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Abstract

We prove potential modularity theorems for l-adic representations of any di-
mension. From these results we deduce the Sato-Tate conjecture for all elliptic
curves with nonintegral j -invariant defined over a totally real field.

Introduction

In this paper we generalise the methods of [Tay02] and [Tay06] to symplectic
Galois representations of dimension greater than 2. Recall that these papers showed
that some quite general two-dimensional Galois representations of Gal .xQ=Q/ be-
came modular after restriction to some Galois totally real field. This has proved a
surprisingly powerful result.

An example of the sort of theorem we prove in this paper is the following (see
Theorem 3.2 below).

THEOREM A. Suppose that n is an even integer and that q is a prime. Sup-
pose that l ¤ q is a prime sufficiently large compared to n, and that

r W Gal .xQ=Q/ �! GL2.Zl/

is a continuous representation which is unramified almost everywhere and which
has odd determinant (i.e. det r.c/D�1). Suppose that r also enjoys the following
properties.

1. r is surjective.
2. r is crystalline at l with Hodge-Tate numbers 0 and 1.
3. r jss

Gal .xQq=Qq/
is unramified and the ratio of the eigenvalues of Frobenius is q.

Then there is a Galois totally real number field over which Symm n�1r becomes
automorphic.
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The key points are that no assumption is made on whether Symm n�1r mod l
is automorphic, but we can only conclude automorphy over some number field, not
necessarily over Q.

The papers [Tay02] and [Tay06] relied on the study of certain moduli spaces
of Hilbert-Blumenthal abelian varieties. The main innovation in this paper is to
replace these modular families by the family

Yt W XnC10 CXnC11 C � � �CXnC1n D .nC 1/tX0X1 : : : Xn

of projective hypersurfaces over the affine line. More precisely,

H 0 D ker
�
�nC1nC1

Q
�! �nC1

�
acts on this family (by multiplication of the coordinates) and we will consider the
H 0-invariants in the cohomology in degree n� 1 of a fibre in this family. Note that
in the case nD 2 this is just a family of elliptic curves, so our theory is in a sense
a natural generalisation of the nD 2 case.

The proof of Theorem A is then intertwined with the proof of the following
theorem (see Theorem 3.3 below).

THEOREM B. Suppose that n is an even integer and that q 6 j nC 1 is a prime.
Suppose that l is a prime sufficiently large compared to n, and that

r W Gal .xQ=Q/ �!GSpn.Zl/

is a continuous representation which is unramified almost everywhere and has odd
multiplier character. Suppose that r also enjoys the following properties:

1. r is surjective.

2. r is crystalline at l with Hodge-Tate numbers 0; 1; : : : ; n� 1. Moreover, there
is an element t of the maximal unramified extension of Ql with tnC1� 1 a unit
at l , such that

Nr ŠHn�1.Yt ˝ xQl ; Fl/
H 0

as symplectic representations of the inertia group at l .

3. r jss
Gal .xQq=Qq/

is unramified and r jss
Gal .xQq=Qq/

.Frobq/ has eigenvalues of the

form ˛; ˛q; : : : ; ˛qn�1.

Then there is a Galois totally real number field over which r becomes automorphic.

As in the nD 2 case we expect these results to have important applications.
For instance, we prove the following theorems:

THEOREM C. Let E=Q be an elliptic curve with multiplicative reduction at a
prime q.



A FAMILY OF CALABI-YAU VARIETIES AND POTENTIAL AUTOMORPHY 781

1. For any odd integer m there is a finite Galois totally real field F=Q such that
SymmmH 1.E/ becomes automorphic over F . (One can choose an F that
will work simultaneously for any finite set of odd positive integers.)

2. For any positive integer m the L-function L.SymmmH 1.E/=Q; s/ has mero-
morphic continuation to the whole complex plane and satisfies the expected
functional equation. It does not vanish in Re s � 1Cm=2.

3. The numbers
.1Cp� #E.Fp//=2

p
p

are equidistributed in Œ�1; 1� with respect to the measure .2=�/
p
1� t2 dt .

(See Theorems 4.1, 4.2 and 4.3 below.)

THEOREM D. Suppose that n is an even, positive integer, and that t 2 Q�

ZŒ1=.nC 1/�. Then the L-function L.Vt ; s/ of

Hn�1.Yt � xQ;Ql/
H 0

is independent of l , has meromorphic continuation to the whole complex plane and
satisfies the expected functional equation

L.Vt ; s/D ".Vt ; s/L.Vt ; n� s/:

(See Theorem 4.4 for details.)
Other applications are surely possible. For instance, in the setting of Theo-

rem B, one can conclude that r is part of a compatible system of l 0-adic Galois
representations.

The surjectivity assumptions in Theorems A and B can be relaxed, but we
have not been able to formulate cleanly the generality in which our method works.
It derives from similar assumptions in [CHT08] and [Tay08]. The assumption that
r is crystalline with distinct Hodge-Tate numbers also derives from [CHT08] and
[Tay08]. The assumptions that the Hodge-Tate numbers are exactly 0; 1; : : : ; n� 1
and that the restriction of r mod l to inertia at l comes from some Yt both derive
from the particular family Yt we work with. The second of these assumptions
might be relaxed either by using different families or if one had improvements
to the lifting theorems in [CHT08] and [Tay08]. Griffiths transversality seems to
provide an obstruction to finding suitable families with other Hodge-Tate weights,
but this assumption might be relaxed if one had results about the possible weights
of automorphic mod l representations on unitary groups (‘the weight in Serre’s
conjecture’). The assumptions at q derive from limits to our current knowledge
about automorphic forms on unitary groups. One could expect to remove them as
the trace formula technology improves.

To generalise the results of [Tay02] and [Tay06] to higher-dimensional rep-
resentations two things were needed: generalisations of the ‘modularity of lifts’
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theorems of Wiles [Wil95] and Taylor-Wiles [TW95] from GL2 to GSpn (or some
similar group); and families of ‘motives’ with large monodromy but with hi;j � 1
for all i; j .

The first of these problems is overcome in [CHT08] and [Tay08]. When this
paper was submitted only [CHT08] was available. In that paper we had succeeded
in generalising the arguments of [TW95] to prove modularity of ‘minimal’ lifts
but had only been able to generalise the results [Wil95] conditionally under the
assumption of a generalisation of Ihara’s lemma (Lemma 3.2 of [Iha75], see Con-
jecture B in the introduction of [CHT08] for our conjectured generalisation). Thus
at that time the main results of this paper were all conditional on Conjecture A of
the introduction of [CHT08]. However, while this paper was being refereed, one of
us (R.T.) found a way to apply generalisations of the arguments of [TW95] directly
in the nonminimal case thus avoiding the level raising arguments of [Wil95] and
the appeal to Conjecture B of [CHT08]. This means that the results of this paper
also became unconditional. (We remark that modularity lifting theorems in the
minimal case do not suffice for our arguments because along the way we need
to apply these theorems to the l-adic cohomology of motives constructed using a
theorem of Moret-Bailly. This theorem only allows us to control the ramification
of this l-adic representation at a finite number of places. In particular we can not
ensure that it is a minimal lift of its mod l reduction.)

The second of the above problems is treated in this paper. We learnt of the
family Yt from the physics literature, but have since been told that it had been
extensively studied earlier by Dwork (unpublished).

In the first section of this paper we study the family Yt . Most of the results
we state seem to be well known, but, when we cannot find an easily accessible
reference, we give the proof. In the second section we recall some simple alge-
braic number theory results that we will need. The main substance of the paper is
contained in Section 3 where we prove various potential modularity theorems. In
the final section we give some example applications, including Theorems C and D.

The authors wish to thank the following institutions for their hospitality, which
have made this collaboration possible: the Centre Emile Borel, for organizing the
special semester on automorphic forms (R.T.); Cambridge University, and espe-
cially John Coates, for a visit in July 2003 (M.H. and R.T.); and Harvard University,
for an extended visit during the spring of 2004 (M.H.). We also thank Michael
Larsen for help with the proof of Theorem 4.4; and Ahmed Abbes, Christophe
Breuil, Johan de Jong and Takeshi Saito for helping us prove Lemma 1.15, as well
as for helping us try to prove stronger related results which at one stage we thought
would be necessary. We thank the referees for useful stylistic suggestions. Finally
we thank Nick Katz for telling us, at an early stage of our work, that Corollary 1.10
was true (an important realisation for us) and providing a reference.
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Notation. We will write �m for the group scheme of mth roots of 1. We will
use �m to denote a primitive mth root of 1. We will also denote by "l the l-adic
cyclotomic character.

c will denote complex conjugation.
If T is a variety and t a point of T , then we will write OT;t for the local

ring of T at t . We will use k.t/ to denote its residue field and O^T;t to denote its
completion.

If r is a representation, then we will write r ss for its semisimplification.
Let K be a p-adic field and v WK�!! Z its valuation. We will write OK for its

ring of integers and k.K/ or k.v/ for its residue field. We will denote by j jK the
absolute value on K defined by jajK D .#k.K//�v.a/. We will also denote by WK
the Weil group of K and by IK the inertia subgroup of WK . We will write FrobK
or Frobv for the geometric Frobenius element in WK=IK . We will write ArtK for
the Artin isomorphism ArtK WK�

�
!W ab

K normalised to send uniformisers to lifts
of FrobK . If p 6 j n, then we will write !K;n D !n for the character

IK �! k.K/�

� 7�! .� pn�1
p
$K/=

pn�1
p
$K ;

where $K is a uniformiser for K. (The definition is independent of the choice
of this uniformiser. Note that "p D !

ŒIQp WIK �

K;1 .) If l ¤ p, then we will let tK;l
denote a surjective homomorphism tK;l W IK !! Zl (which is unique up to Z�

l
-

multiples). By a Weil-Deligne representation of WK we mean a pair .r; N / where
r WWK ! GL.V / is a homomorphism with open kernel and where N 2 End .V /
satisfies r.�/Nr.�/�1 D jArt�1K � jKN . We will write .r; N /F-ss for the Frobenius
semisimplification .r ss; N / of .r; N /. We will denote by rec the local Langlands
bijection from irreducible smooth representations of GLn.K/ to n-dimensional
Frobenius semi-simple Weil-Deligne representations of WK (see [HT01]). If l ¤ p
and W is a continuous finite-dimensional l-adic representation of Gal . xF=F /, then
we write WD.W / for the associated Weil-Deligne representation of WK (see for in-
stance [TY07]). We will write Sp n.1/ for the Steinberg representation of GLn.K/.

If K is a number field (i.e. a finite extension of Q), then we will write AK for
its ring of adeles.

1. A family of hypersurfaces

Let n be an even positive integer. Consider the scheme

Y � Pn �P1

over ZŒ 1
nC1

� defined by

s.XnC10 CXnC11 C � � �CXnC1n /D .nC 1/tX0 �X1 � � � � �Xn:
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We will consider Y as a family of schemes over P1 by projection � to the second
factor. We will label points of P1 with reference to the affine piece s D 1. If
t is a point of P1, then we shall write Yt for the fibre of Y above t . Let T0 D
P1� .f1g[�nC1/=ZŒ1=.nC 1/�. The mapping Y jT0 ! T0 is smooth. The total
space Y � Y1 is regular. If �nC1 D 1, then Y� has only isolated singularities at
points where all the Xi ’s are .nC 1/th roots of unity with product ��1. These
singularities are ordinary quadratic singularities.

If � is a primitive .nC1/th root of unity, then over ZŒ1=.nC1/; �� the scheme Y
gets a natural action of the group H D �nC1nC1=�nC1 with the sub-�nC1 embedded
diagonally:

.�0; : : : ; �n/.X0 W � � � WXn/D .�0X0 W � � � W �nXn/:

We will let H0 denote the subgroup of elements .�i / 2 H with �0�1 : : : �n D 1.
Then H0 acts on every fibre Yt . If tnC1 D 1, then H0 permutes transitively the
singularities of Yt . The whole group H acts on Y0.

For N coprime to nC 1 set

VnŒN �D V ŒN �D .R
n�1��Z=NZ/H0 ;

a lisse sheaf on T0�Spec ZŒ1=N.nC1/�. (Although the action ofH0 is only defined
over a cyclotomic extension, the H0 invariants make sense over ZŒ1=N.nC 1/�.)
If l 6 j nC 1 is prime set

Vn;l D Vl D
�

lim
 m

V Œlm�
�
˝Zl Ql :

Similarly, define

V D .Rn�1��Z/H0

a locally constant sheaf on T0.C/ and

VDR DHn�1
DR .Y=.P1� .f1g[�nC1///

H0

a locally free coherent sheaf with a decreasing filtration F iVDR (and a connection)
over T0. The locally constant sheaf on T0.C/ corresponding to Vl is V ˝Ql . Note
that there are natural perfect alternating pairings:

V ŒN ��V ŒN � �! .Z=NZ/.1�n/

and
Vl �Vl �!Ql.1�n/

and
V �V �! Z

coming from Poincaré duality.
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The following facts seem to be well known (e.g., see [Kat90], [LSW92]). Nick
Katz has told us that many of them were known to Dwork in 1960’s, but he only
wrote up the case nD 3.

LEMMA 1.1. V ŒN �, Vl and V ˝Q are all locally free of rank n.

Proof. We need only check the fibre at 0. In the case V ˝C this is shown to
be locally free of rank n in Proposition I.7.4 of [DMOS82]. The same argument
works in the other cases. �

COROLLARY 1.2. If .N; nC 1/D 1, then V=NV is the locally constant sheaf
on T0.C/ corresponding to V ŒN �.

LEMMA 1.3. Under the action of H=H0 Š �nC1 the fibres .V ˝ C/0 and
.Vl ˝Ql

xQl/0 split up as n one-dimensional eigenspaces, one for each nontrivial
character of �nC1.

Proof. This is just Proposition I.7.4 of [DMOS82]. �
LEMMA 1.4. The monodromy of V ˝ Q around a point in � 2 �nC1 has

1-eigenspace of dimension at least n� 1.

Proof. Let t 2 T0.C/. Picard-Lefschetz theory (see [DK73]) gives an H0-orbit
� of elements of Hn�1.Yt .C/;Z/ and an exact sequence

.0/ �!Hn�1.Y� .C/;Z/ �!Hn�1.Yt .C/;Z/ �! Z�:

If x 2Hn�1.Yt .C/;Z/ maps to .xı/ 2 Z�, then the monodromy operator sends x
to x˙

P
ı2� xıı. Taking H0 invariants we get an exact sequence

.0/ �!Hn�1.Y� .C/;Z/
H0 �! zV�

d
�! Z

and the monodromy operator sends x 2 V� to x˙ d.x/
P
ı2� ı. �

We remark that this argument works equally well for Vl or V Œl� over T0 �
ZŒ1=l.nC 1/�.

We also want to analyse the monodromy at infinity. For simplicity we will
argue analytically as in [Mor92] and [LSW92], which in turn is based on Griffith’s
method [Gri69] for calculating the cohomology of a hypersurface. (Indeed the
argument below is sketched in [LSW92].) One of us (N.I.S-B.) has found an H0-
equivariant blow up of Y which is semistable at 1, and it seems possible that
combining this with the Rapoport-Zink spectral sequence would give an algebraic
argument, which might give more precise information.

Write
Qt D .X

nC1
0 C � � �CXnC1n /=.nC 1/� tX0X1 : : : Xn; and

�D

nX
iD0

.�1/iXidX0 ^ � � � ^ dXi�1 ^ dXiC1 ^ � � � ^ dXn:
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Then for i D 1; : : : ; nC 1

!0i D .i � 1/Š.X0X1 : : : Xn/
i�1�=Qit

is a meromorphic differential on Pn.C/ with a pole of order i along Yt . Moreover,
d!0i=dt D !

0
iC1. Also set !i D t i!0i so that !i is H -invariant and

td!i=dt D i!i C!iC1:

Suppose that t 62 f1g[�nC1.C/. We claim that for i D 1; : : : ; n we have

!0i 2Hi .Yt /�Hi�1.Yt /

in the notation of Section 5 of [Gri69]. If this were not the case, then Proposi-
tion 4.6 of [Gri69] would tell us that .X0X1 : : : Xn/i�1 lies in the ideal generated
by the Xnj � tX0 : : : Xj�1XjC1 : : : Xn. Hence .X0X1 : : : Xn/i would lie in the
ideal generated by the XnC1j � tX0X1 : : : Xn. Symmetrising under the action ofH0
and using the fact that CŒX0; : : : ; Xn�

H0 D CŒZ; Y0; : : : ; Yn�=.Z
nC1�Y0 : : : Yn/

(with Yj D XnC1j and Z D X0 : : : Xn), we would have that Zi lies in the ideal
generated by the Yj � tZ and ZnC1 � Y0 : : : Yn in CŒZ; Y0; : : : ; Yn�. Taking the
degree i homogeneous part and using the fact that i < nC 1 we would have that
Zi lies in the ideal generated by the Yj � tZ in CŒZ; Y0; : : : ; Yn�. Setting Z D 1
and Y0 D Y1 D � � � D Yn D t would then give a contradiction, proving the claim.

Integration against !0i gives a linear form Hn.P
n.C/�Yt .C/;Z/! C. Com-

posing this with the map Hn�1.Yt .C/;Z/!Hn.P
n.C/�Yt .C/;Z/ shows that !0i

gives a class R.!0i / in Hn�1.Yt .C/;C/
H0 . According to Theorem 8.3 of [Gri69]

R.!0i / 2 .F
n�iVDR/t ˝C� .F nC1�iVDR/t ˝C:

Thus the R.!0i / for i D 1; : : : ; n are a basis of Hn�1.Yt .C/;C/
H0 . Moreover, we

deduce the following lemma (due to Deligne, see Proposition I.7.6 of [DMOS82]).

LEMMA 1.5. For j D 0; : : : ; n� 1 we have

dimF jVDR=F
jC1VDR D 1:

Moreover, if � is a primitive .nC 1/th root of unity, then H acts on

F jVDR;0=F
jC1VDR;0˝ZŒ1=.nC 1/; ��

by
.�0; : : : ; �n/ 7�! .�0 : : : �n/

n�j :

Now assume in addition that t ¤ 0. Then the class Œ!nC1� is in the span of
the classes Œ!1�; : : : ; Œ!n�. In Section 4 (particularly equation (4.5)) of [Gri69] a
method is described for calculating its coefficients. To carry it out we will need
certain integers Ai;j defined recursively for j > i � 0 by
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� A0;j D 1 for all j > 0, and

� AiC1;j D Ai;iC1C 2Ai;iC2C � � �C .j � i � 1/Ai;j�1.

Note that these also satisfy Ai;iC1 D 1 for all i and

Ai;j D Ai;j�1C .j � i/Ai�1;j�1

for j � 1 > i > 0. We claim that for all nonnegative integers i and n we have

.i C 1/n D

min.n;i/X
jD0

An�j;nC1 i Š=.i � j /Š:

This can be proved by induction on n. The case nD 0 is clear. For general i we
see thatPmin.n;i/

jD0 An�j;nC1i Š=.i � j /Š

D
Pmin.n;i/
jD1 An�j;ni Š=.i � j /ŠC

Pmin.n�1;i/
jD0 .j C 1/An�j�1;ni Š=.i � j /Š

D
Pmin.n�1;i�1/
jD0 An�j�1;ni Š.i � j C j C 1/=.i � j /ŠCAn�i�1;n.i C 1/iŠ

D .i C 1/
Pmin.i;n�1/
jD0 An�1�j;ni Š=.i � j /Š

D .i C 1/n;

where we set An�i�1;n D 0 if i � n. Thus we see that, as polynomials in T

T n D

nX
jD0

Aj;nC1.T � 1/.T � 2/ : : : .T C j �n/:

Write

A.z/D

0BBBBBBBBBBB@

1 0 0 : : : 0 0
An;nC1
z�1

1 2 0 : : : 0 0
An�1;nC1
z�1

0 1 3 : : : 0 0
An�2;nC1
z�1

: : :

n� 2 0
A3;nC1
z�1

1 n� 1
A2;nC1
z�1

0 1 nC
A1;nC1
z�1

1CCCCCCCCCCCA
:

Then expanding along the last column we see that A.0/ has characteristic polyno-
mial

nC1X
jD0

Aj;nC1.T � 1/.T � 2/ : : : .T C j �n/D T
n:

It also has rank n� 1 and so has minimal polynomial T n. Consider the differential
equation

zdv.z/=dz D�A.z/v.z/=.nC 1/:
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In a neighbourhood of zero its solutions are of the form

S.z/ exp.�A.0/ log.z/=.nC 1//v0;

where S.z/ is a single matrix valued function in a neighbourhood of 0 and v0 is a
constant vector. (See Section 1 of [Mor92].)

We will prove by induction on i that

.1� tnC1/Œ!nC1�� t
nC1.A1;nC1Œ!n�CA2;nC1Œ!n�1�C � � �CAi;nC1Œ!nC1�i �/

D .n� 1� i/ŠtnC1

�

"� nX
jDiC1

tj�i .j � i/Ai;j .X0 : : : Xj /
j�i�1.XjC1 : : : Xn/

nCj�i
�
�=Qn�it

#
:

To prove the case i D 0 combine formula (4.5) of [Gri69] with the formula

.1� tnC1/.X0 : : : Xn/
n

D

nX
jD0

.Xnj �X0 : : : Xj�1XjC1 : : : Xn/.X0 : : : Xj�1/
j�1X

j
j .XjC1 : : : Xn/

nCj :

To prove the case i > 0 combine the case i � 1 and formula (4.5) of [Gri69] with
the formula

nX
jDi

tjC1�i .j C 1� i/Ai�1;j .X0 : : : Xj /
j�i .XjC1 : : : Xn/

nC1Cj�i

� Ai;nC1t
nC1�i .X0 : : : Xn/

n�i

D

nX
kDiC1

.Xk �X0 : : : Xk�1XkC1 : : : Xn/t
k�iAi;k

� .X0 : : : Xk�1/
k�i�1Xk�ik .XkC1 : : : Xn/

nCk�i :

The special case i D n then tells us that

Œ!nC1�D
1

t�.nC1/� 1
.A1;nC1Œ!n�C � � �CAn;nC1Œ!1�/:

Suppose that 
t 2 Hn�1.Yt .C/;Z/H0 maps to �t 2 Hn.Pn.C/� Yt .C/;Z/.
Then the coefficients of 
t with respect to the basis of Hn�1.Yt .C/;C/H0 dual to
Œ!1�; : : : ; Œ!n� is given by

v.
t /D

0B@
R
�t
!1
:::R

�t
!n

1CA :
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As explained in [Mor92], if 
t is a locally constant section of the local system of
the Hn�1.Yt .C/;Z/H0 , then the �t can be taken locally constant and so

tdv.
t /=dt D A.t
�.nC1//v.
t /:

Let z0 be close to zero in P1 and let P be a loop in a small neighbourhood of 0
based at z0 and going m times around 0. Let zP be a lifting of this path under the
map P1! P1 under which t 7! t�.nC1/ starting at t0 and ending at ht0 for some
h 2H . Let 
 2Hn�1.Yt0.C/;Z/

H0 . If we carry 
 along zP in a locally constant
fashion we end up with an element zP
 2Hn�1.Yht0.C/;Z/

H0 , where

v. zP
/D S.t
�.nC1/
0 / exp.˙2�imA.0/=.nC 1//S.t�.nC1/0 /�1v.
/;

and so

h�1v. zP
/D S.t
�.nC1/
0 / exp.˙2�imA.0/=.nC 1//S.t�.nC1/0 /�1v.
/:

In particular, we see that the monodromy around infinity on Hn�1.Yt0.C/;Z/
H0 is

generated by exp.2�iA.0// with respect to a suitable basis. This matrix is unipo-
tent with minimal polynomial .T � 1/n.

Let � denote a primitive .nC 1/th root of 1. The map t 7! tnC1 gives a finite
Galois étale cover

.P1�f0;1g/�Spec C �! .P1�f0;1g/�Spec C

with Galois group H=H0. Thus the sheaf V descends to a locally constant sheaf
zV on P1.C/�f0; 1;1g. Note that there is a natural perfect alternating pairing:

zV � zV �! Z:

(A referee suggests we remark that there is a family zY over the target P1�f0;1g

given by

sXnC10 C t .XnC11 C � � �CXnC1n /D .nC 1/tX0X1 : : : Xn;

which pulls back to our family Y . The sheaf zV is the corresponding part of the
cohomology of zY .)

LEMMA 1.6. The monodromy of zV around1 is unipotent with minimal poly-
nomial .T � 1/n. The monodromy around 1 is unipotent and the 1 eigenspace
has dimension exactly n� 1. The monodromy around 0 has eigenvalues the set of
nontrivial .nC 1/th roots of 1 (each with multiplicity one).

Proof. By the calculation of the last but one paragraph the monodromy of
V ˝C around1 can be represented by exp.˙2�iA.0/=.nC 1// with respect to
some basis. The action of the monodromy at 0 follows from Lemma 1.3. Because
P1! P1 over ZŒ1=.nC 1/� given by t 7! tnC1 is étale above 1 it follows from
Lemma 1.4 that the monodromy at 1 has 1 eigenspace of dimension at least n� 1.
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Because it preserves a perfect alternating pairing we see that it must have determi-
nant 1. Thus 1 is its only eigenvalue. Finally it can not be the identity as else the
monodromy at1 would be conjugate to the monodromy at 0 or its inverse. �

COROLLARY 1.7. The monodromy of V around1 is unipotent with minimal
polynomial .T �1/n. The monodromy around any element of �nC1.C/ is unipotent
with 1 eigenspace of dimension exactly n� 1.

COROLLARY 1.8. Identify C..1=T //D O^
P1�C;1

ŒT �. Also identify

�1.Spec C..1=T ///Š lim
 N

Gal .C..1=T 1=N //=C..1=T ///Š
Y
p

Zp:

Then the action of �1.Spec C..1=T /// on Vl jSpec C..1=T // (resp. V Œl�jSpec C..1=T //)
is via x 7! ux for a unipotent matrix u. In the case of Vl , then u has minimal
polynomial .X � 1/n. There exists a constant D.n/ depending only on n such that
for l > D.n/, this is also true in the case of V Œl�.

Proof. A unipotent matrix u 2 GLn.Z/ with minimal polynomial .X � 1/n re-
duces modulo l for all but finitely many primes l to an unipotent matrix in GLn.Fl/
with minimal polynomial .X � 1/n. (If not for some 0 < i < n we would have
.u� 1/i � 0 mod l for infinitely many l .) �

The last sentence of the corollary will not be needed in the sequel, however it
was needed in an earlier version of this paper and seems to have a little independent
interest, so we have decided to leave it in. It seems likely that N.I.S.-B.’s resolution
of Y would allow one to make explicit the finite set of l for which this last assertion
fails.

We would like to thank Nick Katz for telling us that the following lemma is
true and providing a reference to [Kat90]. Because of the difficulty of comparing
the notation of [Kat90] with ours we have chosen to give a direct proof. If z 2
P1.C/ � f0; 1;1g, then let Sp. zVz ˝ C/ denote the group of automorphisms of
zVz˝C which preserve the alternating form.

LEMMA 1.9. If z 2 P1.C/�f0; 1;1g, the image of �1.P1.C/�f0; 1;1g; z/
in Sp. zVz˝C/ is Zariski dense.

Proof. This follows from the previous lemma and the results of [BH89]. More
precisely, let H denote the image of �1.P1.C/�f0; 1;1g; z/ in Sp. zVz˝C/ and
let Hr denote the normal subgroup generated by monodromy at 1. It follows from
Proposition 3.3 of [BH89] that H is irreducible and from Theorem 5.8 of [BH89]
that H is also primitive. Theorem 5.3 of [BH89] tells us that Hr is irreducible and
then Theorem 5.14 of [BH89] tells us that Hr is primitive. (In the case nD 2, use
the fact that Hr is irreducible and contains a nontrivial unipotent element.) Hr is
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infinite. Then it follows from Propositions 6.3 and 6.4 of [BH89] that Hr is Zariski
dense in Sp. zVz˝C/. �

If t 2 T0.C/ let Sp.Vt ˝C/ (resp. Sp.V ŒN �t /, resp. Sp.Vt /) denote the group
of automorphisms of Vt ˝C (resp. V ŒN �t , resp. Vt ) which preserve the alternating
form.

COROLLARY 1.10. If t 2 T0.C/, then the image of �1.T0.C/; t/ in Sp.Vt˝C/

is Zariski dense.

LEMMA 1.11. There is a constant C.n/ such that if N is an integer divisible
only by primes p > C.n/ and if t 2 T0.C/, then the map

�1.T0.C/; t/ �! Sp.V ŒN �t /

is surjective.

Proof. This follows on combining the previous corollary with Theorem 7.5
and Lemma 8.4 of [MVW84] or with Theorem 5.1 of [Nor87]. We remark that
Theorem 7.5 of [MVW84] relies on the classification of finite simple groups and
that [Nor87] does not pretend to give a complete proof of its Theorem 5.1. For this
reason we sketch an alternative argument which was shown to us by Nick Katz.

Let sp.Vt /� End .Vt / denote the Lie algebra of Sp.Vt /. Let W � sp.Vt /˝

ZŒ1=.n� 1/Š� denote the ZŒ1=.n� 1/Š�-module generated by the log 
 as 
 ranges
over unipotent elements of the image of �1.T0.C/; t/! Sp.Vt /. By Corollary 1.7
we see that W ¤ .0/. Because sp.Vt /˝ C is a simple Sp.Vt ˝ C/-module, we
conclude from Corollary 1.10 that it is also a simple �1.T0.C/; t/-module. Thus
W ˝CD sp.Vt /˝C, and we can find a positive integer C1.n/ divisible by .n�1/Š
such thatW ˝ZŒ1=C1.n/�D sp.Vt /˝ZŒ1=C1.n/�. It follows from Theorem 12.4.1
of [Kat88] that there is a positive integer C.n/ divisible by 6C1.n/ such that, if
p > C.n/ is a prime and if r 2 Z>0, then

�1.T0.C/; t/!! Sp.V Œpr �t /:

We will prove by induction on N that if N is only divisible by primes greater
than C.n/, then

�1.T0.C/; t/!! Sp.V ŒN �t /:

Suppose that N D prM with p 6 jM a prime and r 2 Z>0. Then we know that

�1.T0.C/; t/!! Sp.V Œpr �t /;

but by inductive hypothesis

�1.T0.C/; t/!! Sp.V ŒM�t /:

Each composition factor of Sp.V Œpr �t / is one of Z=pZ, Z=2Z and PSpn.Z=pZ/

(which is simple as p >3). Moreover, as p >3 the group Spn.Z=pZ/ is perfect and



792 MICHAEL HARRIS, NICK SHEPHERD-BARRON, and RICHARD TAYLOR

so does not admit Z=2Z as a quotient. In fact Sp.V Œpr �t / does not admit Z=2Z as
a quotient (because ker.Sp.V Œpr �t /!! Sp.V Œp�t // is a p-group and so would map
trivially to any such quotient). Similarly, each composition factor of Sp.V ŒM�t /

is one of Z=2Z, Z=qZ or PSpn.Z=qZ/ for some prime q jM . Thus any common
quotient Sp.V Œpr �t / and Sp.V ŒM�t / can have only Z=2Z as a composition factor.
As Sp.V Œpr �t / does not admit Z=2Z as a quotient we conclude that Sp.V Œpr �t /
and Sp.V ŒM�t / have no nontrivial quotient in common. It follows from Goursat’s
lemma that

�1.T0.C/; t/!! Sp.V ŒN �t /;

as desired. �

Let F be a number field and let W be a free Z=NZ-module of rank n with a
continuous action of Gal . xF=F / and a perfect alternating pairing

h ; iW WW �W �! .Z=NZ/.1�n/:

We may think of W as a lisse étale sheaf over SpecF . Consider the functor from
T0�SpecF -schemes to sets which sends X to the set of isomorphisms between the
pull back of W and the pull back of V ŒN � which sends h ; iW to the pairing we
have defined on V ŒN �. This functor is represented by a finite étale cover TW =T0�
SpecF . The previous corollary implies the next one.

COROLLARY 1.12. If N is an integer divisible only by primes p > C.n/ and
if W; h ; iW is as above, then TW .C/ is connected for any embedding F ,! C,
i.e. TW is geometrically connected.

LEMMA 1.13. Suppose that K=Ql is a finite extension and that t 2 T0.K/.
Then Vl;t is a de Rham representation of Gal . xK=K/ with Hodge-Tate numbers
f0; 1; : : : ; n� 1g. If t 2 OK and 1=.tnC1� 1/ 2 OK , then Vl;t is crystalline.

Proof. Vl;t D Hn�1.Yt � Spec xK;Ql/
H0 . The first assertion follows from

the comparison theorem and the fact that Hn�1
DR .Yt=K/

H0 has one-dimensional
graded pieces in each of the degrees 0; 1; : : : ; n� 1. The second assertion follows
as Yt=OK is smooth and projective. �

LEMMA 1.14. Suppose that l � 1 mod nC 1. Then

V Œl�0 Š 1˚ "
�1
l ˚ � � �˚ "

1�n
l

as a module for IQl .

Proof. It suffices to prove that

Vl;0 Š 1˚ "l ˚ � � �˚ "
1�n
l :

(As l > n the characters "0; : : : ; "1�n all have distinct reductions modulo l .) How-
ever because l splits in the extension of Q obtained by adjoining a primitive
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.nC 1/th root of 1, Lemma 1.3 tells us that Vl;0 is the direct sum of n characters
as a Gal .xQl=Ql/-module. These characters are crystalline and the Hodge-Tate
numbers are 0; 1; : : : ; n� 1. The results follows. �

LEMMA 1.15. Suppose q ¤ l are primes not dividing nC 1, and suppose that
K=Qq is a finite extension. Normalise the valuation vK on K to have image Z.
Suppose that a 2K has vK.a/ < 0.

1. The semisimplification of Vl;a and V Œl�a are unramified and FrobK has eigen-
values of the form ˛; ˛#k.K/; : : : ; ˛.#k.K//n�1 for some ˛ 2 f˙1g, where
k.K/ denotes the residue field of K.

2. The inertia group acts on Vl;a as exp.N tK/, where N is a nilpotent endomor-
phism of Vl;a with minimal polynomial Xn.

3. The inertia group acts on V Œl�a as exp.vK.a/NtK/, where N is a nilpotent
endomorphism of V Œl�a, and if l > D.n/, then N has minimal polynomial T n.

Proof. First we prove the second and third parts. Let W denote the Witt vec-
tors of xFq and let F denote its field of fractions. We have a commutative diagram:

�1.Spec xF ..1=T ///
�
�!

Q
p Zp

# #

�1.SpecW..1=T ///
�
�!

Q
p¤q Zp

" " vK.a/

�1.SpecFK/ !!
Q
p¤q Zp:

Here the left-hand up arrow is induced by T 7! a. The right-hand down arrow is the
natural projection and the right-hand up arrow is multiplication by vK.a/. The iso-
morphisms �1.Spec xF ..1=T ///

�
!
Q
p Zp and �1.SpecW..1=T ///

�
!
Q
p¤q Zp

result from Corollary XIII.5.3 of [Gro71]. More precisely,

�1.Spec xF ..1=T ///D lim
 N

Gal . xF ..1=T 1=N //= xF ..1=T ///

and
�1.SpecW..1=T ///D lim

 .N;q/D1
Gal .W..1=T 1=N //=W..1=T ///:

(Note that, as the fraction field ofW ŒŒ1=T ��=.1=T / has characteristic zero, the tame
assumption in Corollary XIII.5.3 is vacuous.) The final surjection �1.SpecFK/
!!

Q
p¤q Zp comes from

�1.SpecFK/!! lim
 .N;q/D1

Gal .FK.$1=N
K /=FK/;

where $K is a uniformiser in K.
Considering

W..1=T //D O^
P1;1

ŒT �;
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the sheaves Vl jSpecW..1=T // and V Œl�jSpecW..1=T // correspond to representations
of �1.SpecW..1=T ///. (Here we are using the fact that q 6 j nC 1, as Vl and V Œl�
are only defined and lisse over T0=ZŒ1=.nC 1/�.) Corollary 1.8 tells us that the
pull back of these representations to �1.Spec xF ..1=T /// Š

Q
p Zp sends 1 to a

unipotent matrix. Moreover, in the case Vl or in the case V Œl� with l > D.n/, we
know that this unipotent matrix has minimal polynomial .X � 1/n. The lemma
follows.

Now we prove the first part. It is enough to consider Vl;t . From the second
part we see that FrobK has eigenvalues ˛; ˛#k.K/; : : : ; ˛.#k.K//n�1 for some
˛ 2Q�

l
. The alternating pairing shows that

f˛; ˛#k.K/; : : : ; ˛.#k.K//n�1g D f˛�1; ˛�1#k.K/; : : : ; ˛�1.#k.K//n�1g:

Thus ˛ D˙1. �

Again, the last half of part 3 will not be needed in the sequel, however it was
needed in an earlier version of this paper and seems to have a little independent
interest, so we have decided to leave it in.

2. Some algebraic number theory

We briefly recall a theorem of Moret-Bailly [MB89] (see also [GPR95]). (Luis
Dieulefait tells us that he has also explained this slight strengthening of the result
of [MB89] in a conference in Strasbourg in July 2005.)

PROPOSITION 2.1. Let F be a number field and let S D S1
`
S2
`
S3 be

a finite set of places of F such that S2 contains no infinite place. Suppose that
T=F is a smooth, geometrically connected variety. Suppose also that for v 2 S1,
�v � T .Fv/ is a nonempty open (for the v-topology) subset; that for v 2 S2,
�v � T .F

nr
v / is a nonempty open Gal .F nr

v =Fv/-invariant subset; and that for
v 2 S3, �v � T . xFv/ is a nonempty open Gal . xFv=Fv/-invariant subset . Suppose
finally that L=F is a finite extension.

Then there is a finite Galois extension F 0=F and a point P 2 T .F 0/ such that

� F 0=F is linearly disjoint from L=F ;

� every place v of S1 splits completely in F 0 and if w is a prime of F 0 above v,
then P 2�v � T .F 0w/;

� every place v of S2 is unramified in F 0 and if w is a prime of F 0 above v, then
P 2�v \T .F

0
w/;

� and if w is a prime of F 0 above v 2 S3, then P 2�v \T .F 0w/.

Proof. We may suppose that L=F is Galois. Let L1; : : : ; Lr denote the inter-
mediate fieldsL�Li �F withLi=F Galois with simple Galois group. Combining
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Hensel’s lemma with the Weil bounds we see that T has an Fv rational point for
all but finitely many primes v of F . Thus enlarging S1 to include one sufficiently
large prime that is not split in each field Li (the prime may depend on i ), we may
suppress the first condition on F 0.

Replacing F by a finite Galois extension in which all the places of S1 split
completely, in which the primes of S2 are unramified with sufficiently large inertial
degree and in which all the primes in S3 give rise to sufficiently large completions,
we may suppose that S2[S3 D∅. (We may have to replace the field F 0 we obtain
with its normal closure over the original field F .)

Now the theorem follows from Theorem 1.3 of [MB89]. �

LEMMA 2.2. Let M be an imaginary CM field with maximal totally real sub-
field MC, S a finite set of finite places of M and T � S an infinite set of finite
places of M with cT D T . Suppose that there are continuous characters:

� �S W O
�
M;S !

xQ�,

� �C W .A
1

MC
/�! xQ�,

�  0 WM
�! xQ�,

such that

� if �C is ramified at v, then T contains some place of M above v,

�  0j.MC/� D �Cj.MC/� , and

� �S j.A
MC

/1/�\O�M;S
D �Cj.A

MC
/1/�\O�M;S

.

Then there is a continuous character  W .A1M /
� �! xQ� such that

�  is unramified outside T ,

�  jM� D  0,

�  jO�M;S
D �S ,

� and  j.A1
MC

/� D �C.

Proof. Choose U0 D
Q
v 62S U0;v �

Q
v 62S O�M;v be an open subgroup such

that U0 \ .A1MC/
� � ker�C and U0;v D O�M;v for v 62 T . Let V D

Q
v 62S Vv �Q

v 62S O�M;v be an open compact subgroup such that V \�1.M/D f1g and Vv D
O�M;v for v 62 T . Let U denote the subset of U0 consisting of elements u with
c.u/=u 2 V . Then U D

Q
v 62S Uv with Uv D O�M;v for v 62 T . Moreover, M� \

O�M;SU.A
1

MC
/� D .MC/�. (For if a lies in the intersection, then

c.a/=a 2 ker.NM=MC W O
�
M �! O�

MC
/\O�M;SV D �1.M/\O�M;SV D f1g;

so that a 2 .MC/�.)
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Define a continuous character

 W O�M;SU.A
1

MC
/� �! xQ�

to be �S on O�M;S , to be 1 on U and to be �C on .A1
MC

/�. This is easily seen
to be well defined. Extend  to M�O�M;SU.A

1

MC
/� by setting it equal to  0 on

M�. This is well defined because M�\O�M;SU.A
1

MC
/� D .MC/�. Now extend

 to .A1M /
� in any way. (This is possible as M�O�M;SU.A

1

MC
/� has finite index

in .A1M /
�.) This  satisfies the requirements of the theorem. �

3. Potential modularity

In this section we will use the notation T0, Vn;l , VnŒN �, TW and C.n/ from
Section 1 without comment. (See the first and third paragraphs of Section 1,
Lemma 1.11, the paragraph proceeding this corollary and Lemma 1.15.)

Let F denote a totally real field and n a positive integer. Let l be a rational
prime and let { W xQl

�
!C. Let S be a nonempty finite set of finite places of F and for

v 2 S the �v be an irreducible square-integrable representation of GLn.Fv/. Recall
(see Section 4.3 of [CHT08]) that by an RAESDC representation � of GLn.AF /
of weight 0 and type f�vgv2S we mean a cuspidal automorphic representation �
of GLn.AF / such that

� �_ Š �� for some character � W F �nA�F ! C� with �v.�1/ independent of
v j 1;

� the component at infinity, �1, of � has the same infinitesimal character as
the trivial representation of GLn.F1/;

� and for v 2 S the representation �v is an unramified twist of �v.

We say that � has level prime to l if for all places w j l the representation �w is
unramified.

Recall (see [TY07] and Section 4.3 of [CHT08]) that if � is an RAESDC
representation of GLn.AF / of weight 0 and type f�vgv2S (with S ¤ ∅), ,then
there is a continuous irreducible representation

rl;{.�/ W Gal . xF=F / �! GLn.xQl/

with the following properties:

1. For every prime v 6 j l of F we have

WD.rl;{.�/jGal . xFv=Fv//
F-ss
D {�1.rec.�v/˝jArt�1K j

.1�n/=2
K /:

2. rl;{.�/_D rl;{.�/"n�1rl;{.�/. (For the notation rl;{.�/ see [HT01] or [TY07].)

3. If v j l is a prime of F , then rl;{.�/jGal . xFv=Fv/ is potentially semistable, and
if �v is unramified, then it is crystalline.
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4. If v j l is a prime of F and if � W F ,! xQl lies above v, then

dimxQl gr i .rl;{.�/˝�;Fv BDR/
Gal . xFv=Fv/ D 0

unless i 2 f0; 1; : : : ; n� 1g in which case

dimxQl gr i .rl;{.�/˝�;Fv BDR/
Gal . xFv=Fv/ D 1:

The representation rl;{.�/ is conjugate to one into GLn.OxQl /. Reducing this mod-
ulo the maximal ideal and taking the semisimplification gives a semisimple contin-
uous representation

Nrl;{.�/ W Gal . xF=F / �! GLn.xFl/

which is independent of the choice of conjugate.
We will call a representation

r W Gal . xF=F / �! GLn.xQl/

(respectively,
Nr W Gal . xF=F / �! GLn.xFl//

which arises in this way for some � (resp. some � of level prime to l) and {
automorphic of weight 0 and type f�vgv2S . In the case of r , if � has level prime
to l , then we will say that r is automorphic of level prime to l .

We will call a subgroup �� GL.V=xFl/ big if the following hold:

� � has no l-power order quotient.

� H i .�; ad 0V /D .0/ for i D 0 and 1.

� For all irreducible xFl Œ��-submodules W of adV we can find h 2� and ˛ 2 xFl
with the following properties: The ˛ generalised eigenspace Vh;˛ of h on V
is one-dimensional. Let �h;˛ W V ! Vh;˛ (resp. ih;˛ W Vh;˛ ,! V ) denote the
h-equivariant projection of V to Vh;˛ (resp. h-equivariant injection of Vh;˛
into V ) (so that �h;˛ ı ih;˛ D 1). Then �h;˛ ıW ı ih;˛ ¤ .0/.

Note that this only depends on the image of � in PGL.V=xFl/.
Some examples of big subgroups are discussed in Section 2.5 of [CHT08].

Further examples are explored in [SW].
We will now prove our first potential modularity theorem. It is somewhat

technical and will be essentially subsumed in later theorems, but it is needed in the
proofs of these theorems. For other applications the conditions at l and q make
this theorem too weak to be very useful. The reader may like to first think about
the special case F D F0, t D 1, L D ∅, which will convey the essential points
of both the theorem and its proof. Following the proof the reader can find some
brief comments which may help in navigating the technical complexities of the
argument.
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THEOREM 3.1. Suppose that F=F0 is a Galois extension of totally real fields
and that n1; : : : ; nt are even positive integers. Suppose that l >maxfC.ni /; nig is
a prime which is unramified in F and satisfies l � 1 mod ni C 1 for i D 1; : : : ; t .
Let vq be a prime of F above a rational prime q ¤ l such that q 6 j .ni C 1/ for i D
1; : : : ; t . Let L be a finite, Gal .F=F0/-invariant set of primes of F not containing
primes above lq.

Suppose also that for i D 1; : : : ; t

ri W Gal . xF=F / �!GSpni .Zl/

is a continuous representation which is unramified at all but finitely many primes
and enjoys the following properties:

1. ri has multiplier "1�ni
l

.

2. Let Nri denote the semisimplification of the reduction of ri . Then the image
NriGal . xF=F.�l// is big (in GLn.Fl/), and xF ker ad Nri does not contain F.�l/.

3. ri is unramified at all primes in L.

4. If w j l is a prime of F , then ri jGal . xFw=Fw/ is crystalline and for � W Fw ,! xQl

we have
dimxQl gr j .ri ˝�;Fw BDR/D 1

for j D 0; : : : ; ni � 1 andD 0 otherwise. Moreover,

Nri jIFw Š 1˚ "
�1
l ˚ � � �˚ "

1�ni
l

:

5. ri jss
Gal . xFvq =Fvq /

is unramified and ri jss
Gal . xFvq =Fvq /

.Frobvq / has eigenvalues of

the form ˛; ˛.#k.vq//; : : : ; ˛.#k.vq//ni�1.

Then there is a totally real field F 0=F which is Galois over F0 and linearly
independent from the compositum of the xF ker Nri over F . Moreover, all primes of
L and all primes of F above l are unramified in F 0. Finally there is a prime wq
of F 0 over vq such that each ri jGal . xF =F 0/ is automorphic of weight 0 and type
fSp n.1/gfwqg.

Proof. Let E=Q be an imaginary quadratic field. For i D 1; : : : :; t let Mi=Q

be a cyclic Galois imaginary CM field of degree ni over Q such that

� l and the primes below L are unramified in Mi ;

� and the compositum of E and the normal closure of F=Q is linearly disjoint
from the compositum of the Mj ’s.

Choose a generator �i of Gal .Mi=Q/. Choose a prime pi which is inert but un-
ramified in Mi and split completely in EF0.

For i D 1; : : : ; t choose a continuous homomorphism

 i W .A
1
Mi
/� �! xM�i
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with the following properties:

�  i jM�
i
.a/D

Qni=2�1
jD0 �

j
i .a

j /�
jCni=2
i .ani�1�j /.

�  i j.A1
M
C
i

/� D
Q
v j j

1�ni
v .

�  i is unramified at l and the primes below L.

�  i jO�Mi;pi
¤  

�
j

i

i jO
�
Mi;pi

for j D 1; : : : ; n� 1.

�  i only ramifies above rational primes which split in E.

The existence of such a character  i follows easily from Lemma 2.2. Let zMi

denote a finite extension of Mi which is Galois over Q and contains the image
of  i .

Choose a prime l 0 which splits in EF zM1 : : : zMr.�n1.n1C1/; : : : ; �nr .nrC1//

such that

� l 0 > 8..ni C 2/=4/
ni=2C1 for all i ;

� l 0 > C.ni / for all i ;

� l 0 does not divide the class number of E;

� each Nri is unramified above l 0;

� each  i is unramified above l 0;

� l 0 6 j p
ni
i � 1 for all i ;

� l 0 6 j qj � 1 for j D 1; : : : ;maxfnig� 1;

� l 0 ¤ l , l 0 ¤ q and l 0 does not lie below L.

Let zwl 0;i denote a prime of zMi above l 0 and let wl 0;i D zwl 0;i jMi .
Define a continuous character

 i;l 0 WM
�
i n.A

1
Mi
/� �! zM�i; zwl0;i

by

 i;l 0.a/D  i .a/

ni=2�1Y
jD0

a
�j

�
�j

i
wl0;i

a
jC1�ni

�
�jCni =2

i
wl0;i

:

Composing this with the Artin reciprocity map and reducing modulo zwl 0;i we ob-
tain a character

x�i W Gal .Mi=Q/ �! F�l 0

with the following properties:

� x�i x�
c
i D "

1�ni
l 0

.

� x�i jIM
i;�
j
i
wl0;i

D "
�j

l 0
for j D 0; : : : ; n=2� 1.

� x�i is unramified above l and the primes below L.
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� x�i jIMi;pi
¤ x��

j

i jIMi;pi
for j D 1; : : : ; n� 1.

� x�i only ramifies above primes above rational primes which split in E.

Define an alternating pairing on Ind Gal . xMi=Q/

Gal . xMi=Mi /
x�i by

h'; '0i D
X

�2Gal . xMi=Mi /nGal . xMi=Q/

".�/ni�1'.�/'0.c�/;

where c is any complex conjugation. (It is alternating because ni is even.) This
gives rise to a homomorphism

I.x�i / W Gal .xQ=Q/ �!GSpni .Fl 0/:

Let K denote the compositum of the fixed fields of the ker Nri and the ker I.x�i /.
Let Wi be the free Z=l l 0Z-module of rank ni corresponding to Nri � I.x�i /. The
module Wi comes with a perfect alternating pairing

Wi �Wi �! .Z=l l 0Z/.1�ni /:

The scheme TWi=F is geometrically connected. Let S1 denote the infinite primes
of F , let S2 equal L union the set of primes of F above l l 0, and let S3Dfvqg. If w
is an infinite place of F let �i;w D TWi .Fw/. This is nonempty as all elements of
GSpni .Z=l l

0Z/ of order two and multiplier �1 are conjugate. If w 2 S2 let �i;w
denote the set of elements of TWi .F

nr
w / above ft2T0.F nr

w /Ww.1�t
niC1/D0g. Then

�i;w is open, Gal .F nr
w =Fw/-invariant and nonempty (as it contains a point above

02T0.F
nr
w /). Let�i;vqdenote the preimage in TWi . xFvq / of ft2T0.Fvq /Wvq.t/<0g.

This set is open, Gal . xFvq=Fvq /-invariant and nonempty. By Proposition 2.1 we
can find recursively totally real fields Fi=F and point zti 2 TWi .Fi / such that

� Fi=F is Galois,

� Fi=F is unramified above L and above l l 0,

� Fi is linearly disjoint from KF1 : : : Fi�1 over F ,

� and zti lies in �i;w for all w 2 S1[S2[S3.

Let zF D F1 : : : Fr , a Galois extension of F which is totally real, in which all
primes of S1 split completely and in which all primes of S2 are unramified. Then
zF is linearly disjoint from K over F . Let ti 2 T0. zF / denote the image of zti . Then
Vni Œl �ti Š Nri jGal . xF = zF 0/ and Vni Œl

0�ti Š I.
x�i /jGal . xF = zF 0/. Moreover, Yni ;ti has good

reduction above l l 0 so that Vni ;l;ti is crystalline above l and unramified above l 0,
while Vni ;l 0;ti is unramified above l and crystalline above l 0. If w is a prime of
zF above vq , then the semisimplification of Vni ;l 0;ti jGal . zFw= zFw/

is unramified and

Frobw has eigenvalues ˇ; ˇ.#k.w//; : : : ; ˇ.#k.w//ni�1 for some ˇ 2 f˙1g, which
may depend on w.
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Let F 0 denote the normal closure of zF over F0. It is linearly disjoint from the
compositum of the xF ker Nri over F . By Theorem 5.6 of [Tay08] we see that each
Vni ;l 0;ti is automorphic over F 0 of weight 0 and type fSp ni .1/gfwjvqg and level
prime to l 0. It also has level prime to l , so that Vni Œl �ti Š Nri jGal . xF 0=F 0/ is also
automorphic over F 0 of weight 0 and type fSp ni .1/gfwjvqg. By Theorem 5.4 of
[Tay08] we see that ri is automorphic over F 0 of weight 0 and type fSp ni .1/gfwjvqg
and level prime to l . �

We hope that the following informal remarks help guide the reader through the
apparent complexity of the proof of Theorem 3.1. The modularity theorems proved
in [CHT08] and [Tay08] only apply to l-adic representations which, at some finite
place v, correspond under the local Langlands correspondence to discrete series
representations. It is possible that further developments of the stable trace formula
will make this hypothesis unnecessary. On the other hand, our knowledge of the
bad reduction of the hypersurfaces Yt considered in Section 1 is only sufficient
to provide inertial representations of Steinberg type (with maximally unipotent
monodromy), as in Lemma 1.15; this explains our local hypotheses at the primes
denoted q. However, the monomial representations I.x�i / considered in the proof
of Theorem 3.1 can never be locally of Steinberg type, but they can be locally of
supercuspidal type, and are chosen to be so at the primes denoted pi . The local
hypothesis at pi is used in the proof of Theorem 5.6 of [Tay08].

In a special case we now improve upon Theorem 3.1, by weakening the con-
ditions at l and q. This theorem suffices for the applications to the Sato-Tate con-
jecture in the next section. Its proof depends in an essential way on Theorem 3.1.
The reader might like to think first about the special case t D 1 and det r D "�1

l
,

which will convey the main points of both the statement and proof of this theorem.

THEOREM 3.2. Suppose that F is a totally real field and that n1; : : : ; nt are
even positive integers. Suppose also that l >maxfC.ni /; 2ni C1g is a prime which
is unramified in F and that vq is a prime of F above a rational prime q ¤ l .

Suppose also that

r W Gal . xF=F / �! GL2.Zl/
is a continuous representation which is unramified at all but finitely many primes
and totally odd (in the sense that det r.c/ D �1 for every complex conjugation
c 2 Gal . xF=F /). Suppose that r also enjoys the following properties:

1. r is surjective.

2. If wjl is a prime of F , then r jGal . xFw=Fw/ is crystalline and for � W Fw ,! xQl

we have
dimxQl gr j .r ˝�;Fw BDR/D 1

for j D 0; 1 andD 0 otherwise.
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3. There is a prime vq of F split above q for which r jss
Gal . xFvq =Fvq /

is unramified

and r jss
Gal . xFvq =Fvq /

.Frobvq / has eigenvalues of the form ˛; ˛#k.vq/.

Then there is a Galois totally real extension F 00=F in which l is unramified,
and a prime wq of F 00 over vq such that each of the representations

Symm ni�1r jGal . xF =F 00/

is automorphic of weight 0 and type fSp n.1/gfwqg.

Proof. Let Nr denote the reduction r mod l .
The character "l det r is totally even and unramified at l . Thus "l det r has

finite order. Set F1 D xF ker "l det r . Then F1 is totally real and l is unramified in F1.
Choose a rational prime q0 and a prime vq0 of F above q0 such that

� r is unramified above q0,
� Nr.Frobvq0 / has eigenvalues 1; #k.vq0/,
� q0 6 j .ni C 1/ for i D 1; : : : ; t ,
� q0 ¤ q and q0 ¤ l .

Also choose a prime l 0 which splits in Q.�n1C1; : : : ; �ntC1/ and such that
� l 0 � 1 mod ni C 1 for i D 1; : : : ; t ,
� l 0 ¤ l , q, or q0,
� l 0 >max.C.ni /; ni /,
� l 0 is unramified in F1,
� and r is unramified at l 0.

Choose an elliptic curve E1=F such that
� E1 has good reduction above l ;
� E1 has potentially multiplicative reduction at vq and vq0 ;
� E1 has good ordinary reduction above l 0, but H 1.E1 � xF ;Z=l

0Z/ is tamely
ramified at l 0;

� Gal . xF=F /!! Aut .H 1.E1 � xF ;Z=l
0Z//.

The existence of such an E1 results from the form of Hilbert irreducibility with
weak approximation (see [Eke90]). (The existence of such an E1 over Fvq (resp.
Fvq0 ) results from taking a j -invariant with val q.j / < 0 (resp. val q0.j / < 0.)
The existence of such an E1 over Ql 0 results from taking the canonical lift of an
ordinary elliptic curve over Fl 0 .)

Let W denote the free rank two Z=l l 0Z module with Gal . xF=F1/-action cor-
responding to Nr �H 1.E1 � xF ;Z=l

0Z/ and let

h ; i WW �W �! .Z=l l 0Z/.�1/

be a perfect alternating pairing. Thus W gives a lisse étale sheaf over SpecF1.
Let XW =SpecF1 denote the moduli space for the functor which takes a locally



A FAMILY OF CALABI-YAU VARIETIES AND POTENTIAL AUTOMORPHY 803

noetherian F1-scheme S to the set of isomorphism classes of pairs .E; i/, where
� WE! S is an elliptic curve, and where

i WW
�
�!R1��.Z=l l

0Z/

takes h ; i to the duality coming from the cup product. Then XW is a fine moduli
space (as l l 0 > 2). It is a smooth, geometrically connected, affine curve.

Let S1 denote the set of places of F1 above1; let S2 denote the set of places
of F1 above l l 0; and let S3 denote the set of primes of F1 above vq and vq0 . If v is
an infinite place of F1, take �v DXW .F1;v/. It is nonempty as GL2.Z=l l 0Z/ has
a unique conjugacy class of elements of order 2 and determinant �1. If v is a place
of F1 above l 0, let �v � XW .F nr

1;v/ consist of pairs .E; i/ such that E has good
reduction. This set is open and Gal .F nr

1;v=F1;v/-invariant. It is also nonempty: for
instance take E DE1. If v is a place of F1 above vq or vq0 , let �v denote the open
subset of XW . xF1;v/ corresponding to elliptic curves with multiplicative reduction.
It is a nonempty, Gal . xF1;v=F1;v/-invariant, open set.

If v is a place of F1 above l , then let �v � XW .F
nr
1;v/ consist of pairs

.E; i/ such that E has good reduction. This set is open and Gal .F nr
1;v=F1;v/-

invariant. It is also nonempty: From the theory of Fontaine-Lafaille we see that
either W Œl�jIF1;v Š !

�1
2 ˚!

�l
2 or there is an exact sequence

.0/ �! Z=lZ �!W Œl� �! .Z=lZ/.�1/ �! .0/

over IF1;v . In the first case any lift to the ring of integers of a finite extension
of F1;v of a supersingular elliptic curve over k.v/ will give a point of �v. So
consider the second case. Let k=k.v/ be a finite extension and xE=k an ordinary
elliptic curve such that Frobk acts trivially on xEŒl�. Nk/. LetK denote the unramified
extension of F1;v with residue field k. Enlarging k if necessary we can assume
that FrobK also acts trivially on W IF1;v . Let � give the action of Gal . Nk=k/ on
EŒl1�. Nk/. By Serre-Tate theory, liftings of xE to OK are parametrised by extensions
of .Ql=Zl/.�/ by �l1.��1/ over OK . If the l-torsion in such an extension is
isomorphic (over K) to W _, the corresponding lifting E will satisfy H 1.E �
xK;Z=lZ/ŠW . Extensions of .Ql=Zl/.�/ by �l1.��1/ over OK are parametrised

by H 1.Gal . xK=K/;Zl."l��2// (as �2 ¤ 1). The representation W _ corresponds
to a class in H 1.Gal . xK=K/; .Z=lZ/."l// which is ‘peu-ramifié’. We must show
that this class is in the image of

H 1.Gal . xK=K/;Zl."l�
�2// �!H 1.Gal . xK=K/; .Z=lZ/."l//

coming from the fact that �2 � 1 mod l . By local duality, this image is the annihi-
lator of the image of the map

H 0.Gal . xK=K/; .Ql=Zl/.�
2// �!H 1.Gal . xK=K/;Z=lZ/
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coming from the exact sequence

.0/ �! Z=lZ �! .Ql=Zl/.�
2/

l
�! .Ql=Zl/.�

2/ �! .0/:

Because �2 is unramified, this image consists of unramified homomorphisms, which
annihilate any ‘peu-ramifié’ class.

By Proposition 2.1 we can find a finite Galois extension F 0=F containing F1
and an elliptic curve E=F 0 with the following properties:

� F 0 is linearly disjoint from xF ker.Gal . xF =F /!Aut .W // over F1.

� F 0 is totally real.

� All primes above l l 0 are unramified in F 0.

� E has good reduction at all places above l .

� E has good reduction at all places above l 0.

� E has split multiplicative reduction above vq and vq0 .

� H 1.E � xF ;Z=lZ/Š Nr jGal . xF =F 0/.

� H 1.E � xF ;Z=l 0Z/ is tamely ramified above l 0.

By Theorem 3.1 we see that there is a totally real field F 00=F 0 and a prime
wq0 of F 00 above vq0 such that:

� F 00=F is Galois.

� l and l 0 are unramified in F 00.

� F 00 is linearly disjoint over F 0 from F 0 xF ker.Gal . xF =F /!Aut .W // (and hence F 00

is linearly disjoint over F1 from xF ker Nr ).

� Each Symm ni�1H 1.E � xF ;Zl 0/ is automorphic over F 00 of weight 0, type
fSp ni .1/gfwq0g and level prime to l 0.

(To check the second condition of Theorem 3.1 apply Corollary 2.5.4 of [CHT08]
and the fact that PSL2.Fl/ is simple for l > 3.) Let wq be a prime of F 00 above vq .
Each Symm ni�1H 1.E � xF ;Zl 0/ is also automorphic over F 00 of weight 0, type
fSp ni .1/gfwqg and level prime to l . Thus each Symm ni�1H 1.E � xF ;Z=lZ/ Š

Symmni�1 Nr jGal . xF =F 000/ is automorphic over F 00 of weight 0 and type fSpni.1/gfwqg.
By Theorem 5.4 of [Tay08] we see that each Symm ni�1r is automorphic over F 00

of weight 0 and type fSp ni .1/gfwqg. (Again we use Corollary 2.5.4 of [CHT08]
and the simplicity of PSL2.Fl/ for l > 3.) �

We remark that the auxiliary prime q0 is needed because we have not assumed
that q 6 j ni C 1 for i D 1; : : : ; t .

Finally in this section we go back and prove the following improvement on
Theorem 3.1. (The key point is the weakening of the conditions at l and q.) Again
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the reader might like to consider first the case that r has multiplier "1�n
l

, which
will convey the main points of both the statement and proof of this theorem.

THEOREM 3.3. Suppose that F is a totally real field and that n is an even
positive integer. Suppose that l > maxfC.n/; n; 3g is a rational prime which is
unramified in F . Let vq be a prime of F above a rational prime q 6 j .nC 1/l .

Suppose also that

r W Gal . xF=F / �!GSpn.Zl/

is a continuous representation which is unramified at all but finitely many primes
and which is totally odd (in the sense that r.c/ has multiplier �1 for all complex
conjugations c). Suppose moreover it enjoys the following properties:

1. Let Nr denote the semisimplification of the reduction mod l of r . Then the im-
age NrGal . xF=F.�l// is big (in GLn.xFl/) and xF ker ad Nr does not contain F.�l/.
This will be satisfied if r is surjective.

2. If wjl is a prime of F , then r jGal . xFw=Fw/ is crystalline and for � W Fw ,! xQl

we have
dimxQl gr j .r ˝�;Fw BDR/D 1

for j D 0; : : : ; n� 1 andD 0 otherwise. Moreover, there is a point tw 2 OF nr
w

with w.tnC1w � 1/D 0 such that

Nr jIFw Š VnŒl �tw :

3. r jss
Gal . xFvq =Fvq /

is unramified and r jss
Gal . xFvq =Fvq /

.Frobvq / has eigenvalues of

the form ˛; ˛.#k.vq//; : : : ; ˛.#k.vq//n�1.

Then there is a totally real extension F 00=F and a place wq of F 00 above vq
such that r jGal . xF =F 00/ is automorphic of weight 0 and type fSp n.1/gfwqg.

Proof. Let � denote the multiplier character of r . Then �"n�1 is trivial on all
complex conjugations and unramified above l . Thus �"n�1 has finite order. Set
F1 D xF

ker �"n�1
l . Then F1 is totally real and l is unramified in F1.

Choose a rational prime l 0 >maxfn; C.n/g which is unramified in F1, which
splits in Q.�nC1/, and such that r is unramified above l 0. Choose t1 2 F with the
following properties:

� If wjl l 0, then w.tnC11 � 1/D 0.

� If wjl 0, then VnŒl 0�t1 jIFw Š 1˚ "
�1
l 0
˚ � � �˚ "1�n

l 0
.

� Gal . xF=F /!GSp.VnŒl 0�t1/ is surjective.

The existence of such an t1 results from the form of Hilbert irreducibility with weak
approximation (see [Eke90]). (One may achieve the second condition by taking t1
to be l 0-adically close to zero.)
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Let W be the free rank two Z=l l 0Z-module with Gal . xF=F1/-action corre-
sponding to Nr �VnŒl 0�t1 . It comes with a perfect alternating pairing

h ; i WW �W �! .Z=l l 0Z/.1�n/:

The scheme TW is geometrically connected. Let S1 denote the places of F1 above
1; let S2 denote the set of places of F1 above l l 0; and let S3 denote the set of
places of F1 above vq . For w an infinite place of F1 let �w D TW .Fw/, which
is nonempty as all elements of order two in GSpn.Z=l l

0Z/ with multiplier �1 are
conjugate. If wjl l 0 let �w � TW .F nr

1;w/ denote the preimage of ft 2 T0.F nr
1;w/ W

w.tnC1� 1/D 0g. It is open, Gal .F nr
1;w=F1;w/-invariant and nonempty. If w is a

place of F1 above vq , let �w � TW . xF1;w/ denote the open subset of points lying
above ft 2 T0.F1;w/ W w.t/ < 0g. It is nonempty, Gal . xF1;w=F1;w/-invariant and
open.

Thus we may find a finite Galois totally real extension F 0=F containing F1
and a point t 2 T0.F 0/ with the following properties:

� l and l 0 are unramified in F 0.

� F 0 is linearly disjoint from xF ker.Gal . xF =F /!Aut .W // over F1.

� VnŒl �t Š Nr jGal . xF =F 0/.

� Vn;l 0;t is unramified above l and crystalline above l 0.

� If w is a place of F 0 above l 0, then VnŒl 0�t jI
F 0w
Š 1˚ "�1

l 0
˚ � � �˚ "1�n

l 0
.

� Ifw is a place of F 0 above vq , then Vn;l 0;t jss
Gal . xF 0w=F 0w/

is unramified and Frobw
has eigenvalues of the form ˛; ˛#k.vq/; : : : ; ˛.#k.vq//n�1 for some ˛.

According to Theorem 3.1 we can find a totally real extension F 00=F 0 and a
place wqjvq of F 00 with the following properties:

� F 00=F is Galois.

� l and l 0 are unramified in F 00.

� Vn;l 0;t is automorphic over F 00 of weight 0, type fSp n.1/gfwqg and level prime
to l l 0.

(To check the second assumption of Theorem 3.1 use Lemma 2.5.5 of [CHT08]
and the simplicity of PSpn.Fl/ for l > 3.) Hence VnŒl �t and Nr are automorphic
over F 00 of weight 0 and type fSp n.1/gfwqg. Finally Theorem 5.4 of [Tay08] tells
us that r is automorphic over F 00 of weight 0 and type fSp n.1/gfwqg. �

4. Applications

Suppose that F and L� R are totally real fields and that A=F is an abelian
scheme equipped with an embedding i W L ,! End 0.A=F /. Recall (e.g. from
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Propositions 1.10 and 1.4 and the discussion just before Proposition 1.4 of [Rap78])
that A admits a polarisation over F whose Rosati involution acts trivially on iL.
Thus if � is a prime of L above a rational prime l , then

detH 1.A� xF ;Ql/˝Ll L� D L�."
�1
l /:

Suppose also that m is a positive integer. For each finite place v of F there is a
two-dimensional Weil-Deligne representation WDv.A; i/ over xL such that for each
prime � of L with residue characteristic l different from the residue characteristic
of v we have

WD.H 1.A� xF ;Ql/jGal . xFv=Fv/˝Ll L�/ŠWDv.A; i/:

We define an L-series

L.Symmm.A; i/=F; s/D
Y
v 6 j 1

L.SymmmWDv.A; i/; s/:

It converges absolutely, uniformly on compact sets, to a nonzero holomorphic
function in Re s > 1Cm=2. We say that Symmm.A; i/ is automorphic of type
f�vgv2S , if there is an RAESDC representation of GLmC1.AF / of weight 0 and
type f�vgv2S such that

rec.�v/jArt�1K j
�m=2
K D SymmmWDv.A; i/

for all finite places v of F .
Note that the following are equivalent.

1. Symmm.A; i/ is automorphic over F of type f�vgv2S .

2. For all finite places � of L, if l is the residue characteristic of �, then

Symmm.H 1.A� xF ;Ql/˝Ll L�/

is automorphic over F of weight 0 and type f�vgv2S .

3. For some rational prime l and some place �jl of L the representation

Symmm.H 1.A� xF ;Ql/˝Ll L�/

is automorphic over F of weight 0 and type f�vgv2S .

(The first statement implies the third. The second statement implies the first (by
the strong multiplicity one theorem). We will check that the third implies the
second. Suppose that Symmm.H 1.A� xF ;Ql/˝Ll L�/ arises from an RAESDC
representation � and an isomorphism { W xL�

�
! C. Let l 0 be a rational prime and

let {0 W xQl 0
�
! C. Let �0 be the prime of L above l 0 corresponding to .{0/�1 ı {jL.

Then from the Cebotarev density theorem we see that

rl 0;{0.�/Š Symmm.H 1.A� xF ;Ql 0/˝Ll0 L�0/:
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Thus Symmm.H 1.A� xF ;Ql 0/˝Ll0 L�0/ is also automorphic over F of weight 0
and type f�vgv2S .)

THEOREM 4.1. Let F and L be totally real fields. Let A=F be an abelian
variety of dimension ŒL W Q� and suppose that i W L ,! End 0.A=F /. Let N be a
finite set of even positive integers. Fix an embedding L ,! R. Suppose that A has
multiplicative reduction at some prime vq of F .

There is a Galois totally real field F 0=F such that for any n 2 N and any
intermediate field F 0 � F 00 � F with F 0=F 00 soluble, Symm n�1A is automorphic
over F 00.

Proof. Twisting by a quadratic character if necessary we may assume that A
has split multiplicative reduction at vq i.e. Frobvq has eigenvalues 1 and #k.vq/ on
H 1.A� xF ;Ql/j

ss
Gal . xFvq =Fvq /

for all l different from the residue characteristic of vq .

Choose l sufficiently large that

� l is unramified in F ,

� l >maxfn; C.n/gn2N,

� A has good reduction at all primes above l ,

� for all primes �jl of L, Gal . xF=F /!! Aut .H 1.A� xF ;Z=lZ/˝OL=lOL/,

� and l splits completely in L.

(If this were not possible, then, for all but finitely many primes l which split com-
pletely in L, there would be a prime �jl of L such that

Gal . xF=F /! Aut .H 1.A� xF ;Z=lZ/˝OL OL=�OL/

is not surjective. Note that for almost all such l the determinant of the image is
.Z=lZ/� (look at inertia at l) and the image contains a nontrivial unipotent element
(look at inertia at vq). Thus for all but finitely many primes l which split completely
in L there is a prime �jl of L such that the image of

Gal . xF=F /! Aut .H 1.A� xF ;Z=lZ/˝OL OL=�OL/

is contained in a Borel subgroup of GL2.Z=lZ/ and its semisimplification has
abelian image. It follows from Theorem 1 of Section 3.6 of [Ser72] that the image
of Gal . xF=F / ! Aut .H 1.A � xF ;Ql/˝L L�/ is abelian for all l and �. This
contradicts the multiplicative reduction at vq .) Choose a prime �jl of L.

Theorem 3.2 tells us that there is a Galois totally real field F 0=F in which l
is unramified and a prime wq of F 0 above vq such that for any n 2 N,

Symm n�1.H 1.A� xF ;Ql/˝Ll L�/

is automorphic over F 0 of weight 0, type fSp n.1/gfwqg and level prime to l . By
Lemma 4.3.2 of [CHT08] we see that Symm n�1.H 1.A� xF ;Ql/˝Ll L�/ is also
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automorphic over any F 00 as in the theorem of weight 0, type fSp n.1/gfwqg and
level prime to l . Hence Symm n�1A is automorphic over F 00. �

THEOREM 4.2. Let F and L be totally real fields. Let A=F be an abelian
variety of dimension ŒL W Q� and suppose that i W L ,! End 0.A=F /. Fix an
embedding L ,! R. Suppose that A has multiplicative reduction at some prime
vq of F .

Then for all m 2 Z�1 the function L.Symmm.A; i/; s/ has meromorphic con-
tinuation to the whole complex plane, satisfies the expected functional equation
and is holomorphic and nonzero in Re s � 1Cm=2.

Proof. We argue by induction on m. The assertion is vacuous if m < 1.
Suppose that m 2 Z�1 is odd and that the theorem is proved for 1�m0 <m. We
will prove the theorem for m and mC 1. Apply Theorem 4.1 with ND f2;mC 1g.
Let F 0=F be as in the conclusion of that theorem. Write

1D
X
j

aj Ind Gal .F 0=F /
Gal .F 0=Fj /

�j ;

where aj 2 Z, F 0 � Fj � F with F 0=Fj soluble, and �j is a homomorphism
Gal .F 0=Fj /! C�. Then .A; i/� xFj is automorphic arising from an RAESDC
representation �j of GL2.AFj /, and Symmm.A; i/ � xFj is automorphic arising
from an RAESDC representation �j of GLmC1.AFj /. Then we see that

L.Symmm.A; i/; s/D
Y
j

L.�j ˝ .�j ıArt Fj /; s�m=2/
aj ;

L.SymmmC1.A; i/; s/L.Symmm�1.A; i/; s� 1/

D

Y
j

L..�j ˝ .�j ıArt Fj //� �j ; s� .mC 1/=2/
aj ;

and

L.Symm 2.A; i/; s/D
Y
j

L..Symm 2�j /˝ .�j ıArt Fj /; s� 1/
aj :

(See [Tay06] for similar calculations.) Our theorem for m and mC 1 follows (for
instance) from [CPS04] and Theorem 5.1 of [Sha81] (and in the case mC 1D 2
also from [GJ78]). �

THEOREM 4.3. Let F be a totally real field. Let E=F be an elliptic curve
with multiplicative reduction at some prime vq of F . The numbers

.1CNv� #E.k.v///=2
p

Nv

as v ranged over the primes of F are equidistributed in Œ�1; 1� with respect to the
measure .2=�/

p
1� t2 dt .
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Proof. This follows from Theorem 4.2 and the corollary to Theorem 2 of
[Ser68], as explained on page I-26 of [Ser68]. �

Now fix an even positive integer n. Finally let us consider the L-functions
of the motives Vt for t 2 Q. More precisely for each pair of rational primes l
and p there is a Weil-Deligne representation WD.Vl;t jGal .xQp=Qp/

/ of WQp asso-
ciated to the Gal .xQp=Qp/-module Vl;t (see for instance [TY07]). Moreover, for
all but finitely many p there is a Weil-Deligne representation WDp.Vt / of WQp

over xQ such that for each prime l ¤ p and each embedding xQ ,! xQl the Weil-
Deligne representation WDp.Vt / is equivalent to the Frobenius semi-simplification
WD.Vl;t jGal .xQp=Qp/

/F-ss. Let S.Vt / denote the finite set of primes p for which no
such representation WDp.Vt / exists. It is expected that S.Vt / D ∅. If indeed
S.Vt /D∅, then we set L.Vt ; s/ equal to

2n=2.2�/n.n�2/=8.2�/�ns=2�.s/�.s� 1/ : : : �.sC 1�n=2/
Y
p

L.WDp.Vt /; s/

and
".Vt ; s/D i

�n=2
Y
p

".WDp.Vt /;  p; �p; s/;

where �p is the additive Haar measure on Qp defined by �p.Zp/ D 1, and  p W
Qp! C is the continuous homomorphism defined by

 p.xCy/D e
�2�ix

for x 2 ZŒ1=p� and y 2 Zp. The function ".Vt ; s/ is entire. The product defining
L.Vt ; s/ converges absolutely uniformly in compact subsets of Re s > 1Cm=2
and hence gives a holomorphic function in Re s > 1Cm=2.

THEOREM 4.4. Suppose that t 2Q�ZŒ1=.nC 1/�. Then S.Vt /D∅ and the
function L.Vt ; s/ has meromorphic continuation to the whole complex plane and
satisfies the functional equation

L.V; s/D ".V; s/L.V; n� s/:

Proof. Choose a prime q dividing the denominator of t . By Lemma 1.15 and,
for instance, Proposition 3 of [Sch06] (see also [TY07]), we see that Gal .xQ=Q/ acts
irreducibly on Vl;t . Let Gl denote the Zariski closure of the image of Gal .xQ=Q/

in GSp.Vl;t / and let G0
l

denote the connected component of the identity in Gl .
Then G0

l
is reductive and (by Lemma 1.15) contains a unipotent element with

minimal polynomial .T � 1/n. Moreover, as the action of Gal .xQ=Q/ on Vl;t has
multiplier "1�n, we see that the multiplier map from G0

l
to Gm is dominating. By

Theorem 9.10 of [Kat88] (see also [Sch06] for a more conceptual argument due
to Grojnowski) we see that G0

l
is either GSpn or .Gm �GL2/=Gm embedded via

.x; y/ 7! xSymm n�1y. (Here Gm ,!Gm�GL2 via z 7! .z1�n; z/.) In either case
we also see that Gl DG0l . (In the second case use the fact that any automorphism
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of SL2 is inner.) Let �l denote the image of Gal .xQ=Q/ in PGSp.V Œl�t /. The
main theorem of [Lar95] tells us there is a set S of rational primes of Dirichlet
density zero, such that if l 62 S , then either

PSp.V Œl�t /� �l � PGSp.V Œl�t /
or

Symm n�1PSL2.Fl/� �l � Symm n�1PGL2.Fl/:

Choose a prime l 62S such that val l.tnC1�1/D 0, l > 2nC1 and l¤ q. Com-
bining the above discussion with Corollary 2.5.4 and Lemma 2.5.5 of [CHT08], we
see that the image of Gal .xQ=Q.�l// in GSp.V Œl�t / is big. Using the simplicity
of PSL2.Fl/ and PSpn.Fl/ we also see that �l 62 xQkerV Œl�t . Thus Theorem 3.3
tells us that we can find a Galois totally real field F=Q such that Vl;t jGal . xF =F / is
automorphic of weight 0 and type fSp n.1/gfvjqg.

If F 0 is any subfield of F with Gal .F=F 0/ soluble, then we see that there is
an RAESDC representation �F 0 of GLn.AF 0/ of weight 0 and type fSp n.1/gfvjqg
such that for any rational prime l and any isomorphism { W xQl

�
! C we have

rl;{.�F 0/Š Vl;t jGal . xF 0=F 0/:

As a virtual representation of Gal .F=Q/ write

1D
X
j

aj Ind Gal .F=Q/

Gal .F=Fj /
�j ;

where aj 2 Z, where F � Fj with Gal .F=Fj / soluble, and where �j WGal .F=Fj /
!C� is a homomorphism. Then, for all rational primes l and for all isomorphisms
{ W xQl

�
! C, we have (as virtual representations of Gal .xQ=Q/)

Vl;t D
X
j

aj Ind Gal .F=Q/

Gal .F=Fj /
rl;{.�Fj ˝ .�j ıArt Fj //:

We deduce that, in the notation of [TY07], WD.Vl;t jGal .xQp=Qp/
/ss is independent

of l ¤ p. Moreover, by Theorem 3.2 (and Lemma 1.3(2)) of [TY07], we see that
WD.Vl;t jGal .xQp=Qp/

/F-ss is pure. Hence by Lemma 1.3(4) of [TY07] we deduce
that WD.Vl;t jGal .xQp=Qp/

/F-ss is independent of l ¤ p, i.e. S.Vt /D∅. Moreover,

L.Vt ; s/D
Y
j

L.�Fj ˝ .�j ıArt Fj /; sC .1�n/=2/
aj ;

from which the rest of the theorem follows. �
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