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Abstract

The author will prove that Drinfel’d’s pentagon equation implies his two hex-
agon equations in the Lie algebra, pro-unipotent, pro-l and pro-nilpotent contexts.
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0. Introduction

In his celebrated papers on quantum groups [Dri87], [Dri89], [Dri90] Drin-
fel’d came to the notion of quasitriangular quasi-Hopf quantized universal envelop-
ing algebra. It is a topological algebra which differs from a topological Hopf
algebra in the sense that the coassociativity axiom and the cocommutativity axiom
is twisted by an associator and an R-matrix satisfying a pentagon axiom and two
hexagon axioms. One of the main theorems in [Dri90] is that any quasitriangular
quasi-Hopf quantized universal enveloping algebra modulo twists (in other words
gauge transformations [Kas95]) is obtained as a quantization of a pair (called its
classical limit) of a Lie algebra and its symmetric invariant 2-tensor. Quantizations
are constructed by universal associators. The set of group-like universal associa-
tors forms a pro-algebraic variety, denoted M . Its nonemptiness is another of
his main theorems (reproved in [BN98]). Our first theorem is on the defining
equations of M .

Let us fix notation and conventions: Let k be a field of characteristic 0, xk its
algebraic closure and UF2 D khhX; Y ii a noncommutative formal power series
ring with two variables X and Y . Its element ' D '.X; Y / is called group-like if
it satisfies �.'/D '˝' with �.X/DX˝1C1˝X and �.Y /D Y ˝1C1˝Y
and its constant term is equal to 1. Its coefficient of XY is denoted by c2.'/. For
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any k-algebra homomorphism � W UF2 ! S the image �.'/ 2 S is denoted by
'.�.X/; �.Y //. Let a4 be the completion (with respect to the natural grading) of
the Lie algebra over k with generators tij (1 6 i; j 6 4) and defining relations
ti i D 0, tij D tj i , Œtij ; tikC tjk�D 0 (i ,j ,k: all distinct) and Œtij ; tkl �D 0 (i ,j ,k,l :
all distinct).

THEOREM 1. Let ' D '.X; Y / be a group-like element of UF2. Suppose that
' satisfies Drinfel’d’s pentagon equation:

(1) '.t12; t23Ct24/'.t13Ct23; t34/D'.t23; t34/'.t12Ct13; t24Ct34/'.t12; t23/:

Then there exists an element (unique up to signature) � 2 xk such that the pair
.�; '/ satisfies his two hexagon equations:

(2) exp
n�.t13C t23/

2

o
D '.t13; t12/ exp

n�t13
2

o
'.t13; t23/

�1 exp
n�t23
2

o
'.t12; t23/;

(3) exp
n�.t12C t13/

2

o
D '.t23; t13/

�1 exp
n�t13
2

o
'.t12; t13/ exp

n�t12
2

o
'.t12; t23/

�1:

Actually this � is equal to˙.24c2.'//
1
2 .

It should be noted that we need to use an (actually quadratic) extension of a
field k in order to obtain the hexagon equations from the pentagon equation. The
associator set M is the pro-algebraic variety whose set of k-valued points consists
of pairs .�; '/ satisfying (1), (2) and (3) and M is its open subvariety defined by
�¤ 0. The theorem says that the pentagon equation is essentially a single defining
equation of the associator set. The Drinfel’d associator ˚KZ 2 RhhX; Y ii is a
group-like series constructed by solutions of the KZ-equation [Dri90]. It satisfies
(1), (2) and (3) with � D ˙2�

p
�1. Its coefficients are expressed by multiple

zeta values [LM96] (and [Fur03]). The theorem also says that the two hexagon
equations do not provide any new relations under the pentagon equation.

The category of representations of a quasitriangular quasi-Hopf quantized uni-
versal enveloping algebra forms a quasitensored category [Dri90], in other words,
a braided tensor category [JS93]; its associativity constraint and its commutativ-
ity constraint are subject to one pentagon axiom and two hexagon axioms. The
Grothendieck-Teichmüller pro-algebraic group GT is introduced in [Dri90] as a
group of deformations of the category which change its associativity constraint
and its commutativity constraint keeping all three axioms. It is also conjecturally
related to the motivic Galois group of Z (explained in [And04]). Relating to the
absolute Galois group Gal. NQ=Q/ of Q its profinite group version cGT is discussed
in [Iha91], [Sch97]. Our second theorem is on defining equations of GT.
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THEOREM 2. Let F2.k/ be the the free pro-unipotent algebraic group with
two variables x and y. Suppose that its element f D f .x; y/ satisfies Drinfel’d’s
pentagon equation:
(4)
f .x12; x23x24/f .x13x23; x34/D f .x23; x34/f .x12x13; x24x34/f .x12; x23/

in K4.k/. Then there exists an element (unique up to signature) � 2 xk such that the
pair .�; f / satisfies his hexagon equations (3- and 2-cycle relation):

f .z; x/zmf .y; z/ymf .x; y/xm D 1 with xyz D 1 and mD
�� 1

2
;(5)

f .x; y/f .y; x/D 1:(6)

Actually this � is equal to˙.24c2.f /C1/
1
2 where c2.f / stands for c2.f .eX; eY //.

Here K4.k/ stands for the unipotent completion of the pure braid group K4D
kerfB4!S4g of four strings (B4: the Artin braid group and S4: the symmetric
group) with standard generators xij (16 i; j 6 4).

It should be noted again that we need to use an (actually quadratic) extension
of a field k in order to obtain the hexagon equations from the pentagon equation.
The set of pairs .�; f / satisfying (4), (5) and (6) determines a pro-algebraic variety
GT and GT is its open subvariety defined by � ¤ 0. The product structure on
GT.k/ is given by .�1; f1/ ı .�2; f2/ WD .�; f / with � D �1�2 and f .x; y/ D
f1.f2x

�2f �12 ; y�2/f2. The theorem says that the pentagon equation is essentially
a single defining equation of GT.

The construction of the paper is as follows. Section 1 is a crucial part of
the paper. The implication of the pentagon equation is proved for Lie series. In
Section 2 we give a proof of Theorem 1 by using Drinfel’d’s gadgets. Section 3
gives a proof of Theorem 2 and its analogue in the pro-l group and pro-nilpotent
group setting.

1. Lie algebra case

In this section we prove the Lie algebra version of Theorem 1 in a rather
combinatorial argument.

Let F2 be the set of Lie-like elements ' in UF2 (i.e. �.'/D '˝ 1C 1˝').

THEOREM 3. Let ' be a commutator Lie-like element1 with c2.'/D 0. Sup-
pose that ' satisfies the pentagon equation (5-cycle relation):

(7) '.X12; X23/C'.X34; X45/C'.X51; X12/C'.X23; X34/C'.X45; X51/D0

1 In this paper we call a series ' D '.X; Y / commutator Lie-like if it is Lie-like and its coefficient
of X and Y are both 0, in other words ' 2 F02 WD ŒF2;F2�.
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in OP5. Then it also satisfies the hexagon equations (3- and 2-cycle relation):

'.X; Y /C'.Y;Z/C'.Z;X/D 0 with X CY CZ D 0;(8)

'.X; Y /C'.Y;X/D 0:(9)

Here OP5 stands for the completion (with respect to the natural grading) of the
pure sphere braid Lie algebra P5 [Iha91] with five strings; the Lie algebra gener-
ated by Xij (16 i; j 6 5) with clear relations Xi i D 0, Xij DXj i ,

P5
jD1Xij D 0

(16 i; j 6 5) and ŒXij ; Xkl �D 0 if fi; j g\fk; lgD∅. It is a quotient of a4 (cf. �2).

Proof. There is a projection from OP5 to the completed free Lie algebra F2
generated by X and Y by putting Xi5 D 0, X12 DX and X23 D Y . The image of
the 5-cycle relation gives the 2-cycle relation.

For our convenience we denote '.Xij ; Xjk/ (1 6 i; j; k 6 5) by 'ijk . Then
the 5-cycle relation can be read as

'123C'345C'512C'234C'451 D 0:

We denote the left-hand side by P . Let �i (16 i 6 4) be elements of S5 defined
as follows: �1.12345/ D .12345/, �2.12345/ D .54231/, �3.12345/ D .13425/
and �4.12345/D .43125/. ThenX4

iD1
�i .P /D '123C'345C'512C'234C'451

C'542C'231C'154C'423C'315

C'134C'425C'513C'342C'251

C'431C'125C'543C'312C'254:

By the 2-cycle relation, 'ijk D�'kji (16 i; j; k 6 5). This givesX4

iD1
�i .P /D .'123C'231C'312/C .'512C'125C'251/

C.'234C'342C'423/C .'542C'425C'254/:

By ŒX23; X12CX23CX31�D ŒX31; X12CX23CX31�D ŒX12; X12CX23C
X31� D 0 and ' 2 F02, '231 D '.X23; X31/ D '.X23;�X12 �X23/ and '312 D
'.X31; X12/D '.�X12�X23; X12/.

By ŒX51; X12CX25CX51�D ŒX12; X12CX25CX51�D ŒX25; X12CX25C
X51� D 0 and ' 2 F02, '512 D '.X51; X12/ D '.�X12 �X25; X12/ and '251 D
'.X25; X51/D '.X25;�X12�X25/.

By ŒX23; X42CX23CX34�D ŒX34; X42CX23CX34�D ŒX42; X42CX23C
X34� D 0 and ' 2 F02, '234 D '.X23; X34/ D '.X23;�X42 �X23/ and '342 D
'.X34; X42/D '.�X42�X23; X42/.
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By ŒX54; X42CX25CX54�D ŒX42; X42CX25CX54�D ŒX25; X42CX25C
X54� D 0 and ' 2 F02, '542 D '.X54; X42/ D '.�X42 �X25; X42/ and '254 D
'.X25; X54/D '.X25;�X42�X25/.

Let R.X; Y /D '.X; Y /C'.Y;�X �Y /C'.�X �Y;X/. ThenX4

iD1
�i .P /DR.X21; X23/CR.X21; X25/CR.X24; X23/CR.X24; X25/:

The elements X21, X23, X24 and X25 generate a completed Lie subalgebra F3
of OP5 which is free of rank 3 and whose set of relations is given by X21CX23C
X24 C X25 D 0. It contains

P4
iD1 �i .P /. Let q1 W F3 ! F2 be the projection

sending X21 7!X , X23 7! Y and X24 7!X . Then

q1

�X4

iD1
�i .P /

�
DR.X; Y /CR.X;�2X �Y /CR.X; Y /CR.X;�2X �Y /:

Since P D 0, we have R.X;�2X � Y / D �R.X; Y /. Let q2 W F3 ! F2 be the
projection sending X21 7!X , X23 7!X and X24 7! Y . Then

q2

�X4

iD1
�i .P /

�
DR.X;X/CR.X;�2X �Y /CR.Y;X/CR.Y;�2X �Y /:

By ' 2F02, R.X;X/D 0. By definition, R.Y;�2X�Y /DR.2X; Y /. Since P D 0,
�R.X; Y /C R.Y;X/C R.Y; 2X/ D 0. The 2-cycle relation gives R.X; Y / D
�R.Y;X/. Therefore 2R.X; Y / D R.2X; Y /. Expanding this equation in terms
of a linear basis, such as the Hall basis, we see that R.X; Y / must be of the formP1
mD1 am.adY /

m�1.X/ with am 2 k. Since it satisfies R.X; Y / D �R.Y;X/,
we have a1 D a3 D a4 D a5 D � � � D 0. By our assumption c2.'/D 0, a2 must be
0 also. Therefore R.X; Y /D 0, which is the 3-cycle relation. �

We note that the assumption c2.'/ D 0 is necessary: e.g. the element ' D
ŒX; Y � satisfies the 5-cycle relation but it does not satisfy the 3-cycle relation.

Remark 4. There is partially a geometric picture in the proof: We have a
de Rham fundamental groupoid [Del89] (see also [Fur07]) of the moduli M0;n D

f.x1 W � � � W xn/ 2 .P1/njxi ¤ xj .j ¤ j /g=PGL.2/ for n > 4, its central extension
given by the normal bundle of M0;n�1 inside its stable compactification M0;n and
maps between them. An automorphism of the system is determined by consid-
ering what happens to the canonical de Rham path from ‘0’ to ‘1’ (loc. cit.) in
M0;4 D P1nf0; 1;1g. Equation (7) reflects the necessary condition that such an
automorphism must keep the property that the image of the composite of the path,
the boundaries of the fundamental pentagon B5 [Iha91] formed by the divisors
xi D xiC1 (i 2 Z=5Z) in M0;5.R/, must be a trivial loop. Each �i .B5/ (16 i 6 4)
is a connected component of M0;5.R/. The sum of four 5-cycles

P4
iD1 �i .P / cor-

responds to a path following the (oriented) boundaries of the four real pentagonal
regions �i .B5/ of M0;5.R/. The four 3-cycles correspond to four loops around the
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four boundary divisors x4 D x5, x3 D x4, x5 D x1 and x1 D x3 in M0;5.R/. The
author expects that the geometric interpretation might help to adapt our proof to
the pro-finite context (cf. Question 14).

The equations (7), (8) and (9) are defining equations of Ihara’s stable deriva-
tion (Lie-)algebra [Iha91]. Its Lie bracket is given by h'1; '2i WD Œ'1; '2� C

D'2.'1/�D'1.'2/ where D' is the derivation of F2 given by D'.X/D Œ'; X�
and D'.B/ D 0. We note that its completion with respect to degree is equal to
the graded Lie algebra grt1 of the Grothendieck-Teichmüller group GT in [Dri90].
Our theorem says that the pentagon equation is its single defining equation and two
hexagon equations are needless for its definition when deg' > 3.

2. Proof of Theorem 1

This section is devoted to a proof of Theorem 1. Between the Lie algebra
a4 in Theorem 1 and OP5 in Theorem 3 there is a natural surjection � W a4! OP5

sending tij to Xij (16 i; j 6 4). Its kernel is generated by �D
P
16i<j64 tij . We

also denote its induced morphism U a4! U OP5 by � . On the pentagon equation
we have

LEMMA 5. Let ' be a group-like element. Giving the pentagon equation (1)
for ' is equivalent to showing that ' is commutator group-like2 and ' satisfies the
5-cycle relation in U OP5:

(10) '.X12; X23/'.X34; X45/'.X51; X12/'.X23; X34/'.X45; X51/D 1:

Proof. Assume (1). Denote the abelianization of '.X; Y / 2 khhX; Y ii by
'ab 2kŒŒX; Y ��. The series ' is group-like, so 'ab is as well, i.e.�.'ab/D'ab˝'ab.
Therefore 'ab must be of the form expf˛XCˇY g with ˛; ˇ 2 k. Equation (1) gives
˛X12CˇX34D 0. Hence ˛D ˇD 0 which means that ' is commutator group-like.
Therefore

'.X12; X51/D '.X12;�X21�X52/D '.X12; X23CX24/

by ŒX12; X51CX21CX52�D ŒX51; X51CX21CX52�D 0;

'.X45; X34/D '.�X43�X53; X34/D '.X13CX23; X34/

by ŒX45; X45CX43CX53�D ŒX34; X45CX43CX53�D 0 and

'.X45; X51/D '.�X14�X15; X51/D '.�X14�X15;�X14�X45/

D '.X12CX13; X24CX34/

2 In this paper we call a series ' D '.X; Y / commutator group-like if it is group-like and its
coefficient of X and Y are both 0.
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by ŒX45; X45CX14CX51�D ŒX51; X45CX14CX51�D 0 and ŒX14CX15; X51C
X14CX45�D ŒX51; X51CX14CX45�D 0: (N.B. If ' is commutator group-like,
'.ACC;B/D '.A;BCC/D '.A;B/ with ŒA; C �D ŒB; C �D 0.) So the image
of (1) by � is

(11) '.X12; X51/'.X45; X34/D '.X23; X34/'.X45; X51/'.X12; X23/:

Lemma 6 gives (10).
Conversely, assume (10) and the commutator group-likeness for '. Lemma 6

gives equality (11). Whence we say (1) modulo ker � . That is, the quotient of the
left-hand side of (1) by the right-hand side of (1) is expressed as exp 
� for some

 2 k. Since both sides of (1) are commutator group-like, exp 
� must be as well.
Therefore 
 must be 0, which gives (1). �

LEMMA 6. Let ' be a group-like element. If ' is commutator group-like and
it satisfies the 5-cycle relation (10), it also satisfies the 2-cycle relation:

(12) '.X; Y /'.Y;X/D 1:

Furthermore, if ' satisfies the pentagon equation (1), it also satisfies (12).

Proof. There is a projection UP^5 ! UF2 by putting Xi5 D 0 (1 6 i 6 5),
X12 D X and X23 D Y . The image of (10) is (12) by the commutator group-
likeness.

As was shown in Lemma 6, equation (1) for ' in U a4 implies its commutator
group-likeness and (11) in U OP5. The image of (11) by the projection gives equa-
tion (12). �

In [IM95], the equivalence between (1) and (10) is shown, assuming the com-
mutatativity and the 2-cycle relation in the pro-finite group setting. But by the
above argument the latter assumption can be excluded.

As for the hexagon equations we also have

LEMMA 7. Let ' be a group-like element. Giving two hexagon equations
(2) and (3) for ' is equivalent to giving the 2-cycle relation (12) and the 3-cycle
relation:

(13) e
�X
2 '.Z;X/e

�Z
2 '.Y;Z/e

�Y
2 '.X; Y /D 1 with X CY CZ D 0:

Proof. We review the proof in [Dri90]. The Lie subalgebra generated by t12,
t13 and t23 is the direct sum of its center, generated by t12C t23C t13, and the free
Lie algebra generated by X D t12 and Y D t23. The projections of (2) and (3) to the
first component are both tautologies but the projections to the second component
are

e
�X
2 '.Z;X/e

�Z
2 '.Z; Y /�1e

�Y
2 '.X; Y /D 1
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and
e
�X
2 '.Z;X/e

�Z
2 '.Z; Y /�1e

�Y
2 '.Y;X/�1 D 1:

They are equivalent to (12) and (13). �

The following are keys to prove Theorem 1.

LEMMA 8. Let '1 and '2 be commutator group-like elements. Put '3 D
'2 ı'1.X; Y / WD '2.'1X'

�1
1 ; Y / �'1. Assume that '1 satisfies (10), (12) and

(14) '.Z;X/'.Y;Z/'.X; Y /D 1 with X CY CZ D 0:

Then '2 satisfies (10) if and only if '3 satisfies (10).

Proof. By the arguments in [Sch97, �1.2], '1 determines an automorphism of
UP^5 sending

X12 7!X12; X23 7! '1.X12; X23/
�1X23'1.X12; X23/;

X34 7! '1.X34; X45/X34'1.X34; X45/
�1; X45 7!X45

and

X51 7! '1.X12; X23/
�1'1.X45; X51/

�1X51'1.X45; X51/'1.X12; X23/:

The direct calculation shows that the left-hand side of (10) for '2 maps to the left-
hand side of (10) for '3.X; Y /. This gives the claim. �

LEMMA 9. Let ' be a commutator group-like element with c2.'/D 0. Sup-
pose that ' satisfies (10). Then it also satisfies (14).

Proof. The proof is given by induction. Suppose that we have (14) mod degn.
The element ' satisfies the commutator group-likeness, (10), (12) and (14) mod
degn, in other words, it is an element of algebraic group GRT.n/1 .k/ [Dri90, �5].
Denote its corresponding Lie element by  . It is an element of the Lie algebra
grt

.n/
1 .k/ (loc. cit.), that means, it is expressed by  D

Pn�1
iD3  

.i/ 2 khhX; Y ii

where  .i/ is a homogeneous Lie element with deg .i/ D i and satisfies (7),
(8) and (9). The Lie algebra grt1.k/ D lim

 �
grt

.n/
1 .k/ is graded by degree and

 also determines an element (denoted by the same symbol  ) of grt1.k/. Let
Exp W grt1.k/! GRT1.k/ D lim

 �
GRT.n/1 .k/ be the exponential morphism. Put

'1 D Exp  . It is commutator group-like and it satisfies (10), (12), (14) and
'�'1 mod degn (loc. cit.). Let '2 be a series defined by 'D'2ı'1. Then '2 is
commutator group-like and it satisfies (10) by Lemma 8. By ' � '1 mod degn,
'2 � 1 mod degn. Denote the degree n-part of '2 by  .n/. Because '2 �
1C .n/ mod degnC 1, (10) for '2 yields (7) for  .n/ and the group-likeness
for '2 yields the Lie-likeness for  .n/. By Theorem 3,  .n/ satisfies (8) and (9),
which means  .n/ 2 grt1.k/. Since Exp  .n/ 2 GRT1.k/ and '2 � Exp  .n/

mod degnC 1, '2 belongs to GRT.nC1/1 .k/. Since '1 also determines an element
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of GRT.nC1/1 .k/, ' must belong to GRT.nC1/1 .k/. This means that ' satisfies (14)
mod degnC 1. �

THEOREM 10. Let ' be a commutator group-like element. Suppose that '
satisfies the 5-cycle relation (10). Then there exists an element (unique up to sig-
nature) � 2 xk such that the pair .�; '/ satisfies the 3-cycle relation (13). Actually
this � is equal to˙.24c2.'//

1
2 .

Proof. We may assume c2.'/ ¤ 0 by Lemma 9. Let � be a solution of
x2D 24c2.'/ in xk�. Let M 0� (resp. M� [Dri90]) be the pro-affine algebraic variety
whose xk-valued points are commutator group-like series ' in xkhhX; Y ii satisfying
(10) and c2.'/ D

�2

24
(resp. (10), (12) and (13)) for .�; '/. By calculating the

coefficient of XY in (13) for .�; '/, we get 3c2.'/ �
�2

8
D 0. Thus M� is a

pro-subvariety of M 0�. To prove M 0� D M�, it suffices to show this for � D 1
because we have a replacement '.A;B/ by '.A

�
; B
�
/. In a similar way to [Fur06,

�6] the regular function ring O.M 01/ (resp. O.M1/) is encoded the weight filtration
W D fWnO.M 01/gn2Z (resp. fWnO.M1/gn2Z). The algebra O.M 01/ (resp. O.M1/)
is generated by xW ’s (W : word3) and defined by the commutator group-likeness,
(10) and c2.'/ D 1

24
(resp. (10), (12) and (13)) for ' D 1C

P
W xWW . Set

deg xW D degW . Each WnO.M 01/ (resp. WnO.M1/) is the vector space generated
by polynomials whose total degree is less than or equal to n.

The inclusion M1!M 01 gives a projection O.M 01/� O.M1/ which is strictly
compatible with the filtrations. It induces a projection p WGrW� O.M 01/�GrW� O.M1/

between their associated graded quotients. The graded quotient GrW� O.M1/ is
isomorphic to O.GRT1/ by [Fur06, Th. 6.2.2]. It is the algebra generated by
NxW ’s and defined by the commutator group-likeness, (10), (12) and (14) for x' D
1C

P
W NxWW . On the other hand, the graded quotient GrW� O.M 01/ is generated

by NxW ’s. These generators especially satisfy the commutator group-likeness, (10)
and c2.x'/ D 0 for x' D 1C

P
W NxWW among others. By the previous lemmas,

x' must also satisfy (12) and (14). Therefore p should be an isomorphism. This
implies M 01 DM1. �

The combination of this theorem with the previous lemmas completes the
proof of Theorem 1.

3. Proof of Theorem 2

In this section we deduce Theorem 2 from Theorem 10 and also show its pro-l
group analogue (Corollary 12) and its pro-nilpotent group analogue (Corollary 13).

3 A word means a monic monomial element but 1 in khhX; Y ii.
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Proof of Theorem 2. Let f be an element of F2.k/ satisfying (4). Let �
be a solution of x

2�1
24
D c2.f /. Let � 2 k� and ' 2 khhA;Bii be a pair such

that ' is commutator group-like and .�; '/ satisfies (10), (12) and (13). Put '0 D
f .'e�X'�1; e�Y / �' 2 xkhhA;Bii. In the proof of [Dri90, Prop. 5.1] it is shown
that giving (4) for f is equivalent to giving (1) for '0. Hence '0 satisfies (10)
by Lemma 5. Put �0 D ��. Equation (13) for .�; '/ gives c2.'/ D

�2

24
. So

c2.'
0/D c2.'/C�

2c2.f /D
�02

24
. Since '0 satisfies (10), Theorem 10 gives (13)

for .�0; '0/. Consider the group isomorphism from F2.k/ to the set of group-like
elements of UF2 which sends x to e�X and y to e�

�
2
X'.Y;X/e�Y '.Y;X/�1e

�
2
X .

Consequently z goes to '.Z;X/e�Z'.Z;X/�1 by (12) and (13) for .�; '/. The
direct calculation shows that the left-hand side of (5) maps to the left-hand side of
(13). Therefore giving (5) for .�; f / is equivalent to giving (13) for .�0; '0/. This
completes the proof of Theorem 2. �

Remark 11. By the same argument as Lemma 5, giving the pentagon equa-
tion (4) for f is equivalent to giving that f .eX ; eY / is commutator group-like and
f satisfies the 5-cycle relation in P5.k/:

f .x12; x23/f .x34; x45/f .x51; x12/f .x23; x34/f .x45; x51/D 1:

Here P5.k/ means the unipotent completion of the pure sphere braid group with
five strings and xij means its standard generator. Occasionally, in some of the litera-
ture, the formula is used directly instead of (4) in the definition of the Grothendieck-
Teichmüller group.

As a corollary, the following pro-l (l : a prime) group and pro-nilpotent group
version of Theorem 2 are obtained by the natural embedding from the pro-l com-
pletion F .l/2 to F2.Ql/ and its associated embedding from the pro-nilpotent com-
pletion F nil

2 D
Q
lWa prime F

.l/
2 to

Q
l F2.Ql/.

COROLLARY 12. Let f D f .x; y/ be an element of F .l/2 satisfying (4) in
K
.l/
4 (: the pro-l completion of K4). Then there exists � such that the pair .�; f /

satisfies (5) and (6). Actually this � is equal to˙.24c2.f /C 1/
1
2 .

COROLLARY 13. Let f D f .x; y/ be an element of F nil
2 satisfying (4) in

Knil
4 D

Q
l K

.l/
4 . Then there exists � such that the pair .�; f / satisfies (5) and (6).

Actually this � is equal to˙.24c2.f /C 1/
1
2 .

It should be noted that though � might lie on a quadratic extension equation (5)
makes sense for such .�; f /. In the pro-unipotent context taking a quadratic ex-
tension is necessary. The Drinfel’d associator ˚KZ 2 RhhX; Y ii satisfies (2) and
(3) with �D˙2�

p
�1 62 R�. In the pro-l context the author thinks that it might

also happen ˙.24c2.f /C 1/
1
2 62 Z�

l
.
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We have a group theoretical definition of c2.f / (cf. [LS97, Lemma 9]): Let
F
.l/
2 .1/ WD ŒF

.l/
2 ; F

.l/
2 � and F .l/2 .2/ WD ŒF

.l/
2 .1/; F

.l/
2 .1/� where Œ�; �� means the

topological commutator. The quotient group F .l/2 .1/=F
.l/
2 .2/ is cyclic generated

by the commutator .x; y/. For f 2F .l/2 .1/, c2.f /2Zl is defined by .x; y/c2.f /�
f in this quotient. Posing the following question on a pro-finite group analogue
of Theorem 2 might be particularly interesting:

Question 14. Let f D f .x; y/ be an element of the pro-finite completion yF2
satisfying (4) (hence (6)) in the pro-finite completion yK4. Let c2.f / be an element
in yZ defined in a similar way to the above. Assume that there exists � in yZ such
that �2 D 24c2.f /C 1. Then does the pair .�; f / satisfy (5)?

Remark 15. Although the pentagon equation (4) implies the two hexagon
equations (5) and (6) of GT, it does not mean that the pentagon axiom [Dri90,
(1.7)] implies two hexagon axioms, [Dri90, (1.9a) and (1.9b)], of braided tensor
categories. The pentagon equation (4) of GT is a consequence of the three ax-
ioms of braided tensor categories. GT is interpreted as a group of deformations of
braided tensor categories by Drinfel’d in [Dri90, �4]. Equation (4) of GT is read
as a condition to keep the pentagon axiom. However it is formulated in terms of
the braid group K4, where its generators xij ’s are subject to the braid relations.
In his interpretation the relations are guaranteed by the dodecagon diagram (the
Yang-Baxter equation) (see [JS93, Prop. 2.1] and [Kas95, Th. XIII.1.3]) which is
deduced from two hexagon axioms.
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