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Abstract

One goal of this paper is to prove that dynamical critical site percolation on the
planar triangular lattice has exceptional times at which percolation occurs. In doing
so, new quantitative noise sensitivity results for percolation are obtained. The latter
is based on a novel method for controlling the “level k” Fourier coefficients via the
construction of a randomized algorithm which looks at random bits, outputs the
value of a particular function but looks at any fixed input bit with low probability.
We also obtain upper and lower bounds on the Hausdorff dimension of the set of
percolating times. We then study the problem of exceptional times for certain “k-
arm” events on wedges and cones. As a corollary of this analysis, we prove, among
other things, that there are no times at which there are two infinite “white” clusters,
obtain an upper bound on the Hausdorff dimension of the set of times at which
there are both an infinite white cluster and an infinite black cluster and prove that
for dynamical critical bond percolation on the square grid there are no exceptional
times at which three disjoint infinite clusters are present.
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1. Introduction

Consider bond percolation on an infinite connected locally finite graph G,
where for some p 2 Œ0; 1�, each edge (bond) of G is, independently of all others,
open with probability p and closed with probability 1�p. Write �p for this product
measure. The main questions in percolation theory (see [12]) deal with the possible
existence of infinite connected components (clusters) in the random subgraph of
G consisting of all sites and all open edges. Write C for the event that there exists
such an infinite cluster. By Kolmogorov’s 0-1 law, the probability of C is, for fixed
G and p, either 0 or 1. Since �p.C/ is nondecreasing in p, there exists a critical
probability pc D pc.G/ 2 Œ0; 1� such that

�p.C/D

�
0 for p < pc
1 for p > pc :

At p D pc we can have either �p.C/D 0 or �p.C/D 1, depending on G.
Häggström, Peres and Steif [13] initiated the study of dynamical percolation.

(The notion of dynamical percolation was invented independently by I. Benjamini.
While the present paper was motivated by [13], the question studied here had pre-
viously been asked by Benjamini, as we recently became aware.) In this model,
with p fixed, the edges of G switch back and forth according to independent 2
state continuous time Markov chains where closed switches to open at rate p and
open switches to closed at rate 1� p. Clearly �p is a stationary distribution for
this Markov process. The general question studied in [13] was whether, when we
start with distribution �p , there could exist atypical times at which the percolation
structure looks markedly different from that at a fixed time.

Write ‰p for the underlying probability measure of this Markov process, and
write Ct for the event that there is an infinite cluster of open edges at time t .

Two results in [13] which are relevant to us are

PROPOSITION 1.1. For any graph G,(
‰p.Ct occurs for every t / D 1 if p > pc.G/;

‰p
�
.:Ct / occurs for every t

�
D 1 if p < pc.G/ :
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THEOREM 1.2. For d � 19; the integer lattice Zd satisfies

‰pc
�
.:Ct / occurs for every t

�
D 1:

One important aspect of the proof of the latter result is that it uses the fact,
proved in [14], that for d � 19,

(1.1) �p.0 is in an infinite open cluster/DO.jp�pcj/:

It is proved in [21] that (1.1) does not hold for d D 2. Therefore, the question of
whether Theorem 1.2 is true for d D 2 becomes interesting. At this point, we men-
tion that site percolation is the analogous model where the vertices (rather than the
edges) are open or closed independently, each with probability p, and dynamical
percolation is defined in a completely analogous manner. Our main result says that
Theorem 1.2 does not hold for site percolation on the planar triangular grid. The
triangular grid is the graph whose vertex set is the subset of CD R2 consisting of
the points

ZC exp.2 � i=3/ZD
˚
.kC `=2;

p
3 `=2/ W k; ` 2 Z

	
and two such points have an edge between them if and only if their distance is 1.
Explicitly stated, our main result is

THEOREM 1.3. Almost surely, the set of times t 2 Œ0; 1� such that dynamical
critical site percolation on the triangular lattice has an infinite open cluster is
nonempty.

There are no other transitive graphs for which it is known that dynamical
critical percolation has such exceptional times. (In [13], it was argued that the
event discussed in Theorem 1.3 is measurable. A similar comment applies to our
other results below. Thus, measurability issues will not concern us here.)

We are convinced that Theorem 1.3 is true for bond percolation on the square
lattice. However, our proof uses the existence and exact values of certain so-called
critical exponents, which are only known to hold for site percolation on the trian-
gular lattice. These are believed to be the same for bond percolation on the square
lattice, but even their existence has not yet been established in that case. However,
the methods of this paper seem to come quite close to a proof for the square grid
as well: it seems that there are several ways in which this can perhaps be achieved
without determining these critical exponents. These issues will be further discussed
in Section 9.

It is interesting to note that by [13, Cor. 4.2], a.s. at every time t the set of
vertices that are contained in some infinite cluster has zero density.

On a heuristic level, for Theorem 1.3 to hold, it is necessary that the configura-
tion “changes fast” in order to have “many chances” to percolate so that we will in
fact have a percolating time. Mathematically, “changing fast” can be interpreted as
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having small correlations over short time intervals, which then suggests the use of
the second moment method which we indeed will use. In other words, one needs
to know that the configuration at a given time tells us almost nothing about how it
will look a short time later. The notion of noise sensitivity introduced in [2] is the
relevant tool which describes this phenomenon. We now briefly explain this.

Given an integer m, a subset A of f0; 1gm and an " > 0, define

N.A; "/ WD var
h
P
�
.Y1; : : : ; Ym/ 2 A

ˇ̌
X1; : : : ; Xm

�i
where fXig1�i�m are i.i.d. with P

�
Xi D 1

�
D 1=2 D P

�
Xi D 0

�
and conditional

on the fXig’s, fYig1�i�m are independent with Yi DXi with probability 1� " and
Yi D 1�Xi with probability ".

Definition 1.4. Let fnmgm�1 be an increasing sequence in N going to1 and
let Am be a subset of f0; 1gnm for each m. We say that the sequence fAmgm�1 is
noise sensitive if for every " > 0,

(1.2) lim
m!1

N.Am; "/D 0:

This says that for large m knowing the values of X1; : : : ; Xnm gives us almost
no information concerning whether .Y1; : : : ; Ynm/ 2 Am. This is not the exact
definition of noise sensitivity given in [2] but is easily shown to be equivalent; see
page 14 in that paper. It is also shown in [2] that if (1.2) holds for some "2 .0; 1=2/,
then it holds for all such " and in addition that N.A; "/ is decreasing in " on Œ0; 1=2�.

Let nm be the number of edges in an .mC1/�m box in Z2 and let Am be the
event of a left to right crossing in such a box. By duality, P

�
Am

�
D 1=2 for every

m (see [12]). In [2], the following result is proved.

THEOREM 1.5. The sequence fAmgm�1 is noise sensitive.

A by-product of the tools needed to prove Theorem 1.3 will imply the follow-
ing more quantitative version of Theorem 1.5, which was conjectured in [2].

THEOREM 1.6. There exists  > 0 so that

lim
m!1

N.Am; m
� /D 0:

We have the same result for the triangular lattice but with a better  , since
critical exponents are known in this case.

THEOREM 1.7. For critical site percolation on the triangular lattice, let A0m
be the event of the existence of a left-right crossing in a domain D approximating
a square of sidelength m. Then for all  < 1=8,

lim
m!1

N.A0m; m
� /D 0:
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In proving our quantitative noise sensitivity results (Theorems 1.6 and 1.7 as
well as those later on necessary for obtaining Theorem 1.3), one of two key steps
will be Theorem 1.8, which gives estimates of certain quantities involving Fourier
coefficients of a function based on the properties of an algorithm calculating the
function; the other key step will be the construction of an appropriate algorithm.
Precise definitions of undefined terms will be given in Section 2, where the con-
nection with noise sensitivity will also be recalled.

THEOREM 1.8. Let n 2 N and set � D �n WD f0; 1g
n. Let f W � ! R

be a function. Suppose that there is a randomized algorithm A for determining
the value of f which examines some of the input bits of f one by one, where
the choice of the next bit examined may depend on the bits examined so far. Let
J � Œn� WD f1; 2; : : : ; ng be the (random) set of bits examined by the algorithm.
Set ı D ıA WD sup

˚
PŒi 2 J � W i 2 Œn�

	
. Then, for every k D 1; 2; : : : , the Fourier

coefficients of f satisfy

(1.3)
X

S�Œn�; jS jDk

Of .S/2 � ı k kf k2;

where kf k denotes the L2 norm of f with respect to the uniform probability mea-
sure on �.

This result might have some applications to theoretical computer science. We
will call ıA the revealment of the algorithm A. The restriction of x to J (the set of
bits examined by the algorithm) is a witness for the function f , in the sense that it
determines f .x/. As explained in Section 2.2, Theorem 1.8 extends to some other
types of witnesses.

In the case k D 1, the inequality (1.3) cannot be improved by more than a
factor of O.1= logn/: there is an example showing this with ı � n�1=3 log.n/,
which appears in [4, �4]. The paper [4] investigates how small the revealment can
be for a balanced boolean function on f0; 1gn. When the function is monotone, it
is shown that the revealment cannot be much smaller than n�1=3 and in general it
cannot be much smaller than n�1=2. Examples are given there which come within
logarithmic factors of meeting these bounds.

We do not know if (1.3) is close to being optimal for k� 1. One is tempted to
speculate that the inequality can be improved to

P
jS j�k

Of .S/2 �O.1/ k ı kf k2.
We do not know any counterexample to this inequality. However, the AND function
f .x/D

Qn
jD1 xj gives an example where

O.1/
X
jS jDk

Of .S/2 �
p
k ı kf k2

for k satisfying jk�n=2j DO.n1=2/. (It is easy to check that the best revealment
possible for this f is exactly .2� 21�n/=n.)
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Once Theorem 1.3 is established, it is natural to ask: how large is the set of
“exceptional” times at which percolation occurs? In this direction, we have the
following result.

THEOREM 1.9. The Hausdorff dimension of the set of times at which dynam-
ical critical site percolation on the triangular lattice has an infinite cluster is an
almost sure constant which lies in Œ1

6
; 31
36
�.

We conjecture that 31
36

is the correct answer. In a different direction, once we
know that there are exceptional times at which percolation occurs, it is natural to
ask how many clusters can exist at these exceptional times. The following provides
the answer.

THEOREM 1.10. On the triangular lattice, a.s. there are no times at which
dynamical critical site percolation has two or more infinite open clusters.

For the square grid, we can only prove

THEOREM 1.11. On Z2, a.s. there are no times at which dynamical critical
bond percolation has three or more infinite open clusters.

In some of the figures, we will represent open sites by white hexagons on
the dual grid, and closed sites by black hexagons. Thus, percolation clusters cor-
respond to connected components of the union of the white hexagons. These will
also be called white clusters. Likewise, we may also consider black clusters, which
are connected components of black hexagons.

Asking whether two infinite white clusters can coexist at some time is very
different from asking whether two infinite clusters of different colors can coexist
at some time. We conjecture that there are in fact exceptional times at which there
are both a white and a black infinite cluster and that the Hausdorff dimension of
such times is 2=3. We can however prove the following.

THEOREM 1.12. On the triangular lattice, a.s. the Hausdorff dimension of the
set of times at which there are both an infinite white cluster and an infinite black
cluster is at most 2=3.

We also have the following two results concerning the upper half-plane.

THEOREM 1.13. On the triangular lattice intersected with the upper half-
plane, a.s. the Hausdorff dimension of the set of times at which there is an infinite
cluster is at most 5=9.

THEOREM 1.14. On the triangular lattice intersected with the upper half-
plane, a.s. the set of times at which there are both an infinite white cluster and
an infinite black cluster is empty.
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Theorems 1.10, 1.12, 1.13 and 1.14 will follow immediately from generaliza-
tions presented in the last part of the paper, which are concerned with studying
dynamical percolation on two other two-dimensional objects, namely wedges and
cones. For every � 2 .0;1/, we let W� denote the wedge of angle � and C� denote
the cone of angle � . For C� , we will require that � is a multiple of �=3. The precise
definitions of these will be given in Section 3. First, we mention that for all � , the
critical value for site percolation on W� and on C� is 1=2, as for site percolation
on the triangular grid and bond percolation on Z2.

The following results provide upper and lower bounds on the critical angle for
which there are exceptional times for certain k-arm type events as well as provide
estimates for the Hausdorff dimension of the set of exception times for a given
angle. In these results, if an upper bound on the Hausdorff dimension is negative,
this means that the set in question is empty.

We will only do the case where the arms are alternating in color (and hence
for the case of cones, there will be one or an even number of arms). We do this
partially because it is easier than the general case and because it is all that is needed
in order to make statements concerning the number of infinite clusters.

By a k-arm event, we mean an event of the form “there are k disjoint infinite
paths having a specified color sequence”; for a wedge, the color sequence is well-
defined while for a cone, it is well-defined up to cyclic permutations.

THEOREM 1.15. Fix the wedgeW� and for integer k � 1, let AkW� be the event
that there are k infinite disjoint paths in W� whose colors alternate. Then a.s. the
Hausdorff dimension, Hk

W�
, of the set of exceptional times at which AkW� occurs

satisfies

1�
4k.kC 1/�

3�
�Hk

W�
� 1�

2k.kC 1/�

9�
:

In particular, for any k � 1, there are exceptional times for the event AkW� for

� > 4k.kC1/�
3

and there are no exceptional times for � < 2k.kC1/�
9

.

THEOREM 1.16. Fix the cone C� with � a multiple of �=3 and let, for k D 1
or k > 1 even, AkC� be the event that there are k infinite disjoint paths in C� whose
colors alternate (if k > 1). Then a.s. the Hausdorff dimension, Hk

C�
, of the set of

exceptional times at which AkC� occurs satisfies

1�
5�

3�
�H 1

C�
� 1�

5�

18�

and for k � 2

1�
4.k2� 1/�

3�
�Hk

C�
� 1�

2.k2� 1/�

9�
:
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In particular, for k D 1, there are exceptional times for the event A1C� for � > 5�
3

and there are no exceptional times for � < 5�
18

, while for k� 2, there are exceptional

times for the event AkC� for � > 4.k2�1/�
3

and there are no exceptional times for

� < 2.k2�1/�
9

.

Theorem 1.16 is presumably true for other values of � provided that a proper
definition of C� is given.

Remark. One should note that the upper bounds on the Hausdorff dimension
given in Theorems 1.9,1.12,1.13, 1.15 and 1.16 are all of the form 1�.4=3/� where
� is the critical exponent for the given event.

There is an abstract theory of Lévy processes on groups [16], [9], which
gives a criterion for a Lévy process (such as !t ) to hit a set A (such as the set
of configurations which contain an infinite component). Basically, to show that A
is hit, one needs to prove that there exists a probability measure � on A which has
k�k� <1 for an appropriate Hilbert norm k � k�, based on the Fourier transform.
It seems that we could use this framework in the present paper, but that would
not essentially simplify the core issues we deal with. Moreover, it seems that our
hands-on approach facilitates some generalizations, which the Lévy process theory
does not cover, which brings us to our next remark.

The fact that the time between flips has an exponential distribution is not
really essential here, and the results apply in greater generality. Let !t .v/ denote
the indicator function for the event that at time t the site v is white. Basically,
all of the results concerning existence of exceptional times and lower bounds on
Hausdorff dimension go through (with essentially the same proofs) in the more
general setting where we assume that

(i) The processes t 7!!t .v/ are independent (possibly with different distributions
depending on v) as v runs over all sites.

(ii) PŒ!t .v/D 1�D 1=2 for all t and v.

(iii) There is c > 0 so thatˇ̌
E
�
.�1/!t .v/.�1/!s.v/

�ˇ̌
� 1� c jt � sj

for all v and all t and s satisfying jt � sj< c.

(iv) For each v, the process !t .v/ has right continuous paths a.s.

(Condition (iv) is just a technical condition to insure that the events that we consider
are measurable.)

For results concerning upper bounds on Hausdorff dimension, the proofs go
through when we assume (i), (ii), (iv) and
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(v) There is a c > 0 so that

EŒnumber of flips of !t .v/ during .t1; t2/�� c.t2� t1/

for all v and all t1; t2 2 R satisfying t1 < t2 < t1C c.

However, for simplicity, we stick to the original setup.

We mention a few other papers where analogous questions to those studied in
[13] have been studied for other models. First, the results in [13] were extended and
refined in [26]. Next, analogous questions for the Boolean model where the points
undergo independent Brownian motions were studied in [5]. Analogous questions
for the lattice case for certain interacting particle systems (where updates are not
done in an independent fashion) are studied in [6]. Finally in [3], it is shown
that there are exceptional two-dimensional slices for the Boolean model in four
dimensions.

The rest of the paper is organized as follows. In Section 2, we will first provide
background on the Fourier-Walsh expansion of a function defined on f0; 1gn as
well as connections with noise sensitivity and then continue on to give the proof
of Theorem 1.8 as well as a generalization to the case where the algorithm is not
required to always determine the value of the function f . (This will accommodate
readers who are only interested in Theorem 1.8.) In Section 3, we will give nec-
essary background concerning percolation including a discussion of critical site
percolation on the triangular lattice as well as a brief discussion of interfaces and
critical exponents. In Section 4, we will construct two algorithms determining
certain events involving critical site percolation on the triangular lattice and analyze
them to obtain upper bounds on the probability that a vertex is looked at during the
algorithm. (For readers who only want to read Theorem 1.8 and see how to apply
it, they can just glance through �3 and then read �4.)

Section 4 also gives a very detailed discussion of interfaces and completes
the proofs of Theorems 1.6 and 1.7 by application of Theorem 1.8. In Section 5,
we give the proof of Theorem 1.3, and in Section 6 we give the proof of Theo-
rem 1.9. (Although the upper bound of 31=36 given in Theorem 1.9 is a special
case of Theorem 1.16, we choose to give a different direct proof of this without
reference to the work done in �8.) In Section 7, we prove the lower bounds on the
Hausdorff dimension stated in Theorems 1.15 and 1.16. In Section 8, we prove the
upper bounds on the Hausdorff dimension stated in Theorems 1.15 and 1.16. This
will be based on a general formula which gives an upper bound on the Hausdorff
dimension of various random sets (or proves they are empty) in terms of influences
(Theorem 8.1). We conclude the section by showing that Theorems 1.10, 1.12,
1.13 and 1.14 immediately follow from Theorems 1.15 and 1.16. After this, in
Section 9, we prove Theorem 1.11 and explain several plausible ways in which the
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proof of Theorem 1.3 might be extended to bond percolation on the square lattice.
In Section 10, we present some open questions.

Finally, the appendix proves some results about (nondynamical) critical perco-
lation that are needed for Theorems 1.10–1.16. The main result is that if r < r 0<r 00,
then the probability of having j crossings in a prescribed color sequence between
distances r and r 00 from 0 is equal to the product of the corresponding probabilities
between radii r and r 0 and between radii r 0 and r 00, times an error term (depending
on j ) that is bounded away from 0 and infinity. Another consequence is that one
gets good control on the positions of the crossings at the inner and outer radii, as
was already demonstrated by Kesten [19, Lemma 2]. The proofs in the appendix
also establish the corresponding statements for critical bond percolation in Z2.

2. Noise sensitivity of algorithmically dilute functions

In this section, we give some background and then prove Theorem 1.8.

2.1. Noise sensitivity background. For a function f from �D�n WD f0; 1g
n

to R, the Fourier-Walsh expansion of f is given by f D
P
S�Œn�

Of .S/�S ; where,

�S .T / D .�1/
jS\T j and Of .S/ D

R
f�S . Here and in the following,

R
refers to

integration with respect to uniform measure and we identify any vector x 2 �n
with the subset fj 2 Œn� W xj D 1g of Œn�D f1; 2; : : : ; ng. Consequently, jxj denotes
the cardinality of that set; that is, jxj D kxk1 for x 2 �n. The f�SgS�Œn� are an
orthonormal basis for the 2n-dimensional vector space of functions from �n to R.
In particular,

kf k2 D
X
S�Œn�

Of .S/2:

We now generalize the definition of N.A; "/ (given in the introduction) to any
function f W�! R by defining

N.f; "/ WD var
h
E
�
f .Y1; : : : ; Ym/jX1; : : : ; Xm

�i
:

It is easy to see that (see page 14 in [2])

(2.1) N.f; "/D
X

∅¤S�Œn�

Of .S/2.1� 2"/2jS j:

This explains the importance of the Fourier-Walsh expansion in the study of noise
sensitivity.

2.2. Proof of Theorem 1.8. Before giving the proof, we discuss some heuris-
tics. One may first believe that an estimate such as (1.3) would be valid because
when the algorithm terminates, the value of f is completely determined, and
hence perhaps all the nonzero Fourier coefficients Of .S/¤ 0, S ¤∅, must satisfy
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S \ J ¤∅. However, this is easily shown not to be the case. At the t-th step of
the algorithm, after t bits have been determined, we may consider a new function
ft , which is f with those determined bits substituted. If at the .t C 1/-th step, the
i-th bit !i of the input ! 2� is examined, then in the passage from ft to ftC1,
there is a collapsing of Fourier coefficients: OftC1.S/D Oft .S/C.�1/!i Oft .S[fig/
and OftC1.S [fig/D 0 for every S � Œn� n fig. Thus, the coefficient OftC1.S/ may
vanish when some bit i 2 S is examined by time t C 1 or when some i … S is
chosen at time t C 1 and it happens that Oft .S/C .�1/!i Oft .S [ fig/ D 0. The
latter, which we call “collapsing from above”, may seem like a highly nongeneric
situation. However, we cannot rule it out because we are primarily interested in
very nongeneric functions, namely, functions with values in f0; 1g. The proof below
uses a simple decomposition argument to handle the possibility of collapsing from
above.

In the following, we let z� denote the probability space that includes the ran-
domness in the input bits of f and the randomness used to run the algorithm and we
let E denote the corresponding expectation. Without loss of generality, elements of
z� can be represented as z! D .!; �/ where ! are the random bits and � represents
the randomness necessary to run the algorithm.

Proof. Fix k � 1. Let

g.!/ WD
X
jS jDk

Of .S/ �S .!/ ; ! 2�:

The left-hand side of (1.3) is equal to kgk2. Let J � Œn� be the random set of
all bits examined by the algorithm. Let A denote the minimal �-field for which
J is measurable and every !i , i 2 J , is measurable; this can be viewed as the
relevant information gathered by the algorithm. For any function h W�! R, let
hJ W �! R denote the random function obtained by substituting the values of
the bits in J . More precisely, if z! D .!; �/ and !0 2�, then hJ .z!/.!0/ is h.!00/
where !00 is ! on J.z!/ and is !0 on Œn�nJ.z!/. In this way, hJ is a random variable
on z� taking values in the set of mappings from � to R and it is immediate that this
random variable is A-measurable. When the algorithm terminates, the unexamined
bits in � are unbiased and hence E

�
h
ˇ̌

A
�
D
R
hJ .D OhJ .∅// where

R
is defined,

as usual, to be integration with respect to uniform measure on �. It follows that
EŒh�D EŒ

R
hJ �.

More generally, if u W R! R, then .u ı h/J D u ı hJ and hence, as above,
EŒu.h/�D E

hR
u.hJ /

i
. In particular, for all h,

(2.2) khk2 D E
�
h2
�
D E

hZ
h2J

i
D E

�
khJ k

2
�
:
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Since the algorithm determines f , it is A measurable, and we have

kgk2 D EŒg f �D E
h
E
�
g f

ˇ̌
A
�i
D E

h
f E

�
g
ˇ̌

A
�i
:

Since E
�
g
ˇ̌

A
�
D OgJ .∅/, Cauchy-Schwarz therefore gives

(2.3) kgk2 �

q
EŒ OgJ .∅/2� kf k :

We may write,

EŒ OgJ .∅/2�D E
�
kgJ k

2
�
�E

h X
jS j>0

OgJ .S/
2
i
:

This and (2.2) with hD g imply that

EŒ OgJ .∅/2�� kgk2�E
h X
jS jDk

OgJ .S/
2
i

D

X
S�Œn�

Og.S/2�E
h X
jS jDk

OgJ .S/
2
i
D

X
jS jDk

E
�
Og.S/2� OgJ .S/

2
�
:

It is easily seen that for any function h, hJ D
P
S
Oh.S/ .�S /J . We apply this with

hD g. Since Og.S 0/D 0 if jS 0j>k, it follows that for all S � Œn� satisfying jS j D k

OgJ .S/D

(
Og.S/; S \J D∅;
0; S \J ¤∅ :

The above estimate for EŒ OgJ .∅/2� therefore gives

EŒ OgJ .∅/2��
X
jS jDk

Og.S/2 P
�
S \J ¤∅

�
�

X
jS jDk

Og.S/2
X
i2S

PŒi 2 J �� kgk2 k ı :

Substituting this estimate in (2.3) and squaring the resulting inequality complete
the proof of the theorem. �

The theorem may be easily generalized to situations where the algorithm does
not always determine the value of f precisely; that is, fJ .x/ still depends on x 2�.

Set

var�.fJ / WD
Z
.fJ /

2
�

�Z
fJ

�2
D

X
S¤∅

OfJ .S/
2 ;

where the integrations are with respect to the uniform probability measure on �.
Note that E

�
var�.fJ /

�
is an indicator for how precisely the algorithm can be

used to approximate f ; when var�.fJ / is small, with high conditional probability,
j OfJ .∅/�f j is not too large.
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When var�.fJ /¤ 0, we have to replace the calculation in the proof of Theo-
rem 1.8 by the following

kgk2 D E
�
gJ fJ

�
D E

�
gJ OfJ .∅/

�
CE

�
gJ .fJ � OfJ .∅//

�(2.4)

�

�
EŒ OgJ .∅/2�EŒ OfJ .∅/2�

�1=2
C

�
EŒg2J �EŒvar�.fJ /�

�1=2
:

Since E
�
OfJ .∅/2C var�.fJ /

�
D EŒf 2�, we have EŒ OfJ .∅/2� � kf k2. Thus, the

above gives

kgk2 �

q
E
�
OgJ .∅/2

�
kf kCkgk

p
EŒvar�.fJ /� :

Using the same estimate for E
�
OgJ .∅/2

�
as in the proof of Theorem 1.8, we obtain

kgk2 � kgk kf k
p
k ıCkgk

p
EŒvar�.fJ /� :

Consequently, squaring both sides gives the following generalization of (1.3):X
jS jDk

Of .S/2 �
�
kf k
p
k ıC

p
EŒvar�.fJ /�

�2
(2.5)

� 2 k ı kf k2C 2EŒvar�.fJ /� :

Theorem 1.8 holds more generally than stated. If W is a random subset of
Œn�, we say that W is a witness for f W �! R if the value of f is determined
by its restriction to W . We say that W is ı-dilute if maxi2Œn� P

�
i 2W.!/

�
� ı.

The related notion of short witnesses is of central importance in Talagrand’s epic
isoperimetric saga [32]. The proof of Theorem 1.8 holds in the more general setting
where the random set J is a witness, with the property that for all subsets A� Œn�,
conditioned on J D A (assuming this has positive probability) and conditioned on
! restricted to A, the f!igi 62A are uniform i.i.d. bits. As pointed out to us by Asaf
Nachmias, Theorem 1.8 does not hold for arbitrary witnesses, even if we allow
for a multiplicative constant in the right-hand side of (1.3): if you take “Recursive
Ternary Majority” on nD 3h bits, there is a (symmetric) witness having only 2h

elements, yielding a ı which is .2=3/h; however, the sum of the squares of the
level 1 Fourier coefficients is .3=4/h.

3. Percolation background and notation

Duality plays a central role in the theory of percolation in two dimensions. A
dual-open path on the triangular grid is defined as a path in the grid whose vertices
are all closed. For the square grid, a dual-open path is defined as a path in the dual
of the square grid that does not intersect any open edge in the primal grid. The
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basic observation is that for site percolation on the triangular grid at p D 1=2 the
distribution of the collection of dual-open paths is the same as the distribution of
the collection of primal open paths. (Sometimes, we use the term “primal open
path”, for an open path, to make the distinction with the dual-open path clearer.)
For critical bond percolation on the square grid at p D 1=2, the distribution of the
dual-open paths is the image of the distribution of the open paths under translation
by .1=2; 1=2/. This simple duality is one of the important ingredients in the proof
by Kesten that pc D 1=2 for these two percolation models [18, p. 53] and the earlier
proof by Harris (see [15]) that there is a.s. no infinite cluster at p D 1=2.

For 0� r <R<1, let A.r;R/ denote the event that there is an open crossing
of the annulus r � jzj � R, namely, an open path connecting a vertex inside the
disk jzj � r to a vertex in jzj � R. Let ˛.r; R/ denote the probability of A.r;R/
at percolation parameter p D pc D 1=2. Abbreviate ˛.0;R/ by ˛.R/. For conve-
nience, we adopt the convention ˛.r; R/D 1 whenever r �R. The function ˛.r; R/
is essentially multiplicative, in the following sense: there is a constant C > 0 such
that for every 0� r1 � r2 � r3 <1,

(3.1) C�1 ˛.r1; r3/� ˛.r1; r2/ ˛.r2; r3/� C ˛.r1; r3/ :

In fact, this holds for critical bond percolation on the square grid as well as for
critical site percolation on the triangular grid. The (standard) proof of (3.1) is based
on the Harris-FKG inequality and the celebrated Russo-Seymour-Welsh (RSW) the-
orem (see [12], [18]). A proof of a generalization of (3.1) is given in the appendix.
Another consequence of RSW that we will use is the existence of a constant c > 0
such that for every r > 0,

(3.2) c � ˛.r; 2 r/ :

The Stochastic Löwner Evolution (SLE) introduced in [28] is a one parameter
family of random curves indexed by a real positive parameter �. It was conjectured
in [28] that the scaling limit of outer boundaries of critical site percolation clusters
on the triangular grid as well as bond percolation clusters on Z2 are (chordal) SLE�
with � D 6. Smirnov [30], [29] proved the corresponding statement for critical site
percolation on the triangular lattice. (See also [7].) We now explain some of this
more precisely. We first perform independent site percolation on the upper half
of the triangular lattice but declare the sites f.k; 0/ W k > 0g to all be open and
f.k; 0/ W k � 0g to all be closed. In the hexagonal grid dual to the triangular grid,
there will then be a unique path in the upper half-plane from .1

2
; 0/ to1 which has

white hexagons containing open sites on the right and black hexagons containing
closed sites on the left. (See Figure 3.1.) Smirnov’s result is that the limit (in an
appropriate topology) as the mesh size of the lattice goes to 0 of the law of this
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Figure 3.1. The percolation interface.

path is chordal SLE6. This path described above, which has open sites on its right
and closed sites on its left, is an example of what is called an interface.

The conformal invariance and the SLE description of critical percolation on
the triangular lattice allowed researchers to prove a number of conjectures by
physicists concerning so-called critical exponents. For example, for critical site
percolation on the triangular grid, it was established in [23] that

(3.3) ˛.R/DR�5=48Co.1/ as R!1 :

In fact, the same proof actually gives for R � r � 1,

(3.4) ˛.r; R/D .R=r/�5=48Co.1/ as R=r!1 :

For 1� r �R, the 2-arm function ˛2.r; R/ denotes the probability that there
are both an open path from jzj � r to jzj �R and also a dual-open path from jzj � r
to jzj �R. We abbreviate ˛2.1; R/ by ˛2.R/.

Next, let M be a half-plane in R2 and let v be some vertex in M satisfying
dist.v; @M/� 2. Denote by ˛C.R/ the probability that there is an open path in M
from v to distance at least R away from v. This quantity depends on R, v, and M ,
but the dependence on v and M will usually be suppressed. More generally, for
0� r <R, let ˛C.r; R/ denote the probability that there is an open path in M from
some vertex u satisfying ju� vj � r to some vertex w satisfying jw� vj �R.

As with ˛.r; R/, we adopt the convention ˛C.r; R/D 1 whenever r �R.
It is known that the functions ˛C and ˛2 also satisfy (3.1), with possibly

different constants. (When considering ˛C, this applies to any fixed choice of M
and v.) These inequalities are valid for site percolation on the triangular grid as



634 ODED SCHRAMM and JEFFREY E. STEIF

well as bond percolation on the square grid. A proof can be found in the appen-
dix. For site percolation on the triangular grid, the corresponding exponents were
established in [31]:

(3.5) ˛C.R/DR�1=3Co.1/; ˛2.R/DR
�1=4Co.1/;

as R!1. In fact, the same proofs actually give for R � r � 1

(3.6) ˛C.r; R/D .R=r/�1=3Co.1/; ˛2.r; R/D .R=r/
�1=4Co.1/;

as R=r!1.
For bond percolation on the square grid, such exact estimates are unavailable,

because there is currently no proof that the interface converges to SLE6. In the
case of the square grid, the estimate ˛.r; R/ � C .R=r/�", where C; " > 0 are
constants, follows easily from the RSW theorem (see [12], [18]). The RSW proofs
can give an actual value for ", but it is rather small. We can also use the obvious
estimate ˛C.r; R/� ˛.r; R/ to obtain a similar bound for ˛C.

We now give the precise definitions for wedges and cones. For this purpose,
we first recall the definition of the infinitely branched cover of R0 over 0. Let
X D

˚
.z; �/ W z 2 C n f0g; � 2 R; ei� jzj D z

	
, and set  .z; �/D z. On the surface

X we define the metric dX as the pullback of the euclidean metric of R2 under  ,
namely, dX .x; y/ is the infimum of the length of  ı  for any continuous path
 �X connecting x and y. Let C1 denote the completion of .X; dX /. Since R2 is
complete, it is easy to see that C1 nX consists of a single point, which we denote
by 0. We extend the map  by setting  .0/D 0. Let V be the set of points in C1
that are mapped to vertices of the triangular grid under  . The triangular grid on
C1 has vertices V and an edge between any two vertices at distance 1 apart. Now
the wedge W� � C1 is defined by W� WD f0g [

˚
.z; � 0/ 2 X W � 0 2 Œ0; �/

	
. The

triangular grid on W� is just the intersection of the triangular grid on C1 with W� .
On C1 we may define the rotation R� by R� .0/D 0 and

R� .z; �
0/D .ei�z; � C � 0/:

This is clearly an isometry of C1. The cone C� is defined as the quotient C1=R� ;
that is, the set of equivalence classes of points in C1, where two points are consid-
ered equivalent if one is mapped to the other by a power of R� . Now suppose that
� D n�=3 where n 2 NC. Then R� restricts to an isomorphism of the triangular
grid on C1. In this case we define the triangular grid on C� as the quotient of
the grid on C1 under R� . In other words, the vertices are equivalence classes
of vertices in C1 and an edge appears between two equivalence classes if there
is an edge connecting representatives of these classes. Note that C2� is just the
euclidean plane with the triangular lattice.
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We end this section by describing the so-called full and half-plane exponents
for k-arm events derived in [31].

For integer k � 1, let Ak.r; R/ be the event that there are k disjoint crossings
of the annulus fz 2 R2 W r � jzj � Rg with a specified color sequence (up to
rotations), where we require that both colors appear in the color sequence. For
k � 2, and r � 10k, it was proved in [31] that

(3.7) ˛k.r; R/ WD P
�
Ak.r; R/

�
D .R=r/

1�k2

12
Co.1/;

as R!1 while r is fixed. (The result for ˛2.R/ in (3.5) above is a special case
of this.) Next, when Ak

C
.r; R/ is the event that there are k disjoint paths in the

upper half-plane from jzj � r to jzj � R with any specified color sequence, then
for k � 1, and r � 10k, it was proved in [31] that

(3.8) ˛C
k
.r; R/ WD P

�
AkC.r; R/

�
D .R=r/

�k.kC1/
6

Co.1/;

as R!1 while r is fixed. (The result for ˛C.R/ in (3.5) is a special case of this.)
Just as we said that the proofs of (3.5) actually yield (3.6), it is also the case that
the proofs of (3.7) and (3.8) also yield versions when R=r!1 while r � 10 k is
not necessarily fixed.

4. Noise sensitivity for percolation

4.1. The simply connected case. To apply Theorem 1.8 to percolation, we
will need to describe algorithms achieving small revealment. One result of that
nature is

THEOREM 4.1. Let QDQR be the indicator function for the event that criti-
cal site percolation on the standard triangular grid contains a left to right crossing
in some grid-approximating domain D to a large square of side length R. (For
example, we could take D to be the union of the hexagons in the dual grid that are
contained in the square.) Then there is a randomized algorithm A determining Q
such that ıA �R�1=4Co.1/ as R!1.

For critical bond percolation on the square grid, there is such an algorithm
satisfying ı � C R�a for some constants a; C > 0.

Remark. Theorem 4.1 says that there is an algorithm for the relevant event
which exposes on average at most R7=4Co.1/ bits. Since the probability of points
not too close to the boundary being pivotal is about R�5=4Co.1/ (this is the 4-arm
event) and for a monotone function f , Of .fig/ is the probability that xi is pivotal,
the case k D 1 in Theorem 1.8 implies that the revealment is at least R�1=2Co.1/.
As pointed out in Peres, Schramm, Sheffield and Wilson [25], this can also be
obtained using an inequality of O’Donnell and Servedio.
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Figure 4.1. Following the interface from the corner.

Theorems 1.8 and 4.1 immediately give

COROLLARY 4.2. For every " > 0 there is a constant C D C."/ such thatX
jS jDk

OQR.S/
2
� C k R�1=4C"

holds for every k D 1; 2; : : : and for every R > 0. �

The basic idea of the proof of Theorem 4.1 is rather simple. First we consider
the interface started at the lower right corner and stopped when it hits the upper
or left edges. (See Figure 4.1.) This interface is sufficient to determine Q. If
we traverse the interface, revealing just the bits necessary for its determination,
then with high probability most bits will not be examined. However, this does
not yield an algorithm with small revealment because the hexagons near the lower
right corner are very likely to be examined. To rectify this problem, we instead
start the interface at a different (random) location p0 on the right side of D. This
determines the existence of a crossing from the right side above p0 to the left side.
Then another interface started at p0 will determine if there is a crossing that starts
below p0.

Let us now be a bit more precise regarding the notion of an interface. In the
following, we use an equivalent dual version of the site percolation model on the
triangular grid. The dual graph is the hexagonal grid, and we color the hexagon
white if the site contained in it is open and black if the site in it is closed. Of course,
there is no essential difference between these two representations. The advantage
of this dual framework is that the figures are clearer and the notion of the interface
is slightly more natural.

Note that bond percolation on the square grid also has a similar coloring rep-
resentation. One such scheme is to color the squares of sidelength 1=2 centered
at the sites of Z2 white, color the squares of sidelength 1=2 that are concentric
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Figure 4.2. A color scheme for bond percolation on Z2.

with the square faces of Z2 black, and color each square of sidelength 1=2 whose
center is the midpoint of an edge of Z2 white or black if that edge is open or
closed, respectively. See Figure 4.2. This scheme has the important property that
the boundary between the union of the white clusters is a 1-manifold; that is, at
every vertex of the grid .1=2/Z2C .1=4; 1=4/ there are two edges that are on the
common boundary.

We now assume that D is a bounded, simply connected, domain which is the
interior of a union of hexagons in the hexagonal grid. Suppose that p0 is a point
on @D that is on the boundary of a single hexagon in D, and that � is a closed
arc in @D n fp0g. The interface in xD from p0 to � is a random path ˇ contained
in the 1-skeleton of the hexagonal grid starting at p0 and ending at a point in
�, as indicated in Figure 4.3. We can precisely define ˇ as the unique oriented
simple path from p0 to � that is contained in the union of the boundaries of the
hexagons contained in xD and satisfies (1) ˇ\ � consists of the terminal point of
ˇ, (2) whenever ˇ traverses an arc along the boundary of a black hexagon H � xD,
the arc is traversed counterclockwise around @H , and (3) whenever ˇ traverses an
arc along the boundary of a white hexagon H � xD, the arc is traversed clockwise
around @H . It is easy to verify that this uniquely defines ˇ, as follows. First, the
initial arc of ˇ is determined by the color of the hexagon in xD containing p0. When
ˇ first meets a hexagon contained in xD, its turn is clearly specified. (If the hexagon
is black, then ˇ must make a �=3 turn to the right, and if the hexagon is white,
then ˇ must make a �=3 turn to the left.) Now consider the situation in which ˇ
first meets a hexagon that is not contained in xD. Let ˇ0 be the arc of ˇ from p0
up to that point. Then ˇ at that point makes the turn into the component of xD nˇ0

that contains �, as in the figure.
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�

p0

Figure 4.3. An interface started at p0 and headed towards �.

Another way to describe this interface is that we color the counterclockwise
arc of @D from p0 to � white and the clockwise arc from p0 to � black, and ˇ then
is the common boundary component between white and black in xD starting at p0.
We will call this type of interface a chordal interface, to differentiate it from the
interface needed later when discussing the annulus crossing event. (The chordal
interface was proved by Smirnov [29] to converge to chordal SLE(6).)

Proof of Theorem 4.1. We mostly concentrate on the case of site percolation
on the triangular grid. The details in the case of bond percolation on Z2 are essen-
tially the same.

The algorithm proceeds as follows. (See Figure 4.4.) There are four distin-
guished boundary arcs of D, which we call “left”, “right”, “up” and “down”. Pick
uniformly at random an edge e0 on the right-hand boundary of D, and let p0 be its
midpoint. Let � be the union of the top and left boundary segments of D. Explore
the interface ˇ from p0 to �, examining the bits associated to sites in hexagons
touching that interface, only as needed to continue with the determination of the
interface. Note that the knowledge of ˇ suffices to determine if there is an open
crossing from the right boundary of D above p0 to the left boundary of D: there
is such a crossing if and only if ˇ terminates on the left boundary of D.

Now let �0 be the union of the bottom and left boundaries of D, and let ˇ0

be the interface from p0 to �0 that corresponds to the configuration !0 obtained by
flipping all the colors of the hexagons in D (alternatively, ˇ0 is an interface that has
black on the right and white on the left). Then ˇ0 determines the existence of an
open crossing from the right boundary below p0 to the left boundary. Consequently,
after the algorithm examines ˇ and ˇ0, the correct value of Q is determined. We
now need to bound the revealment of this algorithm.

LEMMA 4.3. Let @W denote the counterclockwise arc of @D n � from p0 to �
(the white arc), and let @B denote the clockwise arc of @D n � from p0 to �. Let
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ˇ

p0

ˇ0

p0

Figure 4.4. The interfaces ˇ and ˇ0.

H be a grid hexagon in xD. Set r1 WD minfdist.H; @W /; dist.H; @B/g and r2 WD
maxfdist.H; @W /; dist.H; @B/g. Then

P
�
@H \ˇ ¤∅

ˇ̌
p0
�
� ˛2.r1/ ˛

C
�
2 r1CO.1/; r2� r1�O.1/

�
:

Proof. Suppose that @H \ˇ¤∅. Then there is a path in black hexagons from
@H to @B and there is a path in white hexagons from @H to @W , because the chains
of hexagons along the two sides of ˇ provide such paths. Suppose, for example,
that r1D dist.H; @W /. Let w be a closest point to H in @W . Let M be a half-space
that contains D, which satisfies dist.@M;w/� C where C DO.1/. (Here, we are
using the fact that D approximates a convex domain.) Let w0 be a point closest to
H on @M . Then dist.w0;H/ � r1CC . Set R1 D 2 r1C 2C C 2 diam.H/ and
R2 D r2 � r1 �C � diam.H/, and assume for now that R2 > R1. Consider next
the annulus centered at w0 with inner radius R1 and outer radius R2. Now, M
intersected with this annulus contains a black crossing between the two boundary
circles of this annulus (because there is a black crossing from H to @B ), and there
are black and white crossings between H and the circle of radius r1 around the
center of H . These events are independent given p0, which implies the lemma in
the case r1 D dist.H; @W /, R2 >R1. If R2 � R1 and r1 D dist.H; @W /, we only
need to consider the crossings between H and the circle of radius r1 around its
center. The case r1 D dist.H; @B/ is treated similarly. �

Proof of Theorem 4.1, continued. Fix a hexagon H � xD. Note that the value
of r1 in the lemma does not depend on p0, since r1 D dist.H; @D n �/. Let z0
be the closest point to H on the right boundary of the square which D approxi-
mates. Observe that r2 � jp0� z0j �O.1/. This implies that for every r 2 Œ1; R�,
P
�
r=2� r2 < r

�
�O.r=R/. Using the monotonicity of ˛C, Lemma 4.3 therefore

gives
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P
�
@H \ˇ ¤∅

�
�O.1/ max

0�r1�R

�
˛2.r1/

dlog2ReX
jD0

2�j˛C
�
2 r1CO.1/; 2

�jR� r1�O.1/
��
:

The same estimate also applies to ˇ0, by symmetry. Consequently, (3.6) gives

P
�
H examined by algorithm

�
�Ro.1/ max

0�r1�R

�
r1
�1=4

dlog2ReX
jD0

2�j .2�jR=r1/
�1=3

�
�Ro.1/ max

0�r1�R

�
r1
1=12R�1=3

�
DR�1=4Co.1/ ;

as R!1. This proves the theorem in the case of the triangular grid.
The proof for the square grid is essentially the same. Since in that case, we

cannot use the values of the critical exponents, we just use the bounds ˛C.r; r 0/�
C .r=r 0/"0 and ˛2.r1/ � C r

�"0
1 , which are valid for some constants C; "0 > 0.

The theorem follows. �

We now give the proof of Theorem 1.7. We will not prove Theorem 1.6, but
rather simply say that it is proved in a similar way.

Proof of Theorem 1.7. Fix  < 1=8. Let f be the indicator function f .!/D
1A0m.!/. By (2.1), we have

N.A0m; m
� /D

X
∅¤S�Œnm�

Of .S/2.1� 2m� /2jS j

where nm is the number of sites in D. By Corollary 4.2, with " > 0 chosen so that
2  C " < 1=4, this is at most

C

nmX
kD1

.1� 2m� /2k k m�1=4C"

� C m�1=4C"
1X
kD1

k .1� 2m� /
m

2
4k
m � C m�1=4C"

1X
kD1

k e�4km
�

:

It is easy to check that
1X
kD1

k e�4km
�

�O.m2 / ;

and so the result follows immediately. �

4.2. Annulus case. For the proof of Theorem 1.3, we will need the following
variant of Theorem 4.1 regarding the percolation crossings of an annulus.
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THEOREM 4.4. Let 2� r < R. Let f Rr be the indicator function for the event
that there is a crossing of the annulus fz 2 R2 W r � z � Rg from the inner circle
to the outer circle by a cluster of white hexagons. Then there is a randomized
algorithm determining f Rr with

(4.1) ı � ro.1/ ˛.r; R/ ˛2.r/ :

We stress that the ro.1/ factor depends on r only and not on R. It is possible
to replace the factor ro.1/ by O.1/, but in order to do this it seems that one would
first need to appeal to the analogue of (3.1) for ˛2, which is proved in the appendix.
In order to have a more direct proof of our main theorem, we prefer, at this point,
not to rely on the appendix. By (3.4) and (3.5), the right-hand side in (4.1) is equal
to R�5=48Co.1/ r�7=48, but its writing in (4.1) is more suggestive and more useful.

Since kf Rr k
2 D ˛.r; R/, Theorems 1.8 and 4.4 give

COROLLARY 4.5.X
jS jDk

Of Rr .S/
2
� k ro.1/ ˛.r; R/2 ˛2.r/

holds when 1� r < R <1 and k > 0. �

Before we prove Theorem 4.4, we have to discuss the kind of interface that is
used in the algorithm, as it is slightly different from the interface used to determine
a possible crossing of a square.

Fix R > 0 large. Let xD D xDR be the union of the hexagons of the hexagonal
grid that intersects the disk jzj � R. Let V � D V �R denote the set of vertices of
the hexagonal grid that are in xD. Let p0 be some point in @ xD n V �. Let H0
denote the hexagon containing the origin, and let q0 be some point in @H0 n V �.
We define the radial interface ˇ D ˇ.R; p0; q0; !/, inductively as a simple path
from p0 to q0. (See Figure 4.5.) The construction is segment by segment, and
the concatenation of the first m segments will be denoted ˇm. If the (unique)
hexagon in xD containing p0 is white (respectively, black), then the first segment
ˇ1 of ˇ traverses the boundary of that hexagon (counter-) clockwise, until the first
encounter with a point in V �. Suppose inductively ˇm has been constructed, that it
is a simple path, that pm 2 V � and p0 are the two endpoints of ˇm, and that there
is a path ˛ in the hexagonal grid in xD from pm to q0 whose only intersection with
ˇm is pm. The first step of such a path ˛ is along an edge Oe starting at pm. If there
is just one possible Oe among all such ˛, then ˇmC1 also uses that edge Oe. Clearly,
there are at most two possible Oe, since the edge terminating at pm and used by
ˇm cannot be used. If there are two possible Oe, then ˇmC1 chooses between them
according to the color of the hexagon containing them both; i.e., the hexagon just
encountered by ˇm. If that hexagon is white (respectively, black), then the edge



642 ODED SCHRAMM and JEFFREY E. STEIF

q0

p0

ˇT

ˇ nˇT

Figure 4.5. The radial interface ˇ.

chosen is the one that traverses H (counter-) clockwise. If the edge chosen contains
q0, then the path stops at q0 and the construction terminates. Otherwise, ˇmC1 is
defined as the union of ˇm and the chosen continuation edge. This completes the
definition of ˇ.

It is not hard to verify that for every simple path Ǒ in the hexagonal grid from
p0 to q0 that stays in xD, the probability that ˇ D Ǒ is precisely 2�n if n is the
number of hexagons in xD that intersect Ǒ. However, we will not use this fact.

Let r 2 Œ0; R�. We now define a truncated version of ˇ, which will suffice,
as we will see, to determine f Rr . We say that ˇ completed a (counter-) clockwise
loop at some dual vertex v 2 V � if v is visited by ˇ and there is a hexagon H
containing v and another point u 2 @H , which was visited by ˇ prior to v. The
oriented arc of ˇ from u to v together with the line segment Œv; u� � H form a
(counter-) clockwise loop surrounding 0. Let ˇT denote the initial segment of ˇ
up to the first time in which ˇ completed a counterclockwise loop around 0 or until
it hits q0, if there is no such loop.

LEMMA 4.6. The truncated radial interface ˇT meets the disk jzj � r if and
only if f Rr D 1.

Proof. Let Œu; v� be an edge in ˇT , with u occurring before v along ˇ. We
claim that if the hexagon H immediately to the right of Œu; v� is contained in xD,
then it is white. Indeed, suppose the contrary. Let w be the first vertex along ˇ in
which @H is visited, and let ˇw be the initial segment of ˇ from p0 to w. Observe
that the counterclockwise arc from w to v is a feasible continuation of ˇw , since ˇ
contains a path from v to q0 and there is no other point but w in @H \ˇw . Since
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we are assuming that H � xD is black, it follows that the immediate continuation
of ˇw was along @H in the counterclockwise direction until some w0 2 V � is hit.

Consider the directed cycle obtained by joining the line segment Œu; w0� to the
arc of ˇ from w0 to u. This directed cycle surrounds v, because w is connected in
ˇw to p0, which is certainly in the unbounded component of this cycle, and the
line segment Œv; w� intersects the cycle precisely once, crossing the line segment
Œu; w0� inside H . Moreover, if we consider the orientation in which these two line
segments cross, we conclude that the cycle surrounds v counterclockwise. Because
the arc of ˇ from v to q0 does not intersect the cycle, we conclude that the cycle
also surrounds 0 counterclockwise. This contradicts the definition of the truncated
path ˇT , since we are assuming v 2 ˇT . This verifies our claim, that to the right
of edges in ˇT there are only white hexagons and hexagons that are not contained
in xD.

Note that if e and e0 are two consecutive segments along ˇ, then the hexagon
to the right of e is either the same as the one to the right of e0, or these hexagons
are adjacent. We therefore conclude that every white hexagon visited by ˇT is
connected by a chain of white hexagons to @D. Therefore, if ˇT hits the set jzj � r ,
then clearly f Rr D 1.

Now suppose that ˇT does not hit jzj � r . This implies that ˇT has terminated
by completing a counterclockwise loop around the set jzj � r . Consider a hexagon
H on the inner boundary of this loop. Because the orientation of the loop is coun-
terclockwise, the first time in which H is visited, the path chosen to traverse @H is
counterclockwise. This implies that the hexagon is black. Thus, there is a loop of
black hexagons in xD that surrounds the set jzj � r . This implies that f Rr D 0. �

We can now specify the algorithm promised by Theorem 4.4. The algorithm
starts by selecting the point p0 uniformly along @ xD, and selecting q0 arbitrarily
in @H0 nV �. It then proceeds to inspect the colors of the hexagons necessary to
develop the truncated interface ˇT , until it terminates or hits the set jzj � r . At
that point, the correct value of f Rr is determined by Lemma 4.6.

In order to bound the revealment of this algorithm, it will be convenient to
introduce a different interface, which in the end will turn out to be equivalent to ˇ.

Let yD denote the branched double cover of xD about 0, and let � W yD! xD

denote the projection map. Concretely, define yD as the preimage of xD under the
map �.z/D z2. Let Op0 be one of the preimages of p0 under �, and let Oq0 be one of
the preimages of q0. Let yH0 be the closure of one of the connected components of
��1.H0/ n Œ Oq0;�Oq0�. Let H denote the set of hexagons H that are contained in xD.
Let yH denote the set of connected components of preimages ��1.H/, H 2 H,
except that the single preimage of H0 is replaced by the two sets yH0 and � yH0.
Note that if yH 2 yH, then � yH 2 yH and �. yH/ D �.� yH/ 2 H. Let yH0 � yH be a
maximal collection of elements of yH with the property that yH0\f� yH W yH 2 yH0gD∅.



644 ODED SCHRAMM and JEFFREY E. STEIF

Now color at random each of the elements of yH0 white or black independently, with
probability 1=2. For every yH 2 yH0, let � yH have the opposite color to the color
of yH .

Now let Ǒ denote the chordal interface in yD from Op0 to � Op0, with white cells
on the right and black cells on the left, as defined in the simply connected setting
in Section 4.1. That is, we consider the exterior of the counterclockwise arc from
Op0 to � Op0 along @ yD as white, the exterior of the complementary arc as black, and

take Ǒ as the interface between white and black passing through Op0 and through
� Op0. Finally, let ˇ� WD �. Ǒ/ n interior.H0/.

LEMMA 4.7. Given p0 and q0, the laws of ˇ� and of ˇ are the same.

(In this statement, we consider ˇ as a set, and forget about the fact that it has
the structure of an oriented path.)

Proof. The map z 7! �z preserves Ǒ, by the symmetry of the interface. Con-
sequently, near every point p 2 ˇ� n fp0; q0g, ˇ� looks like a piecewise linear
path. Moreover, ˇ� is connected and contains p0. Since a compact simple path
has two endpoints, we conclude that q0 2 ˇ� as well. We now consider building
ˇ� by adding one segment at a time. When it hits a previously unvisited hexagon
H which is contained in xD, it is equally likely (given its past) to turn right or
left. (This is because both preimages of H are unvisited by both preimages of
the past of ˇ�.) When it hits a previously visited hexagon (or a hexagon that is
not contained in xD), it turns in such a way that it will eventually be able to reach
q0 without crossing itself, and this uniquely specifies this turn. Consequently, the
lemma follows. �

Remark 4.8. The radial interface converges to radial SLE(6) as the mesh tends
to zero.

Proof of Theorem 4.4. Given all of our preparations, the proof is rather easy.
We have shown that the above algorithm provides the correct answer. It therefore
remains to estimate its revealment. Consider some hexagon H � xD. We want to
prove that the right-hand side of (4.1) is an upper bound for the probability that
H is examined. Let a WD dist.0;H/, b WD dist.H; @ xD/ and c WD dist.p0;H/. Let
S1 be the disk of radius .a ^ b/=2 concentric with H , and let OS1 be one of the
two connected components of ��1.S1/. We have to bound the probability that
the algorithm inspects H . Clearly, we may assume a � r �O.1/. For H to be
inspected, ˇT has to get to the circle jzj DR^ .2 a/. This probability is ˛.2 a;R/.
Given that this has happened, how can we estimate the probability that ˇ is adjacent
to H? At this point, we use the equivalence of ˇ and ˇ�. The information that ˇ�

reached the circle jzj D R^ .2 a/ has no impact on the distribution of the colors
of the cells in yH whose images under � intersect S1. (Here, we assume that a is
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not too small, so that the corresponding sets of cells are disjoint. Certainly a > 10
suffices. If a is smaller, then the estimate we are now striving for is trivial.) Since
there is no hexagon intersecting both OS1 and � OS1, it follows that the conditional
distribution of the colors of the cells meeting OS1 is uniform i.i.d. Consequently,
the conditional probability that ˇ� hits H is bounded by ˛2..a^ b/=2/. Thus,

P
�
H visited

�
�O.1/ ˛.2 a;R/ ˛2..a^ b/=2/ :

In the case b � a � 2 r , we may use independence on disjoint sets to conclude that

P
�
H visited

�
�O.1/ ˛2.r/ ˛2.2 r; a=2/ ˛.2 a;R/�O.1/ ˛2.r/ ˛.2 r; a=2/ ˛.2 a;R/

.3:2/
� O.1/ ˛2.r/ ˛.r; 2 r/ ˛.2 r; a=2/ ˛.a=2; 2 a/ ˛.2 a;R/

.3:1/
� O.1/ ˛2.r/ ˛.r; R/ :

On the other hand, if b � a and a � 2 r , then we use our assumption a � r �O.1/
and (3.5) to get ˛2.a=2/� r�1=4Co.1/ � ˛2.r/ ro.1/, which is also sufficient.

In the case b < a, a similar argument (and similar to the proof of Lemma 4.3)
shows that

P
�
H visited

ˇ̌
c
�
�O.1/ ˛2.b=2/ ˛

C
�
2 bCO.1/; c � b�O.1/

�
:

Next, picking a constant q 2 .1=4; 1=3/, we then have by the above and (3.6)

P
�
H visited

ˇ̌
c
�
�O.1/ ˛2.b=2/ .c=b/

�q:

As in the proof of Theorem 4.1, we have P
�
2j � c < 2jC1

�
�O.1/ 2j =R. It easily

follows that
P
�
H visited

�
�O.1/ ˛2.b=2/ .R=b/

�q:

If b=2 > r , then we may estimate

˛2.b=2/� ˛2.r/ ˛2.2 r; b=2/� ˛2.r/ ˛.2 r; b=2/

and

.R=b/�q
.3:6/
� O.1/ ˛.b=2;R/

and we get from (3.1) and the above

P
�
H visited

�
�O.1/ ˛2.r/ ˛.r; R/ :

If b=2� r , we use instead

˛2.b=2/ .R=b/
�q
�O.1/ ˛2.b=2/ ˛2.b=2; r/ ˛.r; R/

.3:6/
� ro.1/ ˛2.r/ ˛.r; R/ :

This completes the proof. �
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Remark 4.9. It is easy to see that if we assume the analogue of (3.1) for ˛2
proved in the appendix, then the ro.1/ term in (4.1) can be replaced by O.1/.

5. Exceptional times

In this section we prove Theorem 1.3. We point out that the absolute key
necessary step is to get a good bound on the correlation for an event occurring
at two different but close-by times. Once this is done, the rest is fairly standard.
Proposition A16 in Lawler [22] indicates this general type of argument.

Proof of Theorem 1.3. By Kolmogorov’s 0-1 law, it suffices to prove that with
positive probability there are times in Œ0; 1� when the origin is in an infinite cluster.
Fix R > 2 large and let Vt;R be the event that at time t there is an open path from
the origin to distance R away. We then let

X DXR WD

Z 1

0

1Vt;R dt

be the Lebesgue measure of the set of times in Œ0; 1� at which Vt;R occurs. The
first moment of X is given by

E
�
X
�
D

Z 1

0

P
�
Vt;R

�
dt D P

�
V0;R

�
D ˛.R/ :

The second moment is

(5.1) E
�
X2
�
DE

hZ 1

0

Z 1

0

1Vs;R 1Vs0;R ds ds
0
i
D

Z 1

0

Z 1

0

P
�
Vs;R \Vs0;R

�
ds ds0:

For each site v we let

�sv WD

(
�1 v is open at time s

1 otherwise;

and for a finite set of sites S set

�sS WD
Y
v2S

�sv :

Fix s; s0 2 Œ0; 1�, and set t WD js� s0j. Recall that the state of a site v flips between
closed and open with rate 1=2. Equivalently, we may think of the state as being
re-randomized with rate 1. Consequently, P

�
�s
0

v D �
s
v

ˇ̌
!s
�
D e�tC .1�e�t /=2D

.1C e�t /=2, and hence,

E
�
�sv �

s0

v

�
D exp.�t / ; E

�
�sS �

s0

S

�
D

Y
v2S

E
�
�sv �

s0

v

�
D exp.�t jS j/ :

Moreover, if S ¤ S 0, then E
�
�sS �

s0

S 0

�
D 0. Consequently, if f is a function de-

pending on the states of finitely many lattice points and has the expansion f .!/D
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S
Of .S/ �S .!/, then

(5.2) E
�
f .!s/ f .!s0/

�
D

X
S

Of .S/2 exp.�t jS j/ :

Let f Rr .!/ be as in Theorem 4.4. Fix some t 2 .0; 1� and let r 2 Œ2; R/.
Clearly, 0� f R0 .!/� f

r
0 .!/ f

R
2r .!/ for every !. Consequently,

P
�
Vs;R \Vs0;R

�
D E

�
f R0 .!s/ f

R
0 .!s0/

�
� E

�
f r0 .!s/ f

R
2r .!s/ f

r
0 .!s0/ f

R
2r .!s0/

�
D E

�
f r0 .!s/ f

r
0 .!s0/

�
E
�
f R2r .!s/ f

R
2r .!s0/

�
� E

�
f r0 .!s/

�
E
�
f R2r .!s/ f

R
2r .!s0/

�
:

(To obtain the second equality, we have used the independence on disjoint sets of
sites.) Thus,

P
�
Vs;R \Vs0;R

�
� ˛.r/E

�
f R2r .!s/ f

R
2r .!s0/

�
D ˛.r/

X
S

e�t jS j Of R2r .S/
2:

The latter sum restricted to S with jS j D k for fixed k ¤ 0 is estimated using
Corollary 4.5, while for k D 0, we use Of R2r .∅/D ˛.2r; R/. This yields

P
�
Vs;R \Vs0;R

�
� ˛.r/

�
˛.2 r;R/2C ro.1/

1X
kD1

e�ktk ˛.2 r; R/2 ˛2.r/
�
:

It is easy to check that
P1
kD1 k e

�kt � O.t�2/. This and the inequalities (3.1)
and (3.2) allow us to write this estimate as

(5.3) P
�
Vs;R \Vs0;R

�
�O.1/ ˛.R/2 ˛.r/�1

�
1C ro.1/ t�2 ˛2.r/

�
:

We proved the above claim for all t 2 .0; 1� and r 2 Œ0; R/ but now we observe
that (5.3) is also trivially true when r � R as well. We now choose r D 2 t�8 D
2 js� s0j�8. Applying this in (5.3) with (3.3) and (3.5) gives

(5.4) P
�
Vs;R \Vs0;R

�
�O.1/ ˛.R/2 js� s0j�5=6Co.1/:

Hence,

(5.5)
Z 1

0

Z 1

0

P
�
Vs;R \Vs0;R

�
ds ds0 �O.1/ ˛.R/2:

The Cauchy-Schwarz inequality tells us that

P
�
X > 0

�
�

E
�
X
�2

E
�
X2
� :

Consequently, the above inequality, the fact that E
�
X
�
D ˛.R/, the expression (5.1)

for E
�
X2
�

and (5.5) show that infR>0 P
�
XR > 0

�
> 0. Let TR WD ft 2 Œ0; 1� W

Vt;R holdsg. Fatou’s lemma tells us that with positive probability TR ¤ ∅ for
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infinitely many R 2 N. Since TR � TR0 when R0 >R, this implies that

P
�
\R>0 fTR ¤∅g

�
> 0:

Our goal is to show that P
�T

R TR ¤∅
�
> 0. Since the TR’s are not closed sets,

\R>0 fTR ¤∅g does not immediately imply
T
R TR ¤∅. (The reason that TR

is not necessarily closed is that the set of times at which an edge is open is not
a closed set since we have a right continuous process.) This technicality is taken
care of by the following lemma from [13].

LEMMA 5.1 ([13]). Let 0 < p < 1 and let G be any graph where �p.C/D 0.
Let f!tg represent our dynamical percolation process in that !t .v/ is the state of
vertex v at time t . Consider the process f N!tg obtained from f!tg by setting, for
every vertex v, the set ft W N!t .v/D 1g to be the closure of the set ft W !t .v/D 1g.
Then ‰p-a.s., for every vertex v

ft 2 Œ0;1/ W v percolates in N!tg D ft 2 Œ0;1/ W v percolates in !tg :

In particular, a.s. this set of times is closed.

Returning to our proof, let TR be the closure of TR. It is easily checked that\
R>0

TR D ft 2 Œ0; 1� W 0 percolates in N!tg;

where f N!tg is defined as in Lemma 5.1. By compactness, if the TR’s are all
nonempty, it follows that

T
R TR is nonempty. This implies that there is some

time at which N!t percolates and hence by Lemma 5.1, some time at which the
original process !t percolates. �

For future reference, we note that Lemma 5.1 implies that a.s.

(5.6)
\
R>0

TR D
\
R>0

TR:

6. Hausdorff dimension of exceptional times

In this section, we prove Theorem 1.9. This is separated into two theorems,
Theorem 6.1 and Theorem 6.3, where lower and upper bounds are given. We
point out however that the lower bound is simply a refinement of the argument for
proving that there exist exceptional times. First note the fact that the Hausdorff
dimension is an almost sure constant follows immediately from ergodicity.

THEOREM 6.1. As such, the Hausdorff dimension of the set of exceptional
times is at least 1=6.

Proof. Fix  < 1=6. It suffices by ergodicity and countable additivity to show
that with positive probability, the set of exceptional times in Œ0; 1� at which the
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origin percolates has Hausdorff dimension at least  . For each integer R, let, as
before, Vt;R be the event that at time t there is a path from the origin to distance
R away and define a random measure �R on Œ0; 1� by

�R.S/D
1

˛.R/

Z
S

1Vt;Rdt

for each Borel set S � Œ0; 1�.
The results in the previous section immediately give that EŒk�Rk� D 1 and

EŒk�Rk2��O.1/ where k�Rk denotes the total variation of the measure �R.
Cauchy-Schwarz gives

E
�
k�Rk

2
�1=2 P

�
k�Rk> 1=2

�1=2
� E

�
k�Rk1k�Rk>1=2

�
� EŒk�Rk�� 1=2D 1=2:

Consequently, P
�
k�Rk> 1=2

�
� C1 for some constant C1 > 0. Given a measure

m on Œ0; 1� and  > 0, let

E .m/D

Z Z
jt � sj� dm.t/ dm.s/:

Note that

E
�
E .�R/

�
D E

hZ 1

0

Z 1

0

d�R.t/ d�R.s/

jt � sj

i
D

Z 1

0

Z 1

0

P
�
Vt;R \Vs;R

�
˛.R/2 jt � sj

dt ds :

Therefore, by (5.4) and  < 1=6,

C2 WD sup
R

E
�
E .�R/

�
<1 :

By Markov’s inequality, for all R and for all T ,

P
�
E .�R/� C2T

�
� 1=T:

Choose T so that 1=T < C1=2. Letting

UR D fk�Rk> 1=2g\ fE .�R/� C2T g;

by the choice of T , we have that

P
�
UR
�
� C1=2:

By Fatou’s lemma,
P
�
lim sup
R!1

UR
�
� C1=2:

We now show that on the event lim supR UR, the Hausdorff dimension of the set
of percolating times in Œ0; 1� is at least  . Let TR again be the closure of the set of
times in Œ0; 1� at which there is a path from the origin to distance R away. Clearly
�R is supported on TR. By (5.6), it suffices to prove that

T
R>0 TR has Hausdorff

dimension at least  on the event lim supR UR. This is achieved in the following
(deterministic) lemma, which completes the proof. �
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LEMMA 6.2. Let D1 � D2 � D3 : : : be a decreasing sequence of compact
subsets of Œ0; 1�, and let �1; �2; : : : be a sequence of positive measures with �n
supported on Dn. Suppose that there is a constant C such that for infinitely many
values of n,

(6.1) k�nk> 1=C; and E .�n/� C:

Then the Hausdorff dimension of
T
nDn is at least  .

Proof. Choose a sequence of integers fnkg for which (6.1) holds. Note that
k�nkk

2 � E .�nk /� C . By compactness, choose a further subsequence fn0
k
g of

fnkg so that �n0
k

converges weakly to some positive measure �1. Clearly �1 is
supported on

T
nDn and k�1k � 1=C . For all M , we have thatZ Z

jx�yj� ^M d�1.x/ d�1.y/

D lim
k!1

Z Z
jx�yj� ^M d�n0

k
.x/ d�n0

k
.y/� C:

Now let M !1 and apply the monotone convergence theorem to conclude thatZ Z
jx�yj� d�1.x/ d�1.y/� C:

Since k�1k> 0, it now follows from Frostman’s theorem (see for example, [17])
that the Hausdorff dimension of

T
nDn is at least  . �

THEOREM 6.3. As such, the Hausdorff dimension of the set of exceptional
times is at most 31=36.

Proof. Let Un be the event that there is a time in Œ0; 1=n� for which the origin
percolates. Since the set of vertices which are open for some t 2 Œ0; 1=n� is an i.i.d.
process with density 1=2C .1� e�1=.2n//=2� 1=2C 1=n, it is immediate that

P
�
Un
�
� � 1

2
C 1
n
.C0/;

where C0 is the event that the origin percolates. By page 3 of [31], for every " > 0,
there is a C so that

(6.2) � 1
2
C 1
n
.C0/� C n

"�5=36:

Now let

Nn D

nX
jD1

1Uj;n ;

where Uj;n is the event that there is a time in Œ.j � 1/=n; j=n� for which the origin
percolates (so that U1;nDUn above). By the above, we have that E

�
Nn
�
�Cn

31
36
C".
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It follows that

lim
n

E
�
Nn
�

n
31
36
C2"
D 0

and so from Fatou’s lemma, we get

E
h
lim inf
n

Nn

n
31
36
C2"

i
D 0:

Therefore

lim inf
n

Nn

n
31
36
C2"
D 0

a.s. This says that a.s. for infinitely many n, the set of exceptional times in Œ0; 1�
at which the origin percolates can be covered by n

31
36
C2" intervals of length 1=n.

Hence, the Hausdorff dimension of the set of these exceptional times is at most
31
36
C 2" a.s. By countable additivity, we are done. �

Remark 6.4. The upper bound will be proved again by a different argument
when we prove Theorem 1.16. The above proof is included here, because it is
shorter. One should nonetheless point out that the above argument uses (6.2), while
the argument below is more self-contained.

7. Exceptional times for k-arm events

In this section, we give the proofs of the lower bounds in Theorems 1.15 and
1.16, but generally omit those details which are the same as in the corresponding
proofs of Theorems 1.3 and 6.1.

For � > 0 and integer k � 1, let AkW� .r; R/ be the event that we have k disjoint
crossings of alternating colors (with black most clockwise) between distances r and
R of the origin in W� and let ˛kW� .r; R/D P

�
AkW�

.r; R/
�
. If r is suppressed, then

it is taken to be 10 k.
We will, of course, need the asymptotics of ˛kW� .r; R/. For this purpose,

conformal invariance will be used. Although when � > 2� the surface W� is not
planar and conformal invariance is usually stated for planar domains, the proof
of conformal invariance certainly holds in this setting. The asymptotic decay as
R=r !1 of the probability of k disjoint crossings between distances r and R
in W� from the origin in the percolation scaling limit is determined by conformal
invariance. Specifically, the map z 7! z�=� maps W� to the upper half-plane, and
we may conclude from (3.8) that the decay (for the percolation scaling limit) is of
the form .R=r/

��k.kC1/
6�

Co.1/, as R=r !1 while k stays fixed. Then, one can
conclude, as for the other exponents we have discussed, that for R � r � 10 k,

(7.1) ˛kW� .r; R/D .R=r/
��k.kC1/

6�
Co.1/;
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as R=r!1 while k is fixed, by the argument in [31]. We will also use the fact
that the quasi-multiplicativity relations (3.1) and (3.2) hold for ˛kW� and for ˛2.
This is proved in the appendix; see Remark A.6.

Proof of the lower bound in Theorem 1.15. We first handle the case k D 1 and
therefore abbreviate temporarily ˛1W� .r; R/ by ˛W� .r; R/. (A different approach
will be needed for k � 2.) Let D be the union of the hexagons in W� that contain
points whose distance from the origin is in Œr; R�. Let @RD and @rD denote the set
of points in @D that are at distance �R (respectively, � r) from the origin. Also,
we denote by @0D and @�D, the components of @D\ @W� that are at angle about
0 (respectively, about � ) in radial coordinates on W� .

The algorithm we use to determine if there exists a crossing of D is essentially
the same as the algorithm determining the existence of a left to right crossing of a
square, where @RD plays the role of the right side of the square and where @rD
plays the role of the left side of the square. (This is of course crucial; if we reversed
things, then the hexagons near the inner circle would be revealed with too high a
probability.) It is clear that this algorithm works and so we now need to compute
its revealment. We will show that the revealment is

(7.2) O.1/ ˛2.r/ ˛W� .r; R/ :

Using (7.1) and (3.6), one can show that this is essentially (i.e., up to some O.1/
factor) monotone decreasing in r in the relevant range � > 8�=3.

We just look at the first interface arising in the algorithm, the one which ter-
minates when it hits @rD[ @�D, since the estimates for the second interface will
be essentially the same.

Fix some hexagonH �D. Let sD dist.H; @RD[@0D[f0g/ with 0 denoting
the origin. We also use jpj to denote distance from 0 in W� . We distinguish several
different cases.

Case 1: dist.H; f0g/D s. For H to be visited, we need our 2-arms event hold-
ing within distance s=2 of H and a crossing of the desired color between distance
2s and distance R from the origin. These are independent and we get that H is
visited with probability at most ˛2.s=2/ ˛W� .2s; R/. By the analogues of (3.1)
and (3.2) for ˛2 and ˛W� , this is compatible with our claimed revealment (7.2).

Case 2: dist.H; @RD/Ds. As in the proof of Theorem 4.4 with cWDdist.p0;H/
^ .R=2/, we obtain

P
�
H visited

ˇ̌
p0
�
�O.1/ ˛C.2sCO.1/; c � s�O.1// ˛2.s=2/:

Proceeding as in that proof, we see that this is also compatible with our claimed
revealment (7.2).
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Case 3: dist.H; @0D/D s. Let w 2 @0D so that dist.H;w/D s. We separate
Case 3 into three subcases.

Case 3(a): s � jwj=2. Then the triangle inequality gives dist.H; 0/ � 3s.
For H to be visited, we need our 2-arms event holding within distance s=2 of
H and a path of the desired type between distance 4s and distance R from the
origin. These are independent and we get that H is visited with probability at
most ˛2.s=2/ ˛W� .3s; R/, which is compatible with our claimed revealment (7.2).

Case 3(b): s � jwj=2�R=4. For H to be visited, we need our 2-arms event
holding within distance s=2 of H , a white crossing in the half-annulus centered at
w with outer radius jwj and inner radius 2s (which is identical to a half-annulus in
a half-plane; jwj �R=2 guarantees that the above half-annulus does not intersect
@RD) and a white crossing between distance 2jwj and distance R from the origin.
These are independent and we get that H is visited with probability at most

˛2.s=2/ ˛C.2s; jwj/ ˛W� .2jwj; R/:

Since up to an O.1/ factor, ˛2.s/ ˛C.s; jwj/ is increasing in s, the product of the
first two terms is at most O.1/ ˛2.jwj/ and since jwj � 2 s � r , the whole product
is at most

O.1/ ˛2.r/ ˛W� .r; R/:

Case 3(c): jwj �R=2; s � jwj=2. For H to be visited, we need our 2-arms
event holding within distance s=2 ofH and if 2s <d.p0; w/ it is also necessary that
a white crossing occurs between distances 2s and d.p0; w/^ jwj from w. (Note
that the latter event takes place in the upper half-plane.) These are independent
and since jwj �R=2 we get

P
�
H visited

ˇ̌
p0
�
�O.1/ ˛C

�
2s; d.p0; w/^ .R=2/

�
˛2.s=2/ :

As in Case 2, this is compatible with (7.2).

This covers all possible cases, and hence establishes that the revealment is as
claimed.

We now proceed to discuss the algorithm and the revealment when k > 1. It
turns out simplest in fact to modify the event AkW� .r; R/ as follows. Partition the
outer boundary @RD into k arcs of roughly equal diameter Y1; Y2; : : : ; Yk (ordered
counterclockwise) and let QAkW� .r; R/ be the event that for every odd (respectively,
even) i 2 f1; 2; : : : ; kg there is a black (respectively, white) crossing inD from @rD

to Yi . Thus, instead of looking at the set of times for which AkW� .r0; R/ occurs
(where r0D 10 k, say), we will look at the set of times at which QAkW� .r0; R/ occurs.
Clearly, QAkW� .r; R/� A

k
W�
.r; R/, and therefore this is justified. We will also use
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the relation

(7.3) P
�
AkW� .r; R/

�
� C �k P

�
QAkW� .r; R/

�
;

for some constant C �
k

, depending only on k and � , which holds by Remark A.7.
If Y � @RD is an arc, let A1Y .r; R/ (respectively, A�1Y .r; R/) be the event that

there is a white (respectively, black) crossing from Y to @rD in D. Suppose that
for each i D 1; 2; : : : ; k, we have a partition Yi D Yi;C[Yi;� of Yi into two arcs
Yi;C and Yi;�. Since A˙1Yi .r; R/D A

˙1
Yi;C

.r; R/[A˙1Yi;�
.r; R/, we have

(7.4) QAkW� .r; R/D
[

y2f�;Cgk

k\
iD1

A
.�1/i

Yi;yi
.r; R/ :

The algorithm starts out by picking points xi 2 Yi , randomly, uniformly and
independently. Then Yi;C and Yi;� are chosen as the two components of Yi n fxig.
For each of the 2k possible y 2 f�;Cgk , the algorithm then proceeds to determine
if the corresponding component

A.y/ WD

k\
iD1

A
.�1/i

Yi;yi
.r; R/

of (7.4) has occurred. For that purpose, interfaces are started at each of the points
xi , and are followed until the event has been determined one way or the other. (Of
course, the interface will have either white on the left and black on the right or
vice versa, depending on the color of crossing it is meant to detect and whether the
corresponding arc Yi;˙ is to the left or right of xi .) However, the order in which
the interfaces are extended is somewhat important. A simple rule that works is
that among the hexagons necessary to extend the k interfaces one more step, the
algorithm chooses the one that is farthest away from 0. The event A.y/ is decided
positively only if all k interfaces reach @rD.

The revealment of this algorithm is at most k 2k times the maximum prob-
ability that the interface, started at xi , visits a hexagon H before the determi-
nation of the corresponding A.y/ is terminated. Here, the maximum is over all
hexagons H �D and all i 2 f1; 2; : : : ; kg. The corresponding bound is attained
as in the case k D 1, but now ˛1W�

is replaced by ˛kW� . Our rule of thumb for
selecting which interface to extend guarantees that we never examine a hexagon
H unless QAkW�

�
dist.0;H/CO.1/;R

�
occurred. As in the case k D 1, when es-

timating the revealment it is important that ˛2.r; R/ � O.1/ ˛kW� .r; R/. In the
range � > 4� k .k C 1/=3, which is the relevant range for the lower bound in
Theorem 1.15, this follows from (7.1).

The remainder of the proof goes through as before. �
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Proof of lower bound in Theorem 1.16. Here we simply say that the proof
for the lower bounds in Theorem 1.15 can be carried out in a similar way. In fact,
for k � 2, the proof is simpler topologically than the k D 1 case for the plane,
since we do not need to worry about interfaces making complete circuits around
the origin (if this ever happens, the event in question cannot occur and we stop the
algorithm). �

8. Upper bounds for k-arm times

The following result, which will be useful for the proofs of the upper bounds
in Theorems 1.15 and 1.16, is abstract: the graph structure does not play any role.
Let A be an event involving independent Bernoulli .1=2; 1=2/ random variables
X1; X2; : : : ; Xm. Recall that the influence of the index i on A, denoted Ii .A/, is
the probability that Xi is pivotal; namely, that changing the value of Xi changes
whether A occurs or not. The sum of the influences is denoted by I.A/D

P
i Ii .A/.

THEOREM 8.1. Let fAngn�1 be some sequence of events in f0; 1gV , each
depending on only finitely many coordinates. Assume that limn!1 PŒAn�D 0. Let
f!tg be the Markov process on f0; 1gV where independently 0’s go to 1 at rate 1=2,
1’s go to 0 at rate 1=2 and started according to its stationary distribution � 1

2
. Let T

be the set of exceptional times t at which !t 2
T
n�1An. If lim infn!1 I.An/<1,

then T D∅ a.s. Otherwise, the Hausdorff dimension of T is a.s. at most

(8.1) lim inf
n!1

�
1�

log PŒAn�
log I.An/

��1
:

Proof. Let Tn WD ft 2 Œ0; 1� W !t 2 Ang, let @Tn be the boundary points of Tn
in .0; 1/ and set Nn WD j@Tnj. We claim that

(8.2) E
�
Nn
�
D I.An/=2:

To see this, write Nn D
P
v N

v
n where N v

n counts the number of elements in @Tn
at which time the vertex v flipped. We now need to show that, for each vertex v,
E
�
N v
n

�
is Iv.An/=2. Given a time interval Œt; tCdt�, the probability that there is a

time point in the interval which contributes to N v
n is equal to Iv.An/ dt=2Co.dt/

and the probability of k � 2 such time points is clearly O.dtk/. From this, (8.2)
easily follows.

For any " > 0, let T "n be the "-neighborhood of Tn intersected with Œ0; 1�.
Since T "n � Tn[

S
x2@Tn

Œx� "; xC "�,

(8.3) �.T "n /� �.Tn/C 2Nn " ;

where � denotes Lebesgue measure. For any set U and " > 0, let N.U; "/ denote
the number of " intervals needed to cover U . From the above, using the fact that
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the intervals comprising T "n all have length at least ", it follows that N.T "n ; "/ �

2�.T "n / "
�1, and so, using (8.3),

N.Tn; "/� N.T "n ; "/� 2�.Tn/ "
�1
C 4Nn :

Therefore, by Fubini’s theorem and (8.2),

(8.4) E
�
N.Tn; "/

�
� 2PŒAn� "�1C 2 I.An/ :

We temporarily assume that lim infn!1 I.An/D1. Let anDP
�
An
�
=I.An/,

which goes to 0 as n!1. By (8.4), we have

(8.5) E
�
N.T; an/

�
� E

�
N.Tn; an/

�
� 4 I.An/ :

By passing to a subsequence if necessary, we assume with no loss of generality that
the lim inf in (8.1) is a limit. Let L denote the value of that limit. It is elementary
to check that for every " > 0, for all sufficiently large n,

I.An/�

�
I.An/

PŒAn�

�LC"
:

This together with (8.5) implies that the Hausdorff dimension of T is at most LC "
a.s. As " is arbitrary, this completes the proof in the case I.An/!1.

Since Tn ¤ ∅ implies that Nn � 1 or Tn � .0; 1/, it follows by (8.2) and
Markov’s inequality that

P
�
Tn ¤∅

�
� P

�
An
�
C I.An/ :

Thus, T D∅ a.s. when lim infn I.An/D 0.
The case lim infn I.An/ 2 .0;1/ requires a different argument. Let "n Dp

PŒAn�. By (8.4), we have lim infn!1 E
�
N.Tn; "n/

�
<1. Since "n ! 0, the

cardinality jT j of T is bounded from above by lim infn!1N.Tn; "n/. Fatou’s
lemma yields E

�
jT j
�
<1 and hence P

�
jT j<1

�
D 1. We finally conclude that

PŒT ¤∅�D 0 by combining [11, Th. 6.7] and [10, (2.9)]. �

Proof of Theorem 1.16. Since the lower bounds have been established in
Section 7, it remains to prove the upper bounds. Fix k D 1 or k > 1 even. Let
AR be the event that there are k disjoint crossings of the annulus DR WD fz 2 C� W
10k � jzj �Rg, where we require that the colors be alternating if k ¤ 1. Here, jzj
denotes the distance to 0, which is the apex of the cone C� . One can prove that

(8.6) P
�
AR

�
D

(
R�5�=.24�/Co.1/ k D 1;

R.1�k
2/�=.6�/Co.1/ k > 1;

in the very same way that we have justified (7.1). By Theorem 8.1 (and easy
algebraic manipulation), it therefore suffices to prove that

(8.7) I.AR/=PŒAR��R3=4Co.1/:
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Let H be a hexagon in C� , and let s D s.H/ be the distance from H to 0. For
H to be pivotal it is necessary that there be k disjoint (alternating, if k > 1) cross-
ings from distance 10 k to s=2 from the origin (unless s=2 � 10 k) and between
distances 2s and R (unless 2s � R). Likewise, there should be four alternating
crossings between H and distance .s=2/^ dist.H; @DR/ from H . These events
are independent. Using the quasi-multiplicative property of the k-arm crossing
events (Remark A.6) and (3.7) with k D 4, this gives (when s < 8R=9),

(8.8) IH .AR/�O.1/PŒAR� s�5=4Co.1/

where this O.1/ factor (as well as those appearing below) may depend on k and � .
Since the number of hexagons in C� satisfying s D s.H/ < � is O.�2/, an easy
calculation yields X

H Ws.H/<8R=9

IH .AR/�O.1/PŒAR� R3=4Co.1/ :

Now suppose that H is a hexagon satisfying s.H/ � 8R=9. For H to be
pivotal, it is necessary that there be k (alternating, if k > 1) crossings in C� between
fjzj D 10 kg and fjzj DR=2g, there should be four alternating crossings between
H and distance dist.H; @DR/=2 from H , and there should be three alternating
crossings between distance 2 dist.H; @DR/ and distance R=2 from a point on @DR
closest to H . The latter event is governed by the 3-arm half-plane exponent, whose
asymptotic behaviour is described by (3.8). Since sC dist.H; @DR/DRCO.1/,
we get

IH .AR/�O.1/PŒAR� .R� s/�5=4Co.1/ ..R� s/=R/2Co.1/ :

Since for b � 1 there are O.b R/ hexagons at distance � b from fjzj DRg, another
easy calculation givesX

H Ws.H/�8R=9

IH .AR/�O.1/PŒAR� R3=4Co.1/ :

Together, this yields (8.7) and the proof is complete. �

Proof of Theorem 1.15. The lower bound was proved in Section 7, and so
only the upper bound needs to be justified. The proof proceeds like the proof of
the upper bound in Theorem 1.16, except that the influence estimates are slightly
different.

LetDRDfz 2W� W10 k�jzj�Rg, AR be the k-arm event inW� between fz W
jzjD10 kg and fz W jzjDRg, andH �DR be a hexagon. Let sD s.H/Ddist.0;H/,
and let b D b.H/ D dist.H; @DR/, where we write @DR for the boundary of
DR in C1; i.e., the points on @W� are included. For H to be pivotal for AR,
it is necessary that the k-arm event holds between distance 10 k and s=2 from 0
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(unless s=2� 10 k) as well as between distances 2s and R (unless 2s �R), that the
alternating 4-arm event holds between H and distance b=2 away from H , and that
the alternating 3-arm event must hold between distances 2b and s=4 away from
a point in @DR closest to H (unless 2b � s=4). There are O.b0s0/ hexagons H
satisfying b.H/ � b0 and s.H/ � s0. The rest of the proof proceeds like that of
Theorem 1.16, and is left to the reader. �

Proof of Theorems 1.10, 1.12, 1.13 and 1.14. At any time at which there are
two infinite white clusters in the plane, we must also have the 4-arm event occurring
(with alternating colors) but by Theorem 1.16 (with k D 4 and � D 2�), there are
no such times. This proves Theorem 1.10.

At any time at which there are two infinite different colored clusters, we must
also have the 2-arm event occurring (with different colors) but by Theorem 1.16
(with k D 2 and � D 2�), the set of such times has Hausdorff dimension at most
2=3. This proves Theorem 1.12. The other two theorems are similarly proved. �

9. The square lattice

We start this section by proving Theorem 1.11. Afterwards, possible ways in
which our arguments for Theorem 1.3 may be improved to apply to Z2 as well,
will be discussed.

In the proof of Theorem 1.11 we will use the fact that the six alternating arms
exponent is larger than 2, or, more precisely, that the probability for six alternating
arms between radii r and R is bounded above by O.1/ .r=R/2C" for some " > 0.
This is essentially due to [20, Lemma 5], but a proof is also given in the appendix
(Corollary A.8).

Proof of Theorem 1.11. For 0 < r < R, let S.r; R/ be the event that there
are three different clusters that connect the circles of radii r and R about 0. By
the above mentioned bound on the alternating 6-arm probabilities, We may choose
some fixed " > 0 and some function �D �.r/ > r such that for static critical bond
percolation on Z2, for all r ,

(9.1) P
�
S.r; �/

�
� ��2�" :

Consider some bond e, and let F.e/ be the event that e is pivotal for S.r; �/.
Then P

�
F.e/

�
is just the influence Ie.S.r; �//. Assume that P

�
F.e/

�
¤ 0. Note

that the events F.e/ and fe is openg are independent events. This implies that
P
�
S.r; �/

ˇ̌
F.e/

�
D 1=2, which one may write

P
�
F.e/\S.r; �/

�
D P

�
F.e/\:S.r; �/

�
:

Since this applies to every bond e, we conclude that the expected number of pivotals
on the event S.r; �/ is half of the total influence I.S.r; �//. However the number
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of pivotals for S.r; �/ is bounded by the total number of edges intersecting the disk
of radius � about the origin, which is certainly O.�2/. Thus,

I.S.r; �//� 2P
�
S.r; �/

�
O.�2/DO.��"/:

Consequently, by Theorem 8.1, for every r0 > 0 a.s. there are no exceptional times
in which

T
r>r0

S.r; �.r// holds. This proves our theorem. �

Remark 9.1. An alternative way to prove the above result is based on using
the fact that the 6-arm exponent is strictly larger than 2 together with the fact that
the number of different configurations (counting repetitions) that appear in a ball of
radius n during the time interval Œ0; 1� has a Poisson distribution with a parameter
which is at most O.1/n2.

As we will briefly explain below, the proof of Theorem 1.3 almost works for
bond percolation on the square grid. In fact, there are several alternative routes by
which the result might perhaps be extended to Z2:

(1) Establishing

(9.2) ˛2.r/�O.r
�"/ ˛.r/2

for Z2 for some fixed " > 0,

(2) improving the estimate (1.3),

(3) proving the existence of an algorithm (or a witness which would still permit
the use of Theorem 1.8) with smaller revealment,

(4) extending Smirnov’s theorem to Z2.

Note that the weaker version of (9.2) ˛2.r/� ˛.r/2 follows from either the
Harris-FKG inequality or Reimer’s inequality [27]. Kesten and Zhang have proved
some related strict inequalities between exponents [21], but it seems that their meth-
ods are not sufficient to prove (9.2).

We now explain why (9.2) in the Z2 setting implies exceptional times for Z2.
First we want to have the revealment for the algorithm determining f Rr bounded
by O.1/ ˛2.r/ ˛.r; R/. One problem seems to be that the bound on the revealment
for the triangular grid involves the summand featuring ˛C, which is relatively
negligible, while on Z2, we do not know how to prove that the other summand
dominates. The fix is to replace the deterministic R by a random R0t 2 ŒR; 2R�.
The random variable R0t will depend on some extra random bits, that we add,
and these random bits also evolve in time. We construct the dependence of R0

on these bits so that R0 can be calculated by an algorithm with very small re-
vealment. This is rather easy to arrange, because we are not limited in the num-
ber of bits that we may take. If we consider an edge whose distance from the
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origin a is in the range ŒR=2; 2R�, then the probability that the edge is exam-
ined given R0 is at most O.1/ ˛2.R0 � a/ 1R0�a�1. By (A.1), this is at most
O.1/ ˛2.R/ ˛2.R

0 � a;R/�1 1R0�a�1. The probability that jR0 � aj � 2j is at
most O.1/ 2j =R. We also know that ˛2.r1; r2/�1 � O.1/ .r2=r1/1�"

0

for some
"0 > 0, by Reimer’s inequality [27] and (A.5). It follows that the probability that
such an edge is examined is O.1/ ˛2.R/. The ro.1/ factor in Theorem 4.4 is easily
replaced by an O.1/ factor, if we use Proposition A.1 in the course of the proof.
Then we get (5.3) for the square grid, but without the ro.1/ factor. We may then
choose the dependence between r and t such that ˛.r/ � t r"=2, where " is the
constant in (9.2). The rest is immediate from (5.3), since clearly r�"=2 �O.1/ t"

0

for some "0 > 0.
A consequence of this argument, which applies without assuming (9.2), is that

for bond percolation on Z2 we have

P
�
Vt;R \V0;R

�
�O.t�1/P

�
Vt;R

�2
:

This gives yet another illustration as to how close the result for Z2 seems to be — if
the t�1 term was improved to t�1C", that would have been enough. Consequently,
significant improvements in the algorithm or in (1.3) would also be sufficient.

10. Some open questions

Following are a few questions and open problems suggested by the present
paper.

(1) For the results in Theorems 1.15 and 1.16, what is the Hausdorff dimension
of the set of exceptional times in question? We tend to believe that the answer
is the upper bound. In particular, is the upper bound of 31=36 in Theorem 1.9
the correct answer?

(2) Prove that there exist exceptional times for percolation on the square lattice
(see Section 9 for a discussion).

(3) What is the best  for which Theorems 1.6 and 1.7 hold?

(4) What is the best revealment of an algorithm determining the event QR in
Theorem 4.1?

(5) What is the sharp form of Theorem 1.8?

(6) What are the properties of the infinite cluster at an exceptional time at which
it exists? For example, what is the growth rate of the number of vertices in
the Euclidean disk of radius r around the origin which belong to the cluster of
the origin at the first time t � 0 in which the cluster is infinite? Is the growth
rate the same at all exceptional times?
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(7) What is the relationship between the exceptional infinite cluster and the incip-
ient infinite cluster?

Note added in proofs. Questions (1), (2), and part of (3) have been answered
by C. Garban, G. Pete, and O. Schramm. Question (7) has been answered by
A. Hammond, G. Pete, and O. Schramm.

Appendix A. Quasi-multiplicativity

In this appendix, we discuss the k-arm probabilities and prove that they satisfy
the corresponding analogue of the relation (3.1). For R > 0, let HR be the union
of the hexagons intersecting B.0;R/. For R > r > 0 let Aj .r; R/ denote the event
that there are at least j crossings from @Hr to @HR, of alternating colors. The
following result refers to critical site percolation on the triangular grid and critical
bond percolation on the square grid.

PROPOSITION A.1. Let j > 0 be even. There is a constant C , depending only
on j , such that for all r < r 0 < r 00

(A.1) C�1 P
�
Aj .r; r

00/
�
� P

�
Aj .r; r

0/
�

P
�
Aj .r

0; r 00/
�
� C P

�
Aj .r; r

00/
�
;

and P
�
Aj .r; 2 r/

�
> 1=C if P

�
Aj .r; 2 r/

�
> 0 (i.e., if r is large enough to allow j

crossings). Moreover, a corresponding statement holds for critical bond percola-
tion on the square grid which alternate between primal and dual crossings.

This theorem would have been a useful tool in [31], had it been available.
Instead, the authors of that paper proved a weaker form of this which was good
enough for their purposes. Our proof below uses techniques from [19], [24] and
[31]. Indeed, the entire results of the appendix do follow from the ideas of [19]. We
include them here for completeness, and for ease of reference. Additionally, though
the basic ideas are the same, in several respects our treatment is a bit different
from [19].

Below, we will work in the setting of the triangular grid. The proof for the
square grid is essentially the same. In the setting of the triangular grid, there is
the color exchange trick [20], [1], which shows that the probability for having
alternating crossings is comparable to the probability of any color sequence as
long as both colors are present. In the setting of the square grid, as far as we know,
such a trick does not exist. At the end of the appendix we will explain how the
proof of Proposition A.1 can be generalized to any color sequence.

In the following, an interface from @Hr to @HR is an oriented simple path in
the hexagonal grid that has one color of hexagons adjacent to it on the right, and
the opposite color adjacent to it on the left. Thus, it is the common boundary of a
black crossing and a white crossing.
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For R > r > 1, consider all the interfaces crossing from @Hr to @HR, and
define s.r; R/ to be the least distance between any pair of endpoints of two inter-
faces on @HR. If there are no interfaces, we take s.r; R/D1. Note that s.r; R/ is
monotone nonincreasing in r . This quantity will roughly measure the “quality” of
the interfaces; when s.r; R/ is comparable to R, the interfaces are well separated,
and, as we will see, easier to extend.

LEMMA A.2. For all a 2 .0; 1/, R > 0, ı > 0,

P
�
s.a R;R/ < ı R

�
� C ı";

where C D C.a/ is a constant depending only on a and " > 0 is an absolute
constant.

The lemma probably follows from [19, Lemma 2], but since the proof is rather
short, we include a proof for completeness.

Proof. We prove this in the case aD 1=2. The general case is essentially the
same. Let ˛� @HR be an arc of diameter R=3, and let Y be the set of points in HR
at distance at most R=3 from ˛. Let ˛1 be one of the two arcs in @Y \@HR n˛. Let
ˇ1; ˇ2; : : : ; ˇk be the interfaces crossing from @Y n @HR to ˛, ordered so that for
i1< i2� k, the interface ˇi1 separates ˛1 from ˇi2 in Y . Fix a positive integer i and
condition on i � k and on ˇi . Let Ǒi denote the union of the hexagons adjacent
to ˇi . Then the percolation in the connected component Yi of Y n Ǒi separated
from ˛1 by ˇi remains unbiased. Suppose that the hexagons in Ǒi adjacent to Yi
are white, say. Let zi denote the endpoint of ˇi on ˛. The RSW theorem implies
that there is some constant " > 0 such that with conditional probability 1�O.1/ ı"

there is a white crossing in Yi nB.zi ; ı R/ from @ Ǒi to @HR. On that event, it is
clear that if k � i C 1, then jzi � ziC1j � ı R. We conclude that

P
h
k � i C 1; jzi � ziC1j � ı R

ˇ̌̌
k � i; ˇi

i
�O.1/ ı":

The RSW theorem also implies that there is conditional probability bounded away
from zero that kD i given k� i and ˇi (this would be guaranteed by an appropriate
crossing in Yi from @ Ǒi to @HR n˛). Therefore, P

�
k � i

�
� ci for some constant

c < 1. Thus,

P
h
k � i C 1; jzi � ziC1j � ı R

i
D P

h
k � i C 1; jzi � ziC1j � ı R

ˇ̌̌
k � i

i
P
�
k � i

�
DO.1/ ci ı" :

We sum this over all i D 1; 2; : : :, and over an appropriate covering of @HR by
O.1/ arcs ˛ of diameter R=3. The lemma follows. �
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Next, we prove a statement saying, roughly, that if the crossings are “reason-
ably good”, then there is a conditioned probability bounded away from zero that
they extend and the extensions are “very good”.

LEMMA A.3. For every j > 0 even, there is a constant Nı D Nı.j / > 0 such
that for every ı > 0 there is some constant c.ı/ > 0, depending only on ı, such that
when R > r ,

P
h
Aj .r; 4R/\fs.r; 4R/ > 4 Nı Rg

ˇ̌̌
Aj .r; R/\fs.r; R/ > ı Rg

i
> c.ı/ :

Proof. Set S DHR nHr . We assume that Aj .r; R/ holds and that s.r; R/ >
ı R. Let 0; : : : ; k�1 (k � j ) be the collection of all interfaces crossing from @Hr
to @HR, in counterclockwise order, where we choose the indexes so that 0 has
white hexagons on the right-hand side. (The interfaces are oriented from @Hr to
@HR.) In the following, we set i WD i 0 when i … f0; 1; : : : ; k � 1g and i 0 D i
mod k. Set � D

S
i2N i . How does conditioning on the interfaces 0; : : : ; k�1

affect the percolation process? Note the fact that there are no more than k interfaces
means that for each i 2 N there is a white crossing in S n� from the right-hand
side of 2i to the left side of 2i�1 and a black crossing in S n � from the left
side of 2i to the right side of 2iC1. Otherwise, the configuration is unbiased on
hexagons that are not adjacent to these interfaces.

Let zi be the endpoint of i on @HR, i 2N. For i D 0; 1; : : : ; j � 1, let wi be a
point @HR that is roughly in the center of the counterclockwise arc from zi to ziC1.
Then jwi � zi j � ı R=5, and the same is true for jwi � ziC1j. It is easy to see that
there exist disjoint simple paths ˇ0; : : : ; ǰ�1 satisfying the following. (See Figure
A.1.) (1) Each ˇi is a path in H4R nHR from wi to a point w0i 2 @H4R. (2) The

HR

@H4R

Figure A.1. The paths ˇi .
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points w0i are roughly equally spaced on @H4R. (3) Each ˇi \H2R is contained
in the line through the origin containing wi , and each ˇi nH3R is contained in the
line through the origin containing w0i . (4) The distance from each of these paths
to any other path is at least c1 ı R, where c1 2 .0; 1=5/ is some universal constant.
(5) Each ˇi has length at most a constant times R, where the constant may depend
on j . For each i 2 f0; 1; : : : ; j � 1g let ˛i be the arc of a circle whose center is zi ,
that has wi as endpoint, that has the other endpoint on i [ iC1, that is otherwise
disjoint from i [ iC1 and is contained in S .

Let Ǒi be the connected component containing w0i of the complement of �
in the c1 ı R=20 neighborhood of ˇi [ ˛i . If i 2 f0; 1; : : : ; j � 1g is odd, let Fi
denote the event that there is a white crossing in Ǒi from � to @H4R. Similarly,
if i is even, let Fi denote the event that there is a black crossing in Ǒi from � to
@H4R. It is easy to see that if

Tj�1
iD0 Fi holds, then Aj .r; 4R/ holds as well. The

RSW theorem implies that P
�
Fi
�

is bounded from below (depending on ı) for a
percolation process that is unbiased. But, as we have seen, the percolation on S
between i and iC1 is only conditioned on having a crossing of the appropriate
color. By the Harris-FKG inequality, this is positively correlated with Fi . By
independence on disjoint sets, the different Fi are independent given � (assuming,
as we may, that the distance between the different sets Ǒi is significantly larger
than the scale of the lattice). We conclude that for some c.ı/ > 0,

P
h
Aj .r; 4R/

ˇ̌̌
Aj .r; R/\fs.r; R/ > ı Rg

i
> c.ı/ :

Taking care of the condition s.r; 4R/� 4 Nı R is not too hard. Suppose that in
the above we truncate the paths ˇi and the neighborhoods Ǒi by intersecting them
with H3:5R. We then condition on the “leftmost” crossing in Ǒi . See Figure A.2.
All this takes place within H3:5R. The conditional probability that these crossings
in the Ǒi ’s connect to @H4R is bounded away from zero by a function of j only
(specifically, not ı). Thus, Lemma A.2 and the monotonicity of s.r; R/ in r shows
that if Nı D Nı.j / > 0 is chosen small, with conditional probability at least 1=2 we
are also likely to have s.r; 4R/� 4 Nı R, as required. �

Set

f .r; R/ WD P
�
Aj .r; R/

�
; gı.r; R/ WD P

�
Aj .r; R/\fs.r; R/ > ı Rg

�
:

LEMMA A.4. There is a constant C1.j / > 0, depending only on j , such that
for R � 4 r

C1.j / g Nı.r; R/� f .r; R/ ;

where Nı D Nı.j / is the constant introduced in Lemma A.3.

Proof. We assume that f .r; R/ > 0. Let ı > 0 be small. Set N D log4.R=r/
and let m D mı be the largest integer in the range 0 � m � N � 1 such that
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@H4R

Ǒ
i

@H3:5R

Figure A.2. A bent strip connecting with a channel. Indicated are
the leftmost crossing of the intersection of the bent strip and the
channel that connects to Hr and a reasonably likely crossing from
it to @H4R in the bent strip.

gı.r; 4
�iR/ � f .r; 4�iR/=2 holds for every integer i in the range 0 � i < m.

Lemma A.2 and independence on disjoint sets imply

f .r; R/�gı.r; R/� C ı
" f .r; R=4/;

and repeated applications of this inequality give

(A.2) f .r; R/� .2C /m ı"mf
�
r; 4�mR

�
:

We claim that if ı is a sufficiently small positive constant, then

(A.3) f .r; 4�mR/� C2.j / gı.r; 4
�mR/

for some constant C2.j / depending only on j . If m � N � 2, this follows with
C2.j / D 2 from the definition of m. If N � 2 < m � N � 1, then RSW easily
implies f .r; 4�mR/ � C3.j / for some constant C3.j / > 0, and f .r; 4�mR/ �
gı.r; 4

�mR/ � C ı" by Lemma A.2, which gives (A.3). On the other hand, re-
peated application of Lemma A.3 gives

(A.4) c.ı/ c. Nı/m�1 gı.r; 4
�mR/� g Nı.r; R/� f .r; R/ :

On combining this with (A.2) and (A.3), one obtains

c. Nı/ C2.j /
�
2C ı"=c. Nı/

�m
� c.ı/ :
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We choose ı sufficiently small so that ı" < c. Nı/=.4C /. Then the above shows
that m is bounded by a function of ı and j . The proof is now completed by
combining (A.2), (A.3) and (A.4). �

Proof of Proposition A.1. The proof will be given only for the triangular grid,
since the proof in the setting of bond percolation on the square grid is essentially
the same. As we remarked above, when P

�
Aj .r; 2 r/

�
> 0, the RSW theorem easily

gives P
�
Aj .r; 2 r/

�
> 1=C.j /, for some C.j / > 0.

We now assume that r 0 > 8 r and r 00 > 8 r 0. Suppose that Aj .r; r 0=2/ \
fs.r; r 0=2/ > Nı r 0=2g holds. We also assume that the corresponding event occurs
between @H2r 0 and @Hr 00 , but now we require that the interfaces be well separated
on the inner boundary @H2r 0 , instead of on the outer boundary. As in the proof
of Lemma A.3, it is not too hard to see that conditioned on these events there is
probability bounded away from zero (by a function of j ) that the crossings between
@Hr and @Hr 0=2 will hook up nicely with the crossings between @H2r 0 and @Hr 00 .
Basically, we only need to arrange that the channels Ǒi for the inner crossings
will cross the corresponding channels of the outer crossings. The proof of the
right-hand inequality in (A.1) now follows from Lemma A.4 and the corresponding
statement for crossings with interfaces well-separated in the inner boundary, which
is proved in the same way. If r 00 � 8 r 0, then the right-hand inequality in (A.1) is a
consequence of Lemmas A.3 and A.4. A similar proof applies when r 0 � 8 r .

It now remains to prove the left-hand inequality in (A.1). If r 00 < 2 r 0, then
P
�
Aj .r

0; r 00/
�

is bounded away from zero (if we assume P
�
Aj .r; r

00/
�
> 0) and we

are done since P
�
Aj .r; r

00/
�
� P

�
Aj .r; r

0/
�
. Otherwise, we argue that

P
�
Aj .r; r

00/
�
� P

�
Aj .r; r

0/
�

P
�
Aj .2 r

0; r 00/
�
;

by independence on disjoint subsets, and

P
�
Aj .r

0; 2 r 0/
�

P
�
Aj .2 r

0; r 00/
�
� C P

�
Aj .r

0; r 00/
�
;

by the right-hand inequality in (A.1). Since P
�
Aj .r

0; 2 r 0/
�

is bounded away from
zero, the left-hand inequality now follows. �

We now generalize Proposition A.1 to arbitrary sequences of crossings.

PROPOSITION A.5. Let j � 1 be an integer, and fix a color sequence X 2
fblack;whitegj . The probabilities for the existence of j disjoint crossings whose
colors match this sequence in counterclockwise order also satisfy the inequalities
in Proposition A.1. The corresponding statement also holds in the setting of critical
bond percolation on the square grid.

Proof. We start with the easier case where all the colors in the sequence X
are the same, say black. Suppose that r 0 > 2 r and r 00 > 2 r 0. Consider the event
that (a) there are j disjoint black crossings from @Hr to @Hr 0 and (b) there are
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j disjoint black crossings from @Hr 0 to @Hr 00 and (c) there are j disjoint black
circuits separating @Hr 0=2 from @Hr 0 and (d) there are j disjoint black circuits
separating @Hr 0 from @H2 r 0 and (e) there are j disjoint crossings from @Hr 0=2 to
@H2 r 0 . Note that if we choose any one path in each of (a)–(e), we can extract from
the union a crossing from @Hr to @Hr 00 . To see that we actually have j disjoint
crossings from @Hr to @Hr 00 , note that if we remove any j � 1 hexagons, then
there is still one path remaining in each of (a)–(e), and consequently, there is still
a crossing from @Hr to @Hr 00 . Thus, Menger’s theorem (see [8]) implies that when
(a)–(e) all hold there are j disjoint crossings from @Hr to @Hr 00 . By the Harris-
FKG inequality, the events (a)–(e) are all positively correlated. By RSW, events
(c)–(e) have probabilities bounded away from zero (assuming that (a) has positive
probability). The inequality corresponding to the right-hand inequality in (A.1)
now follows. The corresponding left-hand inequality, as well as the cases where
r 0 � 2 r or r 00 � 2 r 0 are now proved as in the proof of Proposition A.1.

We now assume that both colors appear in X , and indicate the adaptations
necessary in the proof of Proposition A.1 to generalize to the present setting. The
quantity s.r; R/ needs to be defined slightly differently. In the modified definition
of s.r; R/, still only interfaces between crossings of opposite colors are considered.
Suppose that 1 and 2 are two adjacent interfaces from @Hr to @HR, and that Q
is the component of HR n .Hr [ 1[ 2/ between them. Let dist.z; ZIQ/ denote
the infimal length of a path from z to Z in Q. For s > 0 set W.s/ WD fz 2 Q W
dist.z; @HRIQ/� sg. The margin between 1 and 2 is defined as the supremum
of the set of s > 0 such that any path connecting 1 and 2 in W.s/ has length at
least s. Now s.r; R/ is redefined as the smallest margin among any two consecutive
interfaces.

Lemma A.2 is still valid with this new definition of s.r; R/. In fact, the only
change needed in the proof is that instead of looking for a white crossing in Yi n
B.zi ; ı R/ from @ Ǒi to @HR, one looks for a crossing in Yi nB.z0i ; 2 ı R/, where
z0i is the last point on the arc @Y \ @HR, directed away from ˛1, that has distance
at most ı R from ˇi . (Here, we assume that ı < 1=100, say.)

We now explain how this new definition facilitates the obvious analogue of
Lemma A.3. Indeed, suppose that 1 and 2 are two adjacent interfaces, there are
at least j1 � j disjoint black crossings in the sector Q of HR nHr between 1 and
2, and the margin between 1 and 2 is at least s. Let

Qi WD fz 2W.s/ W 2 i s=.2 j1/� dist.z; @HRIQ/� .2 i C 1/ s=.2 j1/g ;

Q�i WD fz 2W.s/ W 2 i s=.2 j1/� dist.z; 1IQ/� .2 i C 1/ s=.2 j1/g ;

where W.s/ is as above. We may then consider the event that in each Qi , i D
0; 1; : : : ; j1 � 1, there is a black crossing from 1 to 2, and in each Q�i , i D
0; 1; : : : ; j1 � 1, there is a black crossing from @HR to @W.s/ n .1 [ 2 [ @HR/,
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and moreover, the latter crossings continue through well directed channels all the
way to @H4R, as in the proof of Lemma A.3. An application of Menger’s theorem,
as in the monochromatic case above, will then guarantee that at the end j1 disjoint
black crossings between 1 and 2 will extend all the way to H4R. A compatible
construction is applied to each of the other pairs of adjacent interfaces.

Of course, when we condition on the interfaces 0; 1; : : : ; k�1, we do not
know how many crossings we will have between each pair of adjacent interfaces.
But k DO.R=s.r; R//, and so the number of distinct patterns in which crossings
with color sequence type X can occur is bounded by a function of ı and j . (Specifi-
cally, a pattern for X is a specification of how many crossings are selected between
each pair of adjacent interfaces to make up the sequence of crossings compatible
with X . There may very well be additional crossings that are ignored.) Thus, the
most likely pattern given the interfaces occurs with probability bounded away from
zero given that there are crossings of color sequence X and the construction may be
based on this most likely pattern. The occurrence of this pattern given the interfaces
and the information about the color of hexagons adjacent to the right-hand sides
of the interfaces will be a monotone function in the collection of white hexagons
in the regions between interfaces that have white hexagons on their boundary, and
monotone in black hexagons in the other regions. Thus, again, the Harris-FKG
inequality is applicable. (We do not want to condition on the exact number of
crossings between two adjacent interfaces, as this is not a monotone function of
the configuration.)

Similarly, when we attempt to glue crossings between two different annuli,
we condition on the interfaces, and then aim for the most likely pattern in each
annulus. These are essentially the only modifications needed in the proof. �

Remark A.6. The analogous statements for critical percolation in cones and
wedges also holds, with similar proofs. The wedge case is, in fact, easier.

Remark A.7. It is also clear that the above proof shows that if we prescribe j
specific disjoint arcs on @HR and require the crossings from @Hr to land on these
arcs, with a prescribed color for every arc, the probability for this event is at least
a positive constant times the probability to have j crossings with this sequential
color pattern, where the constant only depends on the smallest angle at 0 subtended
by any of the j arcs (provided that R is not too small, so that each of the arcs has
at least one hexagon unshared with any other arc, say).

As a further application, we prove the following result about 5-arm and 6-arm
exponents in Z2.

COROLLARY A.8. Consider critical bond percolation on Z2. For R > r � 1
let F.r;R/ denote the event that there are five open crossings between distances r
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and R from 0 of types primal, primal, dual, primal, dual, in circular order. Then

(A.5) C�1.r=R/2 � P
�
F.r;R/

�
� C .r=R/2;

where C > 0 is a universal constant. Moreover, the probability that there are six
alternating crossings: primal, dual, primal, dual, primal, dual, between distances
r and R is at most C .r=R/2C", for some constant " > 0. The same statement
applies to any sequence obtained by inserting one additional primal or dual entry
to the list (primal, primal, dual, primal, dual).

This result is essentially due to [20, Lemma 5] (in the context of site perco-
lation on the triangular grid, though the proof is equally applicable to Z2). They
omit some of the details, because the proof is long and the argument is similar to
the proof of [19, Lemma 4]. Now, we can easily present an essentially complete
and relatively short argument.

Proof. We begin with the basic argument from [20]. Divide the boundary
of the circle @B.0;R/ into 5 equal arcs, A1; : : : ; A5, in counterclockwise order.
For concreteness, let’s take each Aj as the arc between angles .2 j � 1/ �=5 and
.2 j C 1/ �=5. For a vertex v 2 B.0;R/, let Fv be the event that there are primal
(open) crossings from v to A1; A3 and A4 and dual crossings from dual vertices
adjacent to v to A2 and to A5, and the primal crossings are disjoint, except at v.
(By planarity, it follows that the dual crossings are disjoint.) We claim that Fv can
happen for at most one vertex in B.0;R=2/. Indeed, suppose that Fv \Fu holds,
where v; u are vertices in B.0;R=2/. Let ˛i , i D 1; 3; 4, denote some simple
primal crossings from v to the arcs Ai , which are disjoint, except at v. Similarly,
let ˛0i , i D 1; 3; 4, be the corresponding paths for u. Since ˛1 [ ˛3 separates A2
from A5 in B.0;R/, it is clear that u 2 ˛1 [ ˛3. Similarly, u 2 ˛1 [ ˛4. Since
˛3\˛4 D fvg � ˛1, it follows that u 2 ˛1. Let ˇ1 be the arc of ˛1 from u to A1.
Since ˇ1[˛03 is a path from A1 to A3, it contains v or separates v from A2 or from
A5. The latter two possibilities are ruled out by the dual crossings to A2 and A5
starting at dual vertices adjacent to v. Thus, v 2 ˇ1[˛03, and similarly, v 2 ˇ1[˛04.
But since ˛03\˛

0
4 D fug � ˇ1, we conclude that v 2 ˇ1, which implies uD v.

We now claim that F WD
S
v2B.0;R=2/ Fv has probability bounded away

from 0. Consider the event that there is a crossing from A1 to A4, and consider the
rightmost such crossing ` (in the sense that it separates any other crossing from
A5). If there is an open path from A3 to `, but no open path from A3 to A1 disjoint
from `, then Fw will hold, where w is the first vertex v along ` (when ` goes from
A1 to A4) that connects to A3 in the complement of `. Thus, we need to show that
there is probability bounded away from zero that this happens with w 2 B.0;R=2/.
Let L1 be the line passing through the origin and the midpoint of A1. Let L2 and
L3 be lines parallel to L1 at distance R=20 and R=10 from L1, on the side of L1
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that contains A5. By RSW, there is probability bounded away from zero for the
existence of a dual-open crossing from A1 to A4 in the strip between L2 and L3.
By conditioning on the leftmost such crossing (the one closest to L1), it is easy
to see that there is probability bounded away from zero that such a dual crossing
exists and is also connected to A5 by a dual-open path. If moreover we have a
primal crossing from A1 to A4 in the strip between L1 and L2, which happens with
probability bounded away from zero, then the rightmost primal crossing between
A1 and A4 will be contained in the strip between L1 and L3. Conditioned on the
latter event and on the latter crossing `, it happens with probability bounded away
from zero that there is a primal crossing from A3 to ` whose endpoint on ` (which
is its only point on `) is within distance R=5 of the origin. Also, there is a dual
crossing from A2 to a dual vertex adjacent to ` that is within distance R=5 of the
origin. On that event, F holds. Thus, P

�
F
�

is bounded away from zero.
It is easy to see that the proof of Proposition A.5 implies that P

�
Fv
�
�

O.1/P
�
Fw
�

for v;w 2 B.0;R=2/. Since the events Fv are disjoint, and since
their sum is of order 1, it follows that each Fv, v 2 B.0;R=2/ has probability of
order R�2. In particular R2 P

�
F0
�

is bounded away from zero and1. Now (A.5)
follows from Remark A.7.

The statements regarding the 6-arm exponent now follow from Reimer’s in-
equality [27]. Alternatively, we may also deduce them from Remark A.7, as fol-
lows. If we fix arcs A1; : : : ; A6 in counterclockwise order on the radius R circle,
where the crossings are required to land, and we require a primal crossing to A1 and
a dual crossing to A2, then we may condition on the most counterclockwise primal
crossing  connecting to A1, then sequentially on the most clockwise crossings
to A2; A3; : : : ; A5 of the required type. The conditional probability for having yet
another crossing to A6 is still bounded by O.1/ .r=R/", for some constant " > 0.
Now we may apply Remark A.7, to complete the proof. �
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