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Abstract

We prove that the essential dimension of the spinor group Spinn grows ex-
ponentially with n and use this result to show that quadratic forms with trivial
discriminant and Hasse-Witt invariant are more complex, in high dimensions, than
previously expected.

1. Introduction

Let K be a field of characteristic different from 2 containing a square root
of �1, W.K/ be the Witt ring of K and I.K/ be the ideal of classes of even-
dimensional forms in W.K/; cf. [Lam73]. By abuse of notation, we will write
q 2 I a.K/ if the Witt class of the nondegenerate quadratic form q defined over
K lies in I a.K/. It is well known that every q 2 I a.K/ can be expressed as a
sum of the Witt classes of a-fold Pfister forms defined over K; see, e.g., [Lam73,
Prop. II.1.2]. If dim.q/D n, it is natural to ask how many Pfister forms are needed.
When aD 1 or 2, it is easy to see that n Pfister forms always suffice; see Proposition
4-1. In this paper we will prove the following result, which shows that the situation
is quite different when aD 3.

THEOREM 1-1. Let k be a field of characteristic different from 2 and n � 2
be an even integer. Then there is a field extension K=k and an n-dimensional
quadratic form q 2 I 3.K/ with the following property: for any finite field extension
L=K of odd degree qL is not Witt equivalent to the sum of fewer than

2.nC4/=4�n� 2

7

3-fold Pfister forms over L.
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Our proof of Theorem 1-1 is based on new results on the essential dimension
of the spinor groups Spinn proven in Section 3 which are of independent interest.
In particular, Theorem 3-3 gives new lower bounds on the essential dimension of
Spinn and, in many cases, computes the exact value.

2. Essential dimension

Let k be a field. We will write Fieldsk for the category of field extensions
K=k. Let F WFieldsk! Sets be a covariant functor.

Let L=k be a field extension. We will say that a 2 F.L/ descends to an
intermediate field k�K�L if a is in the image of the induced map F.K/!F.L/.

The essential dimension ed.a/ of a 2 F.L/ is the minimum of the transcen-
dence degrees tr degk K taken over all fields k � K � L such that a descends
to K.

The essential dimension ed.aIp/ of a at a prime integer p is the minimum of
ed.aL0/ taken over all finite field extensions L0=L such that the degree ŒL0 W L� is
prime to p.

The essential dimension edF of the functor F (respectively, the essential
dimension ed.F Ip/ of F at a prime p) is the supremum of ed.a/ (respectively, of
ed.aIp/) taken over all a 2 F.L/ with L in Fieldsk .

Of particular interest to us will be the Galois cohomology functors, FG given
byKÝH1.K;G/, whereG is an algebraic group over k. Here, as usual, H1.K;G/

denotes the set of isomorphism classes of G-torsors over Spec.K/, in the fppf topol-
ogy. The essential dimension of this functor is a numerical invariant of G, which,
roughly speaking, measures the complexity of G-torsors over fields. We write
edG for ed FG and ed.GIp/ for ed.FG Ip/. Essential dimension was originally
introduced in this context; see [BR97], [Rei00], [RY00]. The above definition of
essential dimension for a general functor F is due to A. Merkurjev; see [BF03].

Recall that an action of an algebraic group G on an algebraic k-variety X is
called “generically free” if X has a dense open subset U such that StabG.x/D f1g

for every x 2 U.k/.

LEMMA 2-1. If an algebraic group G defined over k has a generically free
linear k-representation V then ed.G/� dim.V /� dim.G/.

Proof. See [Rei00, Th. 3.4] or [BF03, Lemma 4.11]. �
LEMMA 2-2. If G is an algebraic group and H is a closed subgroup of codi-

mension e, then

(a) ed.G/� ed.H/� e, and

(b) ed.GIp/� ed.H Ip/� e for any prime integer p.

Proof. Part (a) is Theorem 6.19 of [BF03]. Both (a) and (b) follow directly
from [Bro07, Princ. 2.10]. �
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If G is a finite abstract group, we will write edk G (respectively, edk.GIp/)
for the essential dimension (respectively, for the essential dimension at p) of the
constant group scheme Gk over the field k. Let C.G/ denote the center of G.

THEOREM 2-3. Let G be a finite p-group whose commutator ŒG;G� is central
and cyclic. Then edk.GIp/D edk G D

p
jG=C.G/jC rank C.G/�1 for any base

field k of characteristic¤ p containing a primitive root of unity of degree equal to
the exponent of G.

Note that with the above hypotheses, jG=C.G/j is a complete square. The-
orem 2-3 was originally proved in [BRV07] as a consequence of our study of
essential dimension of gerbes banded by �pn . Karpenko and Merkurjev [KM08]
have subsequently refined our arguments to show that the essential dimension of
any finite p-group over any field k containing a primitive pth root of unity is the
minimal dimension of a faithful linear k-representation of G. Theorem 2-3 is
deduced from their result in [MR, Th. 14(b)].

3. Essential dimension of Spin groups

As usual, we will write ha1; : : : ; ani for the quadratic form q of rank n given
by q.x1; : : : ; xn/D

Pn
iD1 aix

2
i . Let

(3-1) hD h1;�1i

denote the 2-dimensional hyperbolic quadratic form over k. For each n � 0 we
define the n-dimensional split form q

split
n over k as follows:

q
split
n D

(
h˚n=2; if n is even,

h˚.n�1=2/˚h1i; if n is odd.

Let Spinn
def
D Spin.qsplit

n / be the split form of the spin group. We will also denote
the split forms of the orthogonal and special orthogonal groups by On

def
DO.qsplit

n /

and SOn
def
D SO.qsplit

n / respectively.
M. Rost [Ros99] computed the following values of ed.Spinn/ for n� 14:

ed Spin3 D 0 ed Spin4 D 0 ed Spin5 D 0 ed Spin6 D 0

ed Spin7 D 4 ed Spin8 D 5 ed Spin9 D 5 ed Spin10 D 4

ed Spin11 D 5 ed Spin12 D 6 ed Spin13 D 6 ed Spin14 D 7.

For a detailed exposition of these results; see [Gar09]. V. Chernousov and J.-P. Serre
proved the following lower bounds in [CS06]:

(3-2) ed.SpinnI 2/�

(
bn=2cC 1 if n� 7 and n� 1, 0 or �1 .mod 8/

bn=2c for all other n� 11.
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(The first line is due to B. Youssin and the second author in the case that char kD 0
[RY00].)

The main result of this section, Theorem 3-3 below, shows, in particular, that
ed.Spinn/ and ed.SpinnI 2/ grow exponentially with n.

THEOREM 3-3. (a) Let k be a field of characteristic ¤ 2 and n � 15 be an
integer.

ed.SpinnI 2/�

8̂<̂
:
2.n�1/=2�

n.n�1/
2

, if n is odd,

2.n�2/=2�
n.n�1/

2
, if n� 2 .mod 4/,

2.n�2/=2�
n.n�1/

2
C 1, if n� 0 .mod 4/.

(b) Moreover, if char.k/D 0 then

ed.Spinn/D ed.SpinnI 2/D 2
.n�1/=2�

n.n�1/
2

, if n is odd,

ed.Spinn/D ed.SpinnI 2/D 2
.n�2/=2�

n.n�1/
2

, if n� 2 .mod 4/, and

ed.SpinnI 2/� ed.Spinn/� 2
.n�2/=2�

n.n�1/
2
Cn, if n� 0 .mod 4/.

Note that while the proof of part (a) below goes through for any n � 3, our
lower bounds become negative (and thus vacuous) for n� 14.

Proof. (a) Since replacing k by a larger field k0 can only decrease the value
of ed.SpinnI 2/, we may assume without loss of generality that

p
�1 2 k. The

n-dimensional split quadratic form q
split
n is then k-isomorphic to

(3-4) q.x1; : : : ; xn/D�.x
2
1 C � � �C x

2
n/

over k and hence, we can write Spinn as Spin.q/, On as On.q/ and SOn as
SOn.q/.

Let �n � SOn be the subgroup consisting of diagonal matrices. This subgroup
is isomorphic to �n�1

2 . Let Gn be the inverse image of �n in Spinn; this is a
constant group scheme over k. By Lemma 2-2(b)

ed.SpinnI 2/� ed.GnI 2/�
n.n� 1/

2
:

Thus in order to prove the lower bounds of part (a), it suffices to show that

(3-5) ed.GnI 2/D ed.Gn/D

8̂<̂
:
2.n�1/=2, if n is odd,

2.n�2/=2, if n� 2 (mod 4),

2.n�2/=2C 1, if n is divisible by 4.

The structure of the finite 2-group Gn is well understood; see, e.g., [Woo89]. Recall
that the Clifford algebra An of the quadratic form q, as in (3-4) is the algebra given
by generators e1, . . . , en, and relations e2

i D�1, eiej C ej ei D 0 for all i ¤ j . For
any I D fi1; : : : ; irg � f1; : : : ; ng with i1 < i2 < � � �< ir set eI

def
D ei1

: : : eir
. Here
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e∅ D 1. The group Gn consists of the elements of An of the form ˙eI , where the
cardinality r D jI j of I is even. The element �1 is central, and the commutator
ŒeI ; eJ � is given by ŒeI ; eJ �D .�1/

jI\J j . It is clear from this description that Gn

is a 2-group of order 2n, the commutator subgroup ŒGn; Gn�D f˙1g is cyclic, and
the center C.G/ is as follows:

C.Gn/D

8̂<̂
:
f˙1g ' Z=2Z, if n is odd,

f˙1;˙ef1;:::;ngg ' Z=4Z, if n� 2 (mod 4),

f˙1;˙ef1;:::;ngg ' Z=2Z�Z=2Z, if n is divisible by 4.

Formula (3-5) now follows from Theorem 2-3.

(b) Clearly ed.SpinnI 2/� ed.Spinn/. Hence, we only need to show that for
n� 15,

(3-6) ed.Spinn/�

8̂<̂
:
2.n�1/=2�

n.n�1/
2

, if n is odd,

2.n�2/=2�
n.n�1/

2
, if n� 2 .mod 4/,

2.n�2/=2�
n.n�1/

2
Cn, if n� 0 .mod 4/.

In view of Lemma 2-1 it suffices to show that Spinn has a generically free linear
representation V of dimension

dim.V /D

8̂<̂
:
2.n�1/=2, if n is odd,

2.n�2/=2, if n� 2 .mod 4/,

2.n�2/=2Cn if n� 0 .mod 4/.

In the case where n is not divisible by 4 such a representation is given by the
following lemma.

LEMMA 3-7 (cf. [PV94, Th. 7.11]). If n� 15 then, over a field of character-
istic 0, the following representations of Spinn of characteristic 0 are generically
free:

(i) the spin representation, of dimension 2.n�1/=2, if n is odd,

(ii) either of the two half-spin representation, of dimension 2.n�2/=2, if n� 2
.mod 4/.

Proof. For n� 29 this follows directly from [AP71, Th. 1]. For n between 15
and 27 this is proved in [Pop85]. �

In the case where n� 16 is divisible by 4, we define V as the sum of the half-
spin representation W of Spinn and the natural representation kn of SOn, which
we will view as a Spinn-representation via the projection Spinn! SOn. It remains
to check that V DW �kn is a generically free representation of Spinn. Indeed, for
a 2 kn in general position, Stab.a/ is conjugate to Spinn�1 (embedded in Spinn

in the standard way). Thus it suffices to show that the restriction of W to Spinn�1
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is generically free. Since W restricted to Spinn�1 is the spin representation of
Spinn�1 (see, e.g., [Ada96, Prop. 4.4]), and n � 16, this follows from Lemma
3-7(i). This completes the proof of Theorem 3-3. �

Remark 3-8. The characteristic 0 assumption in part (b) is used only in the
proof of Lemma 3-7. It seems likely that Lemma 3-7 (and thus Theorem 3-3(b))
remain true if char.k/D p > 2 but we have not checked this.

If char.k/¤ 2 and
p
�1 2 k, we have the weaker (but asymptotically equiv-

alent) upper bound ed.Spinn/� ed.Gn/, where ed.Gn/ is given by (3-5). This is
a consequence of the fact that every Spinn-torsor admits reduction of structure to
Gn, i.e., the natural map H1.K;Gn/! H1.K;Spinn/ is surjective for every field
K=k; cf. [BF03, Lemma 1.9].

Remark 3-9. A. S. Merkurjev [Mer09, Ex. 4.9] recently strengthened our
lower bound on ed.SpinnI 2/, in the case where n� 0 .mod 4/ as follows:

ed.SpinnI 2/� 2
.n�2/=2

�
n.n� 1/

2
C 2m ;

where 2m is the highest power of 2 dividing n. If n � 16 is a power of 2 and
char.k/D 0 this, in combination with the upper bound of Theorem 3-3(b), yields

ed.SpinnI 2/D ed.Spinn/D 2
.n�2/=2

�
n.n� 1/

2
Cn :

In particular, ed.Spin16/ D 24. The first value of n for which ed.Spinn/ is not
known is nD 20, where 326� ed.Spin20/� 342.

Remark 3-10. The same argument can be applied to the half-spin groups yield-
ing

ed.HSpinnI 2/D ed.HSpinn/D 2
.n�2/=2

�
n.n� 1/

2
for any integer n� 20 divisible by 4 over any field of characteristic 0. Here, as in
Theorem 3-3, the lower bound

ed.HSpinnI 2/� 2
.n�2/=2

�
n.n� 1/

2

is valid for over any base field k of characteristic ¤ 2. The assumptions that
char.k/ D 0 and n � 20 ensure that the half-spin representation of HSpinn is
generically free; see [PV94, Th. 7.11].

Remark 3-11. Theorem 3-3 implies that for large n, Spinn is an example of
a split, semisimple, connected linear algebraic group whose essential dimension
exceeds its dimension. Previously no examples of this kind were known, even for
k D C.

Note that no complex connected semisimple adjoint group G can have this
property. Indeed, let g be the adjoint representation of G on its Lie algebra. If G
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is an adjoint group then V D g� g is generically free; see, e.g., [Ric88, Lemma
3.3(b)]. Thus edG � dim.G/ by Lemma 2-1.

In particular, taking H D Spinn for large n and Z D the center of H , we
obtain infinitely many examples of split, semisimple, connected linear algebraic
groups H and central subgroups Z �H such that edH > edH=Z. To the best of
our knowledge, no such examples were previously known.

4. Pfister numbers
Let K be a field of characteristic not equal to 2 and a � 1 be an integer. We

will continue to denote the Witt ring of K by W.K/ and its fundamental ideal by
I.K/. If nonsingular quadratic forms q and q0 over K are Witt equivalent, we will
write q � q0.

As we mentioned in the introduction, the a-fold Pfister forms generate I a.K/

as an abelian group. In other words, every q 2 I a.K/ is Witt equivalent toPr
iD1˙pi ; where each pi is an a-fold Pfister form over K. We now define the

a-Pfister number of q to be the smallest possible number r of Pfister forms appear-
ing in any such sum. The .a; n/-Pfister number Pfk.a; n/ is the supremum of the
a-Pfister number of q, taken over all field extensions K=k and all n-dimensional
forms q 2 I a.K/.

PROPOSITION 4-1. Let k be a field of characteristic¤ 2 and let n be a posi-
tive even integer. Then (a) Pfk.1; n/� n and (b) Pfk.2; n/� n� 2.

Proof. (a) Immediate from the identity
ha1; a2i � h1; a1i � h1;�a2i D��a1���a2�

in the Witt ring.
(b) Let q D ha1; : : : ; ani be an n-dimensional quadratic form over K. Recall

that q 2 I 2.K/ iff n is even and d˙.q/D 1, modulo .K�/2 [Lam73, Cor. II.2.2].
Here d˙.q/ is the signed discriminant given by .�1/n.n�1/=2d.q/ where d.q/DQn

iD1 an is the discriminant of q; cf. [Lam73, p. 38].
To explain how to write q in terms of n� 2 Pfister forms, we will temporarily

assume that
p
�1 2 K. In this case, without loss of generality, a1 : : : an D 1.

Since ha; ai is hyperbolic for every a 2K�, we see that q D ha1; : : : ; ani is Witt
equivalent to

� a2; a1�˚� a3; a1a2�˚� � �˚� an�1; a1 : : : an�2� :

By inserting appropriate powers of �1, we can modify this formula so that it re-
mains valid even if we do not assume that

p
�1 2K, as follows:

q D ha1; : : : ; ani �

nX
iD2

.�1/i�.�1/iC1ai ; .�1/
i.i�1/=2C1a1 : : : ai�1� : �
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Remark 4-2. In response to an earlier version of this paper R. Parimala, V.
Suresh and J.-P. Tignol [PST09] recently showed that both inequalities in Proposi-
tion 4-1 are sharp.

We do not have an explicit upper bound on Pfk.3; n/; however, we do know
that Pfk.3; n/ is finite for any k and any n. To explain this, let us recall that I 3.K/

is the set of all classes q 2W.K/ such that q has even dimension, trivial signed
discriminant and trivial Hasse-Witt invariant [KMRT98]. The following result was
suggested to us by Merkurjev and Totaro.

PROPOSITION 4-3. Let k be a field of characteristic different from 2. Then
Pfk.3; n/ is finite.

Sketch of proof. Let E be a versal torsor for Spinn over a field extension L=k;
cf. [GMS03, �I.V]. Let qL be the quadratic form over L corresponding to E under
the map H1.L;Spinn/!H1.L;On/. The 3-Pfister number of qL is then an upper
bound for the 3-Pfister number of any n-dimensional form in I 3 over any field
extension K=k. �

Remark 4-4. For a > 3 the finiteness of Pfk.a; n/ is an open problem.

5. Proof of Theorem 1-1

The goal of this section is to prove Theorem 1-1 stated in the introduction,
which says, in particular, that

Pfk.3; n/�
2.nC4/=4�n� 2

7

for any field k of characteristic different from 2 and any positive even integer n.
Clearly, replacing k by a larger field k0 strengthens the assertion of Theorem 1-1.
Thus, we may assume without loss of generality that

p
�1 2 k. This assumption

will be in force for the remainder of this section.
For each extension K of k, denote by Tn.K/ the image of H1.K;Spinn/ in

H1.K;SOn/. We will view Tn as a functor Fieldsk ! Sets. Note that Tn.K/ is
the set of isomorphism classes of n-dimensional quadratic forms q 2 I 3.K/.

LEMMA 5-1. We have the following inequalities:

(a) ed Spinn� 1� ed Tn � ed Spinn,

(b) ed.SpinnI 2/� 1� ed.TnI 2/� ed.SpinnI 2/.

Proof. In the language of [BF03, Def. 1.12], we have a fibration of functors

H1.�;�2/ÝH1.�;Spinn/ �! Tn.�/:

The first inequality in part (a) follows from [BF03, Prop. 1.13] and the second from
Proposition [BF03, Lemma 1.9]. The same argument proves part (b). �
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Let K=k be a field extension. Let hK D h1;�1i be the 2-dimensional hyper-
bolic form over K; cf. (3-1). For each n-dimensional quadratic form q 2 I 3.K/,
let edn.q/ denote the essential dimension of the class of q in Tn.K/.

LEMMA 5-2. Let q be an n-dimensional quadratic form in I 3.K/. Then

ednC2s.h
˚s
K ˚ q/� edn.q/�

s.sC 2n� 1/

2

for any integer s � 0.

Proof. Set m def
D ednC2s.h

˚s
K ˚ q/. By definition, h˚s

K ˚ q descends to an
intermediate subfield k � F � K such that tr degk.F / D m. In other words,
there is an .nC 2s/-dimensional quadratic form eq 2 I 3.F / such that eqK is K-
isomorphic to h˚s

K ˚ q. Let X be the Grassmannian of s-dimensional subspaces
of F nC2s which are totally isotropic with respect to eq. The dimension of X over
F is s.sC 2n� 1/=2.

The variety X has a rational point over K; hence there exists an intermediate
extension F � E � K such that tr degF E � s.sC 2n� 1/=2, with the property
that eqE has a totally isotropic subspace of dimension s. Then eqE splits as hs

E ˚q
0,

where q0 2 I 3.E/. By Witt’s Cancellation Theorem, q0K is K-isomorphic to q;
hence

edn.q/� tr degk E D tr degk F C tr degF E DmC s.sC 2n� 1/=2 ;

as claimed. �

We now proceed with the proof of Theorem 1-1. For n� 10 the statement of
the theorem is vacuous, because 2.nC4/=4�n� 2� 0. Thus we will assume from
now on that n� 12.

Lemma 5-1 implies, in particular, that ed.TnI 2/ is finite. Hence, there exist a
field K=k and an n-dimensional form q 2 I 3.K/ such that edn.qI 2/D ed.TnI 2/.
We will show that this form has the properties asserted by Theorem 1-1. In fact, it
suffices to prove that if q is Witt equivalent to

rX
iD1

�ai ; bi ; ci�

over K then r �
2.nC4/=4�n� 2

7
. Indeed, by our choice of q, edn.qLI 2/ D

ed.TnI 2/ for any finite odd degree extension L=K. Thus if we can prove the
above inequality for q, it will also be valid for qL.

Let us write a 3-fold Pfister form�a; b; c� as h1i˚�a; b; c�0, where

�a; b; c�0
def
D hai ; bi ; ci ; aibi ; aici ; bici ; aibici i:
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Set

�
def
D

(Pr
1D1�ai ; bi ; ci�0, if r is even, and

h1i˚
Pr

1D1�ai ; bi ; ci�0, if r is odd.

Then q is Witt equivalent to � over K; in particular, � 2 I 3.K/. The dimension
of � is 7r or 7r C 1, depending on the parity of r .

We claim that n < 7r . Indeed, assume the contrary. Then dim.q/ � dim.�/,
so that q is isomorphic to a form of type hs

K ˚� over K. Thus

3n

7
� 3r � edn.q/� ed.qI 2/D ed.TnI 2/

by Lemma 5-1
� ed.SpinnI 2/� 1 :

The resulting inequality fails for every even n� 12 because for such n

ed.SpinnI 2/� n=2I

see (3-2).
So, we may assume that 7r > n, i.e., � is isomorphic to h˚s

K ˚ q over K, for
some s � 1. By comparing dimensions we get the equality 7r D nC 2s when r is
even, and 7r C 1D nC 2s when r is odd. The essential dimension of the form �,
as an element of T7r.K/ or T7rC1.K/ is at most 3r , while Lemma 5-2 tells us that
this essential dimension is at least edn.q/�s.sC2n�1/=2. From this, Lemma 5-1
and Theorem 3-3(a) we obtain the following chain of inequalities

3r � edn.q/�
s.sC 2n� 1/

2
� ed.TnI 2/�

s.sC 2n� 1/

2
(5-3)

� ed.SpinnI 2/� 1�
s.sC 2n� 1/

2

� 2.n�2/=2
�
n.n� 1/

2
� 1�

s.sC 2n� 1/

2
:

Now suppose r is even. Substituting s D .7r �n/=2 into inequality (5-3), we
obtain

49r2C .14nC 10/r � 2.nC4/=2�n2C 2n� 8

8
� 0:

We interpret the left-hand side as a quadratic polynomial in r . The constant term
of this polynomial is negative for all n� 8; hence this polynomial has one positive
real root and one negative real root. Denote the positive root by rC. The above
inequality is then equivalent to r � rC. By the quadratic formula

rC D

p
49 � 2.nC4/=2C 168n� 367� .7nC 5/

49
�
2.nC4/=4�n� 2

7
:

This completes the proof of Theorem 1-1 when r is even. If r is odd then substi-
tuting s D .7r C 1�n/=2 into (5-3), we obtain an analogous quadratic inequality
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whose positive root is

rC D

p
49 � 2.nC4/=2C 168n� 199� .7nC 12/

49
�
2.nC4/=4�n� 2

7
;

and Theorem 1-1 follows. �
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