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Abstract

We give an explicit description of the Mirković-Vilonen cycles on the affine
Grassmannian for arbitrary complex reductive groups. We also give a combina-
torial characterization of the MV polytopes. We prove that a polytope is an MV
polytope if and only if it is a lattice polytope whose defining hyperplanes are paral-
lel to those of the Weyl polytopes and whose 2-faces are rank 2 MV polytopes. As
an application, we give a bijection between Lusztig’s canonical basis and the set of
MV polytopes.
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1. Introduction

1.1. Background. Let G be a complex connected reductive group and let G_

be its Langlands dual group. Let KD C..t// denote the field of Laurent series and
let OD CŒŒt �� denote the ring of power series. The quotient Gr D G.K/=G.O/ is
called the affine Grassmannian. The geometric Satake correspondence of Lusztig
[Lus83], Ginzburg [Gin], Beilinson-Drinfeld [BD], and Mirković-Vilonen [MV07]
provides a connection between the geometry of Gr and the representation theory
of G_.

THEOREM A (Lusztig). For each � 2XC� , the set of dominant weights of G_,
there exists a subvariety Gr� of Gr such that IH.Gr�/Š V�.

Here IH.Gr�/ denotes the intersection homology of Gr� and V� denotes the
irreducible representation of G_ of highest weight �.
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As a simple example, take G D GLn (in this case G_ D GLn) and � D
.1; : : : ; 1; 0; : : : ; 0/ (where there are k 1s). Then Gr� Š Gr.k; n/, the usual Grass-
mannian of k-planes in Cn. Since Gr.k; n/ is smooth, IH.Gr�/ D H.Gr.k; n//.
Recall that the homology of Gr.k; n/ has a basis given by the Schubert varieties,
which are naturally indexed by k element subsets of f1; : : : ; ng.

In this case, the right-hand side V� is the representation of GLn on ƒkCn,
which also has a basis indexed by k-element subsets of f1; : : : ; ng. The geometric
Satake correspondence says that this is not a coincidence, but rather part of a larger
pattern which holds for all finite-dimensional representations of complex reductive
groups.

Mirković-Vilonen extended Lusztig’s work as follows.

THEOREM B (Mirković-Vilonen). There exists a family of subvarieties of the
affine Grassmannian, called Mirković-Vilonen cycles, such that the subset lying in
Gr� forms a basis for IH.Gr�/.

Hence we get a basis for V� indexed by MV cycles. In the above example, the MV
cycles are exactly the Schubert varieties.

These theorems motivate the following question:

QUESTION 1. Can we use the MV cycles in Gr� to understand the combina-
torics of bases for the representation V�?

In our simple example, we can use the Schubert varieties in Gr.k; n/ to see
that ƒkCn has a basis indexed by the k element subsets of f1; : : : ; ng.

Some attempts have been made to give a combinatorial description of the MV
cycles. The problem is that the MV cycles are mysterious, since they are defined
as the components of intersections of opposite “semi-infinite orbits”. Gaussent-
Littelmann [GL05] associated an MV cycle to each Littelmann path, by considering
certain resolutions of Gr�.

A different approach is due to Anderson [And03]. He proposed understanding
MV cycles by looking at their moment polytopes, which he called MV polytopes.
Anderson used the above results of Lusztig and Mirković-Vilonen to show that MV
polytopes could be used to count weight and tensor product multiplicities for G_.
However, he could not give a characterization of the MV polytopes.

Anderson-Kogan [AK04] studied MV cycles for GLn by means of the lattice
model for Gr . They gave a recipe for producing MV cycles and polytopes for GLn,
but not an explicit description of the cycles and polytopes.

1.2. Main result. In this paper, we give an explicit combinatorial description
of the MV cycles and polytopes uniform across all types. We begin with the notions
of “pseudo-Weyl polytope” and “GGMS stratum” (see ��2.3, 2.4). A pseudo-Weyl
polytope is a lattice polytope whose defining hyperplanes are parallel to those of
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the Weyl polytopes. A GGMS stratum, whose moment map image is a pseudo-
Weyl polytope, is the intersection of semi-infinite cells, one for each element of
the Weyl group. A pseudo-Weyl polytope and a GGMS stratum are each described
by a collection of integers, one for each “chamber weight”. On the polytope side,
these integers give the positions of the defining hyperplanes, while on the GGMS
stratum side, they are the values of certain constructible functions, denoted D

(�2.5). More concretely, if

�
M


�

2�

is such a collection of integers, then

P.M�/ WD f˛ 2 tR W h˛; 
i �M
 for all 
g;

A.M�/ WD fL 2 Gr W D
 .L/DM
 for all 
g

are the corresponding pseudo-Weyl polytope and GGMS stratum. (Here � is the
set of chamber weights which are the Weyl orbits of the fundamental weights.)

The important point is to determine for which collections of integers is the
closure of the resulting GGMS stratum an MV cycle. The key idea is that our con-
structible functions are closely related to the valuations of the generalized minors
of Berenstein-Zelevinsky [BZ97] and that the Plücker relations hold among these
generalized minors. Thus we are lead to the tropical form of these relations, which
is obtained by replacing C with min and � with C in these relations (see �3.2).

THEOREM C (Theorem 3.1). If M� satisfies the “tropical Plücker relations”
and certain “edge inequalities”, then A.M�/ is an MV cycle and P.M�/ is an MV
polytope. Moreover all MV cycles and polytopes arise this way.

In particular, this proves that the process of associating an MV polytope to
any MV cycle is a bijection (this fact was implicit in [And03]).

The following corollary follows from the form of the “tropical Plücker rela-
tions”.

THEOREM D. A pseudo-Weyl polytope is an MV polytope if and only if every
2-face is an MV polytope of the appropriate rank 2 group. The MV polytopes for
SL3 and Sp4 are given in Figures 2 and 3.

Sections 4 and 5 are devoted to the proof of Theorem 3.1. In Section 4,
we explain how each reduced word i for w0 gives a decomposition of the affine
Grassmannian into irreducible pieces according to i-Lusztig datum. We prove
(Th. 4.2) that the closures of these pieces are the MV cycles. In this section, we use
the results of Berenstein-Fomin-Zelevinsky [BFZ96], [BZ97], [FZ99] concerning
generalized minors. In Section 5, we consider the overlap of decompositions for
different i. The key is first to consider reduced words i; i0 which differ by a braid
move (�5.1). Here we use a result of Lusztig and Berenstein-Zelevinsky on the
comparison between different parametrizations of the upper triangular subgroup
of G. Using this knowledge, we are able to prove that the MV cycles are as
described in Theorem 3.1.
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1.3. Applications and relation to other work. After proving this main theo-
rem, we give a number of applications. First we consider the problem of decom-
posing MV polytopes under Minkowski sum (�6). In low rank cases, Anderson
[And03] gave certain “prime” MV polytopes which he conjectured generated all
the MV polytopes under Minkowski sums. We show that for any group G, there
exists such a finite set of prime MV polytopes and moreover we show how to find
these prime polytopes (Th. 6.2).

The collections M� in Theorem 3.1 are called Berenstein-Zelevinsky data.
They were first introduced in [BZ01] where they indexed Lusztig’s canonical basis1

for U_
C

. Thus, we have bijections

(1) B ! P !M

where B denotes the canonical basis, P denotes the set of MV polytopes, and
M denotes the set of MV cycles. In [Kam07], we show that these bijections are
isomorphisms of crystals with respect to the Kashiwara-Lusztig crystal structure
on the canonical basis and the Braverman-Finkelberg-Gaitsgory crystal structure
on the set of MV cycles.

Another important application of our main result is to answer Question 1.
Using the work of Mirković-Vilonen [MV00] and Anderson [And03], we give a
combinatorial description of the BZ data which index the MV basis for V� (Th. 8.3).
In [BZ01], Berenstein-Zelevinsky gave the BZ data which index the canonical basis
for V�. These two sets are the same, even though there is a subtle difference in
their descriptions (see the comments after Th. 8.5). Finally, we use the work of
Anderson to give a tensor product multiplicity formula in terms of counting BZ
data.

There is a close connection between our work and the Anderson-Kogan de-
scription of MV cycles and polytopes for GLn. In fact, their work served as an
important source of motivation. The details of this connection are explained in
Section 9. In particular, we show that their methods of producing MV cycles and
polytopes from Kostant pictures fit into our framework (Ths. 9.8 and 9.12).

1.4. Acknowledgements. I would first like to thank my advisor Allen Knutson.
His encouragement and suggestions have proved valuable at many key stages of
this project.

I thank Alexander Braverman and Peter Littelmann for lectures and conversa-
tions which led me to start thinking about MV cycles. I am grateful to David Speyer
for sharing an idea that was crucial to the beginning of this work. I also thank Jared
Anderson for beginning the study of MV polytopes and for many conversations

1In the case of MV cycles, the tropical Plücker relations appear naturally (see §3.2), whereas their
appearance in [BZ01] to describe the canonical basis is more mysterious.
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and ideas. In thinking about MV cycles and polytopes, I also benefited from con-
versations with David Ben-Zvi, Arkady Berenstein, Edward Frenkel, Tom Graber,
André Henriques, Misha Kogan, Ivan Mirković, Scott Morrison, David Nadler,
Arun Ram, Bernd Sturmfels, Peter Tingley, Kari Vilonen, Soroosh Yazdani, and
Andrei Zelevinsky.

I am especially grateful to Allen Knutson and Peter Tingley for their careful
reading of this text.

During this work, I was supported by an NSERC postgraduate scholarship.

2. Main definitions

2.1. Notation. If G is a complex, connected, reductive group, then its affine
Grassmannian is the disjoint union of �1.G/ many copies of the affine Grassman-
nian of the simply-connected semisimple group with the same root system as G.
So here we only consider the case G connected, simply connected, semisimple.
As another simplification, we consider only the case of G singly and doubly-laced.
Extending our results to include G2 factors is quite simple; it just requires including
the extra cases of aij D�3 and aj i D�3 in the statement of the tropical Plücker
relations (�3.2) and in Propositions 5.1 and 5.2. The case aij D �3 appears in
[BZ97] and the case aj i D�3 can be easily derived from there.

Let G be a connected, simply connected, semisimple, complex group.
Let T be a maximal torus of G and let X�DHom.T;C�/; X�DHom.C�; T /

denote the weight and coweight lattices of T . Let ��X� denote the set of roots
of G. Let W DN.T /=T denote the Weyl group.

Let B be a Borel subgroup of G containing T . Let ˛1; : : : ; ˛r and ˛_1 ; : : : ; ˛
_
r

denote the simple roots and coroots of G with respect to B . Let N denote the
unipotent radical of B . Let ƒ1; : : : ; ƒr be the fundamental weights. Let I D
f1; : : : ; rg denote the vertices of the Dynkin diagram of G. Let aij D h˛_i ; j̨ i

denote the Cartan matrix. Let � WD
P
ƒi ; �

_ WD
P
ƒ_i be the Weyl and dual

Weyl vectors.
Let s1; : : : ; sr 2W denote the simple reflections. Let e denote the identity in

W and let w0 denote the longest element of W . Let m denote the length of w0
or equivalently the number of positive roots. We will also need the Bruhat order
on W , which we denote by �.

We also use � for the usual partial order on X�, so that � � � if and only
if �� � is a sum of positive coroots. More generally, we have the twisted partial
order �w , where ��w � if and only if w�1 ��� w�1 � �.

Let tR WDX�˝R (the Lie algebra of the compact form of T ). For each w, we
extend �w to a partial order on tR, so that ˇ �w ˛ if and only if hˇ�˛;w �ƒi i � 0
for all i .

For each i 2 I , let  i W SL2!G denote the i th root subgroup of G.
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For w 2 W , let w denote the lift of w to G, defined using the lift of si WD
 i

��
0 1
�1 0

��
.

A reduced word for an element w 2W is a sequence of indices iD .i1; : : : ; ik/
2 I k such that w D si1 � � � sik is a reduced expression.

Let kpf denote the Kostant partition function on X�, so that kpf.�/ is the
number of ways to write � as a sum of positive coroots.

If X is any variety, we write Comp.X/ for the set of components of X .

2.2. Affine Grassmannian. For the purposes of this paper, it will be conve-
nient to write the affine Grassmannian as the left quotient Gr DG.O/ nG.K/. We
view Gr as an ind-scheme over C whose set of C points is G.O/ nG.K/. Similarly,
we view G.K/; N.K/;Km as ind-schemes over C. More explicitly, they are the
results of applying the formal loop space functor to G;N;Cm. For more details,
see [FBZ04, ��11.3.3, 20.3.3].

A coweight � 2 X� gives a homomorphism C�! T and hence an element
of Gr . We denote the corresponding element t�. It is easy to see that these t� are
the fixed points for the action of T .C/ on Gr .

For w 2W , letNw DwNw�1. For w 2W and �2X� define the semi-infinite
cells

(2) S�w WD t
�Nw.K/:

To a certain extent, these semi-infinite cells behave like the Schubert cells on a
finite-dimensional flag variety. In particular, they each are attracting cells for a
certain C� action on Gr . The choice of w 2W gives us a map w � �_ W C�! T

and we have

(3) S�w D fL 2 Gr W lim
s!1

L � .w � �_/.s/D t�g:

The semi-infinite cells have the simple containment relation (see [MV00])

(4) S
�
w D

[
��w�

S�w :

LEMMA 2.1. If S�w \S�v ¤∅ then � �w �.

Proof. Let L 2 S�w \S�v . Then by (3), t� D lims!1L � .v ��_/.s/. Since S�w
is T -invariant, this shows that t� 2 S�w . So by (4), � �w �. �

Let �1; �2 be coweights with �1 � �2. Following Anderson [And03], a
component of S�1

e \S
�2
w0

is called an MV cycle of coweight .�1; �2/. It is well-
known that this intersection is finite-dimensional. (In fact, it is known that this
intersection has pure dimension h�2��1; �i, but we will not need this fact.)

Note that X� acts on Gr by � � L WD L � t� . Since T normalizes Nw , we
see that � � S�w D S

�C�
w . Thus, if A is a component of S�1

e \S
�2
w0

, then � �A is
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a component of S�1C�
e \S

�2C�
e . So X� acts on the set of all MV cycles. The

orbit of an MV cycle of coweight .�1; �2/ is called a stable MV cycle of coweight
�2��1. Note that a stable MV cycle of coweight � has a unique representative
of coweight .�; �C�/ for any coweight �.

Let M denote the set of stable MV cycles and let M.�/ denote the set of those
of coweight �. It is well-known that there are kpf.�/ stable MV cycles of coweight
� (for example this follows from [BFG06, �13], or from [And03]).

Following Anderson [And03], given a T -invariant closed subvariety A of the
affine Grassmannian, let ˆ.A/� tR be the convex hull of f� 2X� W t� 2 Ag. By
[And03], this is the moment polytope for the T action on the affine Grassmannian.
For example, by (4), we see that

ˆ.S
�
w/D C

�
w WD f˛ 2 tR W ˛ �w �g D f˛ W h˛;w �ƒi i � h�;w �ƒi i for all ig:

If A is an MV cycle of coweight .�1; �2/, then we say that ˆ.A/ is an MV
polytope of coweight .�1; �2/. The action of X� on the set of MV cycles gives an
action of X� on the set of MV polytopes. In fact, it is easy to see that � �P DP C�.
The orbit of an MV polytope of coweight .�1; �2/ is called a stable MV polytope
of coweight �2��1. Let P denote the set of stable MV polytopes.

2.3. Pseudo-Weyl polytopes. We will start our investigation by examining a
larger family of polytopes, called pseudo-Weyl polytopes. We will show how to
pick out the MV polytopes from the pseudo-Weyl polytopes. The idea that all MV
polytopes should be pseudo-Weyl polytopes is due to Anderson.

For �2XC� , W�D conv.W ��/� tR is called the �-Weyl polytope. Recall that
the Weyl polytope W� can be described in three different ways. It is the convex
hull of the orbit of �, it is the intersection of translated and reflected cones, and it
is the intersection of half spaces. In particular,

W� D
\
w

Cw ��w D f˛ 2 tR W h˛;w �ƒi i � hw0 ��;ƒi i for all w 2W and i 2 I g:

Following Berenstein-Zelevinsky [BZ97], we call a weight w �ƒi a chamber weight
of level i . So the chamber weights � WD

S
w2W;i2I w �ƒi are dual to the hyper-

planes defining any Weyl polytope.
Suppose we are given a collection of coweights �� D .�w/w2W such that

�v �w �w for all v;w 2W . Then we can form the polytope

P.��/ WD
\
w

C�w
w :

A pseudo-Weyl polytope is any polytope of this form.
Pseudo-Weyl polytopes also admit a description in terms of intersecting half

spaces.
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Let M� D
�
M


�

2�

be a collection of integers, one for each chamber weight.
Given such a collection, we can form

P.M�/ WD f˛ 2 tR W h˛; 
i �M
 for all 
 2 �g:

This is the polytope made by translating the hyperplanes defining the Weyl poly-
topes to distances M
 from the origin.

PROPOSITION 2.2. Let �� D
�
�w

�
w2W

be a collection of coweights such
that �v �w �w for all v;w. Then the set of vertices of P.��/ is the collection ��
(which may have repetition).

A pseudo-Weyl polytope has defining hyperplanes dual to the chamber
weights. In particular, if P is a pseudo-Weyl polytope with vertices ��, then
P D P.M�/ where

(5) Mw �ƒi
D h�w ; w �ƒi i:

Moreover, the M� satisfy the following condition which we call the edge in-
equalities. For each w 2W and i 2 I ,

(6) Mwsi �ƒi
CMw �ƒi

C

X
j¤i

aj iMw �ƒj
� 0:

Conversely, suppose that a collection of integers
�
M


�

2�

satisfies the edge
inequalities. Then the polytope P.M�/ is pseudo-Weyl polytope with vertices given
by

(7) �w D
X
i

Mw �ƒi
w �˛_i :

Figure 1 shows an example of a pseudo-Weyl polytope for G D SL3 with
vertices and chamber weights labelled.

µe µs1

µs1s2

µs1s2s1
µs2s1

µs2

Λ1

Λ2

s1·Λ1

s2·Λ2

s2s1·Λ1

s1s2·Λ2

Figure 1. A pseudo-Weyl polytope for SL3.
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In Appendix A, we will introduce the notion of dual fan of a polytope and will
show that pseudo-Weyl polytopes are exactly those lattice polytopes whose dual
fan is a coarsening of the Weyl fan. We will also give a proof of Proposition 2.2
(see the remarks at the end of �A.5).

Let P be a pseudo-Weyl polytope, P D conv.��/D P.M�/. For any w 2W ,
i 2 I , there is an edge connecting �w and �wsi . We have

(8) �wsi ��w D c w �˛
_
i ; where c D�Mw �ƒi

�Mwsi �ƒi
�

X
j¤i

aj iMw �ƒj
:

We call c the length of the edge from �w to �wsi . Note that it is the negative of
the left-hand side of (6).

2.4. GGMS strata. The geometric version of the pseudo-Weyl polytopes are
the Gelfand-Goresky-MacPherson-Serganova (GGMS) strata on the affine Grass-
mannian. These GGMS strata will be our candidates to be MV cycles. These
GGMS strata on the affine Grassmannian were first considered as potential MV
cycles by Anderson-Kogan [AK04].

Given any collection �� D
�
�w

�
w2W

of coweights, we can form the GGMS
stratum

(9) A.��/ WD
\
w2W

S�w
w :

By Lemma 2.1, this intersection is empty unless �v �w �w for all v;w. So
we will only consider such collections.

We will prove that each MV cycle is the closure of A.��/ for an appropri-
ate ��. Once we know which of these are MV cycles, we will also know the
MV polytopes, since we have the following easy lemma, which is a version of
Theorem D from [AK04].

LEMMA 2.3. Let �� be as above. Thenˆ
�
A.��/

�
D conv.��/, or A.��/D∅.

Proof. LetX DA.��/. Assume thatX is nonempty. Let P denote the moment
polytope of X . We know that P is the convex hull of the set f� 2X� W t� 2Xg.

For each w 2W consider the one parameter subgroup w � �_ W C�! T . Let
L 2 A.��/. Since X is closed and T -invariant, lims!1L � .w � �_/.s/ 2 X . But
since L 2 S�w

w , we see that lims!1L � .w � �_/.s/D t�w . Hence t�w 2X for all
w 2W . Hence conv.��/� P .

Conversely, if t� 2 X , then t� 2 S�w
w for each w 2W . So � 2 C�w

w . Hence
� 2\wC

�w
w . Since \wC

�w
w D conv.��/ is convex, this shows that P � conv.��/.

�

For each L 2 Gr , let P.L/ denote the pseudo-Weyl polytope corresponding
to the GGMS stratum containing L.
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2.5. The functions D
 . We now introduce constructible functions on the
affine Grassmannian whose joint level sets are the GGMS strata. These functions
are new, but were motivated by the work of Speyer [Spe05].

If U is a vector space over C, the vector space U ˝ K has a filtration by
� � � �U ˝ tO�U ˝O�U ˝ t�1O� � � � . We use this filtration to define a function
val on U ˝K, by val.u/D k if u 2 U ˝ tkO and u … U ˝ tkC1O.

Fix a high weight vector vƒi
in each fundamental representation Vƒi

of G.
For each chamber weight 
 Dw �ƒi , let v
 Dw �vƒi

. Since G acts on Vƒi
, G.K/

acts on Vƒi
˝K.

For each 
 2 � define the function D
 by:

(10) D
 W Gr! Z; Œg� 7! val.g � v
 /:

This gives a well-defined function on Gr D G.O/ nG.K/, since if g 2 G.O/
and u 2 Vƒi

˝K, then val.g �u/D val.u/.
The functions D
 have a simple structure with respect to the semi-infinite

cells. If 
 D w �ƒi , then v
 is invariant under Nw.K/. This immediately implies
the following lemma.

LEMMA 2.4. For each w 2W , the function Dw �ƒi
takes the constant value

h�;w �ƒi i on S�w . In fact,

S�w D fL 2 Gr W Dw �ƒi
.L/D h�;w �ƒi i for all ig:

Let M� be a collection of integers, one for each chamber weight. Then we
consider the joint level set of the functions D�,

(11) A.M�/ WD fL 2Gr W D
 .L/DM
 for all 
 2 �g:

Let �� be a collection of coweights describing a pseudo-Weyl polytope. Let
M� be the corresponding collection of integers defined by (5). Then by Lemma 2.4,
we have two descriptions of the GGMS stratum: A.��/D A.M�/.

By Proposition 2.2, we also have two different descriptions of the pseudo-
Weyl polytope: conv.��/D P.M�/.

If the GGMS stratum is nonempty, then the GGMS stratum and the pseudo-
Weyl polytope are related in two different ways:

A.��/D A.M�/D fL 2 Gr W P.L/D conv.��/D P.M�/g;

ˆ
�
A.��/

�
Dˆ

�
A.M�/

�
D conv.��/D P.M�/;

where the first line of equations is by the definition of P.L/ and the second is by
Lemma 2.3.
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3. BZ data and MV cycles

Now we will give necessary and sufficient conditions on a collection M� for
A.M�/ to be an MV cycle.

3.1. Generalized minors. For this purpose, it is necessary to understand bet-
ter the functions D�. To that end, we consider the generalized minors of Berenstein-
Zelevinsky [BZ97]. For each chamber weight 
 of level i , they introduced the
function

(12) �
 WG! C; g 7! hg � v
 ; v�ƒi
i

(note that v�ƒi
2 V�w0�ƒi

D V ?ƒi
).

When G D SLn, a chamber weight of level i is just an i element subset of
f1; : : : ; ng and �
 .g/ is the minor of g using the first i rows and column set 
 .

The function D
 on the affine Grassmannian is closely related to the valuation
of �
 . In general, one can see that val.�
 .g//� D
 .Œg�/ (see the remarks at the
beginning of �4.6). We will show (in the course of the proof of Th. 4.5) that if
L 2 Gr , then there exists g 2 G.K/ such that Œg� D L and D
 .L/ D val.�
 .g//
for all 
 .

3.2. Tropical Plücker relations. In [BZ97], Berenstein-Zelevinsky established
certain three-term Plücker relations among these generalized minors. As our func-
tions D
 are closely related to the valuation of these generalized minors, we would
expect some relations among them coming from the tropical Plücker relations.

In general, the process of passing from relations among Laurent series to
relations among integers using val is called tropicalization (see [SS04]). Note that
if a; b 2 K, then

val.ab/D val.a/C val.b/; val.aC b/�min.val.a/; val.b//;

with equality holding in the second equation as long as the leading terms of a and
b do not cancel. So if a; b; c; d 2 K satisfy the equation a D .bC c/d , then the
naive form of the tropicalization is

ADmin.B; C /CD

where A;B;C;D denote the valuations of a; b; c; d .
We will show that this naive tropicalization is enough to understand the values

of the D
 on an open subset of each MV cycle. This motivates the following defi-
nition which originally appeared (though with a different motivation) in [BZ01].

Let w 2 W; i; j 2 I be such that wsi > w;wsj > w, i ¤ j . We say that a
collection

�
M


�

2�

satisfies the tropical Plücker relation at .w; i; j / if aij D 0,
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(i) if aij D aj i D�1, then

(13) Mwsi �ƒi
CMwsj �ƒj

Dmin.Mw �ƒi
CMwsisj �ƒj

;Mwsj si �ƒi
CMw �ƒj

/I

(ii) if aij D�1; aj i D�2, then

(14)

Mwsj �ƒj
CMwsisj �ƒj

CMwsi �ƒi
Dmin

�
2Mwsisj �ƒj

CMw �ƒi
;

2Mw �ƒj
CMwsisj si �ƒi

;

Mw �ƒj
CMwsj sisj �ƒj

CMwsi �ƒi

�
;

Mwsj si �ƒi
C2Mwsisj �ƒj

CMwsi �ƒi
Dmin

�
2Mw �ƒj

C2Mwsisj si �ƒi
;

2Mwsj sisj �ƒj
C2Mwsi �ƒi

;

Mwsisj si �ƒi
C2Mwsisj �ƒj

CMw �ƒi

�
I

(iii) if aij D�2; aj i D�1, then
(15)
Mwsj si �ƒi

CMwsi �ƒi
CMwsisj �ƒj

Dmin
�
2Mwsi �ƒi

CMwsj sisj �ƒj
;

2Mwsisj si �ƒi
CMw �ƒj

;

Mwsisj si �ƒi
CMw �ƒi

CMwsisj �ƒj

�
;

Mwsj �ƒj
C2Mwsi �ƒi

CMwsisj �ƒj
Dmin

�
2Mwsisj si �ƒi

C2Mw �ƒj
;

2Mw �ƒi
C2Mwsisj �ƒj

;

Mw �ƒj
C2Mwsi �ƒi

CMwsj sisj �ƒj

�
:

We say that a collectionM�D
�
M


�

2�

satisfies the tropical Plücker relations
if it satisfies the tropical Plücker relation at each .w; i; j /.

3.3. BZ data. A collection
�
M


�

2�

is called a BZ (Berenstein-Zelevinsky)
datum of coweight .�1; �2/ if:

(i) M� satisfies the tropical Plücker relations.

(ii) M� satisfies the edge inequalities (6).

(iii) Mƒi
D h�1; ƒi i and Mw0�ƒi

D h�2; w0 �ƒi i for all i .

The corresponding pseudo-Weyl polytope P.M�/ will have lowest vertex
�e D �1 and highest vertex �w0

D �2.
Our main result, which will be proved in Sections 4 and 5, is the following

characterization of MV cycles and polytopes.
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THEOREM 3.1. Let M� be a BZ datum of coweight .�1; �2/. Then A.M�/ is
an MV cycle of coweight .�1; �2/, and each MV cycle arises this way for a unique
BZ datum M�.

Hence a pseudo-Weyl polytope P.M�/ is an MV polytope if and only if M�
satisfies the tropical Plücker relations.

In general if Y �X is irreducible and f WX ! S is a constructible function,
then there is a unique value s 2 S such that f �1.s/\ Y is dense in Y . In this
situation, s is called the generic value of f on Y .

Using this language, Theorem 3.1 says that if A is an MV cycle and if M
 is
the generic value of D
 on A for each 
 , then M� is a BZ datum.

3.4. MV polytopes. In the case of G D SL3, it is possible to give a very
explicit description of the BZ data and MV polytopes. In this case we have � D
f1; 2; 3; 12; 13; 23g where we use 2 as shorthand for .0; 1; 0/ 2X�, 23 for .0; 1; 1/,
etc. There is only one tropical Plücker relation (which occurs at .wD1; iD1; jD2/),

(16) M2CM13 DminfM1CM23;M3CM12g:

Translated into the world of polytopes, we note that pseudo-Weyl polytopes
for SL3 are hexagons with every pair of opposite sides parallel and all sides meeting
at 120ı. The above relation (16) shows that a pseudo-Weyl polytope is an MV
polytope if and only if the distance between the middle pair of opposite sides is the
maximum of the distances between the other two pairs of opposite sides. Hence
there are two possible forms for SL3 MV polytopes, depending on which distance
achieves this maximum. Here are examples of each of the two kinds (where �1
marks the e vertex and �2 marks the w0 vertex).

µ1

µ2

µ2

µ1

Figure 2. The SL3 MV polytopes.

In the case of G D Sp4, there are two equivalent tropical Plücker relations
(occurring at .w D 1; i D 1; j D 2/ and at .w D 1; i D 2; j D 1/). Examining
the possible cases in either (14) or (15) shows there are the following four possible
types of polytopes (Figure 3).
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µ1

µ2

µ1
µ1 µ1

µ2 µ2

µ2

Figure 3. The Sp4 MV polytopes.

In each case, there are certain interior edges going in root directions and con-
necting pairs of vertices. These edges are shown by dotted lines in the above
pictures. The vertices connected by these edges are never the highest or lowest
vertices. Also, the edges in a particular picture do not cross. Moreover, we see that
for SL3 and Sp4 there is a 1-1 correspondence between maximal such arrangements
and types of MV polytopes. We do not have a good theoretical explanation for this
phenomenon.

Each tropical Plücker relation concerns the placement of the hyperplanes in-
cident to a particular 2-face of the pseudo-Weyl polytope. Hence we see that if
rank.G/ > 2, then a pseudo-Weyl polytope is an MV polytope if and only if all of
its 2-faces are MV polytopes. So a pseudo-Weyl polytope is an MV polytope if and
only if all of its 2-faces are rectangles (the MV polytopes for SL2 � SL2) or one
of the above types. More generally, this shows that any face of an MV polytope is
an MV polytope. It is possible to understand this fact by using the restriction map
qJ introduced by Braverman-Gaitsgory [BG01] and further discussed [Kam07].

A small caveat is in order. Each MV polytope comes with a labelling of its
vertices by Weyl group elements. When we look at a face of an MV polytope,
this induces a labelling of the elements of that face by the corresponding Weyl
group. On the other hand, this labelling is automatic, because it is the only labelling
consistent with its presentation as a pseudo-Weyl polytope (for example the “e”
vertex always has to be the lowest weight vertex). When we say that a face is an MV
polytope, we really mean that we are considering this face along with its induced
labelling. This is important because as can be seen from SL3 MV polytopes, the
rotation/reflection of an MV polytope is not necessarily an MV polytope.

4. Lusztig data decomposition

4.1. Reduced words and paths. Fix a reduced word i D .i1; : : : ; ip/ for an
element w 2W . The word i determines a sequence of distinct Weyl group elements
wi
k
WD si1 � � � sik and distinct positive coroots ˇi

k
WD wi

k�1
� ˛_ik , k D 1 : : : p. In

particular, when w D w0, we get all the positive coroots this way.
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We say that a chamber weight 
 is an i-chamber weight if it is of the form
wi
k
�ƒj for some k; j . We write � i for the set of all i-chamber weights and let


 i
k
D wi

k
�ƒik .

Because of the relationship sj �ƒi Dƒi for j ¤ i , it is fairly easy to see that
� i consists of mC r elements: the 
 i

k
and the fundamental weights (see [BZ97,

Prop 2.9]).
It is worth keeping in mind the polytope combinatorics associated to this

choice of reduced word. Let † WDW�_ be the �_-Weyl polytope. We will refer to
this polytope as the permutahedron. For each w 2W , it has a vertex ww0 ��_ which
we call the w vertex of †. For each w 2W and i 2 I , there is an edge connecting
the w vertex and the wsi vertex. Understanding the faces of the permutahedron is
enough to understand the faces of any pseudo-Weyl polytope since there is a map
from the set of faces of the permutahedron onto the set of faces of any pseudo-Weyl
polytope (see Appendix A).

A reduced word i determines a distinguished path

wi
0 D e; w

i
1 D si1 ; w

i
2; : : : ; w

i
m D w

through the 1-skeleton of †. The kth leg of this path is the vector wi
k�1
���wi

k
��

D ˇi
k

. The i-chamber weights are exactly those dual to hyperplanes incident to the
vertices along this path.

Example 1. Consider G D SL3. Let iD .1; 2; 1/, then

wi
1 D 213; w

i
2 D 231; w

i
3 D 321;

and
ˇi
1 D .1;�1; 0/; ˇ

i
2 D .1; 0;�1/; ˇ

i
3 D .0; 1;�1/:

Also,

 i
1 D 2; 


i
2 D 23; 


i
3 D 3;

where we write .0; 1; 0/ as 2, .0; 1; 1/ as 23, etc.
The fundamental weights 1; 12 are also i-chamber weights, so in fact every

chamber weight is an i-chamber weight except for 13.
In Figure 4, we show the permutahedron for SL3 along with the distinguished

path corresponding to i and the hyperplanes defined by each chamber weight.

4.2. Lusztig data. Let i D .i1; : : : ; im/ be a reduced word for w0. If P D
conv.��/ is a pseudo-Weyl polytope, we also get a distinguished path �e; �si1 ,
�si1si2 ; : : : ; �w0

through the 1-skeleton of P . Let n1; : : : ; nm be the sequence of
lengths of the edges of this path. We call the vector .n1; : : : ; nm/ the i-Lusztig
datum of P.

Let n� 2 Nm. We say that n� is an i-Lusztig datum of coweight � if � DP
k nkˇ

i
k

. For such n�, let Qi.n�/ be the collection of pseudo-Weyl polytopes
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1
2

3

12

2313

123 213

321

231

β1

β2

β3

Figure 4. The permutahedron for SL3.

P D conv.��/, such that P has i-Lusztig datum n� and lowest vertex �e D 0. Note
that if P 2 Qi.n�/, then �w0

D
P
k nkˇ

i
k
D � is the coweight of the i-Lusztig

datum of P .

Example 2. Continuing as in Example 1, we see that there are three pseudo-
Weyl polytopes with i-Lusztig datum (2,1,1) and lowest vertex 0. We will show
that only the middle one is an MV polytope.

2

1

1

2

1

1

2

1

1

0

µ

0

µ

0

µ

Figure 5. The pseudo-Weyl polytopes with i-Lusztig datum .2; 1; 1/.

4.3. The decomposition. With these considerations in mind, we proceed to
discuss the decomposition according to Lusztig data. Fix a reduced word i for w0
and a coweight �� 0. Let

X.�/ WD S0e \S
�
w0
:

Let Ai.n�/ WD fL2X.�/ WP.L/2Qi.n�/g. Since each pseudo-Weyl polytope
has some i-Lusztig datum, we immediately have the following decomposition of
X.�/ into locally closed subsets.

PROPOSITION 4.1.
X.�/D

G
Ai.n�/

where the union is over all i-Lusztig data n� of coweight �.
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Fix an i-Lusztig datum n� of coweight �. Let �k D
Pk
lD1 nlˇ

i
l
. Suppose

that P is a pseudo-Weyl polytope with i-Lusztig datum n�. Then the wi
k

vertex of
P is at position �k . So if L 2 Ai.n�/, then L lies in a GGMS stratum A.��/ with
�w i

k
D �k . This shows that

Ai.n�/D
\
k

S
�k

w i
k

:

Let M
 i
k
D h�k; 


i
k
i. Then by the length formula (8), we see that

�
M


�

2� i

is the unique solution to the system of equations

(17)
nk D�Mw i

k�1
�ƒik
�Mw i

k
�ƒik
�

X
j¤ik

aj;ikMw i
k
�ƒj

for all k;

Mƒi
D 0 for all i:

This system is upper triangular (note that each M
 i
k

shows up for the first time
in the equation with nk on the left-hand side) and so such a solution exists and is
unique. The solution is given by

(18) M
 i
k
D

X
l�k

hˇi
l ; 


i
kinl :

For the proof, see Theorem 4.3 in [BZ97].
By Lemma 2.4 it follows that

(19) Ai.n�/D fL 2 Gr W D
 .L/DM
 for all i-chamber weights 
g:

Example 3. Continuing as in Example 1, we see that in this case

�1 D .n1;�n1; 0/; �2 D .n1Cn2;�n1;�n2/;

�3 D .n1Cn2; n3�n1;�n2�n3/;

n1 D�M2; n2 D�M23CM2; n3 D�M2�M3CM23:

The goal of this section is to prove the following result.

THEOREM 4.2. For each i-Lusztig datum of coweight �, Ai.n�/ is an irre-
ducible component of X.�/. Moreover each component of X.�/ appears exactly
once this way.

The following elementary algebraic geometry lemma will prove quite useful.

LEMMA 4.3. Let X be a reducible algebraic set with n components. Suppose
that X D tCk is a decomposition of X into n irreducible constructible subsets.
Then C1; : : : ; Cn are the distinct irreducible components of X .
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Proof. Let A1; : : : ; An denote the irreducible components of X . Then X D
[Ci , so that

Aj D
[
Aj \Ci :

Since Aj is irreducible and each Aj \ Ci is closed, Aj D Aj \ Ci for some i .
So Aj � Ci . By similar reasoning, there exists k such that Ci � Ak . Hence
Aj � Ci � Ak . Since the Aj are the components, each listed once, j D k and so
Aj D Ci . Continuing this argument shows that there exists a map � of f1; : : : ; ng
to f1; : : : ; ng such that Aj D C�.j /. This map is injective since the Aj are distinct.
Hence it is bijective as desired. �

The number of i-Lusztig data of coweight � is kpf.�/ which equals the num-
ber of components of X.�/. So to prove Theorem 4.2, it suffices to show that
Ai.n�/ is irreducible for each Lusztig datum n�. To prove this, we will use another
basic algebraic geometric fact, that the image of an irreducible variety is irreducible.
Hence our goal is to construct a surjective map from an irreducible variety onto
Ai.n�/. To that end, we will examine certain parametrizations of N introduced by
Lusztig and Berenstein-Fomin-Zelevinsky.

4.4. Parametrizations of N . Fix w 2W . Following Berenstein-Zelevinsky
[BZ97], we will define the twist automorphism �w WN \B�wB�!N \B�wB�.
First, let x 7! xT be the involutive Lie algebra anti-automorphism of g given by

ETi D Fi ; F Ti DEi ; HT
i DHi ;

where Ei ; Fi ;Hi denote the Chevalley generators of g, corresponding to the maps
 i of SL2 into G. We use the same notation g 7! gT for the corresponding invo-
lutive anti-automorphism of G.

For y 2N \B�wB�, we define �w.y/ to be the unique element in the inter-
section N \B�wyT . See [BZ97] for proof that this function is well-defined.

We define xi W C!N by

xi .a/D  i
� �
1 a

0 1

� �
:

Let i be a reduced word for w and let p be its length. Following [Lus93],
[BZ97], we define regular maps xi and yi from .C�/p to N ,

xi.b1; : : : ; bp/D xip .bp/ � � � xi1.b1/;

yi.b1; : : : ; bp/D �
�1
w�1.xi.b1; : : : ; bp//:

Berenstein-Fomin-Zelevinsky established the following result, which they call
the Chamber Ansatz, which provides an inverse for y.
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THEOREM 4.4. Let y D yi.b1; : : : ; bp/. Then

(20) bk D
1

�w i
k�1
�ƒik

.y/�w i
k
�ƒik

.y/

Y
j¤ik

�w i
k
�ƒj
.y/�aj;ik for all k:

Conversely, �
 .y/ is a monomial in the bk whenever 
 is an i-chamber
weight.

Moreover, if w D w0, then yi is a biregular isomorphism onto fy 2 N W
�
 .y/¤ 0 for all i-chamber weights 
g.

Proof. The first part of this theorem is exactly Theorem 1.4 in [BZ97] and
Theorem 2.19 in [FZ99], except that we have reversed the order of the reduced
word.

The system (20) is the same as the system (17), except it is written multiplica-
tively instead of additively. We have already observed that (17) is invertible, hence
so is (20) and so �
 .y/ is a monomial in the bk (this monomial is given in additive
form in (18)).

To prove the last statement, let U D fy 2 N W �
 .y/ ¤ 0 for all i-chamber
weights 
g. The first half of the theorem provides a map U ! .C�/m which is a
left inverse to yi. Hence yi is injective.

So it suffices to show that yi is surjective. Let y 2 U and determine bk from
y by (20). Let y0 D yi.b�/. By the above observations, the generalized minors �

take the same values on y; y0 for each i-chamber weight 
 . But by the results of
[BZ97], every function on N is a rational function of the �
 for 
 an i-chamber
weight. Hence every function on N takes the same values on y0 and y. Since N
is affine, this shows that y0 D y and so yi is surjective. �

Example 4. We continue from Example 3. In this case:

xi.b1; b2; b3/D

2641 b1C b3 b2b30 1 b2

0 0 1

375 and yi.b1; b2; b3/D

2641
1
b1

1
b2b3

0 1 b1Cb3

b2b3

0 0 1

375 :
Thus

b1 D
1

�2.y/
; b2 D

�2.y/

�23.y/
; b3 D

�23.y/

�2.y/�3.y/

as claimed in Theorem 4.4.

Note that the map yi is a map of varieties over C. By the formal loop space
functor, there is a corresponding map of ind-schemes over C, Kp!N.K/. More-
over, the obvious analogue of Theorem 4.4 holds in this setting.

4.5. Mapping onto the MV cycles. Fix a reduced word i for w0. Let n� be a
Lusztig datum of coweight �. Let

�
M


�

2� i be determined from the n� by (17).
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Let

B.n�/ WD f.b1; : : : ; bm/ 2 Km W val.bk/D nk for all kg:

The goal of the rest of this section is to prove the following theorem.

THEOREM 4.5. If b� 2 B.n�/, then Œyi.b�/� 2 A
i.n�/. Moreover, each L 2

Ai.n�/ has a representative of the form yi.b�/ for some b� 2 B.n�/. Hence the
restriction of yi to B.n�/ combined with the surjection G.K/ ! Gr provides a
surjective morphism B.n�/! Ai.n�/.

Note that B.n�/ is irreducible, since it is isomorphic to a product of m copies
of C� and m copies of O. Hence by the remarks following Lemma 4.3, proving
Theorem 4.5 will complete the proof of Theorem 4.2.

As a first step towards Theorem 4.5, we establish the following lemma.

LEMMA 4.6. Let b� 2 Km. Let y D yi.b�/. Then b� 2 B.n�/ if and only if
val.�
 .y//DM
 for all i-chamber weights 
 .

Proof. By Theorem 4.4, we see that
(21)
val.bk/D� val.�w i

k�1
�ƒik

.y//� val.�w i
k
�ƒik

.y//�
X
j¤ik

aj;ik val.�w i
k
�ƒj
.y//

for all k. Also since y 2N.K/, �ƒi
.y/D 1 and so val.�ƒi

.y//D 0 for all i .
This is the same system of equations as (17), with val.bk/ instead of nk and

val.�
 .y// instead of M
 . Since (17) is an invertible linear system, this shows that
val.bk/D nk for all k if and only if val.�
 .y//DM
 for all i-chamber weights 
 .

�

4.6. Off-minors. To complete the proof of Theorem 4.5, we will need a fur-
ther investigation of the relation between D
 and the valuation of �
 .

Let U be a finite-dimensional vector space over C. Earlier, we defined a
function val W U ˝K! Z. Note that if u 2 U ˝K, then

val.u/D min
�2U?

val.hu; �i/;

where on the right, val denotes the usual valuation map on K. In fact, it is enough
to take the min over a basis for U ?.

Let us apply the above result to our situation. We see that if 
 is a chamber
weight of level i , then

(22) D
 .Œy�/D val.y � v
 /D min
�2V ?

ƒi

val.hy � v
 ; �i/:

In particular, � D v�ƒi
shows up on the right-hand side and so val.�
 .y// appears

in the minimum (see (12)). We would like to show that the minimum is attained
there when y D yi.b�/ and b� 2 B.n�/.
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Using a Bruhat decomposition of G.K/ it is possible to show that we need to
take only extremal weight vectors � in the min above. However, we will not need
this.

We call hy � v
 ; �i an off-minor of y. In the case G D SLn and � D vı , it is
the minor of y using 
 as the set of columns and ı as the set of rows (where we
index the usual basis for V ?ƒi

by the i element subsets of f1; : : : ; ng).
The following lemma is a generalization of Lemma 3.1.3 from [BFZ96], which

dealt with the case G D SLn.

LEMMA 4.7. Let w 2 W . Let � 2 V ?ƒi
. Let x 2 N \ B�w�1B� and y D

�w�1.x/. Then
hy � vw �ƒi

; �i

�w �ƒi
.y/

D
hxT � vƒi

; �i

hvƒi
; v�ƒi

i
:

Proof. Since x D �w�1.y/, there exists p 2N� and d 2 T such that pdx D
w�1yT . Note that w�1 D wT (since si�1 D si T by an SL2 calculation). Hence,
y D xT dTpTw�1, and so

(23) hy � vw �ƒi
; �i D hxT dTpTw�1 � vw �ƒi

; �i Dƒi .rd/hx
T
� vƒi

; �i;

where r D w�1w 2 T . Similarly,

hy � vw �ƒi
; v�ƒi

i Dƒi .rd/hx
T
� vƒi

; v�ƒi
i(24)

Dƒi .rd/hvƒi
; .xT /�1 � v�ƒi

i Dƒi .rd/hvƒi
; v�ƒi

i

since xT 2N�, so that .xT /�1 2N� and hence .xT /�1 � v�ƒi
D v�ƒi

.
Taking the ratio of (23) and (24) gives the desired result. �

This result allows us to express certain off-minors of y in terms of x. To
express them all, we will also need the following lemma of Berenstein-Zelevinsky.

LEMMA 4.8 ([BZ97, Prop. 5.4]). Let i be a reduced word forw0, let 1�k�m,
let w D wi

k
, and let y D yi.b1; : : : ; bm/. Then y admits a factorization y D y0y00

where y0 D y.i1;:::;ik/.b1; : : : ; bk/, and y00 2 wNw�1.

These last two lemmas combine in the following result describing the off minors.

PROPOSITION 4.9. Let i be a reduced word for w0, let � 2 V ?ƒi
, and let 
 be

an i-chamber weight of level i . Let y D yi.b1; : : : ; bm/. Then

hy � v
 ; �i

�
 .y/

is a polynomial in the bk .

Proof. Since 
 is an i-chamber weight, 
 D wi
k
�ƒi for some k. Let w D wi

k
.

By the previous lemma, y D y0y00, where y0 D y.i1;:::;ik/.b1; : : : ; bk/ and y00 2
wNw�1.
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Then y � v
 D y0y00 � v
 D y0 � v
 since 
 D w �ƒi and y00 2 wNw�1. So

hy � v
 ; �i

�
 .y/
D
hy0 � v
 ; �i

�
 .y0/
D
hx0

T
� vƒi

; �i

hvƒi
; v�ƒi

i
;

where x0 D x.i1;:::;ik/.b1; : : : bk/. The first equality is by the above analysis and
the second is by Lemma 4.7.

Any regular function of x0T is a polynomial in the bk (since the extension of
x.i1;:::;ik/ to Ck is regular) and so the result follows. �

We are now ready to prove Theorem 4.5.

Proof of Theorem 4.5. First, we will show that if b� 2 B.n�/, then Œyi.b�/� 2

Ai.n�/. Fix b� 2B.n�/ and let y D yi.b�/. By (19), Œy� 2Ai.n�/ if D
 .Œy�/DM


for all i-chamber weights 
 . By Lemma 4.6, val.�
 .y//DM
 . So to prove that
Œy� 2 Ai.n�/, it suffices to show that val.�
 .y//D D
 .Œy�/.

By (22), it suffices to show that val.hy �v
 ; �i/� val.�
 .y// for any � 2 V ?ƒi
.

By Proposition 4.9,
hy � v
 ; �i

�
 .y/
D P.b1; : : : ; bm/

for some polynomial P . But val.bk/D nk � 0 for all k, so val.P.b1; : : : ; bm//� 0.
Hence val.hy �v
 ; �i/�val.�
 .y//�0 as desired. So we conclude that Œy�2Ai.n�/,
as desired.

Next, we need to check that if L 2 Ai.n�/, then L D Œyi.b�/� for some
b� 2 B.n�/. Suppose we know that there exists y 2 N.K/ such that L D Œy�

and val.�
 .y// D D
 .L/ for all 
 . Then if 
 is an i-chamber weight, by (19)
D
 .L/ D M
 , so val.�
 .y// D M
 . In particular, �
 .y/ is nonzero for all i-
chamber weights 
 . Hence by Theorem 4.4, there exist .b1; : : : ; bm/ 2 .K�/m

such that y D yi.b1; : : : ; bm/. By Lemma 4.6, we see that bk 2 B.n�/ as desired.
Hence this completes the proof of the theorem.

So now we will prove the existence of y as above. Since A.n�/� S0e , L has
a representative g 2N.K/. Let h 2N.C/. So Œh�1g�D Œg�D L. We would like to
find h such that val.�
 .h�1g//D D
 .L/ for all chamber weights 
 .

Let 
 be a chamber weight of level i and let d D D
 .Œg�/. Let u1; : : : ; uN be
a basis for Vƒi

with dual basis u?1 ; : : : ; u
?
N for V ?ƒi

.
Then

�
 .h
�1g/D hh�1g � v
 ; v�ƒi

i D hg � v
 ; h � v�ƒi
i:

Now h � v�ƒi
D
P
s csu

?
s for some cs 2 C. Hence

�
 .h
�1g/D

X
s

cshg � v
 ; u
?
s i:
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Let ps be the coefficient of td in hg � v
 ; u?s i. Since

d D D
 .Œg�/Dmin
s

val.hg � v
 ; u?s i/;

we see that ps is nonzero for some s. Extracting the coefficient of td from the
above equation shows that val.�
 .h�1g//D d if and only if

P
s pscs ¤ 0.

Letting uD
P
s psus , we see that

val.�
 .h�1g//D D
 .L/ if and only if hu; h � v�ƒi
i ¤ 0:

Note that h 7! hu; h � v�ƒi
i is a nonzero regular function on N , since u¤ 0

and since V�ƒi
is generated by N acting on v�ƒi

. Similarly, for each 
 2 � ,
there is a nonzero regular function f
 such that val.�
 .h�1g//D D
 .L/ if and
only if f
 .h/¤ 0. Since N is irreducible, the product of these nonzero functions
is nonzero and so we can find h such that val.�
 .h�1g//D D
 .L/ for all 
 , as
desired. �

5. Piecing together

By Theorem 4.2, if i is a reduced word for w0 and n� is an i-Lusztig datum,
then Ai.n�/ is an MV cycle and all MV cycles arise this way. So for each i we get
a bijection from Nm to the set of MV cycles. We call the inverse of this bijection
the i-Lusztig datum of the MV cycle.

To complete the proof of Theorem 3.1, it will be necessary to understand how
the i-Lusztig datum varies when we change the reduced word i. To do this, we will
consider the overlap in the different decompositions of X.�/ by Lusztig data.

In this section, a reduced word will always mean a reduced word for w0.

5.1. Local picture. Two reduced words i; i0 are said to be related by a d -braid
move involving i; j , starting at position k, if

iD .: : : ; ik; i; j; i; : : : ; ikCdC1; : : : /;

i0 D .: : : ; ik; j; i; j; : : : ; ikCdC1; : : : /;

where d is the order of sisj .
Recall that reduced words correspond to minimal length paths from the e

vertex to the w0 vertex of the permutahedron. If i; i0 are related as above, then
wi
l
D wi0

l
, for l … fkC 1; : : : ; kC d � 1g. So the two paths agree for the first k

vertices and then agree again at vertex kC d and later. Moreover, the wi
l

and wi0
l

vertices for l 2 fk; : : : ; k C dg all lie on the same 2-face of the permutahedron.
Namely, they lie on the 2-face which contains the w vertex and is dual to the
chamber weights w �ƒp for p ¤ i; j , where w Dwi

k
. This 2-face will be a 2d-gon

(see Figure 6).
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i′

wk

wk+d

i
j

j

j i

i

i

Figure 6. Two reduced words related by a 3-braid move.

Following Lusztig [Lus93], Berenstein-Zelevinsky studied the relationship be-
tween yi and yi0 .

PROPOSITION 5.1 ([BZ97, Th. 3.1]). Let i; i0 be as above. Suppose that yi.b�/

D yi0.b
0
�/.

For l … fkC 1; : : : ; kC dg, bl D b0l . For other l we have the following case
by case formulas.

(i) If aij D 0, then d D 2 and b0
kC1
D bkC2; b

0
kC2
D bkC1:

(ii) If aij D aj i D�1, then d D 3 and

b0kC1 D
bkC2bkC3

�
; b0kC2 D bkC1C bkC3; b

0
kC3 D

bkC1bkC2

�
;(25)

where � D bkC1C bkC3.

(iii) If aij D�1; aj i D�2, then d D 4 and

(26)

b0kC1D
bkC2bkC3bkC4

�1
; b0kC2D

�21
�2
; b0kC3 D

�2

�1
; b0kC4 D

bkC1b
2
kC2

bkC3

�2
;

where
�1DbkC1bkC2C .bkC1C bkC3/bkC4; �2DbkC1.bkC2C bkC4/

2
C bkC3b

2
kC4:

(iv) If aij D�2; aj i D�1, then d D 4 and

(27)

b0kC1D
bkC2b

2
kC3

bkC4

�2
; b0kC2D

�2

�1
; b0kC3D

�21
�2
; b0kC4D

bkC1bkC2bkC3

�1
;

where
�1DbkC1bkC2C .bkC1C bkC3/bkC4; �2Db

2
kC1bkC2C .bkC1C bkC3/

2bkC4:
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Conversely, suppose that b� 2 .C�/m is such that the denominators in the above
expressions do not vanish. Define b0� by the above expressions. Then yi.b�/ D

yi0.b
0
�/.

The first part of this proposition is directly from [BZ97]. The last statement
follows from the same reasoning as in our proof of the second statement of Theo-
rem 4.4. Note that Proposition 5.1 holds over K as well.

PROPOSITION 5.2. Let n� be an i-Lusztig datum of coweight �. Then there
exists a nonempty open subset U of B.n�/ such that for each b� 2 U , there exists
b0� 2 Km such that yi.b�/ D yi0.b

0
�/ and the following formulas holds for n0

l
WD

val.b0
l
/.

(i) If aij D 0, then d D 2 and n0
kC1
D nkC2; n

0
kC2
D nkC1:

(ii) If aij D aj i D�1, then d D 3 and

(28) n0kC1 D nkC2CnkC3�p; n
0
kC2 D p; n

0
kC3 D nkC1CnkC2�p;

where p Dmin.nkC1; nkC3/.

(iii) If aij D�1; aj i D�2, then d D 4 and

n0kC1 D nkC2CnkC3CnkC4�p1; n
0
kC2 D 2p1�p2;(29)

n0kC3 D p2�p1; n
0
kC4 D nkC1C 2nkC2CnkC3�p2

where
p1 Dmin.nkC1CnkC2; nkC1CnkC4; nkC3CnkC4/;

p2 Dmin.nkC1C 2nkC2; nkC1C 2nkC4; nkC3C 2nkC4/:

(iv) If aij D�2; aj i D�1 , then d D 4 and

n0kC1 D nkC2C 2nkC3CnkC4�p2; n
0
kC2 D p2�p1;(30)

n0kC3 D 2p1�p2; n
0
kC4 D nkC1CnkC2CnkC3�p1

where
p1 Dmin.nkC1CnkC2; nkC1CnkC4; nkC3CnkC4/;

p2 Dmin.2nkC1CnkC2; 2nkC1CnkC4; 2nkC3CnkC4/:

Proof. If aij D 0 then the result holds with U D B.n�/. Suppose that aij D
aj i D�1. Let

U WD fb� 2 B.n�/ W b
0
kC1C b

0
kC3 ¤ 0g;

where b0
l

is the coefficient tnl in bl .
If b� 2 U , then let b0�; � be determined from b� by (25). Since � D bkC1C

bkC3, we know that val.�/ D p, as the leading terms of bkC1 and bkC3 do not
cancel. In particular, the denominator � does not vanish. Hence if b0� is given
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by (25), then by Proposition 5.1, yi0.b
0
�/D yi.b�/. Moreover, the valuation of the

b0
l

are given by (28), since val.�/D p.
The other cases follow similarly. �

Note that if i; i0 are related by a braid move starting at position k and involving
i; j , then i0; i are related by a braid move starting at position k and involving j; i .
Moreover, let n0� be the sequence of integers obtained from n� by the formulas in
Proposition 5.2. It is easy to see that n0� is an i0-Lusztig datum of coweight �. It
is also easy to see that n� is the sequence of integers obtained from n0� by these
formulas where we regard i0; i as related by a braid move.

Now we transport our results from G.K/ to Gr .

THEOREM 5.3. The intersection Ai.n�/\A
i0.n0�/ is dense in Ai.n�/.

Proof. Let U be the nonempty open subset of B.n�/ from Proposition 5.2.
Since the map from B.n�/ to Ai.n�/ is surjective (Theorem 4.5), the set Y D
fŒyi.b�/� W b� 2 U g is dense in Ai.n�/. By Proposition 5.1, if L 2 Y , then L has a
representative yi0.b

0
�/ for b0� 2 B.n

0
�/. Hence by Theorem 4.5, Y � Ai0.n0�/. Hence

the intersection is dense. �

Note that the tropical Plücker relation (13), (14), (15) at .w D wi
k
; i; j / only

involves M
 for 
 an i or i0-chamber weight. This observation leads to the follow-
ing result.

PROPOSITION 5.4. Let L 2 Ai.n�/\A
i0.n0�/. Then the collection

�
M
 WD

D
 .L/
�

2� i[� i0 satisfies the tropical Plücker relation at .w; i; j /.

Proof. If L 2 Ai.n�/\A
i0.n0�/, then we know D
 .L/ for 
 an i or i0-chamber

weight. Since these are the only chamber weights which show up in the tropical
Plücker relation, we just need to make a simple computation to check that the
relation between n� and n0� in Proposition 5.2 matches the tropical Plücker relation
at .w; i; j /.

The case d D 2 is trivial because there is no tropical Plücker relation (in fact,
in this case � i D � i0).

Consider the case aij D aj i D�1. Then by the length formula (17),

n0kC2 D�Mw �ƒi
�Mwsj si �ƒi

CMwsj �ƒj
�

X
l¤i;j

aliMw �ƒl
;

nkC1 D�Mw �ƒi
�Mwsi �ƒi

CMw �ƒj
�

X
l¤i;j

aliMw �ƒl
;

nkC3 D�Mwsi �ƒi
�Mwsj si �ƒi

CMwsisj �ƒj
�

X
l¤i;j

aliMw �ƒl
:
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By (28), n0
kC2
D min.nkC1; nkC3/. Substituting the above expressions into this

equation gives

�Mw �ƒi
�Mwsj si �ƒi

CMwsj �ƒj
Dmin

�
�Mw �ƒi

�Mwsi �ƒi
CMw �ƒj

;

�Mwsi �ƒi
�Mwsj si �ƒi

CMwsisj �ƒj

�
which is equivalent to the tropical Plücker relation (13).

The other cases are similar. �

It is easy to see that the converse of this proposition holds, but we will not
need this.

5.2. Global picture. Fix a coweight � � 0. Let i; i0 be two reduced words
related by a braid move involving i; j , starting at position k. Let L 2X.�/ and let
n�, n0� be the i; i0-Lusztig data of P.L/. So L 2 Ai.n�/\A

i0.n0�/. We say that L
is i; i0-generic if n� and n0� are related as in Proposition 5.2. By Proposition 5.4, if
L is i; i0-generic, then D�.L/ satisfies the tropical Plücker relation at .wi

k
; i; j /.

We say that L 2X.�/ is generic if L is i; i0-generic for every pair of reduced
words i; i0 related by a braid move.

If w 2 W; i; j 2 I are such that wsi > w and wsj > w, then there exist a
pair of reduced words i; i0 related by a d -move starting at position k D length.w/,
involving i; j such that wi

k
D w. Visually, such w; i; j gives a 2-face of the per-

mutahedron with lowest vertex w and this 2-face gives the transition between the
reduced words i; i0 (as in Figure 6). Hence by Proposition 5.4, if L is generic,
then D�.L/ satisfies the tropical Plücker relation at .w; i; j /. Since .w; i; j / were
arbitrary, D�.L/ satisfies all the tropical Plücker relations.

LEMMA 5.5. For any reduced word i and any i-Lusztig datum n�, fL 2
Ai.n�/ W L is genericg is dense in Ai.n�/.

Proof. For any reduced word j and any j-Lusztig datum m�, define Aj
k
.m�/

recursively by Aj
0.m�/ WD A

j.m�/ and for k > 0 by

A
j
k
.m�/ WD A

j
k�1

.m�/\
\

j0
A

j0
k�1

.m0�/;

where the intersection is over all reduced words j0 which are related to j by a braid
move and where m0� is the j0-Lusztig datum corresponding to m� under Proposi-
tion 5.2.

We claim that for each k, Aj
kC1

.m�/ is dense in Aj
k
.m�/ and in Aj0

k
.m0�/

whenever j and j0 are related by a braid move and m� and m0� are related as in
Proposition 5.2. We proceed by induction.
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By Theorem 5.3, Aj.m�/ \ A
j0.m0�/ is dense in Aj.m�/ and Aj0.m0�/. So

A
j
1.m�/ is the intersection of subsets of Aj.m�/ which are dense in Aj.m�/. More-

over, these subsets are all constructible, hence Aj
1.m�/ is dense in Aj.m�/. This

also shows that Aj
1.m�/ is dense in Aj.m�/\A

j0.m0�/ and hence in Aj0.m0�/. This
establishes the base case.

For the inductive step, let k > 0. By the inductive hypothesis, Aj
k
.m�/ and

A
j0
k
.m0�/ are each dense in each of Aj

k�1
.m�/ and Aj0

k�1
.m0�/. Hence Aj

k
.m�/\

A
j0
k
.m0�/ is dense in Aj

k�1
.m�/\A

j0
k�1

.m0�/ and so Aj
k
.m�/\A

j0
k
.m0�/ is dense in

A
j
k
.m�/ and in Aj0

k
.m0�/ (since each of these is contained inAj

k�1
.m�/\A

j0
k�1

.m0�/).
From here, the inductive step follows the same reasoning as the base case.

In these arguments, we repeatedly use the fact that if U � V �X and if U is
dense in X , then U is dense in V .

Now, specialize to jD i; m� D n�. Let j; j0 be two reduced words which are
related by a braid move and such that j is connected to i by fewer than k braid
moves. Suppose that L 2 Ai

k
.n�/; then by induction on k, we see that L is j; j0-

generic. Hence if k is larger than the largest number of braid moves needed to
connect any two reduced words, then Ai

k
.n�/ � fL 2 A

i.n�/ W L is genericg. By
a chain of dense inclusions, we see that Ai

k
.n�/ is dense in Ai.n�/ and hence

fL 2 Ai.n�/ W L is genericg is dense in Ai.n�/. �

Proof of Theorem 3.1. Let �� 0 be a coweight and let M� be a BZ datum of
coweight .0; �/. Because of the action of X� is suffices to consider only this case.
Let i be a reduced word for w0. Let n� be the i-Lusztig datum corresponding to
M� under (17).

If L 2 Ai.n�/ is generic, then D�.L/ and M� both obey the tropical Plücker
relations. Moreover, they have the same values whenever 
 is an i-chamber weight.
Suppose that i0 is another reduced word, related to i by a d -move involving i; j start-
ing at position k. Then since both obey the tropical Plücker relation for .wi

k
; i; j /,

we see that D
 .L/DM
 whenever 
 is a i0-chamber weight. Continuing this argu-
ment (and using the fact that any reduced word is connected to i by a sequence of
braid moves), we see that D
 .L/DM
 for all chamber weights 
 . So L 2A.M�/.

By Lemma 5.5, fL 2 Ai.n�/ W L is genericg is dense in Ai.n�/ and by the
above analysis, this set is contained in A.M�/, so we see that

fL 2 Ai.n�/ W L is genericg D A.M�/D Ai.n�/:

By Theorem 4.2, Ai.n�/ is a component of X.�/, and so A.M�/ is a compo-
nent. Thus, A.M�/ is an MV cycle of coweight �.

Conversely, if Z is a component of X.�/, then Z D Ai.n�/ for some n� by
Theorem 4.2. Let L 2 Ai.n�/ be generic. By the above analysis Z D A.M�/.
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Since L is generic, .M
 D D
 .L// satisfies the tropical Plücker relations. Also
P.L/D P.M�/ is a pseudo-Weyl polytope, so M� satisfies the edge inequalities.
Finally, Mƒi

D 0 for all i , since L 2 X.�/ � S0e . Hence M� is a BZ datum of
coweight .0; �/. So all MV cycles are of the desired form. �

6. Minkowski sums of MV polytopes

The MV polytopes for SL3;Sp4;SL4 appeared without proof in [And03].
Anderson expressed these MV polytopes by producing a finite list of prime MV
polytopes such that every MV polytope was a Minkowski sum of these prime MV
polytopes. Moreover, he grouped these prime MV polytopes into “clusters”, such
that all Minkowski sum monomials of primes within a cluster were MV polytopes.

We will now show that for each G, there exists such a finite set of prime MV
polytopes. Moreover, we will show how to find the primes and their groupings into
clusters.

The proof of the following lemma is given at the end of appendix A.

LEMMA 6.1. If P.M�/ and P.N�/ are two pseudo-Weyl polytopes, then so
is their Minkowski sum P.M�/C P.N�/ WD f˛ C ˇ W ˛ 2 P.M�/; ˇ 2 P.N�/g.
Moreover P.M�/CP.N�/D P..M CN/�/.

Combining Lemma 6.1 with Theorem 3.1, we see that in order to understand
Minkowski sums of MV polytopes, it is enough to understand sums of BZ data. In
what follows, we will identify MV polytopes with their BZ data, so we will use P

to denote the set of BZ data.
If M�, N� are BZ data, then .M CN/� is not necessarily a BZ datum. We

will now see how to divide the set of BZ data into regions, within which we can
add BZ data. In this section, BZ datum always means a BZ datum of coweight
.0; �/, so Mƒi

D 0 for all i .

6.1. Prime BZ data. If ADmin.B; C;D/ is a .min;C/ equation, then a min-
choice for this equation is a choice of B;C; or D. Corresponding to such a choice,
we get a system of linear equations and inequalities of the form

A� B; AD C; A�D:

Note that if A;B;C;D is a solution to the original .min;C/ equation, then it
satisfies the system corresponding to at least one of the three possible min-choices.
In fact, the (nondisjoint) union of all solutions to the three systems is the set of
solutions to the original equation.

A BZ-choice is a collection of min-choices, one for each tropical Plücker
relation. Note that there are 2#H9#O possible BZ choices, where #H and #O are
the number of hexagons and octagons in the permutahedron for G.
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Let † denote the set of BZ-choices. If � 2 †, then let P� denote the set of
BZ data which satisfy the systems corresponding to each min-choice in � . Note
that PD[�2†P� , but that this union is not disjoint.

Each P� is the set of lattice points of a rational polyhedral cone in R� —
namely the cone defined by all the linear equations and inequalities coming from
min-choices in � , by the edge inequalities, and by the equations Mƒi

D 0 for all i .
Moreover, this cone lies in R�

�0, since the edge inequalities imply that M
 � 0 for
all 
 . Hence it is a proper cone. Since P� is the set of lattice points of a cone,
if M�; N� 2 P� , then .M CN/� 2 P� . So P� forms a monoid. By Gordan’s
Lemma (see [Ewa96, �3]), the monoid is finitely generated by a unique minimal
set of generators which we call the � -prime BZ data.

6.2. Prime MV polytopes. A �-prime MV polytope is an MV polytope cor-
responding to a �-prime BZ datum. Each set of �-prime MV polytopes is called
a clique of prime MV polytopes. Thus the cliques are indexed by the set † of
possible BZ choices. There are finitely many cliques and finitely many prime MV
polytopes in each clique.

Combining the above observations gives the following result.

THEOREM 6.2. Every MV polytope is the Minkowski sum of prime MV poly-
topes. More specifically, every MV polytope is sum of �-prime MV polytopes for
some � . Moreover, the sum of � -prime MV polytopes is always an MV polytope.

As noted above, this result was first observed in low rank cases by Anderson
[And03]. In [AK04], Anderson-Kogan argued that the existence of this canonical
set of generators for the set of MV polytopes is related to the cluster algebras of
Berenstein-Fomin-Zelevinsky [BFZ05]. This connection is an interesting direction
for future research. See [AK06] for recent results in this direction.2

Note that not all the cones corresponding to different BZ choices are of the
same dimension. In low-rank examples, we have observed that there are some
(very few) cones of dimension m and all the rest of the cones are subcones of these
maximal cones. Moreover, not all the maximal cones are isomorphic. In general,
it seems to be an interesting problem to understand the structure of these cones.

The analysis of the case of SL3 is easy and was carried out in Section 3.4. The
tropical Plücker relation (16) gives two BZ choices, each of which gives a maximal
cone. The two maximal cones give the two kinds of SL3 MV polytopes shown in
Figure 2.

For Sp4, only four of the nine cones are maximal and these lead to the four
possible types of Sp4 MV polytopes shown in Figure 3. Two of the maximal
cones have four generators (these are simplicial) and the other two cones have

2However for most groups there are infinitely many clusters, so that there is in general no bijection
between cliques and clusters.



276 JOEL KAMNITZER

A B
CC

D

E

F

G

H

Figure 7. The prime Sp4 MV polytopes.

five generators. Figure 7 shows the eight prime Sp4 MV polytopes labelled by
the letters A; : : : ;H . The maximal clusters of prime Sp4 MV polytopes (written
in the order that they correspond to the types in Figure 3) are BEFGH , CEFH ,
ACDEH , and DEGH . These polytopes and clusters first appeared in [And03].
Note that E and H appear in each maximal cluster. This is because they are the
Weyl polytopes for the fundamental weights.

For SL4, there are 28 D 256 cones, 13 of which are maximal. Of these 13
maximal cones, 12 have 6 generators and are simplicial, while 1 has 7 generators.
There are a total of 12 prime MV polytopes in this case.

7. Relation to the canonical basis

7.1. Lusztig data. Let i be a reduced word for w0. If P is an MV polytope,
then we can extract its i-Lusztig datum. This is invariant under the X� action and
so the i-Lusztig datum of a stable MV polytope is well-defined.

THEOREM 7.1. Taking i-Lusztig datum gives a bijection  i W P! Nm.

Proof. By Theorem 4.2, an inverse is given by n� 7!ˆ
�
Ai.n�/

�
. �

Suppose that i and i0 are two reduced words for w0. Then the transition map
 i0 ı 

�1
i W Nm! Nm is a bijection. When i; i0 are related by a braid move, then

Theorem 5.3 shows that this bijection is given by the .min;C/ equations in Proposi-
tion 5.2. As shown in the proof of Proposition 5.4, these bijections are equivalent to
the tropical Plücker relations. In practice, when trying to construct MV polytopes,
these bijections are often easier to work with than the tropical Plücker relations.
However, we have started with the tropical Plücker relations because they are more
naturally motivated and are often better for theoretical purposes.

7.2. The canonical basis. Recall that G_ is the group with root datum dual
to that of G. In particular, the weight lattice of G_ is X�. Let B denote Lusztig’s
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canonical basis for U_
C

, the upper triangular part of the quantized universal en-
veloping algebra of G_. Lusztig showed that a choice of reduced word i for w0
gives rise to a bijection �i W B! Nm (see [Lus90, �2] or [BZ01, Prop. 4.2] for
more details). Following Berenstein-Zelevinsky, we call �i.b/ the i-Lusztig datum
of b.

Moreover, Lusztig [Lus90, �2.1] and [Lus92, �12.5] showed that the transition
map �i0 ı �

�1
i matches the bijection in Proposition 5.2, whenever i; i0 are related

by a braid move. In fact, this was the original source of these bijections. Since
any two reduced words are connected by a sequence of braid moves, we see that
�i0 ı �

�1
i D  i0 ı 

�1
i for all reduced words i; i0 and we immediately obtain the

following result.

THEOREM 7.2. There is a coweight preserving bijection b 7! P.b/ between
the canonical basis B and the set Pof stable MV polytopes. Under this bijection,
the i-Lusztig datum of b equals the i-Lusztig datum of P.b/.

In other words to find the i-Lusztig datum of b, we can just look at the lengths
of the edges in P.b/ along the path determined by i.

In fact, Lusztig noticed in [Lus93] that the transition map �i0 ı �
�1
i W Z

m!

Zm was the tropicalization of the transition map y�1i0 ı yi W Rm ! Rm between
the parametrizations of N (these are given in our Proposition 5.1). Lusztig and
Berenstein-Zelevinsky further explored this relationship in [Lus96] and [BZ01]
respectively. In the latter paper, which served as a primary motivation for this
work, Berenstein-Zelevinsky invented the notion of BZ data. More specifically,
combining Theorem 4.3 in [BZ97] and Example 5.4 in [BZ01], they showed that
there is a bijection between the set of BZ data of coweight .0; �/ and the canonical
basis. This motivated us to look for a bijection between BZ data and MV cycles.

8. Finite-dimensional representations

As stated in the introduction, one of the main purposes of studying MV cycles
and polytopes is to use them to understand the combinatorics of finite-dimensional
representations of G_.

8.1. Indexing the MV basis. If � 2XC� , then let Gr� WD t�G.O/. It is known
that Gr� is a finite-dimensional projective variety. The geometric Satake isomor-
phism gives an isomorphism of the intersection homology IH.Gr�/ with the finite-
dimensional representation V�. So intersection homology cycles in Gr� give us
elements of V�. Mirković-Vilonen [MV00] proved that the MV cycles were good
cycles to consider.
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THEOREM 8.1. Under the isomorphism IH.Gr�/
�
! V�, the MV cycles of

coweight .�; �/ which lie in Gr� give a basis (the MV basis) for the weight
space V�.�/.

The moment map image of Gr� is the Weyl polytope W�. Hence if A is an
MV cycle lying in Gr�, then its moment polytope ˆ.A/ lies in W�. Anderson
showed that the converse holds.

LEMMA 8.2 ([And03, Prop. 7]). Let A be an MV cycle of coweight .�; �/.
Then A� Gr� if and only if ˆ.A/�W�.

Recall that W� is a pseudo-Weyl polytope corresponding to the collection
Nw �ƒi

D hw0 ��;ƒi i. Hence combining Lemma 8.2 and our Theorem 3.1 imme-
diately gives the following result.

THEOREM 8.3. The MV basis for V�.�/ is indexed by the set of BZ data M�
of coweight .�; �/ such that
(31) Mw �ƒi

� hw0 ��;ƒi i;

for all i 2 I and w 2W . In particular, counting such BZ data gives a formula for
the weight multiplicity.

8.2. Indexing the canonical basis. On the other hand, we can also consider
the canonical basis (specialized at q D 1) for a representation V�. One way to
describe this basis is to consider the map �� WU.n_/! V� which is given by acting
on the low weight vector. Let B.�/ denote the subset of B� U.n_/ which is not
sent to 0 by this map. Lusztig [Lus90, �8] proved that �� maps B.�/ bijectively
onto a basis for V�, which is called the canonical basis for V�. Moreover, this
basis is compatible with weight spaces.

Lusztig also characterized B.�/ in terms of Lusztig data. In particular, only
the last component �i.b/m is relevant.

THEOREM 8.4 ([Lus90, §8], [BZ01, Cor. 3.4]). Let b 2B. Then b 2 B.�/ if
and only if

�i.b/m � �hw0 ��; ˛imi

for all reduced words i.

Using the bijection between MV polytopes and the canonical basis (Theo-
rem 7.2) and the description of MV polytopes by BZ data (Theorem 3.1), we im-
mediately obtain the following result which is the same (up to a change of notation)
as Theorem 5.16 from [BZ01].

THEOREM 8.5. The canonical basis for V�.�/ is indexed by the set of BZ
data M� of coweight .�; �/ such that

Mw0si �ƒi
� hw0 ��;ƒi i:

In particular, counting such BZ data gives a formula for the weight multiplicity.
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It is interesting to compare Theorems 8.3 and 8.5. The condition on the BZ
data in Theorem 8.5 appears weaker since we only impose (31) for w D w0si
for some i . In other words, in Theorem 8.3 we demand that all vertices �� of
the polytope lie in W�, whereas in Theorem 8.5 we only require that �w0si 2W�
for all i . Hence the set of BZ data in Theorem 8.5 is a priori bigger than that in
Theorem 8.3. However, the two sets of BZ data index bases for the same finite-
dimensional vector space, hence they must be the same set.

In particular all the inequalities (31) for w ¤ w0si are redundant. It would be
interesting to find a direct combinatorial proof of this fact. Such a proof seems to
require a good understanding of the combinatorics of the tropical Plücker relations.
We have been able to find such a proof for SLn and SO2n but not in general.

8.3. Tensor product multiplicities. Anderson also extended Theorem 8.1 to
show that MV cycles give a basis for tensor product multiplicity spaces. Using
Lemma 8.2, he proved the following tensor product multiplicity formula.

THEOREM 8.6 ([And03, Th. 1]). Let �;�; � 2XC� . The tensor product mul-
tiplicity c�

��
of V� inside V�˝V� is equal to the number of MV polytopes P such

that
(i) P has coweight .� ��; �/,

(ii) P is contained in W�,

(iii) P is contained in �W�C �.

Combining Theorem 8.6 with Theorem 3.1, we immediately obtain the fol-
lowing result.

THEOREM 8.7. The multiplicity c�
��

equals the number of BZ data of coweight
.� ��; �/ such that

(i) M
 � hw0 ��;ƒi i for all i and for all chamber weights 
 of level i ,

(ii) M
 � h�; 
i � h�;ƒi i for all i and for all chamber weights 
 of level i .

As with weight multiplicity, there is also a tensor product multiplicity for-
mula coming from the canonical basis. This is given as Theorem 5.16 in [BZ01].
It can be obtained from the above theorem by considering only those chamber
weights of the form w0si �ƒi and si �ƒi in (i) and (ii) respectively. The rela-
tionship between these two tensor product multiplicity formulas is the same as the
previously discussed relationship between the corresponding weight multiplicity
formulas (Theorems 8.3 and 8.5).

9. SLn comparison

We now examine our constructions in greater detail when G D SLn. The main
goal of this section is to connect our work with that of Anderson-Kogan [AK04].
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We also hope that the ideas presented here will help the reader get a better feel for
our main results.

9.1. Lattices. Let U be a vector space over C. A lattice in U ˝K is a free
O-submodule L� U ˝K such that spanK.L/D U ˝K. Let L0 WD U ˝O denote
the standard lattice in U ˝K. The relative dimension of a lattice L in U˝K is
defined to be dimC.L=L\L0/� dimC.L0=L\L0/ and is denoted rdim.L/.

If G is a reductive group and V� is a representation of G, then there is a map

(32)
 � W Gr! flattices in V�˝Kg

Œg� 7! g�1 �V�˝O:

For any G, this gives an embedding of G into
Q
�flattices in V�˝Kg. The

image of this embedding will be those systems of lattices which are compatible
with morphisms V�˝ V�! V� (see �10.3 in [FM99] for more details). We can
use this embedding to express our functions D
 .

PROPOSITION 9.1. Let 
 be a chamber weight of level i . Then

D
 .L/D rdim
�
 ƒi

.L/\ .Vƒi
.
/˝K/

�
:

Proof. Note that if R is a lattice in Vƒi
, then since Vƒi

.
/ is one dimensional,

rdim
�
R\ .Vƒi

.
/˝K/
�
D�min val.a/

where the min is taken over all a such that av
 2R.
Hence, in our case the min is taken over all a such that

av
 2 g
�1
�Vƒi

˝O , ag � v
 2 Vƒi
˝O:

From here the result follows from the definition of val. �

9.2. Lattices for SLn. From now on, we specialize to the caseGDSLn where
an easier picture is available. The following result is due to Lusztig.

THEOREM 9.2 ([Lus83]). In the case of the standard representation Vƒ1
of

SLn, the map  ƒ1
gives an isomorphism

Gr! Grl WD flattices in Kn of relative dimension 0g:

If U is a vector space over C and L is a lattice in U ˝ K, then ƒiL WD
fv1 ^ � � � ^ vk W v1; : : : ; vi 2 Lg is a lattice in ƒiU ˝K. Since the i th fundamental
representation of SLn is ƒiCn, we see that if L 2 Gr , then

(33)  ƒi
.L/Dƒi

�
 ƒ1

.L/
�
:

So from  ƒ1
.L/ we can recover  ƒi

.L/ for all i , and then from there  �.L/ for
all �.
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Let fe1; : : : ; eng denote the usual basis for Cn. Recall that for each � D
.�1; : : : ; �n/ 2X�, we defined an element t� 2 Gr . Under the above isomorphism,
this element goes over to the lattice L� WD spanO.t

��1e1; : : : ; t
��nen/.

Recall that the set of chamber weights � can be identified with the set of
proper subsets of f1; : : : ; ng. For any 
 2 � , we can consider the subspace U
 WD
spanfei W i 2 
g of Cn. We get a corresponding subspace U
 ˝K of Kn. In what
follows we will abuse notation and write U
 for U
 ˝K.

PROPOSITION 9.3. Under the isomorphism Gr ! Grl , the function D
 be-
comes the function

L 7! rdim.L\U
 /:

The proof of this proposition follows from equations (9.1), (33), and the fol-
lowing lemma.

LEMMA 9.4. If U is a vector space over C of dimension k and L is a lattice
in U ˝K, then rdim.L/D rdim.ƒkL/.

Proof. Fix a basis fu1; : : : ; ukg for U over C. Suppose that there exist
r1; : : : ; rk 2 Z such that L D spanO.t

�r1u1; : : : ; t
�rkuk/. Then it is easy to see

that rdim.L/D r1C � � �C rk and

rdim.ƒkL/D rdim.spanO.t
�r1�����rku1 ^ � � � ^uk//D r1C � � �C rk :

If L is a lattice, then there exists g 2 GLU .O/ such that g �L is of the above
form. Hence it suffices to show that rdim.L/ and rdim.ƒkL/ are invariant under g.

Note that g �L0 D L0, so g � .L\L0/D .g �L/\L0. Hence

dim.L=L\L0/D dim.g �L=.g �L/\L0/

and
dim.L0=L\L0/D dim.L0=.g �L/\L0/:

So rdim.L/ is invariant under g. Similarly, rdim.ƒkL/ is invariant under g. �

9.3. Kostant pictures. The positive roots of SLn are indexed by the set of
pairs f.a; b/ W 1� a < b � ng with the positive root corresponding to .a; b/ having
a 1 in the ath slot, a �1 in the bth slot and 0s elsewhere.

Following Anderson-Kogan [AK04], we define a Kostant picture to be assign-
ment of a nonnegative integer to each positive root of SLn. They viewed a Kostant
picture as a collection of loops around the Dynkin diagram for SLn, but we will
think of it more formally as an element pD

�
p.a;b/

�
a<b
2 N�C . To reconstruct

the “picture”, one should draw p.a;b/ loops with left edge at column a and right
edge at column b.

In [AK04], Anderson-Kogan produced a bijection from the set of Kostant
pictures to the set of stable MV cycles and polytopes for SLn. Using i-Lusztig
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data, we constructed such a bijection for any reduced word i for w0 (Theorems 4.2
and 7.1). We will show that their bijection is our bijection for the reduced word
i WD .1; : : : ; n� 1; 1; : : : ; n� 2; : : : ; 1; 2; 1/.

Recall that any reduced word induces a total order on the positive roots. The
reduced word i induces the order

ˇi
1 D .1; 2/; .1; 3/; : : : ; .1; n/; .2; 3/; : : : ; .2; n/; : : : ; .n� 1; n/D ˇ

i
m:

Recall that any reduced word i has its associated set of i-chamber weights,
denoted � i. For this choice of i, we see that � i WD fŒa � � � b� W a < bg where Œa � � � b�
denotes the chamber weight fa; aC 1; : : : ; bg.

We now recall some more notation from [AK04]. If L is a lattice, then ıi .L/
denotes the maximum value of j such that t�j ei 2 L. So Lı.L/ � L. Next,
Anderson-Kogan define dim0.L/ WD dimC.L=Lı.L//.

The following lemma concerning these functions will be very convenient
for us.

LEMMA 9.5.

dim0.L\U
 /C
X
i2


ıi .L/D rdim.L\U
 /:

Proof. If A � B � C is a tower of vector spaces over C, then dim.C=A/D
dim.C=B/C dim.B=A/. In our case, we have the three towers L0 \ Lı.L/ �
L0\L�L0, L0\Lı.L/ �Lı.L/ �L, and L0\Lı.L/ �L0\L�L. Applying
this tower theorem to the intersection of these three towers with U
 and adding the
equations imply the desired result. �

If .a; b/ is a positive root of SLn (which they think of as a loop), Anderson-
Kogan defined a function n.a;b/ W Grl! Z by the formula

n.a;b/.L/ WD dim0.L\UŒa���b�/� dim0.L\UŒa���b�1�/

� dim0.L\UŒaC1���b�/C dim0.L\UŒaC1���b�1�/:

PROPOSITION 9.6. Let L 2 Gr and let n� denote the i-Lusztig datum of P.L/.
Let L also denote the image of L in Grl . Let .a; b/ be a positive root and let k be
such that ˇi

k
D .a; b/. Then

n.a;b/.L/D nk :

Proof. Let M
 D D
 .L/. Examining the reduced word i and the system
(17) which converts between i-Lusztig datum and hyperplane datum for i-chamber
weights, we see that

nk D�MŒaC1���b��MŒa���b�1�CMŒaC1���b�1�CMŒa���b�:
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So it suffices to prove that

n.a;b/.L/D�DŒaC1���b�.L/�DŒa���b�1�.L/CDŒaC1���b�1�.L/CDŒa���b�.L/

for all L2Gr . But this follows immediately from Proposition 9.3 and Lemma 9.5.
�

If pD .p.a;b// is a Kostant picture, then Anderson-Kogan defined the notion
of a lattice weakly compatible to p. They showed that a lattice L was weakly
compatible to p iff n.a;b/.L/D p.a;b/ for all .a; b/ [AK04, Prop 4.1]. Following a
slight modification of their notation, we letM.p/ denote the set of lattices L weakly
compatible to p such that rdim.L\UŒ1���b�/ D 0 for all b. (Actually, Anderson-
Kogan considered “M.p; �/” which consisted of lattices L weakly compatible to
p and satisfying the condition rdim.L\UŒa���n�/D h�; Œa � � �n�i for all a).

From the above proposition, we immediately see how these lattices fit into
our results.

COROLLARY 9.7. Let n� 2 Nm. Define p by p.a;b/ D nk where k is such that
ˇi
k
D .a; b/. The isomorphism Gr! Grl takes Ai.n�/ onto M.p/.

Anderson-Kogan proved that the closure of M.p/ was an MV cycle. Our
Theorem 4.2 shows that Ai.n�/ is an MV cycle and thus provides an alternate
proof of this result. Thus we have established the following.

THEOREM 9.8. The Anderson-Kogan bijection N�C!M is the same as our
bijection Nm!M for the particular choice of reduced word above.

9.4. Strongly compatible lattices. In order to understand the MV polytope
ˆ
�
M.p/

�
associated to M.p/, Anderson-Kogan introduced the notion of a lattice

in M.p/ being strongly compatible to p. We follow their notation and write M �.p/
for the set of lattices in M.p/ which are strongly compatible to p.

They showed that M �.p/ was dense in M.p/ [AK04, Prop 4.3,4.5] and that
a lattice L was strongly compatible to p if and only if P.L/Dˆ

�
M.p/

�
[AK04,

Th. E]. Anderson-Kogan also observed that M �.p/ was a GGMS stratum and this
served as one of our primary motivations for the use of GGMS strata in this work.

We showed that for any i-Lusztig datum n� of coweight �, there exists a
corresponding BZ datum M� of coweight .0; �/ (Theorem 7.1). Moreover, the
corresponding GGMS stratum A.M�/ is dense in Ai.n�/ and the corresponding
pseudo-Weyl polytope P.M�/ equals the MV polytope ˆ

�
Ai.n�/

�
. For these re-

sults see Lemma 5.5 and the proof of Theorem 3.1.
Comparing our results to the Anderson-Kogan results, we immediately have

the following.

THEOREM 9.9. Let n� 2 Nm and let p, M� be related to n� as above. Then
the isomorphism Gr! Grl takes A.M�/ onto M �.p/.
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9.5. Collapse algorithm. Fix n� and the corresponding p and M�. Let P D
ˆ
�
M.p/

�
. Anderson-Kogan [AK04] gave a combinatorial algorithm, called col-

lapse, for use in calculating the vertices of P from the Kostant picture p.
On the other hand, the above considerations show that P D P.M�/. The

values of M
 for all 
 2 � i are linearly determined from n�. The other values of
M� are determined by the tropical Plücker relations. The positions of the vertices
of P are determined from M� by the usual vertex/hyperplane correspondence (7).

Thus we have two combinatorial procedures for calculating the vertices �� of
P from the i-Lusztig datum n�: the collapse algorithm and the method of solving
the tropical Plücker relations. The Anderson-Kogan method is more explicit and
perhaps easier to work with. Both procedures produce the same answer, but in fact
more is true — we can understand the collapse algorithm as a series of applications
of the tropical Plücker relations. The remainder of this section will be devoted to
the explanation of this statement.

Actually, the vertices produced by the Anderson-Kogan method and those
which we produce differ in the labelling of the vertices by the Weyl group. If ��
denotes the Anderson-Kogan vertices, then �w D �ww0

.
Collapse along k takes a Kostant picture p and produces another Kostant pic-

ture p0, whose “loops” are naturally labelled .a; b/ with a < b and a ¤ k; b ¤ k
(see [AK04, �2.4]).

Anderson-Kogan defined collapse by a combinatorial algorithm. As the defi-
nition is quite involved, we will not give it here. However we can summarize the
algorithm by the following algebraic statement.

LEMMA 9.10. If a < k < b, then

(34) p0.a;b/ Dmin
� b�1X
rDk

p.a;r/�p
0
.a;r/;

kX
sDaC1

p.s;b/�p
0
.s;b/

�
;

where by convention p0
.a;k/
D 0D p0

.k;b/
. If k < a or b < k, then p0

.a;b/
D p.a;b/.

Proof. We give a sketch of the proof which will be comprehensible only to
those familiar with the collapse algorithm. Note that every loop with left edge at
a and right edge at b (from now on called an .a; b/-loop) is produced as the join
of an .a; r/ loop and an .s; b/ for some k � r < b and a < s � k. Now every
such .a; r/ and .s; b/ loop is joined at some stage of the collapse algorithm, so the
two parts of the min represent the amount of .a; r/ and .s; b/ loops not used to
make smaller loops. The production of .a; b/ loops by joining is then given by the
minimum number of the available raw materials. �

In [AK04, �2.4], collapse along k is used to understand the vertices �w for all
w such that w.1/D k. For us, these will be the vertices �w with w.n/D k.
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The set fw 2W Ww.n/D kg forms a facet of the permutahedron. This facet is
naturally isomorphic to the permutahedron of SLn�1. We can use this isomorphism
to construct a path through the 1-skeleton of this facet which corresponds to the
reduced word .1; : : : ; n� 2; : : : ; 1; 2; 1/ for SLn�1. We extend this path to a path
through the entire permutahedron of SLn, giving us a reduced word i0 for SLn
(recall from �4.1 that there is a bijection between reduced words and paths).

The reduced word i0 gives us a labelling of the edges of the path by positive
roots of SLn. The labelling of the edges of the path lying in the facet is independent
of how we extend this portion of the path outside of the facet. In fact, they are
always labelled by the positive roots .a; b/ such that a¤ k; b ¤ k.

LEMMA 9.11. Let n� be a Lusztig datum for i and let n0� be the corresponding
Lusztig datum for i0. For any positive root .a; b/, let p.a;b/ D nk where k is such
that ˇi

k
D .a; b/ and for any positive root .a; b/ with a¤ k; b ¤ k, let p0

.a;b/
D n0

k

where k is such that ˇi0
k
D .a; b/. Then p0� and p� are related as in Lemma 9.10.

Proof. Assume a < k < b. Let M� be the corresponding BZ datum. By
applying the usual conversion (17), we see that

p.a;b/ D�MŒaC1���b��MŒa���b�1�CMŒaC1���b�1�CMŒa���b�;(35)

p0.a;b/ D�MŒaC1��� Ok���b�
�M

Œa��� Ok���b�1�
CM

ŒaC1��� Ok���b�1�
CM

Œa��� Ok���b�
:(36)

We expand out the sum in the RHS of (34) using (35) and (36). Then we
substitute (36) into the LHS of (34). After cancelling some terms, we see that we
must prove that for all a < k < b,

(37) M
Œa��� Ok���b�

CMŒaC1���b�1�

Dmin
�
M
ŒaC1��� Ok���b�

CMŒa���b�1�;MŒa��� Ok���b�1�
CMŒaC1���b�

�
:

But this is exactly a tropical Plücker relation and so the result follows. �

Thus our theory gives the following interpretation of collapse.

THEOREM 9.12. The Kostant picture produced by collapse along k gives the
lengths of the edges along the above path inside the “w.n/D k” facet of the MV
polytope. Moreover, the algorithm of collapse along k is equivalent to recursively
solving all of the tropical Plücker relations of the form (37).

9.6. Vertices. Now that we have managed to see how the collapse algorithm
fits into our setup, it remains only to understand the inductive way that Anderson-
Kogan compute the vertices ��. Fix v 2W and let �v D .�1; : : : ; �n/. First they
compute �k where k D v.1/, and then they compute the rest of the components
of the vertex using the Kostant datum produced by collapse along k. Since we
understand collapse along k, it remains only to understand their formula for �k .
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They show (see the proof of Theorem E in [AK04]) that for any L 2M �.p/,

(38) �k D ık.L/C dim0.L/� dim0.L\U
 /;

where 
 D Œ1 � � � Ok � � �n�.
This vertex �v will be our vertex �w where w D vw0. So w.n/D k which

implies that w �ƒn�1 D 
 . Hence we have that

(39) h�w ; 
i DM
 :

But if L 2 A.M�/, then M
 D D
 .L/ D rdim.L\U
 / by Proposition 9.3.
Now we apply Lemma 9.5 to conclude that

rdim.L\U
 /D dim0.L\U
 /C
X
i¤k

ıi .L/;

rdim.L/D dim0.L/C
X
i

ıi .L/:

Taking the difference of these two equations and combining with (39) yields

h�w ; 
i D dim0.L\U
 /� dim0.L/� ık.L/

which is equivalent to (38) since h�; 
i D ��k as we are in the coweight lattice
of SLn.

Appendix A. Pseudo-Weyl polytopes

The purpose of this appendix is to prove Proposition 2.2. To do so we will
introduce the notion of dual fan to a polytope. This will also put the concept of
pseudo-Weyl polytope on a firmer footing.

We thank A. Knutson, D. Speyer, and B. Sturmfels for explaining some of
the concepts presented here and for suggesting this method of proving Proposition
2.2. Many of the definitions presented here can be found in [Ewa96] and [Zie95].
The general results presented here (Theorems A.2 and A.3) are known to experts
but we could not find them in the literature. A version of Theorem A.2 appears in
[Ful93, �3.1] in the context of ample line bundles on toric varieties.

Let V denote a real vector space and V ? its dual. We are interested in the
case V D tR.

A.1. Support functions. If P is a convex subset of V , we define the support
function of P,  P W V ?! R, by

 P .˛/ WD min
v2P
hv; ˛i:



MIRKOVIĆ-VILONEN CYCLES AND POLYTOPES 287

The support function is a homogeneous, concave function on V ?, i.e.

 P .�˛/D � P .˛/ if � 2 R� and

 P .˛Cˇ/ �  P .˛/C P .ˇ/:

Conversely, given any homogeneous, concave function  on V ?, we can de-
fine the set

P. / WD fv 2 V W hv; ˛i �  .v/ig:

The general theory of convexity tells us that these two maps are inverse to
each other and that they set up a bijection8̂̂: convex subsets

of V

9>>; ! 8̂̂: homogeneous concave
functions on V ?

9>>; :
We will now proceed to examine a special case of this bijection.

A.2. Fans. A polyhedral cone in V ? is a finite intersection of closed linear
half spaces.

A (complete) fan F in V ? is a finite collection of nonempty polyhedral cones
of V ? such that

(i) every nonempty face of a cone in F is also a cone in F,

(ii) the intersection of any two cones in F is a face of both, and

(iii) the union of all the cones in F is V ?.

A fan F induces an equivalence relation on V ? whose equivalence classes are
the interiors of the cones of F. The fan can be recovered from this equivalence
relation, thus we can view fans as a special class of equivalence relation on V ?.

We will mostly be concerned with the Weyl fan in t?R. The maximal cones of
this fan are the cones

C ?w WD f˛ 2 t?R W hw �˛
_
i ; ˛i � 0 for all ig:

All other cones are obtained by intersecting these maximal cones.
Given a polytope P in V (for us polytopes are always assumed to be convex),

we can construct a fan in V ? called the dual fan N.P / of P . For ˛ 2 V ?, let

M.P; ˛/D fv 2 P W hv; ˛i D  P .˛/g

be the subset of P where h�; ˛i is minimized. Note that this subset will always be
a face of P . The cones C ?F of N.P / are indexed by the faces F of P and are given
by

C ?F WD f˛ 2 V
?
W F �M.P; ˛/g:

The corresponding equivalence relation is

˛ � ˇ,M.P; ˛/DM.P; ˇ/:
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PROPOSITION A.1. The dual fan of the permutahedron is the Weyl fan.

Proof. Recall that for each w 2W , ww0 ��_ is a vertex of the permutahedron.
We will show that the cone C ?ww0��_

dual to this vertex is C ?w .

Since the local cone of the permutahedron at the ww0 � �_ vertex is Cww0��
_

w ,
we have that

C ?ww0��_
D f˛ 2 t?R W hv; ˛i � hww0 � �

_; ˛i for all v 2 Cww0��
_

w g:

So ˛ lies in the dual cone if and only if hv; ˛i � 0 for all v 2 C 0w . Now the
cone C 0w is spanned by w �ƒi for all i 2 I and so ˛ is in the dual cone if and only
if hw �˛_i ; ˛i � 0 for all i 2 I as desired. �

A fan F1 is said to be a coarsening of a fan F2 if every cone of F1 is a union
of cones of F2. Equivalently, the equivalence relation �

1
corresponding to F1 is

stronger than the equivalence relation �
2

corresponding to F2, i.e. ˛ �
2
ˇ) ˛ �

1
ˇ.

A polytope P is called an F-polytope if its dual fan is a coarsening of F.
With these notions in hand, we can now give a better definition of pseudo-

Weyl polytope. A pseudo-Weyl polytope is a polytope in tR with vertices in X�,
whose dual fan is a coarsening of the Weyl fan. Later we will show that this
definition agrees with our old one.

A.3. Support functions of F-polytopes. We would like to see how to charac-
terize F-polytopes in terms of their support functions.

A homogeneous, concave function  is said to be linear on F if, whenever
˛�ˇ, we have .˛/C .ˇ/D .˛Cˇ/. Since a concave function is automatically
continuous, this implies that the restriction of  to any cone of F is linear.

THEOREM A.2. The maps P 7!  P and  7! P. / give a bijection8:F�Polytopes
9; ! 8̂̂: homogeneous, concave functions

which are linear on F

9>>; :
Proof. Since these maps are inverses to each other we just need to check that if

P is an F-polytope, then  P is linear on F and conversely if  is a homogeneous,
concave function, linear on F, then P. / is an F-polytope.

First, assume that P is an F-polytope. Let ˛ � ˇ. Then ˛ and ˇ are also
equivalent under the N.P / equivalence relation (since N.P / is a coarsening of F).
So M.P; ˛/DM.P; ˇ/. Hence there exists v 2 P such that hv; ˛i D  P .˛/ and
hv; ˇi D  P .ˇ/.

Hence,  P .˛C ˇ/ � hv; ˛C ˇi D  P .˛/C P .ˇ/. Hence  P .˛C ˇ/ D
 P .˛/C P .ˇ/ as desired. So  P is linear on F.



MIRKOVIĆ-VILONEN CYCLES AND POLYTOPES 289

Now assume that  is a homogeneous, concave function which is linear on F.
Let ˛ � ˇ in F. We would like to show that M.P; ˛/DM.P; ˇ/ since this will
show that ˛ and ˇ are similar under the N.P / equivalence relation.

Suppose that v 2 M.P; ˛/ but v … M.P; ˇ/, so that  .ˇ/ < hv; ˇi. Since
the equivalence classes of F are the interiors of cones, there exists t > 0 such that
˛� tˇ � ˇ. By linearity  .˛� tˇ/C .tˇ/D  .˛/. Hence,

hv; ˛� tˇiC hv; tˇi>  .˛� tˇ/C t .ˇ/D  .˛/D hv; ˛i

which is a contradiction.
So we conclude that M.P; ˛/�M.P; ˇ/ and similarly M.P; ˇ/�M.P; ˛/.

Hence ˛ and ˇ are similar under the N.P / equivalence relation. �

A.4. Vertex data. If P is a polytope, then there is a natural bijection between
the vertices of P and the maximal cones of N.P /.

Let F be a fan and let P be an F-polytope. Let fC ?x W x 2 Xg be the set of
maximal cones of F. Each maximal cone of F is a subcone of a unique maximal
cone of N.P / and so we get a surjective map

X � max cones of N.P /D vertices of P:

Let px denote the image of x 2X under this map.
The collection Vert.P / WD

�
px
�
x2X

is called the vertex data of P .
For each x 2X define a partial order �x on V by

v �x w, hv; ˛i � hw; ˛i for all ˛ 2 C ?x

Suppose we have a collection of points of V , p� D .px/x2X such that py �x
px for all x; y 2X . Then we define

P.p�/ WD fv 2 V W v �x px for all x 2Xg:

THEOREM A.3. The maps P 7! Vert.P / and p� 7! P.p�/ give a bijection8:F� polytopes
9; ! 8̂̂: collections .px/x2X such that

py �x px for all x; y 2X

9>>; :
Moreover, if P and p� correspond under this bijection then the support func-

tion of P satisfies
 P .˛/D hpx; ˛i if ˛ 2 C ?x :

Proof. First, we would like to show that if P is an F-polytope, then p� WD
Vert.P / satisfies the desired condition. Let x; y 2X and let ˛ 2 C ?x . By definition,
px 2M.P; ˛/. So  P .˛/D hpx; ˛i. Because py 2 P ,

hpy ; ˛i �  P .˛/D h˛; pxi:

Since this holds for all ˛ 2 C ?x , py �x px as desired.
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Now, we show that P.Vert.P // D P . Note that v �x px if and only if
hv; ˛i � hpx; ˛i D  P .˛/ for all ˛ 2 C ?x . Thus, we see that

P.p�/D fv 2 V W hv; ˛i �  P .˛/ for all ˛ 2 V ?g;

and so P.p�/D P. P /D P as desired.
Next, we would like to show that if p� satisfies the hypothesis, then P.p�/ is

an F-polytope and Vert.P.p�//D p�. Define a function  W V ?! R by

 .˛/D hpx; ˛i if ˛ 2 C ?x :

To see that  is well-defined, suppose that ˛ 2 C ?x and ˛ 2 C ?y . Then since
py �x px , hpy ; ˛i � hpx; ˛i. Similarly the opposite inequality holds and so we
see that hpy ; ˛i D hpx; ˛i.

Now, we claim that  is homogeneous and concave. Homogeneity is clear.
Suppose that ˛ 2 C ?x ; ˇ 2 C

?
y for some x; y 2 X . Then there exists u 2 X such

that ˛Cˇ 2 C ?u . So,

 .˛Cˇ/D hpu; ˛Cˇi D hpu; ˛iC hpu; ˇi �  .˛/C .ˇ/

where the inequality follows from the fact that pu �x px and pu �y py . So  is
concave. Finally, we claim that  is linear on F. Suppose that ˛ � ˇ. Then there
exists x 2 X such that ˛; ˇ 2 C ?x . Then ˛Cˇ is also in C ?x and so  .˛Cˇ/D
hpx; ˛Cˇi D  .˛/C .ˇ/ as desired.

Hence P. / is an F-polytope. But we have already seen that P. /D P.p�/
and so P.p�/ is an F-polytope. Moreover, we already saw that if p0�DVert.P. //,
then  .˛/D hp0x; ˛i for all ˛ 2 C ?x . Since the cone C ?x is maximal, it spans V ?

and hence p0x D px for all x as desired. �

COROLLARY A.4. Our two definitions of pseudo-Weyl polytope agree.

Note that we have also proved the first part of Proposition 2.2.

A.5. Hyperplane data. A polyhedral cone C in V ? is called simplicial if
there exists a basis ˛1; : : : ; ˛n for V ? such that C D f�1˛1C� � �C�n˛n W �i � 0g.
These ˛1; : : : ; ˛n will necessarily be along the rays (one-dimensional faces) of the
cone. A fan F is called simplicial if all of its cones are simplicial. For example, the
Weyl fan is simplicial since the cone C ?w is spanned by the vectors fw �ƒi W i 2 I g.

From now on, we assume that F is simplicial and let � be a set of vectors,
one lying in each ray of F. So for any cone C 2 F, C is the positive linear span
of the vectors � \C . For example, when F is the Weyl fan, the set of chamber
weights � is such a set.

If  is a homogeneous concave function, linear on F, then  is determined by
its restriction to the rays of F. Hence we get a sequence of real numbers

�
M
 WD
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 .
/
�

2�

which determine  . Moreover, in this case, we see that

P. /D fv 2 V W hv; 
i �M
 for all 
 2 �g:

The collection M� is called the hyperplane datum of P. /.
Conversely, given a sequence of real numbers

�
M


�

2�

, we can ask if there
exists a homogeneous, concave function  which is linear on F such that  .
/D
M
 for all 
 . In fact, such a sequence always defines a function  M� in the follow-
ing way. Since F is simplicial, every ˛ 2 V ? can be written uniquely as a positive
linear combination ˛D �1
1C� � �C�n
n with 
i 2 � and �i � 0. Then we define

 M�.˛/ WD �1M
1
C � � �C�nM
n

:

Note that  M� is homogeneous and linear on F. However, it will not always be
true that  M� is concave.

LEMMA A.5. If F is the Weyl fan and � is the set of chamber weights, then
 M� is concave if and only if M� satisfies the edge inequalities (6).

Proof. First, we show that if  M� is concave, then M� satisfies the edge
inequalities. For any i 2 I and w 2W , note that

wsi �ƒi Cw �ƒi D
X
j¤i

�aj iw �ƒj :

Since w �ƒj all lie in the same cone of the Weyl fan and since aj i � 0 for
j ¤ i , by linearity, homogeneity, and concavity, we have that

 .wsi �ƒi /C .w �ƒi /�
X
j¤i

�aj i .w �ƒj /:

This implies the edge inequality among the M�.
Conversely, assume that M� satisfies the edge inequalities, and define  M� as

above. We would like to show that  M� is concave.
For each w 2 W , let  w denote the unique linear function on t?R such that

 w.w �ƒi / D Mw �ƒi
for all i 2 I . So  and  w agree on C ?w . By the same

argument as in the second half of the proof of Theorem A.3, it suffices to show that
 .˛/�  w.˛/ for all ˛ 2 t?R. To prove this it suffices to show that  .
/�  w.
/
for all 
 2 � and w 2W .

For simplicity, we will prove this last statement for 
 Dƒk for some k. Our
proof will proceed by induction on W using the weak Bruhat order. To prove the
statement for general 
 requires a different partial order adapted to 
 .

The base case of w D e is clear. So assume w 2W , w ¤ e and that  .
/�
 v.
/ for all v < w in the weak Bruhat order.
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Let �j 2R be such that 
 D
P
�jw �ƒj . Since w¤ e, there exists i 2 I such

that wsi < w. Hence w � ˛_i is a negative coroot. So hw � ˛_i ; ƒki � 0 and hence
�i � 0.

Since ƒi D�si �ƒi �
P
j¤i aj iƒj and si �ƒj Dƒj for j ¤ i , we see that


 D
X
j¤i

.�j ��iaj i /wsi �ƒj ��iwsi �ƒi :

With wsi <w, by induction we have that  .
/�  wsi .
/ and so

(40) M
 �

X
j¤i

.�j ��iaj i /Mwsi �ƒj
��iMwsi �ƒi

D

X
j¤i

�jMw �ƒj
��i .Mwsi �ƒi

C

X
j¤i

aj iMw �ƒj
/:

Now the edge inequality tells us that

Mwsi �ƒi
C

X
j¤i

aj iMw �ƒj
� �Mw �ƒi

:

So multiplying this equation by ��i and combining with (40) show that

M
 �

X
j

�jMw �ƒj

as desired. Hence we have proved the statement for w. This completes the induc-
tion argument. �

Let P be a polytope whose dual fan is a coarsening of the Weyl fan. Let ��
be its vertex data and M� be its hyperplane data. Then by Theorem A.3, they are
related by

Mw �ƒi
D h�w ; w �ƒi i:

So we see that M
 2 Z for all 
 if and only if �w 2X� for all w.
Combining Theorem A.2, Theorem A.3, Lemma A.5 and the above remark,

gives the proof of Proposition 2.2.

A.6. Minkowski sums of pseudo-Weyl polytopes. We close this section with
the proof of Lemma 6.1 concerning Minkowski sums of pseudo-Weyl polytopes.

Proof of Lemma 6.1. If A;B are polytopes, then the dual fan of the Minkowski
sum ACB is the common refinement of the two dual fans N.A/;N.B/ (see [Zie95,
Prop 7.12]). If two fans are both coarsenings of the Weyl fan, then so is their
common refinement. Hence the Minkowski sum of pseudo-Weyl polytopes is again
a pseudo-Weyl polytope. Moreover, it is clear that the support function of ACB
is  AC B and so the second half of the result follows. �
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