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Abstract

We prove a pair of transformations relating elliptic hypergeometric integrals of
different dimensions, corresponding to the root systems BCn and An; as a special
case, we recover some integral identities conjectured by van Diejen and Spiridonov.
For BCn, we also consider their “Type II” integral. Their proof of that integral,
together with our transformation, gives rise to pairs of adjoint integral operators; a
different proof gives rise to pairs of adjoint difference operators. These allow us to
construct a family of biorthogonal abelian functions generalizing the Koornwinder
polynomials, and satisfying the analogues of the Macdonald conjectures. Finally,
we discuss some transformations of Type II-style integrals. In particular, we find
that adding two parameters to the Type II integral gives an integral invariant under
an appropriate action of the Weyl group E7.
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1. Introduction
In recent work, van Diejen and Spiridonov [6], [7], [32] have produced a num-

ber of conjectural elliptic hypergeometric integration formulae, common general-
izations of Spiridonov’s elliptic beta integral [31] and q-hypergeometric integration
identities due to Gustafson [11]. In particular, for the BCn root system, they gave
two conjectures, “Type I” and “Type II” (proved as Corollary 3.2 and Theorem 6.1
below), and showed that the Type I integral would imply the Type II integral. In an
appropriate limit, their Type II integral transforms via residue calculus into a sum
originally conjectured by Warnaar [37] (and proved by Rosengren [25]). In fact,
Warnaar also conjectured a more general formula, a Bailey-type transformation
identity, rather than a Jackson-type summation identity. This suggests that there
should be transformation formulae on the integral level as well; this is the topic of
the present work.

Their Type I integral can be thought of as the ultimate generalization of an
integral identity used by Anderson [1] in his proof of the Selberg integral (which the
Type II integral generalizes). While Anderson’s proof of this identity (based on a
clever change of variables) does not appear to generalize any further, some recent
investigations of Forrester and the author [9] of a random matrix interpretation
of the Anderson integral suggested a different argument, which as we will see
does indeed generalize to the elliptic level. While the argument was not powerful
enough to directly prove the Type I integral, it was able to prove it for a countably
infinite union of submanifolds of parameter space. This suggested that this argu-
ment should at least suffice to produce the correct conjecture for a transformation
law; in the event, it produced not only a conjecture but a proof. We thus obtain an
identity relating an n-dimensional integral with 2nC 2mC 4 parameters to an m-
dimensional integral with transformed parameters; when mD 0, this gives the van
Diejen-Spiridonov integral, but the proof requires this degree of freedom. A similar
identity for the An root system follows by a slight modification of the argument;
this gives a transformation generalization of a conjecture of Spiridonov [32]. The
basic idea for both proofs is that, in an appropriate special case, the transformations
can be written as determinants of relatively simple one-dimensional transforma-
tions. This “determinantal” case is thus easy to prove; moreover, by taking limits
of some of the remaining degrees of freedom, we can transform the n-dimensional
determinantal identity into a lower-dimensional, but nondeterminantal instance of
the transformation. Indeed, by repeating this process, starting with a sufficiently
large instance of the determinantal case, we can obtain a dense set of special cases
of the desired transformation, thus proving the theorem.

As mentioned above the Type II integral follows as a corollary of the Type I
integral. In many ways, this integral is of greater interest, most notably because
it generalizes the inner product density for the Koornwinder polynomials [14].
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Since the inner product density generalizes, it would be natural to suppose that
the orthogonal polynomials themselves should generalize. It would be too much
to expect them to generalize to orthogonal functions, however; indeed, even in the
univariate case, the elliptic analogues of the Askey-Wilson polynomials are merely
bi orthogonal (these analogues are due to Spiridonov and Zhedanov [34], [35] in
the discrete case (generalizing work of Wilson [38]), and Spiridonov [32] in the
continuous case (generalizing work of Rahman [17])). With this in mind, we will
construct in the sequel a family of functions satisfying biorthogonality with respect
to the Type II integral.

There are two main ingredients in this construction. The first is a family of
difference operators, generalizing some difference operators known to act nicely
on the Koornwinder polynomials [20], and satisfying adjointness relations with
respect to the elliptic inner product. As a special case, we obtain a difference-
operator-based proof of the Type II integral. This suggests that the proof based
on the Type I integral should be related to a pair of adjoint integral operators,
which form the other main ingredient in our construction. It turns out that the
BCn $ BCm transformation plays an important role in understanding these in-
tegral operators; indeed, by taking limits of the transformation so that one side
becomes a finite sum, we obtain formulas for the images under the integral operator
of a spanning set of its domain. The biorthogonal functions are then constructed
as the images of suitable sequences of difference and integral operators. (This
construction is new even at the level of Koornwinder polynomials.)

As these functions are biorthogonal with respect to a generalization of the
Koornwinder density (and indeed contain the Koornwinder polynomials as a spe-
cial case, although this turns out to be somewhat subtle to prove), one of course
expects that they satisfy analogous properties. While the Hecke-algebraic aspects
of the Koornwinder theory (see, for instance, [29]) are still quite mysterious at
the elliptic level, the main properties, i.e., the “Macdonald conjectures”, do indeed
carry over. Two of these properties, namely the closed forms for the principal
specialization and the nonzero values of the inner product, follow quite easily
from the construction and adjointness; the third (evaluation symmetry) will be
proved in a follow-up paper [21]. The arguments there are along the same lines as
those given in [20] for the Koornwinder case, which were based on Okounkov’s
BCn-symmetric interpolation polynomials [15]. Unlike in the Koornwinder case,
however, at the elliptic level the required interpolation functions are actually special
cases of the biorthogonal functions.

Just as in [20], these interpolation functions satisfy a number of generalized
hypergeometric identities, having Warnaar’s multivariate identities and conjectures
[37] as special cases. To be precise, they satisfy multivariate analogues of Jack-
son’s summation and Bailey’s transformation. The former identity has an integral
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analogue (Theorem 9.2 below), extending the Type II integral. In fact, the transfor-
mation also has an analogue, stated as Theorem 9.7 below; as a special case, this
gives our desired transformation analogue of the Type II integral. The simplest
version of this transformation states that an eight-parameter version of the Type II
integral is invariant with respect to an action of the Weyl group E7; in fact, this
action extends formally to an action of E8, acting on the parameters in the most
natural way.

The plan of the paper is as follows. After defining some notation at the end
of this introduction, we proceed in Section 2 to discuss Anderson’s integral, as
motivation for our proof of the BCn and An integral transformations. These trans-
formations are then stated and proved in Sections 3 and 4, respectively; we also
briefly discuss in Section 5 some hybrid transformations arising from the fact that
the BC1 and A1 integrals are the same, but the transformations are not. Section 6
then begins our discussion of the biorthogonal functions by describing the three
kinds of difference operators, as well as the spaces of functions on which they act,
and filtrations of those spaces with respect to which the operators are triangular.
Section 7 discusses the corresponding integral operators (all of which are special
cases of a single operator defined from the Type I integral), showing that they are
triangular with respect to the same filtrations as the difference operators. Then, in
Section 8, we combine these ingredients to construct the biorthogonal functions,
and describe their main properties. In Section 9, we discuss our Type II trans-
formations. Finally, in an appendix, we give a general result regarding when an
integral of a meromorphic function is meromorphic, and apply it to obtain precise
information about the singularities of our integrals.

The author would like to thank P. Forrester, A. Okounkov, H. Rosengren,
and V. Spiridonov for helpful comments on various drafts; also S. Ruijsenaars for
helpful conversations related to the appendix. This work was supported in part by
NSF Grant No. DMS-0401387; in addition, some work was performed while the
author was employed by the Center for Communications Research, Princeton.

Notation. We will need a number of generalized q-symbols in the sequel.
First, define the theta function and elliptic Gamma function [28]:

�.xIp/ WD
Y
0�k

.1�pkx/.1�pkC1=x/;

�.xIp; q/ WD
Y
0�j;k

.1�pjC1qkC1=x/.1�pj qkx/�1:

In each case, the presence of multiple arguments before the semicolon indicates a
product; thus, for instance,

�.z˙1i z˙1j Ip; q/D �.zizj Ip; q/�.zi=zj Ip; q/�.zj =zi Ip; q/�.1=zizj Ip; q/:
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These functions satisfy a number of identities, most notably

�.xIp/D �.p=xIp/D .�x/�.1=xIp/;

and

�.xIp; q/D �.pq=xIp; q/�1;

�.pxIp; q/D �.xI q/�.xIp; q/;

�.qxIp; q/D �.xIp/�.xIp; q/:

Using the theta function, one can define an elliptic analogue of the q-symbol;
in fact, just as the elliptic Gamma function is symmetric in p and q, we will want
our elliptic q-symbol also to be symmetric. Thus, we define

�.xIp; q/l;m WD
Y

0�k<l

�.pkxI q/
Y

0�k<m

�.qkxIp/;

so that

�..p; q/l;mxIp; q/

�.xIp; q/
D .�x/�lmp�lm.l�1/=2q�lm.m�1/=2�.xIp; q/l;m;

where

.p; q/l;m WD plqm:

We also need some multivariate symbols, indexed (as the biorthogonal func-
tions will be) by pairs of partitions. By convention, we will use bold greek letters to
refer to such partition pairs, and extend transformations and relations of partitions
in the obvious way. We then define, following [20],

C0�.xI t Ip; q/ WD
Y
1�i

�.t1�ixIp; q/�i ;

C��.xI t Ip; q/ WD
Y
1�i�j

�.tj�ixIp; q/�i��jC1

�.tj�ixIp; q/�i��j

;

CC
�
.xI t Ip; q/ WD

Y
1�i�j

�.t2�i�jxIp; q/�iC�j

�.t2�i�jxIp; q/�iC�jC1

:

We note that each of the above C symbols extends to a holomorphic function on
x 2 C�.



174 ERIC M. RAINS

Two particular combinations of C symbols will occur frequently enough to
merit their own notation. We define:

�0�.aj : : : bi : : : I t Ip; q/ WD
C0�.: : : bi : : : I t Ip; q/

C0�.: : : pqa=bi : : : I t Ip; q/
;

��.aj : : : bi : : : I t Ip; q/ WD�
0
�.aj : : : bi : : : I t Ip; q/

�
C0
2�2

.pqaI t Ip; q/

C��.pq; t I t Ip; q/CC
�
.a; pqa=t I t Ip; q/

:

We will also need the following notion, where 0 < jpj< 1.

Definition 1. A BCn-symmetric (p-)theta function of degree m is a holomor-
phic function f .x1; : : : ; xn/ on .C�/n such that

f .x1; : : : ; xn/ is invariant under permutations of its arguments.

f .x1; : : : ; xn/ is invariant under xi 7! 1=xi for each i .

f .px1; x2; : : : ; xn/D .1=px
2
i /
mf .x1; x2; : : : ; xn/.

A BCn-symmetric .p/-abelian function is a meromorphic function satisfying the
above conditions with mD 0.

In particular, a BCn-symmetric theta function of degree m is a BC1-sym-
metric theta function of degree m in each of its arguments. Now, the space of
BC1-symmetric theta functions of degree m is mC 1-dimensional, and moreover,
any nonzero BC1-symmetric theta function vanishes at exactly 2m orbits of points
(under multiplication by p, and counting multiplicity). Thus we can show that a
BC1-symmetric theta function vanishes by finding mC 1 independent points at
which it vanishes.

The canonical example of a BCn-symmetric theta function of degree 1 isY
1�i�n

�.ux˙1i Ip/I

indeed, the functions for any nC 1 distinct choices of u form a basis of the space
of BCn-symmetric theta functions of degree 1:

f .: : : xi : : : /D
X
0�j�n

f .u0; u1; : : : ; uj�1; ujC1; : : : ; un/

Q
1�i�n �.ujx

˙1
i Ip/Q

k¤j �.uju
˙1
k
Ip/

;

for any BCn-symmetric theta function f of degree 1. More generally, the space
of BCn-symmetric theta functions of degree m is spanned by the set of products
of m such functions.
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2. The Anderson integral

Many of our arguments in the sequel were inspired by considerations of an
extremely special (but quite important) case of Corollary 3.2 below, a multivariate
integral identity used in Anderson’s proof of the Selberg integral.

THEOREM 2.1 ([1]). Let x1; : : : ; xn and s1; : : : sn be sequences of real num-
bers such that

x1 > x2 > � � �> xn and 0 < s1; s2; : : : ; sn:

Then

Z
xn�yn�1�����x2�y1�x1

Q
1�i<j�n�1 jyi �yj j

Q
1�i�n�1
1�j�n

jyi � xj j
sj�1Q

1�i<j�n jxi � xj j
siCsj�1

�

Y
1�i�n�1

dyi D

Q
1�i�n �.si /

�.S/
;

where S D
P
1�i�n si .

Remark 1. In fact, although Anderson independently discovered the above
integral, it turns out that a more general identity (analogous to Theorem 3.1 below)
was discovered in 1905 by Dixon [4]; see also the remark above Theorem 2.3
below. However, Anderson was the first to notice the significance of this special
case in the theory of the Selberg integral, and so we will refer to it as the Anderson
integral in the sequel.

Since the integrand is nonnegative, we can normalize to obtain a probability
distribution. It turns out that if the si parameters are all positive integers, then this
probability distribution has a natural random matrix interpretation.

THEOREM 2.2 ([3], [8, §4]). Let A be an S �S complex Hermitian matrix, let
x1 > x2 > � � �> xn be the list of distinct eigenvalues of A, and let s1, s2; : : : ; sn be
the corresponding multiplicities. Let … W CS ! CS�1 be the orthogonal projection
onto a hyperplane chosen uniformly at random. Then the S � 1�S � 1 Hermitian
matrix B D…A…� has eigenvalues xi with multiplicity si � 1, together with n� 1
more eigenvalues yi , distributed according to the Anderson distribution.

Remark. A similar statement holds over the reals, except that now the mul-
tiplicities correspond to 2s1, 2s2, . . . , 2sn. Similarly, over the quaternions, the
multiplicities correspond to s1=2, s2=2, . . . , sn=2.

Of particular interest is the generic case, in which the eigenvalues of A are all
distinct; that is s1 D s2 D � � � D sn D 1 (this is the case considered in [3]). In this
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case, the Anderson integral is particularly simple to prove. Indeed, the relevant
integral is:

.n� 1/ŠQ
1�i<j�n.xi � xj /

Z
xn�yn�1�����x2�y1�x1

Y
1�i<j�n�1

.yi �yj /
Y

1�i�n�1

dyi :

In particular, the integrand is simply a Vandermonde determinant,Y
1�i<j�n�1

.yi �yj /D .�1/
n.n�1/=2 det

1�i;j�n�1
.yi � xn/

j�1:

Integrating this row-by-row gives

.�1/n.n�1/=2.n� 1/ŠQ
1�i<j�n.xi � xj /

det
1�i;j�n�1

Z xi

xiC1

.y � xn/
j�1dy

D
.�1/n.n�1/=2.n� 1/ŠQ
1�i<j�n.xi � xj /

det
1�i;j�n�1

Z xi

xn

.y � xn/
j�1dy

D
.�1/n.n�1/=2.n� 1/ŠQ
1�i<j�n.xi � xj /

det
1�i;j�n�1

.xi � xn/
j

j

D 1:

Now, in general, a Hermitian matrix with multiple eigenvalues can be ex-
pressed as a limit of matrices with distinct eigenvalues; this suggests that we should
be able to obtain the general integer s Anderson integral as a limit of s� 1 Anderson
integrals. Indeed, if we integrate over yi and take a limit xiC1! xi , the result is
simply the Anderson distribution with parameters

x1 > � � �> xi > xiC2 > : : : xn and s1; s2; : : : ; si C siC1; : : : ; sn�1; sn:

Combining this with the determinantal proof for s � 1, we thus obtain by induction
a proof of Anderson’s integral for arbitrary positive integer s. We can then obtain
the general case via analytic continuation (for which we omit the argument, as it
is greatly simplified in the cases of interest below). The resulting proof is less
elegant than Anderson’s original proof; however, it has the distinct advantage for
our purposes of extending to much more general identities. Indeed, our proofs of
Theorems 3.1 and 4.1 below proceed by precisely this sort of induction from large
dimensional, but simple, cases.

Remark. Note that the key property of the “determinantal” case is not so much
that it is a determinant, but that it is a determinant of univariate instances of the
Anderson integral. Indeed, the general Anderson integral can be expressed as a de-
terminant of univariate integrals; in fact, a generalization (different from Dixon’s)
of the resulting identity was proved by Varchenko [36] two years before Anderson’s
work [1], but without notice that it could be used to prove the Selberg integral. See
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also [24] (apparently the first article to observe that Varchenko’s identity could be
expressed as a multivariate integral). It would be interesting to know if Varchenko’s
generalized formula can be extended to the elliptic level.

The random matrix interpretation also gives the following result. Given a
symmetric function f , we define f .A/ for a matrix A to be f evaluated at the
multiset of eigenvalues of A.

THEOREM 2.3. Let A be an n-dimensional Hermitian matrix, and let … be
a random orthogonal projection as before. Then for any partition �, the Schur
function s� satisfies

E…s�.…A…�/D
s�.1n�1/

s�.1n/
s�.A/:

Proof. Since … was uniformly distributed, we have

E…s�.…A…�/D E…s�.…UAU �…�/

for any unitary matrix U . In particular, we can fix … and take expectations over U ,
thus obtaining

EU s�.…UAU �…�/D EU s�.UAU �…�…/D
s�.A/s�.…

�…/

s�.1n/
D
s�.A/s�.1n�1/

s�.1n/
:

Here we have used the fact

EU s�.UAU �B/D
s�.A/s�.B/

s�.1n/

from the theory of zonal polynomials, or equivalently from the fact that Schur
functions are irreducible characters of the unitary group. �

In other words, the Anderson distribution for s � 1 acts as a raising integral
operator on Schur functions, taking an n� 1-variable Schur function to the corre-
sponding n-variable Schur function. Similarly, the Anderson densities for s � 1

2

and s � 2 act as raising operators on the real and quaternionic zonal polynomi-
als. This suggests that in general, an Anderson distribution with constant s should
take polynomials to polynomials (mapping an appropriate Jack polynomial to the
corresponding n-variable Jack polynomial).

Indeed, we have the following fact, even for nonconstant s.

THEOREM 2.4. Let y1, y2, . . . , yn�1 be distributed according to the Ander-
son distribution with parameters s1, . . . , sn > 0, x1 > � � � > xn > 0. Then as a
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function of a1, a2, . . . , am,

Ey

0BB@ Y
1�i�n�1
1�j�m

.aj �yi /

1CCAD �.S/

�.S Cm/

Q
1�i�m
1�j�n

.ai � xj /
1�sjQ

1�i<j�m.aj � ai /

�

Y
1�i�m

@

@ai

Y
1�j�n

.ai � xj /
sj

Y
1�i<j�m

.aj � ai /:

In particular, the left-hand side is a polynomial in the xj .

Proof. If m D 0, this simply states that Ey.1/ D 1; we may thus proceed
by induction on m. Suppose the theorem holds for m D m0, and consider what
becomes of that instance when sn D 1. In that case, the density is essentially
independent of xn, in that xn only affects the normalization and the domain of
integration. Thus if we multiply both sides by

Q
0�i<j�n.xi � xj /

1�si�sj , we
can differentiate by xn to obtain an n � 1-dimensional integral. If we then set
xnDam0C1 and renormalize, the result is the n�1-dimensional case of the theorem
with mDm0C 1.

That the right-hand side is a polynomial in the xi is straightforward, and thus
the left-hand side is also a polynomial. �

Remark 1. Compare the proof of Theorem 7.1 given in Remark 2 following
the theorem.

Remark 2. The left-hand side of the above identity was studied by Barsky and
Carpentier [2] using Anderson’s change of variables; they did not obtain as simple
a right-hand side, however.

COROLLARY 2.5. As an integral operator, the Anderson distribution takes
symmetric functions to polynomials; if s1 D s2 D � � � D sn D s, it maps symmetric
functions to symmetric functions.

Remark. A q-integral analogue of the corollary was proved by Okounkov [16],
who credits a private communication from Olshanski for the corollary itself.

We can also obtain integral operators on symmetric functions by fixing one
or two of the x parameters and allowing their multiplicities to vary; the result is
then a symmetric function in the remaining x parameters. In particular, Anderson’s
proof of the Selberg integral acquires an interpretation in terms of pairs of adjoint
integral operators.
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3. The BCn$ BCm transformation

For all nonnegative integers m; n, and parameters p, q, t0, . . . , t2mC2nC3
satisfying

jpj; jqj; jt0j; : : : ; jt2mC2nC3j< 1;
Y

0�r�2mC2nC3

tr D .pq/
mC1;

define

I
.m/
BCn

.t0; t1; : : : Ip; q/ WD
.pIp/n.qI q/n

2nnŠ

�

Z
T n

Q
1�i�n

Q
0�r�2mC2nC3 �.trz

˙1
i Ip; q/Q

1�i<j�n �.z
˙1
i z˙1j Ip; q/

Q
1�i�n �.z

˙2
i Ip; q/

Y
1�i�n

dzi

2�
p
�1zi

;

a contour integral over the unit torus. We can extend this to a meromorphic function
on the set

Pmn WD f.t0; t1; : : : ; t2mC2nC3; p; q/ j
Y

0�r�2mC2nC3

tr

D .pq/mC1; 0 < jpj; jqj< 1g

by replacing the unit torus with the n-th power of an arbitrary (possibly discon-
nected) contour that contains the points of the form piqj tr , i; j � 0 and excludes
their reciprocals. We thus find that the resulting function is analytic away from
points where tr ts D p�iq�j for some 0 � r; s � 2mC 2nC 3, 0 � i; j . (In
fact, its singularities consist precisely of simple poles along the hypersurfaces
tr ts D p

�iq�j with 0� r < s � 2mC 2nC 3, 0� i; j ; see the appendix.)
Note in particular that I .m/BC0

.t0; t1; : : : ; t2mC3Ip; q/D 1.

THEOREM 3.1. The following holds for m; n� 0 as an identity in meromor-
phic functions on Pmn:

(3.1) I
.m/
BCn

.t0; t1; : : : ; t2mC2nC3Ip; q/

D

Y
0�r<s�2mC2nC3

�.tr tsIp; q/ I
.n/
BCm

.

p
pq

t0
;

p
pq

t1
; : : : ;

p
pq

t2mC2nC3
Ip; q/:

Remark. If
p
pq < jtr j < 1 for all r , both contours may be taken to be the

unit torus.

Taking mD 0 gives the following:

COROLLARY 3.2.

I
.0/
BCn

.t0; t1; : : : ; t2nC3Ip; q/D
Y

0�r<s�2nC3

�.tr tsIp; q/:
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This is the “Type I” identity conjectured by van Diejen and Spiridonov [7],
who showed that it would follow from the fact that the integral vanishes if t0t1Dpq,
but were unable to prove that fact. The case nD 1 of the mD 0 integral is, however,
known: it is an elliptic beta integral due to Spiridonov [31]; it also happens to agree
with the case nD 1 of Theorem 6.1 below. A direct proof of the corollary has since
been given by Spiridonov [33]; see also the remark following the second proof of
Theorem 6.1 below.

Corollary 3.2 has a well-defined limit as p! 0, in which all but one of the
parameters are fixed, and the remaining parameter is determined from the balancing
condition; the result is an identity of Gustafson [11]. The corresponding limit of
Theorem 3.1 is problematical, as the right-hand side will have parameters behaving
as O.p�1=2/. This can be dealt with at the cost of breaking the symmetry of the
integrand; see [23].

Our strategy for proving Theorem 3.1 is as follows. We first observe that
in a certain extremely special (“determinantal”) case, each integrand can be ex-
pressed as a product of simple determinants, and thus the integrals themselves
can be expressed as determinants. The agreement of corresponding entries of the
determinants then follows from the mD nD 1 instance of the determinantal case
(Lemma 3.3 below).

The next crucial observation is that if we take the limit t1! pq=t0 in an in-
stance of the general identity for given values ofm and n, the result is an instance of
the general identity withm diminished by 1; similarly, the limit t1! 1=t0 decreases
n by 1. It turns out, however, that the determinantal case is not preserved by those
operations; thus by starting with ever larger determinantal cases and dropping down
to the desired m and n, we obtain an ever increasing collection of proved special
cases of the identity. The full set of special cases obtained is in fact dense, and
thus the theorem will follow.

Remark. A similar inductive argument based on a determinantal case was ap-
plied in [26] to prove the summation analogue of Corollary 3.2 (see also Remark 3
following Theorem 7.1); it is worth noting, therefore, that the present argument is
not in fact a generalization of Rosengren’s. This is not to say that the arguments
are unrelated; indeed, in a sense, the two arguments are dual. In fact, Rosengren’s
determinantal case turns out to be precisely Lemma 6.2 below, which is thus related
to the difference operators we will be considering in the sequel. These, in turn, are
related (by Theorem 7.1, among other things) to the integral operators we will
define using Theorem 3.1. The duality is most apparent on the series level; if
one interprets the sum as a sum over partitions, the two arguments are precisely
related by conjugation of partitions. The main distinction for our purposes is that
Rosengren’s argument, while superior in the series case (as it does not require
analytic continuation), does not appear to extend to the integral case.



TRANSFORMATIONS OF ELLIPTIC HYPERGEOMETRIC INTEGRALS 181

The base case for the determinantal identity is the following:

LEMMA 3.3. The theorem holds for mD nD 1, is we assume the parameters
have the form

.t0; t1; t2; : : : ; t7/D .a0; q=a0; a1; q=a1; b0; p=b0; b1; p=b1/:

In other words, if we define

F.a0; a1Wb0; b1Ip; q/

W D
.pIp/.qI q/

2

Z
C

�.z2I q/�.z�2Ip/

�.a0z˙1; a1z˙1I q/�.b0z˙1; b1z˙1Ip/

dz

2�
p
�1z

;

with contour as appropriate, then

(3.2) F.a0; a1Wb0; b1Ip; q/

D
�.a0a1=q; a0=a1Ip/�.b0b1=p; b0=b1I q/

�.a0a1=q; a0=a1I q/�.b0b1=p; b0=b1Ip/
F

�p
pq

b0
;

p
pq

b1
W

p
pq

a0
;

p
pq

a1
Ip; q

�
:

Proof. It suffices to prove the Laurent series expansion

b1�.b0b
˙1
1 Ip/

z�1�.z2Ip/

�.b0z˙1; b1z˙1Ip/

D .pIp/�2
X
k¤0

bk0 C .p=b0/
k � bk1 � .p=b1/

k

1�pk
zk;

valid for jpj< jb0j; jb1j< 1, and z in a neighborhood of the unit circle. Indeed, the
desired integral is the constant term of the product of two such expressions, and is
thus expressed as an infinite sum, each term of which already satisfies the desired
transformation!

Consider the sumX
k>0

bk0 C .p=b0/
k � bk1 � .p=b1/

k

1�pk

zkC z�k

k
;

which clearly differentiates (by z d
dz

) to the stated sum. If we expand .1�pk/�1 in
a geometric series, each term can then be summed over k as a linear combination
of logarithms. We conclude that

X
k>0

bk0 C .p=b0/
k � bk1 � .p=b1/

k

1�pk

zkC z�k

k
D log

 
�.b1z

˙1Ip/

�.b0z˙1Ip/

!
:
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Now, the derivative

z
d

dz
log

 
�.b1z

˙1Ip/

�.b0z˙1Ip/

!
is an elliptic function antisymmetric under z 7! z�1, with only simple poles, and
those at points of the form .pkbj /

˙1. It follows that

z
d

dz
log

 
�.b1z

˙1Ip/

�.b0z˙1Ip/

!
D C.b0; b1; p/

z�1�.z2Ip/

�.b0z˙1; b1z˙1Ip/
;

for some factor C.b0; b1; p/ independent of z. Comparison of asymptotics at z D
b0 gives the desired result. �

Remark. If we take the limit p! 1 in the above Laurent series expansion,
we obtain

lim
p!1

.1�p/.pIp/2b1�.b0b
˙1
1 Ip/

z�1�.z2Ip/

�.b0z˙1; b1z˙1Ip/

D

X
k¤0

bk0 C b
�k
0 � b

k
1 � b

�k
1

k
zk :

If jb0j D jb1j D 1, <.b0/ > <.b1/, then the limit is (up to a factor of
2�
p
�1 sgn.=.z//) the Fourier series expansion of the indicator function for the

arcs such that <.b0/ � <.z/ � <.b1/. In particular, this explains how an inte-
gral like the Anderson integral, with its relatively complicated domain of integra-
tion, can be a limiting case of Corollary 3.2. The corresponding limit applied to
Theorem 3.1 gives an identity of Dixon [4]. For a rigorous discussion of this (and
other limits), see [23].

LEMMA 3.4. If m D n, then (3.1) holds on the codimension 2nC 2 subset
parametrized by:

t2r D ar ; t2rC1 D q=ar ; t2nC2C2r D br ; t2nC2C2rC1 D p=br :

Proof. By taking a determinant of instances of (3.2), we obtain the identity:

det
1�i;j�n

�Z
Cn

�.z2Ip/�.z�2I q/

�.a0z˙1; aiz˙1I q/�.b0z˙1; bj z˙1Ip/

dz

2�
p
�1z

�
(3.3)

D det
1�i;j�n

 
�.a0ai=q; a0=ai Ip/�.b0bj =p; b0=bj I q/

�.a0ai=q; a0=ai I q/�.b0bj =p; b0=bj Ip/

�

Z
C 0n

�.z2Ip/�.z�2I q/

�.
p
pq

a0
z˙1;

p
pq

ai
z˙1Ip/�.

p
pq

b0
z˙1;

p
pq

bj
z˙1I q/

dz

2�
p
�1z

!
:



TRANSFORMATIONS OF ELLIPTIC HYPERGEOMETRIC INTEGRALS 183

Consider the determinant on the left. The p-theta functions in that integral are
independent of j , while the q-theta functions are independent of i . We may thus
expand that determinant of integrals as an integral of a product of two determinants
(using the integral analogue of the Cauchy-Binet identity):

det
1�i;j�n

�Z
Cn

�.z2Ip/�.z�2I q/

�.a0z˙1; aiz˙1I q/�.b0z˙1; bj z˙1Ip/

dz

2�
p
�1z

�
(3.4)

D
1

nŠ

Z
Cn

det
1�i;j�n

 
�.z�2j I q/

�.a0z
˙1
j ; aiz

˙1
j I q/

!

� det
1�j;i�n

 
�.z2j Ip/

�.b0z
˙1
j ; biz

˙1
j Ip/

! Y
1�j�n

dzj

2�
p
�1zj

:

These determinants can in turn be explicitly evaluated, using the following identity:

(3.5) det
1�i;j�n

 
1

a�1i �.aiz
˙1
j I q/

!

D .�1/n.n�1/=2

Q
1�i<j�n a

�1
i �.aia

˙1
j I q/

Q
1�i<j�n z

�1
i �.ziz

˙1
j I q/Q

1�i;j�n a
�1
i �.aiz

˙1
j I q/

:

(This is, for instance, a special case of a determinant identity of Warnaar [37], and
can also be obtained as a special case of the Cauchy determinant.) The resulting
identity is precisely the desired result. �

As mentioned above, the other key element to the proof is an understanding
of the limit of (3.1) as t1! pq=t0. On the left-hand side, the integral is perfectly
well-defined when t1 D pq=t0, but the right-hand side ends up identifying two
poles that should be separated. Thus we need to understand how I

.m/
BCn

.t0; t1; : : : /

behaves as t1! 1=t0.

LEMMA 3.5. We have the limit:

lim
t1!t

�1
0

I
.m/
BCn

.t0; t1; : : : Ip; q/

�.t0t1Ip; q/
Q
2�r�2mC2nC3�.t0tr ; t1tr Ip; q/

DI
.m/
BCn�1

.t2; t3; : : : Ip; q/:

Proof. If we deform the contour on the left through the points t1 and 1=t1, the
resulting integral will have a finite limit, and will thus be annihilated by the factor
of �.t0t1/ in the denominator. In other words, the desired limit is precisely the
limit of the sum of residues corresponding to the change of contour. By symmetry,
each variable contributes equally, as do t1 and 1=t1; we thus find (using the identity

lim
y!x

�.x=y/.1� x=y/D 1=.pIp/.qI q/;
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which is easily verified):

lim
t1!t

�1
0

I
.m/
BCn

.t0; t1; : : : Ip; q/

�.t0t1Ip; q/
Q
2�r�2mC2nC3 �.tr t0; tr t1Ip; q/

D lim
t1!t

�1
0

.pIp/n�1.qI q/n�1

2n�1.n� 1/Š

�.t0=t1Ip; q/
Q
2�r�2mC2nC3 �.tr=t1Ip; q/

�.1=t21 Ip; q/
Q
2�r�2mC2nC3 �.t0tr Ip; q/

�

Z
Cn�1

Q
1�i<n �.t0z

˙1
i Ip; q/Q

1�i<n �.z
˙1
i =t1Ip; q/

�

Q
1�i<n

Q
2�r�2mC2nC3 �.trz

˙1
i Ip; q/Q

1�i<j<n �.z
˙1
i z˙1j Ip; q/

Q
1�i<n �.z

˙2
i Ip; q/

Y
1�i<n

dzi

2�
p
�1zi

D I
.m/
BCn�1

.t2; t3; : : : Ip; q/

as required. �

We can now prove Theorem 3.1.

Proof. For m, n � 0, let Cmn be the set of parameters c0c1 : : : cmCnC1 D
.pq/mC1 such that the theorem holds on the manifold with

t2i t2iC1 D ci ; 0� i �mCnC 1:

Thus, for instance, Lemma 3.4 states that the point .q; q; q; : : : ; q; p; p; p : : : ; p/
is in Cnn.

The key idea is that if .c0; c1; c2; c3; : : : ; cmCnC1/ 2 Cmn, then we also have:

.c0c1; c2; c3; : : : ; cmCnC1/ 2 Cm.n�1/;

.c0c1=pq; c2; c3; : : : ; cmCnC1/ 2 C.m�1/n;

so long as the generic point on the corresponding manifolds gives well-defined
integrals; in other words, so long as none of the ck are of the form piqj , i; j > 0
or p�iq�j , i; j � 0. Indeed, if we use Lemma 3.5 to take the limit t2! pq=t0
in the generic identity corresponding to .c0; c1; : : : ; cmCnC1/, we find that on the
left-hand side, the Gamma factors corresponding to t2 and t0 cancel, while on
the right-hand side, the residue formula gives an n� 1-dimensional integral; the
result is the generic identity corresponding to .c0c1=pq; : : : ; cmCnC1/. The other
combination follows symmetrically.

Thus, starting with the point .q; q; : : : ; q; p; p; : : : ; p/ 2 CNN for N suffi-
ciently large, we can combine the q’s with each other to obtain an arbitrary col-
lection of values of the form qjC1p�k with j; k � 0, and similarly combine the
p’s to values of the form pjC1q�k , subject only to the global condition that their
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product is .pq/mC1. In other words (taking N !1), the theorem holds for a
dense set of points, and thus holds in general. �

4. The An$ Am transformation

Consider the following family of An-type integrals:

I
.m/
An

.Zjt0; : : : ; tmCnC1Iu0; : : : ; umCnC1Ip; q/ WD
.pIp/n.qI q/n

.nC 1/Š

�

Z
Q
0�i�n ziDZ

Q
0�i�n

Q
0�r<mCnC2 �.trzi ; ur=zi Ip; q/Q

0�i<j�n �.zi=zj ; zj =zi Ip; q/

Y
1�i�n

dzi

2�
p
�1zi

:

If jur j < jZj1=.nC1/ < 1=jtr j, we may take the contour to be the torus of radius
jZj1=.nC1/; outside this range, we must choose the contour to meromorphically
continue the integral. Such contour considerations can be greatly simplified by
multiplying by a test function f .Z/ holomorphic on C� and integrating over Z.
In the resulting integral, the correct contour has the form C nC1, where C contains
all points of the form pj qkur , j; k � 0, 0� r �mCnC1 and excludes all points
of the form p�j q�k=tr .

Note that unlike the BCn case, the An integral is not equal to 1 for n D 0;
instead, we pick up the value of the integrand at Z:

I
.m/
A0

.Zjt0; : : : ; tmC1Iu0; : : : ; umC1Ip; q/D
Y

0�r<mC2

�.trZ; ur=ZIp; q/:

We also observe that the Z parameter is not a true degree of freedom; indeed:

I
.m/
An

.cnC1Zj : : : ti : : : I : : : ui : : : Ip; q/D I
.m/
An

.Zj : : : cti : : : I : : : c
�1ui : : : Ip; q/:

In particular, we could in principle always take Z D 1 (in which case it will be
omitted), although this is sometimes notationally inconvenient.

THEOREM 4.1. For otherwise generic parameters in the hypersurface such
that

Q
0�r<mCnC2 trur D .pq/

mC1;

I
.m/
An

.Zj : : : ti : : : I : : : ui : : : Ip; q/

D

Y
0�r;s<mCnC2

�.trusIp; q/I
.n/
Am
.Zj : : : T

1
mC1 =ti : : : I : : : U

1
mC1 =ui : : : Ip; q/;

where T D
Q
0�r<mCnC2 tr , U D

Q
0�r<mCnC2 ur .

Remark. It appears that this can be viewed as an integral analogue of a series
transformation of Rosengren [27] and Kajihara and Noumi [12], in that the latter
should be derivable via residue calculus from the former.

For mD 0, we obtain the following integral conjectured by Spiridonov [32]:
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COROLLARY 4.2. For otherwise generic parameters in the hypersurface such
that

Q
0�r<nC2 trur D pq,

I
.0/
An
.: : : ti : : : I : : : ui : : : Ip; q/

D

Y
0�r;s<nC2

�.trusIp; q/
Y

0�r<nC2

�.U=ur ; T=tr Ip; q/:

The main difficulty with applying the BCn approach in this case is the fact that
the variables are coupled by the condition

Q
i zi DZ; in general the integral over

this domain of the usual sort of product of determinants will not be expressible as
a determinant of univariate integrals. Another difficulty is that, in any event, even
in the “right” specialization, the integrand is not quite expressible as a product of
determinants. As we shall see, it turns out that these problems effectively cancel
each other.

In particular, we note the extra factor in the following determinant identity.

LEMMA 4.3 ([10]).

det
0�i;j<n

�
�.txiyj Ip/

�.t; xiyj Ip/

�
D
�.t

Q
0�i<n xiyi Ip/

�.t Ip/

Y
0�i<j<n

xjyj �.xi=xj ; yi=yj Ip/
Y

0�i;j<n

�.xiyj Ip/
�1:

Proof. Consider the function

F.t I : : : xi : : : I : : : yi : : : / WD
Y

0�i<j<n

.xjyj /
�1�.xi=xj ; yi=yj Ip/

�1

�

Y
0�i;j<n

�.xiyj Ip/ det
0�i;j<n

�
�.txiyj Ip/

�.t; xiyj Ip/

�
:

This is clearly holomorphic on .C�/2n for t fixed; moreover, since

F.t Ipx0; x1; : : : ; xn�1I : : : yi : : : /

D�

�
t
Y

0�j<n

.xjyj /
��1

F.t I x0; x1; : : : ; xn�1I : : : yi : : : /

we conclude that F vanishes if t
Q
0�j<n.xjyj /D 1; indeed, F.x0/ is a degree one

theta function, and thus uniquely determined by its multiplier. Thus the function

�
�
t
Y
0�i<n

xiyi Ip
��1

F.t I : : : xi : : : I : : : yi : : : /
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is still holomorphic, and indeed we verify that it is an abelian function of all vari-
ables except t , so is in fact a function of t alone. The remaining factors can thus
be recovered from the limiting case:

lim
yi!x

�1
i

iD0;:::;n�1

F.t I : : : xi : : : I : : : yi : : : /D 1: �

Remark. A presumably related application of this determinant to hypergeo-
metric series identities can be found in [12].

LEMMA 4.4. The theorem holds for the special case

I
.n�1/
An�1

�
Zj : : : xi : : : ; : : :

q

yi
: : : I : : :

p

xi
: : : ; : : : yi : : : Ip; q

�
:

Proof. We first observe that the integral:Z
�.sxzIp/

�.s; xzIp/

�.ty=zI q/

�.t; y=zI q/

dz

2�
p
�1z

is symmetric in x and y, as follows from the change of variable z 7! yz=x. It thus
follows that the determinant

det
0�i;j<n

�Z �.sxizIp/

�.s; xizIp/

�.tyj =zI q/

�.t; yj =zI q/

dz

2�
p
�1z

�
is invariant under exchanging the roles of the x and y variables. As before, we can
write this as a multiple integral of a product of two determinants:

nŠ det
0�i;j<n

�Z �.sxizIp/

�.s; xizIp/

�.tyj =zI q/

�.t; yj =zI q/

dz

2�
p
�1z

�
D

Z
det

0�i;j<n

� �.sxizj Ip/
�.s; xizj Ip/

�
det

0�i;j<n

� �.tyi=zj I q/
�.t; yi=zj I q/

� Y
0�i<n

dzi

2�
p
�1zi

D

Y
0�i<j<n

xjyj �.xi=xj Ip/�.yi=yj I q/

�

Z
�.sXZIp/�.tY=ZI q/

�.sIp/�.t I q/

Q
0�i<j<n �.zi=zj Ip/�.zj =zi I q/Q
0�i;j<n �.xizj Ip/�.yi=zj I q/

Y
0�i<n

dzi

2�
p
�1zi

;

where X D
Q
i xi , Y D

Q
i yi , Z D

Q
i zi . We thus conclude:
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�.sXZIp/�.tY=ZI q/

�.sIp/�.t I q/

Q
0�i<j<n �.zi=zj Ip/�.zj =zi I q/Q
0�i;j<n �.xizj Ip/�.yi=zj I q/

Y
0�i<n

dzi

2�
p
�1zi

D

Y
0�i<j<n

�.xi=xj I q/�.yi=yj Ip/

�.xi=xj Ip/�.yi=yj I q/

�

Z
�.sYZIp/�.tX=ZI q/

�.sIp/�.t I q/

Q
0�i<j<n �.zi=zj Ip/�.zj =zi I q/Q
0�i;j<n �.yizj Ip/�.xi=zj I q/

Y
0�i<n

dzi

2�
p
�1zi

:

Now, if we replace s in this identity by pks, we find:Z
�.sXZIp/�.tY=ZI q/

.XZ/k�.sIp/�.t I q/

Q
0�i<j<n �.zi=zj Ip/�.zj =zi I q/Q
0�i;j<n �.xizj Ip/�.yi=zj I q/

Y
0�i<n

dzi

2�
p
�1zi

D

Y
0�i<j<n

�.xi=xj I q/�.yi=yj Ip/

�.xi=xj Ip/�.yi=yj I q/

�

Z
�.sYZIp/�.tX=ZI q/

.YZ/k�.sIp/�.t I q/

Q
0�i<j<n �.zi=zj Ip/�.zj =zi I q/Q
0�i;j<n �.yizj Ip/�.xi=zj I q/

Y
0�i<n

dzi

2�
p
�1zi

:

As this is true for all integers k, we find thatZ
f .XZ/

Q
0�i<j<n �.zi=zj Ip/�.zj =zi I q/Q
0�i;j<n �.xizj Ip/�.yi=zj I q/

Y
0�i<n

dzi

2�
p
�1zi

D

Y
0�i<j<n

�.xi=xj I q/�.yi=yj Ip/

�.xi=xj Ip/�.yi=yj I q/

�

Z
f .YZ/

Q
0�i<j<n �.zi=zj Ip/�.zj =zi I q/Q
0�i;j<n �.yizj Ip/�.xi=zj I q/

Y
0�i<n

dzi

2�
p
�1zi

;

for any function f holomorphic in a neighborhood of the contour (the dependence
on s and t having been absorbed in f ). But this impliesZ

Q
0�i<n ziDZ

Q
0�i<j<n �.zi=zj Ip/�.zj =zi I q/Q
0�i;j<n �.xizj Ip/�.yi=zj I q/

Y
1�i<n

dzi

2�
p
�1zi

D

Y
0�i<j<n

�.xi=xj I q/�.yi=yj Ip/

�.xi=xj Ip/�.yi=yj I q/

�

Z
Q
0�i<n ziDZX=Y

Q
0�i<j<n �.zi=zj Ip/�.zj =zi I q/Q
0�i;j<n �.yizj Ip/�.xi=zj I q/

�1

Y
1�i<n

dzi

2�
p
�1zi

:

Applying the change of variables zi ! .X=Y /1=nzi on the right gives the desired
result. �
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We also have the following analogue of Lemma 3.5, with essentially the same
proof.

LEMMA 4.5. We have the limit:

lim
u0!t

�1
0

I
.m/
An

.Zjt0; : : : ; tmCnC1Iu0; : : : ; umCnC1Ip; q/

�.t0u0Ip; q/
Q
0<r<mCnC2 �.t0ur ; tru0Ip; q/

D I
.m/
An�1

.t0Zjt1; : : : ; tmCnC1Iu1; : : : ; umCnC1Ip; q/:

Theorem 4.1 follows as in the proof of Theorem 3.1, except that in the defini-
tion of Cmn, we take tiui D ci ; we have

.q; q; : : : ; q; p; p; : : : ; p/ 2 Cnn;

and if .c0; : : : ; cmCnC1/ 2 Cmn, then

.c0c1; c2; : : : ; cmCnC1/ 2 Cm.n�1/;

.c0c1=pq; c2; : : : ; cmCnC1/ 2 C.m�1/n

as long as both sides of the corresponding identities are generically well-defined.
As before, this shows that Cmn is dense, and thus Theorem 4.1 holds in general.

5. Mixed transformations

Consider the integral associated to A1. Eliminating z2 from the integral using
the relation z1z2 D 1, we find that the result is invariant under z1 7! z�11 , and is
thus an instance of the BC1 integral. Indeed, ifY

i

tiui D .pq/
mC1;

then
I
.m/
A1

.t0 : : : tmC2Iu0 : : : umC2Ip; q/

D
.pIp/.qI q/

2

Z
�.trz

˙1; urz
˙1Ip; q/

�.z˙2Ip; q/

dz

2�
p
�1z

D I
.m/
BC1

.t0 : : : tmC2; u0 : : : umC2Ip; q/:

As a consequence, we obtain an identity between the mD 1 integrals of types
An and BCn.

COROLLARY 5.1. If
Q
0�i�nC2 tiui D .pq/

2, then

I
.1/
An
.: : : ti : : : I : : : ui : : : Ip; q/

D

Y
0�i<j�nC2

�.T=ti tj ; U=uiuj Ip; q/I
.1/
BCn

.: : : .U=T /1=4ti : : : ; : : : .T=U /
1=4ui : : : Ip; q/;

where T D
Q
0�i�nC2 ti , U D

Q
0�i�nC2 ui .
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In particular, since the BCn integral is symmetric in its 2nC 6 parameters,
we obtain an S2nC6 symmetry of I .1/An

. We thus obtain a total of nC 4 essentially
different transformations of the An integral, corresponding to the nC 4 double
cosets of SnC3 �SnC3 in S2nC6.

COROLLARY 5.2. Let k be an integer 0� k � nC 3. Then

I
.1/
An
.t0; : : : ; tnC2Iu0; : : : ; unC2Ip; q/

D

Y
0�r<k
k�s�nC2

�.trus; tsur ; T=tr ts; U=urusIp; q/I
.1/
An
.t 00; : : : ; t

0
nC2Iu

0
0; : : : ; u

0
nC2Ip; q/;

where

t 0r D

(
.T=U /.nC1�k/=2.nC1/.Tk=Uk/

1=.nC1/ur ; 0� r < k

.U=T /k=2.nC1/.Tk=Uk/
1=.nC1/tr ; k � r � nC 2;

u0r D

(
.U=T /.nC1�k/=2.nC1/.Uk=Tk/

1=.nC1/tr ; 0� r < k

.T=U /k=2.nC1/.Uk=Tk/
1=.nC1/ur ; k � r � nC 2;

T D
Y

0�r�nC2

tr ; U D
Y

0�r�nC2

tr ;

Tk D
Y

0�r<k

tr ; Uk D
Y

0�r<k

tr :

For k D 0, we obtain the identity transformation, while for k D nC 3, we
simply switch the ti and ui parameters (corresponding to taking z 7! 1=z in the
integral). The case k D 1 was stated as equation (6.11) of [32] (conditional on
Corollary 4.2). Again, apparently related series identities are known; see [27]
and [12].

6. Difference operators
The following identity was originally conjectured by van Diejen and Spiri-

donov [7] (their “Type II” integral):

THEOREM 6.1. For otherwise generic parameters satisfying jpj; jqj; jt j < 1
and t2n�2

Q
0�r�5 tr D pq,

(6.1)
.pIp/n.qI q/n�.t Ip; q/n

2nnŠ

Z
Cn

Y
1�i<j�n

�.tz˙1i z˙1j Ip; q/

�.z˙1i z˙1j Ip; q/

�

Y
1�i�n

Q
0�r�5 �.trz

˙1
i Ip; q/

�.z˙2i Ip; q/

dzi

2�
p
�1zi

D

Y
0�j<n

�.tjC1Ip; q/
Y

0�r<s�5

�.tj tr tsIp; q/;
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where the contour C D C�1 contains all points of the form piqj tr for i; j � 0,
excludes their reciprocals, and contains the contours piqj tC for i; j � 0. (In
particular, if jtr j< 1 for 0� r � 5, C may be taken to be the unit circle.)

Proof ([7]). Suppose t2n
Q
0�r�5 tr D pq, and consider the double integral

Z
CnC1

Z
C 0n

Q
0�i�n
1�j�n

�.
p
tx˙1i y˙1j Ip; q/Q

0�i<j�n �.x
˙1
i x˙1j Ip; q/

Q
1�i<j�n �.y

˙1
i y˙1j Ip; q/

�

Y
0�i�n

�.tnt0x
˙1
i Ip; q/

Q
1�r�5 �.trx

˙1
i Ip; q/

�.x˙2i Ip; q/

�

Y
1�i�n

�.pqt�n�1=2y˙1i =t0; t
�1=2t0y

˙1
i Ip; q/

�.y˙2i Ip; q/

�

Y
1�i�n

dyi

2�
p
�1yi

Y
0�i�n

dxi

2�
p
�1xi

:

Both the x and y integrals can be evaluated via Corollary 3.2; comparing both sides
gives a recurrence for the left-hand side of (6.1), the unique solution of which is
the right-hand side, as required. �

We will discuss this proof (of which Anderson’s proof of the Selberg integral
is a limiting case) in greater detail in the sequel; for the moment, however, it will
be instructive to consider a different proof. The main ingredient in the alternate
proof is the following identity:

LEMMA 6.2. Let n be a nonnegative integer, and let u0, u1, u2, u3, t satisfy
tn�1u0u1u2u3 D p. Then

X
�2f˙1gn

Y
1�i�n

Q
0�r�3 �.urz

�i
i Ip/

�.z
2�i
i Ip/

Y
1�i<j�n

�.tz
�i
i z

�j
j Ip/

�.z
�i
i z

�j
j Ip/

(6.2)

D

Y
0�i<n

�.t iu0u1; t
iu0u2; t

iu0u3Ip/

D

Y
0�i<n

�.t iu0u1; t
iu0u2; t

iu1u2Ip/:

Proof. We first observe that the condition on the ur ensures that every term
in the above sum is invariant under all translations zi ! pzi , and thus the same is
true of their sum. Moreover, the sum is manifestly invariant under permutations of
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the zi as well as reflections zi ! 1=zi . Thus if we multiply the sum byY
1�i�n

z�1i �.z2i Ip/
Y

1�i<j�n

z�1i �.zizj ; ziz
�1
j Ip/;

the result is a (holomorphic) theta function, anti-invariant under the same group.
But any such theta function is a multiple of the above product; it thus follows that
the desired sum has no singularities in zi , and must therefore be independent of zi .

To evaluate the sum, we may therefore specialize zi D u0tn�i , in which case
all but one of the terms in the sum vanish, so that the sum is given by the remaining
term (with �i D 1 for all i ):Q

0�r�3 �.u0ur t
n�i Ip/

�.u20t
2n�2i Ip/

Y
1�i<j�n

�.u20t
2nC1�i�j Ip/

�.u20t
2n�i�j Ip/

:

The factors involving u20 cancel, and we are thus left with the evaluation claimed
above. �

Proof of Theorem 6.1. Divide the integral by the claimed evaluation, and
consider the result as a meromorphic function on the set

t2n�2t0t1t2t3t4t5 D pq:

We claim that this function is invariant under the translations

.t0; t1; t2; t3; t4; t5/! .p1=2t0; p
1=2t1; p

1=2t2; p
�1=2t3; p

�1=2t4; p
�1=2t5/;

.t0; t1; t2; t3; t4; t5/! .q1=2t0; q
1=2t1; q

1=2t2; q
�1=2t3; q

�1=2t4; q
�1=2t5/;

and all permutations thereof. It will then follow that the ratio is a constant; to eval-
uate the constant, we may then consider the limit t1! t1�nt�10 as in Lemma 3.5
above. (In other words, we apply the special case of the residue formula of van
Diejen and Spiridonov in which the resulting sum consists of precisely one term.)

Since both sides are symmetric in p and q, it suffices to consider the q trans-
lation. If we factor the integrand as

�.n/.z1; z2; : : : zn/�
.n/.z�11 ; z�12 ; : : : z�1n /

Y
1�i�n

dzi

2�
p
�1zi

;

where

�.n/.z1; z2; : : : zn/

D

Y
1�i�n

�.t0zi ; t1zi ; t2zi ; t3zi ; t4zi ; t5zi ; pzi=.t
n�1t0t1t2/Ip; q/

�.z2i ; p=.zi t
n�1t0t1t2/Ip; q/

�

Y
1�i<j�n

�.tziz
˙1
j Ip; q/

�.ziz
˙1
j Ip; q/

;
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and similarly let Q�.n/ be the corresponding product with parameters

.q�1=2t3; q
�1=2t4; q

�1=2t5; q
1=2t0; q

1=2t1; q
1=2t2/

(permuting the parameters to make the transformation an involution), then we find
that

Q�.n/.: : : q1=2zi : : : /

�.n/.: : : zi : : : /

D

Y
1�i�n

�.t0zi ; t1zi ; t2zi ; pzi=t
n�1t0t1t2Ip/

�.z2i Ip/

Y
1�i<j�n

�.tzizj Ip/

�.zizj Ip/
;

and thus

(6.3)
X

�i2f˙1gn

Q�.n/.: : : q1=2z
�i
i : : : /

�.n/.: : : z
�i
i : : : /

D

Y
0�i<n

�.t i t0t1; t
i t0t2; t

i t1t2Ip/

by Lemma 6.2. Similarly,

(6.4)
X

�i2f˙1gn

�.n/.: : : q1=2z
�i
i : : : /

Q�.n/.: : : z
�i
i : : : /

D

Y
0�i<n

�.t i t3t4=q; t
i t3t5=q; t

i t4t5=qIp/:

Now, consider the integral:Z
C

Q�.n/.: : : q1=2zi : : : /�
.n/.: : : z�1i : : : /

Y
1�i�n

dzi

2�
p
�1zi

;

where the contour is chosen to contain the points piqj tr for i; j � 0, exclude
their reciprocals, and contain the contours tC and tC�1; here we note that the
poles of Q�.n/.: : : q1=2zi : : : / are a subset of the poles of �.n/.: : : zi : : : /, and so
this constraint on the contour is still reasonable. If we then perform the change of
variable zi 7! q�1=2=zi , we find that the new contour is legal for the transformed
parameters. In other words, we haveZ

C

Q�.n/.: : : q1=2zi : : : /�
.n/.: : : z�1i : : : /

Y
1�i�n

dzi

2�
p
�1zi

D

Z
C 0
�.n/.: : : q1=2zi : : : / Q�

.n/.: : : z�1i : : : /
Y
1�i�n

dzi

2�
p
�1zi

:

Since the constraints on the contours are symmetrical under zi 7! 1=zi , we may
symmetrize the integrands, losing the same factor of 2n on both sides. The theo-
rem follows upon applying equations (6.3) and (6.4) to simplify the symmetrized
integrands. �
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Remark. One can also prove Corollary 3.2 by a similar argument, based on
the straightforward identityX

�2f˙1gn

�.
Q
0�r<nC2 tr=

Q
1�i�n z

�i
i Ip/

Q
1�i�n

Q
0�r<nC2 �.trz

�i
i Ip/Q

1�i�j�n �.z
�i
i z

�j
j Ip/

D

Y
0�r<s<nC2

�.tr tsIp/:

Define a q-difference operator D.n/q .u0; u1; u2; u3I t; p/ by setting

.D.n/q .u0; u1; u2; u3I t; p/f /.: : : zi : : : /

WD

X
�2f˙1gn

Y
1�i�n

Q
0�r�3 �.urz

�i
i Ip/

�.z
2�i
i Ip/

Y
1�i<j�n

�.tz
�i
i z

�j
j Ip/

�.z
�i
i z

�j
j Ip/

f .: : : q�i=2zi : : : /:

Thus Lemma 6.2 gives a formula for the image of 1 under

D.n/q .u0; u1; u2; u3I t; p/

when tn�1u0u1u2u3D p. Moreover, the resulting proof of Theorem 6.1 would ap-
pear to be based on an adjointness relation between two such difference operators,
as we will confirm below.

To make this precise, we need some suitable spaces of functions on which
to act. Let A.n/.u0Ip; q/ be the space of BCn-symmetric p-abelian functions f
such that Y

1�i�n

�.pqz˙1i =u0Ip; q/0;mf .: : : zi : : : /

is holomorphic for sufficiently large m; that is, f is smooth except at the points
pku0=q

l , pkql=u0 for k 2 Z, 1 � l � m, where it has at most simple poles.
The canonical (multiplication) map from the tensor product of A.n/.u0Ip; q/ and
A.n/.u0I q; p/ to the space of meromorphic functions on .C�/n is generically
injective; denote the image by A.n/.u0Ip; q/. In particular, we observe that if
f 2A.n/.u0Ip; q/, thenY
1�i�n

�.pqz˙1i =u0Ip; q/l;mf .: : : zi : : : /

/

Y
1�i�n

�.u0z
˙1
i Ip; q/

�.p�lq�mu0z
˙1
i Ip; q/

f .: : : zi : : : /

is holomorphic for sufficiently large l , m.

Remark. Our main motivation for considering the large space A.n/.u0Ip; q/,
rather than the smaller spaces in which the functions are actually abelian, is that
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such product functions already appear in the family of univariate biorthogonal func-
tions considered by Spiridonov [32, App. A].

We now define

D.n/q .u0; u1; u2I t; p/f WD
D
.n/
q .u0; u1; u2; t

1�np=u0u1u2I t; p/fQ
1�i�n �.t

n�iu0u1; tn�iu0u2; tn�iu1u2Ip/
:

We will also need a shift operator T .n/!;q:

.T .n/!;qf /.: : : zi : : : /D f .: : : q
1=2zi : : : /:

Note that this maps BCn-symmetric q-abelian functions to BCn-symmetric q-
abelian functions.

LEMMA 6.3. The operator D
.n/
q .u0; u1; u2I t; p/ induces a linear transforma-

tion

D.n/q .u0; u1; u2I t; p/ WA
.n/.
p
qu0Ip; q/!A.n/.u0Ip; q/:

Moreover, the corresponding map

D.n/q .u0; u1; u2I t; p/ W A
.n/.
p
qu0Ip; q/˝A

.n/.
p
qu0I q; p/

! A.n/.u0Ip; q/˝A
.n/.u0I q; p/

can be decomposed as

D.n/q .u0; u1; u2I t; p/D D.n/q .u0; u1; u2I t; p/˝T
.n/
!;q:

Proof. Let

g 2 A.n/.
p
qu0Ip; q/; h 2 A.n/.

p
qu0I q; p/:

A straightforward computation, using the fact that h is q-abelian, gives:

D.n/q .u0; u1; u2I t; p/.gh/D .D
.n/
q .u0; u1; u2I t; p/g/.T

.n/
!;qh/

as required. That T .n/!;qh 2 A
.n/.u0I q; p/ is straightforward; that

D.n/q .u0; u1; u2I t; p/g

is p-abelian follows as in the proof of Lemma 6.2. Finally, we observe that this
function is holomorphic at zi D u0, as required. �

The desired adjointness relation can then be stated as follows. For parameters
satisfying t2n�2u0u1t0t1t2t3Dpq, define a scalar product between A.n/.u0Ip; q/
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and A.n/.u1Ip; q/ as follows:

hf; git0;t1;t2;t3Iu0;u1It;p;q

WD
1

Z

Z
Cn
f .: : : zi : : : /g.: : : zi : : : /

Y
1�i<j�n

�.tz˙1i z˙1j Ip; q/

�.z˙1i z˙1j Ip; q/

�

Y
1�i�n

Q
0�r�5 �.trz

˙1
i Ip; q/

�.z˙2i Ip; q/

dzi

2�
p
�1zi

;

where

Z D
2nnŠ

.pIp/n.qI q/n�.t Ip; q/n

Y
1�i�n

�.t i Ip; q/
Y

0�r<s�5

�.tn�i tr tsIp; q/;

t4 D u0;

t5 D u1;

and the contour is chosen as in Theorem 6.1, except that we first absorb the singu-
larities of f and g into the factors �.urz˙1i Ip; q/ of the integrand. In particular,
we have

h1; 1it0;t1;t2;t3Iu0;u1It;p;q D 1:

THEOREM 6.4. If f 2A.n/.q1=2u0Ip; q/, g 2A.n/.u1Ip; q/ and the param-
eters (which are otherwise generic) satisfy t2n�2u0u1t0t1t2t3 D pq; then

hD.n/q .u0; t0; t1I t; p/f; git0;t1;t2;t3Iu0;u1It;p;q

D hf;D.n/q .u01; t
0
2; t
0
3I t; p/git 00;t

0
1;t
0
2;t
0
3Iu
0
0;u
0
1It;p;q

;

where

.t 00; t
0
1; t
0
2; t
0
3; u
0
0; u
0
1/D .q

1=2t0; q
1=2t1; q

�1=2t2; q
�1=2t3; q

1=2u0; q
�1=2u1/:

Proof. The second proof of Theorem 6.1 applies, essentially without change.
�

To understand the significance of this result, we need to introduce a filtration
of the space A.n/.u0Ip; q/. Let ƒn be the set of partitions of at most n parts, and
let � denote the inclusion partial order; we also let � denote the product partial
order on ƒn �ƒn. Then for any pair of partitions �;� 2ƒn, we define

A
.n/

��
.u0I t Ip; q/
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to be the subspace of A.n/.u0Ip; q/ consisting of functions f such that whenever
.�; �/ 6� .�; �/, we have the limit

lim
zi!p

��i q��i t i�1u0
iD1:::n

Y
1�i�n

�.pqz˙1i =u0Ip; q/l;mf .: : : zi : : : /D 0

whenever Y
1�i�n

�.pqz˙1i =u0Ip; q/l;mf .: : : zi : : : /

is holomorphic and �; � � .l; m/n. Note that enlarging l or m multiplies the equa-
tion by a (possibly zero) scalar, so we really have only one equation for each pair
.�; �/.

Remark. In the univariate case ([38], [17], [18], [34], [35], [32]), this filtra-
tion simply corresponds to a sequence of allowed poles. Given the role played by
vanishing conditions in the theory of Koornwinder polynomials [15], [20], it would
seem to be natural to generalize the forbiddance of a pole to the vanishing (after
clearing the denominator) at an appropriate point, thus obtaining our filtration.

LEMMA 6.5. For generic u0, p, q, t , the filtration A
.n/
�
.u0I t Ip; q/ is tight in

the sense that

dim A
.n/
�
.u0I t Ip; q/D 1C dim

X
�¨�

A
.n/
� .u0I t Ip; q/;

for any partition pair � 2 ƒ2n. In particular, each space in the filtration is finite-
dimensional.

Proof. Let �D .�; �/, �D .�; �/. Since the spaces

A
.n/

��
.u0I t Ip; q/

and X
.�;�/¨.�;�/

A.n/
�� .u0I t Ip; q/

differ by a single equation, their dimensions differ by at most 1; it thus suffices to
construct a function in the former but not in the latter.

Define a function F .n/
��
.u0 W : : : zi : : : / by the following product:

F
.n/

��
.u0 W : : : zi : : : I t Ip; q/

D

Y
1�i�n
1�j��1

�.pj qt��
0
j z˙1i =u0I q/

�.pj qz˙1i =u0I q/

Y
1�i�n
1�j��1

�.pqj t��
0
j z˙1i =u0Ip/

�.pqj z˙1i =u0Ip/
:
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It follows as in the proof of Lemma 6.3 of [15] that

F
.n/

��
.u0 W : : : zi : : : / 2A

.n/

��
.u0I t Ip; q/I

on the other hand, we find that

lim
zi!p

��i q��i t i�1u0
iD1:::n

Y
1�i�n

�.pqz˙1i =u0Ip; q/l;mF
.n/

��
.u0 W : : : zi : : : I t Ip; q/

is generically nonzero. �

Remark. The function F .n/
��

is a special case of the interpolation functions
introduced below (Definition 5). Indeed, one can show that

F
.n/
�
.u0WI t; p; q/DR

�.n/
�

.Ipqt�n=u0; u0I t Ip; q/:

The existence of such a factorizable special case of the interpolation functions will
turn out to be crucial to the arguments of [21].

The reason we have introduced this filtration is the following fact:

LEMMA 6.6. The difference operator D
.n/
q .u0; t0; t1I t; p/ is triangular with

respect to the above filtration; that is, for all � 2ƒ2n,

D.n/q .u0; t0; t1I t; p/A
.n/
�
.
p
qu0I t Ip; q/�A

.n/
�
.u0I t Ip; q/;

with equality for generic values of the parameters.

Proof. Let �D .�; �/. Choose l � �1, m� �1, and consider a function

f 2A
.n/

��
.
p
qu0I t Ip; q/:

For � � ln, � �mn, define

C��.f /D lim
zi!p

��i q1=2��i t i�1u0
iD1:::n

Y
1�i�n

�.pq1=2z˙1i =u0Ip; q/l;mf .: : : zi : : : /;

C 0��.f /D lim
zi!p

��i q��i t i�1u0
iD1:::n

�

Y
1�i�n

�.pqz˙1i =u0Ip; q/l;m.D
.n/
q .u0; t0; t1I t; p/f /.: : : zi : : : /:

We claim that we can write

C 0�� D
X
���

c���C��;

where the coefficients c��� are meromorphic and independent of the choice of f .
Indeed, this follows readily from the definition of D; compare the proof of The-
orem 3.2 of [20]. More precisely, we see that a given term of the corresponding
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sum involves the specialization

lim
zi!p

��i q�i =2��i t i�1u0
iD1:::n

Y
1�i�n

.pq1=2z˙1i =u0Ip; q/l;mf .: : : zi : : : /I

if the sequence 1��i
2
C �i does not induce a partition, then the remaining factors

vanish, while if it does give a partition, that partition necessarily contains �. We
also find that the diagonal coefficient c��� is generically nonzero; the result follows.

�

Now, given a pair of spaces with corresponding tight filtrations, equipped with
a (sufficiently general) scalar product, there is a unique (up to scalar multiples)
orthogonal pair of bases compatible with the filtration. In the case of the above
scalar product, this suggests the following definition.

“Definition”. For all partition pairs � 2ƒ2n, the function

R
.n/
�
.: : : zi : : : I t0; t1; t2; t3Iu0; u1I t Ip; q/

is defined to be the unique (up to scalar multiples) element of A
.n/
�
.u0I t Ip; q/

such that

hR
.n/
�
.: : : zi : : : I t0; t1; t2; t3Iu0; u1I t Ip; q/; git0;t1;t2;t3Iu0Iu1It Ip;q D 0

whenever g 2A
.n/
� .u1I t Ip; q/ for some �¨ �.

Since our adjoint difference operators preserve the filtrations, they would nec-
essarily be diagonal in the corresponding bases, if they were well-defined. Unfor-
tunately, we have as yet no reason to believe that the scalar product is nondegen-
erate relative to the filtration; that is, that its restriction to A

.n/
�
.u0I t Ip; q/ and

A
.n/
�
.u1I t Ip; q/ is nondegenerate for all partition pairs. If this condition were to

fail for a given pair �, then the function R.n/
�

would not be uniquely determined
for �© �, and the argument breaks down.

There is one special case in which we can prove the scalar product is generi-
cally nondegenerate.

PROPOSITION 6.7. For generic parameters satisfying t2n�2t0t1t2t3u0u1 D
pq, and any partition � 2 ƒn, the scalar product hit0;t1;t2;t3Iu0;u1It Ip;q is nonde-
generate between A

.n/

0�
.u0I t Ip; q/ and A

.n/

0�
.u1I t Ip; q/.

Proof. To show a scalar product generically nondegenerate, it suffices to ex-
hibit a nondegenerate specialization. Choose l such that the spaces

�.pq=u0Ip; q/0;lA
.n/

0�
.u0I t Ip; q/ and �.pq=u1Ip; q/0;lA

.n/

0�
.u1I t Ip; q/
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consist of holomorphic functions, and specialize the parameters so that every pa-
rameter except u0, u1 is real, between 0 and 1, while u0 and u1 are complex conju-
gates satisfying 0 < ju0j D ju1j< ql . (This is possible as long as p < q2l�1t2n�2.)
Then the contour in the scalar product can be taken to be the unit torus, on which the
weight function is clearly strictly positive. Moreover, the filtrations with respect to
u0 and u1 are conjugate to each other. The scalar product thus becomes a positive
definite Hermitian inner product, and is therefore nondegenerate. �

This in particular proves the existence and uniqueness of the above biorthog-
onal functions, as long as one of the partitions is trivial. In general, however, it is
unclear how to construct a manifestly nondegenerate instance of the scalar prod-
uct. We will therefore give a more direct construction of these functions, and by
computing their scalar products show that this problem generically does not arise.
(In addition, the above construction gives functions that are only guaranteed to be
orthogonal when the corresponding pairs of partitions are distinct but comparable;
it will follow below (as one would expect) that comparability is not necessary.)

To do this, we need a different adjoint pair of difference operators.
First, define

D�.n/q .u0I t; p/ WDD
.n/
q .u0; qu0; p=u0;

1

tn�1u0q
I t; p/:

Next, define

.DC.n/q .u0Wu1Wu2; u3; u4I t; p/f /.: : : zi : : : /

WD

Y
1�i�n

�.pqtn�iu1=u0Ip/Q
2�r�5 �.ur t

n�iu1Ip/

�

X
�2f˙1gn

Y
1�i�n

Q
1�r�5 �.urz

�i
i Ip/

�.pqz
�i
i =u0Ip/�.z

2�i
i Ip/

Y
1�i<j�n

�.tz
�i
i z

�j
j Ip/

�.z
�i
i z

�j
j Ip/

f .: : : q�i =2zi : : : /;

where u5Dp2q=tn�1u0u1u2u3u4. Note that aside from the normalization factor,
D
C.n/
q is symmetric in u1 through u5.

These act as lowering and raising operators with respect to the filtration:

LEMMA 6.8. For all � 2ƒ2n with .0; 1/n � �,

D�.n/q .u0I t; p/A
.n/
�
.q3=2u0I t Ip; q/�A

.n/

��.0;1/n
.u0I t Ip; q/:

Similarly, for all � 2ƒ2n,

DC.n/q .u0Wu1Wu2; u3; u4I t; p/A
.n/
�
.q�1=2u0I t Ip; q/�A

.n/

�C.0;1/n
.u0I t Ip; q/:

Moreover, the restriction of D�.n/ is generically surjective, while the restriction of
DC.n/ is generically injective.
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Proof. As above. �

THEOREM 6.9. If f 2A.n/.q�1=2u0Ip; q/, g 2A.n/.u1Ip; q/ and

t2n�2u0u1t0t1t2t3 D pq;

then

hDC.n/q .u0Wt0Wt1; t2; t3I t; p/f; git0;t1;t2;t3Iu0;u1It;p;q

D C hf;D�.n/q .u01I t; p/git 00;t
0
1;t
0
2;t
0
3Iu
0
0;u
0
1It;p;q

;

where

.t 00; t
0
1; t
0
2; t
0
3; u
0
0; u
0
1/D .q

1=2t0; q
1=2t1; q

1=2t2; q
1=2t3; q

�1=2u0; q
�3=2u1/

and

CD
Y
1�i�n

�.tn�i t1t2; t
n�i t1t3; t

n�i t2t3; pqt
n�i t0=u0Ip/�.pt0u1t

2n�1�i Ip/�1

�.tn�i t0u1=q; tn�i t1u1=q; tn�i t2u1=q; tn�i t3u1=q; tn�iu0u1=q; tn�iu0u1=q2Ip/
:

7. Integral operators

Just as our second proof of Theorem 6.1 is related to an adjoint pair of differ-
ence operators, the argument of van Diejen and Spiridonov is related to an adjoint
pair of integral operators. To understand these operators, we first need to under-
stand what happens to the I .0/BCn

integral when the integrand is multiplied by an
element of A.t0Ip; q/. We define a corresponding integral operator as follows.

Definition 2. If f 2A.u0Ip; q/, then I�.n/.u0Ip; q/f is the function on the
set
Q
0�r�2nC3 ur D pq defined by

.I�.n/.u0Ip; q/f /.u1; : : : ; u2nC3/D
.pIp/n.qI q/n

2nnŠ
Q
0�r<s�2nC3 �.urusIp; q/

�

Z
Cn
f .: : : zi : : : /

Y
1�i<j�n

1

�.z˙1i z˙1j Ip; q/

�

Y
1�i�n

Q
0�r�2nC3 �.urz

˙1
i Ip; q/

�.z˙2i Ip; q/

dzi

2�
p
�1zi

;

with the usual conventions about the choice of contour.

In particular, by Corollary 3.2, it follows that

I�.n/.u0Ip; q/1D 1:

To determine the action of this integral operator in general, it suffices to con-
sider f in a spanning set. We may thus restrict our attention to functions of the
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form

f .: : : zi : : : /D
Y
1�i�n

Q
1�j�l x

�1
j �.xj z

˙1
i I q/

Q
1�j�m y

�1
j �.yj z

˙1
i Ip/

�.pqz˙1i =u0Ip; q/l;m
:

If we write the theta functions in the numerator as a ratio of elliptic � functions,
and similarly absorb the denominator factors into a ratio of elliptic � functions,
we find that the resulting integral is proportional to an integral of type I .lCm/BCn

in
which the extra 2l C 2m parameters have pairwise products p2q and pq2. If we
then apply Theorem 3.1, we find that the right-hand side becomes a sum via residue
calculus. We thus obtain the following result.

THEOREM 7.1. If

f .: : : zi : : :/D
Y
1�i�n

Q
1�j�l x

�1
j �.xj z

˙1
i I q/

Q
1�j�m y

�1
j �.yj z

˙1
i Ip/

�.pqz˙1i =u0Ip; q/l;m
;

and
Q
0�r�2nC3 ur D pq, then

.I�.n/.u0Ip; q/f /.u1; : : : ; u2nC3/D
Y

1�r�2nC3

1

�.pq=u0ur Ip; q/l;m

(7.1)

�

0@ Y
1�i�l

.1CR.xi //
�.p�lu0xi I q/

Q
1�r�2nC3 �.urxi I q/

xni �.x
2
i I q/

Y
1�i<j�l

�.pxixj I q/

�.xixj I q/

1A
�

0@ Y
1�i�m

.1CR.yi //
�.q�mu0yi Ip/

Q
1�r�2nC3 �.uryi Ip/

yni �.y
2
i Ip/

Y
1�i<j�m

�.qyiyj Ip/

�.yiyj Ip/

1A ;
where R.xk/ is an operator acting on g.: : : xi : : :/ via the substitution xk 7! x�1

k
;

thus the factors in parentheses are sums of 2l and 2m terms respectively.

Since the factors in parentheses are clearly holomorphic in u1; : : : ; u2nC3,
and the given functions span A.u0Ip; q/, we obtain the following as an immediate
consequence:

COROLLARY 7.2. If f 2A.u0Ip; q/ is such that

�.pqz˙1i =u0Ip; q/l;mf .: : : zi : : :/

is holomorphic, thenY
1�r�2nC3

�.pq=u0ur Ip; q/l;m.I
�.n/.u0Ip; q/f /.u1; : : : ; u2nC3/

is holomorphic on the set
Q
0�r�2nC3 ur D pq.



TRANSFORMATIONS OF ELLIPTIC HYPERGEOMETRIC INTEGRALS 203

Remark 1. Similarly, the left-hand side of (7.1) is manifestly a holomorphic
q-theta function in the x’s, and a holomorphic p-theta function in the y’s; that this
is true of the right-hand side follows from a symmetrization argument analogous to
those we have just encountered in studying difference operators. And, indeed, the
two sums are really just minor variants of the difference operators we have already
seen.

Remark 2. As the above argument is based on Theorem 3.1, it cannot be
(easily) directly applied in the limit p! 0. In fact, one can also derive this result
from Corollary 3.2, for which direct, nonelliptic, proofs are known in the p! 0

limit [11]. The basic observation is that if two of the parameters have product q,
i.e., if two of the � factors combine to produce a factor of the formY

1�i�n

1

�.az˙1i I q/
;

then the integrand is essentially invariant under a 7! 1=a (aside from an overall
constant). However, the integral does not share this invariance, because inverting
a changes the constraint on the contour. The two contours differ only in whether
they contain the points z D a˙1; as a result, the difference in the two integrals is
(proportional to) the n� 1-dimensional integral of the residue at that point. This
n� 1-dimensional integral simplifies to the above form, with l D 1, m D 0; the
difference of the original n-dimensional integrals simplifies to the desired right-
hand side. This argument can then be repeated as necessary to prove the theorem
for arbitrary values of l; m� 0.

Remark 3. The fact that we obtain an l Cm-tuple sum is, of course, directly
related to the fact that we needed 2l C 2m � factors to represent the numerator of
f . In general, if we took

f .: : : zi : : : /D
Y
1�i�n

Q
1�j�m �.xj z

˙1
i Ip; q/aj ;bj

�.pqz˙1i =u0Ip; q/
P
aj ;

P
bj

;

residue calculus would again give a sum, this time a 2m-tuple sum (i.e., the product
of an m-tuple sum for p and an m-tuple sum for q). On the other hand, we could
also compute I�.n/.u0Ip; q/f by specialization of Theorem 7.1, which would give
a sum with 2

P
ajCbj terms. The fact that this sum simplifies underlies Rosengren’s

arguments in Section 7 of [26].

Remark 4. It is particularly striking that the right-hand side factors as a prod-
uct of two sums, one involving only q-theta functions, and one involving only p-
theta functions. This factorization phenomenon appears to hold quite generally in
the theory of elliptic hypergeometric integrals, but only when the relevant balancing
condition holds.
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Since I�.n/.u0Ip; q/ takes BCn-symmetric functions to A2nC2-symmetric
functions, it is not quite suitable for our purposes. However, we can readily obtain
BC -symmetric functions by suitable specialization.

Definition 3. Define operators I
C.n/
t .u0Ip; q/, I

.n/
t .u0Wu1; u2Ip; q/, and

I
�.n/
t .u0Wu1; u2; u3; u4Ip; q/ by:

.I
C.n/
t .u0Ip; q/f /.z1; : : : ; znC1/

D .I�.n/.u0Ip; q/f /.
t�n�1pq

u0
; : : : ;

p
tz˙1i ; : : : /;

.I
.n/
t .u0Wu1; u2Ip; q/f /.z1; : : : ; zn/

D .I�.n/.u0Ip; q/f /.u1; u2;
t�npq

u0u1u2
; : : : ;

p
tz˙1i ; : : : /;

.I
�.n/
t .u0Wu1; u2; u3; u4Ip; q/f /.z1; : : : ; zn�1/

D .I�.n/.u0Ip; q/f /.u1; u2; u3; u4;
t1�npq

u0u1u2u3u4
; : : : ;

p
tz˙1i ; : : : /:

THEOREM 7.3. The above operators are triangular with respect to the filtra-
tion of A.n/.u0Ip; q/; to be precise,

I
C.n/
t .u0Ip; q/A

.n/
�
.u0I t Ip; q/�A

.nC1/
�

.t1=2u0I t Ip; q/;

I
.n/
t .u0Wu1; u2Ip; q/A

.n/
�
.u0I t Ip; q/�A

.n/
�
.t1=2u0I t Ip; q/;

and, if �n D .0; 0/,

I
�.n/
t .u0Wu1; u2; u3; u4Ip; q/A

.n/
�
.u0I t Ip; q/�A

.n�1/
�

.t1=2u0I t Ip; q/:

Also, I
C.n/
t .u0Ip; q/ is generically injective, and I

�.n/
t .u0Wu1; u2; u3; u4Ip; q/ is

generically surjective.

Proof. It suffices to consider the action of the operators on the functions

F
.n/

��
.u0 W : : : zi : : : I t Ip; q/

D

Y
1�i�n
1�j��1

�.pj qt��
0
j z˙1i =u0I q/

�.pj qz˙1i =u0I q/

Y
1�i�n
1�j��1

�.pqj t��
0
j z˙1i =u0Ip/

�.pqj z˙1i =u0Ip/

considered above. Applying Theorem 7.1, we find that each term of the resulting
sum is also of this form, with appropriately constrained partitions. The one excep-
tion is I

�.n/
t in the case when �n or �n > 0, which we will consider below. �

As promised, the integral operators indeed satisfy appropriate adjointness re-
lations.
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THEOREM 7.4. If f 2A.n/.u0Ip; q/, g 2A.n/.t�1=2u1Ip; q/ and
t2n�2u0u1t0t1t2t3 D pq;

then
hI
.n/
t .u0Wt0; t1Ip; q/f; git 00;t

0
1;t
0
2;t
0
3Iu
0
0;u
0
1It Ip;q

D hf;I
.n/
t .u01Wt

0
2; t
0
3Ip; q/git0;t1;t2;t3Iu0;u1It Ip;q;where

.t 00; t
0
1; t
0
2; t
0
3; u
0
0; u
0
1/D .t

1=2t0; t
1=2t1; t

�1=2t2; t
�1=2t3; t

1=2u0; t
�1=2u1/:

Similarly, if f 2 A.n/.u0Ip; q/, g 2 A.n�1/.u01Ip; q/ and t2n�2u0u1t0t1t2t3 D
pq, then

hI
�.n/
t .u0Wt0; t1; t2; t3Ip; q/f; git 00;t

0
1;t
0
2;t
0
3;u
0
0;u
0
1It Ip;q

D hf;I
C.n�1/
t .u01Ip; q/git0;t1;t2;t3;u0;u1It Ip;q;

where
.t 00; t

0
1; t
0
2; t
0
3; u
0
0; u
0
1/D .t

1=2t0; t
1=2t1; t

1=2t2; t
1=2t3; t

1=2u0; t
�1=2u1/:

Proof. In each case, the definition of the integral operators allows us to express
the inner products as double integrals; the stated identities correspond to changing
the order of integration.

Note added December, 2009: There is a difficulty performing this exchange
of integrals in the second case, as it does not appear possible to choose consistent
contours in general. However, if g is either p- or q-elliptic, there is no difficulty–
if one fixes the “degrees” and numerators of f and g, there is an open subset of
parameter space for which one can use a common contour for all variables. This
holds even if f lies in the larger space

A.n/.u0Ip; q/˝A.n/.t0Ip; q/;

and thus (setting g D 1 and swapping t0 and u1) gives rise to a formula for the
inner product by iterating the lowering operator. But this implies that the inner
product factors as a tensor product, so the p- and q- elliptic cases suffice to prove
adjointness in general. �

Recall that for the operators D� and I�, we were only able to show triangu-
larity with respect to a portion of the filtration; for some functions, the methods we
used were insufficient to understand the images. The key observation for dealing
with those cases is that the difficult case for D� is precisely the (generic) image
of IC, and similarly the difficult case for I� is the image of DC. Thus to complete
our understanding of the action of these operators on the filtration, it will suffice
to prove the following result.

THEOREM 7.5. For any function f 2A.u0Ip; q/,

D�.n/q .q�3=2t1=2u0I t; p/I
C.n�1/
t .u0Ip; q/f D 0:
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Similarly, for any function f 2A.n/.q�1=2u0Ip; q/,

(7.2) I
�.n/
t .u0Wt0; t1; t2; t3Ip; q/D

C.n/
q .u0Wt0; t1; t2; t3I t; p/f D 0:

Proof. For the first identity, take

f .: : : zi : : : /D
Y
1�i�n

Q
1�j�l x

�1
j �.xj z

˙1
i I q/

Q
1�j�m y

�1
j �.yj z

˙1
i Ip/

�.pqz˙1i =u0Ip; q/l;m
I

we can thus compute its image via Theorem 7.1 and the definition of D�.n/. The
vanishing of the resulting sum follows as a special case of Lemma 7.6 below.

For the second identity, we can argue as in the proof of adjointness of the dif-
ference operators to express the image as the integral of f .: : : zi : : : / with respect
to an appropriate BCn-symmetric density. That this density vanishes identically
follows from Lemma 7.8 below. �

LEMMA 7.6. For arbitrary parameters satisfying vw
Q
1�i�n q

2
i D 1, and

generic z1, . . . , zn,Y
1�i�n

.1CR.zi //
�.vqizi ; wqizi Ip/

�.z2i Ip/

Y
1�i<j�n

q�1j �.qiqj zizj ; qj zi=qizj Ip/

�.zizj ; zi=zj Ip/
D 0:

Proof. For nD 1, the summand is manifestly antisymmetric under R.zi /, and
thus the lemma follows in that case. Thus assume n>1, set vDu=Q, wD .uQ/�1

with Q WD
Q
1�i�n qi , and consider the sum as a function of u. We readily verify

that it is a BC1-symmetric theta function in u of degree n; we thus need only
show that it vanishes at more than n independent points. If uDQzn=qn, the terms
involving R.zn/ vanish; moreover, if we pull out BCn�1-symmetric factors, we
obtain a special case of the n � 1-dimensional sum. By symmetry, the identity
holds for any point of the form u D Qz˙1i =qi ; since n > 1, these 2n points are
generically independent, and the result follows. �

We note the following related result in passing:

COROLLARY 7.7. For arbitrary parameters satisfying tuvw
Q
1�i�n q

2
i D 1,

and generic z1, . . . , zn,

t�.uv; uw; vwIp/
Y
1�i�n

.1CR.zi //
�.tzi=qi ; uqizi ; vqizi ; wqizi Ip/

zi�.z
2
i Ip/

�

Y
1�i<j�n

q�1j �.qiqj zizj ; qj zi=qizj Ip/

�.zizj ; zi=zj Ip/

is symmetric under permutations of t , u, v, w.
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Proof. The sum is manifestly symmetric in u, v, w, so it suffices to show
that it is invariant under the exchange of t and u. Thus take the difference of the
given sum and its image upon exchanging t and u. If we then set t D qnC1ynC1,
uD qnC1=ynC1, we obtain the nC 1-dimensional instance of the lemma. �

LEMMA 7.8. For generic values of y1, . . . , yn,Y
1�i�n

.1CR.yi //
Y

1�i<j�n

�.uyiyj Ip/

�.yiyj Ip/

Y
1�i�n

Q
1�r�n�1 �.u

�1=2z˙1r yi Ip/

yn�2i �.y2i Ip/
D0:

Proof. When nD 1, the summand is antisymmetric under R.y1/, and the sum
therefore vanishes. Now, consider the sum for general n as a function of zn�1. This
is manifestly a BC1-symmetric theta function of degree n; it thus suffices to show
that it vanishes at more than n independent points. If zn�1 D u1=2yn, the terms
coming from R.yn/ vanish; we thus obtain an instance of the n� 1-dimensional
sum, which vanishes by induction. By symmetry, the sum vanishes at any point
of the form zn�1 D u

1=2y˙1i ; this gives 2n independent values at which the sum
vanishes, proving the lemma. �

A similar argument applies to the following result, which can also be obtained
from Theorem 3.1 via residue calculus.

THEOREM 7.9. Choose integersm�l�0, and suppose qm�l t0t1t2t3Dq. Then
we have the following identity.Y

1�i�m

.1CR.xi //
�.t0xi ; t1xi ; t2xi ; t3xi Ip/

Q
1�r�l �.q

�1=2xiy
˙1
r Ip/

xlC1i �.x2i Ip/

�

Y
1�i<j�m

�.qxixj Ip/

�.xixj Ip/

D

Y
0�i<m�l

�.qi t0t1; q
i t0t2; q

i t0t3Ip/

.�q1=2/m�1t0

�

Y
1�i�l

.1CR.yi //
�.q

1=2

t0
yi ;

q1=2

t1
yi ;

q1=2

t2
yi ;

q1=2

t3
yi Ip/

Q
1�r�m �.q

�1=2yix
˙1
r Ip/

ymC1i �.y2i Ip/

�

Y
1�i<j�l

�.qyiyj Ip/

�.yiyj Ip/
:

Proof. By the usual symmetry argument, we find that both sides are BCm-
symmetric theta functions of degree l in x. By induction, both sides agree if xm
is of the form tr or q�1=2y˙1i ; this gives 2l C 4 independent points at which the
functions agree, which shows that they agree everywhere. �

This gives rise to some commutation relations between our difference and
integral operators.
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COROLLARY 7.10. For any function f 2A.n/.q1=2u0Ip; q/,

I
.n/
t .u0Wt0; t1Ip; q/D

.n/
q .u0; t0; t1I t; p/f

D D.n/q .t1=2u0; t
1=2t0; t

1=2t1I t; p/I
.n/
t .q1=2u0Wq

1=2t0; q
1=2t1Ip; q/f;

I
.n/
t .u0Wt0; t1Ip; q/D

.n/
q .u0; t0; t2I t; p/f

D D.n/q .t1=2u0; t
1=2t0; t

�1=2t2I t; p/I
.n/
t .q1=2u0Wq

1=2t0; q
�1=2t1Ip; q/f;

I
C.n/
t .u0Ip; q/D

.n/
q .u0; t0; t1I t; p/f

D D.nC1/q .t1=2u0; t
�1=2t0; t

�1=2t1I t; p/I
C.n/
t .q1=2u0Ip; q/f;

while for any function f 2A.n/.q�1=2u0Ip; q/,

I
.n/
t .u0Wt0; t1Ip; q/D

C.n/
q .u0Wt0Wt1; t2; t3I t; p/f

D DC.n/q .t1=2u0Wt
1=2t0Wt

1=2t1; t
�1=2t2; t

�1=2t3I t; p/

�I
.n/
t .q�1=2u0Wq

1=2t0; q
1=2t1Ip; q/f:

Proof. In each case, arguing as in the proof of adjointness of difference oper-
ators transforms the left-hand side into an integral of f against a BCn-symmetric
density which itself can be transformed via the theorem to give the right-hand side.

�

8. Biorthogonal functions

Now that we have suitable difference and integral operators, we are in a posi-
tion to construct the desired biorthogonal functions.

Definition 4. For each integer n� 0, we define a family of functions

zR
.n/
�
.z1; : : : ; znI t0Wt1; t2; t3Iu0; u1I t Ip; q/ 2A

.n/
�
.u0I t Ip; q/

indexed by a partition pair � of length at most n and with parameters satisfying
t2n�2t0t1t2t3u0u1 D pq, as follows. For nD 0, we take

zR.0/.I t0Wt1; t2; t3Iu0; u1I t Ip; q/ WD 1:

Otherwise, if �n D .0; 0/, we set

zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/

WD I
C.n�1/
t .t�1=2u0Ip; q/

� zR
.n�1/
�

.I t1=2t0Wt
1=2t1; t

1=2t2; t
1=2t3I t

�1=2u0; t
1=2u1I t Ip; q/:
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If .0; 1/n � �, set

zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/

WDDC.n/q .u0Wt0Wt1; t2; t3I t; p/

� zR
.n/

��.0;1/n
.I q1=2t0Wq

1=2t1; q
1=2t2; q

1=2t3I q
�1=2u0; q

�3=2u1I t Ip; q/:

Finally, if .1; 0/n � �, but .0; 1/n 6� �, set

zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/

WDDC.n/p .u0Wt0Wt1; t2; t3I t; q/

� zR
.n/

��.1;0/n
.Ip1=2t0Wp

1=2t1; p
1=2t2; p

1=2t3Ip
�1=2u0; p

�3=2u1I t Ip; q/:

Remark. The above definition closely resembles, and indeed was inspired by,
Okounkov’s integral representation for interpolation polynomials [15]; in fact, in
an appropriate limit, our IC.n/ becomes Okounkov’s integral operator (which can
thus be expressed as a contour integral, rather than a q-integral).

It is clear that this inductively defines a family of functions as described; note
also that the last relation still holds if .1; 1/n��, since the corresponding p- and q-
difference operators “commute”. In addition, it is clear that these functions should
agree with the functions R we attempted to define above, aside from the fact that
the scalar multiplication freedom has been eliminated:

PROPOSITION 8.1. The functions zR satisfy the normalization condition

zR
.n/
�
.: : : tn�i t0 : : : I t0Wt1; t2; t3Iu0; u1I t Ip; q/D 1:

Since the “diagonal” coefficients of the C operators with respect to the filtra-
tion are generically nonzero, we find that they form a section of the filtration; that
is:

PROPOSITION 8.2. For any partition pair �, and for generic values of the
parameters, the functions

zR
.n/
� .I t0Wt1; t2; t3Iu0; u1I t Ip; q/

for �� � form a basis of A
.n/
�
.t Ip; q/.

Also, since each of the C operators used above factors as a tensor product,
we find that the same holds for our family of functions.
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LEMMA 8.3. Each function zR.n/
�

is a product of a q-abelian and a p-abelian
function; more precisely,

zR
.n/

��
.: : : zi : : : I t0Wt1; t2; t3Iu0; u1I t Ip; q/

D zR
.n/

�0
.: : : zi : : : I t0Wt1; t2; t3Iu0; u1I t Ip; q/

� zR
.n/
0� .: : : zi : : : I t0Wt1; t2; t3Iu0; u1I t Ip; q/:

Similarly, from adjointness and Theorem 7.5, we can conclude:

THEOREM 8.4. The functions zR.n/
�

satisfy the biorthogonality relation˝
zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/;

zR
.n/
� .I t0Wt1; t2; t3Iu1; u0I t Ip; q/

˛
t0;t1;t2;t3;u0;u1It;p;q

D 0

whenever � ¤ �. In particular, zR.n/
�

is orthogonal to the space A
.n/
� .t Ip; q/

whenever � 6� �.

Remark. In particular, it follows that our functions agree with the univariate
biorthogonal functions considered in [32, App. A]. Note that in the univariate case,
the definition involves only the raising difference operators; the integral operators
are unnecessary. This gives rise to a generalized Rodriguez-type formula; com-
pare [18].

THEOREM 8.5. The functions zR.n/
�

satisfy the difference equations:

D.n/p .u0; t0; t1I t; q/zR
.n/
�
.Ip1=2t0Wp

1=2t1; p
�1=2t2; p

�1=2t3Ip
1=2u0; p

�1=2u1I t Ip; q/

D zR.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/;

D.n/q .u0; t0; t1I t; p/zR
.n/
�
.I q1=2t0Wq

1=2t1; q
�1=2t2; q

�1=2t3I q
1=2u0; q

�1=2u1I t Ip; q/

D zR.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/;

and the integral equation

I.n/t .u0Wt0; t1Ip; q/zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/

D zR.n/
�
.I t1=2t0Wt

1=2t1; t
�1=2t2; t

�1=2t3I t
1=2u0; t

�1=2u1I t Ip; q/:

Proof. Since each of the operators respects the factorization of zR.n/

��
, it suffices

to consider the cases �D 0 or �D 0, which are clearly equivalent. In particular,
the inner product is now generically nondegenerate, and thus zR.n/

�0
and zR.n/

0� are
uniquely determined by biorthogonality and the normalization condition. Since
each of the three operators we are considering has triangular adjoint, the left-hand
sides satisfy biorthogonality; on the other hand, we readily compute that each op-
erator preserves the normalization condition. �
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Remark. This gives rise to an alternate proof of the commutation relations of
Corollary 7.10, by comparing the actions of the two sides on the appropriate basis
of biorthogonal functions. Similarly, one obtains the commutation relations:

I
.nC1/
t .u0Wt0; t1Ip; q/I

C.n/
t .t�1=2u0Ip; q/

D I
C.n/
t .u0Ip; q/I

.n/
t .t�1=2u0Wt

1=2t0; t
1=2t1Ip; q/;

I
.n/
t .u0Wt0; t1Ip; q/I

.n/
t .t�1=2u0Wt

�1=2t0; t
1=2t2Ip; q/

D I
.n/
t .u0Wt0; t2Ip; q/I

.n/
t .t�1=2u0Wt

�1=2t0; t
1=2t1Ip; q/;

D.n/q .u0; t0; t1I t; p/D
.n/
q .q1=2u0; q

1=2t0; q
�1=2t2I t; p/

D D.n/q .u0; t0; t2I t; p/D
.n/
q .q1=2u0; q

1=2t0; q
�1=2t1I t; p/;

DC.n/q .u0Wt0Wt1; t2; t3I t; p/D
.n/
q .q�1=2u0; q

1=2t0; q
1=2t1I t; p/

D D.n/q .u0; t0; t1I t; p/D
C.n/
q .q1=2u0Wq

1=2t0Wq
1=2t1; q

�1=2t2; q
�1=2t3I t; p/:

In contrast to Corollary 7.10, it is unclear how to prove these commutation relations
directly.

COROLLARY 8.6. For any partition �,

T .n/!;p
zR
.n/

0�
.Ip1=2t0Wp

1=2t1; p
�1=2t2; p

�1=2t3Ip
1=2u0; p

�1=2u1I t Ip; q/

D zR
.n/

0�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/:

Moreover,

zR
.n/

0�
.Ipk0 t0Wp

k1 t1; p
k2 t2; p

k3 t3Ip
l0u0; p

l1u1I t Ip; q/

D zR
.n/

0�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/

for all choices of integers k‹, l‹ such that k0C k1C k2C k3C l0C l1 D 0.

Proof. The first claim follows from the fact that

D.n/p .u0; t0; t1I t; q/f D T
.n/
!;pf

for any p-abelian function f . Now, when l0 D 0, the second claim follows from
the definition of R

.n/

0�
and the fact that D

C.n/
q .u0Wt0Wt1; t2; t3I t; p/ is a p-abelian

function of the u‹ and t‹ parameters. Iterating the first claim and using the fact that
zR
.n/

0�
is p-abelian we have an instance of the second claim with l0 D 1, and thus

the claim holds in general. �

To see how the operators act when t0 is not among the parameters of the
operator, we need to determine how zR.n/ changes when we switch t0 and t1. This
leaves the biorthogonality relation unchanged, and so multiplies the function by a
constant; to determine that constant, it suffices to compute the following evaluation.
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PROPOSITION 8.7. For generic values of the parameters,

zR
.n/
�
.: : : tn�i t1 : : : I t0Wt1; t2; t3Iu0; u1I t Ip; q/

D
C0�.t

n�1t1t2; t
n�1t1t3; pqt

n�1t0=u0; t
1�n=t1u1I t Ip; q/

C0�.t
n�1t0t2; tn�1t0t3; pqtn�1t1=u0; t1�n=t0u1I t Ip; q/

:

Proof. This follows by comparing the actions of D
C.n/
q .u0Wt0Wt1; t2; t3I t; p/

and D
C.n/
q .u0Wt1Wt0; t2; t3I t; p/. This gives a recurrence for the desired specializa-

tion, having the right-hand side as unique solution. �

It will be convenient at this point to introduce “hatted” parameters. These are
defined as follows. First, we have:

Ot0 D
p
t0t1t2t3=pq D

t1�n
p
u0u1

:

The remaining parameters are then defined by giving invariants of the transforma-
tion. To be precise, we define Ot1, Ot2, Ot3, Ou0, and Ou1 by insisting that

Ot0 Ot1 D t0t1; Ot0 Ot2 D t0t2; Ot0 Ot3 D t0t3;
Ou0

Ot0
D
u0

t0
;
Ou1

Ot0
D
u1

t0
:

Note in particular that
t2n�2 Ot0 Ot1 Ot2 Ot3 Ou0 Ou1 D pq:

The action of the hat transformation on the t parameters is, of course, quite fa-
miliar from the theory of Koornwinder polynomials [14], [29] (aside from the
factor of p required to preserve symmetry); the action on the u parameters is then
essentially forced by the balancing condition. We furthermore define zi .�I Ot0/ WD
.p; q/�i tn�i Ot0.

In the following formulas, the ratios of � functions that appear are sometimes
ill-defined, in that some of the factors vanish. These should be interpreted by
multiplying the argument of each � function by the same scale factor, then taking
the limit as that scale factor approaches 1. Alternatively, it turns out in each case
that the ratio can be formally expressed in terms of theta functions alone, and that
upon doing so, the resulting formula is well-defined. Similar comments apply to
ratios of � functions. In particular, we note thatY
1�i�n

�.vzi .�Iw/
˙1Ip/

�.vzi .0; 0Iw/˙1Ip/
D

Y
1�i�n

�.qvzi .�Iw/
˙1; vzi .0; 0Iw/

˙1Ip; q/

�.vzi .�Iw/˙1; qvzi .0; 0Iw/˙1Ip; q/

/
C0

�
.tn�1qvw; tn�1pqw=vIp; q/

C0
�
.tn�1vw; tn�1pw=vIp; q/

;

where the constant of proportionality is independent of v.
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COROLLARY 8.8. We have the difference equations

D.n/q .u0; t0; t1I t; p/D
.n/
q .q1=2u0; q

�1=2t2; q
�1=2t3I t; p/

� zR
.n/
�
.I t0Wt1; t2; t3I qu0; q

�1u1I t Ip; q/

D
ED

�
.Ot1WOt0I t IpWq/

ED
�
. Ou0WOt0I t IpWq/

zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/;

D.n/q .u0; t2; t3I t; p/D
.n/
q .q1=2u0; q

�1=2t0; q
�1=2t1I t; p/

� zR
.n/
�
.I t0Wt1; t2; t3I qu0; q

�1u1I t Ip; q/

D
ED

�
.Ot1=qWOt0I t IpWq/

ED
�
. Ou0WOt0I t IpWq/

zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/;

where

ED
�.vWwI t IpWq/ WD

Y
1�i�n

�.vzi .�Iw/
˙1Ip/

�.vzi .0; 0Iw/˙1Ip/
:

Similarly,

I
.n/
t .t1=2u0Wt

�1=2t2; t
�1=2t3Ip; q/I

.n/
t .u0Wt0; t1Ip; q/

� zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1Ip; q/

D
EI

�
.Ot1WOt0I t Ip; q/

EI
�
. Ou0WOt0I t Ip; q/

zR
.n/
�
.I t0Wt1; t2; t3I tu0; u1=t Ip; q/;

I
.n/
t .t1=2u0Wt

�1=2t0; t
�1=2t1Ip; q/I

.n/
t .u0Wt2; t3Ip; q/

� zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1Ip; q/

D
EI

�
.Ot1=t WOt0I t Ip; q/

EI
�
. Ou0WOt0I t Ip; q/

zR
.n/
�
.I t0Wt1; t2; t3I tu0; u1=t Ip; q/;

where

EI
�.vWwI t Ip; q/ WD

Y
1�i�n

�.vzi .�Iw/
˙1; tvzi .0; 0Iw/

˙1Ip; q/

�.tvzi .�Iw/˙1; vzi .0; 0Iw/˙1Ip; q/
:

The � and C operators give similar equations:

THEOREM 8.9.

D�.n/q .u0I t; p/D
C.n/
q .q3=2u0W

t0

q1=2
W
t1

q1=2
;
t2

q1=2
;
t3

q1=2
I t; p/

� zR
.n/
�
.I t0Wt1; t2; t3I qu0; q

�1u1I t Ip; q/

D C
ED

�
.Ot0=qWOt0Ip/

ED
�
. Ou0WOt0Ip/

zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/;
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where

CD
Y
1�i�n

�.tn�iu0t0; t
n�iu0t1; t

n�iu0t2; t
n�iu0t3; pt

n�i t0=qu0; pqt
n�i ; tn�i=qu0u1Ip/

�.pt2n�i�1t0u1; tn�i t0t1=q; tn�i t0t2=q; tn�i t0t3=qIp/
:

Similarly,

I
�.nC1/
t .t1=2u0W

t0

t1=2
;
t1

t1=2
;
t2

t1=2
;
t3

t1=2
Ip; q/I

C.n/
t .u0Ip; q/

� zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1Ip; q/

D
EI

�
.t=Ot0WOt0I t Ip; q/

EI
�
. Ou0WOt0I t Ip; q/

zR
.n/
�
.I t0Wt1; t2; t3I tu0; u1=t Ip; q/:

Proof. In each case, by adjointness, both sides satisfy biorthogonality, and
must therefore be proportional. To determine the constant of proportionality, we
can compare one of the corresponding equations from Corollary 8.8. Indeed, the
fact of proportionality shows that the relevant products of difference (or integral)
operators differ in their action only by a diagonal transformation; as a result, we
can compute the ratio of their constants of proportionality using any section of the
filtration. In particular, it is straightforward to compute diagonal coefficients using
the sections with which we proved triangularity in the first place, thus giving the
desired result. �

Remark. We thus find that for v 2 fOt1; Ot2; Ot3; Ot0=q; Ot1=q; Ot2=q; Ot3=qg, we have
a difference operator D.v/ (of “order” 2) such that

D.v/zR
.n/
�
.I t0Wt1; t2; t3I qu0; q

�1u1I t Ip; q/

D
ED

�
.vWOt0I t IpWq/

ED
�
. Ou0WOt0I t IpWq/

zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/I

moreover

DC.n/q .u0Wt0Wt1; t2; t3I t; p/D
�.n/.q�1=2u0I t; p/

essentially gives us such an operator for vD Ot0. We conjecture that such an operator
exists for all v; since the “eigenvalue” is effectively just a BC1-symmetric theta
function of degree n in v, this conjecture certainly holds for n� 7. Such a collection
of difference operators, together with the various spaces of higher-degree difference
operators obtained by composing them, would seem to give the analogue of the
center of the affine Hecke algebra applicable to our biorthogonal functions. Indeed,
in the Koornwinder limit, the conjecture certainly holds, and the resulting space of
operators is precisely the subspace of the center of the affine Hecke algebra having
degree at most 1.
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In particular, this gives us a recurrence for the nonzero values of the inner
product. Define

�.n/.zI t0; t1; t2; t3; t4; t5I t Ip; q/

D

Y
1�i<j�n

�.tz˙1i z˙1j Ip; q/

�.z˙1i z˙1j Ip; q/

Y
1�i�n

Q
0�r�5 �.trz

˙1
i Ip; q/

�.z˙2i Ip; q/
I

in other words, this is simply the density with respect to which our functions are
biorthogonal.

THEOREM 8.10. For any partition pair � of length at most n, and for generic
values of the parameters,D

zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/;

zR
.n/
�
.I t0Wt1; t2; t3Iu1; u0I t Ip; q/

E
t0;t1;t2;t3;u0;u1It;p;q

D
�.n/.: : : zi .0; 0I Ot0/ : : : I Ot0; Ot1; Ot2; Ot3; Ou0; Ou1I t Ip; q/

�.n/.: : : zi .�I Ot0/ : : : I Ot0; Ot1; Ot2; Ot3; Ou0; Ou1I t Ip; q/

D��.t
2n�2 Ot20 jt

n; tn�1 Ot0 Ot1; t
n�1 Ot0 Ot2; t

n�1 Ot0 Ot3; t
n�1 Ot0 Ou0; t

n�1 Ot0 Ou1I t Ip; q/
�1

D��.
1

u0u1
jtn; tn�1t0t1; t

n�1t0t2; t
n�1t0t3;

t1�n

t0u0
;
t1�n

t0u1
I t Ip; q/�1:

This of course, is the direct analogue of the formula for the inner products of
Koornwinder polynomials.

If t0t1 D p�lq�mt1�n, then the integral converts via residue calculus to a
sum, and we thus obtain the following discrete biorthogonality property.

THEOREM 8.11. For any partition pairs �;� � .l; m/n, and for otherwise
generic parameters satisfying t0t1 D p�lq�mt1�n,X
��.l;m/n

zR
.n/
�
.: : : zi .�I t0/ : : : I t0Wt1; t2; t3Iu0; u1I t Ip; q/

� zR
.n/
� .: : : zi .�I t0/ : : : I t0Wt1; t2; t3Iu1; u0I t Ip; q/

�
�.n/.: : : zi .�I t0/ : : : I t0; t1; t2; t3; u0; u1I t Ip; q/

�.n/.: : : zi .0; 0I t0/ : : : I t0; t1; t2; t3; u0; u1I t Ip; q/
D 0

unless �D �.

Remark. Note that when t0t1 D p�lq�mt1�n,

zi .�I t0/D znC1�i ..l; m/
n
��I t1/

�1;

and thus summing over zi .�I t1/ gives the same result.
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This result leads to a very important special case of the zR functions.

COROLLARY 8.12. If t1u1 D t1�n, then

zR
.n/
�
.: : : zi .�I t1/ : : : I t0Wt1; t2; t3Iu0; u1I t Ip; q/D 0

unless � � �. Moreover, in this case zR.n/
�

is independent of t2 and t3, and up to
scalar multiplication, is independent of t0.

Proof. First suppose that t0t1 D p�lq�mt1�n for l; m such that �;� �

.l; m/n, and consider the discrete biorthogonality relation. We observe that for
f 2A.n/.u1Ip; q/ such thatY

1�i�n

�.pqz˙1i =u1Ip; q/l;mf .: : : zi : : : /

is holomorphic, and for partitions �� .l; m/n,

lim
v!t1�n=u1

Y
1�i�n

�.pqzi .�I v/
˙1=u1Ip; q/l;mf .: : : zi .�I v/ : : : /

D lim
zi!.p;q/

�i t i�1u1
iD1;:::;n

Y
1�i�n

�.pqz˙1i =u1Ip; q/l;mf .: : : zi : : : /:

In other words, if f 2 A
.n/
� .u1I t Ip; q/, then the inner product of our function

with f can be expressed as a sum over partition pairs contained in �, by the very
definition of the filtration. The desired vanishing property follows immediately.
Moreover, this orthogonality is independent of the specific values for t2, t3, and
thus changing t2 or t3 can at most multiply our function by a scalar; this scalar
must then be 1 by the normalization formula.

We thus find that the result holds whenever t0 is of the above form. Since
the given quantity is a product of abelian functions of t0 for any choice of �, �,
the fact that it holds for t0 of the form p�lq�mt1�n=t1 implies that it holds in
general. Symmetry in t0, t2, t3 then shows that the dependence on t0 is only via
the normalization. �

With this in mind, we consider the following alternate normalization in this
case.

Definition 5. The interpolation functions R
�.n/
�

.I t0; u0I t Ip; q/ are defined
by

R
�.n/
�

.I t0; u0I t Ip; q/D�
0
�.t

n�1t0=u0jt
n�1t0t1; t0=t1I t Ip; q/

� zR
.n/
�
.I t1Wt0; t2; t3Iu0; t

1�n=t0I t Ip; q/;
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where the right-hand side is independent of the choice of t1, t2, t3, as long as
tn�1t1t2t3u0 D pq. The multivariate elliptic binomial coefficient

�
�
�

�
Œa;b�It Ip;q

is
defined by"

�

�

#
Œa;b�It Ip;q

WD��

�a
b
jtn; 1=bI t Ip; q

�
�R
�.n/
� .: : : zi .�I t

1�na1=2/ : : : I t1�na1=2; b=a1=2I t Ip; q/;

for n� `.�/; `.�/.

Remark. An alternate definition uses the fact that

R
�.n/

lnC�;mnC�
.I t0; u0I t Ip; q/

D
.pq=t0u0/

�2lj�j�2mj�j
Q
1�i�n �.t0x

˙1
i Ip; q/l;mQ

1�i�n �..pq=u0/x
˙1
i Ip; q/l;m

� R
�.n/

�;�
.Iplqmt0; u0=p

lqmI t Ip; q/

(which follows by two applications of equation (9.1) below) together with the ac-
tion of IC.n/ to obtain an integral representation generalizing that of [15].

We note in particular that

R
�.n/
� .: : : zi : : : ; a; ta; :::; t

m�1aI a; bI t Ip; q/;

D
��.

tn�1a
b
jtn�m; 1=bI t Ip; q/

��.
tn�1a
b
jtn; 1=bI t Ip; q/

R
�.n�m/
� .: : : zi : : : I t

ma; bI t Ip; q/;

and thus the multivariate elliptic binomial coefficient is independent of n (as long
as `.�/; `.�/� n, that is).

The significance of these interpolation functions is that one can express con-
nection coefficients for the biorthogonal functions in terms of multivariate elliptic
binomial coefficients. (The proof requires a more thorough study of these binomial
coefficients, and will thus be deferred to [21].)

THEOREM 8.13 ([21]). If we define connection coefficients c�� by

zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/D

X
���

c��
zR
.n/
� .I t0Wt1v; t2; t3Iu0; u1=vI t Ip; q/;

then

c�� D
�0

�
.1=u0u1j1=v; t

n�1t2t3; pqt
n�1t0=u0; t1v=u1I t Ip; q/

�0�.v=u0u1jv; t
n�1t2t3; pqtn�1t0=u0; t1v=u1I t Ip; q/

"
�

�

#
Œ1=u0u1;1=v�It Ip;q

:
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If the biorthogonal function on the right is specialized to an interpolation
function, we obtain the following generalization of Okounkov’s binomial formula
for Koornwinder polynomials [15]:

COROLLARY 8.14.

zR
.n/
�
.I t0Wt1; t2; t3Iu0; u1I t Ip; q/

D

X
���

c�R
�.n/
� .: : : zi .�I Ot0/ : : : I Ot0; Ou0I t Ip; q/R

�.n/
� .I t0; u0I t Ip; q/;

where

c� D��.t
n�1t0=u0jt

n; pq=u0t1; pq=u0t2; pq=u0t3I t Ip; q/:

Since c� above remains the same when the parameters are replaced by their
hatted analogues, we obtain the following corollary, the analogue of the “evaluation
symmetry” property of Koornwinder polynomials.

COROLLARY 8.15. For any partition pairs �, � of length at most n, and for
generic values of the parameters,

zR
.n/
�
.: : : zi .�I t0/ : : : I t0Wt1; t2; t3Iu0; u1I t Ip; q/

D zR
.n/
� .: : : zi .�I Ot0/ : : : I Ot0WOt1; Ot2; Ot3I Ou0; Ou1I t Ip; q/:

Before leaving the topic of biorthogonal functions, it remains to justify our
assertions that these are a generalization of Koornwinder polynomials. The inner
product clearly can be degenerated into the Koornwinder inner product; the diffi-
culty is the filtration. Indeed, in order to degenerate the inner product, we must take
p! 0, u0! f0;1g, at which point the definition of the filtration breaks. It turns
out that the filtration actually does have a well-defined limit; however, we have
been unable to find an argument for this other than as a corollary of the following
result.

THEOREM 8.16. Fix otherwise generic parameters t0, t1, t2, t3. Then the
limits

lim
u0!0

lim
p!0

zR
.n/

0�
.: : : zi : : : I t0Wt1; t2; t3Iu0;

pq

t2n�2u0t0t1t2t3
I t Ip; q/;

lim
u0!1

lim
p!0

zR
.n/

0�
.: : : zi : : : I t0Wt1; t2; t3Iu0;

pq

t2n�2u0t0t1t2t3
I t Ip; q/

agree, and give a family of BCn-symmetric Laurent polynomials orthogonal with
respect to the Koornwinder inner product. Moreover, these polynomials are diag-
onal with respect to dominance of monomials, and thus are precisely the Koorn-
winder polynomials (normalized to have principal specialization 1).
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Proof. The key observation is that, although the definition of the filtration
blows up in the limit, the raising difference and integral operators have perfectly
fine limits. Consequently, the above limits are indeed well-defined; as the choice
u0! 0 or u0!1 has no effect on the limiting operators, it can have no effect
on the limiting functions. Since the space of BCn-symmetric p-theta functions of
degree m tends in the limit p! 0 to the space of BCn-symmetric Laurent polyno-
mials of degree at most m in each variable, our functions become rational functions
in that limit. Taking the limit u0! 0;1, causes the poles of the rational functions
to move to 0 and1, thus giving Laurent polynomials. Finally, we observe that
because the above limits agree, biorthogonality becomes orthogonality in the limit.
(Recall that R

.n/

0�
is p-abelian in its parameters; so the factor of p in u1 can be

moved around arbitrarily before taking the limit.) We have thus proved the first
claim.

To see that these agree with Koornwinder polynomials, we observe that the
operator D

.n/
q .u0; t0; t1I t / also has a well-defined limit; standard arguments ([20,

Th. 3.2]) show that the limit is triangular with respect to dominance of monomials.
It thus follows from Theorem 8.5 that the limiting polynomials are eigenfunctions
of a pair of triangular difference operators, and thus must themselves be triangular.
The normalization then follows from Proposition 8.1. �

Remark. In order to determine the constant of proportionality, i.e., determine
the leading coefficient of the limiting polynomial, we simply determine how the
raising operators affect the leading coefficient. For the difference operator, this is
straightforward; for the integral operator, we can appeal to Theorem 7.1 and, by
using the fact thatX
��mn

.�1/mn�j�jm�.y1; y2; : : : ; yn/emn��.z1; z2; : : : ; zm; 1=z1; 1=z2; : : : ; 1=zm/

D

Y
1�i�n
1�j�m

.yi C 1=yi � zj � 1=zj /

(where m� is a BCn-symmetric monomial), reduce to the difference operator case.
The result, of course, is simply Macdonald’s “evaluation” conjecture; Theorem
8.10 then gives the nonzero values of the inner product. (For more details, see [22].)
The remaining “symmetry” conjecture does not follow from the methods given
above, however (although there are at least two different arguments for deducing
it from evaluation: [5], [15]). The argument we will give in [21] does descend to
the Koornwinder case; indeed, the result is precisely the proof given in [20].

It follows from [20, Th. 7.25] that the filtration has the following limit.
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COROLLARY 8.17. Choose an integer n � 0, and a partition � of at most n
parts. Then the limits u0! 0 or u0!1 of the space A

.n/

0�
.u0I t I 0; q/ agree, and

are given by the span

hP�.x
˙1
1 ; x˙12 ; : : : ; x˙1n I q; t/i���;

where P� is an ordinary Macdonald polynomial.

Remark. It would be nice to have a direct proof of this corollary, or the corre-
sponding result for a refined partial order; in particular, for the dominance partial
order, the limiting filtration should correspond to dominance of monomials.

9. Type II transformations

The connection coefficient formula for our biorthogonal functions, Theorem
8.13, has a number of nice consequences for the multivariate elliptic binomial
coefficients. For instance, by taking v D 1, we obtain the limiting case

lim
b!1

�0
�
.ajbI t Ip; q/

�0�.a=bj1=bI t Ip; q/

"
�

�

#
Œa;b�It Ip;q

D ı��:

Also, if we perform the change of basis corresponding to t1! t1v, then the change
of basis corresponding to t1v! t1vw, the result should be the same as if we directly
changed t1! t1vw. We thus obtain the following sum:

THEOREM 9.1 ([21]). For otherwise generic parameters satisfying bcde D
pqa,

"
�

�

#
Œa;c�It Ip;q

D
�0�.a=cj1=c; bd; be; pqa=bI t Ip; q/

�0
�
.ajc; bd; be; pqa=bI t Ip; q/

�

X
�����

�0�.a=bjc=b; pqa; d; eI t Ip; q/

"
�

�

#
Œa;b�It Ip;q

"
�

�

#
Œa=b;c=b�It Ip;q

:

In particular, X
�����

"
�

�

#
Œa;b�It Ip;q

"
�

�

#
Œa=b;1=b�It Ip;q

D ı��:

Remark. Although this identity, along with the other sums mentioned in this
section, does indeed follow from Theorem 8.13, we should mention that the argu-
ment in [21] proceeds in the opposite direction, using these identities (and others)
to prove the binomial formula, and from this, Theorem 8.13. On the other hand,
the above argument provides a more straightforward interpretation of the identity
than that given in [21].
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If we take �D .l; m/n, �D0 above, the above identity turns out to be a product
of two general instances of Warnaar’s Jackson-type summation (conjectured in
[37], and proved by Rosengren [25]). Warnaar’s Schlosser-type summation is also
a special case; see [21].

Our reason for discussing this here is that there is an integral analogue of the
above sum, generalizing Theorem 6.1.

THEOREM 9.2. For otherwise generic parameters satisfying jpj; jqj< 1 and
t2n�2t0t1t2t3u0u1 D pq,

hR
�.n/
�

.I t0; u0I t Ip; q/;R
�.n/
� .I t1; u1I t Ip; q/it0;t1;t2;t3;u0;u1It Ip;q

D�0�
�
tn�1t0=u0jt

n�1t0t2; t
n�1t0t3I t Ip; q

�
��0�

�
tn�1t1=u1jt

n�1t1t2; t
n�1t1t3; t

n�1t1t0; t
n�1t1u0I t Ip; q

�
�R
�.n/
�

�
: : : zi .�I t1=

p
tn�1t1u1/ : : : I t0

p
tn�1t1u1; u0

p
tn�1t1u1I t Ip; q

�
:

Proof. Using the connection coefficient identity, we may express both inter-
polation functions as linear combinations of biorthogonal functions. Substituting
in the known values for the inner products of the biorthogonal functions, we thus
obtain a sum over partition pairs �� �;�. That this sum gives the desired right-
hand side is itself a special case of the connection coefficient identity.

Alternatively, we can mimic the proof of Theorem 6.1, using the fact that
D
.n/
q .u0; t0; t3I t; p/ acts nicely on R

�.n/
�

.I t0; u0I t Ip; q/. If we define

F
.n/
��
.t0; t1; t2; t3; u0; u1I t Ip; q/

WD
hR�.n/

�
.I t0; u0I t Ip; q/;R

�.n/
� .I t1; u1I t Ip; q/it0;t1;t2;t3;u0;u1It Ip;q

�0
�
.tn�1t0=u0jtn�1t0t2; tn�1t0t3I t Ip; q/�0�.t

n�1t1=u1jtn�1t1t2; tn�1t1t3I t Ip; q/

then adjointness gives

F
.n/
��
.t0; t1; t2; t3; u0; u1I t Ip; q/

D F
.n/
��
.q1=2t0; q

�1=2t1; q
1=2t2; q

�1=2t3; q
1=2u0; q

�1=2u1I t Ip; q/

D F
.n/
��
.p1=2t0; p

�1=2t1; p
1=2t2; p

�1=2t3; p
1=2u0; p

�1=2u1I t Ip; q/:

Thus, the usual density argument shows that

F
.n/
��
.t0; t1; t2; t3; u0; u1I t Ip; q/DF

.n/
��
.wt0; t1=w; t2w; t3=w; u0w; u1=wI t Ip; q/

for any w 2 C�. Taking the limit w !
p
tn�1t1u1 and expanding via residue

calculus, we obtain a sum over partition pairs contained in �n1 , in which only the
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term associated to � survives. (Recall that the contour must be deformed around
the poles of R

�.n/
� .) We thus find

F
.n/
��
.t0; t1; t2; t3; u0; u1I t Ip; q/

/R
�.n/
�

.: : : zi .�I t1=
p
tn�1t1u1/ : : : I t0

p
tn�1t1u1; u0

p
tn�1t1u1I t Ip; q/;

where the constant of proportionality is independent of �. This constant can be
resolved by taking the limit w!

p
tn�1t0u0 in the case �D 0. �

Remark 1. The left-hand side above is invariant under exchanging .�; t0; u0/
and .�; t1; u1/. That the right-hand side is invariant is a special case of evaluation
symmetry (Corollary 8.15). We can also use that same special case of evaluation
symmetry to see that this generalizes Theorem 9.1. Indeed, if we specialize so that
t0t1 D p

�lq�mt1�n with �;�� .l; m/n, then the above left-hand side becomes a
sum over �� .l; m/n. Using evaluation symmetry, the factor

R
�.n/
� .: : : zi .�I t0/ : : : I t1; u1/DR

�.n/
� .: : : zi ..l; m/

n
��I t1/ : : : I t1; u1/

can be rewritten in terms of

R
�.n/
� .: : : zi ..l; m/

n
��I x/ : : : I x; y/

for suitable x and y. Replacing � by .l; m/n�� gives Theorem 9.1.
Similarly, replacing � by .l; m/n � � in the general version and comparing

the results, we find

(9.1) R�.n/
ln��;mn��

.I t1; u1I t Ip; q/

D
.pq=t1u1/

2lj�jC2mj�j
Q
1�i�n �.t1x

˙1
i Ip; q/l;mQ

1�i�n �..pq=u1/x
˙1
i Ip; q/l;m

R�.n/
�;�

.Iu1=p
lqm; plqmt1I t Ip; q/

as both sides have the same inner product with R
�.n/
�

.I t0; u0I t Ip; q/.

Remark 2. Note that the second proof of the theorem did not use the connec-
tion coefficient identity, and is thus independent of [21].

If we take �D 0 above, we obtain the following identity, generalizing Kadell’s
lemma (see, for instance Corollary 5.14 of [20]).

COROLLARY 9.3. For otherwise generic parameters satisfying jpj; jqj < 1
and t2n�2t0t1t2t3t4t5 D pq,

hR
�.n/
�

.I t0; t1I t Ip; q/it0;t1;t2;t3;t4;t5It Ip;q

D�0�.t
n�1t0=t1jt

n�1t0t2; t
n�1t0t3; t

n�1t0t4; t
n�1t0t5I t Ip; q/:

The connection coefficient argument gives the following identity as well.
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THEOREM 9.4. For otherwise generic parameters satisfying jpj; jqj< 1 and
t2n�2t0t1t2t3u0u1 D pq,

hR
�.n/
�

.I t0; u0I t Ip; q/;R
�.n/
� .I t0; u1I t Ip; q/it0;t1;t2;t3;u0;u1It Ip;q

D�0�.
tn�1t0

u0
jtn�1t0t1; t

n�1t0t2; t
n�1t0t3; t

n�1t0u1I t Ip; q/

��0�.
tn�1t0

u1
jtn�1t0t1; t

n�1t0t2; t
n�1t0t3; t

n�1t0u0I t Ip; q/

� zR
.n/
�
.: : : zi .�; t

0
0/ : : : I t

0
0Wt
0
1; t
0
2; t
0
3Iu
0
0; u
0
1I t Ip; q/;

where the primed parameters are determined by

tn�1t 00t
0
1 D t

n�1t0t1; tn�1t 00t
0
2 D t

n�1t0t2; tn�1t 00t
0
3 D t

n�1t0t3;

tn�1t 00u
0
0 D t

n�1t0u0; tn�1t 00u
0
1 D

1

tn�1t0u1
; t 020 D

t0

tn�1u1
:

Remark. The above transformation of the parameters is involutive, and con-
jugates the exchange u0$ u1 to the “hat” transformation.

A further application of connection coefficients gives the following result,
containing both Theorems 9.2 and 9.4 as special cases.

THEOREM 9.5. For otherwise generic parameters satisfying jpj; jqj< 1 and
t2n�2t0t1t2t3u0u1 D pq,

hR
�.n/
�

.I t0v; u0I t Ip; q/;R
�.n/
� .I t0; u1I t Ip; q/it0;t1;t2;t3;u0;u1It Ip;q

D�0�.t
n�1t0v=u0jt

n�1vt0t1; t
n�1vt0t2; t

n�1vt0t3; t
n�1t0u1I t Ip; q/

��0�.t
n�1t0=u1jt

n�1t0t1; t
n�1t0t2; t

n�1t0t3; t
n�1t0u0I t Ip; q/

� zR
.n/
�
.: : : zi .�; t

0
0/ : : : I t

0
0vWt

0
1; t
0
2; t
0
3Iu
0
0; u
0
1=vI t Ip; q/;

with primed parameters as above.

Now, Theorem 9.1 is sufficiently general that the univariate argument for de-
riving Bailey-type transformations from Jackson-type summations applies, giving
the following identity.

THEOREM 9.6 ([21]). The sum

�0
�
.ajb; apq=bf I t Ip; q/

�0�.a=cjb=c; apq=bd I t Ip; q/

�

X
�����

�0�.a=bjc=b; f; gI t Ip; q/

�0�.a=bj1=b; d; eI t Ip; q/

"
�

�

#
Œa;b�It Ip;q

"
�

�

#
Œa=b;c=b�It Ip;q

is symmetric in b and b0, where bb0de D capq, bb0fg D apq.
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Remark 1. Again, taking � D .l; m/n, � D 0, gives an identity conjectured
by Warnaar, in this case his conjectured multivariate Frenkel-Turaev transforma-
tion [37].

Remark 2. This identity can also be obtained by comparing various ways of
computing connection coefficients for biorthogonal functions in which t0, t3, u0
are left fixed, but t1, t2, u1 change.

It turns out that this identity also has an integral analogue. For each integer
n � 0, and partition pairs �, � of length at most n, we define a (meromorphic)
function

II
.n/
�;�

.t0; t1Wt2; t3Wt4; t5; t6; t7I t Ip; q/ WD
.pIp/n.qI q/n�.t Ip; q/n

2nnŠ

�

Z
Cn

R
�.n/
�

.: : : xi : : : I t0; t1I t Ip; q/R
�.n/
� .: : : xi : : : I t2; t3I t Ip; q/

�

Y
1�i<j�n

�.tx˙1i x˙1j Ip; q/

�.x˙1i x˙1j Ip; q/

Y
1�i�n

Q
0�r�7 �.trx

˙1
i Ip; q/

�.x˙2i Ip; q/

dxi

2�
p
�1xi

;

on the domain t2n�2t0t1t2t3t4t5t6t7 D p2q2, where the contour C n is constrained
in the usual way by the poles of the integrand.

THEOREM 9.7. If t2n�2t0t1t2t3t4t5t6t7 D p2q2 for some nonnegative inte-
ger n, then

II
.n/
�;�

.t0; t1Wt2; t3Wt4; t5; t6; t7I t Ip; q/

D�0�.t
n�1t0=t1jt

n�1t0t4; t
n�1t0t5I t Ip; q/

Y
1�j�n

Y
r;s2f0;1;4;5g

r<s

�.tn�j tr tsIp; q/

��0�.t
n�1t2=t3jt

n�1t2t6; t
n�1t2t7I t Ip; q/

Y
1�j�n

Y
r;s2f2;3;6;7g

r<s

�.tn�j tr tsIp; q/

� II
.n/
�;�

.t0=u; t1=uWut2; ut3Wt4=u; t5=u; ut6; ut7I t Ip; q/;

where u is chosen so that

u2 D

r
t0t1t4t5

t2t3t6t7
D
pqt1�n

t2t3t6t7
D
t0t1t4t5

pqt1�n
:

Proof. If, following the second proof of Theorem 9.2, we attempt to mimic
the difference operator proof of Theorem 6.1, we immediately encounter the diffi-
culty that we no longer have adjointness between two instances of D

.n/
q , but rather

between an instance of D
.n/
q and an instance of D

C.n/
q . The one exception is when



TRANSFORMATIONS OF ELLIPTIC HYPERGEOMETRIC INTEGRALS 225

tn�1t0t1t4t5 D p, in which case

D.n/q .t0; t1; t4I t; p/ and D.n/q .
p
qt2;
p
qt3;
p
qt6I t; p/

are adjoint; the resulting transformation is precisely the case u2D q of the theorem.
To extend this argument, we will thus need to extend the difference operators.

With this in mind, we define a difference operator D.n/
l;m
.u0; u1; u2I t Ip; q/ for

l; m� 0 as follows.

D
.n/
0;1.u0; u1; u2I t Ip; q/DD

.n/
q .u0; u1; u2; p=t

n�1u0u1u2I t; p/;

D
.n/
1;0.u0; u1; u2I t Ip; q/DD

.n/
p .u0; u1; u2; q=t

n�1u0u1u2I t; q/;

D
.n/

lCl 0;mCm0
.u0; u1; u2I t Ip; q/

DD
.n/

l;m
.u0; u1; u2I t Ip; q/D

.n/

l 0;m0
.S
1=2

l;m
u0; S

1=2

l;m
u1; S

1=2

l;m
u2I t Ip; q/;

where Sl;m D .p; q/l;m. Since D.n/
l;m

is a composition of p- and q-difference oper-
ators, it itself is a difference operator; that it is well-defined follows from the fact
that the two ways of computing D.n/1;1 agree.

LEMMA 9.8. Let u0, u1, u2, u3 be such that tn�1u0u1u2u3 D pq=Sl;m.
Then

D
.n/

l;m
.u0; u1; u2I t Ip; q/R

�.n/
�

.IS
1=2

l;m
u0; S

1=2

l;m
u1I t Ip; q/

D
�0

�
.tn�1u0=u1jpq=u1u2; pq=u1u3I t Ip; q/Q
1�i�n

Q
0�r<s�3 �.t

n�iurusIp; q/
R
�.n/
�

.Iu0; u1I t Ip; q/:

In particular,

D
.n/

l;m
.u0; u1; u2I t Ip; q/DD

.n/

l;m
.u0; u1; u3I t Ip; q/:

Proof. The first claim holds when .l; m/ 2 f.0; 1/; .1; 0/g; an easy induction
gives it in general.

Since D.n/
l;m
.u0; u1; u2I t Ip; q/ is a difference operator, it is uniquely deter-

mined by this action; since the given formula is symmetric between u2 and u3, the
operator itself is symmetric. �

LEMMA 9.9. The different instances of D.n/
l;m

are related by

D
.n/

l;m
.u0; u1; u2I t Ip; q/

D

Y
1�i�n
0�r�3

�.u0rx
˙1
i Ip; q/

�.urx
˙1
i Ip; q/

D
.n/

l;m
.u00; u

0
1; u
0
2I t Ip; q/

Y
1�i�n
0�r�3

�.S
1=2

l;m
urx
˙1
i Ip; q/

�.S
1=2

l;m
u0rx
˙1
i Ip; q/

:
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Proof. If u03 D u3, the result follows by a simple induction; the general case
then follows by combination of that case with the symmetry between u0, u1, u2
and u3. �

In particular, we can define the operator

D
.n/

l;m
.t Ip; q/

WD

Y
1�i�n
0�r�3

�.urx
˙1
i Ip; q/D

.n/

l;m
.u0; u1; u2I t Ip; q/

Y
1�i�n
0�r�3

1

�.S
1=2

l;m
urx
˙1
i Ip; q/

;

which is independent of u0, u1, u2.
This operator is self-adjoint with respect to the cross-terms in the II density;

that is, with respect toY
1�i<j�n

�.tx˙1i x˙1j Ip; q/

�.x˙1i x˙1j Ip; q/

Y
1�i�n

dxi

2�
p
�1xi

:

This follows from the fact thatZ
fD

.n/

l;m
.t0; t1; t2I t Ip; q/g�

.n/.t0; : : : ; t5I t Ip; q/

D

Z
gD

.n/

l;m
.t 03; t

0
4; t
0
5I t Ip; q/f�

.n/.t 00; : : : ; t
0
5I t Ip; q/;

where

.t 00; t
0
1; t
0
2; t
0
3; t
0
4; t
0
5/D .S

1=2

l;m
t0; S

1=2

l;m
t1; S

1=2

l;m
t2; S

�1=2

l;m
t3; S

�1=2

l;m
t4; S

�1=2

l;m
t5/;

which in turn follows by induction from the cases .l; m/ 2 f.0; 1/; .1; 0/g.
We also have a sort of commutation relation satisfied by D.n/

l;m
.t Ip; q/.

LEMMA 9.10. If l; m; l 0; m0 are nonnegative integers and

u0u1u2u3 D Sl;mSl 0;m0p
2q2;

then we have the following identity of difference operators.

D
.n/

l;m
.t Ip; q/

Y
1�i�n
0�r�3

�.urx
˙1
i Ip; q/D

.n/

l 0;m0
.t Ip; q/

Y
1�i�n
0�r�3

1

�.S
�1=2

l 0;m0
urx
˙1
i Ip; q/

D

Y
1�i�n
0�r�3

�.S
�1=2

l;m
urx
˙1
i Ip; q/D

.n/

l 0;m0
.t Ip; q/

�

Y
1�i�n
0�r�3

1

�..Sl;mSl 0;m0/
�1=2urx

˙1
i Ip; q/

D
.n/

l;m
.t Ip; q/:
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Proof. By comparing actions on

R
�.n/
�

..Sl;mSl 0;m0/
1=2u0; .Sl;mSl 0;m0/

1=2t0I t Ip; q/;

we find that

D
.n/

l;m
.u0; t0; t1I t Ip; q/D

.n/

l 0;m0
.S
1=2

l;m
u0; S

1=2

l;m
t0; S

�1=2

l;m
t2I t Ip; q/

DD
.n/

l 0;m0
.u0; t0; t2I t Ip; q/D

.n/

l;m
.S
1=2

l 0;m0
u0; S

1=2

l 0;m0
t0; S

�1=2

l 0;m0
t1I t Ip; q/:

Expressing this in terms of D.n/
l;m
.t Ip; q/ and simplifying give the desired result.

�

Now, consider an integral of the formZ
ŒD

.n/

l;m
.t0; t1; t4I t Ip; q/f �

� ŒD
.n/

l 0;m0
.t2; t3; t6I t Ip; q/g��

.n/.t0; t1; t2; t3; t4; t5; t6; t7I t Ip; q/;

where f 2A.n/.S
1=2

l;m
t1Ip; q/, g 2A.n/.S

1=2

l 0;m0
t3Ip; q/, and the parameters satisfy

the relations

tn�1t0t1t4t5 D pq
Sl 0;m0

Sl;m
; tn�1t2t3t6t7 D pq

Sl;m

Sl 0;m0
:

If we rewrite this integral in terms of D.n/.t Ip; q/ and �.n/.I t Ip; q/ and apply
self-adjointness of D.n/

l;m
.t Ip; q/, the resulting composition of difference operators

can be transformed by the commutation relation. The result is of the same form,
and we thus obtain the following identity.Z

.D
.n/

l;m
.t0; t1; t4I t Ip; q/f /

� .D
.n/

l 0;m0
.t2; t3; t6I t Ip; q/g/�

.n/.t0; t1; t2; t3; t4; t5; t6; t7I t Ip; q/

D

Z
.D

.n/

l 0;m0
.t 00; t

0
1; t
0
4I t Ip; q/f /

� .D
.n/

l;m
.t 02; t

0
3; t
0
6I t Ip; q/g/�

.n/.t 00; t
0
1; t
0
2; t
0
3; t
0
4; t
0
5; t
0
6; t
0
7I t Ip; q/;

where

t 0r D

(
.Sl;m=Sl 0;m0/

1=2tr r 2 f0; 1; 4; 5g

.Sl 0;m0=Sl;m/
1=2tr r 2 f2; 3; 6; 7g:

If we set

f DR
�.n/
�

.IS
1=2

l;m
t0; S

1=2

l;m
t1I t Ip; q/;

g DR
�.n/
� .IS

1=2

l 0;m0
t2; S

1=2

l 0;m0
t3I t Ip; q/;
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we obtain the special case u2 D Sl 0;m0=Sl;m of the theorem. Since this set is dense,
the theorem holds in general. �

Remark 1. Note that the above proof did not use Theorem 8.13, and is thus
independent of the results of [21]. In fact, one can use this result to prove Theorem
8.13, as follows. Connection coefficients for interpolation functions can be ob-
tained from the special case t2t7D pq (essentially Theorem 9.5), by comparing the
result to that of Theorem 9.2. One can then reverse the first proof of Theorem 9.2
to show that the functions given by the binomial formula are indeed biorthogonal;
Theorem 8.13 then follows via Theorem 9.1.

Remark 2. In the special case tn�1t0t2 D 1=Sl;m, we recover Theorem 9.6.
Also, the univariate case nD 1 is precisely the case nDmD 1 of the An transfor-
mation.

Remark 3. Similarly, using our integral operators, one can give a direct proof
for the case u2D t , which presumably only extends to an argument valid for u2 2 tZ.
This is, however, probably the simplest proof in the univariate case (since then the
integral is independent of t ).

We can simplify this transformation somewhat by adding an appropriate nor-
malization factor. Define a meromorphic function

zII
.n/

�;�.t0; t1Wt2; t3Wt4; t5; t6; t7I t Ip; q/

WDZ��II
.n/
�;�

.t1=2t0; t
1=2t1Wt

1=2t2; t
1=2t3Wt

1=2t4; t
1=2t5; t

1=2t6; t
1=2t7I t Ip; q/;

where

Z�� D

Y
0�r<s�7

�C.t tr tsI t; p; q/Z�Z�;

Z� D C0�.t
n; pq=t t1t2; pq=t t1t3I t Ip; q/

Y
4�r�7

C0�.pq=t t1tr I t Ip; q/

Z� D C0�.t
n; pq=t t0t3; pq=t t1t3I t Ip; q/

Y
4�r�7

C0�.pq=t t3tr I t Ip; q/

and the condition on the parameters is now t2nC2t0t1t2t3t4t5t6t7 D p
2q2. Here

�C.xI t; p; q/ is defined by

�C.xI t; p; q/ WD
Y

i;j;k�0

.1� t ipj qkx/.1� t iC1pjC1qkC1=x/;

so that, for instance that,

�C.txI t; p; q/D �C.xI t; p; q/�.xIp; q/:

Note that for generic p; q; t , the integer n can be deduced from the balancing con-
dition on the parameters, and thus could in principle be omitted from the notation
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for zII . Note also that it follows from the residue calculus of the appendix that zII 00
is holomorphic for each n; it may very well be holomorphic for �;�¤ 0, but this
would require a deeper understanding of the singularities of R� as a function of
the parameters.

COROLLARY 9.11. We have

zII
.n/

�;�.t0; t1Wt2; t3Wt4; t5; t6; t7I t Ip; q/

D zII
.n/

�;�.t0=u; t1=uWut2; ut3Wt4=u; t5=u; ut6; ut7I t Ip; q/;

where u is chosen so that

u2 D

r
t0t1t4t5

t2t3t6t7
D
pqt�n�1

t2t3t6t7
D

t0t1t4t5

pqt�n�1
:

Since zII is also invariant under permutations of t4, t5, t6, t7, it is in fact
invariant under an action of the Weyl group D4. Since there are three double
cosets S4nD4=S4, there is one other type of nontrivial transformation, namely:

zII
.n/

�;�.t0; t1Wt2; t3Wt4; t5; t6; t7I t Ip; q/

D zII
.n/

�;�.u=t1; u=t0Wu=t3; u=t2Wv=t4; v=t5; v=t6; v=t7I t Ip; q/;

where u2D t0t1t2t3, v2D t4t5t6t7, and tnC1uvDpq. In terms of the unnormalized
integral, this reads

II
.n/
�;�.t0; t1Wt2; t3Wt4; t5; t6; t7I t Ip; q/

D

Y
1�j�n

Y
0�r�3;4�s�7

�.tn�j tr tsIp; q/

��0�.t
n�1t0=t1jt

n�1t0t4; t
n�1t0t5; t

n�1t0t6; t
n�1t0t7I t Ip; q/

��0�.t
n�1t2=t3jt

n�1t2t4; t
n�1t2t5; t

n�1t2t6; t
n�1t2t7I t Ip; q/

� II
.n/
�;�.u=t1; u=t0Wu=t3; u=t2Wv=t4; v=t5; v=t6; v=t7I t Ip; q/:

The reason for the factors of t1=2 in the definition of zII
.n/

is that the integral
satisfies a further identity.

THEOREM 9.12. Let n�m� 0 be nonnegative integers such that `.�/; `.�/
�m, and suppose the parameters satisfy tn�mt0t2 D 1. Then

zII
.n/

�;�.t0; t1Wt2; t3Wt4; t5; t6; t7I t Ip; q/

D zII
.m/

�;�.1=t2; t1W1=t0; t3Wt4; t5; t6; t7I t Ip; q/:



230 ERIC M. RAINS

Proof. To compute the left-hand side, we must take a limit (as the condition
on the contour cannot be satisfied); what we find is that we must take residues in
n�m of the variables, effectively setting those variables to t1=2t0; : : : ; tn�m�1=2t0,
or equivalently (taking reciprocals) to tn�m�1=2t2; : : : ; t1=2t2. The result is the
desired m-dimensional instance of zII . �

Remark. Note that the requirement that `.�/; `.�/�m and n�m� 0 with
n;m 2 Z is equivalent to a requirement that both sides be well-defined.

We thus find that we have a formal symmetry under a larger group, isomorphic
to the Weyl group A1D4.

If one of the partition pairs is trivial, the effective symmetry group becomes
larger. To be precise, define

II
.n/
�
.t0; t1Wt2; t3; t4; t5; t6; t7I t Ip; q/ WD II

.n/
�;0
.t0; t1Wt2; t3Wt4; t5; t6; t7I t Ip; q/;

and similarly for zII
.n/

� . This function is now manifestly symmetric under permuta-
tions of t2 through t7; together with the symmetry of Theorem 9.7, this gives rise
to the Weyl group D6. Since S6nD6=S6 has four double cosets, we thus obtain a
further transformation.

COROLLARY 9.13. We have

II
.n/
�
.t0; t1Wt2; t3; t4; t5; t6; t7I t Ip; q/

D�0�.t
n�1t0=t1jt

n�1t0t2; : : : ; t
n�1t0t7I t Ip; q/

Y
1�i�n

Y
0�r<s�7

�.tn�i tr tsIp; q/

� II
.n/
�
.u=t1; u=t0Wu=t2; u=t3; u=t4; u=t5; u=t6; u=t7I t Ip; q/;

where u2 D
p
t0t1t2t3t4t5t6t7 D pq=t

n�1.

Remark. In the limit t6t7 D plC1qmC1, the right-hand side becomes a sum;
taking �D 0 and reparametrizing, we obtain the following integral representation
for a Warnaar-type sum:

II .n/.pq=u0; t1; t2; t3; t4; t5; t6; t7I t Ip; q/

D

Y
1�i�n

�.tn�i t; tn�iu20Ip; q/
Q
1�r<s�7 �.t

n�i tr tsIp; q/Q
1�r�7 �.t

n�iu0tr Ip; q/

�

X
��.l;m/n

��.t
n�1u20=pqjt

n; u0=t1; u0=t2; : : : ; u0=t7I t Ip; q/;

assuming t1 D plqmu0 and

t2n�2t2t3t4t5t6t7 D p
1�lq1�m:

Of course, other, less symmetric, integral representations can be obtained from
transformations of the left-hand side.
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The formal group (adding in the dimension-changing transformation) now be-
comes the Weyl group D7; it is, however, unclear what significance this has, since
we cannot in general compose such transformations. Thus rather than obtaining
the full Weyl group, we only obtain a union of two D6nD7=D6 double cosets (out
of three). This gives rise to several new dimension-altering transformations, some
of which correspond to well-defined integrals. Thus for instance, we find that

zII
.n/

� .t0; t1Wt2; t3; t4; t5; t6; t7I t Ip; q/

D zII
.nCm/

� .t0=u; t1uWt2=u; t3=u; t4=u; t5=u; t6=u; t7uI t Ip; q/;

where

u2 D
p
t0t2t3t4t5t6=t1t7 D

pqt�n�1

t1t7
D
t0t2t3t4t5t6

pqt�n�1
;

such that u2 D tm with m 2 Z, n; nCm � `.�/. (In all, there are essentially
nine distinct dimension altering transformations, coming from the twelve legal
S6nD7=S6 double cosets not in D6 (modulo inverses).)

If �D 0, the group enlarges even further; in that case, the main group is the
Weyl group E7, while the “formal” group is the Weyl group E8. Moreover, the
action of E8 comes from the usual root system, with roots of the form

.˙
1

2
;˙
1

2
;˙
1

2
;˙
1

2
;˙
1

2
;˙
1

2
;˙
1

2
;˙
1

2
/

(with an even number of � signs) and permutations of

.1; 1; 0; 0; 0; 0; 0; 0/; .1;�1; 0; 0; 0; 0; 0; 0/:

(Thus, for instance, Corollary 9.11 corresponds to the reflection in the root .1
2
; 1
2
;

�
1
2
;�1

2
; 1
2
; 1
2
;�1

2
;�1

2
/.) The subgroup E7 is then the stabilizer of the root .1

2
; 1
2
; 1
2
;

1
2
; 1
2
; 1
2
; 1
2
; 1
2
/, corresponding to

p
t0t1t2t3t4t5t6t7 D pq=tnC1. Since there are

again four double cosets S8nE7=S8, we do not obtain any new forms of the main
transformation (and similarly for the dimension-altering transformation). The var-
ious subgroups considered above are related to E8 as follows:

E7 D StabE8.
p
t0t1t2t3t4t5t6t7/

D7 D StabE8.
q
t31 t2t3t4t5t6t7=t0/

D6 D StabE8.t1=t0;
p
t0t1t2t3t4t5t6t7/

A1D4 D StabE8.
q
t31 t2t3t4t5t6t7=t0;

q
t0t1t

3
3 t4t5t6t7=t2; t1t3/

D4 D StabE8.t1=t0; t3=t2; t1t3;
p
t0t1t2t3t4t5t6t7/:
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If t D q, the integrand can be expressed as a product of two determinants,
and is itself expressible as a determinant. This gives rise to a system of three-
term quadratic recurrences, which turn out to be a form of Sakai’s elliptic Painlevé
equation [30]; this generalizes the result of [13] for the univariate case (the authors
of which also observed the existence of an E7 symmetry in that case). This also
generalizes results of [8] at the Selberg level (showing that certain Selberg-type
integrals give solutions of the ordinary Painlevé equations). Also of interest are
the cases t D q2, t D

p
q, when the integral can be expressed as a pfaffian, and

thus satisfies a system of four-term quadratic recurrences. See [19] for more details.
Finally, to obtain in the obvious way (but see [23]) a reasonable degeneration of
the integral in the limit p! 0, we would need two “upper” parameters, of order
O.p/, while the remaining parameters would have order O.1/; we would then
use the fact that �.pq=xIp; q/D �.xIp; q/�1 to move the upper parameters to
the denominator. This property is in fact not invariant under E8, or even under
the above E7; instead we obtain a different instance of E7 (as the stabilizer of
the root .0; 0; 0; 0; 0; 0; 1; 1/, assuming the upper parameters are t6 and t7) from
the E8 action, while the E7 action reduces to E6. (The one-dimensional instance
of the resulting integral identity is a trivial consequence of the hypergeometric
series representation of Rahman [17].) If we further degenerate the integral to the
multivariate Askey-Wilson case (a.k.a. the Koornwinder density), the symmetry
group reduces to D5, and the corresponding identity was proved in [20].

10. Appendix: Meromorphy of integrals

In the above work, we have made heavy use of the fact that the various contour
integrals we consider are meromorphic functions of the parameters. This does
not quite follow from the meromorphy of the integrands, as can be seen from the
following two examples:Z

jzjD1

1

1C t .zC 1=z/

dz

2�
p
�1z
D .1� 4t2/�1=2; jt j< 1=2;Z

jzjD1

e1=.z�2/
dz

2�
p
�1.z� t /

D e1=.t�2/; jt j< 1:

In both cases, the integrand is meromorphic in a neighborhood of the contour,
but there are obstructions to meromorphically continuing the integral. (The second
integrand, of course, has an essential singularity, but so do the integrands of interest
to us.) It turns out, however, that these are typical of the only two such obstructions:
an initial contour that separates branches of a component of the polar divisor of
the integrand, or such a component that leaves the domain of meromorphy.

We will prove this fact in Theorem 10.2 below, but first a lemma about mero-
morphy of residues is needed. Note that with g as described in the hypotheses of
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the lemma, the polar divisor of g is a codimension 1 analytic subvariety of D �P ,
and thus each component is either of the form D��0, or can be viewed as a family
of point sets in D parametrized by P .

LEMMA 10.1. Let D be a nonempty open subset of CP 1, and let P be an
irreducible normal holomorphic variety. Let g be a meromorphic function on D �
P , and let � be a component of the polar divisor of g which is closed in D �P .
Let P 0 be the subset of P on which the fibers of � are disjoint from the other polar
divisors of g (the complement of a codimension 1 subvariety), and define a function
f .p/ on P 0 by

f .p/D
X

d W.d;p/2�

ReszDd g.z; p/:

Then f extends uniquely to a meromorphic function on all of P .

Proof. Note that on any compact subset of P , � is bounded away from the
complement of D, and thus its fibers lie in a compact subset of D, and so are
finite in number. In particular, the above sum is thus well-defined, and gives a
holomorphic function on P 0.

Now, by Levi’s theorem, we can freely remove any codimension-2 subvariety
W of P without affecting the extension of f ; in particular, we may assume that
P is regular (since its singular locus is codimension-2 by normality). We can then
further restrict to a neighborhood of a general regular point, to reduce to the case
P � Cn an open polydisc; we can also then write g.d; p/ D g1.d; p/=g2.d; p/
for g1, g2 holomorphic. Let Z � P be the locus for which g2.d; p/ is identically
0 as a function of d ; then by multiplying g by a suitable function of p alone, we
can remove all codimension-1 components of Z, leaving a codimension-2 locus
which can be removed by another application of Levi’s theorem.

Now, consider a point p0 2 P . Reducing P as necessary, we can assume
that the fiber of � over p0 consists of a single point d0; we can then reduce D
to assure that g2.d; p0/ also vanishes only at d0. But then by the Weierstrass
preparation theorem, g2.d; p/ is the product of a monic polynomial in d with
holomorphic coefficients and a holomorphic function nowhere vanishing on D,
which can be absorbed into g1. Moreover, g2.d; p/ factors as h1.d; p/h2.d; p/
where the monic polynomial h1.d; p/ vanishes precisely along �, and the monic
polynomial h2.d; p/ is relatively prime to h1.d; p/. We can thus write

g.d; p/D
i1.d; p/

h1.d; p/
C
i2.d; p/

h2.d; p/
C i0.d; p/;

where i0 is holomorphic in d , and i1, i2 are polynomials with meromorphic coef-
ficients of degree less than deg.h1/, deg.h2/ respectively. But the above sum of
residues is then precisely the leading coefficient of i1.d; p/, and is thus meromor-
phic in a neighborhood of p0. �
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Remark. In fact, i1.d; p/�.p/ is holomorphic, where �.p/ is the resultant
of the polynomials h1.d; p/ and h2.d; p/.

Given a closed contour C in CP 1, every point not in C of course has an asso-
ciated winding number; we extend this by linearity to formal linear combinations
of contours.

THEOREM 10.2. Let D be a nonempty connected open subset of CP 1, let
C be a finite complex linear combination of contours in D, and let P be an irre-
ducible normal holomorphic variety. Let g be a function meromorphic on D �P ,
and suppose the function f is defined on an open subset U of P by

f .p/D

Z
C

g.z; p/dz:

(Thus, in particular, we assume that the polar divisor of g in D�U is disjoint from
C �U .)

Suppose that each irreducible component � of the polar divisor of g is either
of the form D ��0 or satisfies the assumptions:

1. For every point u 2 U , every point d 2D such that .d; u/ 2 � has the same
winding number with respect to C ; call this the winding number of �.

2. If .d; p/ is a limit point of � inD�P outsideD�P , then the winding number
of d with respect to C is the same as that of � itself.

Then f .p/ extends uniquely to a meromorphic function on all of P .

Proof. Again, we may as well assume that P is an open polydisc in Cn for
some n. We may then assume that the polar divisor of g contains no components
of the form D ��0, since we can in that case simply multiply g by a holomorphic
function to remove that pole.

Now, let U 0 be an open subset of P , and consider a component � of the polar
divisor of g on D �U 0. This is contained in a unique component of the full polar
divisor, with winding number w0, say; on the other hand, if U 0 is not contained in
U , � can easily intersect C or have well-defined winding number different from
the “true” winding number w0, in which case we call it “problematical”. We claim
that every point p 2 P has a neighborhood with only finitely many problematical
polar components. Indeed, by condition .2/ above, we can choose a bounded
neighborhood U 0 of p such that the problematical components of g on D �U 0 are
bounded away from the complement of D, and are thus contained in D0 �U 0 for
some compact subset of D0, in which g can support only finitely many poles.

If p is such that we can choose U 0 so that the problematical components
are disjoint from all components with a different “true” winding number (which
will hold for p away from a codimension-1 subvariety), then we can obtain a new
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contour C 0 by deforming C and adding small circles in such a way that the integralZ
C 0
g.z; p/dz

is well-defined on U 0, and such that on the intersection of two such components,
the functions agree. Indeed, we can clearly deform C in such a way that the prob-
lematical components have well-defined winding numbers with respect to the new
contour; by adding small circles around the problematical components (shrinking
U 0 as necessary to allow these circles to be fixed) we can make these winding
numbers equal to the “true” winding numbers. Any two such contours will give
the same integral, by Cauchy’s theorem, and thus these functions agree on inter-
sections.

At a general point, we can still deform C to give well-defined winding num-
bers to the problematical components, but now we have the difficulty that they
might intersect components with different winding numbers. Here, we can observe
that the above analytic continuation can be written asZ

C 0
g.z; p/dzCfinite sum of residues

where instead of adding a small circle around the problematical components, we
simply add the corresponding residue. The first term is certainly meromorphic (in
fact, holomorphic near p); that the residue terms are meromorphic (and thus that
the theorem holds) results from the lemma. �

We need only the following special case. Here

.xIp; q/1 WD
Y
0�i;j

.1�piqjx/:

COROLLARY 10.3. Let F.zI t0; : : : ; tm�1Iu0; : : : ; un�1Ip; q/ be a function
holomorphic on the domain

z; t0; : : : ; tm�1; u0; : : : ; un�1 2 C�; 0 < jpj; jqj< 1:

Then the function defined for jtr j; jur j< 1 by

G.t0; : : : ; tm�1Iu0; : : : ; un�1Ip; q/

D

Y
0�r<m;0�s<n

.trusIp; q/1

Z
jzjD1

�.zI t0; : : : ; tm�1Ip; q/
dz

2�
p
�1z

where

�.zI t0; : : : ; tm�1Ip; q/D
F.zI t0; : : : ; tm�1Ip; q/Q

0�r<m.trzIp; q/1
Q
0�r<n.ur=zIp; q/1

;
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extends uniquely to a holomorphic function on the domain

t0; : : : ; tm�1; u0; : : : ; un�1 2 C�; 0 < jpj; jqj< 1:

Away from the divisor of
Q
0�r<m;0�s<n.trusIp; q/1, this extension can be ob-

tained by replacing the unit circle by any (possibly disconnected) contour that
contains the points piqjur and excludes the points 1=piqj tr , for 0� i; j .

In particular, our multidimensional integrals can all be expressed as iterated
contour integrals of this form (in general restricted to a subvariety of parameter
space), so are meromorphic by straightforward induction. This does, however, tend
to grossly overestimate the polar divisor. This overestimation can easily occur even
in the one-dimensional case, in the presence of symmetry.

In the case of the BC1 integral, one role of the balancing condition, as we
have seen, is to make the summation limits factor into p-abelian and q-abelian
factors, which occurs because the density satisfies the relation

�.piqj z/�.z/D�.piz/�.qj z/

for i; j 2 Z. As observed by Spiridonov (personal communication), this only de-
termines the balancing condition up to a sign. However, one special case of this
relation is the identity

�.˙pi=2qj=2/�.˙p�i=2q�j=2/D�.˙pi=2q�j=2/�.˙p�i=2qj=2/;

when both sides are defined; using the fact that �.z/D�.1=z/, we conclude that

�.˙pi=2qj=2/2 D�.˙pi=2q�j=2/2

so that

�.pi=2qj=2/D˙�.pi=2q�j=2/; and �.�pi=2qj=2/D˙�.�pi=2q�j=2/:

The balancing condition for the BC1 integral then has the effect of choosing the
sign in this identity:

�.˙pi=2qj=2/D��.˙pi=2q�j=2/:

This motivates the hypotheses for the following result.

LEMMA 10.4. Let �.zIp/ be a BC1-symmetric function on C� � P , with
P an irreducible normal subvariety of ft0; t1; : : : ; td�1; p; q 2 C� W jpj; jqj < 1g.
Suppose furthermore that the following conditions are satisfied.

1. The function Y
0�r<d

.trz
˙1
Ip; q/�.zIp/

is holomorphic.
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2. At a generic point of P , the denominator has only simple zeros; it has triple
zeros only in codimension 2.

3. For any integers i; j ,

�.˙pi=2qj=2Ip/D��.˙pi=2q�j=2Ip/;

as an identity of meromorphic functions on P .

Then the function on P defined for jtr j< 1 byY
0�r<s<d

.tr tsIp; q/1

Z
jzjD1

�.z/
dz

2�
p
�1z

extends to a holomorphic function on P .

Proof. The integral extends meromorphically to this domain by Corollary
10.3; that it has at most simple poles along the subvarieties tr ts D p�iq�j , i; j � 0
follows immediately from the fact that at a generic point of such a subvariety, there
are no higher-order collisions of poles. However, these considerations still leave
open the possibility that the given function might have poles along the subvarieties
t2r D p

�iq�j , i; j � 0.
We thus need, without loss of generality, to show that the above function is

holomorphic at a generic point p0 such that t0 D˙p�l=2q�m=2, i; j � 0. Now, in
a neighborhood of such a point, the analytic continuation is given byZ

C

�.z/
dz

2�
p
�1z

;

where C D C�1 is a contour containing piqj tr for i; j � 0, 0 � r < d . Now,
let C 0 be a modified symmetric contour that still contains piqj tr for r > 0 and
piqj t0 for i � l or j � m, but excludes piqj t0 for 0 � i � l , 0 � j � m. Then
we claim that Z

C

�.z/
dz

2�
p
�1z
C

Z
C 0
�.z/

dz

2�
p
�1z

is holomorphic on a neighborhood of p0. Indeed, anywhere that two poles coalesce,
the poles have the same overall winding number with respect to the two contours.
Thus to show the first term is holomorphic, it suffices to prove that the difference
of the two terms is holomorphic. But this is just a sum of residues; it is therefore
sufficient to prove that X

0�i�l

X
0�j�m

ReszDt0piqj �.zIp/;

is holomorphic near p0, or in other words that

lim
p!p0

X
0�i�l

X
0�j�m

ReszDt0piqj �.zIp/
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is well-defined. We claim in fact that

lim
p!p0

.1�˙pl=2qm=2t0/ŒReszDt0piqj �.zIp/CReszDt0piqm�j �.zIp/�D 0;

which then makes the poles of the summands cancel pairwise, giving the desired
result. Now,

lim
p!p0

.1�˙pl=2qm=2t0/ReszDt0piqj �.zIp/

/ lim
p!p0

lim
z!t0piqj

.1�˙pl=2qm=2t0/.1� t0p
iqj =z/�.zIp/;

and this limit is well-defined, again because at most two poles coalesce at any given
point. Now, if we pull out the denominator factors .t0z˙1Ip; q/1 of �.zIp/, we
can explicitly compute their contributions to the limit, and use the fact that limits
of holomorphic functions can be exchanged to conclude that

limp!p0 limz!t0piqj .1�˙p
l=2qm=2t0/.1� t0p

iqj =z/�.zIp/

D
1
2

limp!p0.1�˙p
l=2qm=2t0/

2�.˙pi�l=2qj�m=2Ip/:

The claim follows. �

Similarly, for higher dimensional integrals, the simple inductive argument
leads to predictions of extremely high order poles along the divisors tr tsDp�lq�m,
l; m� 0. That this does not occur for our integrals follows via a similar argument
from the fact that

�.paqbz0; p
cqdz0; z3; : : : ; znIp/D��.paqdz0; pcqbz0; z3; : : : ; znIp/

for our integrands; the consequence is that when moving the contour over a given
collection of poles of the form piqj t0, 0� i � l , 0� j �m, the residues of residues
that arise all cancel pairwise. Somewhat more generally, we have the following.

LEMMA 10.5. Let �.z1; : : : ; znIp/ be a symmetric meromorphic function on
.C�/n �P , where P is an irreducible normal subvariety of the domain

ft0; t1; : : : ; td�1; u0; : : : ; ud�1; p; q 2 C� W jpj; jqj< 1g:

Suppose furthermore that the following conditions are satisfied.

1. The function Y
1�i�n

Y
0�r<d

.trzi ; ur=zi Ip; q/�.z1; : : : ; znIp/

is holomorphic.

2. At a generic point of P , the denominator has only simple zeros.
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3. For any integers a; b; c; d � 0,

�.paqbz; pcqdz; z3; : : : ; znIp/D��.paqdz; pcqbz; z3; : : : ; znIp/;

as an identity of meromorphic functions on .C�/n�1 �P .

For generic p 2 P , choose a contour Cp containing all points of the form urp
iqj

with i; j � 0, 0 � r < d , and excluding all points of the form .trp
iqj /�1 with

i; j � 0, 0� r < d . Let C 0p be a similar contour that differs from Cp by excluding
the points u0piqj with 0� i � l , 0� j �m. ThenZ
Cnp

�.zIp/
Y
1�i�n

dzi

2�
p
�1zi

�

Z
C 0np

�.zIp/
Y
1�i�n

dzi

2�
p
�1zi

D n

Z
C 0n�1p

X
0�.a;b/�.l;m/

lim
zn!paqbt0

.1�paqbt0=zn/�.zIp/
Y
1�i<n

dzi

2�
p
�1zi

:

Proof. A straightforward induction using the symmetry of the integrand tells
us thatZ

Cnp

�.zIp/
Y
1�i�n

dzi

2�
p
�1zi

�

Z
C 0np

�.zIp/
Y
1�i�n

dzi

2�
p
�1zi

D

X
1�j�n

Z
C
j�1
p �C

0n�j
p

�

X
0�.a;b/�.l;m/

lim
zn!paqbt0

.1�paqbt0=zn/�.zIp/
Y
1�i<n

dzi

2�
p
�1zi

I

indeed, the sum is simply the contributions from residues as we deform the contours
in zn, zn�1, . . . , z1. It thus suffices to show that these n terms all agree. But the
difference between the j th term and the j C 1st term is an n � 2-dimensional
integral of a sum of double residues:X
0�.a;b/;.c;d/�.l;m/

lim
zn!paqbt0

� lim
zn�1!pcqd t0

.1�paqbt0=zn/.1�p
aqd t0=zn�1/�.z1; : : : ; znIp/:

But again we can pull out the known pole factors and interchange limits of the re-
sulting holomorphic function; we conclude that the .a; b/; .c; d/ and .a; d/; .c; b/
terms cancel. �

Applying this to the type I integral gives the following result; similar results
apply to the integral operators.
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THEOREM 10.6. The functionY
0�r<s�2mC2nC3

.tr tsIp; q/1I
.m/
BCn

.t0; : : : ; t2mC2nC3Ip; q/

extends to a holomorphic function on the domain
Q
r tr D .pq/

m, jpj, jqj< 1.

Proof. Indeed, the integrand satisfies the hypotheses of the two lemmas; the
second lemma readily shows that the integral has a simple pole along each subva-
riety tr tspaqb D 1 (with residue equal to a sum of n� 1-dimensional integrals),
while an induction using the first lemma shows that the potential singularities for
t2r p

aqb D 1 are not present. �

Remark. The situation for the An integral is much more complicated, as we
must integrate against a test function in Z to allow the use of a product contour
(which is legal since an inductive argument shows the An integral to be meromor-
phic); but this extra integration, while preserving meromorphy, can easily remove
singularities.

For the type II integral, a similar argument applies to contour deformations;
the additional poles coming from the cross terms are sufficiently generic that the
multidimensional lemma still holds. There is an important difference in that we
have the additional constraint that the contour C DC�1 should contain the contours
tpiqjC , i; j � 0. Thus when deforming through the collection of points t iqjpkt0,
0� .i; j; k/� .a; b; c/, it is necessary to first deform through the points with i D 0,
then those with i D 1, and so forth; otherwise the contour constraint will be broken.
With that caveat, however, the results still apply, and we obtain the following result.

THEOREM 10.7. Let II .m/n .t0; t1; : : : ; t2mC3I t Ip; q/ be the 2mC4-parameter
analogue of the type II integral, m> 0. The functionY

0�i<n

Y
0�r<s<2m

.t i tr tsIp; q/1II
.m/
n .t0; : : : ; t2mC3I t Ip; q/

extends to a holomorphic function on the domain t2n�2
Q
r tr D .pq/

m, jt j, jpj,
jqj< 1:

Proof. At a generic point with t ipj qktr ts D 1, r < s, we can simply deform
the contour through the points tapbqctr , 0 � a � i 0 � b � j , 0 � c � k to
obtain a holomorphic integral. We thus find that the desired integral is a sum of
integrals over the new contour, with integrands given by multiple residues at a
sequence of points with aD 0, aD 1,. . . . The only such integrals that are singular
at t ipj qktr ts D 1 are those involving i C 1-tuple residues, and those have simple
poles. Since we can obtain at most n-tuple residues from an n-tuple integral, we
conclude that we have at most simple poles, and those only when i < n.
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For r D s, if we first deform through the points tapbqctr with 0 � b � j ,
0 � c � k, 0 � a < i=2, we find that the only integrals with possible singulari-
ties are those of i=2-tuple residues; these are then generically holomorphic when
t ipj qkt2r D 1 by induction. �

Remark. A similar result applies to II .n/
��

, with the caveat that the interpola-
tion functions may have poles independent of z1, . . . , zn; these poles would then
in general survive as poles of the integral.
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