

Essential dimension, spinor groups, and quadratic forms

By Patrick Brosnan, Zinovy Reichstein, and Angelo Vistoli

SECOND SERIES, VOL. 171, NO. 1
January, 2010

ANMAAH

Essential dimension, spinor groups, and quadratic forms

By Patrick Brosnan, Zinovy Reichstein, and Angelo Vistoli

Abstract

We prove that the essential dimension of the spinor group $\mathbf{S p i n}_{n}$ grows exponentially with n and use this result to show that quadratic forms with trivial discriminant and Hasse-Witt invariant are more complex, in high dimensions, than previously expected.

1. Introduction

Let K be a field of characteristic different from 2 containing a square root of $-1, \mathrm{~W}(K)$ be the Witt ring of K and $I(K)$ be the ideal of classes of evendimensional forms in $\mathrm{W}(K)$; cf. [Lam73]. By abuse of notation, we will write $q \in I^{a}(K)$ if the Witt class of the nondegenerate quadratic form q defined over K lies in $I^{a}(K)$. It is well known that every $q \in I^{a}(K)$ can be expressed as a sum of the Witt classes of a-fold Pfister forms defined over K; see, e.g., [Lam73, Prop. II.1.2]. If $\operatorname{dim}(q)=n$, it is natural to ask how many Pfister forms are needed. When $a=1$ or 2 , it is easy to see that n Pfister forms always suffice; see Proposition $4-1$. In this paper we will prove the following result, which shows that the situation is quite different when $a=3$.

THEOREM 1-1. Let k be a field of characteristic different from 2 and $n \geq 2$ be an even integer. Then there is a field extension K / k and an n-dimensional quadratic form $q \in I^{3}(K)$ with the following property: for any finite field extension L / K of odd degree q_{L} is not Witt equivalent to the sum of fewer than

$$
\frac{2^{(n+4) / 4}-n-2}{7}
$$

3-fold Pfister forms over L.
PB and ZR were supported in part by an NSERC discovery grants and by PIMS Collaborative Research Group in Algebraic geometry, cohomology and representation theory.
AV was supported in part by the PRIN Project "Geometria sulle varietà algebriche", financed by MIUR.

Our proof of Theorem 1-1 is based on new results on the essential dimension of the spinor groups Spin_{n} proven in Section 3 which are of independent interest. In particular, Theorem 3-3 gives new lower bounds on the essential dimension of Spin_{n} and, in many cases, computes the exact value.

2. Essential dimension

Let k be a field. We will write Fields ${ }_{k}$ for the category of field extensions K / k. Let $F:$ Fields $_{k} \rightarrow$ Sets be a covariant functor.

Let L / k be a field extension. We will say that $a \in F(L)$ descends to an intermediate field $k \subseteq K \subseteq L$ if a is in the image of the induced map $F(K) \rightarrow F(L)$.

The essential dimension $\operatorname{ed}(a)$ of $a \in F(L)$ is the minimum of the transcendence degrees $\operatorname{tr} \operatorname{deg}_{k} K$ taken over all fields $k \subseteq K \subseteq L$ such that a descends to K.

The essential dimension ed $(a ; p)$ of a at a prime integer p is the minimum of $\operatorname{ed}\left(a_{L^{\prime}}\right)$ taken over all finite field extensions L^{\prime} / L such that the degree $\left[L^{\prime}: L\right]$ is prime to p.

The essential dimension ed F of the functor F (respectively, the essential dimension $\operatorname{ed}(F ; p)$ of F at a prime p) is the supremum of $\operatorname{ed}(a)$ (respectively, of $\operatorname{ed}(a ; p))$ taken over all $a \in F(L)$ with L in Fields ${ }_{k}$.

Of particular interest to us will be the Galois cohomology functors, F_{G} given by $K \leadsto \mathrm{H}^{1}(K, G)$, where G is an algebraic group over k. Here, as usual, $\mathrm{H}^{1}(K, G)$ denotes the set of isomorphism classes of G-torsors over $\operatorname{Spec}(K)$, in the fppf topology. The essential dimension of this functor is a numerical invariant of G, which, roughly speaking, measures the complexity of G-torsors over fields. We write ed G for ed F_{G} and ed $(G ; p)$ for $\operatorname{ed}\left(F_{G} ; p\right)$. Essential dimension was originally introduced in this context; see [BR97], [Rei00], [RY00]. The above definition of essential dimension for a general functor F is due to A. Merkurjev; see [BF03].

Recall that an action of an algebraic group G on an algebraic k-variety X is called "generically free" if X has a dense open subset U such that $\operatorname{Stab}_{G}(x)=\{1\}$ for every $x \in U(\bar{k})$.

LEMMA 2-1. If an algebraic group G defined over k has a generically free linear k-representation V then $\operatorname{ed}(G) \leq \operatorname{dim}(V)-\operatorname{dim}(G)$.

Proof. See [Rei00, Th. 3.4] or [BF03, Lemma 4.11].
LEMMA 2-2. If G is an algebraic group and H is a closed subgroup of codimension e, then
(a) ed $(G) \geq \operatorname{ed}(H)-e$, and
(b) $\operatorname{ed}(G ; p) \geq \operatorname{ed}(H ; p)-e$ for any prime integer p.

Proof. Part (a) is Theorem 6.19 of [BF03]. Both (a) and (b) follow directly from [Bro07, Princ. 2.10].

If G is a finite abstract group, we will write $\operatorname{ed}_{k} G$ (respectively, $\left.\operatorname{ed}_{k}(G ; p)\right)$ for the essential dimension (respectively, for the essential dimension at p) of the constant group scheme G_{k} over the field k. Let $\mathrm{C}(G)$ denote the center of G.

THEOREM 2-3. Let G be a finite p-group whose commutator $[G, G]$ is central and cyclic. Then $\operatorname{ed}_{k}(G ; p)=\operatorname{ed}_{k} G=\sqrt{|G / \mathrm{C}(G)|}+\operatorname{rank} \mathrm{C}(G)-1$ for any base field k of characteristic $\neq p$ containing a primitive root of unity of degree equal to the exponent of G.

Note that with the above hypotheses, $|G / \mathrm{C}(G)|$ is a complete square. Theorem 2-3 was originally proved in [BRV07] as a consequence of our study of essential dimension of gerbes banded by $\boldsymbol{\mu}_{p^{n}}$. Karpenko and Merkurjev [KM08] have subsequently refined our arguments to show that the essential dimension of any finite p-group over any field k containing a primitive $p^{\text {th }}$ root of unity is the minimal dimension of a faithful linear k-representation of G. Theorem 2-3 is deduced from their result in [MR, Th. 14(b)].

3. Essential dimension of Spin groups

As usual, we will write $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ for the quadratic form q of rank n given by $q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} a_{i} x_{i}^{2}$. Let

$$
\begin{equation*}
h=\langle 1,-1\rangle \tag{3-1}
\end{equation*}
$$

denote the 2-dimensional hyperbolic quadratic form over k. For each $n \geq 0$ we define the n-dimensional split form $q_{n}^{\text {split }}$ over k as follows:

$$
q_{n}^{\text {split }}= \begin{cases}h^{\oplus n / 2}, & \text { if } n \text { is even } \\ h^{\oplus(n-1 / 2)} \oplus\langle 1\rangle, & \text { if } n \text { is odd }\end{cases}
$$

Let $\mathbf{S p i n}_{n} \stackrel{\text { def }}{=} \operatorname{Spin}\left(q_{n}^{\text {split }}\right)$ be the split form of the spin group. We will also denote the split forms of the orthogonal and special orthogonal groups by $\mathbf{O}_{n} \stackrel{\text { def }}{=} \mathbf{O}\left(q_{n}^{\text {split }}\right)$ and $\mathbf{S} \mathbf{O}_{n} \stackrel{\text { def }}{=} \mathbf{S O}\left(q_{n}^{\text {split }}\right)$ respectively.
M. Rost [Ros99] computed the following values of $\operatorname{ed}\left(\mathbf{S p i n}_{n}\right)$ for $n \leq 14$:

$$
\begin{array}{rrrrr}
\text { ed } \mathbf{S p i n}_{3}=0 & \text { ed } \mathbf{S p i n}_{4}=0 & {\text { ed } \mathbf{S p i n}_{5}=0} & \text { ed } \mathbf{S p i n}_{6}=0 \\
\text { ed } \mathbf{S p i n}_{7}=4 & \text { ed } \mathbf{S p i n}_{8}=5 & {\text { ed } \mathbf{S p i n}_{9}=5}^{\text {ed } \mathbf{S p i n}_{10}=4} \\
\text { ed } \mathbf{S p i n}_{11}=5 & \text { ed } \mathbf{S p i n}_{12}=6 & \text { ed } \mathbf{S p i n}_{13}=6 & \text { ed } \mathbf{S p i n}_{14}=7
\end{array}
$$

For a detailed exposition of these results; see [Gar09]. V. Chernousov and J.-P. Serre proved the following lower bounds in [CS06]:

$$
\operatorname{ed}\left(\mathbf{S p i n}_{n} ; 2\right) \geq \begin{cases}\lfloor n / 2\rfloor+1 & \text { if } n \geq 7 \text { and } n \equiv 1,0 \text { or }-1 \quad(\bmod 8) \tag{3-2}\\ \lfloor n / 2\rfloor & \text { for all other } n \geq 11\end{cases}
$$

(The first line is due to B. Youssin and the second author in the case that char $k=0$ [RY00].)

The main result of this section, Theorem 3-3 below, shows, in particular, that $\operatorname{ed}\left(\mathbf{S p i n}_{n}\right)$ and ed $\left(\mathbf{S p i n}_{n} ; 2\right)$ grow exponentially with n.

THEOREM 3-3. (a) Let k be a field of characteristic $\neq 2$ and $n \geq 15$ be an integer.

$$
\operatorname{ed}\left(\mathbf{S p i n}_{n} ; 2\right) \geq\left\{\begin{array}{l}
2^{(n-1) / 2}-\frac{n(n-1)}{2}, \text { if } n \text { is odd } \\
2^{(n-2) / 2}-\frac{n(n-1)}{2}, \text { if } n \equiv 2 \quad(\bmod 4) \\
2^{(n-2) / 2}-\frac{n(n-1)}{2}+1, \text { if } n \equiv 0 \quad(\bmod 4)
\end{array}\right.
$$

(b) Moreover, if $\operatorname{char}(k)=0$ then
$\operatorname{ed}\left(\mathbf{S p i n}_{n}\right)=\operatorname{ed}\left(\mathbf{S p i n}_{n} ; 2\right)=2^{(n-1) / 2}-\frac{n(n-1)}{2}$, if n is odd,
$\operatorname{ed}\left(\mathbf{S p i n}_{n}\right)=\operatorname{ed}\left(\mathbf{S p i n}_{n} ; 2\right)=2^{(n-2) / 2}-\frac{n(n-1)}{2}$, if $n \equiv 2(\bmod 4)$, and
$\operatorname{ed}\left(\mathbf{S p i n}_{n} ; 2\right) \leq \operatorname{ed}\left(\mathbf{S p i n}_{n}\right) \leq 2^{(n-2) / 2}-\frac{n(n-1)}{2}+n$, if $n \equiv 0(\bmod 4)$.
Note that while the proof of part (a) below goes through for any $n \geq 3$, our lower bounds become negative (and thus vacuous) for $n \leq 14$.

Proof. (a) Since replacing k by a larger field k^{\prime} can only decrease the value of ed($\left.\mathbf{S p i n}_{n} ; 2\right)$, we may assume without loss of generality that $\sqrt{-1} \in k$. The n-dimensional split quadratic form $q_{n}^{\text {split }}$ is then k-isomorphic to

$$
\begin{equation*}
q\left(x_{1}, \ldots, x_{n}\right)=-\left(x_{1}^{2}+\cdots+x_{n}^{2}\right) \tag{3-4}
\end{equation*}
$$

over k and hence, we can write $\mathbf{S p i n}_{n}$ as $\boldsymbol{\operatorname { S p i n }}(q), \mathbf{O}_{n}$ as $\mathbf{O}_{n}(q)$ and $\mathbf{S O}_{n}$ as $\mathbf{S O}_{n}(q)$.

Let $\Gamma_{n} \subseteq \mathbf{S O}_{n}$ be the subgroup consisting of diagonal matrices. This subgroup is isomorphic to μ_{2}^{n-1}. Let G_{n} be the inverse image of Γ_{n} in $\mathbf{S p i n}_{n}$; this is a constant group scheme over k. By Lemma 2-2(b)

$$
\operatorname{ed}\left(\mathbf{S p i n}_{n} ; 2\right) \geq \operatorname{ed}\left(G_{n} ; 2\right)-\frac{n(n-1)}{2}
$$

Thus in order to prove the lower bounds of part (a), it suffices to show that

$$
\operatorname{ed}\left(G_{n} ; 2\right)=\operatorname{ed}\left(G_{n}\right)=\left\{\begin{array}{l}
2^{(n-1) / 2}, \text { if } n \text { is odd } \tag{3-5}\\
2^{(n-2) / 2}, \text { if } n \equiv 2(\bmod 4) \\
2^{(n-2) / 2}+1, \text { if } n \text { is divisible by } 4
\end{array}\right.
$$

The structure of the finite 2 -group G_{n} is well understood; see, e.g., [Woo89]. Recall that the Clifford algebra A_{n} of the quadratic form q, as in (3-4) is the algebra given by generators e_{1}, \ldots, e_{n}, and relations $e_{i}^{2}=-1, e_{i} e_{j}+e_{j} e_{i}=0$ for all $i \neq j$. For any $I=\left\{i_{1}, \ldots, i_{r}\right\} \subseteq\{1, \ldots, n\}$ with $i_{1}<i_{2}<\cdots<i_{r}$ set $e_{I} \stackrel{\text { def }}{=} e_{i_{1}} \ldots e_{i_{r}}$. Here
$e_{\varnothing}=1$. The group G_{n} consists of the elements of A_{n} of the form $\pm e_{I}$, where the cardinality $r=|I|$ of I is even. The element -1 is central, and the commutator $\left[e_{I}, e_{J}\right]$ is given by $\left[e_{I}, e_{J}\right]=(-1)^{|I \cap J|}$. It is clear from this description that G_{n} is a 2-group of order 2^{n}, the commutator subgroup $\left[G_{n}, G_{n}\right]=\{ \pm 1\}$ is cyclic, and the center $\mathrm{C}(G)$ is as follows:

$$
\mathrm{C}\left(G_{n}\right)=\left\{\begin{array}{l}
\{ \pm 1\} \simeq \mathbb{Z} / 2 \mathbb{Z}, \text { if } n \text { is odd, } \\
\left\{ \pm 1, \pm e_{\{1, \ldots, n\}}\right\} \simeq \mathbb{Z} / 4 \mathbb{Z}, \text { if } n \equiv 2(\bmod 4) \\
\left\{ \pm 1, \pm e_{\{1, \ldots, n\}}\right\} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}, \text { if } n \text { is divisible by } 4
\end{array}\right.
$$

Formula (3-5) now follows from Theorem 2-3.
(b) Clearly ed $\left(\mathbf{S p i n}_{n} ; 2\right) \leq \operatorname{ed}\left(\mathbf{S p i n}_{n}\right)$. Hence, we only need to show that for $n \geq 15$,

$$
\operatorname{ed}\left(\mathbf{S p i n}_{n}\right) \leq\left\{\begin{array}{l}
2^{(n-1) / 2}-\frac{n(n-1)}{2}, \text { if } n \text { is odd } \tag{3-6}\\
2^{(n-2) / 2}-\frac{n(n-1)}{2}, \text { if } n \equiv 2 \quad(\bmod 4) \\
2^{(n-2) / 2}-\frac{n(n-1)}{2}+n, \text { if } n \equiv 0 \quad(\bmod 4)
\end{array}\right.
$$

In view of Lemma 2-1 it suffices to show that $\mathbf{S p i n}_{n}$ has a generically free linear representation V of dimension

$$
\operatorname{dim}(V)=\left\{\begin{array}{l}
2^{(n-1) / 2}, \text { if } n \text { is odd } \\
2^{(n-2) / 2}, \text { if } n \equiv 2 \quad(\bmod 4) \\
2^{(n-2) / 2}+n \text { if } n \equiv 0 \quad(\bmod 4)
\end{array}\right.
$$

In the case where n is not divisible by 4 such a representation is given by the following lemma.

LEMMA 3-7 (cf. [PV94, Th. 7.11]). If $n \geq 15$ then, over a field of characteristic 0 , the following representations of $\mathbf{S p i n}_{n}$ of characteristic 0 are generically free:
(i) the spin representation, of dimension $2^{(n-1) / 2}$, if n is odd,
(ii) either of the two half-spin representation, of dimension $2^{(n-2) / 2}$, if $n \equiv 2$ $(\bmod 4)$.

Proof. For $n \geq 29$ this follows directly from [AP71, Th. 1]. For n between 15 and 27 this is proved in [Pop85].

In the case where $n \geq 16$ is divisible by 4 , we define V as the sum of the halfspin representation W of $\mathbf{S p i n}_{n}$ and the natural representation k^{n} of $\mathbf{S} \mathbf{O}_{n}$, which we will view as a $\mathbf{S p i n}_{n}$-representation via the projection $\mathbf{S p i n}_{n} \rightarrow \mathbf{S O}_{n}$. It remains to check that $V=W \times k^{n}$ is a generically free representation of $\mathbf{S p i n}_{n}$. Indeed, for $a \in k^{n}$ in general position, $\operatorname{Stab}(a)$ is conjugate to $\operatorname{Spin}_{n-1}$ (embedded in $\mathbf{S p i n}_{n}$ in the standard way). Thus it suffices to show that the restriction of W to $\mathbf{S p i n}_{n-1}$
is generically free. Since W restricted to $\mathbf{S p i n}_{n-1}$ is the spin representation of $\operatorname{Spin}_{n-1}$ (see, e.g., [Ada96, Prop. 4.4]), and $n \geq 16$, this follows from Lemma 3-7(i). This completes the proof of Theorem 3-3.

Remark 3-8. The characteristic 0 assumption in part (b) is used only in the proof of Lemma 3-7. It seems likely that Lemma 3-7 (and thus Theorem 3-3(b)) remain true if $\operatorname{char}(k)=p>2$ but we have not checked this.

If $\operatorname{char}(k) \neq 2$ and $\sqrt{-1} \in k$, we have the weaker (but asymptotically equivalent) upper bound $\operatorname{ed}\left(\operatorname{Spin}_{n}\right) \leq \operatorname{ed}\left(G_{n}\right)$, where ed $\left(G_{n}\right)$ is given by (3-5). This is a consequence of the fact that every $\mathbf{S p i n}_{n}$-torsor admits reduction of structure to G_{n}, i.e., the natural map $\mathrm{H}^{1}\left(K, G_{n}\right) \rightarrow \mathrm{H}^{1}\left(K, \boldsymbol{S p i n}_{n}\right)$ is surjective for every field K / k; cf. [BF03, Lemma 1.9].

Remark 3-9. A. S. Merkurjev [Mer09, Ex. 4.9] recently strengthened our lower bound on $\operatorname{ed}\left(\operatorname{Spin}_{n} ; 2\right)$, in the case where $n \equiv 0(\bmod 4)$ as follows:

$$
\operatorname{ed}\left(\mathbf{S p i n}_{n} ; 2\right) \geq 2^{(n-2) / 2}-\frac{n(n-1)}{2}+2^{m}
$$

where 2^{m} is the highest power of 2 dividing n. If $n \geq 16$ is a power of 2 and $\operatorname{char}(k)=0$ this, in combination with the upper bound of Theorem 3-3(b), yields

$$
\operatorname{ed}\left(\mathbf{S p i n}_{n} ; 2\right)=\operatorname{ed}\left(\mathbf{S p i n}_{n}\right)=2^{(n-2) / 2}-\frac{n(n-1)}{2}+n
$$

In particular, ed $\left(\mathbf{S p i n}_{16}\right)=24$. The first value of n for which ed $\left(\mathbf{S p i n}_{n}\right)$ is not known is $n=20$, where $326 \leq \operatorname{ed}\left(\mathbf{S p i n}_{20}\right) \leq 342$.

Remark 3-10. The same argument can be applied to the half-spin groups yielding

$$
\operatorname{ed}\left(\mathbf{H S p i n}_{n} ; 2\right)=\operatorname{ed}\left(\mathbf{H S p i n}_{n}\right)=2^{(n-2) / 2}-\frac{n(n-1)}{2}
$$

for any integer $n \geq 20$ divisible by 4 over any field of characteristic 0 . Here, as in Theorem 3-3, the lower bound

$$
\operatorname{ed}\left(\mathbf{H S p i n}_{n} ; 2\right) \geq 2^{(n-2) / 2}-\frac{n(n-1)}{2}
$$

is valid for over any base field k of characteristic $\neq 2$. The assumptions that $\operatorname{char}(k)=0$ and $n \geq 20$ ensure that the half-spin representation of $\mathbf{H S p i n}_{n}$ is generically free; see [PV94, Th. 7.11].

Remark 3-11. Theorem 3-3 implies that for large $n, \mathbf{S p i n}_{n}$ is an example of a split, semisimple, connected linear algebraic group whose essential dimension exceeds its dimension. Previously no examples of this kind were known, even for $k=\mathbb{C}$.

Note that no complex connected semisimple adjoint group G can have this property. Indeed, let \mathfrak{g} be the adjoint representation of G on its Lie algebra. If G
is an adjoint group then $V=\mathfrak{g} \times \mathfrak{g}$ is generically free; see, e.g., [Ric88, Lemma 3.3(b)]. Thus ed $G \leq \operatorname{dim}(G)$ by Lemma 2-1.

In particular, taking $H=\operatorname{Spin}_{n}$ for large n and $Z=$ the center of H, we obtain infinitely many examples of split, semisimple, connected linear algebraic groups H and central subgroups $Z \subset H$ such that ed $H>\operatorname{ed} H / Z$. To the best of our knowledge, no such examples were previously known.

4. Pfister numbers

Let K be a field of characteristic not equal to 2 and $a \geq 1$ be an integer. We will continue to denote the Witt ring of K by $W(K)$ and its fundamental ideal by $I(K)$. If nonsingular quadratic forms q and q^{\prime} over K are Witt equivalent, we will write $q \sim q^{\prime}$.

As we mentioned in the introduction, the a-fold Pfister forms generate $I^{a}(K)$ as an abelian group. In other words, every $q \in I^{a}(K)$ is Witt equivalent to $\sum_{i=1}^{r} \pm p_{i}$, where each p_{i} is an a-fold Pfister form over K. We now define the a-Pfister number of q to be the smallest possible number r of Pfister forms appearing in any such sum. The (a, n)-Pfister number $\operatorname{Pf}_{k}(a, n)$ is the supremum of the a-Pfister number of q, taken over all field extensions K / k and all n-dimensional forms $q \in I^{a}(K)$.

Proposition 4-1. Let k be a field of characteristic $\neq 2$ and let n be a positive even integer. Then (a) $\operatorname{Pf}_{k}(1, n) \leq n$ and $(\mathrm{b}) \operatorname{Pf}_{k}(2, n) \leq n-2$.

Proof. (a) Immediate from the identity

$$
\left\langle a_{1}, a_{2}\right\rangle \sim\left\langle 1, a_{1}\right\rangle-\left\langle 1,-a_{2}\right\rangle=\ll-a_{1} \gg-\ll a_{2} \gg
$$

in the Witt ring.
(b) Let $q=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be an n-dimensional quadratic form over K. Recall that $q \in I^{2}(K)$ iff n is even and $d_{ \pm}(q)=1$, modulo $\left(K^{*}\right)^{2}$ [Lam73, Cor. II.2.2]. Here $d_{ \pm}(q)$ is the signed discriminant given by $(-1)^{n(n-1) / 2} d(q)$ where $d(q)=$ $\prod_{i=1}^{n} a_{n}$ is the discriminant of q; cf. [Lam73, p. 38].

To explain how to write q in terms of $n-2$ Pfister forms, we will temporarily assume that $\sqrt{-1} \in K$. In this case, without loss of generality, $a_{1} \ldots a_{n}=1$. Since $\langle a, a\rangle$ is hyperbolic for every $a \in K^{*}$, we see that $q=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is Witt equivalent to

$$
\ll a_{2}, a_{1} \gg \oplus \ll a_{3}, a_{1} a_{2} \gg \oplus \cdots \oplus \ll a_{n-1}, a_{1} \ldots a_{n-2} \gg
$$

By inserting appropriate powers of -1 , we can modify this formula so that it remains valid even if we do not assume that $\sqrt{-1} \in K$, as follows:

$$
q=\left\langle a_{1}, \ldots, a_{n}\right\rangle \sim \sum_{i=2}^{n}(-1)^{i} \ll(-1)^{i+1} a_{i},(-1)^{i(i-1) / 2+1} a_{1} \ldots a_{i-1} \gg
$$

Remark 4-2. In response to an earlier version of this paper R. Parimala, V. Suresh and J.-P. Tignol [PST09] recently showed that both inequalities in Proposition 4-1 are sharp.

We do not have an explicit upper bound on $\operatorname{Pf}_{k}(3, n)$; however, we do know that $\mathrm{Pf}_{k}(3, n)$ is finite for any k and any n. To explain this, let us recall that $I^{3}(K)$ is the set of all classes $q \in \mathrm{~W}(K)$ such that q has even dimension, trivial signed discriminant and trivial Hasse-Witt invariant [KMRT98]. The following result was suggested to us by Merkurjev and Totaro.

Proposition 4-3. Let k be a field of characteristic different from 2. Then $\mathrm{Pf}_{k}(3, n)$ is finite.

Sketch of proof. Let E be a versal torsor for $\mathbf{S p i n}_{n}$ over a field extension L / k; cf. [GMS03, §I.V]. Let q_{L} be the quadratic form over L corresponding to E under the map $\mathrm{H}^{1}\left(L, \mathbf{S p i n}_{n}\right) \rightarrow \mathrm{H}^{1}\left(L, \mathbf{O}_{n}\right)$. The 3-Pfister number of q_{L} is then an upper bound for the 3-Pfister number of any n-dimensional form in I^{3} over any field extension K / k.

Remark 4-4. For $a>3$ the finiteness of $\operatorname{Pf}_{k}(a, n)$ is an open problem.

5. Proof of Theorem 1-1

The goal of this section is to prove Theorem 1-1 stated in the introduction, which says, in particular, that

$$
\operatorname{Pf}_{k}(3, n) \geq \frac{2^{(n+4) / 4}-n-2}{7}
$$

for any field k of characteristic different from 2 and any positive even integer n. Clearly, replacing k by a larger field k^{\prime} strengthens the assertion of Theorem 1-1. Thus, we may assume without loss of generality that $\sqrt{-1} \in k$. This assumption will be in force for the remainder of this section.

For each extension K of k, denote by $\mathrm{T}_{n}(K)$ the image of $\mathrm{H}^{1}\left(K, \operatorname{Spin}_{n}\right)$ in $\mathrm{H}^{1}\left(K, \mathbf{S O}_{n}\right)$. We will view T_{n} as a functor Fields ${ }_{k} \rightarrow$ Sets. Note that $\mathrm{T}_{n}(K)$ is the set of isomorphism classes of n-dimensional quadratic forms $q \in I^{3}(K)$.

Lemma 5-1. We have the following inequalities:
(a) ed $\mathbf{S p i n}_{n}-1 \leq \operatorname{ed~T}_{n} \leq \operatorname{ed} \mathbf{S p i n}_{n}$,
(b) $\operatorname{ed}\left(\mathbf{S p i n}_{n} ; 2\right)-1 \leq \operatorname{ed}\left(\mathrm{T}_{n} ; 2\right) \leq \operatorname{ed}\left(\mathbf{S p i n}_{n} ; 2\right)$.

Proof. In the language of [BF03, Def. 1.12], we have a fibration of functors

$$
\mathrm{H}^{1}\left(*, \mu_{2}\right) \leadsto \mathrm{H}^{1}\left(*, \operatorname{Spin}_{n}\right) \longrightarrow \mathrm{T}_{n}(*) .
$$

The first inequality in part (a) follows from [BF03, Prop. 1.13] and the second from Proposition [BF03, Lemma 1.9]. The same argument proves part (b).

Let K / k be a field extension. Let $h_{K}=\langle 1,-1\rangle$ be the 2-dimensional hyperbolic form over K; cf. (3-1). For each n-dimensional quadratic form $q \in I^{3}(K)$, let $\operatorname{ed}_{n}(q)$ denote the essential dimension of the class of q in $\mathrm{T}_{n}(K)$.

Lemma 5-2. Let q be an n-dimensional quadratic form in $I^{3}(K)$. Then

$$
\operatorname{ed}_{n+2 s}\left(h_{K}^{\oplus s} \oplus q\right) \geq \operatorname{ed}_{n}(q)-\frac{s(s+2 n-1)}{2}
$$

for any integer $s \geq 0$.
Proof. Set $m \stackrel{\text { def }}{=} \operatorname{ed}_{n+2 s}\left(h_{K}^{\oplus s} \oplus q\right)$. By definition, $h_{K}^{\oplus s} \oplus q$ descends to an intermediate subfield $k \subset F \subset K$ such that $\operatorname{tr} \operatorname{deg}_{k}(F)=m$. In other words, there is an $(n+2 s)$-dimensional quadratic form $\widetilde{q} \in I^{3}(F)$ such that \widetilde{q}_{K} is K isomorphic to $h_{K}^{\oplus s} \oplus q$. Let X be the Grassmannian of s-dimensional subspaces of $F^{n+2 s}$ which are totally isotropic with respect to \widetilde{q}. The dimension of X over F is $s(s+2 n-1) / 2$.

The variety X has a rational point over K; hence there exists an intermediate extension $F \subseteq E \subseteq K$ such that $\operatorname{tr} \operatorname{deg}_{F} E \leq s(s+2 n-1) / 2$, with the property that \widetilde{q}_{E} has a totally isotropic subspace of dimension s. Then \widetilde{q}_{E} splits as $h_{E}^{s} \oplus q^{\prime}$, where $q^{\prime} \in I^{3}(E)$. By Witt's Cancellation Theorem, q_{K}^{\prime} is K-isomorphic to q; hence

$$
\operatorname{ed}_{n}(q) \leq \operatorname{tr} \operatorname{deg}_{k} E=\operatorname{tr} \operatorname{deg}_{k} F+\operatorname{trdeg}_{F} E=m+s(s+2 n-1) / 2
$$

as claimed.
We now proceed with the proof of Theorem 1-1. For $n \leq 10$ the statement of the theorem is vacuous, because $2^{(n+4) / 4}-n-2 \leq 0$. Thus we will assume from now on that $n \geq 12$.

Lemma 5-1 implies, in particular, that $\mathrm{ed}\left(\mathrm{T}_{n} ; 2\right)$ is finite. Hence, there exist a field K / k and an n-dimensional form $q \in I^{3}(K)$ such that $\operatorname{ed}_{n}(q ; 2)=\operatorname{ed}\left(\mathrm{T}_{n} ; 2\right)$. We will show that this form has the properties asserted by Theorem 1-1. In fact, it suffices to prove that if q is Witt equivalent to

$$
\sum_{i=1}^{r} \ll a_{i}, b_{i}, c_{i} \gg
$$

over K then $r \geq \frac{2^{(n+4) / 4}-n-2}{7}$. Indeed, by our choice of $q, \operatorname{ed}_{n}\left(q_{L} ; 2\right)=$ $\operatorname{ed}\left(\mathrm{T}_{n} ; 2\right)$ for any finite odd degree extension L / K. Thus if we can prove the above inequality for q, it will also be valid for q_{L}.

Let us write a 3-fold Pfister form $\ll a, b, c \gg$ as $\langle 1\rangle \oplus \ll a, b, c>_{0}$, where

$$
\ll a, b, c>_{0} \stackrel{\text { def }}{=}\left\langle a_{i}, b_{i}, c_{i}, a_{i} b_{i}, a_{i} c_{i}, b_{i} c_{i}, a_{i} b_{i} c_{i}\right\rangle
$$

Set

$$
\phi \stackrel{\text { def }}{=}\left\{\begin{array}{l}
\sum_{1=1}^{r} \ll a_{i}, b_{i}, c_{i}>_{0}, \text { if } r \text { is even, and } \\
\langle 1\rangle \oplus \sum_{1=1}^{r} \ll a_{i}, b_{i}, c_{i}>_{0}, \text { if } r \text { is odd. }
\end{array}\right.
$$

Then q is Witt equivalent to ϕ over K; in particular, $\phi \in I^{3}(K)$. The dimension of ϕ is $7 r$ or $7 r+1$, depending on the parity of r.

We claim that $n<7 r$. Indeed, assume the contrary. Then $\operatorname{dim}(q) \leq \operatorname{dim}(\phi)$, so that q is isomorphic to a form of type $h_{K}^{s} \oplus \phi$ over K. Thus

$$
\frac{3 n}{7} \geq 3 r \geq \operatorname{ed}_{n}(q) \geq \operatorname{ed}(q ; 2)=\operatorname{ed}\left(\mathrm{T}_{n} ; 2\right) \stackrel{\text { by Lemma } 5-1}{\geq} \operatorname{ed}\left(\mathbf{S p i n}_{n} ; 2\right)-1
$$

The resulting inequality fails for every even $n \geq 12$ because for such n

$$
\operatorname{ed}\left(\mathbf{S p i n}_{n} ; 2\right) \geq n / 2
$$

see (3-2).
So, we may assume that $7 r>n$, i.e., ϕ is isomorphic to $h_{K}^{\oplus s} \oplus q$ over K, for some $s \geq 1$. By comparing dimensions we get the equality $7 r=n+2 s$ when r is even, and $7 r+1=n+2 s$ when r is odd. The essential dimension of the form ϕ, as an element of $\mathrm{T}_{7 r}(K)$ or $\mathrm{T}_{7 r+1}(K)$ is at most $3 r$, while Lemma 5-2 tells us that this essential dimension is at least $\operatorname{ed}_{n}(q)-s(s+2 n-1) / 2$. From this, Lemma 5-1 and Theorem 3-3(a) we obtain the following chain of inequalities

$$
\begin{align*}
3 r & \geq \operatorname{ed}_{n}(q)-\frac{s(s+2 n-1)}{2} \geq \operatorname{ed}\left(\mathrm{T}_{n} ; 2\right)-\frac{s(s+2 n-1)}{2} \tag{5-3}\\
& \geq \operatorname{ed}\left(\mathbf{S p i n}_{n} ; 2\right)-1-\frac{s(s+2 n-1)}{2} \\
& \geq 2^{(n-2) / 2}-\frac{n(n-1)}{2}-1-\frac{s(s+2 n-1)}{2}
\end{align*}
$$

Now suppose r is even. Substituting $s=(7 r-n) / 2$ into inequality (5-3), we obtain

$$
\frac{49 r^{2}+(14 n+10) r-2^{(n+4) / 2}-n^{2}+2 n-8}{8} \geq 0
$$

We interpret the left-hand side as a quadratic polynomial in r. The constant term of this polynomial is negative for all $n \geq 8$; hence this polynomial has one positive real root and one negative real root. Denote the positive root by r_{+}. The above inequality is then equivalent to $r \geq r_{+}$. By the quadratic formula

$$
r_{+}=\frac{\sqrt{49 \cdot 2^{(n+4) / 2}+168 n-367}-(7 n+5)}{49} \geq \frac{2^{(n+4) / 4}-n-2}{7}
$$

This completes the proof of Theorem 1-1 when r is even. If r is odd then substituting $s=(7 r+1-n) / 2$ into (5-3), we obtain an analogous quadratic inequality
whose positive root is

$$
r_{+}=\frac{\sqrt{49 \cdot 2^{(n+4) / 2}+168 n-199}-(7 n+12)}{49} \geq \frac{2^{(n+4) / 4}-n-2}{7}
$$

and Theorem 1-1 follows.
Acknowledgements. We would like to thank the Banff International Research Station in Banff, Alberta (BIRS) for providing the inspiring meeting place where this work was started. We are grateful to A. Merkurjev and B. Totaro for bringing the problem of computing the Pfister numbers $\operatorname{Pf}_{k}(a, n)$ to our attention and for contributing Proposition 4-3. We also thank N. Fakhruddin for helpful correspondence.

References

[Ada96] J. F. ADAMs, Lectures on Exceptional Lie Groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1996. MR 98b:22001 Zbl 0866.22008
[AP71] E. M. Andreev and V. L. Popov, The stationary subgroups of points in general position in a representation space of a semisimple Lie group, Funkcional. Anal. i Priložen. 5 (1971), 1-8, In Russian; translated in Functional Anal. Appl 5 (1971), 265-271. MR 45 \#268 Zbl 0246.22017
[BF03] G. BERHUY and G. FAVI, Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math. 8 (2003), 279-330. MR 2004m:11056 Zbl 1101.14324
[Bro07] P. BROSNAN, The essential dimension of a g-dimensional complex abelian variety is $2 g$, Transform. Groups 12 (2007), 437-441. MR 2008g:14073 Zbl 1127.14043
[BRV07] P. Brosnan, Z. Reichstein, and A. Vistoli, Essential dimension and algebraic stacks, 2007. arXiv math/0701903v1
[BR97] J. BUHLER and Z. REICHSTEIN, On the essential dimension of a finite group, Compositio Math. 106 (1997), 159-179. MR 98e:12004 Zbl 0905.12003
[CS06] V. ChERNOUSOV and J.-P. SERRE, Lower bounds for essential dimensions via orthogonal representations, J. Algebra 305 (2006), 1055-1070. MR 2007i:20070 Zbl 05078318
[Gar09] S. GARIBALDI, Cohomological invariants: exceptional groups and spin groups, Mem. Amer. Math. Soc. 200 (2009). MR 2528487
[GMS03] S. Garibaldi, A. Merkurjev, and J.-P. Serre, Cohomological Invariants in Galois Cohomology, University Lecture Series 28, Amer. Math. Soc., Providence, RI, 2003. MR 2004f:11034 Zbl 1159.12311
[KM08] N. A. Karpenko and A. S. Merkurjev, Essential dimension of finite p-groups, Invent. Math. 172 (2008), 491-508. MR 2009b: 12009 Zbl 05279042
[KMrt98] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The Book of Involutions, Amer. Math. Soc. Colloq. Publ. 44, Amer. Math. Soc., Providence, RI, 1998. MR 2000a:16031 Zbl 0955.16001
[Lam73] T. Y. Lam, The Algebraic Theory of Quadratic Forms, W. A. Benjamin, Reading, MA, 1973, Mathematics Lecture Note Series. MR 53 \#277 Zbl 0259.10019
[Mer09] A. Merkurjev, Essential dimension, in Quadratic Forms - Algebra, Arithmetic, and Geometry, Contemp. Math. 493, 2009, (R. Baeza, W. K. Chan, D. W. Hoffman, and R. Schulze-Pillot, eds.), pp. 299-326.
[MR] A. MEYER and Z. Reichstein, Some consequences of the Karpenko-Merkurjev theorem, Documenta Math., to appear. arXiv 0811.2517
[PST09] R. Parimala, V. Suresh, and J.-P. Tignol, On the Pfister number of quadratic forms, in Quadratic Forms - Algebra, Arithmetic, and Geometry (R. BAEZA, W. K. Chan, D. W. Hoffman, and R. Schulze-Pillot, eds.), Contemp. Math. 493, 2009, pp. 327-338.
[Pop85] A. M. Popov, Finite stationary subgroups in general position of simple linear Lie groups, Trudy Moskov. Mat. Obshch. 48 (1985), 7-59, 263. MR 87i:22021 Zbl 0661. 22009
[PV94] V. L. Popov and E. B. Vinberg, Algebraic Geometry. IV, Encyclopaedia of Mathematical Sciences 55, Springer-Verlag, New York, 1994, pp. 123-184. A translation of Algebraic Geometry 4 (Russian), Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989 [MR1100483 (91k:14001)]. MR 95g:14002
[Rei00] Z. Reichstein, On the notion of essential dimension for algebraic groups, Transform. Groups 5 (2000), 265-304. MR 2001j:20073 Zbl 0981.20033
[RY00] Z. REICHSTEIN and B. Youssin, Essential dimensions of algebraic groups and a resolution theorem for G-varieties, Canad. J. Math. 52 (2000), 1018-1056, With an appendix by János Kollár and Endre Szabó. MR 2001k:14088 Zbl 1044.14023
[Ric88] R. W. Richardson, Conjugacy classes of n-tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988), 1-35. MR 89h:20061 Zbl 0685.20035
[Ros99] M. Rost, A descent property for Pfister forms, J. Ramanujan Math. Soc. 14 (1999), 55-63. MR 2000f:11043 Zbl 1059.11033
[Woo89] J. A. Wood, Spinor groups and algebraic coding theory, J. Combin. Theory Ser. A $5 \mathbf{5}$ (1989), 277-313. MR 90i:20040 Zbl 0704.22010
(Received February 13, 2007)
(Revised January 17, 2008)

E-mail address: brosnan@math.ubc.ca
University of British Columbia, Department of Mathematics, 1984 Mathematics Road, Vancouver, V6T1Z2, Canada
http://www.math.ubc.ca/~brosnan/
E-mail address: reichst@math.ubc.ca
University of British Columbia, Department of Mathematics, 1984 Mathematics Road, Vancouver, V6T1Z2, Canada
http://www.math.ubc.ca/~reichst
E-mail address: angelo.vistoli@sns.it
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
http://homepage.sns.it/vistoli/

