � CP .P1/; so P1 � P by 2.2, and we obtain a
contradiction from our treatment of the case m2.P0/D 4. Thus P0 DEg for some
g 2 BD . Let S1 D S1\D. Then ŒSg1 ; P �� S

g
1 \P ENHD .P /; so Sg1 � P by

2.2. Hence S1 D S
g
1 by 4.9(c), and so P0 DE. Similarly CSD .E/� P , and then

(3) holds by 8.2(b).
We have reduced to the case where Z is the largest elementary abelian 2-sub-

group of P normal in NHD .P /. It follows that Q is of symplectic type and hence
(cf. [Asc86, 23.9]) QDQ0�Z.Q/ with Q0 extraspecial and Z.Q/ cyclic of order
2 or 4. Further we may choose Q0 with U �Q0. As Inn.Q0/D CAut.Q0/.Q

�
0/,

P DQ0CP .Q0/.
As ŒE; P �� ŒE; S��U �P , E acts on P , and similarly E acts on Q0. Thus

ŒE; CP .Q0/� � CU .Q0/ D Z and if E does not centralize P � then E does not
centralize Q�. Then as E acts on Q0, E induces a transvection on the orthogonal
space Q�0 with center U �. This is impossible as U � is a singular point in Q�0 . Thus
E centralizes P �, so that E � P by 2.2, and hence E� �Z.P �/; so replacing Q
by QhENHD .P /i, we may assume E �Q.
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Finally let ‚ 2 ƒ.V / be of type 17 such that each member of ƒF is a sum
of points in ‚, and let R0 D O2.NH .‚//. Thus Q centralizes ‚, Q � R0, and
we view R�0 as the core of the permutation module for NH .‚/=R0 Š S7 on ‚.
Thus we identify f � 2Q� with the points of ‚ inverted by f . Observe ƒF.E/D

fl0; l1; l2; l3g, where l0DCV .E/ is a point. As Z.Q/ is cyclic, for each e 2E�Z
there is f 2Q with Œe; f �D z, and hence jf �\ e�j is odd. It follows that for at
least two i 2 f1; 2; 3g, the eigenspaces of f on li are 1-dimensional. Hence ƒ is
of type 152 or 17, cases we have already handled. This completes the proof of (a).

Set X D CH .P /. Since Z D ZP by (a), we conclude from 8.3(a) that if
X � P then X D CH .P /, so that (b) holds. Thus to prove (b), it suffices to show
X � P . If P D CSD .E/ then A� P , and then X � P since CH .A/D A. On the
other hand, if P satisfies (a)(1) then X � CH .ƒF/. If ƒ is of type 17 then P has
index at most 2 in O2.NH .ƒF// and X DZ. If ƒ is of type 152 then P D P0hti
where P0 D O2.NHD .ƒ

F/ and where t inverts every element of CH .P0/. Thus
X � P in all cases, establishing (b).

Let Q 2B.P /, R1 our candidate for ˇ.P / in (c), R2 DNR1.Q/, and Q2 D
NQ.R1/. Then Q2 acts on R2. Observe that P 2 FcH and ZP D Z by (a) and
(b), so P 2 Fc by 8.3(a). Thus the same holds for any overgroup Q0 of P in S ; so
Q0 2 Fc and NG.Q0/�H by 8.3(a). In particular Q2 and NQ.R2/ are contained
in H .

We claim thatNQ.R2/ acts on R1, so thatQ2DNQ.R2/. In case (a)(1), from
the treatment of that case above, each of R1 and P , and hence also R2 has ƒ as
its set of weight spaces, so Q2 acts on O2.NH .ƒ//DR1. Similarly in case (a)(2),
each of R1 and P , and hence also R2 has the same set of 1-dimensional weight
spaces, so again Q2 acts on R3 DO2.NH .ƒ//, and hence also on R1 DR3hti as
t 2 P acts on Q2. Finally in case (3), Q2 acts on T2 by 4.9(c), so that Q2 acts on
S1R2 DR1. This completes the proof of the claim.

Next from the structure ofNH .R1/ andNHD .P /,NHD .P / acts on no nontriv-
ial 2-subgroup of NH .R1/=R1; so Q2 �R1, and hence also Q2 �R2. Therefore
as Q is finite, QDQ2 �R1, completing the proof of the lemma. �

LEMMA 10.8. Let D D G0 and H�0 D H0=Z. Write R.H0/ for the set of
P0 � S such that Z � P and P � is the radical of some proper parabolic of
H�0 Š Sp6.2/ containing S�0 .

(1) If P 2 Drc and ND.P /�H then P 2R.H0/.

(2) R.H0/� Drc.

(3) B�0 D CH�0 .a
�/, where a� is the involution of type a2 in Z.S�0 /. For each

P 2R.H0/ with O2.B0/� P , ND.P /�K0.

(4) ND.P /�H0 and P 2 Frc
S 0

.H 0/ for each P 2R.H0/ with O2.B0/— P .
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(5) NH0.A/
� is the maximal parabolic isomorphic to L3.2/=E64.

(6) NH0.E/
� is the minimal parabolic not contained in B�0 .

Proof. Assume the hypothesis of (1). Then by 10.1, P contains each 2-element
inCH0.P /, andO2.NH0.P /=PCH0.P //D1. Hence asH�0 ŠSp6.2/, P 2R.H0/

by the Borel-Tits Theorem. Thus (1) holds.
Next U is the unique normal 4-subgroup of S0, so that U � is generated by the

unique involution in Z.S�0 / lifting to an involution of H0. As H0 is the covering
group of Sp6.2/ and B0 DNH0.U /, it follows that the first statement in (3) holds.
By 10.3, O2.B0/ is weakly closed in S0 with respect to D and so the remaining
statement in (3) follows.

Next, by 7.10, AutD.A/ŠL4.2/ and soNH0.A/=AŠL3.2/. This implies (5).
Also NH0.A/

� contains two minimal parabolics: NB0.A/
� and Y �0 , where Y0 D

NH0.A/\ND.E/DNH0.E/. Thus (6) holds.
Let P 2 R.H0/ with O2.B0/ — P . Then NH0.P /

� contains the minimal
parabolic Y �0 ; so NH0.P / is Y0, NH0.A/, or the preimage of the third maximal
parabolic of H�0 , isomorphic to S6=E32. In the first two cases Z DZP from the
action of ND.A/ on A, and in the third case P ŠZ4�Q28 and again ZDZP . Thus
ND.P /�ND.Z/. As S0 �ND.P / and S0 2 Syl2.D/, P contains each element
in CD.P / by 5.8 and so P 2 Dc by 8.2(a). Then ND.P / � H0 by 8.3(a). Also
S0 D S 0 acts on P and as CS0.P / � P , P 2 FcS 0

.H 0/. Similarly ND.P / �
H 0 and P D O2.ND.P //, so that P 2 FrS 0

.H 0/ which completes the proof
of (4). Then (2) follows from (3) and (4). �

PROPOSITION 10.9. Let P 2 Drc. Then

(a) There is no nontrivial ND.P /-invariant subgroup of CG.P / of odd order.

(b) P 2 Fc .

(c) One of the following holds.

(1) P 2 AD ,
(2) P D CSD .E/, or
(3) P 2 Drc

Y for some Y 2 fH;Kg, and NG.P /� Y .

Conversely, every subgroup P of SD which satisfies one of the conditions in (c) is
in Drc.

Proof. Suppose first that jZP j D 2. Then ND.P / � H by 8.3(a), so that
P 2 Drc

H by 10.1. Assume that ND.P / — B . Then 10.7(b) and 10.8(4) say that
CG.P /�P , so that (a) and (b) hold and P 2FcH . Then (3)(c) follows from 8.3(a).

Suppose next that either jZP j D 2 and ND.P / � B , or jZP j D 4. In the
latter case, ZP D U and ND.P / �K by 10.4 and 8.3(b); certainly ND.P / �K
in the former case. Thus in any event, ND.P /�K, so that P 2Drc

K by 10.1. Then
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CK.P / � P by 10.2(a), and P 2 FcK by 10.2(e). Then as U � P , CH .P / �
CH .U /�K; so CH .P /� CK.P /� P , and hence P 2FcH . Now it follows from
parts (a) and (b) of 8.3 that CG.P /� P and (a)-(c) hold.

If jZP j D 8 then P DCSD .E/ by 9.5. Then A�P , and so P 2Fc by 8.3(d).
Also, it follows from 7.13 that (a) holds, and we have (a) through (c).

If jZP j> 8 then P 2 AD by 9.5. Then 8.3(d) yields (b), and 7.10 yields (a).
Thus, we are reduced to establishing the final statement in the theorem.

If P 2 AD or P D CSD .E/ then P 2 Drc, and ND.P / — H [K, by 7.10
and 7.13. Finally assume P 2Drc

Y for some Y 2 fH;Kg with NG.P /� Y . Then
10.2, 10.7, and 10.8 yield ZP 2 fZ;U g and P 2 FcY , so that P 2 Fc by 8.2(a),
and P 2 Drc by 10.1. �

PROPOSITION 10.10. Let P 2 Drc, let B.P / be the set of finite ND.P /-in-
variant 2-subgroups of G, and set ˇ.P / D hB.P /i. Then ˇ.P / � S , and one of
the following holds.

(1) P 2 AD and ˇ.P /D P .

(2) P D CSD .E/ and ˇ.P /D CS .E/.

(3) There exists Y 2 fH;Kg such that P 2 Drc
Y , ND.P / � Y , ˇ.P / 2 FS .Y /

rc,
and NG.ˇ.P //� Y .

Proof. Set N D ND.P /, let R be a finite N -invariant 2-subgroup of G con-
taining P , and set R0 DNR.P /.

If P 2 AD then N D NG.P / by 7.10; so R0 � O2.N /D P , and (1) holds.
Suppose that P D CSD .E/. Define Ri by Ri D NR.Ri�1/ for i � 1, and set
Mi DNG.Ri /. Set M DNG.CS .E//. By 7.13, CM .E/DX �O2.M/, where X
is a free normal subgroup ofM , M=CM .E/ŠGL.3; 2/, andM D .X�CS .E//N .
As R0 is N -invariant, we get R0 � CS .E/, and R0 D Tkhw0i for some k � 2. By
4.9(a) and 7.13, NG.Ri /�M . Then a straightforward induction argument yields
Ri � CS .E/ for all i , and thus ˇ.P /� CS .E/. Since CS .E/ is the union of finite
N -invariant subgroups, we conclude that ˇ.P /D CS .E/, and (2) holds.

By 10.9(c) we are reduced to the case where there exists Y 2 fH;Kg with
P 2Drc

Y andNG.P /�Y . Suppose further that ˇ.P /�S , and setM DNG.ˇ.P //.
As P � ˇ.P /, and since P 2Fc by 10.9(b), we conclude ˇ.P / 2Fc and Zˇ.P / �
ZP . If N �H and N —K then 10.7 yields ZP DZ, and so Zˇ.P /DZ, and then
M �H by 8.3(a). On the other hand, suppose that N �K. Then U is the unique
4-group in K which centralizes P=Z, by 10.2(f). Since we are assuming that
ˇ.P /� S , it follows that also U is the unique 4-group in ˇ.P / which centralizes
ˇ.P /=Z, and hence U is the unique 4-group in ˇ.P / which is normal in M . Then
8.3 says M is contained in H or K, and since NH .U /�K we get M �K. Thus,
M � Y .
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We now show that ˇ.P / � S . If N � H and N — K, this follows from
10.7(c) and 10.8(4). Suppose N �K, and set R1 DR\K. Then R0 �R1 � S by
10.2(e). Also, 10.2(e) says that P 2 FcK , and hence R1 2 FcK . As U is the unique
normal 4-subgroup of R1, we have NR.R1/ � NR.U /. Since ZR1 � ZP � U ,
it follows from 8.3 that NR.R1/ is contained in H or K, and since NH .U / �K
we get NR.R1/ � K. Then R D R1, and so R � S for each R 2 B.P /. That is,
ˇ.P /� S .

In order to complete the proof of (3), it remains to show that ˇ.P / 2 FrY . Let
Q be the preimage in M of O2.AutM .ˇ.P ///. As M � Y we have �.ˇ.P // D
O.CG.ˇ.P /// D 1, by 8.4 and 10.9(a). Thus Q is a 2-group, Q 2 B.P /, and
QD ˇ.P / 2 Fr as required. �

11. Theorem B and embeddings

We begin the section with a refinement of Theorem 5.8.

THEOREM 11.1. Let xG0 be the group Co3, identify S0 with a Sylow 2-sub-
group of xG0 as in Theorem 5.8, and set xF0 D FS0. xG0/. Let �WG0! xG0 be the
canonical homomorphism �Wg 7! Ng induced by the inclusion maps of H0 and K0
into xG0, and let NG0 be the 2-local finite group .S0; xF0; NLc0/ associated with xG0 as
in Proposition 2.7. Then there is an isomorphism (in the sense of 2.10)

.˛; ˇ/WG0! NG0;

in which ˛WF0! NF0 is the identity map on objects and, on morphisms, ˛W cg 7! c Ng ;
and where ˇWLrc

0 !
NLrc
0 is the identity map on objects, and

ˇP;QWMorL0.P;Q/!Mor NL0.P;Q/

is given by �0.P /g 7! Ng for P and Q in L0 and g 2NG0.P;Q/.

Proof. Recall from the discussion following 8.4 that there is a surjection
�WG0 ! xG0, where � may be regarded as the “identity map” on H0 [K0, and
ker.�A/ D ker.�/jM . As ker.�A/ D ker.�/jM � ker.�/, 8.7 yields X0 � ker.�/.
Thus �0.P / � ker.�/ for any P 2 Fc0. Then since O.C xG0.P // D 1, the lemma
follows from 5.8 and the last paragraph of 2.13. �

We may now establish Theorem B. Part (1) of Theorem B follows from the
construction of G0 in 5.8, and part (3) follows from 10.1. Part (2a) holds since H0
and K0 are finite while the nontrivial elements of X are torsion-free. Thus it only
remains to verify part (2b) of Theorem B.

As we just saw during the proof of 11.1, there is a surjective homomorphism
�WG0 ! xG0 D Co3 induced by the inclusion maps of H0 and K0 into xG0. Set
M0 WDN xG0.A/, and denote by zC the colimit of the subgroup amalgam defined by
the inclusion maps among the intersections of the members of M WD fH0; K0;M0g.
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Then there is a surjective homomorphism ˇW zC ! xG0 and a surjection ıWG0! zC
with ıˇD �. Set M DNG.A/. As seen in the proof of 7.5, M �G0 and �AWM !
M0 is the restriction of � to M . Thus ker.ı/D hker.�A/G0i, and then part (2b) of
Theorem B follows from 8.7.

For any i > 0, set mi D 2i�1, �i D  
mi
0 , Gi D G�i , Si D S \ Gi , and

Fi D FSi .Gi /. Write ƒ for the poset N, under the usual total ordering. There is
then a directed system of embeddings of fusion systems

FD .�i;j WFi ! Fj /i�j2ƒ;

where �i;j is an inclusion map, and F0 D FS0.G0/ is the fusion system of Co3.
Let �i WFi ! F be the inclusion, and observe that �j ı �i;j D �i for i � j . For

i; j 2ƒ with i � j and P 2Frc
i , write Bi .P / for the set of finite NGi .P /-invariant

2-subgroups of G, and set ˇi .P /D hBi .P /i and ˇi;j .P /D ˇi .P /\Gj .

LEMMA 11.2. Let i; j 2ƒ with i � j , and let P 2 Frc
i . Then

(a) ˇi .P / 2 Frc,

(b) ˇi;j .P / 2 Frc
j and

(c) ˇi;i .P /D P .

Proof. Set D DGi , DD Fi , N DND.P /, and ˇ D ˇi . Also set QD ˇ.P /,
zD D Gj , zD D Fj , zP D ˇi;j .P / D Q \ zD, and zN D N zD.

zP /. Since P 2 Fc

by 10.9(b), it follows from 8.2(a) that zP 2 zDc and that Q 2 Fc . If P 2 AD or
P D CSD .P / then QD P or CS .E/ by 10.10. Then 10.5 says Q 2 Frc, zP D P
or CSj .E/, and zP 2 zDrc. That is, the lemma holds in these two cases.

By 10.9 we may assume that ND.P / � Y for some Y 2 fH;Kg, and that
P 2 Drc

Y . Then (a) is given by 10.9 and 10.10. In order to complete the proof of
(b), it remains to show that zP 2Frj . Let R be the pre-image in Y of O2.Aut zN . zP //.

As in the final lines of the proof of 10.10, we find that �j . zP / D 1; hence R is a
2-group, and since R is N -invariant we get R �Q. Then RD zP and zP 2 Frj as
required.

Finally suppose i D j . Here P � zP andNGi .P /�NGi . zP /, and since P 2Fri
we get Aut zP .P /�Op.AutGi .P //D Inn.P /. Then zP DPC zP .P /DP as P 2Fci ,
and (c) holds. �

LEMMA 11.3. Let � , �0, and �i D ��i be the signalizer functors on F, F0,
and Fi , respectively, given by 8.8. Let i; j 2ƒ with i � j , and let P 2 Frc

i . Then

�i .P /D �.ˇi .P //\Gi D �j .ˇi;j .P //\Gi :

Proof. Recall that by definition,

�.P /DO.CG.P //CX.P / and �i .P /DO.CGi .P //CX\Gi .P /:
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But O.CG.P // D O.CGi .P // D 1 by 10.9(a), so that �i .P / D �.P / \Gi . If
P 2 AGi then ˇi .P /D ˇi;j .P /D P , and the lemma follows from the preceding
observation. If P D CSi .E/ then ˇ.P / D CS .E/ and ˇi;j .P / D CSj .P / by
10.10, and the lemma then follows from 7.13(d). If P 2FSi .Y \Gi /

rc for some
Y 2 fH;Kg then also ˇ.P / 2 FS .Y /

rc by 10.10, and �i .P /D �.ˇ.P //D 1. The
lemma holds trivially in this case, and there are no more cases to consider, by 10.9.

�

LEMMA 11.4. Frc D fˇi .P / j P 2 Frc
i ; i � 0g.

Proof. Let B D fˇi .P /WP 2 Frc
i ; i � 0g. Then B � Frc by 11.2(a). Let

zP 2Frc. If zP 2AG then zP �Gi for some i , and zP D ˇi . zP /. If zP DCS .E/ then
zP D ˇ0.CS0.E// by 10.10. Suppose that zP 2 FS .H/

rc, such that NG. zP / �H
and NG. zP /—K. The possibilities for NG. zP / are listed in 10.7(a), and we shall
deal with them case by case.

In case (1) and (2) of 10.7(a), NG. zP /DNH .ƒ/ for some ƒ 2ƒ.V; �/, with
� D 17 or 15; 2. Let zQD�2.O2.NH .ƒ///. Then zQ is finite; so zQ�Gi for some
i > 0. Further ƒDƒ. zQ/ is the set of weight spaces of zQ on V , and as zQ �Gi ,
ƒD ‚F, where ‚ is the set of weight spaces for zQ on Vi D VF� . If � D 17, let
P D zQD zP , while if � D 15; 2, let P DO2.NHi .‚//hti, where t is as in 10.7(a).
Then P 2 Frc

i and zP D ˇi . zP / by 10.7(c).
It remains to consider case (3), where zP D O2.NH .E//. We take P D

O2.NH\G1.E//, obtaining ˇ1.P /D zP ; again from 10.7(c).
By 10.9(c) we may now assume that NG.P /�K, so that zP 2 FS .K/

rc. By
10.2 we have zP \B0D zP1 zP2 zP3, where zPk D zP \Lk is either a quaternion group
or a Sylow 2-subgroup of Lk . Since K is locally finite, and since 10.2 shows that
NG. zP /= zP is finite, we may choose i sufficiently large so that P WD zP \Gi has
the following properties:

(1) For all k for which zPk 2 Syl2.Lk/ we have jP \Lkj � 16, and for all other
k we have P \Lk D zPk .

(2) NG. zP /DNK. zP /DNGi .P / zP .

Set N DNK\Gi .P / and zN DNK. zP /. It follows from (1) and (2), and from the
final statement in 10.2, that P 2 FSi .K \Gi /

rc and that N � zN . As N � zN ,
zP � ˇi .P /, so that it remains to show ˇi .P /� zP .

Let P � R 2 B.P / and set R0 D R \ K. Then R � S by 10.2(e). As
zN DNGi .P /

zP , hR0; zP i is an zN -invariant 2-group, so since zP 2Fr we conclude
that R0 � zP . By 10.9(b), P 2Fc , so R0 2Fc . By 10.2(f), U is the unique normal
fours group in R0, and since ZR0 � ZP it follows from 8.3 that NG.R0/ � K.
Then R0 DR, and the proof is complete. �



964 MICHAEL ASCHBACHER and ANDREW CHERMAK

12. Limits, and Theorem C

Our aim in this section is to introduce limits of directed systems of p-local
groups, and to obtain Theorem C as an application. See for example [Jac80, �2.5]
for a discussion of directed systems and their limits. Theorem D will then be
obtained as a corollary to [LO02, Th. 4.5].

Let .ƒ;�/ be a directed set. For � 2ƒ, write ƒ.�/ for f� 2ƒ j � � �g. A
subset � of ƒ is closed if ƒ.�/�� for all � 2�. In particular, each of the sets
ƒ.�/ is closed.

Recall the notion of “pre-local group” from 2.4. Fix a prime p, and assume
that for each � 2ƒ we are given a pre-local group G� D .S�;F�;L�/, where each
S� is a p-group. We write E� for Obj.L�/, and given subgroups P and Q of S�
we write Hom�.P;Q/ for HomF�.P;Q/, and Mor�.P;Q/ for MorL�.P;Q/ if P
and Q are in E�. Assume that for all pairs .�; �/ with �� � in ƒ, we are given
an embedding

.��;�; ˇ�;�/WG� �! G�;

of pre-local groups (cf. 2.10). We may write simply ˇ�;� for the pair .��;�; ˇ�;�/.
We assume further that

GD .ˇ�;�WG� �! G�/���2ƒ

is a directed system of pre-local groups. That is, we have ˇ�;� ıˇ�;�D ˇ�;� when-
ever �� �� � in ƒ, and each ˇ�;� is the “identity morphism” on G�, consisting
of a pair of identity functors.

Let S WD S1 be the limit of the ƒ-directed system of p-groups

.��;�WS� �! S�/���:

By [Jac80, 2.8], the limit exists and is a group, and there are monomorphisms
��WS�! S , compatible with the monomorphisms ��;�. We may then view all of
these monomorphisms as ordinary inclusion maps, in order to obtain the following
result:

LEMMA 12.1. S D
S
�2ƒ S�, and S is a p-group.

Let P and Q be subgroups of S . For any � 2 Inj.P;Q/ and any � 2ƒ, define
�� to be the restriction of � to P \S�, and set

ƒ� D f� 2ƒ j �� 2 Hom�.P \S�;Q\S�/g:

Define Hom1.P;Q/ to be the set of all � 2 Inj.P;Q/ such that ƒ� contains a
nonempty closed subset of ƒ. As ƒ is a directed set, each pair of elements of
ƒ has an upper bound, and it follows that the composition of � 2 Hom1.P;Q/
with  2 Hom1.Q;R/ is in Hom1.P;R/. Thus we may form the category F1,
whose objects are the subgroups of S , and whose morphisms are given by the sets
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Hom1.P;Q/. Moreover, if P and Q are subgroups of S� and � 2 Hom�.P;Q/,
then � 2 Hom1.P;Q/. This natural inclusion of sets may be denoted

��WHom�.P;Q/! Hom1.P;Q/:

Allowing P and Q to vary over the set of all subgroups of S�, �� is then an em-
bedding of fusion systems (cf. 2.9). We record this in the following lemma, whose
proof is straightforward and left to the reader.

LEMMA 12.2. F1 is a fusion system on S and ��WF�!F1 is an embedding
of fusion systems.

Recall that E� is the set of objects of the linking system L�. For P 2 E� there
is then a subgroup ˇ�.P / of S defined by

ˇ�.P /D
[

�2ƒ.�/

ˇ�;�.P /:

Note that for any � 2ƒ.�/, we have ˇ�.P /D ˇ�.ˇ�;�.P //. Set

E1 D fˇ�.P / j � 2ƒ;P 2 E�g:

Definition 12.3. Let C be a category and � D .C�; c�;�W� � �/ a directed
system in C. A family †D .�WC�! C W� 2ƒ/ of morphisms in C is said to be
compatible with � if for all �� � in ƒ, � D � ı c�;�.

Now specialize to the case where C is the category of sets. A compatible
family † is said to be nearly injective on � if

C D
[
�2ƒ

�.C�/;

and for each � 2 ƒ, whenever a; b 2 C� with �.a/ D �.b/, then there exists
� 2 ƒ.�/ with ˇ�;�.a/ D ˇ�;�.b/. For example if �WC� ! C is injective for
each � 2ƒ, then † is nearly injective.

Now take � D �.G/ to be .E�; ˇ�;�W� � �/, and observe � is a directed
system in the category of sets, if we regard ˇ�;� as the function from E� to E�
defined by ˇ�;�WP !ˇ�;�.P /. We say that � is nearly injective if †.�/ is nearly
injective on �.G/, where †.�/D .ˇ�WE�!Ob.L1/W� 2ƒ/. Similarly define
G to be nearly injective if �.G/ is nearly injective.

LEMMA 12.4. Assume †D .�WE�! C W� 2ƒ/ is nearly injective on �.G/
and � D .ı�WE�!DW� 2ƒ/ is a family of functions compatible with �.G/.

(1) Suppose �; � 2ƒ, P 2 E�, and Q 2 E� such that ˇ�.P /D c D ˇ�.Q/. Then
there exists � 2ƒ.�/\ƒ.�/ such that RD ˇ�;�.P /D ˇ�;�.Q/. Moreover
ˇ�.R/D c.
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(2) ıWC ! D is a well-defined function, where ı.c/ D ı�.P / for � 2 ƒ and
P 2 E� such that �.P /D c.

(3) If � is also nearly injective on �.G/ then ı is a bijection.

Proof. As ƒ is directed there is � 2 ƒ.�/\ƒ.�/. Set P 0 D ˇ�;�.P / and
Q0 D ˇ�;�.Q/. Then

ˇ�.P
0/D ˇ�.P /D OP D ˇ�.Q/D ˇ�.Q

0/:

As † is nearly injective, there exists �� � with ˇ�;�.P 0/DRD ˇ�;�.Q0/. Then
ˇ�;�.P / D ˇ�;�.ˇ�;�.P // D R, and similarly ˇ�;�.Q/ D R. Since ˇ�.R/ D
ˇ�.ˇ�;�.P //D ˇ�.P /D c, (1) holds.

To see that ı is well defined, suppose that ı�.P /D ı�.Q/ for some � and some
Q2E� . Choose � as in (1). Then ı�.P /D ı�.ˇ�;�.P //D ı�.ˇ�;�.Q//D ı�.Q/
and so  is well defined, establishing (2).

Assume the hypothesis of (3). Then by (2) applied to � , the map ˛W �.P / 7!
ı�.P / is a well-defined function from D to C , and visibly ˛ is an inverse for ı; so
(3) holds. �

We now assume that G is nearly injective, and define a category L1 whose
set of objects is E1, and which will be shown to be the direct limit of the directed
system .ˇ�;�WL� �! L�/��� of categories.

Let yP ; yQ2E1. Then there exist �2ƒ, and P;Q2E�, such that yP Dˇ�.P /
and yQ D ˇ�.Q/. In the following discussion, leading up to 12.5, we take �, P ,
and Q to be fixed. Define Mor1. yP ; yQ/ to be the set of equivalence classes Œf � of
mappings

f W�f �!
[
�2�f

Mor�.ˇ�;�.P /; ˇ�;�.Q//

where

(i) �f is a nonempty closed subset of ƒ.�/,

(ii) f .�/ 2Mor�.ˇ�;�.P /; ˇ�;�.Q// for all � 2�f ,

(iii) ˇ�;�.f .�//D f .�/ whenever �� �,

and where two such mappings f and f 0 are defined to be equivalent if they agree
on a nonempty closed set. There is then a well-defined composition

Mor1. yQ; yR/�Mor1. yP ; yQ/ �!Mor1. yP ; yR/

for any yR 2 E1. Namely, one may assume � chosen so that also yRD ˇ�.R/ for
some R 2 E�. Then, for any Œg� 2 Mor1.ˇ�.Q/; ˇ�.R//, define Œg� � Œf � to be
the equivalence class of the mapping g � f , where .g � f /.�/D g.�/f .�/. This
defines the category L1. Notice, using 12.4 and increasing � if necessary, that
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these definitions are independent of the choice of P , Q, and R. Thus L1 is well
defined.

For any  2Mor�.P;Q/, there is an element Œf � of Mor1. yP ; yQ/, defined
by f .�/ D ˇ�;�. / for any � 2 ƒ.�/. The map ˇ�WE� ! E1 extends to a
functor ˇ�WL� �! L1, where ˇ� is defined on morphisms by ˇ�. /D Œf �.

LEMMA 12.5. .ˇ�WL� �!L1/�2ƒ is the direct limit of the nearly injective
directed system LD .ˇ�;�WL� �! L�/��� of categories.

Proof. Let .�WL�! C/�2ƒ be a family of functors compatible with the
directed system L of categories. By 12.4.2, we can define a function  WE1 !
Obj.C/ by . yP /D �.P / for OP 2 E1, where P 2 E� and yP D ˇ�.P /.

A similar argument allows us to define  on morphisms: Let Œf �2Mor1.yP; yQ/
and pick a representative f of Œf �. We may choose � so that yP D ˇ�.P / and
yQD ˇ�.Q/ for some P;Q 2 E�, and so that � 2�f . Setting  D f .�/, we have
 2Mor�.P;Q/ and ˇ�. /D Œf �. We now “define” .Œf �/ to be �. /. As in
the preceding paragraph, if �. /D �.�/ for some � and some L�-morphism �,
we may replace  and � by their images under the maps ˇ�;� and ˇ�;�, and reduce
to the case where � D �. Then ˇ�. / D ˇ�.�/ D Œf �, whence f .�/ D  D �,
and  is well defined on morphisms.

It is now straightforward to check that  is a functor, and  is then visibly the
unique functor such that � D  ıˇ� for all � 2ƒ. �

There is a functor �1WL1 ! F1, defined as follows. As a map from
Obj.L1/ to Obj.F1/ we take �1 to induce the identity map on E1. As a map
of morphisms, define �1.Œf �/W yP ! yQ by

�1.Œf �/W x 7! ��.f .�//.x/

for any � 2 �f such that x 2 ˇ�;�.P /. The definition is independent of �, and
the verification that �1.Œf �/ is in Hom1. yP ; yQ/ is straightforward, as is the veri-
fication of functoriality.

Next, define a family of monomorphisms of groups

ı D ı1 D .ı yP W
yP ! AutL1. yP // yP2E1

;

as follows. Let P 2 E� with yP D ˇ�.P /, and let x 2 yP . Then x 2 ˇ�;�.P /D P�
for some � 2 ƒ.�/. Define ı yP .x/ to be Œgx�, where gx.�/ D ˇ�;�.ı�.x// for
� 2 ƒ.�/. The verification that each ı yP .x/ is in AutL1. yP // and that ı yP is a
monomorphism reduces to the corresponding facts concerning the family ı� of
monomorphisms associated with G�.

Henceforth L1 will denote the triple consisting of the category L1, the func-
tor �1, and the collection ı1 of monomorphisms.
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LEMMA 12.6. Let yP ; yQ 2 E1.

(a) yP acts semiregularly on Mor1. yP ; yQ/ via xW Œf � 7! ı yP .x
�1/ � Œf �.

(b) The orbits of Z. yP / on Mor1. yP ; yQ/ are the fibers of �1.

Proof. As ı OP W
OP ! AutL1. OP / is a monomorphism, the action in (1) defines

an injective representation of OP on Mor1. OP ; OQ/. Let Œf � 2Mor1. yP ; yQ/, � 2ƒ,
and P;Q 2E� with yP D ˇ�.P / and yQD ˇ�.Q/. Let x 2 yP , and suppose that Œf �
is a fixed point for ı yP .x/. Without loss of generality, we may assume that x 2 P�
and that � 2�f . Set  D f .�/ and � D ��. /. Then ı�;P .x/ � D , and hence
by conditions (B) and (C) in 2.4, � D �.ı�;P .x/ � /D cx�. Thus as � is injective,
it follows that x 2Z.P /, and then 2.4(A) yields x D 1. Thus (a) holds.

We next prove (b). Let Œf �; Œh� 2Mor1. yP ; yQ/. We may assume that ƒ.�/D
�f D�h. Then �1Œf �D �1Œh� if and only if for each � 2ƒ.�/, ��.f .�//D
��.h.�//. As G� is a pre-local group, this holds if and only if there exists z� 2
Z.P�/ with h.�/D ı�;P�.z�/ �f .�/. (cf. 2.4(A)). But

ı�;P�.z�/ �f .�/D h.�/D ˇ�;�.h.�//D ˇ�;�.ı�;P�.z�/ �f .�//

D ˇ�;�.ı�;P�.z�// �ˇ�;�.f .�//D ı�;P�.z�/ �f .�/:

By (1) applied in G� this holds if and only if z� D z�. Therefore we have shown
that �1Œf �D �1Œh� if and only if for all �2ƒ.�/, z�D z� 2Z.P�/ and h.�/D
ı�;P� � f .�/. Since yP is the union of the groups P� for � 2ƒ.�/, we conclude
that �1Œf �D �1Œh� if and only if z� D z 2 Z. OP / and Œh�D ı OP .z/ � Œf �D Œf �z.
Thus (b) holds. �

The fusion system F1 is in general “too large”, in various ways. In particular,
�1 need not map morphism sets in L1 onto homomorphism sets in F1, and as
a result these homomorphism sets are in general too large for F1 to serve as the
fusion system in the limit of the direct system G.

The smallest fusion system on S1 containing �1.Mor1.bP ; bQ// for all bP
and bQ in E1 will be denoted Im.�1/. If each G� is a p-local finite group then
Im.�1/ will contain ��.F�/ for all �, as a consequence of Alperin’s Fusion The-
orem. More generally, set

FG D hIm.�1/; ��.F�/ j � 2ƒi:

Set
G1 D .S1;F1;L1/ and GG D .S1;FG;L1/:

Let � 2 Hom�.P;Q/, with P and Q in E�. By 2.4(A) there is  2Mor�.P;Q/
such that ��. /D �. Let �� �� � in ƒ. Condition (MG2) in 2.10 yields:

(12.7) ��.ˇ�;�. // jP�D ��.ˇ�;�.ˇ�;�. /// jP�D ��.ˇ�;�. //:
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Definition 12.8. We say that the element � of ƒ.�/ is �-good provided that,
for all � 2 ƒ.�/, ��.ˇ�;�. // is the unique member of Hom�.P� ;Q�/ which
restricts to ��.ˇ�;�. // on P�. Denote by E� the set of all �-good elements
of ƒ� .

LEMMA 12.9. (a) Either of the following conditions implies that G1 is a
pre-local group.

(1) �1WMor1. yP ; yQ/! Hom1. yP ; yQ/ is a surjection, for all yP ; yQ 2 E1.
(2) For every �, and for every F�-morphism �, E� is nonempty.

(b) If G1 is a pre-local group, then so is GG.

Proof. In order to show that G1 is a pre-local group, we must verify conditions
(A) through (C) in 2.4, and that E1 �Fc1. Under the hypothesis of (1), Condition
(A) is an immediate consequence of 12.6; we leave the remaining verifications in
(1) to the reader.

Assume next that G1 is a pre-local group. Then

�1.Mor1. OP ; OQ//D Hom1. OP ; OQ/;

and so HomFG.
yP ; yQ/D �1.Mor1. yP ; yQ//. The argument of the preceding para-

graph then yields (b).
Finally assume the hypothesis of (2). Let � 2Hom1. yP ; yQ/. We may assume

�2ƒ� , and thus the restriction �� of � toP� is in Hom�.P�;Q�/ for all�2ƒ.�/.
Further, we may assume that � 2 E�� . Choose  2 ��1

�
.��/, and consider the

map f D f� on ƒ.�/ defined before 12.5, such that Œf � 2 Hom1. OP ; OQ/ and
ˇ�. / D Œf �. Thus f .�/ D ˇ�;�. /, and so ��.f .�// D ��.ˇ�;�. // on P�.
Thus as � 2 E�� , ��.f .�//D ��, so that �1.Œf �/D �. Thus we have verified
the hypothesis of (1). Therefore by (1), G1 is a pre-local group, and the proof of
(a) is complete. �

LEMMA 12.10. Assume that G is nearly injective.

(a) If GG is a pre-local group then ˇ� D .��; ˇ�/WG� ! GG is an embedding
of pre-local groups, and .ˇ�WG� ! GG/�2ƒ is the direct limit of G in the
category of pre-local groups and embeddings.

(b) Assume that there exists a pre-local group zGD . zS; zF; zL/, and a family † of
embeddings

� D .˛�; �/WG�! zG; � 2ƒ;

of pre-local groups compatible with G. Assume that the following conditions
hold for all �.

(i) zS D
S
�2ƒ ˛�.S�/.

(ii) For each F�-morphism �, E� ¤¿.
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(iii) For all P 2 E�,

�.P /D
[
���

˛�.ˇ�;�.P //:

(iv) For each zP ; zQ2 zE and z� 2HomzF. zP ; zQ/, there exist �2ƒ and P;Q2E�
such that �.P /D zP , �.Q/D zQ, and such that for each � 2ƒ.�/,

z�j˛�.ˇ�;�P/ 2 ˛�.Hom�.ˇ�;�.P /; ˇ�;�.Q///:

(v) zF has the Alperin generation property with respect to zE (cf. 2.14).
(vi) † is nearly injective on �.G/.

Then GG is a pre-local group, GG is the limit of G, and zGŠ GG as pre-local
groups.

Proof. Assume that GG is a pre-local group. We check that ˇ� satisfies the
conditions (MG1) through (MG3) in 2.10. We have (MG1) since, for any P 2 E�,

P D ˇ�;�.P /�
[

�2ƒ.�/

ˇ�;�.P /D ˇ�.P /:

Let  2 Mor�.P;Q/. Then �1.ˇ�. //jP D ��. / by definition of �1, and
thus (MG2) holds. Condition (MG3) is the assertion that ˇ� ı ı�;P D ıˇ�.P / on
P , which holds by definition of ıP . Thus ˇ� is a morphism of pre-local groups.
Recall that ˇ�. /D Œf �, where f .�/D ˇ�;�. / for all � 2ƒ.�/. In particular
by (ii), ˇ� is injective as a mapping from Mor�.P;Q/ into L1-morphisms, and
ˇ� is therefore an embedding.

Let zG satisfy the initial hypothesis in (b), but for the moment do not assume
the conditions (i) through (vi) in (b). Define the functor  WL1! zL as in the proof
of 12.5. That is, . yP /D �.P / and .Œf �/D �.f .�//, where ˇ�.P /D yP and
ˇ�.f .�//D Œf �. Then  is the unique functor satisfying �D  ıˇ� for all � 2ƒ.

Let � 2 ƒ. Define ˛0WS1 ! zS by ˛0jS� D ˛�. As each ˛� is injective,
˛0 is an injective homomorphism. For any pair of subgroups P;Q of S , and any
� 2 HomFG.P;Q/, define ˛.�/ to be the homomorphism

˛�10 ı� ı˛0WP˛0 �!Q˛0:

Then ˛ is a morphism of fusion systems if and only if the following condition holds
for all P;Q � S1:

.�/ ˛.�/ 2 HomzF.˛0.P /; ˛0.Q//.

If P;Q � S� and � 2 Hom�.P;Q/, then .�/ holds as ˛� is a morphism of fusion
systems. If P;Q 2E1, then �D�1.ˇ�.f // for some f 2Mor�.P�;Q�/. Write
�� for the restriction of � to P�. Then on P�:

z�..ˇ�.f ///D z�.�.f //D ˛�.��.f //D ˛�.��//D ˛� ı�� ı˛
�1
� ;
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and as this holds for all � in a closed subset ofƒ, we conclude that z�..ˇ�.f ///D
˛ ı� ı˛�1 D ˛.�/, and we again obtain .�/. Since, by definition, FG is generated
by such morphisms, .�/ holds in general, and ˛ is a morphism of fusion systems.
We leave it to the reader to check that .˛; / satisfies the axioms in Definition 2.10,
and hence is a morphism of pre-local groups, yielding (a).

Now assume all of the hypotheses of (b). Then by (b)(ii) and 12.9, GG is pre-
local group. Then (a) says that GG is the limit of G, and supplies the morphism
 D .˛; /WG1!zG described above. By (b)(i) and the definition of ˛, ˛0WS1! zS
is an isomorphism of groups.

The key step in the proof of (b) is to show that each of the sets HomzF. zP; zQ/,
with zP and zQ in zE, lies in the image of ˛. So let zP ; zQ 2 zE and z� 2 HomzF. zP; zQ/.
Let �, P , and Q be as in (iv). By (iii),

.��/ ˛.ˇ�.P //D
[
���

˛�.ˇ�;�.P //D �.P /D zP ;

so that, in particular, zE� ˛.E1/.
For � 2 ƒ.�/ write P� for ˇ�;�.P / and Q� for ˇ�;�.Q/, and set z�� D

z�j˛�.P�/. Then (iv) says that for all such � there exists �� 2 Hom�.P�;Q�/
with ˛�.��/ D z��. By (ii), we may assume � is chosen so that � 2 E�� . Let
 � 2 �

�1
�
.��/ and set z D �. �/, z� D z�. z /, and  � D ˇ�;�. �/. Then

arguing as in the proof of (a), we get z� D ˛�.��. �// on ˛�.P�/, so that, in
particular, z�D z�� on ˛�.P /. But also z��D ��. �/D ��. �/ on P . As � 2E��
we conclude that ��. �/ is the unique extension of �� to P�. Then

z�� D ˛�.��/D ˛�.��. �//D z�

on ˛�.P�/. That is z�D z�. Thus z�D z�..ˇ�. ///D ˛.�1.ˇ�. // on ˛.ˇ�.P�/
D zP , so indeed z� is in ˛.HomG.P�;Q�//.

Next ˛.HomG.P;Q// � HomzF.˛.P /; ˛.Q// as ˛ is a morphism of fusion
systems; further, this map is injective by definition. In particular ˛.Im.�1//� zF
and of course ˛.��.F�//� zF, so that by definition of FG,

˛.FG/D˛.hIm.�1/; ��.F�/ j � 2ƒi/Dh˛.Im.�1//; ˛.��.F�// j � 2ƒi � zF:

By the preceding paragraph, HomzF.˛.P /; ˛.Q// � ˛.HomG.P;Q//, and so
AzF.
zP /� ˛.FG/ (cf. 2.14). Thus by (v), ˛.FG/D zF. Therefore ˛ induces a bijec-

tion HomG.P;Q/! HomzF. zP ; zQ/ for all zP and zQ in zF, and hence ˛WFG!
zF

is an isomorphism of fusion systems.
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By (a),  WGG !
zG is an embedding, and � D � ı ˇ�;� for � � �. In

order to show that  is an isomorphism, it remains to show that  defines a bijec-
tion E1! zE, and defines bijections on morphism sets. The first condition is a
consequence of (vi) and 12.4(c), so it remains to verify the second condition.

Let z 2 MorzL. zP ; zQ/ be an zL-morphism. Set z� D z�. z /. As ˛ is an iso-
morphism of fusion systems we may choose yP ; yQ, and � 2 HomG. yP ; yQ/ so that
˛.�/D z�. Choose  2��11 .�/. Then . / lies in the z�-fiber over z�, as  satisfies
(MG2) and ˛. yP /D zP . As zG is a pre-local group there then exists y 2Z. zP / such
that . /D zı zP .y/ � z�. Let x be the element of Z. yP / which is mapped to y�1 by
˛0. As  satisfies (MG3) we obtain .ı yP .x/ ı /D z , and thus  is surjective on
morphism sets.

Finally, let Œf �; Œh� 2 Mor1. yP ; yQ/ with .Œf �/ D .Œh�/. As ˛ is injective
on homomorphisms, it follows from (MG2) that Œf � and Œh� lie in the same �1-
fiber, and thus Œh� D ı yP .z/ � Œf � for some z 2 Z. yP /. We may choose � so that
z 2 yP \S� WD P , and also so that � 2�f \�h for suitable representatives f and
h of the given morphisms. Then z 2Z.P / and

.Œf �/D .Œh�/D �.h.�//D �.ı�;P .z/ �f .�//D �.ı�;P .z// � �.f .�//

D zı zP .˛0.z// � .Œf �/:

As zı zP defines a free action of Z. zP / on MorzL. zP ; zQ/, we conclude that z D 1, and
that  is bijective on morphism sets. Thus  is an isomorphism of categories, and
(b) is proved. �

Theorem C is the following result:

THEOREM 12.11. Take ƒ to be the set of nonnegative integers, and for each
i 2ƒ let Gi D .Si ;Fi ;Li / and GD .S;F;L/ be the 2-local groups defined prior
to 11.2. Let � and �i be the signalizer functors in 11.3, and let ˇi;j WFrc

i ! Frc
j and

ˇi WF
rc
i ! Frc be the mappings defined prior to 11.2. Then the following hold:

(a) For each i; j 2ƒ, with i � j , the mappings ˇi;j and ˇi extend to embeddings

ˇi;j D .�i;j ; ˇi;j /WGi ! Gj and ˇi D .�i ; ˇi /WGi ! G

of 2-local groups, and ǰ ıˇi;j D ˇi .

(b) G WD .ˇi;j WGi �! Gj /i�j2ƒ is a directed system of embeddings of 2-local
finite groups.

(c) The direct limit GG of G, in the category of pre-local groups and embeddings,
admits the structure of a 2-local group isomorphic to G.

Proof. Write Lrc
i and Lrc for the restriction of the centric linking systems Li

and L to radical centric linking systems on Frc
i and Frc, respectively.
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First, 11.2 and 11.3 show that the mappings ˇi and ˇi;j are well defined
and satisfy conditions (10) and (20) in Proposition 2.12, relative to the appropriate
signalizer functors. Then 2.11 and 2.12 yield embeddings of 2-local groups, as in
(a), in which ˇi and ˇi;j act on Lrc

i -morphisms via

ˇi W �i .P /g 7! �.ˇ.P //g and ˇi;j W �i .P /g 7! �. ǰ .P //g

for P 2Frc
i and g2NGi .P; S/. In order to check that ǰıˇi;jDˇi in the category of

2-local groups, it suffices to check the equality on objects. This follows from 10.10
in cases (1) and (2) of 10.9(c), and from 10.7 in case (3) when Y DH . Suppose
Y DK. By construction, NGi .P /�NGj .ˇi;j .P //, so that . ǰ ıˇi;j /.P /�ˇi .P /.
We check from 10.2 that no proper NGi .P /-invariant subgroup of ˇi .P / is in Frc,
completing the proof of (a).

The equality ǰ ıˇi;j D ˇi implies that

. ǰ;k ıˇi;j /.P /D ǰ;k.ˇi;j .P //D ǰ .ˇi;j .P //\Gk D ˇi .P /\Gk D ˇi;k.P /;

so that ǰ;k ıˇi;j D ˇi;k . Also ˇi;i D 1 by 11.12(c). Hence (b) holds.
We next check that the hypotheses of 12.10(b) are satisfied with G, Lrc

i , ˇi ,
i 2ƒ, in the roles of zG, zE, �, � 2ƒ, respectively.

First, S is the union of the groups Si for i 2ƒ, so that condition (i) of 12.10(b)
holds. Second, for any � D cg 2 HomF.P;Q/ we have g 2Gi for some i , so that
�jSj 2 HomFj .P \Sj ;Q\Sj / for all j � i , and hence condition (iv) holds.

Let P 2Frc
i , and for j � i set Pj D ˇi;j .Pi /. We have Pj D ˇi .Pi /\Gj for

such j , and S is the union of its subgroups Sj , and so condition (iii) of 12.10(b)
holds.

We claim that there exists j � i such that CG.Pj / centralizes Pk for all
k� j . Suppose first that jZPi j � 4. Then from the proof of 10.9, CG.Pi /�Pi . But
Z.ˇi .Pi // is finite, and PkDˇi .P /\Gk for k� i and so, from (ii), we may choose
j � i with Z.Pj /DZ.ˇi .Pi //. Thus CG.Pj /DZ.Pk/ for k � j . On the other
hand if jZPi j> 4 then Pi 2 AG or Pi D CSi .E/ by 10.5. In the first of these two
cases, Pi DPk for all k� i , while in the second CG.Pi /DEC�.A/.T2/DCG.Pk/
for any k � i , by 7.10 and 7.13. Thus the claim is established.

We now verify condition (ii) of 12.10(b). Let � 2 HomFj .Pj ;Qj / and sup-
pose that for some k � j , we have �1; �2 2HomFk .Pk;Qk/ extending �. Then �r

is the restriction of cgr to Pk for some gr 2G, r D 1; 2. Then g1g�12 2 CG.Pj /�
CG.Pk/ by the claim, so �1 D �2. This yields (ii).

Condition (v) of 12.10(b) follows from 9.10. Finally each ˇi is injective on ob-
jects, since ˇi .P /\Si D P by 11.12(c). Thus G is nearly injective, and condition
(vi) of 12.10(b) holds. Therefore we conclude from 12.10(b) that .S;F;Lrc/Š GG

as pre-local groups, via the isomorphism  D .˛; / constructed in the proof of
12.5 and 12.10. In particular ˛.E/D Frc, so as ˛WFG! F is an isomorphism of
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fusion systems, ED Frc
G, and FG is saturated as F is saturated. Transferring the

centric linking system L on F to FG via ˛, we may regard GG as a 2-local group,
and the isomorphism  of pre-local groups is then also an isomorphism of 2-local
groups. This completes the proof of (c). �

Theorem D is essentially the following result. We thank Ran Levi and Bob
Oliver for guiding us through a proof.

THEOREM 12.12. The 2-completed nerve jLGj
^

2 is homotopy equivalent to
B D I.4/.

Proof. Let Lccm be the full subcategory of Lcm whose objects are centric in Fcn
for all n�m. Then Frc

m � Obj.Lccm / for all m, by 10.9(b). Set m D ˇm;mC1, and
consider the diagram of categories and functors

.�/

Lrc
m

m
����! Lrc

mC1

�m

??y ??y�mC1
Lccm

�ccm
����! LccmC1;

where � is in every instance an inclusion functor. We claim that this diagram com-
mutes up to a natural homomorphism �W �cc ı �m! �mC1 ı m. Since �cc ı �m is
the identity map on objects, what this means is that for all P;Q 2 Lrc

m, there are
LmC1-morphisms �P and �Q such that, for each  2Morm.P;Q/, the following
diagram commutes.

.��/

P
�cc.�m. //
�������! Q

�P

??y ??y�Q
m.P /

�mC1.. //
��������! m.Q/:

Indeed, for any R 2 Lrc
m define �R to be �mC1.R/. Recall that  D �m.P /g

for some g 2NGm.P;Q/, by the definition of Lm. The functor �cc sends  to  
regarded as an element of MormC1.P;Q/. That is, we have �cc. /D �mC1.P /g,
and hence (in our mix of left- and right-hand notation, as set forth in �1)

�cc.�m. // ��Q D �mC1.P /g�mC1.Q/D �mC1.P /g;

while also

�P � �mC1.m. //D �mC1.P /�mC1.m.P //g D �mC1.P /g:

Thus � is a natural transformation as desired, and the claim is proved.
Recall that the nerve of a small category C is a simplicial set (or equiva-

lently, the topological realization of a simplicial set) whose k-simplices are chains
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.˛0; : : : ; ˛k/ of composable morphisms in C. If f WC! D is a functor of small
categories, then there is a continuous map jf jW jCj ! jDj of spaces, given by
.˛0; : : : ; ˛k/ 7! .f .˛0/; : : : ; f .˛k//.

Set Xm D jLrc
mj, Ym D jL

cc
m j, and consider the following diagram of spaces

and continuous maps.

.���/

X1
j1j
����! X2

j2j
����! X3

j3j
����! : : :

f1

??y ??yf2 ??yf3
Y1

f cc1
����! Y2

f cc2
����! Y3

f cc3
����! : : : :

Here, we are taking fm WD j�mj and f ccm WD j�
cc
m j. Each f ccm may be viewed as

inclusion, since �ccm induces an inclusion of Morm.P;Q/ into MormC1.P;Q/ for
any P;Q 2 Lccm . Similarly, since each m is an embedding, m induces an injec-
tive mapping Morm.P;Q/!MormC1.P;Q/ for P;Q 2 Lrc

m, and hence jmj is
injective. There is then no harm in viewing each jmj as an ordinary inclusion
of topological spaces (and in adjusting the vertical arrows by suitable homeomor-
phisms, to compensate for this). The direct limit X of the top row in .���/ is then
the union of the spaces Xn. No such adjustment is necessary for the bottom row,
whose union we denote by Y .

It is the content of [LO02, Prop. 4.3] that the 2-completion .Y /
^

2 of Y is
B D I.4/, up to homotopy equivalence. That this is so requires some explana-
tion, since the union taken in [LO02] is that of a somewhat different collection
of spaces than fYmgm>0. Namely, Levi and Oliver choose a sequence .ni /i>0 of
positive integers, so that each ni divides niC1 and so that every positive integer
divides some ni . They then show that B D I.4/ is the 2-completion of the union
of the spaces jLSol.q

ni /ccj, for any odd prime power q. We may take q D p, and
may take the sequence .ni /i>0 so that 2i is the highest power of 2 dividing ni .
Then FSol.p

ni / is a fusion system over the Sylow 2-subgroup Si of Spin7.p
ni /.

As the 2-shares of Spin7.p
ni / and Spin7.p

2i / are the same, Spin7.p
ni / has the

same Sylow 2-subgroup as Spin7.p
2i /. By a result in [COS06] the fusion sys-

tems FSol.p
ni / and FSol.p

2i / are isomorphic, and their corresponding linking
systems are then isomorphic [LO02, Lemma 3.2]. Thus, the union of the nerves
jLSol.p

ni /ccj is homeomorphic to Y , and .Y /
^

2 may be identified with B D I.4/.
Since it is obvious from the definitions that the nerve of an increasing union

of categories is the union of the nerves, it follows from 12.5 that the space X
is homeomorphic to jLGj. Thus, it remains only to show that X is homotopy
equivalent to Y .

The existence of a natural transformation � as in .��/ implies that each of
the squares in .���/ commutes up to homotopy (cf. [Dwy01, Prop. 5.2]. For
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any m, the inclusion of the simplicial set Xm in XmC1 is a CW-pair, and so the
homotopy extension property for CW-pairs [Hat02, Prop. 0.16] implies that f2
may be replaced by a map f 02 which is homotopic to f2 and which extends f1.
We continue up the chain, replacing fmC1 by a map f 0mC1 which is homotopic to
fmC1 and extends f 0m. Now define f WX ! Y to be the union of the maps f 0m.

Observe that every finite subcomplex of the CW-complex X (or Y ) is con-
tained in some Xi (or Yi ). Since every compact subset of a CW-complex is
contained in a finite subcomplex, every compact subset of X or Y is contained
in some Xi or Yi . From this, it follows directly from the definition of homotopy
groups that for each n, �n.X/ is the direct limit of the �n.Xi /, and similarly for
�n.Y /. That each fm (and hence also each f 0m) is a homotopy equivalence is given
by [BCGC05, Th. B], and thus �n.f / is an isomorphism for all n. Then f is a
homotopy equivalence by Whitehead’s Theorem, and the proof is complete. �

We close with an example.

Example 12.13. Let p be a prime and let G D G.F / be a Chevalley group
over the algebraic closure F of Fp of Lie rank l . Let † be the set of positive
integers, partially ordered by n � m if n divides m. Set I D f1; : : : ; lg and let
.PJ j ¿ ¤ J � I / be the set of proper parabolic subgroups of G over a fixed
Borel subgroup B D PI . For J � I let SJ be the unipotent radical of PJ , and set
S D SI . Let  1W a 7! ap be the Frobenius map on F , and regard  1 also as a field
automorphism of G. For k � 1 set  k D  k1 , and let Gk D G k be the group of
fixed points of  k on G. Set Sk D S \Gk , SJ;k D SJ \Gk , and let

Gk D GSk .Gk/D .Sk;Fk;Lk/

be the p-local finite group associated with Gk .
By Borel-Tits, Frc

k
D .SJ;k W J � I /, and �k.P / WD Op.CGk .P // D 1 for

all P 2 Frc
k

. When k divides j , we have the inclusion map ˇk;j WGk ! Gj with
ˇk;j .SJ;k/D SJ;j . It follows from 2.11 that G WD .Gk; ˇk;j W k � j / is a directed
system of p-local finite groups. Further one can check that the hypotheses of
12.10(b) are satisfied by G, so, as in the proof of Theorem 12.11, the limit GG

of G is isomorphic to G.G/D .FS .G/;F
rc
S .G/;L/, where Frc

S .G/ has object set
.SJ W J /, Mor.SJ ; SK/D Hom.SJ ; SK/DNG.SJ ; SK/, and � and ı are identity
maps.
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