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Abstract

Let G D SLl.n;R/ with n� 6. We construct examples of lattices � �G, sub-
groups A of the diagonal group D and points x 2G=� such that the closure of the
orbit Ax is not homogeneous and such that the action of A does not factor through
the action of a one-parameter nonunipotent group. This contradicts a conjecture of
Margulis.

1. Introduction

1.1. Topological rigidity and related questions. Let G be a real Lie group, �
a lattice in G, meaning a discrete subgroup of finite covolume, and A a closed
connected subgroup. We are interested in the action of A on G=� by left multi-
plication; we will restrict ourselves to the topological properties of these actions,
referring the reader to [6] and [3] for references and recent developments on related
measure theoretical problems.

Two linked questions arise when one studies continuous actions of topological
groups: what are the closed invariant sets, and what are the orbit closures?

In the homogeneous action setting we are considering, there is a class of
closed sets that admit a simple description: a closed subset X � G is said to
be homogeneous if there exists a closed connected subgroup H � G such that
X D Hx for some (and hence every) x 2 X . Let us say that the action of A on
G=� is topologically rigid if for any x 2G=� , the closure Ax of the orbit Ax is
homogeneous.

The most basic example of a topologically rigid action is when G D Rn,
� D Zn, A and any vector subspace of G. It turns out that the behavior of elements
of A for the adjoint action on the Lie algebra g of G plays an important role in
our problem. Recall that an element g 2 G is said to be Ad-unipotent if Ad.g/
is unipotent, and Ad-split over R if Ad.g/ is diagonalizable over R. If the closed,
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connected subgroup A of G is generated by Ad-unipotent elements, a celebrated
theorem of Ratner [13] asserts that the action of A is always topologically rigid,
settling a conjecture due to Raghunathan.

When A is generated by elements which are Ad-split over R, much less is
known. Consider the model case of G D SL.n;R/ and A the group of diagonal
matrices with nonnegative entries. If n D 2, it is easy to produce nonhomoge-
neous orbit closures (see e.g. [7]); more generally, a similar phenomenon can be
observed when A is a one-parameter subgroup of the diagonal group (see [6, 4.1]).
However, for A the full diagonal group, if n � 3, to the best of our knowledge,
the only nontrivial example of a nonhomogeneous A-orbit closure is due to Rees,
later generalized in [7]. In an unpublished preprint, Rees exhibited a lattice � of
G D SL.3;R/ and a point x 2 G=� such that for the full diagonal group A, the
orbit closure Ax is not homogeneous. Her construction was based on the following
property of the lattice: there exists a 
 2 � \A such that the centralizer CG.
/
of 
 is isomorphic to SL.2;R/�R�, and such that CG.
/\� is, in this product
decomposition and up to finite index, �0 � h
i, where �0 is a lattice in SL.2;R/
(see [4], [7]). Thus in this case the action of A on CG.
/=CG.
/\� factors to
the action of a 1-parameter nonunipotent subgroup on SL.2;R/=�0, which, as we
saw, has many nonhomogeneous orbits.

Rees’ example shows that factor actions of 1-parameter non-Ad-unipotent
groups are obstructions to the topological rigidity of the action of diagonal sub-
groups. The following conjecture of Margulis [8, Conj. 1.1] (see also [6, 4.4.11])
essentially states that these are the only ones:

CONJECTURE 1. Let G be a connected Lie group, � a lattice in G, and A a
closed, connected subgroup of G generated by Ad-split over R elements. Then for
any x 2G=� , one of the following holds:

(a) Ax is homogeneous, or

(b) There exists a closed connected subgroup F of G and a continuous epimor-
phism � of F onto a Lie group L such that

– A� F ,
– Fx is closed in G=� ,
– �.Fx/ is closed in L, where Fx denotes the stabilizer fg 2 F jgx D xg,
– �.A/ is a one-parameter subgroup of L containing no nontrivial AdL-

unipotent elements.

A first step toward this conjecture has been done by Lindenstrauss and Weiss
[7], who proved that in the case G D SL.n;R/ and A is the full diagonal group, if
the closure of a A-orbit contains a compact A-orbit that satisfies some irrationality
conditions, then this closure is homogeneous. See also [15]. Recently, using an
approach based on measure theory, Einsiedler, Katok and Lindenstrauss proved
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that if moreover � D SL.n;Z/, then the set of bounded A-orbits has Hausdorff
dimension n� 1 [3, Th. 10.2].

1.2. Statement of the results. In this article we exhibit some counterexamples
to the above conjecture whenGDSL.n;R/ for n� 6 and A is some strict subgroup
of the diagonal group of matrices with nonnegative entries. Let D be the diagonal
subgroup of G; note that D has dimension n� 1. Our main result is:

THEOREM 1. Assume n� 6.

(1) There exist a .n � 3/ dimensional closed and connected subgroup A of D,
and a point x 2 SL.n;R/=SL.n;Z/ such that the closure of the A-orbit of x
satisfies neither condition (a) nor condition (b) of the conjecture.

(2) There exist a lattice � of SL.n;R/, an .n� 2/ dimensional closed and con-
nected subgroup A of D and a point x 2 SL.n;R/=� such that the closure of
the A-orbit of x satisfies neither condition (a) nor condition (b) of the conjec-
ture.

It will be clear from the proofs that these examples however satisfy a third
condition:

(c) There exist a closed connected subgroup F of G and two continuous epimor-
phisms �1; �2 of F onto Lie groups L1; L2 such that

– A� F ,
– Fx is closed in G=� ,
– For i D 1; 2, �i .Fx/ is closed in Li ,
– .�1; �2/ W F ! L1 �L2 is surjective
– .�1; �2/ W A! �1.A/��2.A/ is not surjective.

Construction of these examples is the subject of Section 2, whereas the proof
that they satisfy the required properties is postponed to Section 3.

1.3. Toral endomorphisms. To conclude this introduction, we would like to
mention that the idea behind this construction can also be used to yield examples
of ‘nonhomogeneous’ orbits for diagonal toral endomorphisms.

Let 1 < p1 < � � �<pq , with q � 2, be integers generating a multiplicative non-
lacunary semigroup of Z (that is, the Q-subspace ˚1�i�qQ log.pi / has dimension
at least 2). We consider the abelian semigroup � of endomorphisms of the torus
T n D Rn=Zn generated by the maps z 7! pizmod Zn, 1� i � q.

In the one-dimensional situation, described by Furstenberg [5], every �-orbit
is finite or dense. If n � 2, Berend [1] showed that minimal sets are the finite
orbits of rational points, but there are other obvious closed �-invariant sets, namely
the orbits of rational affine subspaces. Meiri and Peres [10] showed that closed
invariant sets have integral Hausdorff dimension.
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Note that the study of the orbit of a point lying in a proper rational affine
subspace reduces to the study of finitely many orbits in lower dimensional tori,
although some care must be taken about the pre-periodic part of the rational affine
subspace (for example, if q D nD 2, and if ˛ 2 T 1 is irrational with nondense p1-
orbit, the orbit closure of the point .˛; 1=p2/2 T 2 is the union of a horizontal circle
and a finite number of strict closed infinite subsets of some horizontal circles).

With this last example in mind, Question 5.2 of [10] can be re-formulated:
is a proper closed invariant set necessarily a subset of a finite union of rational
affine tori? Or, equivalently, if a point is outside any rational affine subspace, does
it necessarily have a dense orbit? It turns out that this is not the case at least for
n� 2q, as the following example shows.

THEOREM 2. Let N be an integer greater than q logpq

logp1
, and let z be the point

in the 2q-dimensional torus T 2q defined by the coordinates modulo 1:

z D .z1; : : : ; z2q/

D

�X
k�1

p�N
2k

1 ; : : : ;
X
k�1

p�N
2k

q ;
X
k�1

p�N
2kC1

1 ; : : : ;
X
k�1

p�N
2kC1

q

�
:

Then the point z 2 T 2q is not contained in any rational affine subspace, but its
orbit �z is not dense.

The proof of Theorem 2 will be the subject of Section 4.

2. Sketch of proof of Theorem 1

2.1. The direct product setup. We now describe how these examples are built.
Choose two integers n1 � 3, n2 � 3, such that n1Cn2 D n. For i D 1; 2, let �i be
a lattice in Gi D SL.ni ;R/.

Let gi be an element of Gi such that gi�ig�1i intersects the diagonal subgroup
Di of SL.ni ;R/ in a lattice; in other words gi�i has a compact Di -orbit; such
elements exist; see [11]. In fact, we will need an additional assumption on gi ,
namely that the tori g�1i Digi are irreducible over Q. The precise definition of this
property and the proof of the existence of such a gi , a consequence of a theorem
of Prasad and Rapinchuk [12, Th. 1], will be the subject of Section 3.1.

Let �i WGi !Gi=�i be the canonical quotient map. Define for i D 1; 2:

yi D �i

0BBBBBBB@

266666664

1 0 : : : 0 1

0 1
: : : 0

:::
: : :

: : :
: : :

:::
:::

: : : 1 0

0 : : : : : : 0 1

377777775
gi

1CCCCCCCA
:
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The Di -orbit of yi is dense, by the following argument. It is easily seen
that the closure of Diyi contains the compact Di -orbit Ti D �i .Digi /. The
Q-irreducibility of Ti is sufficient to show that the assumptions of the theorem
of Lindenstrauss and Weiss [7, Th. 1.1] are satisfied (Lemma 3.1); thus, by this
theorem, we obtain that there exists a group Hi < Gi such that Hiyi D Diyi .
Again because of Q-irreducibility, the group Hi is necessarily the full group; i.e.,
Hi DGi (proof of Lemma 3.2).1

Let A1 be the .n� 3/ dimensional subgroup of G1 �G2 given by:

A1 D

�
.diag.a1; ::; an1

/; diag.b1; ::; bn2
// W

n1Y
iD1

ai D

n2Y
jD1

bj D
a1b1

an1
bn2

D 1; ai > 0; bj > 0

�
:

(1)

Then the A1-orbit of .y1; y2/ is not dense in G1 �G2=�1 ��2 (Lemma 3.3),
but G1 �G2 is the smallest, closed, connected subgroup F of G1 �G2 such that
A1.y1; y2/� F.y1; y2/ (Lemma 3.7).

This yields a counterexample to Conjecture 1 which can be summarized as
follows:

PROPOSITION 1. For i D 1; 2, let ni � 3 and �i be a lattice inGi DSL.ni ;R/.
For A1, y1; y2 depicted as above, the A1-orbit of .y1; y2/ in G1 �G2=�1 � �2
satisfies neither condition (a) nor condition (b) of Conjecture 1.

2.2. Proof of Theorem 1, part (1). In order to obtain the first part of Theorem
1, choose �i D SL.ni ;Z/, � D SL.n;Z/ and consider the embedding of G1 �G2
in G, where matrices are written in blocks:

(2) ‰ W .Mn1;n1
; Nn2;n2

/ 7!

�
Mn1;n1

0n1;n2

0n2;n1
Nn2;n2

�
:

This embedding gives rise to an embedding ‰ of G1�G2=�1��2 into G=� .
Let y1; y2 be two points as above, let x D ‰.y1; y2/ and take A D ‰.A1/. We
claim that this point x and this group A satisfy Theorem 1, part (1). In fact, since
the image of ‰ is a closed, connected A-invariant subset of SL.n;R/=SL.n;Z/,
everything takes place in this direct product. �

2.3. Proof of Theorem 1, part (2). The second part of Theorem 1 is obtained
as follows. Let � be the nontrivial field automorphism of the quadratic extension

1The reader only interested in the case n D 6 and � D SL.6;Z/ might note that when �1 D
�2 D SL.3;Z/, [7, Cor. 1.4] can be used directly in the proof of Lemma 3.2; then the notion of
Q-irreducibility becomes unnecessary, and the entire Section 3.1 can be skipped.
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Q. 4
p
2/=Q.

p
2/: Consider for any m� 1:

SU.m;ZŒ 4
p
2�; �/D

n
M 2 SL.m;ZŒ 4

p
2�/ W .tM � /M D Im

o
:

Then SU.m;ZŒ 4
p
2�; �/ is a lattice in SL.m;R/, as will be proved in Section 3.5

(see [4, Appendix] for mD 3). Define for i D 1; 2, �i D SU.ni ;ZŒ 4
p
2�; �/, and

� D SU.n;ZŒ 4
p
2�; �/. Now consider the map:

' WG1 �G2 �R!G;

.X; Y; t/ 7!

�
en2tX 0

0 e�n1tY

�
:

Define M to be the image of '. This time, ' factors into a finite covering ' of
homogeneous spaces:

' WG1 �G2 �R=�1 ��2 � .log˛/Z!M=M \� �G=�;

where ˛ D .3C 2
p
2/C

4
p
2.2C 2

p
2/ satisfies ˛�1 D �.˛/. Consider the points

yi constructed above, and let x D '.y1; y2; 0/. Choose:

AD

(
diag.a1; ::; an/ j

nY
iD1

ai D
a1an1C1

an1
an
D 1; ai > 0

)
� SL.n;R/:

We claim that this lattice � , this point x and this group A satisfy Theorem 1, part
(2). What happens here is that the A-orbit of x is a circle bundle over an A1-orbit
(up to the finite cover '), as in Rees’ example.

3. Proof of Theorem 1

3.1. Q-irreducible tori. Fix i 2 f1; 2g. Recall that �i is a lattice in Gi D
SL.ni ;R/. Since ni � 3, by Margulis’s arithmeticity Theorem [16, Th. 6.1.2],
there exists a semisimple algebraic Q-group Hi and a surjective homomorphism �

from the connected component of identity of the real points of this group H0i .R/
to SL.ni ;R/, with compact kernel, such that �.Hi .Z/\H0i .R// is commensurable
with �i .

Following Prasad and Rapinchuk, we say that a Q-torus T�Hi is Q-irreduc-
ible if it does not contain any proper subtorus defined over Q. By [12, Th. 1(ii)],
there exists a maximal Q-anisotropic Q-torus Ti �Hi , which is Q-irreducible. Be-
cause any two maximal R-tori of SL.ni ;R/ are R-conjugate, there exists gi 2Gi
such that �.T0i .R// D g

�1
i Digi . The subgroup Ti .Z/ is a cocompact lattice in

Ti .R/ since Ti is Q-anisotropic [2, Th. 8.4 and Def. 10.5]. Because �.Hi .Z/\
H0i .R// and �i are commensurable and � has compact kernel, it follows that
both �i \ g�1i Digi and �.T0i .Z// \ �i \ g

�1
i Digi are also cocompact lattices
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in g�1i Digi . The resulting topological torus �i .Digi / � Gi=�i will be denoted
Ti . Write zi D �i .gi /, so that Ti DDizi .

For every 1� k < l � ni , define as in [7]:

N
.i/

k;l
D

(
diag.a1; ::; ani

/ W

niY
sD1

as D 1; ak D al ; as > 0

)
�Di ;

Of interest to us amongst the consequences of Q-irreducibility is the fact that an
element of �i \g�1i Digi lying in a wall of a Weyl chamber is necessarily trivial.
This is expressed in the following form:

LEMMA 3.1. For every 1� k < l � ni , and any closed connected subgroup
L of positive dimension of N .i/

k;l
, the L-orbit of zi is not compact.

Proof. Assume the contrary; that is, Lzi is compact. This implies that g�1i Lgi
\�i is a uniform lattice in g�1i Lgi , so that g�1i Lgi \ �.Hi .Z// is also a uniform
lattice. Since L is nontrivial, there exists an element 
 2Hi .Z/\H0i .R/ of infinite
order, such that gi�.
/g�1i is in L. Note that since � has compact kernel, Ti .Z/
is a lattice in ��1.�.T0i .R/// and is then a subgroup of finite index in Hi .Z/\
H0i .R/ \ �

�1.�.T0i .R///, so there exists n > 0 such that 
n belongs to Ti .Z/.
Consider the representation:

� WH0i .R/!GL.sl.ni ;R//;

x 7! Ad.gi�.x/g�1i /:

Recall that �.diag.a1; ::; an1
// D ak=al is a weight of Ad with respect to

Di , so that � is a weight of � with respect to Ti . By [12, Prop. 1(iii)], the Q-
irreducibility of Ti implies that �.
n/¤ 1, but this contradicts the fact that �.
n/2
g�1i N

.i/

k;l
gi . �

3.2. Contraction and expansion. For real s, denote by ai .s/ the following
ni �ni -matrix:

ai .s/D diag.es=2; 1; : : : ; 1„ ƒ‚ …
ni�2 times

; e�s=2/;

and write simply Ni for N .i/
1;ni

. Write also:

hi .t/D

266666664

1 0 : : : 0 t

0 1
: : : 0

:::
: : :

: : :
: : :

:::
:::

: : : 1 0

0 : : : : : : 0 1

377777775
:
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Then the following commutation relation holds:

ai .s/hi .t/D hi .e
st /ai .s/I

that is, the direction hi is expanded for positive s; note that both hi and ai commute
with elements of Ni . It is easy to check from equation (1) that

A1 D f.a1.s/d1; a2.�s/d2/ W s 2 R; di 2Ni ; i D 1; 2g :

Recall that yi D hi .1/zi .

LEMMA 3.2. (1) If s � 0, for any d 2 Ni the point ai .s/dyi lies in the
compact set Ki D hi .Œ0; 1�/Ti .

(2) The Di -orbit of yi is dense in Gi=�i .

(3) The set fai .s/dyi W s � 0; d 2Nig is dense in Gi=�i .

Proof. The first statement is clear from the commutation relation. It also
implies that Diyi contains the compact torus Ti in its closure.

To prove the second point, we rely heavily on the paper of Lindenstrauss and
Weiss. [7, Th. 1.1] applies here, since the hypothesis of their theorem is precisely
the conclusion of Lemma 3.1 for LDN .i/

k;l
. So the following holds: there exists a

reductive subgroup Hi , containing Di , such that Diyi DHiyi , and Hi \�i is a
lattice in Hi . Write LDDi \CGi

.Hi /.
SinceDiyi is not closed,Hi ¤Di , so there exists a nontrivial root relatively to

Di for the adjoint representation of Hi on its Lie algebra, which is a subalgebra of
sl.ni ;R/. Thus there exist k; l such that L�N .i/

k;l
. By [7, Step 4.1 of Lemma 4.2],

Lzi is compact, so that by Lemma 3.1, L is trivial. By [7, Prop. 3.1], Hi is the
connected component of the identity of CGi

.L/, so that Hi DGi , as desired.
The third claim follows from the first and second claim together with the fact

that Ki has empty interior. �

3.3. Topological properties of the A1-orbit.

LEMMA 3.3. The A1-orbit of .y1; y2/ is not dense in G1 �G2=�1 ��2.

Proof. Consider the open set U D Kc1 �K
c
2 . We claim that the A1-orbit of

.y1; y2/ does not intersect U . Indeed, if .a1.s/d1; a2.�s/d2/ 2A1 with s 2R and
di 2Ni , the previous lemma implies that if s � 0, a2.�s/d2y2 2K2, and if s � 0,
a1.s/d1y1 2K1. �

The following elementary result will be useful:

LEMMA 3.4. Let pi W G1 �G2 ! Gi be the first (resp. second) coordinate
morphism. If F �G1 �G2 is a subgroup such that pi .F /DGi for i D 1; 2, and
A1 � F , then F DG1 �G2.



A NONHOMOGENEOUS ORBIT CLOSURE OF A DIAGONAL SUBGROUP 565

Proof. Let F1 D Ker.p1/\F . Since F1 is normal in F , p2.F1/ is normal in
p2.F /DG2. Note that N2�p2.A1\Ker.p1//�p2.F1/ is not finite, and that G2
is almost simple; consequently the normal subgroup p2.F1/ of G2 is equal to G2.
When .a; b/ 2 G1 �G2, by assumption there exists f 2 F such that p1.f /D a.
Let f1 2 F1 be such that p2.f1/D bp2.f /�1; then .a; b/D f1f 2 F . �

We will have to apply several times the two following well-known lemmas:

LEMMA 3.5. Let L be a Lie group, ƒ � L a lattice, M;N two closed, con-
nected subgroups of L, such that for some w 2 L=ƒ, Mw and Nw are closed.
Then .M \N/w is closed.

Proof. This is a weaker form of [14, Lemma 2.2]. �

LEMMA 3.6. Let L be a connected Lie group, ƒ � L a discrete subgroup,
M;N two subgroups of L, such that M is closed and connected, and N is a
countable union of closed sets. For any w 2 L=ƒ, if Mw �Nw, then M �N .

Proof. Up to changing ƒ by one of its conjugates in L, one can assume that
w Dƒ 2 L=ƒ. By assumption, Mƒ�Nƒ so that M �Nƒ� L. Recall that M
is closed, that ƒ is countable, and that N is a countable union of closed sets, so
Baire’s category theorem applies, and there exist � 2ƒ and an open set U of M
such that U �N�, so that UU�1 �N . Since M is a connected subgroup, UU�1

generates M , and so M �N . �

The following lemma will be useful both for proving that the closure of
A1.y1; y2/ is not homogeneous, and for proving it does not fiber over a 1-parameter
group orbit.

LEMMA 3.7. Let F be a closed connected subgroup of G1 �G2 such that
F.y1; y2/ contains the closure of A1.y1; y2/. Then F DG1 �G2.

Proof. By Lemma 3.2, the set of first coordinates of the set

f.a.s/d1y1; a.�s/d2y2/ W s � 0; di 2Nig

is dense in G1=�1 and the second coordinates lies in the compact set K2, so the
closure of A1.y1; y2/ contains points of arbitrary first coordinate with their second
coordinate in K2. Consequently, the set of first coordinates of F.y1; y2/ is the
whole G1=�1, and similarly for the set of second coordinates. For i D 1; 2, Lemma
3.6 now applies to LDM DGi , ƒD �i , N D pi .F /, which is a countable union
of closed sets because G1 �G2 is � -compact, and w D yi , and so pi .F /DGi .

In order to apply Lemma 3.4 and finish the proof, we have to show that A1�
F. Again, this follows from a direct application of Lemma 3.6 to LD G1 �G2,
ƒD �1 ��2, M D A1, N D F , w D .y1; y2/. �
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3.4. Proof of Theorem 1, part (1). We now proceed to proving Theorem 1,
part (1). The proof of Proposition 1 is similar and is omitted.

Recall that in this case, we fixed AD‰.A1/ and x D‰.y1; y2/.
Assume Ax is homogeneous; that is, Ax D Fx for a closed connected sub-

group F of G. Since Ax � ‰.G1 � G2=�1 � �2/, which is closed in G=� ,
Lemma 3.6 implies that F � ‰.G1 � G2/. By Lemma 3.7, F D ‰.G1 � G2/,
so that Fx DG=� and Ax is dense in ‰.G1 �G2/, which is a contradiction.

Now assume Ax fibers over the orbit of a one-parameter subgroup. Let F
be a closed connected subgroup, L a Lie group and � W F ! L a continuous
epimorphism satisfying (b) of Conjecture 1. Let F 0 D F \‰.G1 �G2/, we have
A�F 0. By Lemma 3.5, F 0x is closed in Fx\‰.G1�G2/, and so is closed inG=� .
By Lemma 3.7 , F 0D‰.G1�G2/ necessarily. Let H DKer.� ı‰/�G1�G2, so
that A1=.A1\H/ is a one-parameter group by assumption (b) of the conjecture.

The subgroup H is a normal subgroup of the semisimple group G1 �G2,
which has only four kinds of normal subgroups: finite, G1 �G2, G1 � finite and
finite � G2. None of these possible normal subgroups has the property that it
intersects A1 in a codimension 1 subgroup; so this is a contradiction.

3.5. The arithmetic lattice. Here we prove that SU.n;ZŒ 4
p
2�; �/ is a lattice

in SL.n;R/. Let P;Q be the polynomials with coefficients in Q.
p
2/ such that

for any X; Y 2Mn.C/

det.X C 4
p
2Y /D P.X; Y /C

4
p
2Q.X; Y /:

For an integral domain A� C, consider the set of pairs of matrices:

G.A/D f.X; Y / 2Mn.A/2 W tXX �
p
2
t
Y Y D In;

tXY �t YX D 0;

P.X; Y /D 1; Q.X; Y /D 0g;

which implies that .tX � 4
p
2
t
Y /.X C

4
p
2Y /D In and det.X C 4

p
2/D 1 for all

.X; Y / 2G.A/. Endow G.A/ with the multiplication given by

.X; Y /.X 0; Y 0/D .XX 0C
p
2Y Y 0; XY 0CYX 0/;

which is such that the map � WG.A/! SL.n;C/, .X; Y / 7! X C
4
p
2Y is a mor-

phism. With this structure, G is an algebraic group, which is clearly defined over
Q.
p
2/. Let � be the nontrivial field automorphism of Q.

p
2/=Q; it can be checked

that the map � is an isomorphism between G.R/ and SL.n;R/, and that moreover
�0 W Gø.R/ ! SL.n;C/, .X; Y / 7! X C i

4
p
2Y is an isomorphism onto SU.n/.

Let H D ResQ.
p
2/=QG D G �G� . Then H is defined over Q (see for example

[16, 6.1.3], for the definition and properties of the restriction of scalars functor). It
follows from a theorem of Borel and Harish-Chandra [16, Th. 3.1.7] that H.Z/ is
a lattice in H.R/. Since SU.n/ is compact, it follows that the projection of H.Z/
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onto the first factor of G.R/�G� .R/ is again a lattice. Using the isomorphism
between G.R/ and SL.n;R/, this projection can be identified with

G.ZŒ
p
2�/D SU.n;ZŒ

p
2�C

4
p
2ZŒ
p
2�; �/D SU.n;ZŒ 4

p
2�; �/:

3.6. Proof of Theorem 1, part (2). Note that, as stated implicitly in Section 2.3,

'.�1 ��2 � .log˛/Z/� � \M;

so that � \M is a lattice in M , and M=.M \�/ is a closed, A-invariant subset of
G=� . Notice also that the map ‰ defined by equation (2) defines an embedding
‰ WG1 �G2=�1 ��2!G=� .

Assume Ax is homogeneous, that is Ax D Fx for a closed connected sub-
group F of G. Since Ax � M=.M \ �/, which is closed in G=� , Lemma 3.6
applied twice gives that A � F � M . When F 0 D F \‰.G1 �G2/, again by
Lemma 3.5, F 0x is a closed subset of Im.‰/. Since A1 � F 0, ‰.A1/x � F 0x
and Lemma 3.7 implies that F 0 D‰.G1 �G2/. Since A contains '.e; e; t/ for all
t 2 R, we have M D AF 0 � F so that F DM necessarily.

By Lemma 3.3, the A1-orbit of .y1; y2/ is not dense; the topological transi-
tivity of the action of A1 on G1�G2=�1��2 implies that moreover the closure of
this orbit has empty interior. Thus, the A1 �R-orbit of .y1; y2; 0/ is also nowhere
dense in G1 �G2 �R=�1 ��2 � .log˛/Z. The map ' being a finite covering, the
A-orbit of x is nowhere dense. This is a contradiction with F DM .

Now assume Ax fibers over the orbit of a one-parameter non-Ad-unipotent
subgroup. Let F be a closed connected subgroup, L a Lie group and � W F ! L

a continuous epimorphism satisfying the (b) of the conjecture. Letting F 0 D F \
‰.G1 �G2/ and F 00 D F \M , we have A1 � F 0 and A � F 00. Similarly, F 0x
and F 00x are closed in G=� . Again, by Lemma 3.7, F 0 D‰.G1�G2/ necessarily,
and like before, AF 0 � F 00 �M so that F 00 DM .

Let H D Ker.� ı'/�G1 �G2 �R, so that A1 �R=.A1 �R\H/ is a one-
parameter group. This time, possibilities for the closed normal subgroup H are:
finite �ƒ, G1 �G2 �ƒ, G1 �finite�ƒ and finite�G2 �ƒ, where ƒ is a closed
subgroup of R. Of all these possibilities, only G1 �G2 �ƒ, where ƒ is discrete,
has the required property that A1 �R=.A1 �R\H/ is a one-parameter group.
This proves that ‰.G1 �G2/� Ker.�/, and so F �NG.‰.G1 �G2//. However,
the normalizer of ‰.G1 �G2/ in G is the group of block matrices having, for
connected component of the identity, the group M . So by connectedness of F ,
F �M , and since M D F 00 � F , we have F DM . Thus LD F=Ker.�/D R=ƒ
is abelian, and a fortiori every element of L is unipotent; this contradicts (b).

4. Proof of Theorem 2

The proof of Theorem 2 is divided in two independent lemmas.
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LEMMA 4.1. The family .z1; : : : ; z2q; 1/ is linearly independent over Q.

Proof. Consider a linear combination:
qX
iD1

aizi C biziCq D c:

We can assume that ai ; bi and c are integers. Letting k0 � 1, write

(3)

 
qY
iD1

pi

!N 2k0C1 0@ qX
iD1

k0X
kD1

aip
�N 2k

i C bip
�N 2kC1

i � c

1A
D�

 
qY
iD1

pi

!N 2k0C1 0@ qX
iD1

X
k�k0C1

aip
�N 2k

i C bip
�N 2kC1

i

1A :
It is clear that the left-hand side is an integer. Since 1 < p1 < � � �< pq , the right-
hand side is less in absolute value than

pqN
2k0C1

q 2q sup
i

.jai j; jbi j/
X
k�0

�
p�N

2k0C2

1

�N 2k

� 4q sup
i

.jai j; jbi j/p
qN 2k0C1

q p�N
2k0C2

1

� 4q sup
i

.jai j; jbi j/ exp.N 2k0C1.q logpq �N logp1//:

Since N > q
log.pq/

log.p1/
, the last expression tends to zero . This proves the right-hand

side of (3) is zero for large enough k0; so for all large k,
qX
iD1

aip
�N 2k

i C bip
�N 2kC1

i D 0:

The pi being distincts, this implies that for i 2 f1; ::; qg, ai D bi D 0. �
The following lemma implies easily that the orbit of z under � cannot be

dense.

LEMMA 4.2. For all " > 0, there exists L> 0, such that for all n1; ::; nq � 0
with

Pq
iD1 ni � L, there exists j 2 f1; : : : ; 2qg such that pn1

1 � � �p
nq

q zj lies in the
interval Œ0; "� modulo 1.

Proof. Let s 2 f1; : : : ; qg be such that for all r 2 f1; : : : ; qg, pns
s � p

nr
r . Let

k0 be the integer part of log.ns/=2 log.N /; then either N 2k0 � ns � N
2k0C1, or

N 2k0C1 � ns �N
2k0C2. In the first case, take j D s; then:

p
n1

1 � � �p
nq

q zj D p
n1

1 � � �p
nq

q

X
k�1

p�N
2k

s D p
n1

1 � � �p
nq

q

X
k�k0C1

p�N
2k

s mod 1:
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We have X
k�k0C1

p�N
2k

s � 2p�N
2k0C2

s I

so, using the fact that for all r 2 f1; : : : ; qg, pnr
r � p

ns
s � p

N 2k0C1

s , we obtain:

p
n1

1 � � �p
nq

q

X
k�k0C1

p�N
2k

s � 2pqN
2k0C1�N 2k0C2

s � 2pN
2k0C1.q�N/

s ;

but by hypothesis we have N > q
log.pq/

log.p1/
> q, so that the preceding bound is small

whenever k0 is large. Because of the definition of k0, we have

k0 �
log

Pq

iD1
ni logpi

q logpq

2 logN
�

log L logp1

q logpq

2 logN
;

so that k0 is arbitrarily large when L is large.
In the second case N 2k0C1 � ns � N

2k0C2, and one can proceed similarly
with j D sC q. �
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