ANNALS OF MATHEMATICS

A nonhomogeneous orbit closure of a diagonal subgroup

By FRANÇOIS MAUCOURANT

SECOND SERIES, VOL. 171, NO. 1 January, 2010

ANMAAH

A nonhomogeneous orbit closure of a diagonal subgroup

By FRANÇOIS MAUCOURANT

Abstract

Let $G = \mathbf{SL}l(n, \mathbf{R})$ with $n \ge 6$. We construct examples of lattices $\Gamma \subset G$, subgroups A of the diagonal group D and points $x \in G/\Gamma$ such that the closure of the orbit Ax is not homogeneous and such that the action of A does not factor through the action of a one-parameter nonunipotent group. This contradicts a conjecture of Margulis.

1. Introduction

1.1. Topological rigidity and related questions. Let G be a real Lie group, Γ a lattice in G, meaning a discrete subgroup of finite covolume, and A a closed connected subgroup. We are interested in the action of A on G/Γ by left multiplication; we will restrict ourselves to the topological properties of these actions, referring the reader to [6] and [3] for references and recent developments on related measure theoretical problems.

Two linked questions arise when one studies continuous actions of topological groups: what are the closed invariant sets, and what are the orbit closures?

In the homogeneous action setting we are considering, there is a class of closed sets that admit a simple description: a closed subset $X \subset G$ is said to be *homogeneous* if there exists a closed connected subgroup $H \subset G$ such that X = Hx for some (and hence every) $x \in X$. Let us say that the action of A on G/Γ is *topologically rigid* if for any $x \in G/\Gamma$, the closure \overline{Ax} of the orbit Ax is homogeneous.

The most basic example of a topologically rigid action is when $G = \mathbb{R}^n$, $\Gamma = \mathbb{Z}^n$, A and any vector subspace of G. It turns out that the behavior of elements of A for the adjoint action on the Lie algebra g of G plays an important role in our problem. Recall that an element $g \in G$ is said to be Ad-unipotent if Ad(g)is unipotent, and Ad-split over R if Ad(g) is diagonalizable over R. If the closed, connected subgroup A of G is generated by Ad-unipotent elements, a celebrated theorem of Ratner [13] asserts that the action of A is always topologically rigid, settling a conjecture due to Raghunathan.

When A is generated by elements which are Ad-split over **R**, much less is known. Consider the model case of $G = SL(n, \mathbf{R})$ and A the group of diagonal matrices with nonnegative entries. If n = 2, it is easy to produce nonhomogeneous orbit closures (see e.g. [7]); more generally, a similar phenomenon can be observed when A is a one-parameter subgroup of the diagonal group (see [6, 4.1]). However, for A the full diagonal group, if n > 3, to the best of our knowledge, the only nontrivial example of a nonhomogeneous A-orbit closure is due to Rees, later generalized in [7]. In an unpublished preprint, Rees exhibited a lattice Γ of $G = SL(3, \mathbb{R})$ and a point $x \in G/\Gamma$ such that for the full diagonal group A, the orbit closure \overline{Ax} is not homogeneous. Her construction was based on the following property of the lattice: there exists a $\gamma \in \Gamma \cap A$ such that the centralizer $C_G(\gamma)$ of γ is isomorphic to $SL(2, \mathbb{R}) \times \mathbb{R}^*$, and such that $C_G(\gamma) \cap \Gamma$ is, in this product decomposition and up to finite index, $\Gamma_0 \times \langle \gamma \rangle$, where Γ_0 is a lattice in **SL**(2, **R**) (see [4], [7]). Thus in this case the action of A on $C_G(\gamma)/C_G(\gamma) \cap \Gamma$ factors to the action of a 1-parameter nonunipotent subgroup on $SL(2, \mathbb{R})/\Gamma_0$, which, as we saw, has many nonhomogeneous orbits.

Rees' example shows that factor actions of 1-parameter non-Ad-unipotent groups are obstructions to the topological rigidity of the action of diagonal subgroups. The following conjecture of Margulis [8, Conj. 1.1] (see also [6, 4.4.11]) essentially states that these are the only ones:

CONJECTURE 1. Let G be a connected Lie group, Γ a lattice in G, and A a closed, connected subgroup of G generated by Ad-split over **R** elements. Then for any $x \in G/\Gamma$, one of the following holds:

- (a) Ax is homogeneous, or
- (b) There exists a closed connected subgroup F of G and a continuous epimorphism ϕ of F onto a Lie group L such that
 - $A \subset F$,
 - Fx is closed in G/Γ ,
 - $\phi(F_x)$ is closed in L, where F_x denotes the stabilizer $\{g \in F | gx = x\}$,
 - $\phi(A)$ is a one-parameter subgroup of L containing no nontrivial Ad_{L} unipotent elements.

A first step toward this conjecture has been done by Lindenstrauss and Weiss [7], who proved that in the case $G = \mathbf{SL}(n, \mathbf{R})$ and A is the full diagonal group, if the closure of a A-orbit contains a compact A-orbit that satisfies some irrationality conditions, then this closure is homogeneous. See also [15]. Recently, using an approach based on measure theory, Einsiedler, Katok and Lindenstrauss proved

that if moreover $\Gamma = SL(n, \mathbb{Z})$, then the set of bounded *A*-orbits has Hausdorff dimension n - 1 [3, Th. 10.2].

1.2. Statement of the results. In this article we exhibit some counterexamples to the above conjecture when $G = \mathbf{SL}(n, \mathbf{R})$ for $n \ge 6$ and A is some strict subgroup of the diagonal group of matrices with nonnegative entries. Let D be the diagonal subgroup of G; note that D has dimension n - 1. Our main result is:

THEOREM 1. Assume $n \ge 6$.

- (1) There exist a (n-3) dimensional closed and connected subgroup A of D, and a point $x \in SL(n, \mathbf{R})/SL(n, \mathbf{Z})$ such that the closure of the A-orbit of x satisfies neither condition (a) nor condition (b) of the conjecture.
- (2) There exist a lattice Γ of SL(n, R), an (n − 2) dimensional closed and connected subgroup A of D and a point x ∈ SL(n, R)/Γ such that the closure of the A-orbit of x satisfies neither condition (a) nor condition (b) of the conjecture.

It will be clear from the proofs that these examples however satisfy a third condition:

- (c) There exist a closed connected subgroup F of G and two continuous epimorphisms ϕ_1, ϕ_2 of F onto Lie groups L_1, L_2 such that
 - $A \subset F$,
 - Fx is closed in G/Γ ,
 - For $i = 1, 2, \phi_i(F_x)$ is closed in L_i ,
 - (ϕ_1, ϕ_2) : $F \rightarrow L_1 \times L_2$ is surjective
 - (ϕ_1, ϕ_2) : $A \rightarrow \phi_1(A) \times \phi_2(A)$ is not surjective.

Construction of these examples is the subject of Section 2, whereas the proof that they satisfy the required properties is postponed to Section 3.

1.3. *Toral endomorphisms*. To conclude this introduction, we would like to mention that the idea behind this construction can also be used to yield examples of 'nonhomogeneous' orbits for diagonal toral endomorphisms.

Let $1 < p_1 < \cdots < p_q$, with $q \ge 2$, be integers generating a multiplicative nonlacunary semigroup of \mathbb{Z} (that is, the \mathbb{Q} -subspace $\bigoplus_{1 \le i \le q} \mathbb{Q} \log(p_i)$ has dimension at least 2). We consider the abelian semigroup Ω of endomorphisms of the torus $T^n = \mathbb{R}^n / \mathbb{Z}^n$ generated by the maps $z \mapsto p_i z \mod \mathbb{Z}^n$, $1 \le i \le q$.

In the one-dimensional situation, described by Furstenberg [5], every Ω -orbit is finite or dense. If $n \ge 2$, Berend [1] showed that minimal sets are the finite orbits of rational points, but there are other obvious closed Ω -invariant sets, namely the orbits of rational affine subspaces. Meiri and Peres [10] showed that closed invariant sets have integral Hausdorff dimension.

FRANÇOIS MAUCOURANT

Note that the study of the orbit of a point lying in a proper rational affine subspace reduces to the study of finitely many orbits in lower dimensional tori, although some care must be taken about the pre-periodic part of the rational affine subspace (for example, if q = n = 2, and if $\alpha \in T^1$ is irrational with nondense p_1 -orbit, the orbit closure of the point $(\alpha, 1/p_2) \in T^2$ is the union of a horizontal circle and a finite number of strict closed infinite subsets of some horizontal circles).

With this last example in mind, Question 5.2 of [10] can be re-formulated: is a proper closed invariant set necessarily a subset of a finite union of rational affine tori? Or, equivalently, if a point is outside any rational affine subspace, does it necessarily have a dense orbit? It turns out that this is not the case at least for $n \ge 2q$, as the following example shows.

THEOREM 2. Let N be an integer greater than $q \frac{\log p_q}{\log p_1}$, and let z be the point in the 2q-dimensional torus T^{2q} defined by the coordinates modulo 1:

$$z = (z_1, \dots, z_{2q})$$

= $\Big(\sum_{k \ge 1} p_1^{-N^{2k}}, \dots, \sum_{k \ge 1} p_q^{-N^{2k}}, \sum_{k \ge 1} p_1^{-N^{2k+1}}, \dots, \sum_{k \ge 1} p_q^{-N^{2k+1}}\Big).$

Then the point $z \in T^{2q}$ is not contained in any rational affine subspace, but its orbit Ωz is not dense.

The proof of Theorem 2 will be the subject of Section 4.

2. Sketch of proof of Theorem 1

2.1. *The direct product setup.* We now describe how these examples are built. Choose two integers $n_1 \ge 3$, $n_2 \ge 3$, such that $n_1 + n_2 = n$. For i = 1, 2, let Γ_i be a lattice in $G_i = \mathbf{SL}(n_i, \mathbf{R})$.

Let g_i be an element of G_i such that $g_i \Gamma_i g_i^{-1}$ intersects the diagonal subgroup D_i of $SL(n_i, \mathbf{R})$ in a lattice; in other words $g_i \Gamma_i$ has a compact D_i -orbit; such elements exist; see [11]. In fact, we will need an additional assumption on g_i , namely that the tori $g_i^{-1}D_ig_i$ are *irreducible over* \mathbf{Q} . The precise definition of this property and the proof of the existence of such a g_i , a consequence of a theorem of Prasad and Rapinchuk [12, Th. 1], will be the subject of Section 3.1.

Let $\pi_i : G_i \to G_i / \Gamma_i$ be the canonical quotient map. Define for i = 1, 2:

$$y_{i} = \pi_{i} \left(\begin{bmatrix} 1 & 0 & \dots & 0 & 1 \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & 0 \\ 0 & \dots & \dots & 0 & 1 \end{bmatrix} g_{i} \right).$$

The D_i -orbit of y_i is dense, by the following argument. It is easily seen that the closure of $D_i y_i$ contains the compact D_i -orbit $\mathcal{T}_i = \pi_i (D_i g_i)$. The **Q**-irreducibility of \mathcal{T}_i is sufficient to show that the assumptions of the theorem of Lindenstrauss and Weiss [7, Th. 1.1] are satisfied (Lemma 3.1); thus, by this theorem, we obtain that there exists a group $H_i < G_i$ such that $H_i y_i = \overline{D_i y_i}$. Again because of **Q**-irreducibility, the group H_i is necessarily the full group; i.e., $H_i = G_i$ (proof of Lemma 3.2).¹

Let A_1 be the (n-3) dimensional subgroup of $G_1 \times G_2$ given by:

(1)

$$A_{1} = \left\{ (\operatorname{diag}(a_{1}, ..., a_{n_{1}}), \operatorname{diag}(b_{1}, ..., b_{n_{2}})) : \prod_{i=1}^{n_{1}} a_{i} = \prod_{j=1}^{n_{2}} b_{j} = \frac{a_{1}b_{1}}{a_{n_{1}}b_{n_{2}}} = 1, a_{i} > 0, b_{j} > 0 \right\}$$

Then the A_1 -orbit of (y_1, y_2) is not dense in $G_1 \times G_2 / \Gamma_1 \times \Gamma_2$ (Lemma 3.3), but $G_1 \times G_2$ is the smallest, closed, connected subgroup F of $G_1 \times G_2$ such that $\overline{A_1(y_1, y_2)} \subset F(y_1, y_2)$ (Lemma 3.7).

This yields a counterexample to Conjecture 1 which can be summarized as follows:

PROPOSITION 1. For i = 1, 2, let $n_i \ge 3$ and Γ_i be a lattice in $G_i = \mathbf{SL}(n_i, \mathbf{R})$. For A_1 , y_1 , y_2 depicted as above, the A_1 -orbit of (y_1, y_2) in $G_1 \times G_2 / \Gamma_1 \times \Gamma_2$ satisfies neither condition (a) nor condition (b) of Conjecture 1.

2.2. Proof of Theorem 1, part (1). In order to obtain the first part of Theorem 1, choose $\Gamma_i = \mathbf{SL}(n_i, \mathbf{Z})$, $\Gamma = \mathbf{SL}(n, \mathbf{Z})$ and consider the embedding of $G_1 \times G_2$ in G, where matrices are written in blocks:

(2)
$$\Psi : (M_{n_1,n_1}, N_{n_2,n_2}) \mapsto \begin{bmatrix} M_{n_1,n_1} & 0_{n_1,n_2} \\ 0_{n_2,n_1} & N_{n_2,n_2} \end{bmatrix}.$$

This embedding gives rise to an embedding $\overline{\Psi}$ of $G_1 \times G_2 / \Gamma_1 \times \Gamma_2$ into G / Γ . Let y_1, y_2 be two points as above, let $x = \overline{\Psi}(y_1, y_2)$ and take $A = \Psi(A_1)$. We claim that this point x and this group A satisfy Theorem 1, part (1). In fact, since the image of $\overline{\Psi}$ is a closed, connected A-invariant subset of $\mathbf{SL}(n, \mathbf{R})/\mathbf{SL}(n, \mathbf{Z})$, everything takes place in this direct product.

2.3. *Proof of Theorem* 1, *part* (2). The second part of Theorem 1 is obtained as follows. Let σ be the nontrivial field automorphism of the quadratic extension

¹The reader only interested in the case n = 6 and $\Gamma = \mathbf{SL}(6, \mathbf{Z})$ might note that when $\Gamma_1 = \Gamma_2 = \mathbf{SL}(3, \mathbf{Z})$, [7, Cor. 1.4] can be used directly in the proof of Lemma 3.2; then the notion of **Q**-irreducibility becomes unnecessary, and the entire Section 3.1 can be skipped.

 $\mathbf{Q}(\sqrt[4]{2})/\mathbf{Q}(\sqrt{2})$. Consider for any $m \ge 1$:

$$\mathbf{SU}(m, \mathbf{Z}[\sqrt[4]{2}], \sigma) = \left\{ M \in \mathbf{SL}(m, \mathbf{Z}[\sqrt[4]{2}]) : ({}^t M^{\sigma}) M = I_m \right\}.$$

Then $SU(m, \mathbb{Z}[\sqrt[4]{2}], \sigma)$ is a lattice in $SL(m, \mathbb{R})$, as will be proved in Section 3.5 (see [4, Appendix] for m = 3). Define for i = 1, 2, $\Gamma_i = SU(n_i, \mathbb{Z}[\sqrt[4]{2}], \sigma)$, and $\Gamma = SU(n, \mathbb{Z}[\sqrt[4]{2}], \sigma)$. Now consider the map:

$$\varphi: G_1 \times G_2 \times \mathbf{R} \to G,$$
$$(X, Y, t) \mapsto \begin{bmatrix} e^{n_2 t} X & 0\\ 0 & e^{-n_1 t} Y \end{bmatrix}$$

Define M to be the image of φ . This time, φ factors into a finite covering $\overline{\varphi}$ of homogeneous spaces:

$$\overline{\varphi}: G_1 \times G_2 \times \mathbf{R} / \Gamma_1 \times \Gamma_2 \times (\log \alpha) \mathbf{Z} \to M / M \cap \Gamma \subset G / \Gamma,$$

where $\alpha = (3 + 2\sqrt{2}) + \sqrt[4]{2}(2 + 2\sqrt{2})$ satisfies $\alpha^{-1} = \sigma(\alpha)$. Consider the points y_i constructed above, and let $x = \overline{\varphi}(y_1, y_2, 0)$. Choose:

$$A = \left\{ \operatorname{diag}(a_1, ..., a_n) \mid \prod_{i=1}^n a_i = \frac{a_1 a_{n_1+1}}{a_{n_1} a_n} = 1, \, a_i > 0 \right\} \subset \operatorname{SL}(n, \mathbf{R}).$$

We claim that this lattice Γ , this point x and this group A satisfy Theorem 1, part (2). What happens here is that the A-orbit of x is a circle bundle over an A_1 -orbit (up to the finite cover $\overline{\varphi}$), as in Rees' example.

3. Proof of Theorem 1

3.1. **Q**-*irreducible tori*. Fix $i \in \{1, 2\}$. Recall that Γ_i is a lattice in $G_i = \mathbf{SL}(n_i, \mathbf{R})$. Since $n_i \geq 3$, by Margulis's arithmeticity Theorem [16, Th. 6.1.2], there exists a semisimple algebraic **Q**-group \mathbf{H}_i and a surjective homomorphism θ from the connected component of identity of the real points of this group $\mathbf{H}_i^0(\mathbf{R})$ to $\mathbf{SL}(n_i, \mathbf{R})$, with compact kernel, such that $\theta(\mathbf{H}_i(\mathbf{Z}) \cap \mathbf{H}_i^0(\mathbf{R}))$ is commensurable with Γ_i .

Following Prasad and Rapinchuk, we say that a **Q**-torus $\mathbf{T} \subset \mathbf{H}_i$ is **Q**-irreducible if it does not contain any proper subtorus defined over **Q**. By [12, Th. 1(ii)], there exists a maximal **Q**-anisotropic **Q**-torus $\mathbf{T}_i \subset \mathbf{H}_i$, which is **Q**-irreducible. Because any two maximal **R**-tori of $\mathbf{SL}(n_i, \mathbf{R})$ are **R**-conjugate, there exists $g_i \in G_i$ such that $\theta(\mathbf{T}_i^0(\mathbf{R})) = g_i^{-1} D_i g_i$. The subgroup $\mathbf{T}_i(\mathbf{Z})$ is a cocompact lattice in $\mathbf{T}_i(\mathbf{R})$ since \mathbf{T}_i is **Q**-anisotropic [2, Th. 8.4 and Def. 10.5]. Because $\theta(\mathbf{H}_i(\mathbf{Z}) \cap$ $\mathbf{H}_i^0(\mathbf{R}))$ and Γ_i are commensurable and θ has compact kernel, it follows that both $\Gamma_i \cap g_i^{-1} D_i g_i$ and $\theta(\mathbf{T}_i^0(\mathbf{Z})) \cap \Gamma_i \cap g_i^{-1} D_i g_i$ are also cocompact lattices in $g_i^{-1} D_i g_i$. The resulting topological torus $\pi_i (D_i g_i) \subset G_i / \Gamma_i$ will be denoted \mathcal{T}_i . Write $z_i = \pi_i (g_i)$, so that $\mathcal{T}_i = D_i z_i$.

For every $1 \le k < l \le n_i$, define as in [7]:

$$N_{k,l}^{(i)} = \left\{ \text{diag}(a_1, ..., a_{n_i}) : \prod_{s=1}^{n_i} a_s = 1, a_k = a_l, a_s > 0 \right\} \subset D_i$$

Of interest to us amongst the consequences of **Q**-irreducibility is the fact that an element of $\Gamma_i \cap g_i^{-1} D_i g_i$ lying in a wall of a Weyl chamber is necessarily trivial. This is expressed in the following form:

LEMMA 3.1. For every $1 \le k < l \le n_i$, and any closed connected subgroup L of positive dimension of $N_{k,l}^{(i)}$, the L-orbit of z_i is not compact.

Proof. Assume the contrary; that is, Lz_i is compact. This implies that $g_i^{-1}Lg_i \cap \Gamma_i$ is a uniform lattice in $g_i^{-1}Lg_i$, so that $g_i^{-1}Lg_i \cap \theta(\mathbf{H}_i(\mathbf{Z}))$ is also a uniform lattice. Since L is nontrivial, there exists an element $\gamma \in \mathbf{H}_i(\mathbf{Z}) \cap \mathbf{H}_i^0(\mathbf{R})$ of infinite order, such that $g_i \theta(\gamma) g_i^{-1}$ is in L. Note that since θ has compact kernel, $\mathbf{T}_i(\mathbf{Z})$ is a lattice in $\theta^{-1}(\theta(\mathbf{T}_i^0(\mathbf{R})))$ and is then a subgroup of finite index in $\mathbf{H}_i(\mathbf{Z}) \cap \mathbf{H}_i^0(\mathbf{R}) \cap \theta^{-1}(\theta(\mathbf{T}_i^0(\mathbf{R})))$, so there exists n > 0 such that γ^n belongs to $\mathbf{T}_i(\mathbf{Z})$. Consider the representation:

$$\rho: \mathbf{H}_{i}^{0}(\mathbf{R}) \to \mathbf{GL}(\mathfrak{sl}(n_{i}, \mathbf{R})),$$
$$x \mapsto \mathbf{Ad}(g_{i}\theta(x)g_{i}^{-1}).$$

Recall that $\chi(\operatorname{diag}(a_1, ..., a_{n_1})) = a_k/a_l$ is a weight of **Ad** with respect to D_i , so that χ is a weight of ρ with respect to \mathbf{T}_i . By [12, Prop. 1(iii)], the **Q**-irreducibility of \mathbf{T}_i implies that $\chi(\gamma^n) \neq 1$, but this contradicts the fact that $\theta(\gamma^n) \in g_i^{-1} N_{k,l}^{(i)} g_i$.

3.2. Contraction and expansion. For real s, denote by $a_i(s)$ the following $n_i \times n_i$ -matrix:

$$a_i(s) = \operatorname{diag}(e^{s/2}, \underbrace{1, \dots, 1}_{n_i - 2 \text{ times}}, e^{-s/2}),$$

and write simply N_i for $N_{1,n_i}^{(i)}$. Write also:

$$h_i(t) = \begin{bmatrix} 1 & 0 & \dots & 0 & t \\ 0 & 1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & 0 \\ 0 & \dots & \dots & 0 & 1 \end{bmatrix}.$$

Then the following commutation relation holds:

$$a_i(s)h_i(t) = h_i(e^s t)a_i(s);$$

that is, the direction h_i is expanded for positive s; note that both h_i and a_i commute with elements of N_i . It is easy to check from equation (1) that

$$A_1 = \{ (a_1(s)d_1, a_2(-s)d_2) : s \in \mathbf{R}, d_i \in N_i, i = 1, 2 \}.$$

Recall that $y_i = h_i(1)z_i$.

LEMMA 3.2. (1) If $s \le 0$, for any $d \in N_i$ the point $a_i(s)dy_i$ lies in the compact set $K_i = h_i([0, 1])\mathcal{T}_i$.

- (2) The D_i -orbit of y_i is dense in G_i / Γ_i .
- (3) The set $\{a_i(s)dy_i : s \ge 0, d \in N_i\}$ is dense in G_i / Γ_i .

Proof. The first statement is clear from the commutation relation. It also implies that $D_i y_i$ contains the compact torus \mathcal{T}_i in its closure.

To prove the second point, we rely heavily on the paper of Lindenstrauss and Weiss. [7, Th. 1.1] applies here, since the hypothesis of their theorem is precisely the conclusion of Lemma 3.1 for $L = N_{k,l}^{(i)}$. So the following holds: there exists a reductive subgroup H_i , containing D_i , such that $\overline{D_i y_i} = H_i y_i$, and $H_i \cap \Gamma_i$ is a lattice in H_i . Write $L = D_i \cap C_{G_i}(H_i)$.

Since $D_i y_i$ is not closed, $H_i \neq D_i$, so there exists a nontrivial root relatively to D_i for the adjoint representation of H_i on its Lie algebra, which is a subalgebra of $\mathfrak{sl}(n_i, \mathbf{R})$. Thus there exist k, l such that $L \subset N_{k,l}^{(i)}$. By [7, Step 4.1 of Lemma 4.2], Lz_i is compact, so that by Lemma 3.1, L is trivial. By [7, Prop. 3.1], H_i is the connected component of the identity of $C_{G_i}(L)$, so that $H_i = G_i$, as desired.

The third claim follows from the first and second claim together with the fact that K_i has empty interior.

3.3. Topological properties of the A_1 -orbit.

LEMMA 3.3. The A₁-orbit of (y_1, y_2) is not dense in $G_1 \times G_2 / \Gamma_1 \times \Gamma_2$.

Proof. Consider the open set $U = K_1^c \times K_2^c$. We claim that the A_1 -orbit of (y_1, y_2) does not intersect U. Indeed, if $(a_1(s)d_1, a_2(-s)d_2) \in A_1$ with $s \in \mathbf{R}$ and $d_i \in N_i$, the previous lemma implies that if $s \ge 0$, $a_2(-s)d_2y_2 \in K_2$, and if $s \le 0$, $a_1(s)d_1y_1 \in K_1$.

The following elementary result will be useful:

LEMMA 3.4. Let $p_i : G_1 \times G_2 \to G_i$ be the first (resp. second) coordinate morphism. If $F \subset G_1 \times G_2$ is a subgroup such that $p_i(F) = G_i$ for i = 1, 2, and $A_1 \subset F$, then $F = G_1 \times G_2$. *Proof.* Let $F_1 = \text{Ker}(p_1) \cap F$. Since F_1 is normal in F, $p_2(F_1)$ is normal in $p_2(F) = G_2$. Note that $N_2 \subset p_2(A_1 \cap \text{Ker}(p_1)) \subset p_2(F_1)$ is not finite, and that G_2 is almost simple; consequently the normal subgroup $p_2(F_1)$ of G_2 is equal to G_2 . When $(a, b) \in G_1 \times G_2$, by assumption there exists $f \in F$ such that $p_1(f) = a$. Let $f_1 \in F_1$ be such that $p_2(f_1) = bp_2(f)^{-1}$; then $(a, b) = f_1 f \in F$. \Box

We will have to apply several times the two following well-known lemmas:

LEMMA 3.5. Let L be a Lie group, $\Lambda \subset L$ a lattice, M, N two closed, connected subgroups of L, such that for some $w \in L/\Lambda$, Mw and Nw are closed. Then $(M \cap N)w$ is closed.

Proof. This is a weaker form of [14, Lemma 2.2].

LEMMA 3.6. Let L be a connected Lie group, $\Lambda \subset L$ a discrete subgroup, M, N two subgroups of L, such that M is closed and connected, and N is a countable union of closed sets. For any $w \in L/\Lambda$, if $Mw \subset Nw$, then $M \subset N$.

Proof. Up to changing Λ by one of its conjugates in L, one can assume that $w = \Lambda \in L/\Lambda$. By assumption, $M\Lambda \subset N\Lambda$ so that $M \subset N\Lambda \subset L$. Recall that M is closed, that Λ is countable, and that N is a countable union of closed sets, so Baire's category theorem applies, and there exist $\lambda \in \Lambda$ and an open set U of M such that $U \subset N\lambda$, so that $UU^{-1} \subset N$. Since M is a connected subgroup, UU^{-1} generates M, and so $M \subset N$.

The following lemma will be useful both for proving that the closure of $A_1(y_1, y_2)$ is not homogeneous, and for proving it does not fiber over a 1-parameter group orbit.

LEMMA 3.7. Let F be a closed connected subgroup of $G_1 \times G_2$ such that $F(y_1, y_2)$ contains the closure of $A_1(y_1, y_2)$. Then $F = G_1 \times G_2$.

Proof. By Lemma 3.2, the set of first coordinates of the set

$$\{(a(s)d_1y_1, a(-s)d_2y_2) : s \ge 0, d_i \in N_i\}$$

is dense in G_1/Γ_1 and the second coordinates lies in the compact set K_2 , so the closure of $A_1(y_1, y_2)$ contains points of arbitrary first coordinate with their second coordinate in K_2 . Consequently, the set of first coordinates of $F(y_1, y_2)$ is the whole G_1/Γ_1 , and similarly for the set of second coordinates. For i = 1, 2, Lemma 3.6 now applies to $L = M = G_i$, $\Lambda = \Gamma_i$, $N = p_i(F)$, which is a countable union of closed sets because $G_1 \times G_2$ is σ -compact, and $w = y_i$, and so $p_i(F) = G_i$.

In order to apply Lemma 3.4 and finish the proof, we have to show that $A_1 \subset F$. Again, this follows from a direct application of Lemma 3.6 to $L = G_1 \times G_2$, $\Lambda = \Gamma_1 \times \Gamma_2$, $M = A_1$, N = F, $w = (y_1, y_2)$.

3.4. *Proof of Theorem* 1, *part* (1). We now proceed to proving Theorem 1, part (1). The proof of Proposition 1 is similar and is omitted.

Recall that in this case, we fixed $A = \Psi(A_1)$ and $x = \overline{\Psi}(y_1, y_2)$.

Assume \overline{Ax} is homogeneous; that is, $\overline{Ax} = Fx$ for a closed connected subgroup F of G. Since $Ax \subset \overline{\Psi}(G_1 \times G_2 / \Gamma_1 \times \Gamma_2)$, which is closed in G/Γ , Lemma 3.6 implies that $F \subset \Psi(G_1 \times G_2)$. By Lemma 3.7, $F = \Psi(G_1 \times G_2)$, so that $Fx = G/\Gamma$ and Ax is dense in $\overline{\Psi}(G_1 \times G_2)$, which is a contradiction.

Now assume \overline{Ax} fibers over the orbit of a one-parameter subgroup. Let F be a closed connected subgroup, L a Lie group and $\phi : F \to L$ a continuous epimorphism satisfying (b) of Conjecture 1. Let $F' = F \cap \Psi(G_1 \times G_2)$, we have $A \subset F'$. By Lemma 3.5, F'x is closed in $Fx \cap \overline{\Psi}(G_1 \times G_2)$, and so is closed in G/Γ . By Lemma 3.7, $F' = \Psi(G_1 \times G_2)$ necessarily. Let $H = \text{Ker}(\phi \circ \Psi) \subset G_1 \times G_2$, so that $A_1/(A_1 \cap H)$ is a one-parameter group by assumption (b) of the conjecture.

The subgroup H is a normal subgroup of the semisimple group $G_1 \times G_2$, which has only four kinds of normal subgroups: finite, $G_1 \times G_2$, $G_1 \times$ finite and finite $\times G_2$. None of these possible normal subgroups has the property that it intersects A_1 in a codimension 1 subgroup; so this is a contradiction.

3.5. The arithmetic lattice. Here we prove that $SU(n, \mathbb{Z}[\sqrt[4]{2}], \sigma)$ is a lattice in $SL(n, \mathbb{R})$. Let *P*, *Q* be the polynomials with coefficients in $\mathbb{Q}(\sqrt{2})$ such that for any $X, Y \in M_n(\mathbb{C})$

$$\det(X + \sqrt[4]{2Y}) = P(X, Y) + \sqrt[4]{2Q(X, Y)}.$$

For an integral domain $A \subset C$, consider the set of pairs of matrices:

$$\mathbf{G}(\mathbf{A}) = \{ (X, Y) \in M_n(\mathbf{A})^2 : {}^t XX - \sqrt{2}{}^t YY = I_n, {}^t XY - {}^t YX = 0, \\ P(X, Y) = 1, \ Q(X, Y) = 0 \},$$

which implies that $({}^{t}X - \sqrt[4]{2}{}^{t}Y)(X + \sqrt[4]{2}Y) = I_n$ and $\det(X + \sqrt[4]{2}) = 1$ for all $(X, Y) \in \mathbf{G}(\mathbf{A})$. Endow $\mathbf{G}(\mathbf{A})$ with the multiplication given by

$$(X, Y)(X', Y') = (XX' + \sqrt{2}YY', XY' + YX'),$$

which is such that the map $\phi : \mathbf{G}(\mathbf{A}) \to \mathbf{SL}(n, \mathbf{C}), (X, Y) \mapsto X + \sqrt[4]{2}Y$ is a morphism. With this structure, **G** is an algebraic group, which is clearly defined over $\mathbf{Q}(\sqrt{2})$. Let τ be the nontrivial field automorphism of $\mathbf{Q}(\sqrt{2})/\mathbf{Q}$; it can be checked that the map ϕ is an isomorphism between $\mathbf{G}(\mathbf{R})$ and $\mathbf{SL}(n, \mathbf{R})$, and that moreover $\phi' : \mathbf{G}^{\mathfrak{G}}(\mathbf{R}) \to \mathbf{SL}(n, \mathbf{C}), (X, Y) \mapsto X + i \sqrt[4]{2}Y$ is an isomorphism onto $\mathbf{SU}(n)$. Let $\mathbf{H} = \operatorname{Res}_{\mathbf{Q}(\sqrt{2})/\mathbf{Q}}\mathbf{G} = \mathbf{G} \times \mathbf{G}^{\tau}$. Then \mathbf{H} is defined over \mathbf{Q} (see for example [16, 6.1.3], for the definition and properties of the restriction of scalars functor). It follows from a theorem of Borel and Harish-Chandra [16, Th. 3.1.7] that $\mathbf{H}(\mathbf{Z})$ is a lattice in $\mathbf{H}(\mathbf{R})$. Since $\mathbf{SU}(n)$ is compact, it follows that the projection of $\mathbf{H}(\mathbf{Z})$

onto the first factor of $G(\mathbf{R}) \times G^{\tau}(\mathbf{R})$ is again a lattice. Using the isomorphism between $G(\mathbf{R})$ and $SL(n, \mathbf{R})$, this projection can be identified with

$$\mathbf{G}(\mathbf{Z}[\sqrt{2}]) = \mathbf{SU}(n, \mathbf{Z}[\sqrt{2}] + \sqrt[4]{2}\mathbf{Z}[\sqrt{2}], \sigma) = \mathbf{SU}(n, \mathbf{Z}[\sqrt[4]{2}], \sigma).$$

3.6. Proof of Theorem 1, part (2). Note that, as stated implicitly in Section 2.3,

$$\varphi(\Gamma_1 \times \Gamma_2 \times (\log \alpha) \mathbf{Z}) \subset \Gamma \cap M,$$

so that $\Gamma \cap M$ is a lattice in M, and $M/(M \cap \Gamma)$ is a closed, A-invariant subset of G/Γ . Notice also that the map Ψ defined by equation (2) defines an embedding $\overline{\Psi}: G_1 \times G_2/\Gamma_1 \times \Gamma_2 \to G/\Gamma$.

Assume \overline{Ax} is homogeneous, that is $\overline{Ax} = Fx$ for a closed connected subgroup F of G. Since $Ax \subset M/(M \cap \Gamma)$, which is closed in G/Γ , Lemma 3.6 applied twice gives that $A \subset F \subset M$. When $F' = F \cap \Psi(G_1 \times G_2)$, again by Lemma 3.5, F'x is a closed subset of $\operatorname{Im}(\overline{\Psi})$. Since $A_1 \subset F'$, $\Psi(A_1)x \subset F'x$ and Lemma 3.7 implies that $F' = \Psi(G_1 \times G_2)$. Since A contains $\varphi(e, e, t)$ for all $t \in \mathbf{R}$, we have $M = AF' \subset F$ so that F = M necessarily.

By Lemma 3.3, the A_1 -orbit of (y_1, y_2) is not dense; the topological transitivity of the action of A_1 on $G_1 \times G_2 / \Gamma_1 \times \Gamma_2$ implies that moreover the closure of this orbit has empty interior. Thus, the $A_1 \times \mathbf{R}$ -orbit of $(y_1, y_2, 0)$ is also nowhere dense in $G_1 \times G_2 \times \mathbf{R} / \Gamma_1 \times \Gamma_2 \times (\log \alpha) \mathbf{Z}$. The map $\overline{\varphi}$ being a finite covering, the *A*-orbit of *x* is nowhere dense. This is a contradiction with F = M.

Now assume Ax fibers over the orbit of a one-parameter non-Ad-unipotent subgroup. Let F be a closed connected subgroup, L a Lie group and $\phi : F \to L$ a continuous epimorphism satisfying the (b) of the conjecture. Letting $F' = F \cap$ $\Psi(G_1 \times G_2)$ and $F'' = F \cap M$, we have $A_1 \subset F'$ and $A \subset F''$. Similarly, F'xand F''x are closed in G/Γ . Again, by Lemma 3.7, $F' = \Psi(G_1 \times G_2)$ necessarily, and like before, $AF' \subset F'' \subset M$ so that F'' = M.

Let $H = \text{Ker}(\phi \circ \varphi) \subset G_1 \times G_2 \times \mathbf{R}$, so that $A_1 \times \mathbf{R}/(A_1 \times \mathbf{R} \cap H)$ is a oneparameter group. This time, possibilities for the closed normal subgroup H are: finite $\times \Lambda$, $G_1 \times G_2 \times \Lambda$, $G_1 \times$ finite $\times \Lambda$ and finite $\times G_2 \times \Lambda$, where Λ is a closed subgroup of \mathbf{R} . Of all these possibilities, only $G_1 \times G_2 \times \Lambda$, where Λ is discrete, has the required property that $A_1 \times \mathbf{R}/(A_1 \times \mathbf{R} \cap H)$ is a one-parameter group. This proves that $\Psi(G_1 \times G_2) \subset \text{Ker}(\phi)$, and so $F \subset N_G(\Psi(G_1 \times G_2))$. However, the normalizer of $\Psi(G_1 \times G_2)$ in G is the group of block matrices having, for connected component of the identity, the group M. So by connectedness of F, $F \subset M$, and since $M = F'' \subset F$, we have F = M. Thus $L = F/\text{Ker}(\phi) = \mathbf{R}/\Lambda$ is abelian, and *a fortiori* every element of L is unipotent; this contradicts (b).

4. Proof of Theorem 2

The proof of Theorem 2 is divided in two independent lemmas.

LEMMA 4.1. The family $(z_1, \ldots, z_{2q}, 1)$ is linearly independent over **Q**. *Proof.* Consider a linear combination:

$$\sum_{i=1}^q a_i z_i + b_i z_{i+q} = c.$$

We can assume that a_i, b_i and c are integers. Letting $k_0 \ge 1$, write

(3)
$$\left(\prod_{i=1}^{q} p_i\right)^{N^{2k_0+1}} \left(\sum_{i=1}^{q} \sum_{k=1}^{k_0} a_i p_i^{-N^{2k}} + b_i p_i^{-N^{2k+1}} - c\right)$$

= $-\left(\prod_{i=1}^{q} p_i\right)^{N^{2k_0+1}} \left(\sum_{i=1}^{q} \sum_{k \ge k_0+1} a_i p_i^{-N^{2k}} + b_i p_i^{-N^{2k+1}}\right).$

It is clear that the left-hand side is an integer. Since $1 < p_1 < \cdots < p_q$, the right-hand side is less in absolute value than

$$p_q^{qN^{2k_0+1}} 2q \sup_i (|a_i|, |b_i|) \sum_{k \ge 0} \left(p_1^{-N^{2k_0+2}} \right)^{N^{2k}} \\ \le 4q \sup_i (|a_i|, |b_i|) p_q^{qN^{2k_0+1}} p_1^{-N^{2k_0+2}} \\ \le 4q \sup_i (|a_i|, |b_i|) \exp(N^{2k_0+1}(q \log p_q - N \log p_1)).$$

Since $N > q \frac{\log(p_q)}{\log(p_1)}$, the last expression tends to zero. This proves the right-hand side of (3) is zero for large enough k_0 ; so for all large k,

$$\sum_{i=1}^{q} a_i p_i^{-N^{2k}} + b_i p_i^{-N^{2k+1}} = 0$$

The p_i being distincts, this implies that for $i \in \{1, ..., q\}$, $a_i = b_i = 0$.

The following lemma implies easily that the orbit of z under Ω cannot be dense.

LEMMA 4.2. For all $\varepsilon > 0$, there exists L > 0, such that for all $n_1, ..., n_q \ge 0$ with $\sum_{i=1}^q n_i \ge L$, there exists $j \in \{1, ..., 2q\}$ such that $p_1^{n_1} \cdots p_q^{n_q} z_j$ lies in the interval $[0, \varepsilon]$ modulo 1.

Proof. Let $s \in \{1, \ldots, q\}$ be such that for all $r \in \{1, \ldots, q\}$, $p_s^{n_s} \ge p_r^{n_r}$. Let k_0 be the integer part of $\log(n_s)/2\log(N)$; then either $N^{2k_0} \le n_s \le N^{2k_0+1}$, or $N^{2k_0+1} \le n_s \le N^{2k_0+2}$. In the first case, take j = s; then:

$$p_1^{n_1} \cdots p_q^{n_q} z_j = p_1^{n_1} \cdots p_q^{n_q} \sum_{k \ge 1} p_s^{-N^{2k}} = p_1^{n_1} \cdots p_q^{n_q} \sum_{k \ge k_0 + 1} p_s^{-N^{2k}} \mod 1.$$

We have

$$\sum_{k \ge k_0 + 1} p_s^{-N^{2k}} \le 2p_s^{-N^{2k_0 + 2}};$$

so, using the fact that for all $r \in \{1, ..., q\}$, $p_r^{n_r} \le p_s^{n_s} \le p_s^{N^{2k_0+1}}$, we obtain:

$$p_1^{n_1} \cdots p_q^{n_q} \sum_{k \ge k_0 + 1} p_s^{-N^{2k}} \le 2p_s^{qN^{2k_0 + 1} - N^{2k_0 + 2}} \le 2p_s^{N^{2k_0 + 1}(q - N)},$$

but by hypothesis we have $N > q \frac{\log(p_q)}{\log(p_1)} > q$, so that the preceding bound is small whenever k_0 is large. Because of the definition of k_0 , we have

$$k_0 \ge \frac{\log \frac{\sum_{i=1}^q n_i \log p_i}{q \log p_q}}{2 \log N} \ge \frac{\log \frac{L \log p_1}{q \log p_q}}{2 \log N},$$

so that k_0 is arbitrarily large when L is large.

In the second case $N^{2k_0+1} \le n_s \le N^{2k_0+2}$, and one can proceed similarly with j = s + q.

5. Acknowledgements

I am indebted to Yves Guivarc'h for mentioning to me the problem of orbit closure in the toral endomorphisms setting, and to Livio Flaminio for numerous useful comments. I also thank Françoise Dal'Bo, and Sébastien Gouëzel for stimulating conversations on this topic.

References

- D. BEREND, Minimal sets on tori, *Ergodic Theory Dynam. Systems* 4 (1984), 499–507. MR 86i:28028 Zbl 0563.58020
- [2] A. BOREL, Introduction aux Groupes Arithmétiques, Publications de l'Institut de Mathématique de l'Université de Strasbourg, XV, Hermann, Paris, 1969. MR 39 #5577 Zbl 0186.33202
- [3] M. EINSIEDLER, A. KATOK, and E. LINDENSTRAUSS, Invariant measures and the set of exceptions to Littlewood's conjecture, *Ann. of Math.* 164 (2006), 513–560. MR 2007j:22032 Zbl 1109.22004
- [4] D. FERTE, Dynamique topologique d'une action de groupe sur un espace homogène : exemples d'actions unipotente et diagonale, Ph.D. thesis, Rennes I.
- [5] H. FURSTENBERG, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, *Math. Systems Theory* 1 (1967), 1–49. MR 35 #4369 Zbl 0146.28502
- [6] D. KLEINBOCK, N. SHAH, and A. STARKOV, Dynamics of subgroup actions on homogeneous spaces of Lie groups and applications to number theory, in *Handbook of Dynamical Systems*, *Vol.* 1A, North-Holland, Amsterdam, 2002, pp. 813–930. MR 2004b:22021 Zbl 1050.22026
- [7] E. LINDENSTRAUSS and B. WEISS, On sets invariant under the action of the diagonal group, Ergodic Theory Dynam. Systems 21 (2001), 1481–1500. MR 2002j:22009 Zbl 1073.37006

- [8] G. MARGULIS, Problems and conjectures in rigidity theory, in *Mathematics: Frontiers and Perspectives*, Amer. Math. Soc., Providence, RI, 2000, pp. 161–174. MR 2001d:22008 Zbl 0952.22005
- [9] G. A. MARGULIS and N. QIAN, Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices, *Ergodic Theory Dynam. Systems* 21 (2001), 121–164. MR 2003a:22019 Zbl 0976.22009
- [10] D. MEIRI and Y. PERES, Bi-invariant sets and measures have integer Hausdorff dimension, Ergodic Theory Dynam. Systems 19 (1999), 523–534. MR 2001a:37010 Zbl 0954.37004
- [11] G. PRASAD and M. S. RAGHUNATHAN, Cartan subgroups and lattices in semi-simple groups, Ann. of Math. 96 (1972), 296–317. MR 46 #1965 Zbl 0245.22013
- [12] G. PRASAD and A. S. RAPINCHUK, Irreducible tori in semisimple groups, *Internat. Math. Res. Notices* (2001), 1229–1242. MR 2003f:20083a Zbl 1057.22025
- [13] M. RATNER, Raghunathan's topological conjecture and distributions of unipotent flows, *Duke Math. J.* 63 (1991), 235–280. MR 93f:22012 Zbl 0733.22007
- [14] N. A. SHAH, Uniformly distributed orbits of certain flows on homogeneous spaces, *Math. Ann.* 289 (1991), 315–334. MR 93d:22010 Zbl 0702.22014
- [15] G. TOMANOV, Actions of maximal tori on homogeneous spaces, in *Rigidity in Dynamics and Geometry (Cambridge*, 2000), Springer-Verlag, New York, 2002, pp. 407–424. MR 2004a: 22011 Zbl 1012.22021
- [16] R. J. ZIMMER, Ergodic Theory and Semisimple Groups, Monogr. Math. 81, Birkhäuser, Basel, 1984. MR 86j:22014 Zbl 0571.58015

(Received July 19, 2007) (Revised August 28, 2008)

E-mail address: francois.maucourant@univ-rennes1.fr UNIVERSITÉ RENNES I, INSTITUT DE RECHERCHE MATHÉMATIQUE DE RENNES, CAMPUS DE BEAULIEU, F-35042 RENNES, FRANCE,

http://perso.univ-rennes1.fr/francois.maucourant/