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Abstract

In this paper we study functions with low influences on product probability
spaces. These are functions f W �1 � � � � ��n! R that have EŒVar�i

Œf �� small
compared to VarŒf � for each i . The analysis of boolean functions f W f�1; 1gn!
f�1; 1g with low influences has become a central problem in discrete Fourier anal-
ysis. It is motivated by fundamental questions arising from the construction of
probabilistically checkable proofs in theoretical computer science and from prob-
lems in the theory of social choice in economics.

We prove an invariance principle for multilinear polynomials with low influ-
ences and bounded degree; it shows that under mild conditions the distribution of
such polynomials is essentially invariant for all product spaces. Ours is one of the
very few known nonlinear invariance principles. It has the advantage that its proof
is simple and that its error bounds are explicit. We also show that the assumption
of bounded degree can be eliminated if the polynomials are slightly “smoothed”;
this extension is essential for our applications to “noise stability”-type problems.

In particular, as applications of the invariance principle we prove two conjec-
tures: Khot, Kindler, Mossel, and O’Donnell’s “Majority Is Stablest” conjecture
from theoretical computer science, which was the original motivation for this work,
and Kalai and Friedgut’s “It Ain’t Over Till It’s Over” conjecture from social
choice theory.

1. Introduction

1.1. Harmonic analysis of boolean functions. The motivation for this paper is
the study of boolean functions f W f�1; 1gn!f�1; 1g, where f�1; 1gn is equipped
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with the uniform probability measure. This topic is of significant interest in theoret-
ical computer science; it also arises in other diverse areas of mathematics including
combinatorics (e.g., sizes of set systems, additive combinatorics), economics (e.g.,
social choice), metric spaces (e.g., non-embeddability of metrics), geometry in
Gaussian space (e.g., isoperimetric inequalities), and statistical physics (e.g., per-
colation, spin glasses).

Beginning with Kahn, Kalai, and Linial’s landmark paper [40], there has been
much success in analyzing questions about boolean functions using methods of
harmonic analysis. Recall that KKL essentially shows the following (see also [67],
[34]):

KKL THEOREM. If f W f�1; 1gn!f�1; 1g satisfies EŒf �D0 and Infi .f /� �
for all i , then

Pn
iD1 Infi .f /��.log.1=�//.

We have used here the notation Infi .f / for the influence of the i-th coordinate
on f , defined by

(1) Infi .f /D PxŒf .x1; : : : ; xn/¤ f .x1; : : : ; xi�1;�xi ; xiC1; : : : ; xn/�I

the more general definition for functions f W f�1; 1gn! R is

(2) Infi .f /D ExŒVarxi
Œf .x/��D

X
S�Œn�; S3i

Of .S/2;

where Of .S/D ExŒf .x/
Q
i2S xi � are coefficients in the Walsh-Fourier expansion

of f .
Although an intuitive understanding of the analytic properties of boolean func-

tions is emerging, most results in this area have used increasingly elaborate meth-
ods, combining random restriction arguments, applications of the Bonami-Beckner
inequality, and classical tools from probability theory. See for example [67], [68],
[34], [17], [33], [15], [9], [16], [49], [56], [23].

As in the KKL paper, some of the more refined problems studied in recent
years have involved restricting attention to functions with low influences; see [16],
[49], [26], [23], [64]. There are several reasons for this. The first is that large-
influence functions such as “dictators” — i.e., functions f .x1; : : : ; xn/D˙xi —
frequently trivially maximize or minimize quantities studied in boolean analysis.
However this tends to obscure the truth about extremal behaviors among functions
that are “genuinely” functions of n bits. Another reason for analyzing only low-
influence functions is that this subclass is often precisely what is interesting or
necessary for applications. In particular, the analysis of low-influence boolean
functions is crucial for proving hardness of approximation results in theoretical
computer science and is also very natural for the study of social choice. Let us
describe these two settings briefly.
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A major topic of interest in theoretical computer science is the algorithmic
complexity of optimization problems. For example, the “Max-Cut” optimization
problem is the following: Given an undirected graph, partition the vertices into
two parts so as to maximize the number of “cut” edges — edges with endpoints
in different parts. For this optimization problem and many others, finding the
exact maximum is in general NP-hard, meaning it is unlikely there is an effi-
cient algorithm doing so. The topic of “hardness of approximation” is devoted
to showing that even finding approximate maxima is NP-hard. In this area, the
strongest possible results often involve the following paradigm: One considers an
optimization problem that requires labeling the vertices of a graph using the label
set Œn�; then one relaxes this to the problem of labeling the vertices by functions
f W f�1; 1gn! f�1; 1g. In the relaxation one thinks of f as “weakly labeling” a
vertex by the set of coordinates that have large influence on f . It then becomes
important to understand the combinatorial properties of functions that weakly label
and have an empty set of influential coordinates. There are by now quite a few
results in hardness of approximation that use results on low-influence functions or
require conjectures of such results; e.g., [26], [46], [24], [48], [47], [25], [20], [45],
[64], [2], [3].

Another area where studying low-influence boolean functions is natural is in
the study of voting and the economic theory of social choice; see e.g. [31], [42].
Here, boolean functions f W f�1; 1gn! f�1; 1g often represent voting schemes,
mapping n votes between two candidates into a winner. In this case, it is very
natural to exclude voting schemes that give any voter an undue amount of influence.

In this paper we give a new framework for studying functions on product prob-
ability spaces with low influences. Our main tool is a simple invariance principle
for low-influence polynomials; this theorem lets us take an optimization problem
for functions on one product space and pass freely to other product spaces, such as
Gaussian space. In these other settings the problem sometimes becomes simpler
to solve. It is interesting to note that while in the theory of hypercontractivity
and isoperimetry it is common to prove results in the Gaussian setting by proving
them first in the f�1; 1gn setting (see e.g. [5], [11]), here the invariance principle
is actually used to go the other way around.

As applications of our invariance principle we prove two previously uncon-
nected conjectures from boolean harmonic analysis; the first was motivated by
hardness of approximation, the second by the theory of social choice. To state the
first conjecture we introduce the notion of noise stability:

Definition. For 0 � � � 1, the noise stability of f W f�1; 1gn ! R at � is
defined to be

S�.f /D
X
S�Œn�

�jS j Of .S/2:
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The noise stability is equal to EŒf .x/f .y/� if .x; y/2 f�1; 1gn�f�1; 1gn is chosen
so that .xi ; yi / 2 f�1; 1g2 are independent random variables satisfying EŒxi � D
EŒyi �D 0 and EŒxiyi �D �.

The first conjecture we prove is the following:

CONJECTURE 1.1 (“Majority Is Stablest” conjecture [47]). Let 0� � � 1 and
� > 0 be given. Then there exists � > 0 such that if f W f�1; 1gn! Œ�1; 1� satisfies
EŒf �D 0 and Infi .f /� � for all i , then

S�.f /� .2=�/ arcsin �C �:

By Sheppard’s formula [65],

.2=�/ arcsin �D lim
n!1

S�.Majn/;

where
Majn.x1; : : : ; xn/D sgn.

Pn
iD1 xi /

denotes the “Majority” function on n inputs. Thus in words, the Majority Is Sta-
blest conjecture says that low-influence, balanced functions cannot be essentially
more noise-stable than Majority. This conjecture was first made explicitly by Khot,
Kindler, Mossel, and O’Donnell [47] in a paper about hardness of approximation
for Max-Cut. By assuming Conjecture 1.1, the authors showed that it is computa-
tionally hard (technically, “Unique Games-hard” — see �2.3.1) to approximate the
maximum cut in graphs to within a factor greater than :87856: : : . This result is
optimal, since Goemans and Williamson’s groundbreaking and efficient algorithm
[37] is guaranteed to find partitions that cut a :87856: : : fraction of the maximum.
The original motivation of the present work was to prove Conjecture 1.1.

The second conjecture we prove is the following:

CONJECTURE 1.2 (“It Ain’t Over Till It’s Over” conjecture [43]). Let 0 �
� < 1 and � > 0 be given. Then there exist ı > 0 and � > 0 such that if f W
f�1; 1gn! f�1; 1g satisfies EŒf � D 0 and Infi .f / � � for all i , then f has the
following property: If V is a random subset of Œn� in which each i is included
independently with probability �, and if the bits .xi /i2V are chosen uniformly at
random, then

PV; .xi /i2V

�ˇ̌
EŒf j .xi /i2V �

ˇ̌
> 1� ı

�
� �:

Thinking of f as a voting scheme, this conjecture states that even if a random
fraction � of voters’ votes are revealed, with high probability the election is still
slightly undecided, provided f has low influences.

The truth of these results gives illustration to a recurring theme in the harmonic
analysis of boolean functions: the extremal role played the Majority function. It
seems this theme becomes especially prominent when low-influence functions are
studied. The relevance of Majority to Conjecture 1.1 has already been explained.
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In the case of Conjecture 1.2, we show that ı can be taken to be on the order of
��=.1��/ (up to o.1/ in the exponent), which is the same asymptotics one gets if f
is Majority on a large number of inputs.

1.2. Outline of the paper. We begin in Section 2 with an overview of the
invariance principle, the two applications, and some of their consequences. We
prove the invariance principle in Section 3. Our proofs of the two conjectures are
in Section 4. Finally, we show in Section 5 that a conjecture closely related to
Conjecture 1.1 is false. Some minor proofs from throughout the paper appear in
appendices.

1.3. Related work. Our multilinear invariance principle has some antecedents.
For degree 1 polynomials, it reduces to a version of the Berry-Esseen Central Limit
Theorems. Indeed, our proof follows the same outlines as Lindeberg’s proof of the
CLT [53] (see also [30]).

Since presenting our proof of the invariance principle, O. Regev and V. I.
Rotar’ pointed out to us some related results. The Berry-Esseen bounds under
Lyapunov conditions for a linear CLT can be found for example in Petrov [59],
following Katz [44]. A long line of work has been devoted to studying the invari-
ance principle in the case of quadratic polynomials, starting with [36]. See [38]
for references and some recent results.

The general multilinear case was studied in the past by V. I. Rotar’ in [62]
and [63]. As well, a manuscript of Sourav Chatterjee [19], contemporaneous to
ours, contains an invariance principle of a similar flavor. What is common to
our work and to these three papers is a generalization of Lindeberg’s argument
to the nonlinear case. The results of Rotar’ give an invariance principle similar to
ours, where the condition on the influences generalizes Lindeberg’s condition. The
setup is not quite the same, however, and the proof in [62] and [63] is of a rather
qualitative nature. It seems that even after appropriate modification, the bounds it
gives would be weaker and less useful for our type of applications. (This is quite
understandable; in a similar way Lindeberg’s CLT can be less precise than the
Berry-Esseen inequality even though — indeed, because — it works under weaker
assumptions.) The paper [19] by contrast has explicit quantitative bounds. How-
ever it does not seem to be appropriate for many applications since it requires low
“worst-case” influences, instead of the “average-case” influences used by this work
and [63].

We would like to mention that some chaos-decomposition limit theorems have
been proved before in various settings. Among these are limit theorems for U- and
V-statistics and limit theorems for random graphs; see e.g. [39]. Subsequent to this
work, the invariance principle was generalized and extended in [54].
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2. Our results

2.1. The invariance principle. In this subsection we present a simplified ver-
sion of our invariance principle.

Suppose X is a random variable with EŒX� D 0 and EŒX2� D 1, and that
X1; : : : ; Xn are independent copies of X . Let Q.x1; : : : ; xn/ D

Pn
iD1 cixi be a

linear form, and assume
P
c2i D 1. The Berry-Esseen CLT states that under mild

conditions on the distribution of X , say EŒjX j3�� A <1, it holds that

sup
t

ˇ̌
P ŒQ.X1; : : : ; Xn/� t ��P ŒG � t �

ˇ̌
�O

�
A �
Pn
iD1jci j

3
�
;

where G denotes a standard normal random variable. Note that a simple corollary
of the above is

(3) sup
t

ˇ̌
P ŒQ.X1; : : : ; Xn/� t ��P ŒQ.G1; : : : ; Gn/� t �

ˇ̌
�O

�
A �max

i
jci j
�
:

Here the Gi denote independent standard normals. We have upper-bounded the
sum of jci j3 here by a maximum, for simplicity; more importantly though, we have
suggestively replaced G by

P
i ciGi , which of course has the same distribution.

We would like to generalize (3) to multilinear polynomials in the Xi , i.e.,
functions of the form

(4) Q.X1; : : : ; Xn/D
X
S�Œn�

cS
Y
i2S

Xi ;

where the real constants cS satisfy
P
c2S D 1. Let d D maxcS¤0jS j denote the

degree ofQ. Unlike in the d D 1 case of the CLT, there is no single random variable
G that always provides a limiting distribution. However one can still hope to prove,
in light of (3), that the distribution of the polynomial applied to the variables Xi is
close to the distribution of the polynomial applied to independent Gaussian random
variables. This is indeed what our invariance principle shows.

It turns out that the Berry-Esseen theorem (3) is appropriately generalized by
controlling the error by a function of d and of maxi

P
S3i c

2
S — i.e., the maximum

of the influences of Q (as in (2)). Naturally, we also need some conditions in
addition to second moments. In our formulation we impose the condition that the
variable X is hypercontractive; i.e., there is some � > 0 such that for all a 2 R,

kaC �Xk3 � kaCXk2:

This condition is satisfied whenever EŒX� D 0 and EŒjX j3� < 1; in particular,
it holds for any mean-zero random variable X taking on only finitely many val-
ues. Using hypercontractivity, we get a simply proved invariance principle with
explicit error bounds. The following theorem (a simplification of Theorem 3.19,
bound (30)) is an example of what we prove:
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THEOREM 2.1. Let X1; : : : ; Xn be independent random variables satisfying
EŒXi � D 0, EŒX2i � D 1, and EŒjXi j3� � ˇ. Let Q be a degree d multilinear
polynomial as in (4) withX

jS j>0

c2S D 1 and
X
S3i

c2S � � for all i :

Then

sup
t

ˇ̌
P ŒQ.X1; : : : ; Xn/� t ��P ŒQ.G1; : : : ; Gn/� t �

ˇ̌
�O.dˇ1=3�1=8d /;

where G1; : : : ; Gn are independent standard Gaussians.
If , instead of assuming EŒjXi j3� � ˇ, we assume that each Xi takes only on

finitely many values, and that for all i and all x 2 R either P ŒXi D x� D 0 or
P ŒXi D x�� ˛, then

sup
t

ˇ̌
P ŒQ.X1; : : : ; Xn/� t ��P ŒQ.G1; : : : ; Gn/� t �

ˇ̌
�O.d ˛�1=6 �1=8d /:

If d , ˇ, and ˛ are fixed, then the above bound tends to 0 with � . We call
this theorem an “invariance principle” because it shows that Q.X1; : : : ; Xn/ has
essentially the same distribution no matter what the Xi are. Usually we will not
push for the optimal constants; instead we will try to keep our approach as simple
as possible while still giving explicit bounds useful for our applications.

An unavoidable deficiency of this sort of invariance principle is the depen-
dence on d in the error bound. In applications such as Majority Is Stablest and It
Ain’t Over Till It’s Over, the functions f may well have arbitrarily large degree. To
overcome this, we introduce a supplement to the invariance principle: We show that
if the polynomial Q is “smoothed” slightly then the dependence on d in the error
bound can be eliminated and replaced with a dependence on the smoothness. For
“noise stability”-type problems such as ours, this smoothing is essentially harmless.

In fact, the techniques we use are strong enough to obtain Berry-Esseen esti-
mates under Lyapunov-type assumptions. The exponents d=.qdC1/ and 1=.qdC1/
in the following theorem can probably be improved if one replaces Lindeberg’s
argument by a more delicate approach.

THEOREM 2.2. Let q 2 .2; 3�. Let X1; : : : ; Xn be independent random vari-
ables satisfying EŒXi � D 0, EŒX2i � D 1, and EŒjXi jq� � ˇ. Let Q be a degree d
multilinear polynomial as in (4) withX

jS j>0

c2S D 1 and
X
S3i

c2S � � for all i :



302 ELCHANAN MOSSEL, RYAN O’DONNELL, and KRZYSZTOF OLESZKIEWICZ

Then

sup
t

ˇ̌
P ŒQ.X1; : : : ; Xn/� t ��P ŒQ.G1; : : : ; Gn/� t �

ˇ̌
�O.dˇd=.qdC1// �

�P
i

�P
S3i

c2S
�q=2�1=.qdC1/

�O.dˇd=.qdC1/� .q�2/=.2qdC2//;

where G1; : : : ; Gn are independent standard Gaussians.

2.2. Influences and noise stability in product spaces. Our proofs of Conjec-
tures 1.1 and 1.2 hold not just for functions on the uniform-distribution discrete
cube, but for functions on arbitrary finite product probability spaces. Harmonic
analysis results on influences have often considered the biased product distribution
on the discrete cube (see e.g. [67], [34], [33], [15], [49]); and, some recent works
involving influences and noise stability have considered functions on product sets
Œq�n endowed with the uniform distribution (e.g., [1], [47], [25]). But since there
doesn’t appear to be a unified treatment for the general case in the literature, we
give the necessary definitions here.

Let .�1; �1/; : : : ; .�n; �n/ be probability spaces, and let .�;�/ denote the
product probability space. Let

f W�1 � � � � ��n! R

be any square-integrable real-valued function on �.

Definition 2.3. The influence of the i -th coordinate on f is

Infi .f /D E�ŒVar�i
Œf ��:

Note that for boolean functions f W f�1; 1gn! f�1; 1g this agrees with the classi-
cal notion of influences, equation (1), introduced to computer science by Ben-Or
and Linial [8]. When the domain f�1; 1gn has a p-biased distribution, our notion
differs from that of, say, [32] by a multiplicative factor of 4p.1�p/. We believe
the above definition is more natural, and in any case it is easy to pass between the
two.

To define noise stability, we first define the T� operator on the space of func-
tions f :

Definition 2.4. For any 0� � � 1, the operator T� is defined by

(5) .T�f /.!1; : : : ; !n/D EŒf .!01; : : : ; !
0
n/�;

where each !0i is an independent random variable defined to equal !i with proba-
bility � and to be randomly drawn from �i with probability 1� �.

We remark that this definition agrees with that of the “Bonami-Beckner op-
erator” introduced in the context of boolean functions in [40] and also with its
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generalization to Œq�n from [47]. For more on this operator, see the work of
Wolff [69]. With this definition in place, we can define noise stability (generalizing
the definition from �1.1):

Definition 2.5. The noise stability of f at � 2 Œ0; 1� is

S�.f /D E�Œf �T�f �:

For the proof of Conjecture 1.2, we introduce a new operator V�:

Definition 2.6. For any � 2 Œ0; 1�, the operator V� takes a function f W�1 �
� � � ��n ! R to a function g W �1 � � � � ��n � f0; 1gn ! R, where f0; 1gn is
equipped with the .1� �; �/˝n measure, and is defined by

.V�f /.!1; : : : ; !n; x1; : : : ; xn/

D E!0

�
f
�
x1!1C .1� x1/!

0
1; : : : ; xn!nC .1� xn/!

0
n

��
:

We take the liberty of denoting by xi!i C .1� xi /!0i the quantity that is equal to
!i if xi D 1, and is equal to !0i if xi D 0 (which formally makes sense only if �i
is a subset of some abelian group).

Finally, we would like to note that our definitions are valid for functions f into
the reals, although our motivation is usually f�1; 1g-valued functions. Our proofs
of Conjectures 1.1 and 1.2 will hold in the setting of functions f W�1�� � ���n!
Œ�1; 1� (note that Conjecture 1.1 requires this generalized range). For notational
simplicity, though, we will give our proofs for functions into Œ0; 1�; the reader
can easily convert such results to the Œ�1; 1� case by the linear transformation
f 7! 2f � 1, which interacts in a simple way with the definitions of Infi , S�,
and V�.

2.3. Majority Is Stablest.

2.3.1. About the problem. The Majority Is Stablest conjecture, Conjecture 1.1,
was first formally stated in [47]. However the notion of Hamming balls having
the highest noise stability in various senses has been widely spread among the
community studying discrete Fourier analysis. Indeed, already in [40] there is
the suggestion that Hamming balls and subcubes should maximize a certain noise
stability-like quantity. In [9], it was shown that every “asymptotically noise stable”
function is correlated with a weighted majority function; also, in [56] it was shown
that the majority function asymptotically maximizes a high-norm analog of S�.

More concretely, strong motivation for getting sharp bounds on the noise sta-
bility of low-influence functions came from two 2002 papers, one by Kalai [41]
on social choice and one by Khot [46] on hardness of approximation. We briefly
discuss these two papers below.
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Kalai ’02: Arrow’s Impossibility Theorem. Suppose n voters rank three can-
didates, A, B , and C , and a social choice function f W f�1; 1gn! f�1; 1g is used
to aggregate the rankings, as follows: f is applied to the n A-vs.-B preferences to
determine whether A or B is globally preferred; then the same happens for A-vs.-
C and B-vs.-C . The outcome is termed “nonrational” if the global ranking has A
preferable to B preferable to C preferable to A (or if the other cyclic possibility
occurs). Arrow’s Impossibility Theorem from the theory of social choice states that
under some mild restrictions on f (such as f being odd; i.e., f .�x/D�f .x/),
the only functions that never admit nonrational outcomes given rational voters are
the dictator functions f .x/D˙xi .

Kalai [41] studied the probability of a rational outcome given that the n
voters vote independently and at random from the 6 possible rational rankings.
He showed that the probability of a rational outcome in this case is precisely
3=4 C .3=4/S1=3.f /. Thus it is natural to ask which function f with small
influences is most likely to produce a rational outcome. Instead of considering
small influences, Kalai considered the stronger assumption that f is monotone and
“transitive-symmetric”; i.e., that for all 1� i < j � n there exists a permutation �
on Œn� with �.i/D j such that

f .x1; : : : ; xn/D f .x�.1/; : : : ; x�.n// for all .x1; : : : ; xn/.

Kalai conjectured that Majority was the transitive-symmetric function that maxi-
mized 3=4C .3=4/S1=3.f / (in fact, he made a stronger conjecture, but this con-
jecture is false; see �5). He further observed that this would imply that in any
transitive-symmetric scheme, the probability of a rational outcome is at most 3=4C
.3=2�/ arcsin.1=3/C on.1/� :9123; however, Kalai could only prove the weaker
bound :9192.

Khot ’02: Unique Games and hardness of approximating 2-CSPs. In com-
puter science, many combinatorial optimization problems are NP-hard, meaning
it is unlikely that there are efficient algorithms that always find the optimal solu-
tion. Hence there has been extensive interest in understanding the complexity of
approximating the optimal solution. Consider for example “k-variable constraint
satisfaction problems” (k-CSPs), in which the input is a set of variables over a finite
domain along with some constraints on k-sets of the variables, restricting what
values they can simultaneously take. The Max-Cut problem discussed in Section
1.1 is a particular sort of 2-CSP; given an input graph, the vertices are the variables,
the domain is f�1; 1g (corresponding to the two parts of a bipartition), and each
edge is a constraint on its 2 endpoints, restricting them to get different values from
f�1; 1g. A particular type of k-CSP is said to be “˛-hard to approximate” if the
algorithmic problem of finding assignments that satisfy an ˛-fraction of the optimal
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assignment is NP-hard, for general inputs. A further refinement of the notion is to
say that a particular type of k-CSP has “.c; s/-hardness” if it is NP-hard, given an
instance in which the optimal assignment satisfies a c-fraction of the constraints,
for an algorithm to find an assignment that satisfies an s-fraction of the constraints.
In this case, the problem is .s=c/-hard to approximate.

There has been great progress in theoretical computer science in proving
strong hardness of approximation results for many natural k-CSP problems when
k � 3. However obtaining strong hardness results for 2-CSPs (essentially, optimiza-
tion problems on graphs) has proved elusive. The influential paper of Khot [46]
introduced the so-called “Unique Games Conjecture” (UGC) as a means of making
progress in this direction; assuming it, he showed a nearly optimal .c; s/-hardness
result for the “Max-2Lin(2)”. Here Max-2Lin(2) is the problem of finding a so-
lution to an overconstrained system of linear equations modulo 2 in which each
equation has exactly two variables.

Interestingly, it seems that using UGC to prove hardness results for other 2-
CSPs typically crucially requires strong results about influences and noise stability
of boolean functions. For example, [46]’s analysis of Max-2Lin(2) required an
upper bound on S1��.f / for small � among balanced functions f W f�1; 1gn!
f�1; 1g with small influences; to get this, Khot used the following deep result of
Bourgain from 2001:

THEOREM 2.7 [16]. If f W f�1; 1gn!f�1; 1g satisfies EŒf �D 0 and Infi .f /
� 10�d for all i 2 Œn�, thenX

jS j>d

Of .S/2 � d�1=2�O.
p

log logd= logd/
D d �1=2�o.1/:

Note that Bourgain’s theorem has the following easy corollary:

COROLLARY 2.8. If f W f�1; 1gn!f�1; 1g satisfies EŒf �D 0 and Infi .f /�
2�O.1=�/ for all i 2 Œn�, then

S1��.f /� 1� �
1=2Co.1/:

Using this result, Khot showed .1� �; 1� �1=2Co.1//-hardness for Max-2Lin(2),
which is close to sharp (the efficient algorithm of Goemans and Williamson [37]
is guaranteed to find a solution satisfying a .1�O.

p
�//-fraction of equations in

any linear system of two-variable equations modulo 2 in which there is a solution
satisfying a .1��/-fraction of equations). As an aside, we note that Khot and
Vishnoi [45] recently used Corollary 2.8 to prove that negative type metrics do not
embed into `1 with constant distortion.

Another example of this comes from the work of Khot, Kindler, Mossel,
and O’Donnell [47]. Among other things, [47] studied the Max-Cut problem of
Section 1.1. The paper introduced Conjecture 1.1 and showed that together with
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UGC it essentially implies .1
2
C

1
2
�; 1
2
C

1
�

arcsin �/-hardness for Max-Cut. In
particular, optimizing over � (taking �� :69) implies Max-Cut is :87856-hard to ap-
proximate, matching the groundbreaking algorithm of Goemans and Williamson [37].

2.3.2. Consequences of confirming the conjecture. Theorem 4.4 confirms a
generalization of Conjecture 1.1. We give a slightly simplified statement of this
theorem here:

THEOREM 4.4. Let f W �1 � � � � ��n ! Œ0; 1� be a function on a discrete
product probability space and assume that for each i the minimum probability of
any atom in �i is at least ˛ � 1=2. Further assume that Infi .f /� � for all i . Let
�D EŒf �. Then for any 0� � < 1,

S�.f /� lim
n!1

S�.Thr.�/n /CO
� log log.1=�/

log.1=�/

�
;

where Thr.�/n W f�1; 1gn! f0; 1g denotes the symmetric threshold function of the
form f .x1; : : : ; xn/D 1=2C .1=2/sgn.

P
xi � r/ for r 2R and expectation closest

to �, and the O. � / hides a constant depending only on ˛ and 1� �.

We now give some consequences of this theorem:

THEOREM 2.9. In the terminology of Kalai [41], any odd, balanced social
choice function f with either

� on.1/ influences or

� such that f is transitive

has probability at most 3=4C .3=2�/ arcsin.1=3/C on.1/ � :9123 of producing
a rational outcome. The majority function on n inputs achieves this bound, 3=4C
.3=2�/ arcsin.1=3/C on.1/.

By looking at the series expansion of .2=�/ arcsin.1� �/, we obtain the fol-
lowing strengthening of Corollary 2.8.

COROLLARY 2.10. If f W f�1; 1gn!f�1; 1g satisfies EŒf �D0 and Infi .f /�
��O.1=�/ for all i 2 Œn�, then

S1��.f /� 1� .
p
8=� � o.1//�1=2:

Using Corollary 2.10 instead of Corollary 2.8 in Khot [46] we obtain this:

COROLLARY 2.11. Max-2Lin(2) and Max-2Sat have .1� �; 1�O.�1=2//-
hardness.

More generally, [47] now implies the following.

COROLLARY 2.12. Max-Cut has .1
2
C
1
2
���; 1

2
C
1
�

arcsin �C�/-hardness for
each � and all � > 0, assuming UGC only. In particular, the Goemans-Williamson
:87856-approximation algorithm is best possible, assuming UGC only.
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For more hardness of approximation results that follow from Theorem 4.4,
see [55]. Subsequent to our work, several additional results relying on Theorem
4.4 have appeared [25] [22] [2] [3] [57]. Further generalizations and applications
include [54] [4] [60].

2.4. It Ain’t Over Till It’s Over. This conjecture, Conjecture 1.2, was origi-
nally made by Kalai and Friedgut [43] in studying social indeterminacy [35], [42].
The setting here is similar to the setting of Arrow’s Theorem from Section 2.3.1
except that there are an arbitrary finite number of candidates. Let R denote the
(asymmetric) relation given on the candidates when the monotone social choice
function f is used. Kalai showed that if f has small influences, then Conjecture
1.2 implies that every possible relation R is achieved with probability bounded
away from 0.

In Theorem 4.9 we confirm Conjecture 1.2 and generalize it to functions on
arbitrary finite product probability spaces with means bounded away from 0 and
1. Further, the asymptotics we give show that symmetric threshold functions (e.g.,
Majority in the case of mean 1=2) are the “worst” examples. We give a slightly
simplified statement of Theorem 4.9 here:

THEOREM 4.9. Let 0 < � < 1, and let f W�1�� � ���n! Œ0; 1� be a function
on a discrete product probability space; assume that for each i the minimum prob-
ability of any atom in �i is at least ˛ � 1=2. Then there exists �.�; �/ > 0 such
that if

� < �.�; �/ and Infi .f /� �O.1=
p

log.1=�// for all i and �D EŒf �,

then
P ŒV�f > 1� ı�� � and P ŒV�f < ı�� �

provided 0 < � < 1 and ı < ��=.1��/CO.1=
p

log.1=�//, where the O. � / hides a
constant depending only on ˛, � and �.

3. The invariance principle

3.1. Setup and notation. In this section we will describe the setup and nota-
tion necessary for our invariance principle. We are interested in functions on finite
product probability spaces, i.e., functions f W �1 � � � � ��n ! R. For each i ,
the space of all functions �i ! R can be expressed as the span of a finite set of
orthonormal random variables, Xi;0 D 1, Xi;1, Xi;2, Xi;3; : : : . Then f can be
written as a multilinear polynomial in the Xi;j . In fact, it will be convenient for
us to mostly disregard the �i and work directly with sets of orthonormal random
variables; in this case, we can even drop the restriction of finiteness. We thus begin
with the following definition:
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Definition 3.1. We call a finite collection of orthonormal real random variables,
one of which is the constant 1, an orthonormal ensemble. We will write a typical
sequence of n orthonormal ensembles as XD .X1; : : : ;Xn/, where Xi D fXi;0 D

1;Xi;1; : : : ; Xi;mi
g. We call a sequence of orthonormal ensembles X independent

if the ensembles are independent families of random variables.
We will henceforth be concerned only with independent sequences of or-

thonormal ensembles, and we will call these sequences of ensembles, for brevity.

The reader may like to keep in mind the notationally less cumbersome set-
ting of Theorem 2.1, where one merely has a sequence of independent random
variables:

Remark 3.2. We may view a sequence of independent random variables X1;
: : : ; Xn with EŒXi �D 0 and EŒX2i �D 1 as a sequence of ensembles X by renaming
Xi DXi;1 and setting Xi;0 D 1 as required.

Definition 3.3. We denote by G the Gaussian sequence of ensembles, in which
Gi DfGi;0D1;Gi;1; Gi;2; : : : g and all theGi;j with j �1 are independent standard
Gaussians.

As mentioned, we will be interested in multilinear polynomials over sequences
of ensembles. By this we mean sums of products of the random variables, where
each product is obtained by multiplying one random variable from each ensemble.

Definition 3.4. A multi-index � is a sequence .�1; : : : ; �n/ in Nn; the degree
of � , denoted j� j, is jfi 2 Œn� W �i > 0gj. Given a doubly-indexed set of indetermi-
nates fxi;j gi2Œn�; j2N, we write x� for the monomial

Qn
iD1 xi;�i

. We now define a
multilinear polynomial over such a set of indeterminates to be any expression

(6) Q.x/D
X
�

c�x� ;

where the c� are real constants, all but finitely many of which are zero. The degree
of Q.x/ is maxfj� j W c� ¤ 0g and is at most n. We also use the notation

Q�d .x/D
X
j� j�d

c�x�

and the analogous QDd .x/ and Q>d .x/.

Note that in the simpler case of sequences of independent random variables,
a multi-index � may be identified with a subset S � Œn�.

Naturally, we will consider applying multilinear polynomials Q to sequences
of ensembles X; the distribution of these random variables Q.X/ is the subject of
our invariance principle. Since Q.X/ can be thought of as a function on a product
space�1�� � ���n as described at the beginning of this section, there is a consistent
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way to define the notions of influences, T�, and noise stability from Section 2.2.
For example, the “influence of the i -th ensemble on Q” is

Infi .Q.X//D EŒVarŒQ.X/ j X1; : : : ;Xi�1;XiC1; : : : ;Xn��:

Using independence and orthonormality, it is easy to show the following formulas,
familiar from harmonic analysis of boolean functions:

PROPOSITION 3.5. Let X be a sequence of ensembles and Q a multilinear
polynomial as in (6). Then

EŒQ.X/�D c0; EŒQ.X/2�D
X
�

c2� ; VarŒQ.X/�D
X
j� j>0

c2� ;

Infi .Q.X//D
X
� W�i>0

c2� ; T�Q.X/D
X
�

�j� jc�X� ; S�.Q.X//D
X
�

�j� jc2� :

Note that in each case above, the formula does not depend on the sequence
of ensembles X; it only depends on Q. Thus we are justified in henceforth writing
EŒQ�, EŒQ2�, VarŒQ�, Infi .Q/, and S�.Q/, and in treating T� as a formal operator
on multilinear polynomials:

Definition 3.6. For � 2 Œ0; 1�, we define the operator T� as acting formally on
multilinear polynomials Q.x/ as in (6) by

.T�Q/.x/D
X
�

�j� jc�x� :

For every sequence of ensembles, Definition 3.6 agrees with Definition 2.4.
We end this section with a short discussion of “low-degree influences”, a

notion that has proved crucial in the analysis of PCPs (see e.g. [47]).

Definition 3.7. The d -low-degree influence of the i -th ensemble on Q.X/ is

Inf�di .Q.X//D Inf�di .Q/D
X

� Wj� j�d
�i>0

c2� :

Note that this gives a way to define low-degree influences Inf�di .f / for functions
f W�1 � � � ��n! R on finite product spaces.

There isn’t an especially natural interpretation of Inf�di .f /. However, the
notion is important for PCPs due to the fact that a function with variance 1 cannot
have too many coordinates with substantial low-degree influence; this is reflected
in the following easy proposition:

PROPOSITION 3.8. Suppose Q is multilinear polynomial as in (6). ThenX
i

Inf�di .Q/� d �VarŒQ�:



310 ELCHANAN MOSSEL, RYAN O’DONNELL, and KRZYSZTOF OLESZKIEWICZ

3.2. Hypercontractivity. As we mentioned in Section 2.1, our invariance prin-
ciple requires that the ensembles involved be hypercontractive in a certain sense.
Recall that random variable Y is “.p; q; �/-hypercontractive” for 1� p � q <1
and 0 < � < 1 if

(7) kaC �Y kq � kaCY kp for all a 2 R.

This type of hypercontractivity was introduced (with slightly different notation)
in [50]. Some basic facts about hypercontractivity are explained in Appendix A;
much more can be found in [51]. Here we just note that for q >2, a random variable
Y is .2; q; �/-hypercontractive with some � 2 .0; 1/ if and only if EŒY � D 0 and
EŒjY jq� <1. Also, if Y is .2; q; �/-hypercontractive then �� .q� 1/�1=2.

We now define our extension of the notion of hypercontractivity to sequences
of ensembles:

Definition 3.9. Let X be a sequence of ensembles. For 1 � p � q <1 and
0 < � < 1, we say that X is .p; q; �/-hypercontractive if

k.T�Q/.X/kq � kQ.X/kp

for every multilinear polynomial Q over X.

Since T� is a contractive semi-group, we have this:

Remark 3.10. If X is .p; q; �/-hypercontractive, then it is .p; q; �0/-hyper-
contractive for any 0 < �0 � �.

There is a related notion of hypercontractivity for sets of random variables,
which considers all polynomials in the variables, not just multilinear polynomials;
see e.g. Janson [39]. Several of the properties of this notion of hypercontractivity
carry over to our setting of sequences of ensembles. In particular, the following
facts can easily be proved by repeating the analogous proofs in [39]; for complete-
ness, we give the proofs in Appendix A.

PROPOSITION 3.11. Let X be a sequence of n1 ensembles and Y an indepen-
dent sequence of n2 ensembles. Assume both are .p; q; �/-hypercontractive. Then
the sequence of ensembles X[YD .X1; : : : ;Xn1

;Y1; : : : ;Yn2
/ is also .p; q; �/-

hypercontractive.

PROPOSITION 3.12. Suppose X is a .2; q; �/-hypercontractive sequence of
ensembles and Q is a multilinear polynomial over X of degree d . Then

kQ.X/kq � �
�d
kQ.X/k2:

In light of Proposition 3.11, to check that a sequence of ensembles is .p; q; �/-
hypercontractive it is enough to check that each ensemble individually is .p; q; �/-
hypercontractive (as a “sequence” of length 1); in turn, it is easy to see that this
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is equivalent to checking that for each i , all linear combinations of the random
variables Xi;1; : : : ; Xi;mi

are hypercontractive in the traditional sense of (7).
We end this section by recording the optimal hypercontractivity constants for

the ensembles we consider. The result for ˙1 Rademacher variables is well known
and due originally to Bonami [12] and independently Beckner [6]; the same result
for Gaussian and uniform random variables is also well known and in fact follows
easily from the Rademacher case. The optimal hypercontractivity constants for
general finite spaces was recently determined by Wolff [69] (see also [58]):

THEOREM 3.13. Let X denote either a uniformly random˙1 bit, a standard
one-dimensional Gaussian, or a random variable uniform on Œ�

p
3;
p
3�. Then X

is .2; q; .q� 1/�1=2/-hypercontractive.

THEOREM 3.14 (Wolff). Let X be any mean-zero random variable on a finite
probability space in which the minimum nonzero probability of any atom is ˛ � 1=2.
Then X is .2; q; �q.˛//-hypercontractive, where

�q.˛/D
�
A1=q

0

�A�1=q
0

A1=q�A�1=q

��1=2
with AD .1�˛/=˛ and 1=qC 1=q0 D 1.

Note the following special case:

PROPOSITION 3.15. For all ˛ 2 Œ0; 1=2�, we have

�3.˛/D .A
1=3
CA�1=3/�1=2 � ˛1=6 as ˛! 0 and 1

2
˛1=6� �3.˛/� 2

�1=2:

For general random variables with bounded moments we have the following
results, proved in Appendix A:

PROPOSITION 3.16. Let X be a mean-zero random variable satisfying EŒjX jq�
<1. Then X is .2; q; �q/-hypercontractive with

�q D kXk2=.2
p
q� 1kXkq/:

In particular, when EŒX�D 0, EŒX2�D 1, and EŒjX j3�� ˇ, we have that X
is .2; 3; 2�3=2ˇ�1=3/-hypercontractive.

PROPOSITION 3.17. Let X be a mean-zero random variable satisfying EŒjX jq�
<1, and let V be a random variable independent of X with

P ŒV D 0�D 1� � and P ŒV D 1�D �:

Then VX is .2; q; �q/-hypercontractive with

�q D
kXk2

2
p
q� 1 kXkq

� �1=2�1=q:
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3.3. Hypotheses for invariance theorems: Some families of ensembles. All
the variants of our invariance principle that we prove in this section will have simi-
lar hypotheses. Specifically, they will be concerned with a multilinear polynomial
Q over two hypercontractive sequences of ensembles, X and Y. Also X and Y will
be assumed to satisfy a “matching moments” condition, as described below. We
will now lay out four hypotheses, Hypotheses 1–4, that will be used in the theorems
of this section. As can easily be seen (using Theorems 3.13, 3.14 and Proposition
3.15; see also Appendix A), Hypothesis 1 generalizes Hypotheses 2–4.

Hypothesis 1. Let r � 3 be an integer, and let X and Y be independent se-
quences of n ensembles that are .2; r; �/-hypercontractive; recall that the condition
�� .r � 1/�1=2 necessarily holds. Assume furthermore that for all 1� i � n and
all sequences of nonnegative integers .sk/1kD1 with

P1
kD1 sk < r , the sequences

X and Y satisfy the “matching moments” condition

(8) E
hY

kWsk>0
X
sk
i;k

i
D E

hY
kWsk>0

Y
sk
i;k

i
:

Finally, let Q be a multilinear polynomial as in (6).

We remark that in Hypothesis 1, if r D 3 then the matching moment conditions
hold automatically since the sequences are orthonormal.

Hypothesis 2. Let r D 3. Let X and Y be independent sequences of ensembles
in which each ensemble has only two random variables, Xi;0 D 1 and Xi;1 DXi
(respectively, Yi;0 D 1 and Yi;1 D Yi ), as in Remark 3.2. Further assume that
each Xi (respectively Yi ) satisfies EŒXi �D 0, EŒX2i �D 1 and EŒjXi j3� � ˇ. Put
� D 2�3=2ˇ�1=3, so X and Y are .2; 3; �/-hypercontractive. Finally, let Q be a
multilinear polynomial as in (6).

Hypothesis 2 is used to derive the multilinear version of the Berry-Esseen
inequality given in Theorem 2.1.

Hypothesis 3. Let r D 3, and let X be a sequence of n ensembles in which the
random variables in each ensemble Xi form a basis for the real-valued functions on
some finite probability space �i . Further assume that the least nonzero probability
of any atom in any �i is ˛ � 1=2, and let �D 1

2
˛1=6. Let Y be any independent

.2; 3; �/-hypercontractive sequence of ensembles. Finally, let Q be a multilinear
polynomial as in (6).

We remark that Q.X/ in Hypothesis 3 encompasses all real-valued functions
f on finite product spaces, including the familiar cases of the p-biased discrete
cube (for which ˛ D minfp; 1� pg) and the set Œq�n with uniform measure (for
which ˛ D 1=q). Note also that �� 2�1=2, so we may take Y to be the Gaussian
sequence of ensembles.
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Hypothesis 4. Let r D 4 and � D 3�1=2. Let X and Y be independent se-
quences of ensembles in which each ensemble has only two random variables,
Xi;0 D 1 and Xi;1 D Xi (respectively, Yi;0 D 1 and Yi;1 D Yi ), as in Remark 3.2.
Further assume that each Xi (respectively Yi ) is either (a) a uniformly random
˙1 bit; (b) a standard one-dimensional Gaussian; or (c) uniform on Œ�31=2; 31=2�.
Hence X and Y are .2; 4; �/-hypercontractive. Finally, let Q be a multilinear poly-
nomial as in (6).

Note that this simplest of all hypotheses allows for arbitrary real-valued func-
tions on the uniform-measure discrete cube f W f�1; 1gn ! R. Also, under Hy-
pothesis 4, Q is just a multilinear polynomial in the usual sense over the Xi or
the Yi ; in particular, if f W f�1; 1gn! R, then Q is the “Fourier expansion” of f .
Finally, note that the matching moments condition (8) holds in Hypothesis 4 since
it requires EŒX3t �D EŒY 3t � for each t , and this is true since both equal 0.

Since Hypothesis 1 generalizes the other three hypotheses, we will carry out
almost all proofs only in the setting of Hypothesis 1. However, as the amount
of notation and number of parameters under Hypothesis 1 is quite cumbersome,
we will prove our basic invariance principle first in the setting of Hypothesis 4 to
illustrate the ideas. The reader may also find it helpful to first read the extended
abstract of this paper in [55].

3.4. Basic invariance principle, Cr functional version. The essence of our
invariance principle is that if Q is of bounded degree and has low influences then
the random variables Q.X/ and Q.Y/ are close in distribution. The simplest way
to formulate this conclusion is to say that if ‰ W R! R is a sufficiently nice “test
function” then ‰.Q.X// and ‰.Q.Y// are close in expectation.

THEOREM 3.18. Assume Hypothesis 1, 2, 3, or 4. Assume VarŒQ�� 1, deg.Q/
� d , and Infi .Q/ � � for all i . Let ‰ W R! R be a Cr function with j‰.r/

j � B

uniformly. Then ˇ̌
EŒ‰.Q.X//��EŒ‰.Q.Y//�

ˇ̌
� �;

where

� D

8̂̂̂<̂
ˆ̂:
.2B=rŠ/d ��rd �r=2�1 under Hypothesis 1;
B 30d ˇd �1=2 under Hypothesis 2,
B.10˛�1=2/d �1=2 under Hypothesis 3,
B10d � under Hypothesis 4.

As will be the case in all of our theorems, the results under Hypotheses 2–4 are
immediate corollaries of the result under Hypothesis 1; one only needs to substitute
in r D 3 and �D 2�3=2ˇ�1=3 or r D 3 and �D .1=2/˛1=6 or r D 4 and �D 3�1=2

(we have also here used that .1=3/ d 29d=2 is at most 30d and that .1=3/ d 8d and
.1=12/ d 9d are at most 10d ).
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For illustrative purposes, we begin by proving an upper bound of O.B d 9d �/
under Hypothesis 4 .

Proof of Theorem 3.18 under Hypothesis 4. Under Hypothesis 4 we have two
sequences XD .X1; : : : ; Xn/ and YD .Y1; : : : ; Yn/ of independent and identically
distributed real random variables; each random variable has mean 0, second mo-
ment 1, and third moment 0. We may also express the multilinear polynomial Q
simply as

Q.x/D
X
S�Œn�

cS
Y
i2S

xi :

We begin by defining intermediate sequences between X and Y. For i D
0; 1; : : : ; n, let Z.i/ denote the sequence .Y1; : : : ; Yi ; XiC1; : : : ; Xn/ of random
variables, and let Q

.i/
DQ.Z.i//. Our goal will be to show

(9)
ˇ̌
EŒ‰.Q.i�1//��EŒ‰.Q.i//�

ˇ̌
�O.B/9d Infi .Q/2 for each i 2 Œn�.

Summing this over i will complete the proof with upper bound � DO.B/d 9d � ,
since Q.0/

DQ.Z.0//DQ.X/, Q.n/
DQ.Z.n//DQ.Y/, and

nX
iD1

Infi .Q/2 � � �
nX
iD1

Infi .Q/D � �
nX
iD1

Inf�di .Q/� d�;

where we used Proposition 3.8 and VarŒQ�� 1.
Let us fix a particular i 2 Œn� and proceed to prove (9). Write

U D
X
S Wi…S

cS
Y
j2S

Z
.i/
j and V D

X
S Wi2S

cS
Y

j2Snfig

Z
.i/
j :

Note that U and V are independent of the variables Xi and Yi , and that Q.i�1/
D

U CXiV and Q
.i/
D U CYiV .

To bound the left side of (9) — i.e., jEŒ‰.U CXiV /�‰.U CYiV /�j— we
use Taylor’s theorem: For all x; y 2 R,

j‰.xCy/�

3X
kD0

‰.k/.x/yk

kŠ
j �

B

24
y4:

In particular,

(10)
ˇ̌̌
EŒ‰.U CXiV /��

3X
kD0

E
h‰.k/.U /Xki V

k

kŠ

iˇ̌̌
�
B

24
EŒX4i V

4�D
B

24
EŒX4i �EŒV

4�DO.B/EŒV 4�;
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where in the first equality we used independence of Xi from V and in the second
equality we used EŒX4i ��O.1/. Similarly,

(11)
ˇ̌̌
EŒ‰.U CYiV /��

3X
kD0

E
h‰.k/.U /Y ki V

k

kŠ

iˇ̌̌
�
B

24
EŒY 4i V

4�DO.B/EŒV �:

Since Xi and Yi are independent of U and V and since the first 3 moments of Xi
equal those of Yi , it follows that for k D 0; 1; 2; 3

(12) EŒ‰.k/
.U /Xki V

k�D EŒ‰.k/
.U /V k� �EŒXki �

D EŒ‰.k/
.U /V k� �EŒY ki �

D EŒ‰.k/
.U /Y ki V

k�:

From (10), (11), and (12) it follows that

(13)
ˇ̌
EŒ‰.U CXiV /�‰.U CYiV /�

ˇ̌
�O.B/EŒV 4�:

We now use hypercontractivity. Since each Xj and Yj is .2; 4; 3�1=2/-hyper-
contractive, Proposition 3.11 implies that so is the sequence Z.i/. Since V is given
by applying a degree d � 1 multilinear polynomial Z.i/, Proposition 3.12 yields

(14) EŒV 4�� 9d�1EŒV 2�2:

However,

(15) EŒV 2�D
X
S Wi2S

c2S D Infi .Q/:

Combining (13), (14), and (15) it follows that

jEŒ‰.U CXiV /�‰.U CYiV /�j �O.B/9d Infi .Q/2;

confirming (9) and completing the proof. �

We now give the complete proof of Theorem 3.18:

Proof of Theorem 3.18 under Hypothesis 1. We begin by defining intermedi-
ate sequences between X and Y. For i D 0; 1; : : : ; n, let Z.i/ denote the sequence
of n ensembles .Y1; : : : ;Yi ;XiC1; : : : ;Xn/ and let Q

.i/
DQ.Z.i//. Our goal will

be to show

(16)
ˇ̌
EŒ‰.Q.i�1/

/��EŒ‰.Q.i//�
ˇ̌
�

�
2B

rŠ
��rd

�
� Infi .Q/r=2 for each i 2 Œn�.

Summing this over i will complete the proof, since Q.0/
D Q.Z.0// D Q.X/,

Q.n/
DQ.Z.n//DQ.Y/, and
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nX
iD1

Infi .Q/r=2 � �r=2�1 �
nX
iD1

Infi .Q/D �r=2�1 �
nX
iD1

Inf�di .Q/� d�r=2�1;

where we used Proposition 3.8 and VarŒQ�� 1.
Let us fix a particular i 2 Œn� and proceed to prove (16). Given a multi-index � ,

write � n i for the same multi-index except with �i D 0. Now write

eQD X
� W�iD0

c�Z
.i/
� ; RD

X
� W�i>0

c�Xi;�i
�Z

.i/
�Xi ; S D

X
� W�i>0

c�Yi;�i
�Z

.i/
�Xi :

Note that eQ and the variables Z.i/
�Xi are independent of the variables in Xi and in

Yi and that Q
.i�1/

D eQCR and Q
.i/
D eQCS .

To bound the left side of (16) — i.e., jEŒ‰.eQCR/�‰.eQCS /�j— we use
Taylor’s theorem: For all x; y 2 R,ˇ̌̌

‰.xCy/�

r�1X
kD0

‰.k/.x/yk

kŠ

ˇ̌̌
�
B

rŠ
jyjr :

In particular,

(17)
ˇ̌̌
EŒ‰.eQCR/��

r�1X
kD0

E
h
‰.k/.eQ/Rk

kŠ

iˇ̌̌
�
B

rŠ
EŒjRjr �

and similarly,

(18)
ˇ̌̌
EŒ‰.eQCS /��

r�1X
kD0

E
h
‰.k/.eQ/S k

kŠ

iˇ̌̌
�
B

rŠ
EŒjS jr �:

We will see below that R and S (and similarly eQ) have finite r moments. Moreover,
for 0� k � r and any real t it holds that

j‰
.k/
.t/j �

r�k�1X
jD0

j‰
.kCj /

.0/j � jt jj CBjt jr�k;

so that

EŒ‰.k/
.eQ/Rk�

�

r�k�1X
jD0

j‰
.kCj /

.0/j.EŒjeQjjCk�CEŒjRjjCk�/CB.EŒjeQjr �CEŒjRjr �/ <1

(and similarly for S ). Thus all moments above are finite. We now claim that for
all 0� k < r it holds that

(19) EŒ‰.k/
.eQ/Rk�D EŒ‰.k/

.eQ/S k�:
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Indeed

EŒ‰.k/
.eQ/Rk�D E

h
‰

.k/
.eQ/X

�

kY
tD1

c� t

kY
tD1

Xi;� t
i

kY
tD1

Z
.i/
� tXi

i
(20)

D

X
�

kY
tD1

c� t �E
h
‰

.k/
.eQ/ kY

tD1

Z
.i/
� tXi

i
�E
h kY
tD1

Xi;� t
i

i
(21)

D

X
�

kY
tD1

c� t �E
h
‰

.k/
.eQ/ kY

tD1

Z
.i/
� tXi

i
�E
h kY
tD1

Yi;� t
i

i
(22)

D E
�
‰

.k/
.eQ/S k�;

where the sums marked � are taken over all multi-indices .�1; : : : ; �k/ such that
� ti > 0 for all t . The equality in (21) follows since Z.i/

� tXi and eQ are independent
of the variables in Xi and in Yi . The equality in (22) follows from the matching
moments condition (8).

From (17), (18), and (19) it follows that

(23)
ˇ̌
EŒ‰.eQCR/�‰.eQCS /�

ˇ̌
�
B

rŠ
.EŒjRjr �CEŒjS jr �/:

We now use hypercontractivity. By Proposition 3.11, each Z.i/ is .2; r; �/-hyper-
contractive. Thus by Proposition 3.12,

(24) EŒjRjr �� ��rdEŒR2�r=2 and EŒjS jr �� ��rdEŒS 2�r=2:

However,

(25) EŒS 2�D EŒR2�D
X
� W�i>0

c2� D Infi .Q/:

Combining (23), (24), and (25) it follows thatˇ̌̌
EŒ‰.eQCR/�‰.eQCS /�

ˇ̌̌
�

�
2B

rŠ
��rd

�
� Infi .Q/r=2;

confirming (16) and completing the proof. �

3.5. Invariance principle, other functionals, and smoothed version. Our ba-
sic invariance principle shows that EŒ‰.Q.X//� and EŒ‰.Q.Y//� are close if ‰
is a Cr functional with bounded r-th derivative. To show that the distributions of
Q.X/ and Q.Y/ are close in other senses, we need the invariance principle for
less smooth functionals. This we can obtain using straightforward approximation
arguments; we defer the proof of Theorem 3.19 to Section 3.6.

Theorem 3.19 shows closeness of distribution in two senses. The first is
closeness in Lévy’s metric; recall that the distance dL.R; S/ between two random
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variables R and S in Lévy’s metric is

inff� > 0 W P ŒS � t ������ P ŒR � t �� P ŒS � t C��C� for all t 2 Rg:

We also show the distributions are close in the usual sense with a weaker bound; the
proof of this goes by comparing the distributions of Q.X/ and Q.Y/ to Q.G/ and
noting that bounded-degree Gaussian polynomials are known to have low “small
ball probabilities”. Finally, Theorem 3.19 also shows L1 closeness and, as a tech-
nical necessity for applications, shows closeness under the functional � W R! R

defined by

(26) �.x/D

8<:
x2 if x � 0;
0 if x 2 Œ0; 1�;
.x� 1/2 if x � 1I

this function gives the squared distance to the interval Œ0; 1�.

THEOREM 3.19. Assume Hypothesis 1, 2, 3, or 4. Assume VarŒQ�� 1, deg.Q/
� d , and Infi .Q/� � for all i . Thenˇ̌

kQ.X/k1�kQ.Y/k1
ˇ̌
�O.�1=r/;(27)

dL.Q.X/;Q.Y//�O.�
1=.rC1//;(28) ˇ̌

EŒ�.Q.X//��EŒ�.Q.Y//�
ˇ̌
�O.�2=r/;(29)

where O. � / hides a constant depending only on r , and

� D

8̂̂̂<̂
ˆ̂:
d ��rd �r=2�1 under Hypothesis 1;
30dˇd �1=2 under Hypothesis 2;
.10˛�1=2/d �1=2 under Hypothesis 3;
10d � under Hypothesis 4:

If in addition VarŒQ�D 1, then

(30) sup
t

ˇ̌
P ŒQ.X/� t ��P ŒQ.Y/� t �

ˇ̌
�O.d �1=.rdC1//:

As discussed in Section 2.1, Theorem 3.19 has the unavoidable deficiency of
having error bounds depending on the degree d of Q. This can be overcome if
we first “smooth” Q by applying T1� to it, for some 0 <  < 1. Theorem 3.20
below will be our main tool for applications; its proof is a straightforward degree
truncation argument, which we also defer to Section 3.6. As an additional benefit
of this argument, we will show that Q need only have small low-degree influences,
Infdi .Q/, as opposed to small influences. As discussed at the end of Section 3.1,
this feature has proved essential for applications involving PCPs.
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THEOREM 3.20. Assume Hypothesis 1, 3, or 4. Assume EŒQ2� � 1 and
Inf�log.1=�/=K

i .Q/� � � 1=2 for all i , where

K D

8<:
log.1=�/ under Hypothesis 1;
log.2=˛/ under Hypothesis 3;
1 under Hypothesis 4:

Given 0 <  < 1, write R D .T1�Q/.X/ and S D .T1�Q/.Y/. Then assuming
� � exp.�CK=/, where C is a large universal constant, we have

dL.R; S/� �
�.=K/;ˇ̌

EŒ�.R/��EŒ�.S/�
ˇ̌
� ��.=K/;

where the �. � / hides a constant depending only on r .
More generally, the statement of the theorem holds for R DQ.X/ and S D

Q.Y/ if VarŒQ>d �� .1� /2d for all d .

3.6. Proofs of extensions of the invariance principle. In this section we will
prove Theorems 3.19 and 3.20 under Hypothesis 1. The results under Hypotheses
2, 3, and 4 are corollaries.

3.6.1. Invariance principle for some C 0 and C 1 functionals. In this section
we prove (27), (28), and (29) of Theorem 3.19. We do it by approximating the
following functions in the sup norm by smooth functions: `1.x/D jxj;

�s;t .x/D

8<:
1 if x � t � s;
t�xCs
2s

if x 2 Œt � s; t C s�;
0 if x � t C s;

�.x/D

8<:
x2 if x � 0;
0 if x 2 Œ0; 1�;
.x� 1/2 if x � 1:

LEMMA 3.21. Let r � 2 be an integer. Then there exists a constant Br for
which the following holds. For all 0 < �� 1=2 there exist C1 functions `�1 , ��

�;t
,

and �� satisfying the following:

� k`�1 � `1k1 � 2�, and k.`�1/
.r/
k1 � 4Br �

1�r .

� ��
�;t

agrees with ��;t outside the interval .t � 2�; t C 2�/ and is otherwise

in Œ0; 1�, and k.��
�;t
/.r/
k1 � Br �

�r .

� k��� �k1 � 4�
2, and k.��/.r/

k1 � 4Br�1�
2�r .

Proof. Let f .x/ D x1fx�0g. We will show that for all � > 0 there is a
nondecreasing C1 function f� such that

� f� and f agree on .�1;��� and Œ�;1/, so that

� 0� f�.x/� � on .��; �/, and

� kf .r/

�
k1 � 2Br �

1�r .
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The construction of f� easily gives the construction of the other functionals by
letting `�1.x/D f�.x/Cf�.�x/ and

(31)

���;t .x/D

� 1
2�
f�.t � xC�/ if x � t;

1� 1
2�
f�.x� t C�/ if x � t;

��.x/D

�
2
R �x
�1

f�.t/dt if x � 1=2
2
R x�1
�1

f�.t/dt if x � 1=2:

To construct f , first let  be a nonnegative C1 function satisfying the following:
 is 0 outside .�1; 1/,

R 1
�1  .x/ dxD 1, and

R 1
�1 x .x/ dxD 0. It is well known

that such functions  exist. Define the constant Br to be k .r/
k1.

Next, write  �.x/ D  .x=�/=�, so  � satisfies the same three properties
as  does, but with respect to the interval .��; �/ rather than .�1; 1/. Note that
k .r/

�
k1 D Br �

�1�r .
Finally, take f� D f � �, which is C1. The first two properties demanded

of f follow easily. To see the third, first note that f .r/

�
is identically 0 outside

.��; �/ and then observe that for jxj< �,

jf
.r/

� .x/j D j.f � �/
.r/
.x/j D j.f � 

.r/

� /.x/j � k 
.r/

� k1 �

Z xC�

x��

jf j � 2Br�
1�r :

This completes the proof. �

We now prove (27), (28), and (29).

Proof. Note that the properties of ��
�;t

imply that

(32) P ŒR � t � 2��� EŒ���;t .R/�� P ŒR � t C 2��

holds for every random variable R, every t and every � with 0 < �� 1=2.
Let us first prove (27), with

� D d ��rd �r=2�1

since we assume Hypothesis 1. Taking ‰ D `�1 in Theorem 3.18, we obtainˇ̌
EŒ`1.Q.X//��EŒ`1.Q.Y//�

ˇ̌
�
ˇ̌
EŒ`�1.Q.X//��EŒ`

�
1.Q.Y//�

ˇ̌
C 4�

� .4Br �
1�r=rŠ/d ��rd �r=2�1C 4�

DO.��1�r/C 4�:

Taking �D �1=r gives the bound (27). Using (32) and applying Theorem 3.18 with
‰ D��

�;t
, we obtain

dL.Q.X/;Q.Y//�max
˚
4�; sup

t

ˇ̌
EŒ���;t .Q.X//��EŒ���;t .Q.Y//�

ˇ̌	
�max

˚
.2Br �

�r=rŠ/d ��rd �r=2�1; 4�
	
DmaxfO.���r/; 4�g:
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Again taking �D �1=.rC1/ we achieve (28). Finally, using ‰ D �� we getˇ̌
EŒ�.Q.X//��EŒ�.Q.Y//�

ˇ̌
�
ˇ̌
EŒ��.Q.X//��EŒ��.Q.Y//�

ˇ̌
C 8�2

� .8Br�1�
2�r=rŠ/d ��rd �r=2�1C 8�2

DO.��2�r/C 8�2;

and taking �D �1=r we get (29). This proves (27) from Theorem 3.19. �

3.6.2. Closeness in distribution. We now prove (30) from Theorem 3.19. By
losing constant factors it will suffice to prove the bound in the case that Y D

G, the sequence of independent Gaussian ensembles. As mentioned, we will use
the fact that bounded-degree multilinear polynomials over G have low “small ball
probabilities”. Specifically, the following theorem and its corollary are immediate
from [18, Th. 8] (taking q D 2d in their notation):

THEOREM 3.22. There exists a universal constant C such that for all multi-
linear polynomials Q of degree d over G and all � > 0,

P ŒjQ.G/j � ��� C d .�=kQ.G/k2/
1=d :

COROLLARY 3.23. For all multilinear polynomials Q of degree d over G

with VarŒQ�D 1, and for all t 2 R and � > 0, P ŒjQ.G/� t j � ���O.d �1=d /:

Proof of (30). We will use Theorem 3.18 with ‰ D ��
�;t

, where � will be

chosen later. Writing �t D���;t ıQ for brevity and using fact (32) twice, we have

(33) P ŒQ.X/� t �� EŒ�tC2�.X/�

� EŒ�tC2�.G/�CjEŒ�tC2�.X/��EŒ�tC2�.G/�j

� P ŒQ.G/� t C 4��CjEŒ�tC2�.X/��EŒ�tC2�.G/�j

D P ŒQ.G/� t �CP Œt < Q.G/� t C 4��

CjEŒ�tC2�.X/��EŒ�tC2�.G/�j:

The second quantity in (33) is at most O.d .4�/1=d / by Corollary 3.23; the third
quantity in (33) is at most O.���r/ by Lemma 3.21 and Theorem 3.18. Thus we
conclude

P ŒQ.X/� t �� P ŒQ.G/� t �CO.d �1=d /CO.���r/;

independently of t . Similarly it follows that

P ŒQ.X/� t �� P ŒQ.G/� t ��O.d �1=d /�O.���r/;

independently of t . Choosing �D �d=.rdC1/ we getˇ̌
P ŒQ.X/� t ��P ŒQ.G/� t �

ˇ̌
�O.d �1=.rdC1//: �
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The proof of Theorem 3.19 is now complete. �

3.6.3. Invariance principle for smoothed functions. The proof of Theorem
3.20 is by truncating at degree d D c log.1=�/= log.1=�/, where c > 0 is a suffi-
ciently small constant to be chosen later. (Note that d need not be an integer.) As
� is bounded away from 1, our assumption on � lets us assume that d is at least
a large constant. Let L.R/D .T1�Q/�d .X/ and H.R/D .T1�Q/>d .X/, and
define L.S/, and H.S/ analogously for Y. Note that the low-degree influences of
T1�Q are no more than those of Q and that EŒL.R/2�� EŒQ2�� 1.

We first prove the upper bound on dL.R; S/. By Theorem 3.19 we have

(34) dL.L.R/; L.S//� d
‚.1/��‚.d/�‚.1/ D ��‚.d/�‚.1/:

As for H.R/ and H.S/, we have

EŒH.R/�D EŒH.S/�D 0 and EŒH.R/2�D EŒH.S/2�� .1� /2d

(since EŒQ2�� 1). Thus by Chebyshev’s inequality it follows that for all �,

(35) P ŒjH.R/j � ��� .1� /2d=�2 and P ŒjH.S/j � ��� .1� /2d=�2:

Combining (34) and (35) and taking �D .1� /2d=3 we conclude that the Lévy
distance between R and S is at most

(36) ��‚.d/�‚.1/C 4.1� /2d=3 � ��‚.d/�‚.1/C exp.�‚.d//:

Our choice of d , with c taken sufficiently small so that the second term above
dominates, completes the proof of the upper bound on dL.R;S /.

To prove the claim about � we need the following simple lemma:

LEMMA 3.24. For all a; b 2 R, we have j�.aC b/� �.a/j � 2jabjC 2b2.

Proof. We have

j�.aC b/� �.a/j � jbj sup
x2Œa;aCb�

j�0.x/j:

The claim follows since j�0.x/j � 2jxj � 2.jajC jbj/ for x 2 Œa; aC b�. �

By (29) in Theorem 3.19 we get that jEŒ�.L.R//��.L.S//�j has upper bound
��‚.d/�‚.1/. Lemma 3.24 and Cauchy-Schwartz imply

E
�
j�.R/� �.L.R//j

�
D E

�
j�.L.R/CH.R//� �.L.R//j

�
� 2E

�
jL.R/H.R/j

�
C 2EŒH.R/2�

� 2.EŒQ2�/1=2
q

EŒH.R/2�C 2EŒH.R/2�

� 2.1� /d C 2.1� /2d

� exp.�‚.d//;
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and similarly for S . Thus

jEŒ�.R/��EŒ�.S /�j � ��‚.d/�‚.1/C exp.�‚.d//

and again, with c taken sufficiently small, the second term above dominates.
Finally, it is easy to see that the second statement of Theorem 3.20 also holds

as the only property of R that we used is that VarŒQ>d �� .1� /2d for all d . �

3.7. Invariance principle under Lyapunov conditions.

Sketch of the proof of Theorem 2.2. Let � W R! Œ0; 1� be a nondecreasing
smooth function with �.0/D 0, �.1/D 1 and A WD supx2Rj�

000.x/j<1. Then
supx2Rj�

00.x/j � A=2, and therefore for x; y 2 R we have

j�00.x/��00.y/j�A3�qj�00.x/��00.y/jq�2�A3�q.Ajx�yj/q�2DAjx�yjq�2:

For s > 0, let �s.x/D�.x=s/, so that j�00s .x/��
00
s .y/j �As

�qjx�yjq�2 for all
x; y 2 R. Let Y and Z be random variables with

EŒY �D EŒZ�; EŒY 2�D EŒZ2�; EŒjY jq�;EŒjZjq� <1:

Then jEŒ�s.xC Y /��EŒ�s.xCZ/�j � As�q.EŒjY jq�CEŒjZjq�/ for all x 2 R.
Indeed, for u 2 Œ0; 1�, let '.u/D EŒ�s.xCuY /��EŒ�s.xCuZ/�. Then

'.0/D '0.0/D 0;

j'00.u/j D jEŒY 2.�00s .xCuY /��
00
s .x//��EŒZ2.�00s .xCuZ/��

00
s .x//�j

� As�quq�2.EŒjY jq�CEŒjZjq�/;

so that j'.1/j � As�q.EŒjY jq�C EŒjZjq�/. Now, using the above estimate and
that both X and G are .2; q; �/-hypercontractive with �D ˇ�1=q=.2

p
q� 1/, one

arrives at

jEŒ�s.Q.X1; : : : ; Xn//��EŒ�s.Q.G1; : : : ; Gn//�j

�O
�
s�q��qd

P
i

�P
S3i c

2
S

�q=2�
:

Replacing Q by Q� t and using the arguments of Section 3.6.2 yields

sup
t

ˇ̌
P ŒQ.X1; : : : ; Xn/� t ��P ŒQ.G1; : : : ; Gn/� t �

ˇ̌
�O.ds1=d /CO

�
s�q��qd

P
i

�P
S3i c

2
S

�q=2�
:

Optimizing over s ends the proof. We skip some elementary calculations. �

4. Proofs of the conjectures

Our applications of the invariance principle have the following character: We
wish to study certain noise stability properties of low-influence functions on finite
product probability spaces. By using the invariance principle for slightly smoothed
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functions, Theorem 3.20, we can essentially analyze the properties in the product
space of our choosing. And as it happens, the necessary result for Majority Is Sta-
blest is already known in Gaussian space [14] and the necessary result for It Ain’t
Over Till It’s Over is already known on the uniform-measure discrete cube [56].

In the case of the Majority Is Stablest problem, one needs to find a set of
prescribed Gaussian measure which maximizes the probability that the Ornstein-
Uhlenbeck process (started at the Gaussian measure) will belong to the set at times
0 and time t for some fixed time t . This problem was solved by Borell in [14] using
symmetrization arguments (see Beckner [7] for another proof). It should also be
noted that the analogous result for the sphere has been proved in more than one
place, including a paper of Feige and Schechtman [29]. In fact, one can deduce
Borell’s result and Majority is Stablest from the spherical result using the proximity
of spherical and Gaussian measures in high dimensions and the invariance principle
proved here.

In the case of the It Ain’t Over Till It’s Over problem, the necessary result
on the discrete cube f�1; 1gn was essentially proved in the recent paper [56] using
the reverse Bonami-Beckner inequality (which is also due to Borell [13]).

Note that in both cases the necessary auxiliary result is valid without any as-
sumptions about low influences. This should not be surprising in the Gaussian case,
since given a multilinear polynomial Q over Gaussians it is easy to define another
multilinear polynomial eQ over Gaussians with exactly the same distribution and
arbitrarily low influences, by lettingeQ.x1;1; : : : ; x1;N ; : : : ; xn;1; : : : ; xn;N /

DQ
�x1;1C � � �C x1;N

N 1=2
; : : : ;

xn;1C � � �C xn;N

N 1=2

�
:

The fact that low influences are not required for the results of [56] is perhaps more
surprising.

4.1. Noise stability in Gaussian space. We begin by recalling some defini-
tions and results relevant for “Gaussian noise stability”. Throughout this section
we consider Rn to have the standard n-dimensional Gaussian distribution, and our
probabilities and expectations are over this distribution.

Let U� denote the Ornstein-Uhlenbeck operator acting on L2.Rn/ by

.U�f /.x/D Ey Œf .�xC
q
1� �2y/�;

where y is a random standard n-dimensional Gaussian. It is easy to see that if f .x/
is expressible as a multilinear polynomial in its n independent Gaussian inputs; that
is,

f .x1; : : : ; xn/D
X
S�Œn�

cS
Y
i2S

xi ;
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then U�f is the multilinear polynomial

.U�f /.x1; : : : ; xn/D
X
S�Œn�

�jS jcS
Y
i2S

xi :

Thus U� acts identically to T� for multilinear polynomials Q over G, the Gaussian
sequence of ensembles.

Next, given any function f W Rn! R, recall that its .Gaussian/ nonincreasing
rearrangement is defined to be the upper semicontinuous nondecreasing function
f � W R! R that is equimeasurable with f ; i.e., for all t 2 R, f � satisfies P Œf >
t�D P Œf � > t� under Gaussian measure.

We now state a result of Borell concerning the Ornstein-Uhlenbeck operator
U� (see also Ledoux’s Saint-Flour lecture notes [27]). Borell uses Ehrhard sym-
metrization to show the following:

THEOREM 4.1 ([14]). Let f; g 2 L2
C
.Rn/. Then for all 0 � � � 1 and all

q � 1, we have EŒ.U�f /q �g�� EŒ.U�f �/q �g��:

Borell’s result is more general and is stated for Lipschitz functions, but stan-
dard density arguments immediately imply the validity of the statement above. One
immediate consequence of the theorem is that S�.f /� S�.f

�/, where we define

(37) S�.f /D EŒf �U�f �D EŒ.Up�f /
2�:

One can think of this quantity as the “(Gaussian) noise stability of f at �”; again,
it is compatible with our earlier definition of S� if f is a multilinear polynomial
over G.

Note that the latter equality in (37) and the fact that Up� is positivity-pre-
serving and linear imply that

p
S� defines an L2 norm on L2.Rn/, dominated

by the usual L2 norm, so that it is a continuous convex functional on L2.Rn/.
The set of all Œ0; 1�-valued functions from L2.Rn/ having the same mean as f is
closed and bounded in the standard L2 norm, and one can easily check that its
extremal points are indicator functions; hence by the Edgar-Choquet theorem (see
[28]; clearly L2.Rn/ is separable, and it has the Radon-Nikodym property since it
is a Hilbert space) we have p

S�.f /� sup
�

p
S�.�/;

where the supremum is taken over all functions � W Rn! f0; 1g such that EŒ��D
EŒf �. By Borell’s result S�.�/ � S�.�

�/, we have S�.f / � S�.��/, where
�� W R! f0; 1g is the indicator function of a halfline with measure �D EŒf �.

Let us introduce some notation:

Definition 4.2. Given � 2 Œ0; 1�, define �� W R! f0; 1g to be the indicator
function of the interval .�1; t �, where t is chosen so that EŒ���D �. Explicitly,
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t D ˆ�1.�/, where ˆ denotes the distribution function of a standard Gaussian.
Furthermore, define ��.�/D S�.��/D P ŒX � t; Y � t �, where .X; Y / is a two
dimensional Gaussian vector with covariance matrix

� 1 �
� 1

�
.

This corollary summarizes the above discussion:

COROLLARY 4.3. Let f W Rn! Œ0; 1� be a measurable function on Gaussian
space with EŒf �D �. Then for all 0� � � 1, we have S�.f /� ��.�/.

This is the result we will use to prove Conjecture 1.1. In general there is
no closed form for ��.�/; however, some asymptotics are known: For balanced
functions we have Sheppard’s formula ��.1=2/ D 1=4C 1=.2�/ arcsin �. Some
other properties of ��.�/ are given in Appendix B.

4.2. Majority Is Stablest. In this section we prove a strengthened form of
Conjecture 1.1. The implications of this result were discussed in Section 2.3.

THEOREM 4.4. Let f W�1�� � ���n! Œ0; 1� be a function on a finite product
probability space, and assume that for each i the minimum probability of any atom
in �i is at least ˛ � 1=2. Write K D log.2=˛/. Further assume that there is a
0 < � �K�CK such that

Inf�log.1=�/=K
i .f /� � for all i .

Here C is a large universal constant. (See Definition 3.7 for the definition of low-
degree influence.) Let �D EŒf �. Then for any 0� � < 1,

S�.f /� ��.�/C �; where � DO
�
K

1��

�
�

log log.1=�/
log.1=�/

:

For the reader’s convenience we record here two facts from Appendix B:

��.
1
2
/D

1

4
C

1

2�
arcsin �;

��.�/� �
2=.1C�/ .4� ln.1=�//��=.1C�/

.1C �/3=2

.1� �/1=2
as �! 0.

Proof. As discussed in Section 3.1, let X be the sequence of ensembles such
that Xi spans the functions on �i , and express f as the multilinear polynomial Q.
We use the invariance principle under Hypothesis 2. We express �D �0 � .1� /2,
where 0 <  � 1 � � will be chosen later. By writing Q.x/D

P
c�x� (with

c0 D �), we see that

S�.Q.X//D
X

.�0 � .1� /2/j� jc2� D S�0..T1�Q/.G//;

where G is the sequence of independent Gaussian ensembles.
Since Q.X/ is bounded in Œ0; 1� the same is true of RD .T1�Q/.X/. In other

words, EŒ�.R/�D 0, where � is the function from (26). Writing S D .T1�Q/.G/,
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we conclude from Theorem 3.20 that EŒ�.S/� � ��.=K/. That is, kS � S 0k22 �
��.=K/, where S 0 is the random variable depending on S defined by

S 0 D

8<:
0 if S � 0,
S if S 2 Œ0; 1�,
1 if S � 1.

Then

jS�0.S/�S�0.S 0/j D jEŒS �U�0S��EŒS 0 �U�0S 0�j

� jEŒS �U�0S��EŒS 0 �U�0S�jC jEŒS 0 �U�0S��EŒS 0 �U�0S 0�j

� .kSk2CkS
0
k2/kS �S

0
k2 � �

�.=K/;

where we have used the fact that U�0 is a contraction on L2.
Writing �0 D EŒS 0�, we see from Cauchy-Schwartz that j���0j � ��.=K/.

Since S 0 takes values in Œ0; 1�, Corollary 4.3 gives S�0.S 0/� ��0.�0/. We thus
conclude

(38) S�.Q.X//D S�0.S/� S�0.S 0/C ��.=K/ � ��0.�0/C ��.=K/:

We can now bound the difference j��.�/���0.�0/j using Lemmas B.6 and B.7 and
Corollary B.8. We get a contribution of 2j���0j � ��.=K/ from the difference
in the � and a contribution of at most O.=.1� �// from the difference in the �.
Thus we have

S�.Q.X//� ��.�/C �
�.=K/

CO.=.1� �//:

We take

 D B �K �
log log.1=�/

log.1=�/
for some large enough constant B such that the condition relating � and  in the
hypothesis of Theorem 3.20 holds. Note that we also have  < 1, by our condition
on � (assuming C is large enough compared to B). The quantity in (38) is then
indeed at most ��.�/C �. �

4.3. It Ain’t Over Till It’s Over. As previously mentioned, we will prove
Conjecture 1.2 using a result due essentially to [56]:

THEOREM 4.5. Let f W f�1; 1gn ! Œ0; 1� have EŒf � D � (with respect to
uniform measure on f�1; 1gn). Then for any 0 < � < 1 and any 0 < � � 1��, we
have

P ŒT�f > 1� ı� < � if ı < ��
2=.1��2/CO.�/;

where

� D

p
c.�/

1� �
�

1p
log.1=�/

and c.�/D � log.e=.1��//:
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This theorem follows from the proof of [56, Th. 4.1]; for completeness we
give an explicit derivation in Appendix C.

Remark 4.6. Since the only fact about f�1; 1gn used in the proof of Theo-
rem 4.5 is the reverse Bonami-Beckner inequality, and since this inequality also
holds in Gaussian space, we conclude that Theorem 4.5 also holds for measurable
functions on Gaussian space f W Rn ! Œ0; 1�. In this setting the result can be
proved using Borell’s Corollary 4.3 instead of using the reverse Bonami-Beckner
inequality.

The first step of the proof of It Ain’t Over Till It’s Over is to extend Theo-
rem 4.5 to functions on arbitrary product probability spaces. Note that if we only
want to solve the problem for functions on f�1; 1gn with the uniform measure,
this step is unnecessary. The proof of the extension is very similar to the proof of
Theorem 4.4. In order to state the theorem, it is helpful to let u > 0 be a constant
such that Theorem 3.20 holds with the bound �u=K .

THEOREM 4.7. Let f W�1�� � ���n! Œ0; 1� be a function on a finite product
probability space, and assume that for each i the minimum probability of any atom
in �i is at least ˛ � 1=2. Let K � log.2=˛/. Further assume that there is a � > 0
such that

Inf�log.1=�/=K
i .f /� � for all i

(recall Definition 3.7). Let �D EŒf �. Then for any 0 < � < 1 there exists �.�; �/
such that if 0 < � < �.�; �/ we have

P ŒT�f > 1� ı�� �

provided

ı < ��
2=.1��2/CC� and � � �.100K=u.1��//.1=.1��/

3CC�/;

where

� D

p
c.�/

1� �
�

1p
log.1=�/

and c.�/D � log.e=.1��//C �

and C > 0 is some constant.

Proof. Without loss of generality we assume that ıD ��
2=.1��2/CC� , as taking

a smaller ı yields a smaller tail probability. We can also assume �.�; �/<1=10. Let
X andQ be as in the proof of Theorem 4.4, and this time decompose �D �0 �.1�/,
where we take  D � � .1� �/2. Note that taking �.�; �/ sufficiently small we have
� <1,  <0:1, and .1��/=.1��0/�2. LetRD .T1�Q/.X/ as before, and let SD
.T1�Q/.Y/, where Y denotes the Rademacher sequence of ensembles (Yi;0 D 1,
Yi;1 D˙1 independently and uniformly random). Since EŒ�.R/�D 0 as before, we
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conclude from Theorem 3.20 that we have EŒ�.S/�� �u=K � �10=.1��/C2C� , i.e.,

(39) kS �S 0k22 � �
10=.1��/C2C� ;

where S 0 is the truncated version of S as in the proof of Theorem 4.4. Now S 0 is
a function f�1; 1gn! Œ0; 1� with mean �0 differing from � by at most �5 (using
Cauchy-Schwartz, as before). This implies that c.�0/�O.c.�//.

Furthermore, our assumed upper bound on ı also holds with �0 in place of �.
This is because

�0
2

1��02
�

�2

1��2
D

1

1��02
�

1

1��2

� .�02� �2/
1

.1��02/2
�

2

.1��0/2
�

8

.1��/2
D 8�:

Thus Theorem 4.5 implies that if C is sufficiently large then

P ŒT�0S 0 > 1� 4ı� < �=2:

This, in turn implies that P ŒT�0S > 1� 2ı� < 3�=4. This follows by (39) since

P ŒT�0S > 1� 4ı��P ŒT�0S 0 > 1� 2ı�� ı�2kT�0S �T�0S 0k22

� ı�2kS �S 0k22:

We now use Theorem 3.20 again, bounding the Lévy distance of .T�Q/.Y/ and
.T�Q/.X/ by �u.1��/=K , which is smaller than ı and �=8. Thus

P Œ.T�Q/.X/ > 1� ı�� P ŒT�f > 1� 2ı�C �=8 < �: �

The second step of the proof of It Ain’t Over Till It’s Over is to use the
invariance principle to show that the random variable V�f (recall Definition 2.6)
has essentially the same distribution as Tp�f .

THEOREM 4.8. Let 0 < � < 1, and let f W �1 � � � � � �n ! Œ0; 1� be a
function on a finite product probability space. Assume that for each i the minimum
probability of any atom in �i is at least ˛ � 1=2. Further assume that there is a
0 < � < 1=2 such that

Inf.f /�log.1=�/=K0

i � � for all i ,

where K 0 D log.2=.˛�.1� �///. Then

dL.V�f; Tp�f /� �
�..1��/=K0/:

Proof. Introduce X and Q as in the proof of Theorems 4.4 and 4.7. We now
define a new independent sequence of orthonormal ensembles X.�/ as follows. Let
V1; : : : ; Vn be independent random variables, each of which is 1 with probability �
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and 0 with probability 1� �. Now define X.�/
D .X

.�/

1 ; : : : ;X
.�/

n / by X .�/

i;0 D 1 for
each i , and X .�/

i;j D �
�1=2ViXi;j for each i and j > 0. It is easy to verify that X.�/

is indeed an independent sequence of orthonormal ensembles. We will also use the
fact that each atom in the ensemble X

.�/

i has weight at least ˛0D ˛ �minf�; 1��g �
˛�.1 � �/. (One can also use Proposition 3.17 to get a slightly better estimate
on K 0).

The crucial observation is now simply that the random variable V�f has pre-
cisely the same distribution as the random variable .Tp�Q/.X

.�//. The reason is
that when the randomness in the Vi D 1 ensembles is fixed, the expectation of the
restricted function is given by substituting 0 for all other random variables Xi;j .
The Tp� serves to cancel the factors ��1=2 that were introduced in the definition
of X .�/

i;j to ensure orthonormality.
It now simply remains to use Theorem 3.20 to bound the Lévy distance of

.Tp�Q/.X
.�// and .Tp�Q/.X/, where here X denotes a copy of this sequence of

ensembles. We use Hypothesis 3 and get a bound of

��..1�
p
�/=K0/

D ��..1��/=K
0/: �

Our generalization of It Ain’t Over Till It’s Over is now simply a corollary of
Theorems 4.7 (with

p
� instead of �) and 4.8. By taking K 0 instead of K in the

upper bound on � and taking ı to have its maximum possible value, we make the
error of

�u..1��/=K
0/
� �.100=.1��//.1=.1��/

3CC�/

from Theorem 4.8; this error is negligible compared to both � and ı below. Note
that for the error bounds in Theorem 4.7, 1�

p
� and 1� � are equivalent up to

constants.

THEOREM 4.9. Let 0 < � < 1, and let f W �1 � � � � � �n ! Œ0; 1� be a
function on a finite product probability space. Assume that for each i the minimum
probability of any atom in �i is at least ˛ � 1=2. Further assume that there is a
0 < � < 1=2 such that

Inf.f /�log.1=�/=K0

i � � for all i ,

where K 0 D log.2=.˛�.1� �///. Let �D EŒf �. Then there exists an �.�; �/ > 0
such that if � � �.�; �/ then

P ŒV�f > 1� ı�� �

provided

ı < ��=.1��/CC� and � � �.100K
0=u.1��//.1=.1��/3CC�/;
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where

� D

p
c.�/

1� �
�

1p
log.1=�/

and c.�/D � log.e=.1��//C �;

where C > 0 is some finite constant.

Remark 4.10. To get V�f bounded away from both 0 and 1 as desired in
Conjecture 1.2, simply use Theorem 4.9 twice, once with f , once with 1�f .

5. Weight at low levels: A counterexample

The simplest version of the Majority Is Stablest result states roughly that
among all balanced functions f W f�1; 1gn! f�1; 1g with small influences, the
Majority function maximizes

P
S �

S Of .S/2 for each �. One might conjecture that
more is true; specifically, that Majority maximizes

P
jS j�d

Of .S/2 for each d D
1; 2; 3; : : : . This is known to be the case for d D 1 [47] and is somewhat suggested
by the theorem of Bourgain [16], which says that

P
jS j�d

Of .S/2 � 1� d�1=2�o.1/

for functions with low influences. An essentially weaker conjecture was made
Kalai [41]:

CONJECTURE 5.1. Let d � 1, and let Cn denote the collection of all functions
f W f�1; 1gn! f�1; 1g that are odd and transitive-symmetric (see Section 2.3.1’s
discussion of [41]). Then

lim sup
n!1

sup
f 2Cn

X
jS j�d

Of .S/2 D lim
n odd!1

X
jS j�d

1Majn.S/
2:

We now show that these conjectures are false: We construct a sequence .fn/ of
completely symmetric odd functions with small influences that have more weight
on levels 1, 2, and 3 than Majority has. By “completely symmetric”, we mean that
fn.x/ depends only on

Pn
iD1 xi ; because of this symmetry our counterexample is

more naturally viewed in terms of the Hermite expansions of functions f W R!
f�1; 1g on one-dimensional Gaussian space.

There are several normalizations of the Hermite polynomials in the literature.
We will follow [52] and define them to be the polynomials orthonormalized with
respect to the one-dimensional Gaussian density function '.x/ D e�x

2=2=
p
2� .

Specifically, we define the Hermite polynomials hd .x/ for d 2 N by

exp.�x��2=2/D
1X
dD0

�d
p
dŠ
hd .x/:

The first few such polynomials are h0.x/D 1, h1.x/D x, h2.x/D .x2� 1/=
p
2,

and h3.x/D .x3� 3x/=
p
6. These polynomials satisfy the orthonormality condi-

tion
R

R
hd .x/hd 0.x/'.x/dx D ıd;d 0 , where ıd;d 0 is Kronecker’s delta.
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We will henceforth consider functions whose domain is R� D R n f0g for sim-
plicity; the value of a function at a single point makes no difference to its Hermite
expansion. Given a function f WR�!R, we write Of .d/ for

R
hd .x/f .x/'.x/dx.

Let us also use the notation Maj for the function that is 1 on .0;1/ and �1 on
.�1; 0/.

THEOREM 5.2. There is an odd function f W R�! f�1; 1g withX
d�3

Of .d/2 � :75913 >
2

�
C

1

3�
D

X
d�3

bMaj.d/2:

Proof. Let t > 0 be a parameter to be chosen later, and let f be the function
that is 1 on .�1;�t � and .0; t/, and �1 on .�t; 0/ and Œt;1/. Since f is odd,
Of .0/D Of .2/D 0. Elementary integration gives

F1.t/D

Z
h1.x/'.x/dx D�e

�t2=2=
p
2�;

F3.t/D

Z
h3.x/'.x/dx D .1� t

2/e�t
2=2=
p
12� I

thus
Of .1/D 2.F1.t/CF1.�t /�F1.0//�F1.1/�F1.�1/

D
p
2=� .1� 2e�t

2=2/;

Of .3/D 2.F1.t/CF1.�t /�F1.0//�F1.1/�F1.�1/

D�
p
1=3� .1� 2.1� t2/e�t

2=2/:

We conclude

(40)
X
d�3

Of .d/2 D
2

�
.1� 2e�t

2=2/2C
1

3�
.1� 2.1� t2/e�t

2=2/2:

As t! 0 or1 we recover the fact, well known in the boolean regime (see e.g. [10]),
that

P
d�3

bMaj.d/2 D 2=� C 1=3� . But the above expression is not maximized
for these t ; rather, it is maximized at t D 2:69647, where the expression becomes
roughly :75913. Fixing this t completes the proof. �

It is now clear how to construct the sequence of completely symmetric odd
functions fn W f�1; 1gn!f�1; 1g with the same property — take fn.x/D f ..x1C
� � �C xn/=

p
n/. The proof that the property holds follows essentially from the fact

that the limits of Kravchuk polynomials are Hermite polynomials. We give a direct
proof of Corollary 5.3 in Appendix D.

COROLLARY 5.3. For n odd, there is a sequence of completely symmetric odd
functions fn W f�1; 1gn! f�1; 1g satisfying Infi .fn/�O.1=

p
n/ for each i , and

lim
n odd!1

X
jS j�3

bfn.S/2 � 0:75913 > 2

�
C

1

3�
D lim
n odd!1

X
jS j�3

1Majn.S/
2:
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In light of this counterexample, it seems we can only hope to sharpen Bour-
gain’s Theorem 2.7 in the asymptotic setting; one might ask whether its upper
bound can be improved to

1� .1� o.1//.2=�/3=2d�1=2;

the asymptotics for Majority.

Appendix A: Hypercontractivity of sequences of ensembles

We now give the proofs of Propositions 3.11 and 3.12. As mentioned, these
are completely straightforward adaptations of the analogous proofs in [39].

Proof of Proposition 3.11. Let Q be a multilinear polynomial over X[Y.
Note that we can write Q.X[Y/ as

P
j cjX�j

Y�j
; where the � are multi-indexes

for X, the � are multi-indexes for Y, and the cj are constants. Then

k.T�Q/.X[Y/kq D k
P
j�
j�j jCj�j jcjX�j

Y�j
kq

D
kT .Y/� .

P
j .�
j�j jcjX�j

/Y�j
/kLq.Y/


Lq.X/

�
kPj .�

j�j jcjX�j
/Y�j
kLp.Y/


Lq.X/

�
kPj .�

j�j jcjX�j
/Y�j
kLq.X/


Lp.Y/

D
kT .X/� .

P
j .cjY�j

/X�j
/kLq.X/


Lp.Y/

�
kPj cjY�j

X�j
kLp.X/


Lp.Y/

D kQ.X[Y/kp;

where the second inequality uses a simple consequence of the integral version of
Minkowski’s inequality and p � q; see [39, Prop. C.4]. �

Proof of Proposition 3.12. Note that if Q D QDd then we obviously have
equality. In the general case, write QD

Pd
iD0Q

Di , and note that

EŒQDi .X/QDj .X/�D 0 for i ¤ j

is easy to check. Thus

kQ.X/kq D
T��Pd

iD0 �
�iQDi .X/

�
q

�
Pd

iD0 �
�iQDi .X/


2

D
�Pd

iD0 �
�2ikQDi .X/k22

�1=2
� ��dkQ.X/k2: �

Let us mention some standard facts about the .2; q; �/-hypercontractivity of
random variables. Let q > 2. If we want X to be .2; q; �/-hypercontractive, we
clearly must assume that EŒjX jq� <1. If X is .2; q; �/-hypercontractive for some
�2 .0; 1/, then EŒX�D 0 and �� .q�1/�1=2. Indeed, it suffices to consider the first



334 ELCHANAN MOSSEL, RYAN O’DONNELL, and KRZYSZTOF OLESZKIEWICZ

and second order Taylor expansions in both sides of the inequality k1C �bXkq �
k1C bXk2 as b! 0. We leave details to the reader.

We now give the proofs of Propositions 3.16 and 3.17, which follow the argu-
ment of Szulga [66, Prop. 2.20]:

Proof of Proposition 3.16. Let X 0 be an independent copy of X and put
Y D X �X 0. By the triangle inequality, kY kq � 2kXkq . Let � be a symmetric
˙1 Bernoulli random variable independent of Y . Note that Y is symmetric, so it
has the same distribution as �Y . Now by Jensen’s inequality, Fubini’s theorem, the
.2; q; .q� 1/�1=2/-hypercontractivity of �, and Minkowski’s inequality, we get

kaC �qXkq � kaC �qY kq D kaC �q�Y kq

� .EY Œ.E�ŒjaC .q� 1/1=2�q�Y j2�/q=2�/1=q

D .EŒ.a2C .q� 1/�2qY
2/q=2�/1=q

D ka2C .q� 1/�2qY
2
k
1=2

q=2
� .a2C .q� 1/�2qkY

2
kq=2/

1=2

D .a2C .kY kq=.2kXkq//
2
�EŒX2�/1=2

� .a2CEŒX2�/1=2 D kaCXk2: �

Proof of Proposition 3.17. Let .X 0; V 0/ be an independent copy of .X; V /,
and put Y D VX �V 0X 0. Then kY kq � 2kV kqkXkq D 2�1=qkXkq and as in the
previous proof we get

kaC �qVXkq � kaC �qY kq � .a
2
C .q� 1/�2qkY k

2
q/
1=2

� .a2C 4.q� 1/�2q�
2=q
kXk2q/

1=2
D kaCVXk2: �

If X is defined on a finite probability space in which probability of all atoms
is at least ˛, then obviously EŒX2�� ˛kXk21, so

EŒjX jq�� kXkq�21 �EŒX2�� .EŒX2�/q=2˛1�q=2:

In particular, if q D 3, then kXk3=kXk2 � ˛�1=6, so that VX is .2; 3; �3/-hyper-
contractive with �3 D 2�3=2˛1=6�1=6.

Let us also point out that if EŒX4� < 1 and X is symmetric, then a di-
rect and elementary calculation shows that X is .2; 4; �4/-hypercontractive with
�4 D min.3�1=2; kXk2=kXk4/ and the constant is optimal. Thus the random
variable X .�/

i;j appearing in the proof of Theorem 4.8 is .2; 4;min.�1=4; 3�1=2//-
hypercontractive if X is the ˙1 Rademacher ensemble; this can be used to get a
smaller value for K 0 if � is close to 1.

Appendix B: Properties of ��.�/

Sheppard’s formula [65] gives the value of ��.1=2/:
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THEOREM B.4. ��.1=2/D 1
4
C

1
2�

arcsin �.

For fixed �, the asymptotics of ��.�/ as �! 0 can be determined precisely;
calculations of this nature appear in [61] and [21].

THEOREM B.5. As �! 0,

��.�/� �
2=.1C�/ .4� ln.1=�//��=.1C�/

.1C �/3=2

.1� �/1=2
:

Proof. This follows from, e.g., [21, Lemma 11.1]; although we have � > 0 as
opposed to � < 0 as in [21], the formula there can still be seen to hold when x D y
(in their notation). �

LEMMA B.6. For all 0� � � 1 and all 0� �1 � �2 � 1,

��.�2/���.�1/� 2.�2��1/:

Proof. Let X and Y be �-correlated Gaussians and write ti Dˆ�1.�i /. Then

��.�2/���.�1/D P ŒX � t2; Y � t2��P ŒX � t1; Y � t1�

� 2P Œt1 �X � t2� D 2.�2��1/: �

LEMMA B.7. Assume 0 < � < 1 and 0 < �1 < �2 < 1, and write

I2 D .��2
.�/��2/=�2:

Then I2 � � and

��2
.�/���1

.�/� 4 �
1Cln.�=I2/
1��2

� I2 � .�2� �1/ :

Proof. Let d D 1 C ln.�=I2/=.1 � �2/: The proof will rely on the fact
that ��.�/ is a convex function of �. This implies in particular that I2 � �.
Moreover, by the mean value theorem it suffices to show that the derivative at
�2 is at most 4dI2. If we write the Hermite polynomial expansion of �� as
��.x/D

P
i ciHi .x/, then ��.�/D

P
i c
2
i �
i , and thus

(41) @

@�
��.�/

ˇ̌̌
�D�2

D

X
i�1

ic2i �
i�1
2 �

X
1�i�dC1

ic2i �
i�1
2 C

X
i�dC1

ic2i �
i�1
2 :

We will complete the proof by showing that both terms in (41) are at most 2dI2.
The first term is visibly at most .d C 1/I2 � 2dI2. As for the second term, the
quantity i�i�12 decreases for i � �2=.1� �2/. Since

d C 1� .2� �/=.1� �/� �2=.1� �2/;

the second term is therefore at most .d C 1/�d2 I2 � .d C 1/�
d
2�. But

�d2 � �
ln.�=I2/=.1��2/
2 � I2=�
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since �1=.1��2/
2 � 1=e for all �2. Thus the second term of (41) is also at most

.d C 1/I2 � 2dI2, as needed. �

Using the fact that �I2 ln I2 is a bounded quantity we obtain:

COROLLARY B.8. For all 0 < � < 1 and 0 < � < 1, if 0 < ı < .1� �/=2 then

��Cı.�/���.�/�
O.1/

1��
� ı:

Appendix C: Proof of Theorem 4.5

Proof. The proof is essentially the same as the proof of the “upper bound” part
of the proof of [56, Th. 4.1]. By way of contradiction, suppose the upper bound on
ı holds and yet P ŒT�f > 1� ıg�� �. Let g be the indicator function of a subset
of fx W T�f .x/ > 1� ıg whose measure is �.

Let hD 1ff�bg, where b D 1=2C�=2. By a Markov argument,

�D EŒf �� .1�EŒh�/b implies EŒh�� 1�EŒf �=b D .1��/=.1C�/:

By another Markov argument, whenever g.x/D 1 we have

T�.1�f / < ı implies T�.h.1� b// < ı implies T�h < ı=.1� b/:

Thus

(42) EŒgT�h�� 2�ı=.1��/:

But by [56, Cor. 3.5] (which is itself a simple corollary of the reverse Bonami-
Beckner inequality),

(43) EŒgT�h�� � � �.
p
˛C�/2=.1��2/;

where ˛ D log.1=EŒh�/= log.1=�/. (In Gaussian space, this fact can also be proved
using Borell’s Corollary 4.3.) Note that since EŒh�� .1��/=.1C�/ we get ˛ �
O.c.�/= log.1=�//, which is also at most 1 since we assume � � 1��. Therefore
the exponent .

p
˛C �/2 is �2CO.

p
˛/. Now (43) implies

(44) EŒgT�h�� � � ��
2=.1��2/

� �O.
p
c.�/= log.1=�/=.1��//

D � � ��
2=.1��2/CO.�/:

Combining (42) and (44) yields a contradiction:

ı � ..1��/=2/ � ��
2=.1��2/CO.�/

D �log.2=.1��//= log.1=�/��
2=.1��2/CO.�/

D ��
2=.1��2/CO.�/: �
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Appendix D: Proof of Corollary 5.3

Proof. We define fn by setting 1� u < n to be the odd integer nearest to t
p
n

(where t is the number chosen in Corollary 5.3) and then taking

fn.x/D

�
1 if jxj 2 Œ1; u� or jxj 2 Œ�n;�.uC 2/�;
�1 if jxj 2 ŒuC 2; n� or jxj 2 Œ�u;�1�;

where jxj denotes
Pn
iD1 xi . This is clearly a completely symmetric odd function.

It is well known that for any boolean function,
Pn
iD1 Infi .fn/ equals the expected

number of pivotal bits for fn in a random input. One can easily see that this is
O.
p
n/. Thus each of fn’s coordinates has influence O.1=

p
n/, by symmetry.

Let p.n; s/ denote the probability that the sum of n independent ˙1 Bernoulli
random variables is exactly s, so

p.n; s/D 2�n
� n
1
2
nC 1

2
s

�
;

and for a set S of integers, let p.n; S/ denote
P
s2S p.n; s/.

By symmetry all of fn’s Fourier coefficients at level d have the same value;
we will write Ofn.d/ for this quantity. Since fn is odd, Ofn.0/ D Ofn.2/ D 0. By
explicit calculation, we have

Ofn.1/D p.n� 1; 0/� 2p.n� 1; uC 1/

and

Ofn.3/D
1
4

�
p.n� 3; f�2; 2g/� 2p.n� 3; 0/

�
�
1
4

�
p.n� 3; f˙.u� 1/;˙.uC 3/g/� 2p.n� 3; f˙.uC 1/g/

�
D�

1

n�1
p.n� 3; 0/C 2

.n� 1/� .uC 1/2

.n� 1/2� .uC 1/2
p.n� 3; uC 1/;

where the last equality is by explicit conversion to factorials and simplification.
Using p.n; t

p
n/D .1C o.1//

p
2=�e�t

2=2n�1=2 as n!1, we conclude

Ofn.1/�
p
2=�.1�2e�u

2=2/ and Ofn.3/�
p
2=�.�1C2.1�u2/e�u

2=2/n�3=2:

But the weight of fn at level 1 is n � Ofn.1/2 and the weight of fn at level 3 is�
n
3

�
� Ofn.3/

2 � .n3=6/ Ofn.3/
2; thus the above imply (40) from Theorem 5.2 in the

limit n!1 and the proof is complete. �
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