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Abstract

Motivated by work of Ramanujan, Freeman Dyson defined the rank of an inte-
ger partition to be its largest part minus its number of parts. If N.m; n/ denotes the
number of partitions of n with rank m, then it turns out that

R.wI q/ WD 1C

1X
nD1

1X
mD�1

N.m; n/wmqnD1C

1X
nD1

qn
2Qn

jD1.1�.wCw
�1/qjC q2j /

:

We show that if � ¤ 1 is a root of unity, then R.�I q/ is essentially the holomorphic
part of a weight 1=2 weak Maass form on a subgroup of SL2.Z/. For integers 0�
r < t , we use this result to determine the modularity of the generating function for
N.r; t In/, the number of partitions of n whose rank is congruent to r .mod t /. We
extend the modularity above to construct an infinite family of vector valued weight
1=2 forms for the full modular group SL2.Z/, a result which is of independent
interest.

1. Introduction and statement of results

The mock theta-functions give us tantalizing hints of a grand synthe-
sis still to be discovered. Somehow it should be possible to build them
into a coherent group-theoretical structure, analogous to the structure
of modular forms which Hecke built around the old theta-functions of
Jacobi. This remains a challenge for the future.

Freeman Dyson, 1987
Ramanujan Centenary Conference

The authors thank the National Science Foundation for their generous support. The second author
is grateful for the support of a Packard and a Romnes Fellowship, and the support of the Manasse
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University of Wisconsin.
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Dyson’s quote (see page 20 of [15]) refers to 22 peculiar q-series, such as

(1.1) f .q/ WD 1C

1X
nD1

qn
2

.1C q/2.1C q2/2 � � � .1C qn/2
;

which were defined by Ramanujan and Watson decades ago. In his last letter to
Hardy dated January 1920 (see pp. 127–131 of [26]), Ramanujan lists 17 such
functions, and he gives 2 more in his “Lost Notebook” [26]. In his paper “The
final problem: An account of the mock theta functions” [31], Watson defines three
further functions.

Surprisingly, much remains unknown about these enigmatic series. Ramanu-
jan’s claims about their analytic properties remain open, and there is even debate
concerning the rigorous definition of such a function. Despite these seemingly prob-
lematic issues, Ramanujan’s mock theta functions indeed possess many striking
properties, and they have been the subject of an astonishing number of important
works (for example, see [4], [5], [6], [7], [11], [12], [13], [17], [18], [19], [22],
[26], [27], [31], [32], [34], [35] to name a few). Watson predicted this high level
of activity in his 1936 Presidential Address to the London Mathematical Society
with his prophetic words (see page 80 of [31]):

Ramanujan’s discovery of the mock theta functions makes it obvi-
ous that his skill and ingenuity did not desert him at the oncoming of
his untimely end. As much as any of his earlier work, the mock theta
functions are an achievement sufficient to cause his name to be held in
lasting remembrance. To his students such discoveries will be a source
of delight and wonder until the time shall come when we too shall make
our journey to that Garden of Proserpine (a.k.a. Persephone). . .

G. N. Watson, 1936.

In his 2002 Ph.D. thesis [35], written under the direction of Zagier, Zwegers
made an important step in the direction of Dyson’s “challenge for the future”. He
related many of Ramanujan’s mock theta functions to real analytic vector valued
modular forms. We make another step by establishing that Dyson’s own rank gen-
erating function can be used to construct the desired “coherent group-theoretical
structure, analogous to the structure of modular forms which Hecke built around
old theta functions of Jacobi”. We show that the specializations of his partition
rank generating function R.�I q/, where � ¤ 1 is a root of unity, are “holomorphic
parts” of weak Maass forms. Moreover, we show that the “nonholomorphic parts”
of these forms are period integrals of theta functions, thereby realizing Dyson’s
speculation that such a picture should involve theta functions. We shall use these
results to systematically obtain Ramanujan-type congruences for Dyson’s rank par-
tition functions.
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To describe the historical context of these results, we begin by recalling clas-
sical facts about partitions and modular forms which inspired Ramanujan to origi-
nally define the mock theta functions. A partition of a nonnegative integer n is any
nonincreasing sequence of positive integers whose sum is n. As usual, let p.n/
denote the number of partitions of n. The partition function p.n/ has the well
known infinite product generating function

(1.2)
1X
nD0

p.n/qn D

1Y
nD1

1

1� qn
;

which coincides with q
1
24 =�.z/, where

�.z/ WD q1=24
1Y
nD1

.1� qn/ .q WD e2�iz/

is Dedekind’s weight 1=2 modular form. Modular forms have played a central role
in the theory of partitions, largely due to the fact that many generating functions
in the subject, such as (1.2), are related to infinite product modular forms such as
Dedekind’s eta-function and the Siegel-Klein forms.

On the other hand, many partition generating functions are “Eulerian” forms,
also known as q-series, which do not naturally appear in modular form theory.
However there are famous examples, such as the Rogers-Ramanujan identities

1C

1X
nD1

qn
2

.1� q/.1� q2/ � � � .1� qn/
D

1Q1
nD1.1� q

5n�1/.1� q5n�4/
;

1C

1X
nD1

qn
2Cn

.1� q/.1� q2/ � � � .1� qn/
D

1Q1
nD1.1� q

5n�2/.1� q5n�3/
;

where Eulerian forms are essentially modular forms. As another example, we note
that

(1.3)
1X
nD0

p.n/qn D 1C

1X
nD1

qn
2

.1� q/2.1� q2/2 � � � .1� qn/2
:

The mock theta functions stand out in this context. Although they are not
modular, they possess striking properties which prompted Dyson to set forth his
challenge of 1987. In this regard, the focus of our attention is a particularly excep-
tional family of such series, the specializations of Dyson’s own rank generating
function. In an effort to provide a combinatorial explanation of Ramanujan’s con-
gruences for p.n/, Dyson introduced [14] the so-called “rank” of a partition, a
delightfully simple statistic. The rank of a partition is defined to be its largest part
minus the number of its parts. More precisely, he conjectured that the partitions of
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5nC4 (resp. 7nC5) form 5 (resp. 7) groups of equal size when sorted by their ranks
modulo 5 (resp. 7)1. He further postulated the existence of another statistic, the so-
called “crank”2, which allegedly would explain all three Ramanujan congruences

p.5nC 4/� 0 .mod 5/;

p.7nC 5/� 0 .mod 7/;

p.11nC 6/� 0 .mod 11/:

In 1954, Atkin and Swinnerton-Dyer proved [9] Dyson’s rank conjectures.
If N.m; n/ denotes the number of partitions of n with rank m, then it is well

known that

(1.4) R.wI q/ WD 1C
1X
nD1

1X
mD�1

N.m; n/wmqnD 1C

1X
nD1

qn
2

.wqI q/n.w�1qI q/n
;

where

.aI q/n WD .1� a/.1� aq/ � � � .1� aq
n�1/;

.aI q/1 WD

1Y
mD0

.1� aqm/:

Obviously, by letting w D 1, we obtain (1.3).
Letting w D�1, we obtain the series

R.�1I q/D 1C

1X
nD1

qn
2

.1C q/2.1C q2/2 � � � .1C qn/2
:

This series is the mock theta function f .q/ given in (1.1). In earlier work [10], the
present authors proved that q�1R.�1I q24/ is the “holomorphic part” of a weak
Maass form. This is a special case of our first result.

To make this precise, we begin by recalling the notion of a weak Maass form
of half-integral weight k 2 1

2
Z nZ. If z D xC iy with x; y 2 R, then the weight k

hyperbolic Laplacian is given by

(1.5) �k WD �y
2

�
@2

@x2
C
@2

@y2

�
C iky

�
@

@x
C i

@

@y

�
:

1A short calculation reveals that this phenomenon cannot hold modulo 11.
2In 1988, Andrews and Garvan [8] found the crank, and they indeed confirmed Dyson’s specula-

tion that it explains the three Ramanujan congruences above. Recent work of Mahlburg [23] estab-
lishes that the Andrews-Dyson-Garvan crank plays an even more central role in the theory partition
congruences. His work concerns partition congruences modulo arbitrary powers of all primes � 5.
Other work by Garvan, Kim and Stanton [16] gives a different “crank” for several other Ramanujan
congruences.



DYSON’S RANKS AND MAASS FORMS 423

If v is odd, then define �v by

�v WD

�
1 if v � 1 .mod 4/;
i if v � 3 .mod 4/:

A weak Maass form of weight k on a subgroup � � �0.4/ is any smooth function
f W H! C satisfying the following:

(1) For all AD
�
a b
c d

�
2 � and all z 2 H, we have3

f .Az/D

 
c

d

!2k
��2kd .czC d/k f .z/:

(2) We have that �kf D 0.

(3) The function f .z/ has at most linear exponential growth at all the cusps of � .

Suppose that 0 < a < c are integers, and let �c WD e2�i=c . If fc WD 2c
gcd.c;6/ ,

then define the theta function ‚
�
a
c
I �
�

by

(1.6) ‚
�a
c
I �
�
WD

X
m.modfc/

.�1/m sin
�
a�.6mC 1/

c

�
� �
�
6mC 1; 6fc I

�

24

�
;

where

(1.7) �.˛; ˇI �/ WD
X

n�˛ .modˇ/

ne2�i�n
2

:

Throughout, let `c WD lcm.2c2; 24/, and let z̀c WD `c=24. It is well known that
‚
�
a
c
I `c�

�
is a cusp form of weight 3=2. Using this cuspidal theta function, we

define the function S1
�
a
c
I z
�

by the period integral

S1

�a
c
I z
�
WD
�i sin

�
�a
c

�
`c

1
2

p
3

Z i1

�Nz

‚
�
a
c
I `c�

�p
�i.� C z/

d�:

Using this notation, define D
�
a
c
I z
�

by

D
�a
c
I z
�
WD �S1

�a
c
I z
�
C q�

`c
24R.�ac I q

`c /:

Moreover, define the group �c by

�c WD

��
1 1

0 1

�
;

�
1 0

`2c 1

��
:

THEOREM 1.1. If 0 < a < c, then D
�
a
c
I z
�

is a weak Maass form of weight
1=2 on �c .

3This transformation law agrees with Shimura’s notion of a half-integral weight modular form
[29].
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When a=c D 1=2, it turns out that D
�
1
2
I z
�

is a weak Maass form on �0.144/
with Nebentypus character �12.�/D

�
12
�

�
. This fact was established by the authors

in [10], and it plays a central role in the proof of the Andrews-Dragonette Conjec-
ture on the coefficients of f .q/. In view of this fact, it is natural to suspect that
D
�
a
c
I z
�

is often a weak Maass form on a group larger than �c . For odd c, we
establish the following.

THEOREM 1.2. If 0 < a < c, where c is odd, then D
�
a
c
I z
�

is a weak Maass
form of weight 1=2 on �1.144f 2c z̀c/.

Theorem 1.2 is implied by a general result about vector valued weight 1/2
weak Maass forms for the modular group SL2.Z/ (see Theorem 3.4), a result which
is of independent interest.

Remark. We refer to S1
�
a
c
I z
�

(resp. q�
`c
24R.�ac I q

`c /) as the nonholomorphic
(resp. holomorphic) part of the Maass form D

�
a
c
I z
�
. To justify this, one notes that

S1
�
a
c
I z
�

is nonholomorphic in z, and that

@

@z

�
q�

`c
24R.�ac I q

`c /
�
D 0:

Here @
@z
WD

1
2

�
@
@x
C i @

@y

�
. In particular, q�`c=24R.�ac I q

`c / is the part of the Fourier
expansion of D

�
a
c
I z
�

which is given as a series expansion in q D e2�iz (see
Proposition 4.1).

Theorems 1.1 and 1.2 provide a new perspective on the role that modular
forms play in the theory of partitions. They imply that the generating functions for
Dyson’s rank partition functions are related to Maass forms and modular forms. If
r and t are integers, then let N.r; t In/ be the number of partitions of n whose rank
is r .mod t /.

THEOREM 1.3. If 0� r < t are integers, then

1X
nD0

�
N.r; t In/�

p.n/

t

�
q`tn�

`t
24

is the holomorphic part of a weak Maass form of weight 1/2 on �t . Moreover, if t
is odd, then it is on �1.144f 2t z̀t /.

This result allows us to relate many “sieved” generating functions to weakly
holomorphic modular forms, those forms whose poles (if there are any) are sup-
ported at cusps.
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THEOREM 1.4. If 0� r < t are integers, where t is odd, and P − 6t is prime,
then X

n�1

.24`tn�`tP /D�.�24
z̀
t

P /

�
N.r; t In/�

p.n/

t

�
q`tn�`t=24

is a weight 1=2 weakly holomorphic modular form on �1.144f 2t z̀tP
4/.

These results are useful for studying Dyson’s rank partition generating func-
tions. Atkin and Swinnerton-Dyer [9] confirmed Dyson’s conjecture that for every
integer n and every r we have

N.r; 5I 5nC 4/D
p.5nC 4/

5
;(1.8)

N.r; 7I 7nC 5/D
p.7nC 5/

7
;(1.9)

thereby providing a combinatorial “explanation” of Ramanujan partition congru-
ences with modulus 5 and 7. It is not difficult to use our results to give alternative
proofs of these rank identities, as well as others of similar type.

Armed with Theorems 1.2, 1.4 and 3.4, one can obtain deeper results about
ranks. They can be used to obtain asymptotic formulas for the N.r; t In/ partition
functions. Indeed, the present authors have already successfully employed the
theory of weak Maass forms to solve the more difficult problem of obtaining exact
formulas in the case of the functions N.0; 2In/ and N.1; 2In/ (see Theorem 1.1
of [10]). For odd t , one can use Theorem 3.4 and the “circle method” to obtain
asymptotics. Since the details are messy and lengthy, for brevity we have chosen
to address asymptotics in a later paper.

Here we turn to the question of congruences, the subject which originally
motivated Dyson to define partition ranks. In this direction, we shall employ a
method first used by the second author in [24] in his work on p.n/. We show that
Dyson’s rank partition functions satisfy congruences of Ramanujan type, a result
which nicely complements the recent paper [23] by Mahlburg on the Andrews-
Garvan-Dyson crank.

THEOREM 1.5. Let t be a positive odd integer, and letQ − 6t be prime. If j is
a positive integer, then there are infinitely many nonnested arithmetic progressions
AnCB such that for every 0� r < t we have

N.r; t IAnCB/� 0 .mod Qj /:

Three remarks. (1) The congruences in Theorem 1.5 may be viewed as a
combinatorial decomposition of the partition function congruence

p.AnCB/� 0 .mod Qj /:
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(2) By “nonnested”, we mean that there are infinitely many arithmetic progressions
AnCB , with 0� B < A, with the property that there are no progressions which
contain another progression.

(3) Theorem 1.5 is in sharp contrast to Mahlburg’s recent result on the Andrews-
Garvan-Dyson crank (see [23]). For example, his results imply that congruences
modulo Qj exist for all the crank partition functions with modulus t DQ. On the
other hand, Theorem 1.5 proves congruences for powers of those primes Q � 5
which do not divide the rank modulus t .

CONJECTURE. Theorem 1.5 holds for those primes Q � 5 which divide t .

To prove these theorems, we require a number of new results. First of all,
the proof of Theorem 1.2 requires transformation laws for some new classes of
mock theta functions. In Section 2, we derive these transformation formulas, and
we recall recent work of Gordon and McIntosh [18]. In Section 3, we use the
results of Section 2 to construct the vector valued Maass forms whose properties
are the content of Theorem 3.4. We conclude Section 3 with proofs of Theorems
1.1, 1.2, and 1.3. In Section 4, we prove Theorem 1.4, and then give the proof
of Theorem 1.5. The proof of Theorem 1.5 relies on Q-adic properties of weakly
holomorphic half-integral weight modular forms, and Q-adic Galois representa-
tions associated to modular forms.

Acknowledgements. The authors would like to thank Scott Ahlgren, George
Andrews, Matthew Boylan, Michael Dewar, Jan H. Bruinier, Freeman Dyson, Sharon
Garthwaite, Frank Garvan, Karl Mahlburg, Jean-Pierre Serre, and the referee for
their helpful comments.

2. Modular transformation formulas

Here we derive modular transformation formulas for R.�I q/ and allied func-
tions. In Section 2.1, we first recall transformation laws obtained recently by Gor-
don and McIntosh [18], and in Section 2.2 we derive transformation formulas for
closely allied functions. In Section 2.3 we combine these results to produce an
infinite family of vector valued modular forms under SL2.Z/.

2.1. Transformation laws of Gordon and McIntosh. To state the transforma-
tion formulas of Gordon and McIntosh, we require the following series. If 0<a< c
are integers and q WD e2�iz , then we let

M
�a
c
I z
�
DM

�a
c
I q
�
WD

1

.qI q/1

1X
nD�1

.�1/nqnC
a
c

1� qnC
a
c

� q
3
2
n.nC1/;(2.1a)
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M1

�a
c
I z
�
DM1

�a
c
I q
�

(2.1b)

WD
1

.qI q/1

1X
nD�1

.�1/nC1qnC
a
c

1C qnC
a
c

� q
3
2
n.nC1/;

N
�a
c
I z
�
DN

�a
c
I q
�

(2.1c)

WD
1

.qI q/1

 
1C

1X
nD1

.�1/n .1C qn/
�
2� 2 cos

�
2�a
c

��
1� 2qn cos

�
2�a
c

�
C q2n

� q
n.3nC1/

2

!
;

N1

�a
c
I z
�
DN1

�a
c
I q
�

(2.1d)

:D
1

.qI q/1

1X
nD0

.�1/n
�
1� q2nC1

�
1� 2qnC

1
2 cos

�
2�a
c

�
C q2nC1

� q
3n.nC1/

2 :

Two remarks. (1) Gordon and McIntosh show the q-series identities

M
�a
c
I q
�
D

1X
nD1

qn.n�1/

.q
a
c I q/n � .q

1�a
c I q/n

;(2.2)

N
�a
c
I q
�
D 1C

1X
nD1

qn
2Qn

jD1

�
1� 2 cos

�
2�a
c

�
qj C q2j

� :(2.3)

(2) If 0 < a < c are integers, then (1.4) and (2.3) imply the important fact that

(2.4) R.�ac I q/DN
�a
c
I q
�
:

To state their transformation laws, we require the following Mordell integrals:

J
�a
c
I˛
�
WD

Z 1
0

e�
3
2
˛x2
�

cosh
��
3a
c
� 2

�
˛x
�
C cosh

��
3a
c
� 1

�
˛x
�

cosh.3˛x=2/
dx;

J1

�a
c
I˛
�
WD

Z 1
0

e�
3
2
˛x2
�

sinh
��
3a
c
� 2

�
˛x
�
� sinh

��
3a
c
� 1

�
˛x
�

sinh.3˛x=2/
dx:

(2.5)

By modifying the seminal arguments of Watson [31], Gordon and McIntosh (see
page 199 of [18]) proved the following theorem.

THEOREM 2.1. Suppose that 0 < a < c are integers, and that ˛ and ˇ have
the property that ˛ˇ D �2. If q WD e�˛ and q1 WD e�ˇ , then we have

q
3a
2c .1�

a
c /�

1
24 �M

�a
c
I q
�
D

r
�

2˛
csc

�a�
c

�
q
� 1
6

1 �N
�a
c
I q41

�
�

r
3˛

2�
�J
�a
c
I˛
�
;

q
3a
2c .1�

a
c /�

1
24 �M1

�a
c
I q
�
D�

r
2�

˛
q
4
3

1 �N1

�a
c
I q21

�
�

r
3˛

2�
�J1

�a
c
I˛
�
:
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2.2. Modular transformation formulas for allied series. Theorem 2.1 is insuf-
ficient for fully understanding the modularity properties of the functions N.a

c
I q/

DR.�ac I q/ under the Möbius transformations arising from SL2.Z/. Indeed, under
translations the functions M and M1 transform to allied functions whose modular-
ity properties must be deduced. To this end, it is necessary to define further series
which will allow us to view the functions in the previous subsection as pieces of the
components of a vector valued function whose transformations we shall determine
under the generators of SL2.Z/. Suppose that c is a positive integer, and suppose
that a and b are integers for which 0 � a; b < c. Using this notation, define
M.a; b; cI z/ by

(2.6) M.a; b; cI z/DM.a; b; cI q/ WD
1

.qI q/1

1X
nD�1

.�1/nqnC
a
c

1� �bc q
nCa

c

� q
3
2
n.nC1/:

In addition, if b
c
62 f0; 1

2
; 1
6
; 5
6
g, then define the integer k.b; c/ by

(2.7) k.b; c/ WD

8̂̂̂̂
<̂
ˆ̂̂:
0 if 0 < b

c
< 1
6
;

1 if 1
6
< b
c
< 1
2
;

2 if 1
2
< b
c
< 5
6
;

3 if 5
6
< b
c
< 1:

Furthermore, throughout we let e.˛/ WD e2�i˛ . Using this notation, then define the
series N.a; b; cI z/ by

N.a; b; cI z/DN.a; b; cI q/

WD
1

.qI q/1

0@ ie
�
�
a
2c

�
q
b
2c

2
�
1� e

�
�
a
c

�
q
b
c

� C 1X
mD1

K.a; b; c;mI z/ � q
m.3mC1/

2

1A ;(2.8)

where

K.a; b; c;mI z/

WD .�1/m
sin
�
�a
c
�

�
b
c
C2k.b; c/m

�
�z
�
C sin

�
�a
c
�

�
b
c
�2k.b; c/m

�
�z
�
qm

1� 2 cos
�
2�a
c
�
2�bz
c

�
qmC q2m

:

Moreover, define the Mordell integral

J.a; b; cI˛/ WD

Z 1
�1

e�
3
2
˛x2C3˛x a

c �

�
�bc e
�˛xC �2bc e

�2˛x
�

cosh
�
3˛x=2� 3�i b

c

� dx:
Using this notation, we obtain the following transformation laws.
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THEOREM 2.2. Suppose that c is a positive integer, and that a and b are
integers for which 0� a < c, 0 < b < c and b

c
62
˚
1
2
; 1
6
; 5
6

	
. Furthermore, suppose

that ˛ and ˇ have the property that ˛ˇ D �2. If q WD e�˛ and q1 WD e�ˇ , then

q
3a
2c .1�

a
c /�

1
24 �M.a; b; cI q/r

8�

˛
e�2�i

a
c
k.b;c/C3�i b

c .
2a
c
�1/��bc q

4b
c
k.b;c/� 6b

2

c2
� 1
6

1 �N.a; b; cI q41/

�

r
3˛

8�
��5b2c �J.a; b; cI˛/:

Three remarks. (1) Although b is nonzero in Theorem 2.2, note that we have
M.a; 0; cI q/DM

�
a
c
I q
�
. Therefore, Theorem 2.1, combined with Theorem 2.2,

gives the appropriate transformation laws of every M.a; b; cI q/, where 0 < a < c
and 0� b < c, provided that b

c
62
˚
1
2
; 1
6
; 5
6

	
.

(2) Observe that M.1; 1; 2I q/ D �M1

�
1
2
I q
�
. Therefore, the case where 2a D c

and b
c
D

1
2

is also covered by Theorem 2.1.

(3) One could also prove Theorem 2.2 by using arguments which are analogous to
those developed by Zwegers in [35].

Proof of Theorem 2.2. To prove this theorem, we argue with contour integra-
tion in a manner which is very similar to earlier work of Watson [31]. We consider
a contour integral which is basically the function M.a; b; cI q/. Define this integral
I by

I WD I1C I2 WD
1

2�i

Z 1�i"
�1�i"

�

sin.��/
�

e�˛.�C
a
c /

1� �bc e
�˛.�Cac /

� e�
3
2
˛�.�C1/d�

�
1

2�i

Z 1Ci"
�1Ci"

�

sin.��/
�

e�˛.�C
a
c /

1� �bc e
�˛.�Cac /

� e�
3
2
˛�.�C1/d�:

(2.9)

Here " > 0 is sufficiently small enough so that 1 � �bc e
�˛.�Cac / is nonzero for

�"� Im.�/� ". This is indeed possible since 1� �bc e
�˛.�Cac / D 0 if and only if

� D�
a

c
C
2�i .b=cCn/

˛
DW �n

(here we need the condition that b 6D 0).
By construction, we have that the poles of the integrand only arise from the

roots of sin.��/, and they are the points � 2 Z. The residue of the integrand in
� D n 2 Z equals

.�1/nqnC
a
c

1� �bc � q
nCa

c

� q
3n.nC1/

2 :
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For Re.�/ ! 1, the integrand is of rapid decay, and so the Residue Theorem
implies that

I D

1X
nD�1

.�1/nqnC
a
c

1� �bc � q
nCa

c

� q
3n.nC1/

2 D .qI q/1 �M.a; b; cI q/:(2.10)

We now compute the integrals I1 and I2. We first consider I2. Using (2.9)
and the identity

1

sin.��/
D�2i

1X
nD0

e.2nC1/�i� ;

which holds for � 2 H, we find that

I2 D
1

2�i

1X
nD0

Z 1Ci"
�1Ci"

2�i
e.2nC1/�i��˛.�C

a
c /�

3
2
˛�.�C1/

1� �bc � e
�˛.�Cac /

d� DW
1

2�i

1X
nD0

Jn:

We now reformulate I2 in a useful way by shifting the paths of integration through
the points !n, the saddle points of

exp
�
.2nC 1/�i� � 3

2
˛�2

�
:

These are the points given by

!n D
.2nC 1/�i

3˛
:

By the Residue Theorem, we have

Jn WD

Z 1Ci�
�1Ci�

f D

Z 1C!n
�1C!n

f C
X
�m;n

ResŒf .�m;n/�;

where �m;n are those poles �m of the integrand f lying between the original contour
and the new contour (i.e. those �m for which m� 0 and Im.�m/ < Im.!n//. These
turn out to be those points �m for which m� 0 and that satisfy

2nC1

3
> 2

�
b

c
Cm

�
:(2.11)

(That no poles lie on the path of integration follows from the condition that b
c
62˚

1
2
; 1
6
; 5
6

	
.) Using definition (2.7), we have that (2.11) is equivalent to

n� 3mC k.b; c/:
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At the points �m, the integrand has the residue

�n;m WD
2�i

˛
� e.2nC1/�i�m�˛.�mC

a
c /�

3
2
˛�m.�mC1/

D
2�i

˛
� ��bc � e

�.2nC1/�i a
c
C3�i.mCbc /.2

a
c
�1/

� q�
3a
2c .1�

a
c / � q

2.2nC1/.bcCm/�6.
b
c
Cm/

2

1 :

Hence the Residue Theorem, combined with a reordering of summation, implies
that

(2.12) I2 D
X
m�0

X
n�3mCk.b;c/

�n;mC
X
n�0

J 0n;

where

J 0n WD

Z 1C!n
�1C!n

e.2nC1/�i��˛.�C
a
c /�

3
2
˛�.�C1/

1� �bc � e
�˛.�Cac /

d�:

Using the fact that

�nC1;m D e
�2�i a

c � q
4.mCbc /
1 ��n;m;

we find that

(2.13)
X
m�0

X
n�3mCk.b;c/

�n;m D
X
m�0

�3mCk.b;c/;m

1� e�2�i
a
c � q

4.mCbc /
1

D
2�i

˛
� e�.2k.b;c/C1/

a
c
�i�3�i.1�2ac /

b
c � ��bc

� q�
3a
2c .1�

a
c / � q

2.2k.b;c/C1/b
c
� 6b

2

c2

1

�

1X
mD0

.�1/mq
6m2C2.2k.b;c/C1/m
1

1� e�2�i
a
c � q

4.mCbc /
1

:

Now we compute the integral I1 by arguing as above using the identity

1

sin.��/
D 2i

1X
nD0

e�.2nC1/�i� ;

which holds for �� 2 H. Again by the Residue Theorem, we find that

(2.14) I1 D
X
m�1

X
n�3m�k.b;c/

�n;mC
X
n�0

K 0n;

where

K 0n WD

Z 1Cz!n
�1Cz!n

e.2nC1/�iz�˛.zC
a
c /�

3
2
˛z.zC1/

1� �bc � e
�˛.zCac /

dz:



432 KATHRIN BRINGMANN and KEN ONO

Here the points z!n are given by z!n WD �
.2nC1/�i

3˛
; and

�n;m WD
2�i

˛
� e�.2nC1/�i��m�˛.��mC

a
c /�

3
2
˛��m.��mC1/

D
2�i

˛
� ��bc � e

.2nC1/�i a
c
C3�i.�mCbc /.2

a
c
�1/
� q�

3a
2c .1�

a
c /

� q
2.2nC1/.�bcCm/�6.

b
c
�m/

2

1 :
As in the case of I2, we obtainX
m�1

X
n�3m�k.b;c/

�n;m D
2�i

˛
e.�2k.b;c/C1/

a
c
�i�3�i.1�2ac /

b
c � ��bc

� q�
3a
2c .1�

a
c / � q

2.2k.b;c/�1/b
c
� 6b

2

c2

1

�

1X
mD1

.�1/mq
6m2C2.�2k.b;c/C1/m
1

1� e2�i
a
c � q

4.m�bc /
1

:

This fact, combined with (2.12), (2.13), and (2.14), implies that

I1C I2 D
4�

˛
e�2k.b;c/

a
c
�iC3�i.�1C2ac /

b
c � ��bc � q

� 3a
2c .1�

a
c / � q

4k.b;c/b
c
� 6b

2

c2

1

�

 
ie��i

a
c � q

2b
c

1

2 �
�
1� e�2�i

a
c � q

4b
c

1

� C 1X
mD1

zK.a; b; c;mI q1/ � q
6m2C2m
1

!

C

X
n�0

�
J 0nCK

0
n

�
;

where

zK.a; b; c;mI q1/

WD .�1/m
sin
�
�a
c
� iˇ

�
2b
c
C4k.b; c/m

��
C sin

�
�a
c
� iˇ

�
2b
c
�4k.b; c/m

��
q4m1

1� 2 cos
�
2� a

c
� 4i b

c
ˇ
�
� q4m1 C q

8m
1

:

By (2.8), we then find that

(2.15) I1C I2 D
4�

˛
e�2k.b;c/

a
c
�iC3�i.�1C2ac /

b
c ��bc q�

3a
2c .1�

a
c /

� q
4k.b;c/b

c
� 6b

2

c2

1

�
q41 I q

4
1

�
1
N
�
a; b; cI q41

�
C

X
n�0

�
J 0nCK

0
n

�
:

Hence the proof of the theorem essentially boils down to the computation ofX
n�0

�
J 0nCK

0
n

�
:
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We first compute the J 0n integrals. For this we need the identity

t

1� t
D
t�

1
2 C t

1
2 C t

3
2

t�
3
2 � t

3
2

;

which we apply when t D �bc � e
�˛.�Cac /. This identity implies that the integrand

in J 0n equals

��5b2c e.2nC1/�i�C
3
2
˛ a
c
� 3
2
˛�2

�
�bc e
�˛.�Cac /C �2bc � e

�2˛.�Cac /C �3bc e
�3˛.�Cac /

��
��3b2c � e

3
2
˛.�Cac /� �3b2c � e

� 3
2
˛.�Cac /

� :

In the integrand we now put � D�a
c
CpC x, where

p WD
.2nC 1/�i

3˛
;

and where x is a real variable running from �1 to1. This easily gives

J 0n D
.�1/nC1i

2
� ��5b2c � q

.2nC1/2

6

1 � q�
3a
2c .1�

a
c /Z

R

�
�bc � e

�
.2nC1/�i

3 e�˛xC�2bc � e
�
2.2nC1/�i

3 e�2˛x��3bc e
�3˛x

�
cosh

�
3
2
˛x� 3�i b

c

� e�
3
2
˛x2C3˛ a

c
xdx:

In the same way, we obtain

K 0n D
.�1/ni

2
� ��5b2c q

.2nC1/2

6

1 q�
3a
2c .1�

a
c /

Z
R

�
�bc � e

.2nC1/�i
3 e�˛xC �2bc � e

2.2nC1/�i
3 e�2˛x � �3bc e

�3˛x
�

cosh
�
3
2
˛x� 3�i b

c

� � e�
3
2
˛x2C3˛ a

c
xdx

since we have that

sin
�
.2nC 1/�

3

�
D sin

�
2.2nC 1/�

3

�
;

for every integer n we obtain the expression

J 0nCK
0
n D .�1/

nC1
� ��5b2c � q

.2nC1/2

6

1 � q�
3a
2c .1�

a
c / � sin

�
.2nC 1/�

3

�
Z

R

�
�bc � e

�˛xC �2bc � e
�2˛x

�
cosh

�
3
2
˛x� 3�i b

c

� e�
3
2
˛x2C3˛ a

c
x dx

D .�1/nC1 � ��5b2c � q
.2nC1/2

6

1 � q�
3a
2c .1�

a
c / � sin

�
.2nC 1/�

3

�
J.a; b; cI˛/:
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Now by Euler’s identity (see page 464 of [33])

2

1X
nD0

.�1/n sin
�
.2nC 1/�

3

�
q
.2nC1/2

6

1 D
p
3 � q

1
6

1 �
�
q41 I q

4
1

�
1
;

we find that
1X
nD0

�
J 0nCK

0
n

�
D�

p
3

2
� ��5b2c � q

1
6

1 � q
� 3
2
a
c .1�

a
c /
�
q41 I q

4
1

�
1
J.a; b; cI˛/:

This fact, combined with (2.9), (2.10), and (2.15) then gives

.qI q/1M.a; b; cI q/

D
4�

˛
� e�2k.b;c/

a
c
�iC3�i.�1C2ac /

b
c � ��bc � q

� 3a
2c .1�

a
c /

� q
4k.b;c/b

c
� 6b

2

c2

1 �
�
q41 I q

4
1

�
1
�N

�
a; b; cI q41

�
�

p
3

2
� ��5b2c � q

1
6

1 � q
� 3
2
a
c .1�

a
c / �

�
q41 I q

4
1

�
1
J.a; b; cI˛/:

By the transformation law for Dedekind’s eta-function, it is straightforward to de-
duce that

.qI q/1 D

r
2�

˛
� q�

1
24 � q

1
6

1

�
q41 I q

4
1

�
1
;

from which the statement of the theorem follows easily. �

2.3. An infinite family of vector valued Maass forms. It turns out that the
transformations in Theorems 2.1 and 2.2 allow us to produce an infinite family of
vector valued weight 1/2 weak Maass forms, one for every positive odd integer c.
To this end, it suffices to determine the images of the components of these forms
under the generators of SL2.Z/:

z 7! zC 1 and z 7! �
1

z
:

If c is a positive odd integer, then for every pair of integers 0� a; b < c define
the functions

N
�a
c
I q
�
D N

�a
c
I z
�
WD csc

�a�
c

�
� q�

1
24 �N

�a
c
I q
�
;(2.16)

M
�a
c
I q
�
DM

�a
c
I z
�
WD 2q

3a
2c
�.1�ac /�

1
24 �M

�a
c
I q
�
;(2.17)

M.a; b; cI q/DM.a; b; cI z/ WD 2q
3a
2c
�.1�ac /�

1
24 �M.a; b; cI q/;(2.18)

N.a; b; cI q/D N.a; b; cI z/ WD 4e�2�i
a
c
k.b;c/C3�i b

c .
2a
c
�1/(2.19)

� ��bc � q
b
c
k.b;c/� 3b

2

2c2
� 1
24 �N.a; b; cI q/:
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Remark. Notice that a must be nonzero for the function N
�
a
c
I q
�
.

THEOREM 2.3. Suppose that c is a positive odd integer, and that a and b are
integers for which 0� a < c and 0 < b < c.

(1) For all z 2 H we have

N
�a
c
I zC 1

�
D ��124 �N

�a
c
I z
�
;

N.a; b; cI zC 1/D �3b
2

2c2
� ��124 �N.a� b; b; cI z/;

M
�a
c
I zC 1

�
D �5a2c � �

�3a2

2c2
� ��124 �M.a; a; cI z/;

M.a; b; cI zC 1/D �5a2c � �
�3a2

2c2
� ��124 �M.a; aC b; cI z/;

where a is required to be nonzero in the first and third formula.

(2) For all z 2 H we have

1
p
�iz
�N

�
a

c
I �
1

z

�
DM

�a
c
I z
�
C 2
p
3
p
�iz �J

�a
c
I �2�iz

�
;

1
p
�iz
�N

�
a; b; cI �

1

z

�
DM.a; b; cI z/C ��5b2c

p
3
p
�iz �J.a; b; cI �2�iz/;

1
p
�iz
�M

�
a

c
I �
1

z

�
D N

�a
c
I z
�
�
2
p
3i

z
�J

�
a

c
I
2�i

z

�
;

1
p
�iz
�M

�
a; b; cI �

1

z

�
D N.a; b; cI z/� ��5b2c

p
3i

z
�J

�
a; b; cI

2�i

z

�
;

where a is required to be nonzero in the first and third formula.

Remark. Strictly speaking, the functions in Theorem 2.3 do not always have
the property that their defining parameters lie in the interval Œ0; c/. For example,
this occurs whenever a� b (resp. aC b) is not in the interval Œ0; c/. In such cases,
one defines the corresponding functions in the obvious way, and then observes
that the resulting functions equal, up to a precise root of unity, the corresponding
functions where a� b (resp. aC b) are replaced by their reduced residue classes
modulo c. Lastly, the reader should recall the first remark after Theorem 2.2.

Proof of Theorem 2.3. The first claim follows from the definitions of the series.
The second claim follows from Theorems 2.1 and 2.2 by letting ˛D�2�iz and
2�i=z. �

3. Weak Maass forms

Here we prove Theorems 1.1 and 3.4 using the results from the previous sec-
tion. In Section 3.1, we explicitly construct the nonholomorphic and holomorphic
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parts of the functions D
�
a
c
I z
�
, we derive their images under the generators of �c ,

and we prove Theorem 1.1.

3.1. The nonholomorphic and holomorphic parts of D
�
a
c
I z
�
. Using Theo-

rem 2.1, here we construct a weak Maass form of weight 1/2 using N
�
a
c
I q
�
. The

arguments we employ are analogous to those employed by Zwegers in his work on
Ramanujan’s mock theta functions (for example, see �3 of [34], or [35]).

We begin with the transformation formulas for the relevant series. As in the
introduction, suppose that 0 < a < c are integers. Define the vector valued function
F
�
a
c
I z
�

by

F
�a
c
I z
�
WD

�
F1

�a
c
I z
�
; F2

�a
c
I z
��T

D

�
sin
��a
c

�
N
�a
c
I `cz

�
; sin

��a
c

�
M
�a
c
I `cz

��T
;

(3.1)

where `c WD lcm.2c2; 24/, as defined in the introduction. Similarly, define the
vector valued (nonholomorphic) function G

�
a
c
I z
�

by

G
�a
c
I z
�
D

�
G1

�a
c
I z
�
; G2

�a
c
I z
��T

WD

�
2
p
3 sin

�
�a

c

�p
�i`cz �J

�
a

c
I �2�i`cz

�
;
2
p
3 sin

�
�a
c

�
i`cz

�J
�a
c
I
2�i

`cz

��T
:

(3.2)

The transformations in Theorem 2.1 imply that these two vector valued functions
are intertwined by the generators of �c .

LEMMA 3.1. Assume the notation and hypotheses above. For z 2 H, we have

F
�a
c
I zC 1

�
D F

�a
c
I z
�
;

1
p
�i`cz

�F

�
a

c
I �

1

`c
2z

�
D

�
0 1

1 0

�
�F

�a
c
I z
�
CG

�a
c
I z
�
:

Proof. The first transformation law follows from the simple fact that both
components of F

�
a
c
I z
�

are given as series in q with integer exponents. The second
transformation follows from Theorem 2.3. �

The Mordell vector G
�
a
c
I z
�

appearing in Lemma 3.1 may be interpreted in
terms of period integrals of the theta function ‚

�
a
c
I �
�
. The next lemma makes

this precise.

LEMMA 3.2. Assume the notation and hypotheses above. For z 2 H, we have

G
�a
c
I z
�
D
i`
1
2
c sin

�
�a
c

�
p
3

Z i1

0

�
.�i`c�/

� 3
2‚

�
a
c
I �

1
`c�

�
; ‚

�
a
c
I `c�

�
;
�T

p
�i.� C z/

d�:
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Proof. For brevity, we only prove the asserted formula for the first component
of G

�
a
c
I z
�
. The proof of the second component follows in the same way.

By analytic continuation, we may assume that z D i t with t > 0. By a change
of variables, using (2.5), we find that

J
�
a

c
I
2�

`ct

�
D`ct �

Z 1
0

e�3`c�tx
2

�
cosh

��
3a
c
� 2

�
2�x

�
C cosh

��
3a
c
� 1

�
2�x

�
cosh.3�x/

dx:

Using the Mittag-Leffler theory of partial fraction decompositions (see e.g. [33,
pp. 134–136]), a direct calculation shows that

cosh
��
3a
c
� 2

�
2�x

�
C cosh

��
3a
c
� 1

�
2�x

�
cosh.3�x/

D
�i
p
3�

X
n2Z

.�1/n sin
�
�a.6nC1/

c

�
x� i

�
nC 1

6

� �
i
p
3�

X
n2Z

.�1/n sin
�
�a.6nC1/

c

�
�x� i

�
nC 1

6

� :

By introducing the extra term 1

i.nC 16/
, we just have to consider

Z 1
�1

e�3�`c tx
2
X
n2Z

.�1/n sin
�
�a.6nC 1/

c

� 
1

x� i
�
nC 1

6

� C 1

i
�
nC 1

6

�! dx:

Since this expression is absolutely convergent, thanks to Lebesgue’s theorem of
dominated convergence, we may interchange summation and integration to obtain

J

�
a

c
I
2�

`ct

�
D
�`ci t
p
3�

X
n2Z

.�1/n sin
�
�a.6nC 1/

c

�Z 1
�1

e�3�`c tx
2

x� i
�
nC 1

6

� dx:
For all s 2 R n f0g, we have the identityZ 1

�1

e��tx
2

x� is
dx D �is

Z 1
0

e��us
2

p
uC t

du

(this follows since both sides are solutions of
�
�
@
@t
C�s2

�
f .t/D �isp

t
and have

the same limit 0 as t 7!1 and hence are equal). Hence we may conclude that

J
�
a

c
I
2�

`ct

�
D

`ct

6
p
3

X
n2Z

.�1/n.6nC1/ sin
�
�a.6nC 1/

c

�Z 1
0

e��.nC1=6/
2u

p
uC 3`ct

du:

Substituting uD�3`ci� , and interchanging summation and integration (which is
allowed by Lebesgue’s theorem of dominated convergence) gives

J
�
a

c
I
2�

`ct

�
D
�i t`c

3
2

6

Z i1

0

P
n2Z.�1/

n.6nC 1/ sin
�
�a.6nC1/

c

�
e3�i`c�.nC

1
6/
2

p
�i.� C i t/

d�:
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Now the claim follows since one can easily see that the sum over n coincides with
definition (1.6). �

To prove Theorem 1.1, we must determine the necessary modular transforma-
tion properties of the vector

S
�a
c
I z
�
D

�
S1

�a
c
I z
�
; S2

�a
c
I z
��

WD
�i sin

�
�a
c

�
`c

1
2

p
3

Z i1

�Nz

�
‚
�
a
c
I `c�

�
; .�i`c�/

� 3
2‚

�
a
c
I �

1
`c�

��T
p
�i.� C z/

d�:

Since ‚
�
a
c
I `cz

�
is a cusp form, the integral above is absolutely convergent. The

next lemma shows that S
�
a
c
I z
�

satisfies the same transformations as F
�
a
c
I z
�
.

LEMMA 3.3. Assume the notation and hypotheses above. For z 2 H, we have

S
�a
c
I zC 1

�
D S

�a
c
I z
�
;

1
p
�i`cz

�S

�
a

c
I �

1

`c
2z

�
D

�
0 1

1 0

�
�S
�a
c
I z
�
CG

�a
c
I z
�
:

Proof. Using the Fourier expansion of ‚
�
a
c
I z
�
, one easily sees that

S1

�a
c
I zC 1

�
D S1

�a
c
I z
�
:

Using classical facts about theta functions (for example, see equations (2.4) and
(2.5) of [29]), we also have that

S2

�a
c
I zC 1

�
D S2

�a
c
I z
�
:

Hence, it suffices to prove the second transformation law. We directly compute

1
p
�i`cz

�S
�
a

c
I �

1

`c
2z

�

D
i sin

�
�a
c

�
`c

1
2

p
3
p
�i`cz

Z i1

1

`c
2 Nz

�
‚
�
a
c
I `c�

�
; .�i`c�/

� 3
2‚

�
a
c
I �

1
`c�

��T
q
�i
�
� � 1=.`c

2z/
� d�:

By making the change of variable � 7! �1=.`c2�/, we obtain

1
p
�i`cz

�S
�
a

c
I �

1

`c
2z

�

D
i sin

�
�a
c

�
`c

1
2

p
3

Z �Nz
0

�
.�i`c�/

� 3
2‚

�
a
c
I �

1
`c�

�
; ‚

�
a
c
; `c�

��T
p
�i .� C z/

d�:
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Consequently, we obtain the desired conclusion:

1
p
�i`cz

�S

�
a

c
I �

1

`c
2z

�
�

�
0 1

1 0

�
�S
�a
c
I z
�

D
i sin

�
�a
c

�
`c

1
2

p
3

Z i1

0

�
.�i`c�/

� 3
2‚

�
a
c
I �

1
`c�

�
; ‚

�
a
c
I `c�

��T
p
�i .� C z/

d�

DG
�a
c
I z
�
: �

Proof of Theorem 1.1. Using (2.1a), (2.4), (2.16), and (3.1), we find that we
have already determined the transformation laws satisfied by D

�
a
c
I z
�
. Since�

1 0

`c
2 1

�
D

�
0 1

�`c
2 0

��
1 �1

0 1

��
0 �1=`c

2

1 0

�
;

where the first and third matrices on the right provide the same Möbius transfor-
mation on H, the transformation laws for D

�
a
c
I z
�

follow from Lemma 3.1 and
Lemma 3.3.

Now we show that D
�
a
c
I z
�

is annihilated by

� 1
2
D�y2

�
@2

@x2
C
@2

@y2

�
C
iy

2

�
@

@x
C i

@

@y

�
D�4y

3
2
@

@z

p
y
@

@ Nz
:

Since q�`c=24R.�a
b
I q`c / is a holomorphic function in z, we get

@

@ Nz

�
D
�a
c
I z
��
D�

@

@ Nz

�
S1

�a
c
I z
��
D

sin
�
�a
c

�
p
6y
�‚
�a
c
I �`c Nz

�
:

Hence, we find that
p
y @
@ Nz

�
D
�
a
c
I z
��

is anti-holomorphic, and so

@

@z

p
y
@

@ Nz

�
D
�a
c
I z
��
D 0:

To complete the proof, it suffices to show that D
�
a
c
I z
�

has at most linear
exponential growth at cusps. The period integral S1

�
a
c
I z
�

is convergent since
‚
�
a
c
I `c�

�
is a weight 3=2 cusp form (for example, see Section 2 of [29]). This

fact, combined with the transformation laws in Theorems 1.1 and 1.2, allow us to
conclude that D

�
a
c
I z
�

has at most linear exponential growth at cusps. �

3.2. Vector valued weak Maass forms of weight 1=2. Theorem 1.1 is a hint
of a more general modular transformation law which holds for larger groups than
�c . Using Theorem 2.3, here we produce an infinite family of vector valued weak
Maass forms for SL2.Z/.
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Suppose that c is a positive odd integer. For integers 0� a < c and 0 < b < c,
define the functions

T1

�a
c
I z
�
WD �

i
p
3

Z i1

�Nz

‚
�
a
c
I �
�p

�i.� C z/
d�;

T2

�a
c
I z
�
WD �

i
p
3

Z i1

�Nz

.�i�/�
3
2‚

�
a
c
I �

1
�

�p
�i.� C z/

d�;

T1 .a; b; cI z/ WD �
��5b2c

2
p
3

Z i1

�Nz

‚.a; b; cI �/p
�i.� C z/

d�;

T2 .a; b; cI z/ WD �
��5b2c

2
p
3

Z i1

�Nz

.�i�/�
3
2‚

�
a; b; cI �1

�

�p
�i.� C z/

d�:

If we let tc WD lcm.c; 6/, then define ‚.a; b; cI �/ by

‚.a; b; cI�/ WD
X

m.mod tc/

.�1/m sin
�
�

3
.2mC1/

�
e2�im

a
c �
�
2cmC6bCc; 2ctc I

�

24c2

�
:

Recall that the theta functions �.˛; ˇI �/ are defined by (1.7). Using this notation,
define the following functions

G1

�a
c
I z
�
WD N

�a
c
I z
�
�T1

�a
c
I z
�
;(3.3)

G2

�a
c
I z
�
WDM

�a
c
I z
�
�T2

�a
c
I z
�
;(3.4)

G1 .a; b; cI z/ WD N .a; b; cI z/�T1 .a; b; cI z/ ;(3.5)

G2 .a; b; cI z/ WDM .a; b; cI z/�T2 .a; b; cI z/ :(3.6)

These functions constitute a vector valued weak Maass form of weight 1=2.
Here we recall this notion more precisely. A vector valued weak Maass form of
weight k for SL2.Z/ is any finite set of smooth functions, say v1.z/; : : : ; vm.z/ W
H! C, which satisfy the following:

(1) If 1� n1�m and AD
�
a b

c d

�
2 SL2.Z/, then there is a root of unity �.A; n1/

and an index 1� n2 �m for which

vn1.Az/D �.A; n1/.czC d/
kvn2.z/

for all z 2 H.

(2) For each 1� n�m we have that �kvn D 0.
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If c is a positive odd integer, let Vc be the “vector” of functions defined by

Vc WD
n

G1

�a
c
I z
�
;G2

�a
c
I z
�
W with 0 < a < c

o
S
fG1.a; b; cI z/;G2.a; b; cI z/ W .a; b/ with 0� a < c and 0 < b < cg :

THEOREM 3.4. Assume the notation above. If c is a positive odd integer, then
Vc is a vector valued weak Maass form of weight 1=2 for the full modular group
SL2.Z/.

Sketch of the proof. The proof of Theorem 3.4 follows along the lines of the
proof of Theorem 1.1. Therefore, for brevity here we simply provide a sketch of
the proof and make key observations.

As in the proof of Lemma 3.2, one first shows that

2
p
3

iz
�J

�
a

c
I
2�i

z

�
D

i
p
3

Z i1

0

‚
�
a
c
I �
�p

�i.� C z/
d�;

2
p
3
p
�iz �J

�a
c
I �2�iz

�
D

i
p
3

Z i1

0

.�i�/�
3
2‚

�
a
c
I �

1
�

�p
�i.� C z/

d�;

��5b2c

p
3

iz
�J

�
a; b; cI

2�i

z

�
D
��5b2c

6c

Z i1

0

‚.a; b; cI �/p
�i.� C z/

d�;

��5b2c

p
3
p
�iz �J .a; b; cI �2�iz/D

��5b2c

6c

Z i1

0

.�i�/�
3
2‚

�
a; b; cI �1

�

�p
�i.� C z/

d�:

Arguing as in the proof of Lemma 3.3, one then establishes that the functions
Ti satisfy the same transformation laws under the generators of SL2.Z/ as the
corresponding functions N and M appearing in (3.3)–(3.6). That the functions G1
and G2 satisfy suitable transformation laws under SL2.Z/ follows easily from the
“closure” of the formulas in Theorem 2.3.

To complete the proof, it suffices to show that each component is annihilated
by the weight 1=2 hyperbolic Laplacian � 1

2
, and satisfies the required growth

conditions at the cusps. These facts follow mutatis mutandis as in the proof of
Theorem 1.1. �

Sketch of the proof of Theorem 1.2. By Theorem 3.4, the transformation laws
of the components of the given vector valued weak Maass forms are completely
determined under all of SL2.Z/. Observe that D

�
a
c
I z
�

is the image of G1
�
a
c
I z
�

by letting z! `cz. Therefore, the modular transformation properties of D
�
a
c
I z
�

are inherited by the modularity properties of ‚
�
a
c
I `c�

�
when applied to the def-

inition of S1
�
a
c
I z
�
. By Proposition 2.1 of [29], it is known that ‚

�
a
c
I `c�

�
is on

�1.144f
2
c
z̀
c/, and the result follows. �
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Remark. The phenomenon above where the modularity properties of a theta
function imply the modular transformation laws of a Maass form was first observed
by Hirzebruch and Zagier [20]. In their work, the period integral of the classical
Jacobi theta function �.�/ D

P
n2Z e

2�in2� is the nonholomorphic part of their
�0.4/ weight 3=2 Maass form F.z/. The modularity in Theorem 1.2 follows mu-
tatis mutandis (see page 92 of [20]).

3.3. Proof of Theorem 1.3. Now we use Theorems 1.1 and 1.2 to prove The-
orem 1.3. If 0� r < t are integers, then we begin by claiming that

(3.7)
1X
nD0

N.r; t In/qn D
1

t

1X
nD0

p.n/qnC
1

t

t�1X
jD1

�
�rj
t �R.�

j
t I q/:

There is just one partition of 0, the empty partition. We define its rank to be 0.
Since we have

1X
nD0

p.n/qn DR.1I q/;

it follows that the right-hand side of (3.7) is

1

t

t�1X
jD0

�
�rj
t �R.�

j
t I q/:

Therefore the nth coefficient of this series, say a.n/, is given by

a.n/D
1

t

t�1X
jD0

�
�rj
t

1X
mD�1

�
mj
t N.m; n/D

1

t

1X
mD�1

N.m; n/

t�1X
jD0

�
.m�r/j
t :

Equation (3.7) follows since the inner sum is t ifm� r .mod t /, and is 0 otherwise.
By Theorems 1.1, 1.2, and (3.7), we obtain

1X
nD0

�
N.r; t In/�

p.n/

t

�
q`tn�

`t
24 D

1

t

t�1X
jD1

�
�rj
t S1

�
j

t
I z
�
C
1

t

t�1X
jD1

�
�rj
t D

�
j

t
I z
�
:

Theorem 1.3 follows since each S1.j=t I z/ is nonholomorphic.

4. Ramanujan congruences for ranks
Here we use Theorem 1.2 to prove that many of Dyson’s partition functions

satisfy Ramanujan-type congruences. To prove this, we first show that “sieved”
generating functions are indeed already weakly holomorphic modular forms. This
observation is the content of Theorem 1.4. Armed with this observation, it is not dif-
ficult to prove Theorem 1.5. The proof is a generalization of an argument employed
by the second author which proved the existence of infinitely many Ramanujan-
type congruences for the partition function p.n/ [24].
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4.1. Sieved generating functions. To prove Theorem 1.4, we first explicitly
calculate the Fourier expansions of the Maass forms D

�
a
c
I z
�
. To give these ex-

pansions, we require the incomplete Gamma-function

(4.1) �.aI x/ WD

Z 1
x

e�t ta�1 dt:

PROPOSITION 4.1. For integers 0 < a < c, we have

D
�a
c
I z
�
D q�

`c
24 C

1X
nD1

1X
mD�1

N.m; n/�amc q`cn�
`c
24

C
i sin

�
�a
c

�
`
1
2
c

p
3

�

X
m.modfc/

.�1/m sin
�
a�.6mC 1/

c

� X
n�6mC1 .mod6fc/

.c; yIn/q�
z̀
cn
2

;

where

.c; yIn/ WD
i � sign.n/q
2� z̀c

��
�
1

2
I 4� z̀cn

2y
�
:

Proof. It suffices to compute the Fourier expansion of the period integral
S1
�
a
c
I z
�
. By definition, we find that

�S1

�a
c
I z
�
D
i sin

�
�a
c

�
`
1
2
c

p
3

X
m.modfc/

.�1/m sin
�
a�.6mC 1/

c

�

�

X
n�6mC1 .mod6fc/

Z i1

�z

ne2�in
2 z̀
c�p

�i.� C z/
d�:

To complete the proof, one observes thatZ i1

�z

ne2�in
2 z̀
c�p

�i.� C z/
d� D .c; yIn/ � q�

z̀
cn
2

:

This integral identity follows by the following changes of variableZ i1

�z

ne2�in
2 z̀
c�p

�i.� C z/
d� D

Z i1

2iy

ne2�in
2 z̀
cn
2.��z/

p
�i�

d�

D i

Z 1
2y

ne2�in
2 z̀
c.iu�z/

p
u

du

D inq�
z̀
cn
2

Z 1
2y

e�2�n
2 z̀
cu

p
u

du: �
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Proof of Theorem 1.4. If f .z/ is a function on the upper half-plane, � 2 1
2

Z,

and
�
a b

c d

�
2 GLC2 .R/, then we define the usual slash operator by

(4.2) f .z/
ˇ̌
�

�
a b

c d

�
WD .ad � bc/

�
2 .czC d/��f

�
azC b

czC d

�
:

Suppose that 0 < a < c are integers, where c is odd. Since S1
�
a
c
I z
�

is the
period integral of a cusp form, and since R.�ac I q/ has no poles in the upper half of
the complex plane (which is easily seen by comparing with (1.3), a function with
no poles in the upper half plane), it follows that D

�
a
c
I z
�

has no poles on the upper
half of the complex plane.

Furthermore, suppose that P − 6c is prime. For this prime P, let

g WD

P�1X
vD1

 
v

P

!
e
2�iv

P

be the usual Gauss sum with respect to P. Define the function D
�
a
c
I z
�

P
by

(4.3) D
�a
c
I z
�

P
WD

g

P

P�1X
vD1

�
v
P

�
D
�a
c
I z
�
j 1
2

�
1 � vP
0 1

�
:

By construction, D
�
a
c
I z
�

P
is the P quadratic twist of D

�
a
c
I z
�
. In other words,

the nth coefficient in the q-expansion of D
�
a
c
I z
�

P
is
�
n
P

�
times the nth coefficient

of D
�
a
c
I z
�
. That this holds for the nonholomorphic part follows from the fact that

the factors .c; yIn/ appearing in Proposition 4.1 are fixed by the transformations
in (4.3).

Generalizing the classical argument on twists of modular forms in the obvious
way (for example, see Proposition 17 of [21]), D

�
a
c
I z
�

P
is a weak Maass form of

weight 1=2 on �1.144f 2c z̀cP2/. By Proposition 4.1, it follows that

(4.4) D
�a
c
I z
�
�

 
�z̀c

P

!
D
�a
c
I z
�

P

is a weak Maass form of weight 1=2 on �1.144f 2c z̀cP2/ with the property that
its nonholomorphic part is supported on summands of the form �q�z̀cP2n2 . These
terms are annihilated by taking the P-quadratic twist of this Maass form. Conse-
quently, by the discussion above, we obtain a weakly holomorphic modular form
of weight 1=2 on �1.144f 2c z̀cP4/. Thanks to (4.4), the conclusion of Theorem 1.4
follows easily by arguing as in the proof of Theorem 1.3. �

4.2. Ramanujan-type Congruences. Here we use Theorem 1.4 and facts about
eigenvalues of Hecke operators to prove Theorem 1.5. Basically, the result follows
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from the general phenomenon that coefficients of weakly holomorphic modular
forms satisfy Ramanujan-type congruences. This phenomenon was first observed
by the second author in his first work on Ramanujan congruences for p.n/ [24].
Subsequent generalizations of this argument appear in [1], [2], [23], [30]. Since
this strategy is now quite well known, for brevity we only offer sketches of proofs.

To prove Theorem 1.5, we shall employ a recent general result of Treneer
[30], which generalizes earlier works by Ahlgren and the second author on weakly
holomorphic modular forms. In short, Theorem 1.4, combined with her result,
reduces the proof of Theorem 1.5 to the fact that any finite number of half-integral
weight cusp forms with integer coefficients are annihilated modulo a fixed prime
power by a positive proportion of half-integral weight Hecke operators.

The following theorem is easily obtained by generalizing the proof of Theo-
rem 2.2 of [25].

THEOREM 4.2. Suppose that f1.z/; f2.z/; : : : ; fs.z/ are half-integral weight
cusp forms where

fi .z/ 2 S�iC 12
.�1.4Ni //\OK ŒŒq��;

and where OK is the ring of integers of a fixed number field K. If Q is prime and
j � 1 is an integer, then the set of primes L for which

fi .z/ j T�i .L
2/� 0 .mod Qj /;

for each 1� i � s, has positive Frobenius density. Here T�i .L
2/ denotes the usual

L2 index Hecke operator of weight �i C 1
2

.

Sketch of the proof. By the commutativity of the Hecke operators of integer
and half-integral weight under the Shimura correspondence [29], it suffices to show
that a positive proportion of primes L have the property that

Sh.fi / j T2�i .L/� 0 .mod Qj /;

for each 1 � i � s. Here Sh.fi / denotes the image of fi .z/ under the Shimura
correspondence, and T2�i .L/ denotes the usual Lth weight 2�i Hecke operator.
Theorem 2.2 of [25] ensures that the set of such primes L has positive Frobenius
density provided that a single such prime L − lcm.4;Q;N1; : : : ; Ns/ exists. That
such primes L exist is essentially a classical observation of Serre (for example, see
�6 of [28]). �

Two remarks. (1) The primes L in Theorem 4.2 may be chosen to lie in the
arithmetic progression L��1 .mod lcm.4;Q;N1; : : : ; Ns//.

(2) Strictly speaking, Serre only states his observations for integer weight modular
forms on a congruence subgroup �0.N / with fixed Nebentypus and fixed weight.
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To verify the claim, one examines the Q-adic Galois representation

� WD f̊ �f ;

where the indices f walk over all the weight 2�i newforms with Nebentypus whose
levels divide 4Ni . By the Chebotarev Density Theorem, the claim follows since the
number of such f is finite, and the fact that each �f is odd and has the property
that their corresponding traces of Frobenius elements Q-adically interpolate the
Hecke eigenvalues of f .

Sketch of the proof of Theorem 1.5. Suppose that P − 6tQ is prime. By
Theorem 1.4, for every 0� r < t

F.r; t;PI z/D

1X
nD1

a.r; t;PIn/qn

WD

X
.24`tn�`tP /D�.�24

z̀
t

P /

�
N.r; t In/�

p.n/

t

�
q`tn�

`t
24

is a weakly holomorphic modular form of weight 1=2 on �1.144f 2t z̀tP
4/. Fur-

thermore, by the work of Ahlgren and the second author [2], it is known that

(4.5) P.t;PI z/D

1X
nD1

p.t;PIn/qn WD
X

.24`tn�`tP /D�.�24
z̀
t

P /

p.n/q`tn�
`t
24

is a weakly holomorphic modular form of weight �1=2 on �1.576 z̀tP4/. In partic-
ular, observe that all of these forms are modular with respect to �1.576f 2t z̀tP

4/.
Now since Q − 576f 2t z̀tP4, a recent result of Treneer (see Theorem 3.1 of

[30]), generalizing earlier observations of Ahlgren and Ono [2], [3], [24], implies
that there is a sufficiently large integer m for whichX

Q−n

a.r; t;PIQmn/qn;

for all 0� r < t , and X
Q−n

p.t;PIQmn/qn

are all congruent modulo Qj to forms in the graded ring of half-integral weight
cusp forms with algebraic integer coefficients on �1.576f 2t z̀tP

4Q2/.
Theorem 4.2 applies to these t C 1 forms, and it guarantees that a positive

proportion of primes L have the property that these t C 1 half-integral weight
cusp forms modulo Qj are annihilated by the index L2 half-integral weight Hecke
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operators. Theorem 1.5 now follows mutatis mutandis as in the proof of Theorem 1
of [24] (see the top of page 301 of [24]). �

Remark. Treneer states her result for weakly holomorphic modular forms on
�0.4N / with Nebentypus. We are using a straightforward extension of her result to
�1.4N / which is obtained by decomposing such forms into linear combinations of
forms with Nebentypus. It is not difficult to produce such decompositions involving
algebraic linear combinations of modular forms whose Fourier coefficients are al-
gebraic integers (which is important when proving congruences). For example, one
can multiply each such form by a suitable odd power of �.24z/2S 1

2
.�0.576/;

�
12
�

�
/

to obtain an integer weight cusp form with integer coefficients. One may rewrite
such forms as an algebraic linear combination of cusp forms with algebraic integer
coefficients using the theory of newforms with Nebentypus. Then divide each
resulting summand by the original odd power of �.24z/, which is nonvanishing
on H, to obtain the desired decomposition into weakly holomorphic forms with
Nebentypus.
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