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Abstract

We prove that for a large class of subvarieties of abelian varieties over global
function fields, the Brauer-Manin condition on adelic points cuts out exactly the
rational points. This result is obtained from more general results concerning the
intersection of the adelic points of a subvariety with the adelic closure of the group
of rational points of the abelian variety.

1. Introduction

The notation in this section remains in force throughout the paper, except in
Section 3.3, and in Section 4 where we allow also the possibility that K is a number
field.

Let k be a field. Let K be a finitely generated extension of k of transcendence
degree 1. We assume that k is relatively algebraically closed in K, since the content
of our theorems will be unaffected by this assumption. Let xK be an algebraic
closure of K. We will use this notation consistently for an algebraic closure, and
we will choose algebraic closures compatibly whenever possible. Thus k is the
algebraic closure of k in xK. Let Ks be the separable closure of K in xK. Let
�all be the set of all nontrivial valuations of K that are trivial on k. Let � be a
cofinite subset of �all. If k is finite, we may weaken the cofiniteness hypothesis to
assume only that ���all has Dirichlet density 1. For each v 2�, let Kv be the
completion of K at v, and let Fv be the residue field. Equip Kv with the v-adic
topology. Define the ring of adèles A as the restricted direct product

Q
v2�.Kv;Ov/

of the Kv with respect to their valuation subrings Ov . Then A is a topological ring,
in which

Q
v2� Ov is open and has the product topology.

If A is an abelian variety over K, then A.K/ embeds diagonally into A.A/'Q
v A.Kv/. Define the adelic topology on A.K/ as the topology induced from
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A.A/. For any fixed v define the v-adic topology on A.K/ as the topology induced
from A.Kv/. Let A.K/ be the closure of A.K/ in A.A/.

For any extension of fields F 0 � F and any F -variety X , let XF 0 be the base
extension of X to F 0. Call aK-variety X constant if X Š YK for some k-variety Y ,
and call X isotrivial if X xK Š Y xK for some variety Y defined over k.

From now on, X is a closed K-subscheme of A. Call X coset-free if X xK does
not contain a translate of a positive-dimensional abelian subvariety of A xK .

When k is finite and � D �all, the intersection X.A/ \ A.K/ � A.A/ is
closely related to the Brauer-Manin obstruction to the Hasse principle for X=K;
see Section 4. For curves over number fields, V. Scharaschkin and A. Skoroboga-
tov independently raised the question of whether the Brauer-Manin obstruction is
the only obstruction to the Hasse principle, and proved that this is so when the
Jacobian has finite Mordell-Weil group and finite Shafarevich-Tate group. The
connection with the adelic intersection is stated explicitly in [Sch99], and is based
on global duality statements originating in the work of Cassels: see Remark 4.4.
See also [Sko01], [Fly04], [Poo06], and [Sto07], which contains many conjectures
and theorems relating descent information, the method of Chabauty and Coleman,
the Brauer-Manin obstruction, and Grothendieck’s section conjecture.

In this paper we answer (most cases of) a generalization of the function field
analogue of a question raised for curves over number fields in [Sch99], concern-
ing whether the Brauer-Manin condition cuts out exactly the rational points; see
Theorem D. This question is still wide open in the number field case. Along the
way, we prove results about adelic intersections similar to the “adelic Mordell-
Lang conjecture” suggested in [Sto07, Question 3.12]. Again, these are open in
the number field case. In particular, we prove the following theorems.

THEOREM A. If char k D 0, then X.K/DX.A/\A.K/.

THEOREM B. Suppose that char k D p > 0, that A xK has no nonzero isotrivial
quotient, and that A.Ks/Œp1� is finite. Suppose that X is coset-free. Then X.K/D
X.A/\A.K/.

Remark 1.1. The proposition in [Vol95] states that in the “general case” in
which A is ordinary and the Kodaira-Spencer class of A=K has maximal rank, we
have A.Ks/Œp1�D 0.

CONJECTURE C. For any closed K-subscheme X of any A, we have X.K/D
X.A/\A.K/, where X.K/ is the closure of X.K/ in X.A/.

Remark 1.2. If A xK has no nonzero isotrivial quotient and X is coset-free, then
X.K/ is finite [Hru96, Th. 1.1]; thus X.K/DX.K/. Hence Conjecture C predicts
in particular that the hypothesis on A.Ks/Œp1� in Theorem B is unnecessary.
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Remark 1.3. Here is an example to show that the statement X.K/DX.A/\
A.K/ can fail for a constant curve in its Jacobian. Let X be a curve of genus
� 2 over a finite field k. Choose a divisor of degree 1 on X to embed X in its
Jacobian A. Let F WA! A be the k-Frobenius map. Let K be the function field
of X . Let P 2X.K/ be the point corresponding to the identity map X !X . Let
Pv 2X.Fv/ be the reduction of P at v.

For each v, the Teichmüller map Fv ! Kv identifies Fv with a subfield of
Kv . Any Q 2A.Kv/ can be written as QDQ0CQ1 with Q0 2A.Fv/ and Q1 in
the kernel of the reduction map A.Kv/! A.Fv/; then limm!1 Fm.Q1/D 0, so
limn!1 F nŠ.Q/D limn!1 F nŠ.Q0/DQ0. In particular, taking QDP , we find
that

�
F nŠ.P /

�
n�1

converges inA.A/ to the point .Pv/2X.A/D
Q
v X.Kv/, where

we have identified Pv with its image under the Teichmüller map X.Fv/ ,!X.Kv/.
If .Pv/ were in X.K/, then in X.Kv/ we would have Pv 2X.Fv/\X.K/DX.k/,
which contradicts the definition of Pv if v is a place of degree greater than 1 over k.
Thus .Pv/ is in X.A/\A.K/ but not in X.K/.

In the final section of this paper, we restrict to the case of a global function
field, and extend Theorem B to prove (under mild hypotheses) that for a subvari-
ety of an abelian variety, the Brauer-Manin condition cuts out exactly the rational
points; see Section 4 for the definitions of X.A/Br and cSel. Our result is as follows.

THEOREM D. Suppose that K is a global function field of characteristic p,
that A xK has no nonzero isotrivial quotient, and that A.Ks/Œp1� is finite. Suppose
that X is coset-free. Then X.K/DX.A/Br DX.A/\cSel.

To our knowledge, Theorem D is the first result giving a wide class of varieties
of general type such that the Brauer-Manin condition cuts out exactly the rational
points.

2. Characteristic 0

Throughout this section, we assume char k D 0. In this case, results follow
rather easily.

PROPOSITION 2.1. For any v, the v-adic topology on A.K/ equals the dis-
crete topology.

Proof. The question is isogeny-invariant, so we reduce to the case where A is
simple. Let A.Fv/ denote the group of Fv-points on the Néron model of A over Ov .
Let A1.Kv/ be the kernel of the reduction map A.Kv/!A.Fv/. The Lang-Néron
theorem [LN59, Th. 1] implies that either A is constant and A.K/=A.k/ is finitely
generated, or A is nonconstant and A.K/ itself is finitely generated. In either case,
the subgroup A1.K/ WD A.K/\A1.Kv/ is finitely generated. By the theory of
formal groups (cf. [Ser92, p. 118, Th. 2]), A1.Kv/ has a descending filtration by
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open subgroups in which the quotients of consecutive terms are torsion-free (this is
where we use char k D 0), so the induced filtration on the finitely generated group
A1.K/ has only finitely many nonzero quotients. Thus A1.K/ is discrete. Since
A1.Kv/ is open in A.Kv/, the group A.K/ is discrete in A.Kv/. �

Remark 2.2. The literature contains results close to Proposition 2.1. It is men-
tioned in the third subsection of the introduction to [Man63a] for elliptic curves
with nonconstant j -invariant, and it appears for abelian varieties with K=k-trace
zero in [BV93].

COROLLARY 2.3. The adelic topology on A.K/ equals the discrete topology.

Proof. The adelic topology is at least as strong as (i.e., has at least as many
open sets as) the v-adic topology for any v. �

We can improve the result by imposing conditions in only the residue fields
Fv instead of the completions Kv, that is, “flat” instead of “deep” information in
the sense of [Fly04]. In fact, we have:

PROPOSITION 2.4. There exist v; v0 2 � of good reduction for A such that
A.K/! A.Fv/�A.Fv0/ is injective.

Proof. Let B be the K=k-trace of A. Pick any v 2� of good reduction. The
kernel H of A.K/! A.Fv/ meets B.k/ trivially. By Silverman’s specialization
theorem [Lan83, Ch. 12, Th. 2.3], there exists v0 2 � such that H injects under
reduction modulo v0. �

Proof of Theorem A. By Corollary 2.3,X.A/\A.K/DX.A/\A.K/DX.K/.
�

3. Characteristic p

Throughout this section, char k D p.

3.1. Field-theoretic lemmas.

LEMMA 3.1. For any v, if ˛ 2 Kv is algebraic over K, then ˛ is separable
over K.

Proof. Replacing K by its relative separable closure in L WDK.˛/, we may
assume that L is purely inseparable over K. Then the valuation v on K admits a
unique extension w to L, and the inclusion of completions Kv!Lw is an isomor-
phism. By [Ser79, I.�4, Prop. 10] (loc. cit. Hypothesis (F) holds for localizations
of finitely generated algebras over a field), we have an “nD

P
eifi” result, which

in our case says ŒL WK�D ŒLw WKv�D 1. So ˛ 2K. �
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If L is a finite extension of K, let AL be the corresponding ring of adèles,
defined as a restricted direct product over places of L. There is a natural inclusion
A ,! AL.

LEMMA 3.2. Let L be a finite extension ofK. Then in AL we have A\LDK.

Proof. Fix v 2 �. By [Bou98, VI.�8.5, Cor. 3] and the fact that [Ser79,
Hypothesis (F)] holds, the natural map Kv˝K L!

Q
wjv Lw is an isomorphism.

Hence in
Q
wjv Lw we have Kv \LDK. The result follows. �

3.2. Abelian varieties.

LEMMA 3.3. For any n 2 Z�1, the quotient A.Kv/=nA.Kv/ is Hausdorff.

Proof. Equivalently, we must show that nA.Kv/ is closed in A.Kv/. Suppose
.Pi / is a sequence in nA.Kv/ that converges to P 2A.Kv/. Write Pi D nQi with
Qi 2 A.Kv/. Then n.Qi �QiC1/! 0 as i !1.

Let Ov be the valuation ring of Kv, and let A be the Néron model of A over
Ov . Applying [Gre66, Cor. 1] to AŒn� shows that for any sequence .Ri / in A.Kv/
with nRi ! 0, the distance of Ri to the nearest point of A.Kv/Œn� tends to 0.

Thus by induction on i we may adjust each Qi by a point in A.Kv/Œn� so that
Qi �QiC1 ! 0 as i !1. Since A.Kv/ is complete, .Qi / converges to some
Q 2 A.Kv/, and nQD P . Thus nA.Kv/ is closed. �

Remark 3.4. In the case where k is finite, Lemma 3.3 is immediate since
A.Kv/ is compact and its image under multiplication-by-n is closed.

The following is a slight generalization of [Vol95, Lemma 2], with a more
elementary proof.

PROPOSITION 3.5. If A.Ks/Œp1� is finite, then for any v, the v-adic topology
on A.K/ is at least as strong as the topology induced by all subgroups of finite p-
power index.

Proof. For convenience choose algebraic closures xK; xKv of K;Kv such that
Ks � xK � xKv. As in the proof of Proposition 2.1, there is an open subgroup U
of A.Kv/ such that B WD A.K/\U is finitely generated. It suffices to show that
for every e 2 Z�0, there exists an open subgroup V of A.Kv/ such that B \V �
peA.K/.

Choose m such that pmA.Ks/Œp1�D 0. Let M D eCm. Then B=pMB is
finite. By Lemma 3.3, A.Kv/=pMA.Kv/ is Hausdorff, so the image of B=pMB
in A.Kv/=pMA.Kv/ is discrete. Hence there is an open subgroup V of A.Kv/
such that B \V D ker.B! A.Kv/=p

MA.Kv//.
Suppose b 2 B \ V . Then b D pM c for some c 2 A.Kv/ \ A. xK/. By

Lemma 3.1, we obtain c 2 A.Ks/. If � 2 Gal.Ks=K/, then �c � c 2 A.Ks/ŒpM �
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is killed by pm. Thus pmc 2 A.K/. So b D pepmc 2 peA.K/. Hence B \V �
peA.K/. �

PROPOSITION 3.6. The adelic topology on A.K/ is at least as strong as the
topology induced by all subgroups of finite index.

Proof. As in the proof of Proposition 2.1, the Lang-Néron theorem implies
that A.A/ has an open subgroup whose intersection with A.K/ is finitely generated.
It suffices to study the topology induced on that finitely generated subgroup, so we
may reduce to the case in which k is finitely generated over a finite field Fq . This
case is proved in [Mil72], which adapts and extends [Ser64] and [Ser71]. (The
paper [Mil72] uses not the adelic topology as we have defined it, but the topology
coming from the closed points of a finite-type Z-scheme with function field K.
Since the adelic topology is stronger, [Mil72] contains what we want.) �

LEMMA 3.7. Suppose that A.K/ is finitely generated. Then
�
A.K/

�
tors
D

A.K/tors.

Proof. Let

T WD ker

 
A.K/!

Y
v2�

A.Fv/
A.Fv/tors

!
;

where A.Fv/ is the group of Fv-points on the Néron model of A. Since A.K/ is
finitely generated and the groups A.Fv/=A.Fv/tors are torsion-free, there is a finite
subset S �� such that T D A.K/\U for the open subgroup

U WD ker

 
A.A/!

Y
v2S

A.Fv/
A.Fv/tors

!
of A.A/. The finitely generated group A.K/=T is contained in the torsion-free
group

Q
v2S

A.Fv/
A.Fv/tors

, so A.K/=T is free, and we have A.K/Š T ˚F as topolog-
ical groups, where F is a discrete free abelian group of finite rank.

We claim that the topology of T is that induced by the subgroups nT for
n� 1. For n� 1, the subgroup nT is open in T by Proposition 3.6. If t 2 T , then
some positive multiple of t is in the kernel of A.Kv/! A.Fv/, and then p-power
multiples of this multiple tend to 0. Applying this to a finite set of generators of T ,
we see that any open neighborhood of 0 in T contains nT for some n 2 Z>0.

It follows that xT Š T ˝ yZ. Now�
A.K/

�
tors
D . xT ˚F /tors D xTtors Š .T ˝ yZ/tors Š Ttors: �

Remark 3.8. When k is finite, an easier proof of Lemma 3.7 is possible: Com-
bined with the fact that A.A/ is profinite, Proposition 3.6 implies that A.K/ Š
A.K/˝ yZ; the torsion subgroup of the latter equals A.K/tors.
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The following proposition is a function field analogue of [Sto07, Prop. 3.6].
Our proof must be somewhat different, however, since [Sto07] made use of strong
“image of Galois” theorems whose function field analogues have recently been
disproved [Zar07].

PROPOSITION 3.9. Suppose that A.Ks/Œp1� is finite. Let Z be a finite K-sub-
scheme of A. Then Z.A/\A.K/DZ.K/.

Proof. In this first paragraph we show that replacing K by a finite extension
L does not destroy the hypothesis that A.Ks/Œp1� is finite. This is obvious if L
is separable over K, so assume that L is purely inseparable. Choose n 2 Z�0
with Lp

n

� K. Then .Ls/p
n

� Ks , so pnA.Ls/Œp1� � A.Ks/Œp1�. Thus
pnA.Ls/Œp1� is finite. But multiplication-by-pn has finite fibers, so A.Ls/Œp1�
itself is finite.

Next we claim that if we prove the conclusion after base extension to a finite
extension L, then the desired conclusion over K holds. Namely, suppose that we
prove Z.AL/\A.L/DZ.L/. Then

Z.A/\A.K/�Z.AL/\A.L/DZ.L/;

so
Z.A/\A.K/�Z.A/\Z.L/DZ.K/;

where the last equality uses Lemma 3.2.
Thus we may replace K by a finite extension to assume that Z consists of a

finite set of K-points of A. (The same idea was used in [Sto07].) A point P 2
A.K/ is represented by a sequence .Pn/n�1 in A.K/ such that for every v, the
limit limn!1 Pn exists in A.Kv/. If in addition P 2Z.A/, then there is a point
Qv 2Z.K/ whose image in Z.Kv/ equals limn!1 Pn 2A.Kv/. The Pn�Qv are
eventually contained in the kernel of A.K/! A.Fv/, which is finitely generated,
so there are finitely generated subfields k0 � k, K0 �K with K0=k0 a function
field such that all the Pn and the points of Z.K/ are in A.K0/. By Proposition 3.5,
the sequence .Pn�Qv/n�1 is eventually divisible in A.K0/ by an arbitrarily high
power of p. For any other v0 2 �, the same is true of .Pn �Qv0/n�1. Then
Qv0 �Qv 2 A.K0/ is divisible by every power of p. Since A.K0/ is finitely
generated, Qv0 �Qv is a torsion point in A.K0/. This holds for every v0 2 �,
and A.K0/tors is finite. Thus R WD P �Qv 2 A.K0/ is a torsion point in A.K0/.
Lemma 3.7 applied to K0 yields R 2A.K0/tors. Hence P DRCQv 2A.K/, and
so P 2Z.A/\A.K/DZ.K/. �

LEMMA 3.10. Fix v 2�. Let �v be the closure of A.K/ in A.Kv/. Then for
every e 2 Z�0, the map A.K/=peA.K/! �v=p

e�v is surjective.

Proof. Let Ov be the valuation ring of Kv, and let mv be its maximal ideal.
Let A over Ov be the Néron model. For r 2 Z�1, let Gr be the kernel of A.Kv/D
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A.Ov/ ! A.Ov=m
r
v/. It follows from [Ser92, p. 118, Th. 2] that Gr=GrC1 is

isomorphic to .Ov=mv/dimA, which is killed by p, so that each Gr is an abelian
pro-p-group, and hence a topological Zp-module. There are only finitely many
points of order p in A.Kv/, and

T
r�1Gr D f0g, so some Gr contains no nontriv-

ial p-torsion points, and hence is torsion-free. In particular, A.Kv/ has an open
subgroup Aı.Kv/ that is a torsion-free topological Zp-module, and we may choose
Aı.Kv/ so that Aı.K/ WD A.K/\Aı.Kv/ is finitely generated.

The group �ıv WD �v \A
ı.Kv/ is the closure of Aı.K/, so there is an isomor-

phism of topological groups �ıv Š Z˚mp for some m 2 Z�0. In particular, for any
e 2 Z�0, the group pe�ıv is open in �ıv , which is open in �v. So the larger group
pe�v also is open in �v. But the image of A.K/ in the discrete group �v=pe�v
is dense, so the map A.K/=peA.K/! �v=p

e�v is surjective. �

3.3. A uniform Mordell-Lang conjecture. We thank Zoé Chatzidakis, Fran-
çoise Delon, and Thomas Scanlon for many of the ideas used in this section. See
[Del98] for the definitions of separable, p-basis, p-free, p-components, etc. By
iterated p-components we mean p-components of p-components of . . . of p-com-
ponents (all with respect to a given p-basis).

The goal of this section is to deduce a uniform version (Proposition 3.16)
of the function field Mordell-Lang conjecture from a version in [Hru96]. Under
some hypotheses, the uniform version asserts the finiteness of the intersection of
a subvariety X of an abelian variety A with any coset of a subgroup peA.F / of
A.F /, where F is allowed to range over p-basis-preserving extensions of an initial
ground field K.

Remark 3.11. The p-basis condition on F , or something like it, is neces-
sary for the truth of Proposition 3.16; with no condition, F might be algebraically
closed, and then peA.F /D A.F /, so the desired finiteness would fail assuming
dimX > 0. The p-basis condition is used in the proof of Proposition 3.16 to imply
separability of F over K, which guarantees that a nonisotriviality hypothesis on A
over K is preserved by base extension to F ; see Lemma 3.13 and its proof.

LEMMA 3.12. Let B be a p-basis for a field K of characteristic p. Let L be
an extension of K such that B is also a p-basis for L. Suppose that c is an element
of L that is not algebraic over K. Then there exists a separably closed extension
F of L such that B is a p-basis of F and the Aut.F=K/-orbit of c is infinite.

Proof. Fix a transcendence basis T for L=K. Let � be an algebraically closed
extension of K such that the transcendence basis of �=K is identified with the set
Z � T . Identify L with a subfield of � in such a way that each t 2 T maps to
the transcendence basis element for �=K labelled by .0; t/ 2 Z � T . The map
of sets Z� T ! Z� T mapping .i; t/ to .i C 1; t/ extends to an automorphism
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� 2 Aut.�=K/. For i 2 Z, let Li D � i .L/. Let L1 be the compositum of the
Li in �. Then �.L1/D L1. Let F be the separable closure of L1 in �. Thus
�.F /DF . The � -orbit of c is infinite, since Li \Lj is algebraic over K whenever
i ¤ j .

The p-basis hypothesis implies that L is separable over K. Applying � i

shows that Li is separable over K. Moreover, the Li are algebraically disjoint
over K, so their compositum L1 is separable over K, by the last corollary in
[Bou03, V.�16.7] and Proposition 3(b) in [Bou03, V.�15.2]. Thus B is p-free in
L1.

The p-basis hypothesis also implies that LD Lp.B/. Thus Li D L
p
i .B/ for

all i 2 Z, and L1 D L
p
1.B/.

Combining the previous two paragraphs shows that B is a p-basis for L1,
and hence also for F . �

LEMMA 3.13. LetK �F be a separable extension such that the fieldKp
1

WDT
n�1K

pn

is algebraically closed. Let A be an abelian variety over K such that
no nonzero quotient of A xK is the base extension of an abelian variety over Kp

1

.
Then no nonzero quotient of A xF is the base extension of an abelian variety over
F p

1

.

Proof. Suppose not. Thus there exists a nonzero abelian variety B over F p
1

and a surjective homomorphism �WA xF ! B xF . Choose a finitely generated exten-
sion F0 of Kp

1

over which B is defined. Whenever A and B are abelian varieties
over a field L, any homomorphism A! B is definable over L.AŒ`1�; BŒ`1�/ for
any prime `¤ charL; thus, in our situation, � is definable over a finite separable
extension F1 of KF0. Since Kp

1

is algebraically closed, we may choose a place
F0ÜKp

1

extending the identity on Kp
1

, such that B has good reduction at
this place. By [Del98, Fact 1.4], K and F p

1

are linearly disjoint over Kp
1

, so
the place F0Ü Kp

1

extends to a place KF0Ü K that is the identity on K,
and then to a place F1Ü K1 for some finite extension K1 of K. Reduction of
�WAF1

!BF1
yields a homomorphism AK1

!BK1
, and since the place restricted

to F0 has values in Kp
1

, the abelian variety BK1
is the base extension of an

abelian variety over Kp
1

. This contradicts the hypothesis on A. �

LEMMA 3.14 (a version of the Mordell-Lang conjecture). Let F be a sepa-
rably closed field of characteristic p. Suppose that A is an abelian variety over
F such that no nonzero quotient of A xF is the base extension of an abelian variety
over F p

1

. Suppose that X is a coset-free closed F -subvariety of A. Then there
exists e 2Z�1 such that for every a 2A.F /, the intersectionX.F /\.aCpeA.F //
is finite.

Proof. This is a special case of [Hru96, Lemma 6.2]. �
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Using Lemma 3.14 and the compactness theorem in model theory, we can
deduce a version of the Mordell-Lang conjecture that is more uniform as we vary
the ground field, Proposition 3.16.

But first we introduce some notation. Suppose that K is a field of charac-
teristic p such that ŒK W Kp� <1. Let F be any field extension with the same
p-basis. Suppose that A is an abelian variety over K. Let Rn be the restriction of
scalars of A from K to Kp

n

, so that Rn is an abelian variety over Kp
n

. Let An
be the base extension of Rn by the isomorphism Kp

n

!K that takes an element
to its pn-th root, so that An.F / D Rn.F p

n

/ D A.F /. For n 2 Z�0, we have a
natural morphism AnC1! An such that AnC1.F /! An.F / is compatible with
the identifications AnC1.F /D A.F / and An.F /D A.F /.

Suppose moreover that X is a K-variety. Let Yn be the set of (not necessarily
closed) K-subvarieties Y � An �X such that the projection from Y to An has
finite fibers. For such Y , use the identification An.F /D A.F / to view Y.F / as a
subset ofA.F /�X.F /. Taking inverse images underAnC1�X!An�X defines a
map of sets Yn ! YnC1. Let Y D lim

�!
Yn. For Y 2 Y, the set Y.F / � A.F /

is independent of which Yn we consider Y as coming from. Each Yn is closed
under taking finite unions of elements, so the same is true of Y.

Remark 3.15. Alternatively, one can think of Y as a “variety” defined not only
by polynomial equations and inequations in the coordinates on A and X , but also by
polynomial equations and inequations in the iterated p-components of coordinates
on A and usual coordinates on X .

PROPOSITION 3.16 (a more uniform version of the Mordell-Lang conjecture).
Let k be an algebraically closed field of characteristic p. Let K be a finitely gen-
erated extension of k. Fix a (finite) p-basis B of K. Suppose that A is an abelian
variety over K such that no nonzero quotient of A xK is the base extension of an
abelian variety over k. Suppose that X is a coset-free closed K-subscheme of A.
Define Y as in the preceding paragraph. Then there exists e 2 Z�1 and Y 2 Y

such that for every field extension F � K having B as p-basis, if a 2 A.F / and
c 2X.F /\ .aCpeA.F //, then .a; c/ 2 Y.F /.

Proof. Consider the language of fields augmented by a constant symbol ˛�
for each element � 2K and by additional finite tuples of constant symbols a and
c (to represent coordinates of points on A and X , respectively). We construct a
theory T in this language. Start with the field axioms, and the arithmetic sentences
involving the ˛� that hold in K. Include a sentence saying that B is a p-basis for
the universe field F . Include sentences saying that a; c 2 A.F / (for some fixed
representation of A as a definable set). For each e 2Z�1, include a sentence saying
that

c 2X.F /\ .aCpeA.F //:
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For each Y 2Y, include a sentence saying that .a; c/ … Y.F /; such a sentence may
be constructed since iterated p-components admit a first-order definition.

Suppose that the conclusion of Proposition 3.16 fails. Then we claim that T

is consistent. To prove this, we show that every finite subset T0 of T has a model.
Given T0, let emax be the maximum e that occurs in the sentences, and let Ymax 2Y

be the union of the Y ’s that occur. The negation of Proposition 3.16 implies that
there exists a field extension F �K having B as a p-basis, together with a 2A.F /
and c 2 X.F /\ .aCpemaxA.F //, such that .a; c/ … Ymax.F /. This .F; a; c/ is a
model for T0.

By the compactness theorem, there is a model .F; a; c/ for T. So F is a field
extension of K having B as a p-basis, and

c 2X.F /\ .aCpeA.F //:

For all e 2 Z�1 and for every Y 2 Y, we have .a; c/ … Y.F /. Let AK.a/ be the
smallest extension of K.a/ in F that is closed under taking p-components with
respect to B, so AK.a/ too has B as p-basis. Then K.c/ is not algebraic over AK.a/,
because an algebraic relation could be used to define a Y 2 Y containing .a; c/.
By Lemma 3.12 applied to F=AK.a/, it is possible to enlarge F to assume that F
is separably closed and the Aut.F=AK.a//-orbit of c is infinite while B is still a
p-basis for F . This infinite orbit is contained in the set X.F /\ .aCpeA.F //, so
the latter is infinite too, for every e 2 Z�1. By Lemma 3.13 applied to K � F , the
abelian variety A xF has no nonzero quotient defined over F p

1

. Also, the fact that
X is coset-free implies that XF is coset-free. (If X xK acquires a coset over some
extension of xK, it acquires one over some finitely generated extension of xK, and
then a standard specialization argument shows that it contains a coset already over
xK.) Thus XF � AF is a counterexample to Lemma 3.14. �

Remark 3.17. The proof of Lemma 3.14 involves more model theory than we
used elsewhere in this section. On the other hand, the proof of [AV92, Th. A(3)]
probably could be adapted to give a purely algebraic proof of Lemma 3.14 in the
case where A is ordinary, and this would suffice to prove Proposition 3.16 in the
case where A is ordinary.

3.4. Subvarieties of abelian varieties. We now return to our situation in which
K is the function field of a curve over k.

LEMMA 3.18. Suppose that A xK has no nonzero isotrivial quotient, and that
X is coset-free. Then there exists a finite K-subscheme Z of X such that X.A/\
A.K/�Z.A/.

Proof. By replacing K with its compositum with k in xK, we may reduce to
the case in which k is algebraically closed.
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We have ŒK W Kp�D p. Choose ˛ 2 K �Kp. Then f˛g is a p-basis for K.
For any v, the field Kv is generated by K and Kpv , so ŒKv WK

p
v � � p. Moreover,

Lemma 3.1 implies ˛ …Kpv , so f˛g is a p-basis for Kv.
Let e and Y be as in Proposition 3.16. We think of Y as a subvariety of An�X

for some n. For each a 2 A.K/, let Ya be the fiber of Y ! An above the point of
An.K/ corresponding to a. View Ya as a finite subscheme of X .

Because A xK has no nonzero isotrivial quotient, A.K/ is finitely generated.
Choose a (finite) set of representatives A � A.K/ for A.K/=peA.K/. Let Z DS
a2A Ya, so that Z is a finite subscheme of X . The conclusion of Proposition 3.16

applied to F DKv says that

X.Kv/\ .aCp
eA.Kv//� Ya.Kv/

for each a 2A. Let �v be the closure of A.K/ in A.Kv/. Then

X.Kv/\ .aCp
e�v/� Ya.Kv/:

Taking the union over a 2A yields

X.Kv/\�v �Z.Kv/;

since by Lemma 3.10, the a 2A represent all classes in �v=pe�v. This holds for
all v, so X.A/\A.K/�Z.A/. �

Remark 3.19. In the number field case, one cannot expect finiteness of X.Kv/
\�v in general. Consider the case in which Kv DQp . If the “Chabauty condition”
rankA.K/ < dimA fails, it may happen that �v is an open subgroup of A.Kv/, in
which case X.Kv/\�v will be infinite if nonempty.

3.5. End of proof of Theorem B. We now prove Theorem B. Let Z be as in
Lemma 3.18. By Lemma 3.18 and then Proposition 3.9,

X.A/\A.K/�Z.A/\A.K/DZ.K/�X.K/:

The opposite inclusion X.K/�X.A/\A.K/ is trivial. This completes the proof.
�

Remark 3.20. Our proof of Theorem B required both the flat information
(from residue fields) implicit in Proposition 3.6 and the deep information (from
each Kv) in Proposition 3.5. But it seems possible that the flat information suffices,
even for Conjecture C. Specifically, if � is a cofinite subset of the set of places of
good reduction for X=K, then it is possible that X.K/D X

�Q
v2� Fv

�
\A.K/

always holds, where the closures are now taken in A
�Q

v2� Fv
�
.
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4. The Brauer-Manin obstruction

In this section we assume that K is either a global function field (i.e., as
before, but with k finite) or a number field. We also assume that � is the set of all
nontrivial places of K, and define the ring of adèles A in the usual way.

The purpose of this section is to relate the adelic intersections we have been
considering to the Brauer-Manin obstruction. This relationship was discovered by
Scharaschkin [Sch99] in the number field case. We will give a proof similar in
spirit to his, and verify that it works in the function field case.

For convenience, if X is any topological space, let X� denote the set of con-
nected components, and equip X� with the quotient topology. This will be needed
to avoid annoyances with the archimedean places in the number field case.

Let A be an abelian variety over K. By the adelic topology on A.K/, we
mean the topology induced by A.A/�; in the function field case this agrees with
our terminology in Section 1.

PROPOSITION 4.1. The adelic topology on A.K/ equals the topology induced
by subgroups of finite index.

Proof. Proposition 3.6 gives one inclusion. The other inclusion follows from
the fact that A.A/� D

Q
v2�A.Kv/� is a profinite group. �

4.1. Global duality for abelian varieties. All cohomology below is fppf coho-
mology, i.e. faithfully flat and of finite presentation (also called “flat cohomology”;
see [Mil80], [Mil86]). As usual, for any n 2 Z�1, define

Seln WD ker

 
H 1.K;AŒn�/!

Y
v2�

H 1.Kv; A/

!
;

X WD ker

 
H 1.K;A/!

Y
v2�

H 1.Kv; A/

!
:

Following the notation of [Sto07, �2], define

1A.K/ WD lim
 �

A.K/

nA.K/
;

cSel WD lim
 �

Seln;

TX WD lim
 �

XŒn�;

where each inverse limit is over positive integers n ordered by divisibility. Taking
inverse limits of the usual descent sequence yields

(1) 0!1A.K/! cSel! TX! 0:
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For any abelian profinite group G and any prime `, let G.`/ be the maximal
pro-` quotient ofG, so thatGŠ

Q
`G

.`/Š lim
 �

G=nG, where ` ranges over primes,
and n ranges over positive integers ordered by divisibility.

LEMMA 4.2. For each prime `, each of 1A.K/.`/, cSel
.`/

, TX.`/ is a finitely
generated Z`-module.

Proof. For 1A.K/.`/ it holds simply because A.K/ is finitely generated as a
Z-module. For TX.`/, it follows from the finiteness of XŒ`�, which is proved in

[Mil70]. Now the result for cSel
.`/

follows from (1). �

By definition, Seln maps to

ker

 Y
v2�

H 1.Kv; AŒn�/!
Y
v2�

H 1.Kv; A/

!
D

Y
v2�

A.Kv/

nA.Kv/
;

so as in [Sto07, �2] we obtain a mapcSel! A.A/�:

For each v we have a pairing

A.Kv/� �H
1.Kv; A

_/!H 2.Kv;Gm/ŠQ=Z;

and in fact Tate local duality holds: Each of the first two groups is identified with
the Pontryagin dual of the other [Mil86, Th. III.7.8]. An element of H 1.K;A_/

maps to 0 in H 1.Kv; A
_/ for all but finitely many v, so summing the Tate local

duality pairing over v defines a pairing

A.A/� �H 1.K;A_/!Q=Z;

or equivalently a homomorphism

A.A/�
Tate
�!H 1.K;A_/D;

where the superscript D denotes Pontryagin dual.
The following global duality statement is a version of the “Cassels dual exact

sequence” in which finiteness of X is not assumed:

PROPOSITION 4.3 (Cassels dual exact sequence). The sequence

0 �! cSel �! A.A/�
Tate
�!H 1.K;A_/D

is exact.

Proof. This is part of the main theorem of [GAT07]. �

Remark 4.4. Proposition 4.3 has a long history. For an elliptic curve A over
a number field, Proposition 4.3 was proved by Cassels [Cas62], [Cas64] under the
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assumption that X.A/ is finite, using a result from [Ser64] to obtain exactness on
the left. This, except for the exactness on the left, was generalized by Tate to abelian
varieties over number fields with finite Shafarevich-Tate group, at around the same
time, though the first published proof appeared much later [Mil86, Th. I.6.13]. The
latter reference also proved the global function field analogue except for the p-part
in characteristic p. The cSel version (not requiring finiteness of X.A/), except for
exactness on the left and the p-part, is implicit in the right three terms of the exact
sequence in the middle of page 104 of [Mil86] if there we make the substitution

TXŠ cSel=1A.K/
from (1). Exactness on the left for the prime-to-p part is implicit in [Ser64], [Ser71]
and is mentioned explicitly in [Mil86, Cor. 6.23]. The full statement was proved
in [GAT07].

4.2. Review of the Brauer-Manin obstruction. Let Xs WD X �K Ks . Let X
be a projective K-scheme. Define BrX WDH 2.X;Gm/, where here we may use
étale cohomology since it gives the same result as fppf cohomology for smooth
quasi-projective commutative group schemes [Mil80, Th. III.3.9]. For simplicity,
let BrX

BrK denote the cokernel of BrK! BrX even if this map is not injective. The
Hochschild-Serre spectral sequence in étale cohomology gives an exact sequence

BrK! ker .BrX ! BrXs/!H 1.K;PicXs/!H 3.K;Gm/;

and the last term is 0 for any global field; see e.g. [Mil86, Cor. 4.21]. From this
we extract an injection

H 1.K;PicXs/ ,!
BrX
BrK

I

if BrXs D 0, then this is an isomorphism. Composing with the map induced by
Pic0Xs ,! PicXs , we obtain

(2) H 1.K;Pic0Xs/!
BrX
BrK

:

Each A 2 BrX induces evaluation maps evA fitting in a commutative diagram

X.K/

evA

��

// X.A/�

evA

�� ##
0 // BrK //

M
v2�

Br.Kv/ // Q=Z // 0:

The diagonal arrows give rise to a pairing

X.A/� �
BrX
BrK

!Q=Z
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which induces a map

X.A/�
BM
�!

�
BrX
BrK

�D
:

The kernel (inverse image of 0) is called the Brauer set, and is denoted X.A/Br
� . It

contains X.K/ and hence also its closure X.K/ in X.A/�. One says that the Brauer-
Manin obstruction to the Hasse principle is the only one for X if the implication

X.A/Br
� ¤∅ H) X.K/¤∅

holds. (This is equivalent to the usual notion without the �.)

4.3. The Brauer set for abelian varieties.

THEOREM E. We have

1A.K/D A.K/� A.A/Br
� �

cSel:

in A.A/.

Proof. Proposition 4.1 shows that A.K/! A.A/� induces an isomorphism
1A.K/! A.K/, and the first inclusion is automatic from the previous subsection.
It remains to prove the second inclusion. Taking the dual of (2) for A yields the
vertical arrow in

0 // cSel // A.A/�
Tate //

BM %%

H 1.K;Pic0As/D

�
BrA
BrK

�D
:

OO

Applying [Man71, Prop. 8] to each Kv shows that the triangle commutes (the
hypothesis there that the ground field be perfect is not used). The diagram now
gives ker.BM/� ker.Tate/, or equivalently A.A/Br

� �
cSel. �

Remark 4.5. If X is finite (or more generally, if its maximal divisible part
Xdiv is 0), then TXD 0 and the injection 1A.K/!cSel is an isomorphism; in this
case, the conclusion of Theorem E simplifies to

1A.K/D A.K/D A.A/Br
� D

cSel:

Closely related results in the number field case can be found in [Wan96].

4.4. The Brauer set for subvarieties of abelian varieties.

PROPOSITION 4.6. Let i WX ! A be a morphism from a projective K-scheme
to an abelian variety over K. Thus i induces a map X.A/�! A.A/�.

(a) We have i.X.A/Br
� /�

cSel.
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(b) Suppose that

� X is a smooth projective geometrically integral curve;
� A is the Jacobian of X ;
� i is an Albanese map (that is, i sends a point P to the class of P �D,

whereD 2DivAs is a fixed divisor of degree 1 whose class is Gal.Ks=K/-
invariant); and

� X is finite (or at least Xdiv D 0).

Then X.A/Br
� D i

�1.A.K//.

Proof. (a) This follows immediately from Theorem E, since i maps X.A/Br
�

to A.A/Br
� .

(b) We use the diagram �
BrX
BrK

�D
��

||

H 1.K;PicXs/D

��
X.A/�

BMX

@@

i

��

H 1.K;Pic0Xs/D

��
0 // A.K/ // A.A/�

Tate //

BMA %%

H 1.K;Pic0As/D

�
BrA
BrK

�D
OO

in which the horizontal sequence is the exact sequence of Proposition 4.3 in which
we have used the finiteness of X to replace cSel with A.K/. The lower triangle
commutes, as explained in the proof of Theorem E. The “pentagon” at the far right
also commutes, since the homomorphism (2) is functorial in X . Thus the whole
diagram commutes.

We next claim that the three downward vertical arrows at the right are isomor-
phisms. The first is an isomorphism because BrXs D 0 [Gro68, Cor. 5.8]. The
second is an isomorphism because PicXs Š Pic0Xs˚Z (where the Z is generated
by the class of D) and H 1.K;Z/ D 0. The third is an isomorphism because an
Albanese map i induces an isomorphism i�WPic0As! Pic0Xs .
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The commutativity of the upper left “hexagon” now implies

X.A/Br
� WD ker .BMX /D ker.Tate ıi/D i�1.ker.Tate//D i�1.A.K//: �

Remark 4.7. Part (b) was originally proved in the number field case in [Sch99]
using a slightly different proof. For yet another proof of this case, see [Sto07,
Cor. 7.4].

Remark 4.8. IfK is a global function field, the conclusion of (b) can be written
as X.A/Br DX.A/\A.K/ in A.A/.

5. Intersections with cSel

From now on, we assume that K is a global function field. The proof of
Theorem D will follow that of Theorem B, with cSel playing the role of A.K/.
We begin by proving cSel-versions of several of the lemmas and propositions of
Section 3.2. The following is an analogue of Lemma 3.7.

LEMMA 5.1. The maps A.K/tors!1A.K/tors! cSeltors are isomorphisms.

Proof. Proposition 4.1 yields 1A.K/ Š A.K/, so the first map is an isomor-
phism by Lemma 3.7. The second map is an isomorphism by (1), since TX is
torsion-free by definition. �

The following is an analogue of Proposition 3.5.

PROPOSITION 5.2. If A.Ks/Œp1� is finite, then for any v, the map cSel
.p/
!

A.Kv/
.p/ is injective.

Proof. Let K 0v � Ks be the Henselization of K at v. Define Seln0 andcSel
0

in the same way as Seln and cSel, but using K 0v in place of its completion
Kv. By [Mil86, I.3.10(a)(ii)], the natural maps Seln0 ! Seln and cSel

0
! cSel

are isomorphisms. Similarly, by [Mil86, I.3.10(a)(i)] we may replace A.Kv/.p/

by A.K 0v/
.p/ WD lim

 �
A.K 0v/=p

nA.K 0v/. Hence it suffices to prove injectivity of

.cSel
0
/.p/! A.K 0v/

.p/.
Choose m such that pmA.Ks/Œp1�D 0. Suppose

b 2 ker
�
.cSel
0
/.p/! A.K 0v/

.p/
�
:

For each M 2 Z�0, let bM be the image of b in Sel0p
M

�H 1.K;AŒpM �/. Then
the image of bM under

Sel0p
M

!
A.K 0v/

pMA.K 0v/
�H 1.K 0v; AŒp

M �/!H 1.Ks; AŒpM �/
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is 0. The Hochschild-Serre spectral sequence (see [Mil80, III.2.21]) gives an exact
sequence

0!H 1.Gal.Ks=K/;A.Ks/ŒpM �/!H 1.K;AŒpM �/!H 1.Ks; AŒpM �/;

so bM comes from an element of H 1.Gal.Ks=K/;A.Ks/ŒpM �/, which is killed
by pm. Thus pmbM D 0 for all M , so pmb D 0.

By Lemma 5.1, b comes from a point in A.K/Œp1�, which, in turn, injects
into A.K 0v/

.p/. �

The next result is an analogue of Proposition 3.9.

PROPOSITION 5.3. Suppose that A.Ks/Œp1� is finite. Let Z be a finite K-sub-
scheme of A. Then Z.A/\cSelDZ.K/.

Proof. One inclusion is easy: Z.K/�Z.A/ andZ.K/�A.K/�1A.K/�cSel.
Therefore we focus on the other inclusion.

As in the proof of Proposition 3.9, we may replace K by a finite extension to
assume that Z consists of a finite set of K-points of A. Suppose P 2Z.A/\cSel.
The v-adic component of P in Z.Kv/ equals the image of a point Qv 2 Z.K/.
Then P �Qv maps to 0 in A.Kv/, and in particular in A.Kv/.p/, so by Proposition

5.2 the image of P �Qv in cSel
.p/

is 0. This holds for every v, so if v0 is another

place, thenQv0�Qv maps to 0 in cSel
.p/

. The kernel ofA.K/!1A.K/.p/ ,!cSel
.p/

is the prime-to-p torsion of A.K/, so Qv0 �Qv 2 A.K/tors. This holds for all v0,
so the point R WD P �Qv belongs to cSeltors. By Lemma 5.1, R 2 A.K/tors. Thus
P DRCQv 2 A.K/. So P 2Z.A/\A.K/DZ.K/. �

Each � 2 Selp
e

may be represented by a “covering space”: an fppf torsor
T under A equipped with a morphism �T WT ! A that after base extension to
Ks becomes isomorphic to the base extension of Œpe�WA! A. (Passing to Ks is
enough to trivialize T since A is smooth.)

LEMMA 5.4. We have cSel�
S
�2Selp

e �T .T .A//.

Proof. In the commutative diagram

T .A/

�T

��cSel � � //

��

A.A/

��

Selp
e � � // A.A/

peA.A/



530 BJORN POONEN and JOSÉ FELIPE VOLOCH

the set �T .T .A// is a coset of peA.A/ in A.A/, and its image in A.A/
peA.A/ equals

the image of � under the bottom horizontal map, by the definition of this bottom
map. Thus any element of cSel mapping to � in Selp

e

belongs to the corresponding
�T .T .A//. �

Proof of Theorem D. We have X.K/�X.A/Br �X.A/\cSel, by Proposition
4.6(a), so it will suffice to show that X.A/\cSel consists of K-rational points.

Let e and Y be as in Proposition 3.16. For each � 2 Selp
e

, choose �T WT !A

as above, choose t 2 T .Ks/, let a D �T .t/ 2 A.Ks/, and let Ya be the fiber of
Y !An above the point corresponding to a. View Ya as a finite subscheme of XKs .
It follows from [Mil70] that Selp

e

is finite, so we can choose a finite K-subscheme
Z of X such that ZKs contains all the Ya as � ranges over Selp

e

.
For each v, choose a separable closure Ksv of Kv containing Ks . By the

proof of Lemma 3.18, any p-basis of K is also a p-basis for Kv, and hence for
Ksv . Therefore the conclusion of Proposition 3.16 may be applied with F DKsv to
yield

X.Ksv/\ .aCp
eA.Ksv//� Ya.K

s
v/

for each a. By definition of �T , we have �T .T .Ksv//D aCp
eA.Ksv/. Thus

X.Kv/\�T .T .Kv//�X.K
s
v/\ .aCp

eA.Ksv//� Ya.K
s
v/�Z.K

s
v/:

Hence
X.Kv/\�T .T .Kv//�X.Kv/\Z.K

s
v/DZ.Kv/:

This holds for all v, so X.A/\�T .T .A//�Z.A/. Taking the union over � 2Selp
e

,
and applying Lemma 5.4, we obtain X.A/ \ cSel � Z.A/. Thus X.A/ \ cSel �
Z.A/\cSel, and the latter equals Z.K/ by Proposition 5.3, so we are done. �
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