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2 YAIR MINSKY

1. Introduction

This paper is the first in a three-part series addressing the question: to what
extent is a hyperbolic 3-manifold determined by its asymptotic geometry? This
question underlies the deformation theory of Kleinian groups, as pioneered by
Ahlfors and Bers in the 60’s and by Thurston and Bonahon in the 70’s and early
80’s. Their work provides us with a theory of end invariants assigned to the ends of
a hyperbolic 3-manifold, and determined by their asymptotic geometric properties.
Thurston [61] formulated this conjecture which has been a guiding question in the
field:

ENDING LAMINATION CONJECTURE. A hyperbolic 3-manifold with finitely
generated fundamental group is uniquely determined by its topological type and its
end invariants.

When the manifold has finite volume its ends are either empty or cusps, the
end invariants are empty, and the conjecture reduces to the well-known rigidity
theorems of Mostow and Prasad [52], [54]. When the manifold has infinite volume
but is “geometrically finite”, the end invariants are Riemann surfaces arising from
the action of �1.N / on the Riemann sphere, and the conjecture follows from the
work of Ahlfors-Bers [3], [8], [10] and Marden-Maskit [38], Maskit [40], Kra [36]
and others.

The remaining cases are those where the manifold has a “geometrically infi-
nite” end, for which the end invariant is a lamination. Here the discussion splits
into two, depending on whether the boundary of the compact core is compressible
or incompressible. If it is incompressible, then the work of Thurston [60] and
Bonahon [13] gives a preliminary geometric and topological description of the end,
and allows the ending laminations to be defined (see also Abikoff [1] for a survey).
If the core boundary is compressible the situation is more difficult to analyze, and
the corresponding question of tameness of the end was only recently resolved, by
Agol [2] and Calegari-Gabai [21]; see Section 2.2.

In this paper we restrict ourselves to the incompressible boundary case. This
case reduces, by restriction to boundary subgroups, to the case of (marked) Kleinian
surface groups, with which we will be concerned for the remainder of the paper.

A marked Kleinian surface group is a discrete, faithful representation

� W �1.S/! PSL2.C/

where S is a compact surface, and � sends elements representing @S to parabolic
elements. Each � determines a set of end invariants �.�/, which for each end give
us Ahlfors-Bers Teichmüller data or an ending lamination, as appropriate.
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In broadest outline, our plan for establishing the Ending Lamination Con-
jecture is to construct a “model manifold” M� , depending only on the invari-
ants �.�/, together with a bilipschitz homeomorphism f W M� ! N� (where
N� D H3=�.�1.S//). Then if �1 and �2 are two Kleinian surface groups with
the same end invariants �, we would obtain a bilipschitz homeomorphism between
N�1 and N�2 (in the right homotopy class), and an application of Sullivan’s rigidity
theorem [58] would then imply that the map can be deformed to an isometry.

In this paper we will construct the model manifold together with a map satis-
fying some Lipschitz bounds (and some additional geometric properties, including
detailed information about the thick-thin decomposition of N�). In the second
paper, with Brock and Canary [18], this map will be promoted to a bilipschitz home-
omorphism. In a third paper, the case of general finitely-generated Kleinian groups
will be treated, where the primary issue is the case of compressible-boundary com-
pact core, and the reduction involves techniques such as Canary’s branched-cover
argument.

Structure of the model. For simplicity, let us describe the model manifold M�

when S is a closed surface, and when � are invariants of a manifold N� without
parabolics, and without geometrically finite ends. (This avoids discussion of para-
bolic cusps and boundaries of the convex core.) In this case, M� is homeomorphic
to S �R, and we fix such an identification.

Within M� there is a subset U, which consists of open solid tori called “tubes”
of the form U D A�J , where A is an annulus in S and J is an interval in R. No
two components of U are homotopic.

M� comes equipped with a piecewise-Riemannian metric, with respect to
which each tube boundary @U is a Euclidean torus. The geometry of @U is
described by a coefficient we call !M .U /, which lies in the upper half-plane
H2 D fz W Im z > 0g, thought of as the Teichmüller space of the torus. U itself is
isometric to a tubular neighborhood of a hyperbolic geodesic, whose length goes
to 0 as j!M j !1.

Let UŒk� denote the union of components of U with j!M j � k, and let
M� Œk� DM� nUŒk�. Then M� Œ0� DM� nU is a union of “blocks”, which have
a finite number of possible isometry types. This describes a sort of “thick-thin”
decomposition of M� .

There is a corresponding decomposition of N�, associating a Margulis tube
T�1.
/ to each sufficiently short geodesic 
 . Let TŒk� denote the set of such Mar-
gulis tubes (if any) associated to the homotopy classes of components of UŒk�

under the homotopy equivalence between M� and N� determined by �.
Let yCN� denote the “augmented convex core” of N� (see �3.4), which in our

simplified case is equal to N� itself. Our main theorem asserts that M� can be
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mapped to bCN� by a Lipschitz map that respects the thick-thin decompositions of
both.

LIPSCHITZ MODEL THEOREM. Fix a compact oriented surface S . There
exist K; k > 0 such that, if � W �1.S/! PSL2.C/ is a Kleinian surface group with
end invariants �.�/, then there is a map

f WM�! yCN�

with the following properties:

(1) f induces � on �1, is proper, and has degree 1.

(2) f is K-Lipschitz on M� Œk�, with respect to the induced path metric.

(3) f maps UŒk� to TŒk�, and M� Œk� to N� nTŒk�.

(4) f W @M�! @ yCN� is a K-bilipschitz homeomorphism of the boundaries.

(5) For each tube U in U with j!M .U /j <1, f jU is �-Lipschitz, where � de-
pends only on K and j!M .U /j.

Remarks. The condition on the degree of f , after appropriate orientation
conventions, amounts to the fact that f maps the ends of M� to the ends of N�
in the “correct order”. In our simplified case condition (4) is vacuous, as is the
restriction j!M .U /j<1 in (5).

The extended model map. In the general case, N� may have parabolic cusps
and bCN� may not be all of N�. The statement of the Lipschitz Model Theorem is
unchanged, but the structure of M� is complicated in several ways: Some of the
tubes of U will be “parabolic”, meaning that their boundaries are annuli rather than
tori, and the coefficients !M may take on the special value i1. M� will have a
boundary, and the condition that f is proper is meant to include both senses: it is
proper as a map of topological spaces, and it takes @M� to @bCN� . The blocks of
M� Œ0� will still have a finite number of topological types, but for a finite number
of blocks adjacent to the boundary the isometry types will be unbounded, in a
controlled way.

In Section 3.4 we will describe the geometry of the exterior of the augmented
core, EN DN n yCN , in terms of a model E� that depends only on the end invari-
ants of the geometrically finite ends of N , and is a variation of Epstein-Marden’s
description of the exterior of the convex hull. M� and E� attach along their bound-
aries to yield an extended model manifold ME� .

N has a natural conformal boundary at infinity @1N , and ME� has a con-
formally equivalent boundary @1ME� . The Lipschitz Model Theorem will then
generalize to:
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EXTENDED MODEL THEOREM. The map f obtained in the Lipschitz Model
Theorem extends to a proper degree 1 map

f 0 WME�!N

which restricts to a K-bilipschitz homeomorphism from E� to EN , and extends to
a conformal map from @1ME� to @1N .

Length bounds. Note that Part (3) of the Lipschitz Model Theorem implies
that for every component of UŒk� there is in fact a corresponding Margulis tube in
TŒk�, to which it maps properly. On the other hand the bounded isometry types of
blocks (ignoring the boundary case) and the Lipschitz bound on f will imply that
there is a lower bound � > 0 on the injectivity radius of N� outside the image of
U. In other words, the structure of M� determines the pattern of short geodesics
and their Margulis tubes in N�.

The following theorem makes this connection more precise. If 
 is a homo-
topy class of curves in S , then let ��.
/ denote the complex translation length of
the corresponding conjugacy class �.
/ in �.�1.S//. Its real part `�.
/, which
we may assume positive if �.
/ is not parabolic, is the length of the geodesic
representative of this homotopy class in N�. If 
 is homotopic to the core of some
tube U in U, then we define !M .
/� !M .U /.

SHORT CURVE THEOREM. There exist N� > 0 and c > 0 depending only
on S , and for each � > 0 there exists K > 0, such that the following holds: Let
� W �1.S/! PSL2.C/ be a Kleinian surface group and 
 a simple closed curve
in S .

(1) If `�.
/ < N�, then 
 is homotopic to a core of some component U in U.

(2) (Upper length bounds) If 
 is homotopic to the core of a tube in U, then

j!M .
/j �K H) `�.
/� �:

(3) (Lower length bounds) If 
 is homotopic to the core of a tube in U, then

j��.
/j �
c

j!M .
/j

and
`�.
/�

c

j!M .
/j2
:

Part (2) of this theorem is actually a restatement of the main theorem of [48];
part (3) is the main new ingredient.

1.1. Outline of the proofs. In the following summary of the argument, we
will continue making the assumptions that S is closed and N� has no geometrically
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finite ends or cusps. This greatly simplifies the logic of the discussion, while retain-
ing all the essential elements of the proof. The reader is encouraged to continue
making this assumption on a first reading of the proof itself (for example, �3.4 can
be skipped, as can all mention of boundary blocks in ��8 and 10).

In this case, N� has two ends, which we label with C and � (see �2.2 for the
orientation conventions), and the end invariants �.�/ become two filling lamina-
tions �C and �� on S (�2.1).

Quasiconvexity and the complex of curves. The central idea is to use the ge-
ometry of the complex of curves C.S/ to obtain a priori bounds on lengths of
curves in N�. The vertices of C.S/ are the essential homotopy classes of simple
loops in S (see �4 for details), and we will study the sublevel sets

C.�; L/D fv 2 C0.S/ W `�.v/� Lg

where `�.v/ for a vertex v 2 C0.S/ denotes the length of the corresponding closed
geodesic in N�.

In [49] we showed that C.�; L/ is quasiconvex in the natural metric on C.S/.
The main tool for the proof of this is the “short curve projection” …�;L, which
maps C.S/ to C.�; L/ by constructing for any vertex v in C.S/ the set of pleated
surfaces in N with v in their pleating locus, and finding the curves of length at
most L in these surfaces. This map satisfies certain contraction properties which
make it coarsely like a projection to a convex set, and this yields the quasiconvexity
of C.�; L/.

As a metric space C.S/ is ı-hyperbolic, and the ending laminations �˙.�/
describe two points on its Gromov boundary @C.S/ (see Masur-Minsky [43], Klar-
reich [34] and �4). In fact �˙.�/ are the accumulation points of C.�; L/ on @C.S/,
and this together with quasiconvexity of C.�; L/ appears to give a coarse type of
control on C.�; L/; in particular an infinite geodesic in C.S/ joining �� to �C must
lie in a bounded neighborhood of C.�; L/. However, since C.S/ is locally infinite
this estimate is not sufficient for us.

Subsurfaces and hierarchies. In Section 6 we generalize the quasiconvexity
theorem of [49] to a relative result which incorporates the structure of subsurface
complexes in C.S/. In order to do this we recall in Sections 4 and 5 some of
the structure of the subsurface projections and hierarchies in C.S/ which were
developed in Masur-Minsky [42]. To an essential subsurface W � S we associate
a “projection”

�W WA.S/!A.W /

(where A.W / is the arc complex of W , containing and quasi-isometric to C.W /).
This, roughly speaking, is a map that associates to a curve (or arc) system in S its
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essential intersection with W . This map has properties analogous to the orthogonal
projection of H3 to a horoball; see particularly Lemma 4.1.

A hierarchy is a way of enlarging a geodesic in C.S/ to a system of geodesics
in subsurface complexes C.W / that together produces families of markings of S .
Such a hierarchy, called H� , is constructed in Section 5 so that its base geodesic g
connects �� to �C (the construction is nearly the same as in Masur-Minsky [42],
except for the need to treat infinite geodesics). The vertices which appear in H�
are all within distance 1 of g in C.S/. The structure of H� is strongly controlled
by the maps �W , as in Lemma 5.9.

Projections and length bounds. Once this structure is in place, we revisit the
map …�;L. We prove, in Theorem 6.1, that the composition �Y ı…�;L for a
subsurface Y has contraction properties generalizing those shown in [49]. We then
prove Theorem 7.1, which states in particular that

dY .v;…�;L.v//

is uniformly bounded for any subsurface Y and all vertices v appearing in H� , pro-
vided v intersects Y essentially. Here dY .x; y/ denotes distance in A.Y / between
�Y .x/ and �Y .y/.

This bound implies that v and the bounded-length curves …�;L.v/ are not too
different in some appropriate combinatorial sense, and indeed we go on to apply
this to obtain, in Lemma 7.9, an a priori upper bound on `�.v/ for all vertices v
that appear in H� . Another crucial result we prove along the way is Lemma 7.7,
which limits the ways in which pleated surfaces constructed from vertices of the
hierarchy can penetrate Margulis tubes.

Model manifold construction. At this point we are ready to build the model
manifold. In Section 8 we construct M� out of the combinatorial data in H� .
The blocks of M� Œ0� are constructed from edges of geodesics in H� associated
to one-holed torus and 4-holed sphere subsurfaces, and glued together using the
“subordinacy” relations in H� . The structure of H� is also used to embed M� Œ0� in
S �R (after which we identify it with its embedded image), and the tubes U are the
solid-torus components of S�RnM� Œ0�, and are in one-to-one correspondence with
the vertices of H� . In Section 8.3 we introduce the meridian coefficients !M .v/,
which encode for each vertex v the geometry of the associated tube boundary. The
metric of M� is described in this section too.

In Section 9 we define alternative meridian coefficients !H and !� , which
are computed, respectively, directly from the data of H� and directly from � itself.
It is useful later in the proof to compare all three of these and in Theorem 9.1 we
show that they are essentially equivalent. The proof requires a somewhat careful
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analysis of the geometry of the model, and some counting arguments using the
structure of the hierarchy.

Lipschitz bounds. In Section 10 we finally build the Lipschitz map from M�

to N�, establishing the Lipschitz Model Theorem. This is done in several steps,
starting with the “gluing boundaries” of blocks, where the a priori bound on vertex
lengths from Lemma 7.9 provides the Lipschitz control. Extension to the “middle
surfaces” of blocks (Step 2) requires another application of Thurston’s Uniform
Injectivity Theorem, via Lemma 3.1. Control of the extension to the rest of the
blocks requires a reprise of the “figure-8 argument” from [47] to bound homotopies
between Lipschitz maps of surfaces (Step 4). The map can be extended to tubes,
and the last subtle point comes in Step 7, where we need Lemma 10.1 to relate
large meridian coefficients to short curves (this is the point where we apply the
results of Section 9, as well as the main theorem of [48]).

The proof of the Short Curve Theorem, carried out in Section 11, is now a
simple consequence of the Lipschitz Model Theorem together with the properties
of Margulis tubes. Roughly speaking, an upper bound on j!M .
/j gives an upper
bound on the meridian disk of U.
/, and hence a lower bound on the length of its
geodesic core.

Preliminaries. Sections 2 through 5 provide some background and notation
before the proof itself starts in Section 6. Section 2 introduces compact cores,
ends and laminations. Section 3 introduces pleated surfaces, Margulis tubes and
collars in surfaces, and the augmented convex core. There is only a little bit of new
material here: the augmented convex core and particularly the geometric structure
of its exterior, via Lemma 3.4, and a slightly technical variation (Lemma 3.3) on
the standard collar of a short geodesic or cusp in a hyperbolic surface. Sections 4
and 5 introduce the complexes of curves and arcs, and hierarchies. Most of this
is review of material from [42], with certain generalizations to the case involving
infinite geodesics. In particular the existence of an infinite hierarchy connecting
the invariants �C and �� (and in fact any pair of generalized markings) is shown in
Lemma 5.13, and the existence of a “resolution” of a hierarchy, which is something
like a sequence of markings separated by elementary moves sweeping through all
the data in the hierarchy, is shown in Lemmas 5.7 and 5.8.

An informal but extensive summary of the argument, focusing on the case
where S is a five-holed sphere, can be found in the lecture notes [35].

Bilipschitz control of the model map. In [18] we will show that the map f W
M�! yCN can be made a bilipschitz homeomorphism, and thereby establish the
Ending Lamination Conjecture. The argument begins with a decomposition of M�

along quasi-horizontal slices into pieces of bounded size. The surface embedding
machinery of Anderson-Canary [6] is used to show that the slices in the boundaries
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of the pieces can be deformed to embeddings in a uniform way. The resulting map
preserves a certain topological partial order among these slices – this is established
using an argument by contradiction and passage to geometric limits – and this
can be used to make the map an orientation-preserving embedding on each piece
separately. Uniform bilipschitz bounds on these embeddings are obtained again by
contradiction and geometric limit, and a global bilipschitz bound follows.

We note that the structure of the model manifold provides new information
even in the geometrically finite case, for which the Ending Lamination Conjecture
itself reduces to the quasiconformal deformation theory of Ahlfors and Bers. In
particular it describes the thick-thin decomposition of the manifold, its volume and
other geometric properties explicitly in terms of the Riemann surfaces at infinity.

In the rather long period between the initial and the final versions of this
article, a number of other proofs (including the general compressible case) have
appeared, due to Bowditch [16], Rees [55] and Soma [57]. Rees’ approach works
directly in Teichmüller space without the intermediate use of complexes of curves.
Bowditch and Soma do use complexes of curves but simplify various aspects of
the proof.

Acknowledgements. The author is grateful to Howard Masur, Dick Canary and
Jeff Brock, without whose collaborations and encouragement this project would
never have been completed. He is also grateful to the referee for detailed reading
and suggestions, and for pointing out an error in the proof of Lemma 3.4, and to
the editors for their patience.

2. End invariants

Before we discuss the end invariants of a hyperbolic 3-manifold, we set some
notation which will be used throughout this paper. Let Sg;b denote an oriented,
connected and compact surface of genus g with b boundary components. Given
a surface R of this type, an essential subsurface Y � R is a compact, connected
subsurface all of whose boundary components are homotopically nontrivial, and
so that Y is not homotopic into a boundary component of R. (Unless otherwise
mentioned we assume throughout the paper that any subsurface is essential.)

Define the complexity of a surface to be

�.Sg;b/� 3gC b:

Note that for an essential subsurface Y of R, �.Y / < �.R/ unless Y is homeomor-
phic to R.

A hyperbolic structure on int.R/ will be a hyperbolic metric whose comple-
tion is a hyperbolic surface with cusps and/or geodesic boundary components, the
latter of which we may identify with components of @R. If the completion is
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compact then its boundary is identified with all of @R, and we call this a hyperbolic
structure on R.

The Teichmüller space T.R/ is the space of (marked) hyperbolic structures
on int.R/ which are complete – that is, all ends are cusps. Alternatively T.R/ is
the space of marked conformal structures for which the ends are punctures.

2.1. Geodesic laminations. We will assume that the reader is familiar with
the basics of geodesic laminations on hyperbolic surfaces; see Casson-Bleiler [25]
or the recently written Bonahon [14] for an introduction to this subject. Given a
surface R with a complete hyperbolic structure on int.R/ (in the above sense, with
all ends cusps), we will be using the following spaces:

GL.R/ is the space of geodesic laminations on R. ML.R/ is the space of
tranversely measured laminations on R with compact support (if � 2 ML.R/

its support, j�j, lies in GL.R/). GL.R/ is usually topologized using the Haus-
dorff topology on closed subsets of R, whereas ML.R/ admits a topology (due to
Thurston) coming from the weak-* topology of the measures induced on transverse
arcs.

UML.R/ is the quotient space of ML.R/ obtained by forgetting the measures
(the “unmeasured laminations”). Its topology is non-Hausdorff and it is rarely used
as an object on its own. Note that UML.R/ is set-theoretically contained in GL.R/,
but the topologies are different.

It is part of the basic structure theory of laminations that every element of
UML.R/ decomposes into a finite union of disjoint connected components, each
of which is a minimal lamination.

Let EL.R/ denote the image in UML.R/ of the filling laminations in ML.R/.
� 2ML.R/ is called filling if it has transverse intersection with any �0 2ML.S/,
unless � and �0 have the same support. An equivalent condition is that � is both
minimal and maximal as a measured lamination, and another is that the comple-
mentary components of � are ideal polygons or once-punctured ideal polygons.
(see [60]). In the topology inherited from UML.S/, EL.S/ is Hausdorff (see [34]
for a proof).

Remarks. 1. All of these spaces do not really depend on the hyperbolic struc-
ture of int.R/; that is, the spaces obtained from two different choices of structure
are canonically homeomorphic. 2. The laminations in EL.R/ are exactly those
that appear as ending laminations of Kleinian surface groups � 2 D.R/ without
accidental parabolics – this is the reason for the notation EL.

2.2. Cores and ends. Let N be an oriented complete hyperbolic 3-manifold
with finitely generated fundamental group. N may be expressed as the quotient
H3=� by a Kleinian group � Š �1.N /. Let ƒ be the limit set of � in the Riemann
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sphere bC, and let �DbC nƒ be the domain of discontinuity of � . (See e.g. [41],
[22], [7] for background.) Then

xN � .H3[�/=�

is a 3-manifold with boundary @ xN D�=� and interior N . This boundary, which
is also denoted @1N , inherits a conformal structure from �.

Let CN denote the convex core of N , which is the quotient by � of the convex
hull of ƒ in H3. CN is homeomorphic to xN by a map homotopic to the inclusion
(except when � is Fuchsian or elementary and CN has dimension 2 or less; we will
assume this is not the case). Thurston showed that @CN is a union of hyperbolic
surfaces in the induced path metric from N , and by a theorem of Sullivan, if @CN
is incompressible these metrics are within universal bilipschitz distortion from the
Poincaré metric on @ xN (see Epstein-Marden [26]). Ahlfors’ finiteness theorem [4]
states that @ xN and @CN have finite hyperbolic area.

Let Q denote the union of (open) �0-Margulis tubes of cusps of N (see �3.2.2
for a discussion of Margulis tubes), and let N0 DN nQ. By Scott’s compact core
theorem [56] there is a compact 3-manifold K �N whose inclusion is a homotopy
equivalence. The relative core theorem of McCullough [44] and Kulkarni-Shalen
[37] tells us that K can be chosen in N0 so that @K meets the boundary of each
rank-1 cusp of Q in an essential annulus, and contains the entire torus boundary
of each rank-2 cusp. Let P D @K \ @Q. Note that no two components of P can
be homotopic, since no two Margulis tubes can have homotopic core curves. The
topological ends of N0 are in one to one correspondence with the components of
N0 nK (which are neighborhoods of the ends), and hence with the components of
@K nP (see Bonahon [13]). If R is the closure of a component of @K nP , let ER
be the component of N0 nK adjacent to R. We say that the end faces R.

Geometrically finite ends. An end of N0 is geometrically finite if its asso-
ciated neighborhood ER meets CN in a bounded subset. This implies that the
boundary of ER in xN consists of R, some annuli in @Q, and a component X of @ xN
which is homotopic to R. Indeed, K may be chosen so that ER Š int.R/� .0; 1/.
The conformal structure of X gives rise to a point in T.R/, and this is the end
invariant associated to R, which we name �R.

Geometrically infinite ends. An end of N0 is geometrically infinite if its asso-
ciated ER intersects CN in an unbounded set. Ahlfors’ finiteness theorem [4] im-
plies that @CN \N0 is compact, and hence cannot separate ER into two unbounded
sets. Thus it follows that in fact that there is a (possibly smaller) neighborhood of
the end which is contained in CN .

In order to describe the end invariant for a geometrically infinite end, we must
consider the following definition from Thurston [60]:
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Definition 2.1. An end ER of N0, when R is incompressible, is called simply
degenerate if there exists a sequence of essential simple closed curves ˛i in R
whose geodesic representatives ˛�i exit the end.

Here “exiting the end” means that the geodesics are eventually contained in
ER minus any bounded subset. Note that a geometrically finite end cannot be
simply degenerate, since all closed geodesics are contained in the convex hull.

Thurston established this theorem (see also Canary [23]):

THEOREM 2.2 (Thurston [60]). Let e be an end of N0 facing R � @K, and
suppose that R is incompressible in K. If e is simply degenerate, then there exists
a unique lamination �R 2 UML.R/ such that for any sequence of simple closed
curves ˛i in R,

˛i ! �e() ˛�i exit the end e.

A sequence ˛i ! �e can be chosen so that the lengths `N .˛�i / � L0, where L0
depends only on S .

Furthermore, �e 2 EL.R/ – that is, it fills R.

Thurston also proved that an incompressible simply degenerate end is topo-
logically tame, meaning that it has a neighborhood homeomorphic to R� .0;1/,
and that manifolds obtained as limits of quasifuchsian manifolds have ends that
are geometrically finite or simply degenerate. Bonahon completed the picture, in
the incompressible boundary case, with his “tameness theorem”,

THEOREM 2.3 ([13]). Suppose that each component of @K nP is incompress-
ible in K. Then the ends of N0 are either geometrically finite or simply degenerate.

An end that is geometrically finite or simply degenerate is known as geometrically
tame.

The case of an end facing a compressible boundary component is considerably
harder to understand. Canary [23] showed that the analogue of Bonahon’s theorem
holds for such ends (with a suitably strengthened notion of simple degeneracy)
if the end is known to be topologically tame. Marden had conjectured in [39]
that all hyperbolic 3-manifolds with finitely generated fundamental groups have
topologically tame ends. When this article was originally written the question of
tameness was still open, but it has since been resolved by Agol [2] and Calegari-
Gabai [21].

Ends for Kleinian surface groups. From now on restrict to the case of a Klein-
ian surface group � W �1.S/! PSL2.C/, and let N DN� be the quotient manifold
H3=�.�1.S//. Let Q and K be defined as above.

Let Q0 � Q be the set of cusp tubes associated to the boundary of S (if
any), and let P0 be the union of annuli in @Q0\K. Then K is homeomorphic to
S � Œ�1; 1� with P0 identified with @S � Œ�1; 1�.
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0

0

0

Figure 1. A schematic of the division of N into cusps, compact
core and ends.

Divide the remaining components ofQ intoQC andQ� according to whether
they meet K on S � f1g or S � f�1g. Let P denote the union of annuli @Q\K,
divided similarly into P0; PC and P�.

The closure R of a component of @K nP then has an associated end invariant
�R as above, in either T.R/ or EL.R/. We group these according to whether they
come from the “C” or “�” side. More specifically, let pC denote the set of core
curves of PC. Let RL

C
denote the union of (closures of) components of S�f1gnPC,

for which the invariant �R is a lamination in EL.R/. Let RT
C

denote the remaining
components. Define �C as a pair .�L

C
; �T
C
/, where �L

C
2UML.S/ is the union of

pC and the laminations of components of RL
C

, and �T
C

is the set of Teichmüller
end invariants of components of RT

C
, which can be seen as an element of T.RT

C
/.

We also have to allow either �T
C

or �L
C

to be empty, in the case that there are no
lamination or Teichmüller invariants, respectively. Define �� in the analogous way.

We remark that, because distinct cusps in a hyperbolic manifold cannot have
homotopic curves, the parabolics pC and p� have no elements in common. This
implies, when pC or p� are nonempty, that �L

C
and �L� have no infinite-leaf com-

ponents in common either. In fact, this is true if pC D p� D∅ as well, as shown
by Thurston [60].

It may be helpful to discuss special cases for clarity: If � is quasifuchsian,
then p˙ are both empty (there are no parabolics aside from those associated to @S )
and RT

C
and RT� are both copies of S . Thus �˙ D .∅; �T

˙
/, where �T

˙
2 T.S/

are the classical Ahlfors-Bers parameters for �. In this case of course the Ending
Lamination Conjecture is well established, but our construction will still provide
new information about the geometry of N�.

If � has no parabolics aside from @S and no geometrically finite ends, then
�˙ D .�

L
˙
;∅/ with �L

˙
2 EL.S/. This is called the doubly degenerate case.
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In Section 7.1, we will replace �˙ with a pair of generalized markings which
will be used in the rest of the construction.

Orientation convention. In order to have a natural ordering of the ends, let us
fix an orientation convention throughout the paper. An orientation on a manifold
X will induce an orientation on @X by the convention that, if e is a baseframe for
Tp.@X/ and e0 is an inward-pointing vector in TpX , then e is positively oriented if
and only if .e; e0/ is. We orient hyperbolic space H3 so that it induces the standard
orientation on its boundary yC, and note that the induced orientation on the upper
half-plane H2 in turn induces the standard orientation on its boundary yR.

The manifold N� inherits an orientation from H3, and the compact core K
inherits one as well. We are given a fixed orientation on S , and this determines (up
to proper isotopy) an identification of K with S � Œ�1; 1� by the condition that the
induced boundary orientation on S � f�1g agrees with the given orientation on S .
Thus we know which end is up.

3. Hyperbolic constructions

3.1. Pleated surfaces. A pleated surface is a map f W int.S/!N together
with a hyperbolic structure on int.S/, written �f and called the induced metric,
and a �f -geodesic lamination � on S , so that the following holds: f is length-
preserving on paths, maps leaves of � to geodesics, and is totally geodesic on
the complement of �. Pleated surfaces were introduced by Thurston [60]. See
Canary-Epstein-Green [22] for more details. We include the case that the hyper-
bolic structure on int.S/ is incomplete and the boundary of the completed surface
is mapped geodesically. In almost every case in this paper, however, boundary
components of S are mapped to cusps, so that �f will be a complete metric with
all ends cusps, and leaves of � will go straight out this cusp in the �f metric.

As in [48] we extend the definition slightly to include noded pleated surfaces:
Suppose S 0 is an essential subsurface of S whose complement is a disjoint union
of open collar neighborhoods of simple curves �. Let Œf � be a homotopy class of
maps from S to N , such that f takes � to cusps of N . We say that g W S 0!N is
a noded pleated surface in the class Œf � if g is pleated with respect to a hyperbolic
metric on S 0 (in which the ends are cusps), and g is homotopic to the restriction
to S 0 of an element of Œf �. We say that g is “noded on �”. By convention, we
represent the “pleating locus” � of f as a lamination in GL.S/ that contains � as
components, and leaves of � that spiral onto � will be taken to leaves that go out
the corresponding cusp.

Now fixing a Kleinian surface group � W �1.S/! PSL2.C/, we have a natural
homotopy class of maps S!N� inducing � on fundamental groups. If � 2 GL.S/,
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Figure 2. A triangulation of a pair of pants and the lamination
obtained by spinning it – moving the vertices leftward along the
boundaries and taking a limit.

define
pleat�.�/

to be the set of pleated surfaces g W int.S/!N� in the homotopy class of �, which
map the leaves of � to geodesics (if some closed leaves of � correspond to parabolic
elements in �1.N�/, then we allow the surface to be noded on these curves).

When v is a pants decomposition there is only a finite number of laminations
containing the curves of v, so pleat�.v/ is finite up to isotopy equivalence (the natu-
ral equivalence of precomposition by homeomorphisms homotopic to the identity).
Each of these laminations consists of the curves of v, together with finitely many
arcs that spiral around them. We call g 2 pleat�.v/ leftward if this spiraling is to
the left for each leaf. This determines a unique isotopy equivalence class. Figure 2
shows a leftward lamination, restricted to a pair of pants, and also indicates how it
can be obtained from a triangulation by “spinning”.

In particular we find that pleat�.v/ is nonempty for any lamination v consist-
ing of simple closed curves. The same is true for any finite-leaved laminations, i.e.
one in which we also allow infinite arcs that either spiral on closed curves, or go
out the cusps of S . See [22].

Halfway surfaces. Let v and v0 be pants decompositions that agree except on
one curve: Thus v D v0 [ w and v0 D v0 [ w

0 where v0 divides S into three-
holed spheres and one component W of type �.W /D 4. Assume also that v and v0

intersect a minimal number of times inW (once ifW DS1;1 and twice ifW DS0;4).
We say that v and v0 differ by an elementary move on pants decompositions.

As in [49], define a lamination �v;v0 as follows: �v;v0 contains v0 as a sublam-
ination; in each 3-holed sphere complementary component of v0 it is the same as
the lamination in Figure 2; and in W , �v;v0 is given by the following diagram in the
R2-cover of W : The lift of @W is the lattice of small circles at integer points. W is



16 YAIR MINSKY

Figure 3. The lamination Q�v;v0 in the planar cover of W .

the quotient under the action of Z2 if W D S1;1, and under the group generated by
.2Z/2 and �I if W D S0;4. The standard generators of Z2 in the figure correspond
to the curves w and w0.

There is then a unique isotopy equivalence class gv;v0 2 pleat�.�v;v0/, which
we call the halfway surface associated to the pair .v; v0/.

Let gv 2 pleat�.v/ and gv0 2 pleat�.v0/ be leftward pleated surfaces. Figure 4
indicates the laminations �v and �v0 associated to these surfaces, restricted to W
and lifted to the planar cover as above. In the complement of W , all three lamina-
tions agree.

Consider the set of leaves labeled zl in z�v in Figure 4. These are disjoint from
the lifts of w and project to either one or two leaves l in W (depending on whether
W is a 1-holed torus or 4-holed sphere) that spiral on its boundary. The leaves l are
common to both �v and �v;v0 . Furthermore it is easy to see that any closed curve
˛ that has an essential intersection with 
w must also have an essential intersection
with l . If ˛ is contained in W this is evident from the fact that l cuts int.W / into
an annulus with core 
w ; if not then ˛ must cross @W , and we use the fact that l
spirals around every component of W . The corresponding facts hold for the leaves
zl 0 which project to l 0 in �v0 .

The following lemma, a restatement of Lemma 4.2 in [49], serves to control
the geometry of a halfway surface.

LEMMA 3.1. Let v D v0[w and v0 D v0[w0 be pants decompositions that
differ by an elementary move. Let �v, �v0 and �v;v0 be the metrics induced on
S by the pleated surfaces gv, gv0 and gv;v0 , respectively. Then for a constant C
depending only on the topology of S ,

`�v .w/� `�v;v0 .w/� `�v .w/CC;

and
`�v0 .w

0/� `�v;v0 .w
0/� `�v0 .w

0/CC:
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l̃ l̃

l̃l̃

l̃l̃

w̃

w̃

w̃′w̃′

l̃′

l̃′l̃′l̃′

l̃′l̃′

Figure 4. The laminations associated to gv and gv0 . The repre-
sentative of w lifts to a horizontal line in the left figure, and the
representative of w0 lifts to a vertical line in the right figure.

Note that `�v .w/ D `�.w/ since the curve representing w is mapped to its
geodesic representative by gv; and similarly for `�v0 .w

0/. Hence the left-hand
inequality on each line is immediate. The right-hand inequalities follow from an
application of Thurston’s Efficiency of Pleated Surfaces [62].

In [49] this result is proved and used without any assumption about the lengths
`�.v/ or `�.v0/. In this paper we will only use it in the case where these lengths
are already bounded both above and below.

3.2. Tubes and constants.

3.2.1. Hyperbolic tubes. A hyperbolic tube is the quotient of an r-neighbor-
hood of a geodesic in H3 by a translation or screw motion.

Given � 2 C with Re� > 0, and r > 0, we define T.�; r/ to be the quotient of
the open r-neighborhood of the vertical line above 0 2 C in the upper half-space
model of H3 by the loxodromic 
 W z 7! e�z. Let T.�;1/ denote the quotient of
H3[C n f0g by 
 . Any hyperbolic tube is isometric to some T.�; r/, but we note
that the imaginary part of � is, so far, only determined modulo 2� .

Marked boundaries. We discuss now how to describe the geometry of a hy-
perbolic tube T in terms of the structure of its boundary torus.

If T is an oriented Euclidean torus, a marking of it is an ordered pair .˛; ˇ/ of
homotopy classes of unoriented simple closed curves with intersection number 1.
There is a unique t > 0 and ! 2H2 such that T can be identified with C=t.ZC!Z/

by an orientation-preserving isometry, so that the images of R and !R are in the
classes ˛ and ˇ, respectively. The parameter ! describes the conformal structure
of T as a point in the Teichmüller space T.T /� H2.

The boundary torus of a hyperbolic tube T inherits a Euclidean metric and an
orientation from T (see �2.2 for orientation conventions), and it admits an almost
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uniquely defined marking: Let � denote the homotopy class of a meridian of the
torus (i.e. the boundary of an essential disk in T) and let ˛ denote a homotopy
class in @T of simple curves homotopic to the core curve of T. While � is unique,
˛ is only defined up to multiples of �. Fixing such a choice .˛; �/, we obtain
boundary parameters .!; t/ as above.

Given � 2 C we can determine a marking .˛; �/ of @T.�;1/, in a way that
relates ambiguities in the choice of ˛ to the freedom of adding 2�i to �. The
boundary at infinity @T.�;1/ is the quotient of C n f0g by z 7! e�z. Using ez as
the universal covering C! C n f0g, we obtain @T.�;1/ as the quotient C=.�ZC

2�iZ/. The line iR maps to the meridian, and we let ˛ be the image of �R.
Thus adding 2�i to � corresponds to twisting ˛ once around �. We note that the
corresponding boundary parameters for @T.�;1/ (with the standard metric and
orientation inherited from C) are ! D 2�i=� and t D j�j.

The marking .˛; �/ at @T.�;1/ determines a unique marking via orthogonal
projection, denoted also .˛; �/, on @T.�; r/, and for this marked torus we also
have boundary data, .!r ; tr/.

The next lemma allows us to recover the length-radius parameters .�; r/ from
.!r ; tr/, and indeed to construct a tube realizing any desired boundary data.

LEMMA 3.2. Given !2H2 and t>0, there is a unique pair .�; r/ with Re�>0,
r > 0 such that T.�; r/ has boundary data .!; t/ in the marking determined by �.

Proof. Let Xr be the boundary of the r-neighborhood of the vertical geodesic
over 0 2 C. This is a cone in the upper half-space, and in the induced metric is a
Euclidean cylinder with circumference 2� sinh r . We may identify the universal
cover zXr isometrically with C, with deck translation z 7! z C 2�i sinh r . Let
X1 D C n f0g with the Euclidean metric of circumference 2� , and identify the
universal cover zX1 isometrically with C, with deck translation z 7! zC 2�i .

Let …r W X1! Xr be the orthogonal projection map. It lifts to a map ˆr W
zX1! zXr which, in our coordinates, can be written

(3.1) ˆr.xC iy/D x cosh r C iy sinh r

(up to translation).
For our torus with parameters .!; t/ the meridian length is t j!j. Hence in

order to build the right hyperbolic tube we must choose r so that

(3.2) 2� sinh r D t j!j:

It remains to determine �. In zX1, we see � as the translation that, together with
the meridian 2�i , produces the quotient torus @T.�;1/, with marking. The map
ˆr takes � to a translation �0 that, together with the meridian 2�i sinh r , yields
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the marking for @T.�; r/. Our boundary parameter ! is given by the ratio

! D
2�i sinh r

�0

so that �0 D 2�i sinh r=!, and hence we can define

�Dˆ�1r

�
2�i sinh r

!

�
(3.3)

D hr

�
2�i

!

�
(3.4)

where we define

hr.z/�ˆ
�1
r .z sinh r/D Re z tanh r C i Im z:

These parameters therefore yield the desired torus. Notice that for large r , � and
2�i=! are nearly the same. �

Parabolic tubes. The parabolic transformation z 7! zC t , acting on the region
of height > 1 in the upper half-space model of H3, gives a quotient that we call a
(rank 1) parabolic tube, with boundary parameters .i1; t /. This can be obtained as
the geometric limit of hyperbolic tubes with parameters .!n; t / with Im!n!1

and Re!n bounded.

3.2.2. Margulis tubes. Let NJ for J � R denote the region in N where the
injectivity radius times 2 is in J . Thus N.0;�/ denotes the (open) �-thin part of a
hyperbolic manifold N , and NŒ�;1/ denotes the �-thick part.

By the Margulis Lemma (see Kazhdan-Margulis [33]) or Jørgensen’s inequal-
ity (see Jørgensen [32], and Hersonsky [31] or Waterman [64] for the higher-
dimensional case), there is a constant �M .n/ known as the Margulis constant for
Hn, such that every component of an �-thin part when � � �M .n/ is of a standard
shape. In particular, in dimensions 2 and 3 in the orientable case, such a component
is either an open tubular neighborhood of a simple closed geodesic, or the quotient
of an open horoball by a parabolic group of isometries of rank 1 or 2. We call these
components “�-Margulis tubes”. In dimension 3, the former type are hyperbolic
tubes as in the previous subsection, and the rank 1 parabolic (or “cusp”) tubes
were mentioned above as well. See Thurston [63] for a discussion of the thick-thin
decomposition.

If 
 is a nontrivial homotopy class of closed curves in a hyperbolic manifold
with length less than �, then it corresponds to an �-Margulis tube, which we shall
denote by T�.
/. If � is a union of several curves we let T�.�/ denote the union
of their Margulis tubes.
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The radius r.
/ of a hyperbolic �-Margulis tube depends on its complex trans-
lation length, �.
/. Brooks-Matelski [19] apply Jørgensen’s inequality to show that

(3.5) r.
/� log 1

j�.
/j
� c1

where the constant c1 depends only on �. Writing �D `Ci� , we note that when ` is
small j�j can still be large. However, an additional pigeonhole principle argument
in Meyerhoff [45] implies

(3.6) r.
/� 1
2

log 1

`.
/
� c2

where again c2 depends only on �.
We also have some definite separation between Margulis tubes for different

values of �. Given � � �M .3/ we have, for any �0 < �,

(3.7) dist.@T�.
/; @T�0.
//�
1
2

log
�

�0
� c3

(see [47] for a discussion).

Margulis constants. For the remainder of the paper we fix �0 � �M .3/.
Thurston [59] pointed out that for a �1-injective pleated surface f W S !N ,

the thick part of S maps to the thick part of N . More precisely, there is a function
�T W RC! RC, depending on S , such that

f .SŒ�;1//�NŒ�T .�/;1/:

(See also Minsky [47] for a brief discussion.) Let �1 be a fixed constant smaller
than minf1; �T .�0/g.

Bers constant. There is a constant L0, depending only on S (see Bers [11],
[12] and Buser [20]), such that any hyperbolic metric on S admits a pants decom-
position of total length at most L0. In fact we can and will choose L0 so that
such a pants decomposition includes all simple geodesics of length bounded by �0.
This L0 will also do as the constant in Theorem 2.2, since the sequence of bounded
curves there is obtained by taking shortest curves in a sequence of pleated surfaces.

We can refine this slightly as follows: There is a function L.�/ such that, if 

is a curve of � -length at least �, then there is a pants decomposition of total length
at most L.�/ which intersects 
 (equivalently, does not contain 
 as a component).
To see this, start with a pants decomposition w of length bounded by L0. If 

is a component of w consider the shortest replacement for 
 that produces an
elementary move on w. The upper bound on w and lower bound on 
 gives an
upper bound on this replacement curve.

3.2.3. Collars in surfaces. Components of the thin part in a hyperbolic sur-
face are annuli, and the radius estimate (3.5) can be made much more explicit. We
note also that as a result of this estimate there is a positive function ".L/ such
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that, if 
 is a curve in a hyperbolic surface which essentially intersects a curve t of
� -length at most L, then `� .
/ > ".L/. This will be used in Section 6.2.

It will also be convenient to fix a standard construction of a collar for each
nontrivial homotopy class of simple curves in a hyperbolic surface:

LEMMA 3.3. Fix a constant 0 < c � 1. For every hyperbolic structure � on
int.R/ and every homotopically nontrivial simple closed curve 
 in R there is an
open annulus collar.
; �/�R whose core is homotopic to 
 , so that the following
holds:

(1) If `� .
/ D 0, then collar.
; �/ is a horospherical neighborhood of the cusp
associated to 
 . Otherwise it is an open embedded tubular neighborhood of
radius w D w.`� .
// of the geodesic representative of 
 .

(2) If `� .
/ < c
2

(including the cusp case), then the length of each boundary
component of collar.
; �/ is exactly c.

(3) If ˇ and 
 are homotopically distinct, disjoint curves, then collar.
; �/ and
collar.ˇ; �/ have disjoint closures. Indeed the collars are at least d apart,
for a constant d > 0, if `� .
/� c.

Proof. This is done by a small variation of a construction of Buser [20] (in
[49] we used a slightly different variation).

Let

w0.t/D sinh�1
�

1

sinh.t=2/

�
and

wc.t/D cosh�1
�c
t

�
(the latter is defined only for t 2 .0; c�). Assuming for the moment that `� .
/ > 0,
define collari .
; �/ to be the wi .`� .
// neighborhood of the geodesic representa-
tive of 
 , where i D 0 or c. (If 
 is isotopic to a boundary component of R, we
take this neighborhood in the metric completion of int.R/, and then intersect with
int.R/.)

Buser shows that collar0.
; �/ is always an embedded open annulus, and
such collars are disjoint if nonhomotopic. On the other hand when `� .
/ < c,
collarc.
; �/ has boundaries in int.R/ of length exactly c, since the boundary
length of a collar of width w and core length ` is ` cosh.w/. We will obtain our
desired collars by interpolating between these two.

Let ı.t/D w0.t/�wc.t/. One can check that ı.t/ is a positive function for
t � c=2, and bounded away from 0 and1. Thus, for `� .
/ < c=2, collarc.
; �/
is a subannulus of collar0.
; �/, and their boundaries are separated by a definite
but bounded distance.
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Thus we define

w.t/D

(
wc.t/ t � c=2

˛w0.t/ t � c=2

where ˛ D wc.c=2/=w0.c=2/ < 1. Define collar.
; �/ to be the w.`� .
//-neigh-
borhood of the geodesic representative. This collar has all the desired properties.
In particular the definite separation in part (3) follows from the lower bound on ı
when `� .
/ < c=2, and from the fact that ˛ < 1 when `� .
/ 2 Œc=2; c�.

Collars in the cusp case are easily seen to be obtained from these in the limit
as `.
/! 0. In particular one may check that ı.t/ converges to log.2=c/ as t! 0,
and collar0 has boundary length 2 in the limit. �

Collar normalization. In the remainder of the paper we will assume that the
constant c is equal to the constant �1 < 1. Note that this means that collar.
; �/ is
contained in the component of the �1-thin part associated with 
 . If � is implicitly
understood; then we may write collar.
/. For a system � of disjoint, homotopi-
cally distinct simple closed curves we let collar.�; �/ or collar.�/ be the union of
the collars of the components.

3.3. Convention on isotopy representatives. Although we usually think of
curves and subsurfaces in terms of their isotopy classes, it will be useful for our
constructions and arguments to fix explicit representatives. Thus we will adopt
the following convention for the remainder of the paper. We fix once and for
all an oriented surface S D Sg;b . Let yS denote a separate copy of int.S/ and
fix a complete, finite-area hyperbolic metric �0 on yS . Embed S inside yS as the
complement of collar.@S; �0/.

Now if v is an essential homotopy class of simple closed curves or simple
properly embedded arcs in S , we let 
v denote its geodesic representative with
respect to �0 (occasionally we conflate v and 
v when this is convenient). If v is
a class of arcs, then 
v is an infinite geodesic whose ends exit the cusps of yS .

We let collar.v/ denote collar.v; �0/ in yS , and we assume from now on that
every open annulus is of the form collar.v/ (and every closed annulus is the clo-
sure of such a collar). Similarly every other subsurface (including S itself) is a
component of

S n collar.�/

for a system of curves � .
This has the property that if two isotopy classes of subsurfaces have disjoint

representatives then these chosen representatives are already disjoint (except for a
closed collar that may share a boundary component with an adjacent nonannular
surface).
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For a nonannular surface Y it is also true that all its intersections with any
closed geodesic are essential, since its boundary is concave.

3.4. The augmented convex core and its exterior. Let C rN be the closed
r-neighborhood of the convex core of any hyperbolic 3-manifold N , where r � 0.
Define the augmented core of N to be

yCN D C
1
N [N.0;�0�:

Assume from now on that @ xN is incompressible.
In this section we will develop a model for the exterior of the augmented core,

analogous to the description given by Epstein-Marden in [26] for the exterior of
the convex core.

First let us define a modified metric �m on the boundary at infinity, @ xN , as
follows:

Let �1 denote the Poincaré metric on @ xN . Let � denote the set of homotopy
classes of curves in @ xN whose �1-length is at most �1 (including curves homotopic
to cusps), and let collar.�; �1/ be their standard collars in @ xN . We will let �m
be conformally equivalent to �1, with d�m=d�1 a continuous function which is
equal to 1 on @ xN n collar.�; �1/, and such that each annulus of collar.�; �1/
is flat in the �m metric (a flat annulus for us is an annulus isometric to the prod-
uct of a circle with an interval). This defines �m uniquely. The flat annuli have
circumference exactly �1, by the definition of the collars.

Now let EN denote N n int. yCN /, and let xEN D EN [ @ xN be the closure of
EN in xN . Let E� denote a copy of @ xN � Œ0;1/, endowed with the metric

(3.8) e2rd�2mC dr
2

where r is a coordinate for the second factor. We can also let xE� D @ xN � Œ0;1�
where the “boundary at infinity” @1E�� @ xN �f1g is endowed with the conformal
structure of @ xN . Note that the metric �m is determined completely by the end
invariants �, justifying the notation E� and xE� .

The rest of this subsection is devoted to proving the following lemma, which
taken together with the Lipschitz Model Theorem will give us the proof of the
Extended Model Theorem (see �10).

LEMMA 3.4. When @ xN is incompressible, there is a homeomorphism

' WE�!EN

which is locally bilipschitz with constant depending only on the topological type of
@ xN . Furthermore ' extends to a homeomorphism xE� ! xEN where the map on
@1E� is given by id@ xN .
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Proof. Recall first the following facts from [26]. The function ı WN nCN !R

measuring distance from CN is a C 1 function with jrıj D 1 and so its level sets
@C rN (for r > 0) are nonsingular C 1 surfaces. Convexity gives an orthogonal
projection

…r W xN n int.C rN /! @C rN
(projection along gradient lines of ı) such that, by Theorem 2.3.1 of [26], the
restriction to @ xN is a K.r/-bilipschitz homeomorphism if @ xN is endowed with
cosh r times its Poincaré metric, and the range is given the induced Riemannian
metric from N , denoted d�2

@C rN
. If r is bounded below, then K.r/ is bounded

above. We also note that the estimates in [26] are stated for r < log 2, but the proof
applies to all r . Hence we will assume r � 1 and K.r/�K0, a universal constant.

This gives us a homeomorphism
(3.9) ˆ WN n int.C 1N /!E1 � @C

1
N � Œ1;1/

defined by ˆ.x/ D .…1.x/; ı.x//. The estimates on …1 imply that ˆ is locally
K1-bilipschitz, with K1 a universal constant, where we take the hyperbolic metric
on the domain and the metric
(3.10) e2td�2

@C1N
C dt2

on E1.
The first thing to note about our augmented core is that its boundary is a graph

over the boundary of C 1N . To see this we work in the universal cover; let Xr be
the lift to H3 of C rN , and continue to denote by …r and ı the lifts of those maps
to H3 and Xr . Let zT be a component of the preimage zN.0;�0/ of N.0;�0/ in H3.
If the stabilizer of zT is hyperbolic, then zT is an R-neighborhood (for some R) of
its geodesic axis L. Let ˇ.x/ D d.x;L/ be the distance function to L, so that
zTD ˇ�1.Œ0; R//. If zT has a parabolic stabilizer, then it has a Busemann function,
namely a function ˇ constant on concentric horospheres in zT and measuring signed
distance between them, so that zTD ˇ�1..�1; R//.

We claim now that, for any x 2 @zT outside X0,

(3.11) rı.x/ � rˇ.x/� tanh ı.x/=2:

To see this, let y D …0.x/. Then rı.x/ is the outward tangent vector to the
geodesic arc Œy; x� at x. rˇ.x/ is the outward tangent vector to a geodesic Œz; x�
at x, where z is either a point on the axis L of zT or the parabolic fixed point of zT. In
either case z is in the closure of X0 in H

3
. Let P be the plane through y orthogonal

to Œy; x�. By convexity, all of X0, and in particular z, lies on the closure of the side
of P opposite from x. The lowest possible value for rı � rˇ is therefore obtained
when z 2 @P , and for this configuration the value tanh ı.x/=2 is obtained easily
from hyperbolic trigonometry. This proves (3.11).

In particular rı � rˇ is positive, and has a positive lower bound outside X1.
Hence the gradient lines of ı can only exit zN.0;�0/, not enter it. Thus the gradient
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line meets @ zN.0;�0/ at most once. This tells us that @ yCN is a graph over @C 1N with
respect to the product structure of (3.9), and moreover that there is an upper bound
to the angle between the tangent planes of @ yCN and those of @C rN , the level sets
of ı. (This applies at smooth points of the boundary, i.e. all points except the
(transverse) intersection locus of @N.0;�0/ with @C 1N .)

From this we conclude that @ yCN is a locally uniformly Lipschitz graph with
respect to the product structure induced by ı, in the following sense: For any p 2
@ yCN there is a neighborhood W in N parametrized as U �J , where U � @C ı.p/N

and J � R, projection to J is ı and vertical lines are gradient lines for ı, such
that @ yCN \W is the graph of a K2-Lipschitz function U ! J , where K2 is a
universal constant. Note that this is true for all points of @ yCN , not just the smooth
ones, because at the corners where @N.0;�0/ meets @C 1N , both tangent planes are
controlled. Since ˆ preserves our product structures and is bilipschitz for the level
sets, it follows that F0 �ˆ.@ yCN / is also a locally uniformly Lipschitz graph with
respect to the product structure of E1, with different constant.

Now consider for s � 0 the map �s WE1!E1 given by �s.p; t/D .p; t C s/.
This map preserves length in the vertical direction and expands by es in the hori-
zontal direction, and it follows that Fs D �s.F0/ is a locally uniformly Lipschitz
with the same (actually better) constant as F0. Let yE D [s�0Fs , i.e. the region
above F0. Note that yE Dˆ.N n int. yCN //.

We may no longer have differentiability of the surfaces Fs (because the maps
…r may not be C 1), but the Lipschitz graph property implies that each Fs is rec-
tifiable. At this point it is convenient to consider a substitute for the Riemannian
product in the smooth setting: If F and G are two transverse foliations in a manifold
M and the leaves of each are endowed with intrinsic path metrics, we can consider
the product path metric which is defined by considering only paths composed of
segments that travel either along leaves of F or of G. If the metrics on F and G are
Riemannian this recovers up to uniform bilipschitz equivalence the Riemannian
product.

Now it is easy to check that the uniform Lipschitz graph property of the leaves
Ft implies that the metric on yE is (uniformly) bilipschitz equivalent to the product
path metric associated to the vertical foliation of E1 and the transverse foliation
by the Ft . This allows us to “straighten” yE: We consider the product F0 � Œ0;1/,
endow F0�f0g with the metric of F0 and each F0�ftg with that metric expanded
by et . We give each vertical line the metric dt , and endow the product with the
product path metric. Our discussion so far implies that the map from yE to F0 �
Œ0;1/ which preserves the vertical lines and takes Ft to F0 � ftg is uniformly
bilipschitz.

To complete the picture, we have to relate the metric on F0 (or equivalently
@ yCN ) to the metric �m on @ xN .



26 YAIR MINSKY

Note that F0 is uniformly bilipschitz equivalent to a conformal multiple of
@C 1N . This is because, near every point of F0, the local uniform Lipschitz graph
property gives a local bilipschitz map to a neighborhood in a level surface @C 1N �frg
in E1, and this in turn is a conformal rescaling (by er ) of @C 1N . In fact we claim
that this conformal factor is estimated by the ratio of injectivity radii injF0=inj@C1N
at the point in question. This is because, at all points of @ yCN , the injectivity radius
is bounded above and below by uniform constants (these depend on the topolog-
ical type of the surface, unlike the previous constants). The log of the injectivity
radius is itself a Lipschitz function on a hyperbolic surface, and it follows that
the conformal factor can be recovered up to bounded multiple from the injectivity
radius ratio.

Now the metric �m is a conformal rescaling of �1, which also has the property
that its injectivity radius is uniformly bounded above and below. Since …1 is a
uniformly bilipschitz map from �1 to �@C1N , it follows that �m and the metric
on F0 are uniformly bilipschitz. Thus letting E� be defined as above, its metric
is bilipschitz equivalent to the metric we’ve described for yE, and this gives the
statement of Lemma 3.4 for the interior.

For the boundary at infinity, it suffices to note that …1 extends continuously
there, so that our bilipschitz map from E�!EN extends to the desired map from
xE� to xEN . �

4. Complexes of curves and arcs

The definitions below are originally due to Harvey [29], with some modifica-
tions in [43], [42] and [49].

The case of the one-holed torus S1;1 and four-holed sphere, S0;4, are special
and will be treated below, as will the case of the annulus S0;2, which will only
occur as a subsurface of larger surfaces. We call all other cases “generic”.

If S is generic, we define C.S/ to be the simplicial complex whose vertices
are nontrivial, nonperipheral homotopy classes of simple curves, and whose k-
simplices are sets fv0; : : : ; vkg of distinct vertices with disjoint representatives.
For k � 0 let Ck.S/ denote the k-skeleton of C.S/.

We define a metric on C.S/ by making each simplex regular Euclidean with
sidelength 1, and taking the shortest-path distance. We will more often use the
shortest-path distance in the 1-skeleton, which we denote dC1.S/ – but note that
the path metrics on C.S/ and C1.S/ are quasi isometric. These conventions also
apply to the nongeneric cases below.

One-holed tori and 4-holed spheres. If S is S0;4 or S1;1, we define the ver-
tices C0.S/ as before, but let edges denote pairs fv0; v1g which have the minimal
possible geometric intersection number (2 for S0;4 and 1 for S1;1).
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In both these cases, C.S/ is isomorphic to the classical Farey graph in the
plane (see e.g. Hatcher-Thurston [30] or [46]).

Arc complexes. If Y is a nonannular surface with nonempty boundary, let us
also define the larger arc complex A.Y / whose vertices are either properly embed-
ded essential arcs in Y , up to homotopy keeping the endpoints in @Y , or essential
closed curves up to homotopy. Simplices again correspond to sets of vertices with
disjoint representatives.

Subsurface projections. Note that the vertices A0.S/ can identified with a
subset of the geodesic lamination space GL.S/ – a geodesic leaf with ends in
the cusps of a complete finite area hyperbolic structure on int.S/ determines a
homotopy class of properly embedded arcs in S . Let Y be a nonannular essential
subsurface of S . We can define a “projection”

�Y W GL.S/!A.Y /[f∅g

as follows:
If ˛ 2 GL.S/ has no essential intersections with Y (including the case that ˛

is homotopic to @Y ), then define �Y .˛/D∅. Otherwise, ˛\Y is a collection of
disjoint essential curves and/or properly embedded arcs (this follows from our use
of geodesic representatives of isotopy classes), which therefore span a simplex in
A.Y /. Let �Y .˛/ be an arbitrary choice of vertex of this simplex.

For convenience we also extend the definition of �Y to A0.Y /, where it is the
identity map.

Let us denote

dY .˛; ˇ/� dA1.Y /.�Y .˛/; �Y .ˇ//;

provided �Y .˛/ and �Y .ˇ/ are nonempty. Similarly diamY .A/ denotes

diamA1.Y /.[a2A�Y .a//;

where A� GL.S/.

Annuli. If Y is a closed annulus, let A.Y / be the complex whose vertices are
essential homotopy classes, rel endpoints, of properly embedded arcs, and whose
simplices are sets of vertices with representatives with disjoint interiors. Here it is
important that endpoints are not allowed to move in the boundary.

It is again easy to see that A.Y / is quasi-isometric to its 1-skeleton A1.Y /,
and we will mostly consider this.

Twist numbers. Fix an orientation of Y . Given vertices a; b in A.Y /, we
will define their twist number twY .a; b/, which is a sort of rough signed distance
function satisfying

(4.1) j twY .a; b/j � dA1.Y /.a; b/� j twY .a; b/jC 1:
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First, let zR� C be the strip fIm z 2 Œ0; 1�g, R its quotient by z 7! zC 1, and
identify Y with R by an orientation-preserving homeomorphism. Choosing a lift
za in zR of a representative of a, denote its endpoints as xa and yaC i .

Next define a function � 7! � 0 on R by letting � 0D � if � 2 Z and � 0D nC1=2
if � 2 .n; nC 1/ for n 2 Z. We can now define

(4.2) twY .a; b/� .yb �ya/
0
� .xb � xa/

0:

This definition does not depend on any of the choices made. An isotopy of @Y
along @R corresponds to changing the endpoints by a homeomorphism h W R! R

satisfying h.yC1/Dh.y/C1, and one can check that .h.y2/�h.y1//0D .y2�y1/0:
Interchanging boundary components (by an orientation-preserving map of Y ) is
taken care of by the identity .��/0 D�� 0, and choosing different lifts of a and b
corresponds to the identity .� C 1/0 D � 0C 1. It is also evident that twY .b; a/D
� twY .a; b/.

The twist numbers are additive under concatenation of annuli: Suppose that
Y is decomposed as a union of annuli Y1 and Y2 along their common boundary
and ˛1 and ˛2 are two arcs connecting the boundaries of Y so that ˛ij � ˛i \Yj is
an arc joining the boundaries of Yj for each i D 1; 2 and j D 1; 2. The definition
of twist numbers easily yields

(4.3) twY .˛1; ˛2/D twY1.˛11; ˛21/C twY2.˛12; ˛22/:

One can furthermore check that

j.�C �/0� � 0� �0j � 1=2

and this yields the approximate additivity property:

(4.4) j twY .a; c/� twY .a; b/� twY .b; c/j � 1

for any three a; b; c 2A.Y /.
The inequality (4.1) relating twY to dA1.Y / can be easily verified from the

definitions.
From (4.4) and (4.1) we conclude that, fixing any a 2A0.Y /, the map b 7!

twY .a; b/ induces a quasi-isometry from A.Y / to Z. We can also use twisting to
define a notion of signed length for a geodesic: If h is a directed geodesic in A1.Y /

beginning at a and terminating in b, we write

(4.5) Œh�D

(
jhj twY .a; b/� 0;

�jhj twY .a; b/ < 0:

Note that

Œ
�!
ab�D�Œ

�!
ba�
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except when twY .a; b/D 0 and dY .a; b/D 1, in which case Œ
�!
ab�D Œ

�!
ba�D 1. This

is an effect of coarseness.

Now consider an essential annulus Y � S , and let us define the subsurface
projection �Y in this case.

There is a unique cover of S corresponding to the inclusion �1.Y /��1.S/, to
which we can append a boundary using the circle at infinity of the universal cover
of S to yield a closed annulus yY (take the quotient of the compactified hyperbolic
plane minus the limit set of �1.Y /).

We define �Y W GL.S/! A. yY / [ f∅g as follows: Any lamination � that
crosses Y essentially lifts in yY to a collection of disjoint arcs, some of which
are essential. Hence we obtain a collection of vertices of A. yY / any finite subset
of which form a simplex. Let �Y .�/ denote an arbitrary choice of vertex in this
collection.

To simplify notation we often refer to A. yY / as A.˛/, where ˛ is the core curve
of Y . We also let d˛.ˇ; 
/ and dY .ˇ; 
/ denote d

A1. yY /
.�Y .˛/; �Y .ˇ//. Similarly

we denote tw yY .�Y .ˇ/; �Y .
// by tw˛.ˇ; 
/, and we also write �˛ D �Y .

Projection bounds. It is evident that the projections �W have the following
1-Lipschitz property: If u and v are vertices in A0.S/, both �W .u/ ¤ ∅ and
�W .v/¤∅, and dS .u; v/D 1, then dW .u; v/� 1 as well.

As a map from C0.S/ to A0.W /, �W has the same 1-Lipschitz property when
�.S/ > 4. If �.S/ D 4 and �.W / D 2, then the property holds with a Lipschitz
constant of 3 (in Lemma 2.3 [42] this is shown with a slight error that leads to a
constant of 2, but 3 is correct because two curves in S that intersect minimally can
give rise to two arcs in the annulus that intersect twice, and hence have distance 3.
We are grateful to Hideki Miyachi for pointing out this error).

A stronger contraction property applies to projection images of geodesics, and
plays an important role in the construction of hierarchies in [42]:

LEMMA 4.1 (Masur-Minsky [42]). If g is a (finite or infinite) geodesic in
C1.S/ such that �W .v/¤∅ for each vertex v in g, then

diamW .g/� A

where A depends only on S .

The complexes C.W / and A.W / are in fact quasi-isometric when �.W /� 4.
The inclusion � W C0.W / ! A0.W / has a quasi-inverse  W A0.W / ! C0.W /

defined as follows: On C0.W / let  be the identity. If a is a properly embedded
arc in W , then the boundary of a regular neighborhood of a[ @W contains either
one or two essential curves, and we let  .Œa�/ be one of these (chosen arbitrarily).
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In [42, Lemma 2.2] we show that  is a 2-Lipschitz map, with respect to dA1.W /

and dC1.W /.

Hyperbolicity and Klarreich’s theorem. In Masur-Minsky [43], we proved

THEOREM 4.2. C.R/ is ı-hyperbolic.

A geodesic metric space X is ı-hyperbolic if all triangles are “ı-thin”. That is, for
any geodesic triangle Œxy�[ Œyz�[ Œxy�, each side is contained in a ı-neighborhood
of the union of the other two. The notion of ı-hyperbolicity, due to Gromov [28]
and Cannon [24], encapsulates some of the coarse properties of classical hyperbolic
space as well as metric trees and a variety of Cayley graphs of groups. See also
Alonso et al. [5], Bowditch [15] and Ghys-de la Harpe [27] for more about ı-
hyperbolicity.

In particular a ı-hyperbolic space X has a well-defined boundary at infinity
@X , which is roughly the set of asymptotic classes of quasi-geodesic rays. There is
a natural topology on X �X [ @X . When X is proper (bounded sets are compact)
X is compact, but in our setting C.R/ is not locally compact, and hence @C.R/

and C.R/ are not compact. Since C.R/ and A.R/ are naturally quasi-isometric,
@C.R/ can be identified with @A.R/.

Klarreich showed in [34] that this boundary can be identified with EL.R/:

THEOREM 4.3 (Klarreich [34]). There is a homeomorphism

k W @C.R/! EL.R/;

which is natural in the sense that a sequence fˇi 2C0.R/g converges to ˇ 2 @C.R/

if and only if it converges to k.ˇ/ in UML.R/.

(Note that C0.R/ can be considered as a subset of UML.R/, and hence the
convergence ˇi ! k.ˇ/ makes sense.)

5. Hierarchies

In this section we will introduce the notion of hierarchies of tight geodesics,
and discuss their basic properties. Most of the material here comes directly from
[42], although the setting here is slightly more general in allowing infinite geodesics
in the hierarchy. Thus, although we will mostly state definitions and facts, we will
also need to indicate the changes to the arguments in [42] needed to treat the infinite
cases. In particular Lemma 5.14 is an existence result for infinite geodesics, and
Lemma 5.8 establishes a crucial property of “resolutions by slices” which was
essentially immediate in the finite case.

This chapter is technical in spite of the author’s efforts to simplify things. On
a first pass, the reader is encouraged to ignore transversals and annulus geodesics.
This makes markings into pants decompositions and avoids a number of special
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cases, for example in the definition of subordinacy. The reader is also referred to
[42] for examples and a motivating discussion.

5.1. Definitions and existence.

Generalized markings. The simplest kind of marking of a surface S is a sys-
tem of curves that makes a simplex in C.S/. In general we may want to include
twist information for each curve, and we also want to include geodesic laminations
instead of curves.

Thus we define a generalized marking of S as a lamination � 2 UML.S/

together with a (possibly empty) set of transversals T , where each element t of T
is a vertex of A.˛/ for a closed component ˛ of �. For each closed component ˛
of � there is at most one transversal. The lamination � is called base.�/, and the
sublamination of � consisting of closed curves is called simp.�/. Note that it is a
simplex of C.S/.

We further require that every nonclosed component � of base.�/ is filling in
the component R of S n collar.simp.�// that contains it; that is, � 2 EL.R/.

This is a generalization of the notion of marking used in [42], for which
base.�/D simp.�/. We will call markings with the latter property finite.

Types of markings. When � is a generalized marking let us call base.�/ max-
imal if it is not a proper subset of any element of UML.S/. Equivalently, each
complementary component Y of simp.�/ is either a 3-holed sphere or supports a
component of base.�/ which is in EL.Y /. In particular the base of a finite marking
is maximal if and only if it is a pants decomposition.

We call � itself maximal if it is not properly contained in any other marking
– equivalently, if its base is maximal, and if every component of simp.�/ has a
transversal.

It will also be important to consider clean markings: a marking � is clean if
base.�/D simp.�/, and if each transversal t for a component ˛ of base.�/ has the
form �˛.Nt /, where Nt 2 C0.S/ is disjoint from simp.�/ n f˛g, and where ˛[ Nt fill
a surface W with �.W /D 4 in which ˛ and Nt are adjacent as vertices of C1.W /.
We will sometimes refer to Nt as the transversal to ˛ in this case.

If Y � S is an essential subsurface and � is a marking in S with base.�/ 2
UML.Y /, then we call � a marking in Y . (Note that the transversals are not
required to stay in Y .) If Y is an annulus, then a marking in Y is just a simplex of
A. yY /.

We can extend the definition of the subsurface projections �W to markings
as follows: We let �W .�/ D �W .base.�// if the latter is nonempty. If W is
an annulus and its core is a component ˛ of base.�/, then we let �W .�/ be the
transversal for ˛, if one exists in �. In all other cases �W .�/D∅.
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With these definitions, if base.�/ is maximal, �W .�/ is nonempty for any
essential subsurface W with �.W /� 4, and for any three-holed sphere that is not
a complementary component of simp.�/. If � is maximal, �W .�/ is nonempty
for all essential subsurfaces W except three-holed spheres that are components of
S n simp.�/.

Tight geodesics. A pair of simplices ˛; ˇ in a C.Y / are said to fill Y if all
nontrivial nonperipheral curves in Y intersect at least one of 
˛ or 
ˇ . If Y is an
essential subsurface of S , then it also holds that any curve 
 in S which essentially
intersects a boundary component of Y must intersect one of 
˛ or 
ˇ .

Given arbitrary simplices ˛; ˇ in C.S/, there is a unique essential subsurface
F.˛; ˇ/ (up to isotopy) which they fill: Namely, form a regular neighborhood of

˛ [ 
ˇ , and and fill in all disks and one-holed disks. Note that F is connected if
and only 
˛ [ 
ˇ is connected.

For a subsurface X �Z let @Z.X/ denote the relative boundary of X in Z,
i.e. those boundary components of X that are nonperipheral in Z.

Definition 5.1. Let Y be an essential subsurface in S . If �.Y / > 4, a sequence
of simplices fvigi2I � C.Y / (where I is a finite or infinite interval in Z) is called
tight if

(1) For any vertices wi of vi and wj of vj where i ¤ j , dC1.Y /.wi ; wj /D ji �j j,

(2) Whenever fi � 1; i; i C 1g � I, vi represents the relative boundary

@YF.vi�1; viC1/:

If �.Y /D 4, then a tight sequence is just the vertex sequence of any geodesic
in C1.Y /.

If �.Y /D 2, then a tight sequence is the vertex sequence of any geodesic in
A. yY /, with the added condition that the set of endpoints on @ yY of arcs representing
the vertices equals the set of endpoints of the first and last arc.

Note that condition (1) of the definition specifies that given any choice of
components wi of vi the sequence fwig is the vertex sequence of a geodesic in
C1.Y /. It also implies that 
vi�1 and 
viC1 always have connected union.

In the annulus case, the restriction on endpoints of arcs is of little importance,
serving mainly to guarantee that between any two vertices there are only finitely
many tight sequences.

With this in mind, a tight geodesic will be a tight sequence together with some
additional data:

Definition 5.2. A tight geodesic g in C.Y / consists of a tight sequence fvigI,
and two generalized markings in Y , ID I.g/ and TD T.g/, called its initial and
terminal markings, such that:
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If i0 D inf I> �1, then vi0 is a vertex of base.I/. If i! D sup I<1, then
vi! is a vertex of base.T/.

If inf I D �1, then base.I/ is an element of EL.Y /, and limi!�1 vi D
base.I/ in C.Y /[@C.Y /, via the identification of Theorem 4.3. The corresponding
limit holds for T if sup ID1.

The length jIj 2 Œ0;1� is called the length of g, usually written jgj. We refer
to each of the vi as simplices of g (in [42] we abused notation and called them
“vertices”, and in case �.D.g//D 4 we may still do so). Y is called the domain or
support of g and we write Y DD.g/. We also say that g is supported in D.g/.

If Y is an annulus in S , then the markings I.g/ and T.g/ are just simplices
in A. yY /. We can also define the signed length Œg�, as in (4.5).

We denote the obvious linear order in g as vi < vj whenever i < j .
If vi is a simplex of g define its successor

succ.vi /D

(
viC1 vi is not the last simplex

T.g/ vi is the last simplex

and similarly define pred.vi / to be vi�1 or I.g/.

Subordinacy.

Restrictions of markings. If W is an essential subsurface in S and � is a
marking in S , then the restriction of � to W , which we write �jW , is constructed
from � in the following way: Suppose first that �.W /� 3. We let base.�jW / be the
union of components of base.�/ that meet W essentially, and let the transversals
of �jW be those transversals of � that are associated to components of base.�jW /.

If W is an annulus (�.W /D 2), then �jW is just �W .�/.
Note in particular that, if all the base components of � which meet W essen-

tially are actually contained in W , then �jW is in fact a marking in W . If W is an
annulus, then �jW is a marking in W whenever it is nonempty.

Component domains. Given a surface W with �.W /� 4 and a simplex v in
C.W / we say that Y is a component domain of .W; v/ if either Y is a component
of W n collar.v/, or Y is a component of collar.v/. Note that in the latter case Y
is nonperipheral in W .

If g is a tight geodesic with domain D.g/, then we call Y � S a component
domain of g if for some simplex vj of g, Y is a component domain of .D.g/; vj /.
We note that g and Y determine vj uniquely. In such a case, let

I.Y; g/D pred.vj /jY ;

T.Y; g/D succ.vj /jY :
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Note in particular that these are indeed markings in Y if nonempty, except when
�.Y /D 3 (in which case they are just markings in S whose bases intersect Y ).

If Y is a component domain of g and T.Y; g/ ¤ ∅, then we say that Y is
directly forward subordinate to g, or Y &d g. Similarly if I.Y; g/¤∅ we say that
Y is directly backward subordinate to g, or g .d Y . Note that both Y &d g and
g .d Y can happen simultaneously, and often do (we may write g .d Y &d g). To
clarify this idea let us enumerate the possible cases when T.Y; g/¤∅:

(1) �.Y /� 4: In this case succ.vj / must have curves that are contained in Y . If
succ.vj /D T.g/, then T.Y; g/ will contain the base components of T.g/ that
are contained in Y , together with their transversals if any.

(2) �.Y /D 3: Here we must have �.D.g//D 4, and vj cannot be the last vertex
of g. T.Y; g/ is the single vertex vjC1.

(3) �.Y /D 2: If vj is not the last simplex of g, then again we must have �.D.g//
D4, and T.Y; g/D�Y .vjC1/. If vj is the last simplex, then T.g/must contain
a transversal for the core curve of Y . This transversal becomes T.Y; g/.

We can now define subordinacy for geodesics:

Definition 5.3. If k and g are tight geodesics, we say that k is directly forward
subordinate to g, or k&d g, providedD.k/&d g and T.k/DT.D.k/; g/. Similarly
we define g .d k to mean g .d D.k/ and I.k/D I.D.k/; g/.

We denote by forward-subordinate, or &, the transitive closure of &d , and
similarly for .. We let h &D k denote the condition that h D k or h & k, and
similarly for k .D h. We include the notation Y & f where Y is a subsurface to
mean Y &d f 0 for some f 0 such that f 0 &D f , and similarly define b . Y .

For motivating examples of this structure in genus 1 and 2, see Section 1.5 of
[42].

Definition of hierarchies.

Definition 5.4. A hierarchy of geodesics is a collection H of tight geodesics
in S with the following properties:

(1) There is a distinguished main geodesic gH with domain D.gH / D S . The
initial and terminal markings of gH are denoted also I.H/;T.H/.

(2) Suppose b; f 2H , and Y �S is a subsurface with �.Y /¤ 3, such that b.d Y

and Y &d f . Then H contains a unique tight geodesic k such that D.k/D Y ,
b .d k and k &d f .

(3) For every geodesic k in H other than gH , there are b; f 2H (not necessarily
distinct) such that b .d k &d f .
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Remark. The notation here differs from that in [42] only in the case of �.Y /
D 3. Here we allow T.Y; g/ and I.Y; g/ to be nonempty, and hence Y &d f and
b .d Y can occur, but we still explicitly disallow Y to be a domain of a geodesic
in a hierarchy.

We will now investigate the structure of hierarchies, leaving the question of
their existence until Section 5.5.

5.2. The descent theorem.

Footprints. If h is a tight geodesic in D.h/ and Y is an essential subsurface
of S , we let the footprint of Y on h, denoted �h.Y /, be the set of simplices of h
that have no essential intersection with Y . If Y � D.h/, the triangle inequality
implies that diamC1.D.h//.�h.Y //� 2. The condition of tightness implies that, if
u; v;w are successive simplices of h and u;w 2 �h.Y /, then v 2 �h.Y / as well.
We remark that this is the only place where the tightness assumption is used.

Thus �h.Y /, if nonempty, is a subinterval of 1, 2 or 3 successive simplices
in h. Let min�h.Y / and max�h.Y / denote the first and last of these. Suppose Y
is a component domain of .D.h/; v/ for a simplex v of h. By definition, if Y &d h,
then v Dmax�h.Y /, and similarly if h.d Y , then v Dmin�h.Y /. An inductive
argument then yields

LEMMA 5.5. If Y & f & h, then

max�h.Y /Dmax�h.D.f //:

Similarly, if h. f . Y , then

min�h.Y /Dmin�h.D.f //:

This is used in [42] to control the structure of the “forward and backward
sequences” of a geodesic in a hierarchy. That is, if k 2H , then by definition there
exists f 2H such that k &d f . It can be shown that this f is unique, so that there
is a unique sequence k &d f0 &

d f1 &
d � � �&d gH , and similarly in the backward

direction. The structure of these sequences is crucial to understanding and using
hierarchies.

In particular it follows from Lemma 5.5 that if k & f , then D.k/ intersects
T.f / nontrivially. This condition can in fact capture all geodesics to which k is
forward-subordinate. Let us define, for any essential subsurface Y of S ,

(5.1) †CH .Y /D ff 2H W Y �D.f / and T.f /jY ¤∅g

and similarly

(5.2) †�H .Y /D fb 2H W Y �D.f / and I.b/jY ¤∅g:
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(We write†˙ whenH is understood.) Theorem 4.7 of [42] is a central result in that
paper, and describes the structure of †˙.Y /. We present here a slight extension of
that theorem which expands a little on the case of three-holed spheres.

THEOREM 5.6. Let H be a hierarchy in S , and Y any essential subsurface
of S .

(1) If †CH .Y / is nonempty, then it has the form ff0; : : : ; fng where n� 0 and

f0 &
d
� � �&

d fn D gH :

Similarly, if †�H .Y / is nonempty then it has the form fb0; : : : ; bmg with m� 0,
where

gH D bm .
d
� � �.

d b0:

(2) If †˙.Y / are both nonempty and �.Y /¤ 3, then b0 D f0, and Y intersects
every simplex of f0 nontrivially.

(3) If Y is a component domain in any geodesic k 2H , then

f 2†C.Y / () Y & f;

and similarly,
b 2†�.Y / () b . Y:

If , furthermore, †˙.Y / are both nonempty and �.Y /¤ 3, then in fact Y is
the support of b0 D f0.

(4) Geodesics in H are determined by their supports. That is, if D.h/DD.h0/
for h; h0 2H , then hD h0.

Proof. This theorem is taken verbatim from [42], except that part (3) is stated
there only for �.Y /¤ 3. When �.Y /D 3, the definition in this paper of the relations
Y &d h and h.d Y is slightly different from the definition in [42] (see �5.1), and one
can easily check that with this definition the proof in fact goes through verbatim
in all cases (the relevant argument is to be found in Lemma 4.21 of [42]). �

Completeness. A hierarchy H is k-complete if every component domain W
in H with �.W /¤ 3 and �.W / � k is the domain of some geodesic in H . H is
complete if it is 2-complete.

If I.H/ and T.H/ are maximal markings, then I.H/jW and T.H/jW are
nonempty for every W such that �.W /¤ 3. Theorem 5.6 part (3) then implies that
H is complete.

If I.H/ and T.H/ only have maximal bases, then I.H/jW is nonempty when-
ever �.W / ¤ 3, except when W D collar.v/ for a vertex v 2 base.I.H// which
has no transversal; and similarly for T.H/jW . It follows that H is 4-complete.
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Slices and resolutions. A slice of a hierarchy H is a set � of pairs .h; v/,
where h 2H and v is a simplex of h, satisfying the following properties:

S1: A geodesic h appears in at most one pair in � .

S2: There is a distinguished pair .h� ; v� / in � , called the bottom pair of � . We
call h� the bottom geodesic.

S3: For every .k; w/ 2 � other than the bottom pair, D.k/ is a component domain
of .D.h/; v/ for some .h; v/ 2 � .

To a slice � is associated a marking, �� , whose base is the union fv W .h; v/ 2
�; �.D.h// � 4g. The transversal curves are the vertices v for .h; v/ 2 � with
�.D.h//D 2. We say that � is saturated if it satisfies

S4: Given .h; v/2 � , if k 2H hasD.k/ equal to a component domain of .D.h/; v/,
then there is a pair .k; w/ 2 � .

We say that � is full if a stronger condition holds:

S40: Given .h; v/2 � , if Y is a component domain of .D.h/; v/ and �.Y /¤ 3, then
there is a pair .k; w/ 2 � with D.k/D Y .

(This terminology differs slightly from [42], but has the same content. Also, the
� ¤ 3 condition was mistakenly left out of the condition corresponding to (S40) in
[42].)

A full slice whose bottom geodesic is equal to the main geodesic gH will be
called maximal. Note that if � is maximal, then �� is a maximal finite marking,
and in particular base.�� / is a pants decomposition.

If H is complete, then every saturated slice is full.

Elementary moves on slices. We now define a forward elementary move on a
saturated slice � . Say that a pair .h; v/ in � is forward movable if:

M1: v is not the last simplex of h. Let v0 D succ.v/.

M2: For every .k; w/2 � withD.k/�D.h/ and v0jD.k/¤∅, w is the last simplex
of k.

When this occurs we can obtain a slice � 0 from � by replacing .h; v/ with .h; v0/,
erasing all the pairs .k; w/ that appear in condition (M2), and inductively replac-
ing them (starting with component domains of .D.h/; v0/) so that the final � 0 is
saturated and satisfies

M20: For every .k0; w0/ 2 � 0 with D.k0/ �D.h/ and vjD.k0/ ¤ ∅, w0 is the first
simplex of k.

It is easy to see that � 0 exists and is uniquely determined by this rule. We write
� ! � 0, and say that the move advances .h; v/ to .h; v0/.
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The definition can also be reversed: A pair .h; v0/ in � 0 is backward movable
if it satisfies

M10: v0 is not the first simplex of h

and the condition (M20), with v � pred.v0/. We can then construct � by erasing
pairs appearing in (M20) and replacing them with pairs so that (M2) is satisfied.

These definitions come from [42], where we consider elementary moves only
for maximal slices, but the definitions make sense in general.

Let V.H/ denote the set of saturated slices of H whose bottom geodesic is
gH . We remark that V.H/ is nonempty, since starting with any simplex of gH
we can successively add pairs in component domains to obtain a saturated slice.
Note that if H is complete, then V.H/ is just the set of maximal slices. If H is
4-complete, then every slice � 2 V.H/ has base.�� / a pants decomposition (but
�� may be missing transversals).

For a complete finite hierarchy, we show in [42] the existence of a resolution,
which is a sequence f�igNiD0 in V.H/, such that �i ! �iC1 , �0 is the initial slice
of H , and �N is the terminal slice. (The initial slice is the unique slice � 2 V.H/
such that for every pair .h; v/ 2 � , v is the first simplex of h. The terminal slice is
defined similarly.) To do this, we show that for each � 2 V.H/ there is at least one
elementary move � ! � 0, unless � is the terminal slice. Beginning with the initial
slice we successively apply elementary moves until we obtain the terminal slice.
There is a certain partial order �s on V.H/ such that � �s � 0 whenever � ! � 0,
and hence no � can appear twice, and the process terminates by finiteness.

We wish to extend this idea to hierarchies that contain infinite geodesics, and
we also want to consider the case that I.H/ and T.H/ may not be maximal.

In this setting we can consider sequences f�igi2I in V.H/ where I � Z is
a possibly infinite interval. For every slice � 2 V.H/, if it is not terminal we
will be able to find at least one move � ! � 0 and if it is not initial, at least one
� 00! � . Thus we can begin with any slice in V.H/ and apply moves in both the
forward and backward direction. There is only one pitfall: when there is an infinite
geodesic whose support is a proper subsurface, we must avoid making infinitely
many moves within that subsurface while the complement gets “stuck”. Therefore
we would like to consider sequences with the following property:

R: If .h; v/ is forward movable in �i , then there exists some j � i such that the
move �j ! �jC1 advances the pair .h; v/. Similarly if .h; v/ is backward
movable, then there exists j � i such that the move �j�1! �j advances from
.h; pred.v// to .h; v/.

We call an elementary move sequence f�ig satisfying this condition a resolution.
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LEMMA 5.7. For any hierarchy H and any slice �0 2 V.H/, there is a reso-
lution of H containing �0.

Proof. Fix �0 in V.H/. We define the rest of the resolution sequence induc-
tively.

Suppose �j has been defined for 0� j � i . If .h; v/ 2 �i is forward movable
we have seen that there exists a move �i ! � 0 that advances .h; v/. If .k; w/ 2 � is
also forward movable, we claim that .k; w/ is still in � 0 and still forward movable.
D.k/ and D.h/ are either disjoint or contained one in the other, since they are
both in the same slice. If they are disjoint, then the claim is evident. Suppose
D.k/�D.h/. Since .k; w/ is forward movable, w is not the last simplex of k, so
since .h; v/ is forward movable and hence satisfies condition (M2), we must have
succ.v/jD.k/ D∅. Hence .k; w/ remains in � 0, and so does any pair with domain
in D.k/. It follows that .k; w/ is forward movable in � 0. Finally if D.h/�D.k/,
the same argument tells us that succ.w/jD.h/ D ∅. Since only domains in D.h/
are changed by the move, it follows that .k; w/ 2 � 0 and is still forward movable.
Thus the claim is established.

We can therefore assemble a finite list of all forward movable pairs in �i , and
advance them one after the other (in any order). This yields a sequence �i !
�iC1 ! � � � ! �i 0 , such that no pair that was movable in �i remains in �i 0 . We
continue inductively, stopping only if we reach a slice with no movable pairs. The
resulting sequence �0! �1! � � � satisfies the forward half of condition (R). The
same argument works in the backward direction, yielding the backward half of
condition (R) for � � � ! ��2! ��1! �0. We also need to check that the forward
half of (R) works for the negative-index �i , and vice versa, but for this it suffices
to note that a forward movable pair remains forward movable until it is advanced,
and hence will eventually be taken care of on the positive side. �

The basic important property of the resolution is that it sweeps through all
parts of the hierarchy, in a monotonic way:

LEMMA 5.8. Let H be a hierarchy and f�igi2I a resolution. For any pair
.h; v/ with h 2H and v a simplex of h, there is a slice �i containing .h; v/.

Furthermore, if v is not the last simplex of h, then there is exactly one elemen-
tary move �i ! �iC1 which advances .h; v/.

Proof. Let us first prove the following property of a resolution:

G: If .k; w/ 2 �i , then there exists a finite interval �j : : : �k in which all pairs
f.k; w0/ W w0 a simplex of kg are obtained.

If .k; w/ is already forward movable, then condition (R) yields j � i such that �j
contains .k; succ.w//. Similarly if .k; w/ is backward movable, then condition (R)
yields j � i such that �j contains .k; pred.w//.
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Let us prove property (G) by induction on �.D.k//. If �.D.k// is minimal
among all f�.D.g// W g 2H g, then .k; w/ is automatically forward movable when-
ever w is not the last simplex, and backward movable whenever w is not the first
simplex (because conditions (M2) and (M20) hold vacuously). Thus we can use
condition (R) as in the previous paragraph to obtain all simplices of k in finitely
many steps.

Now in general, suppose w is not the last simplex of k, but that .k; w/ is not
movable. Let w0D succ.w/. Then (M2) is violated so there is some .p; u/2 �i with
D.p/�D.k/, w0jD.p/¤∅, and u not the last simplex of p. For each such p, since
�k.D.p// contains w (by definition of a slice), but not w0 (since w0jD.p/ ¤ ∅),
we must have T.k/jD.p/ ¤ ∅. Thus k 2 †C.D.p//, and applying Theorem 5.6
we have p & k. It follows that p is not infinite in the forward direction, for if it
were, T.p/ would be a lamination in EL.D.p// and then, inductively, for each f
such that p & f we would have max�f .D.p// equal to the last vertex of f – and
this contradicts the fact that w0 … �k.D.p//.

Thus, by the inductive hypothesis we can advance such a p in finitely many
moves to its last simplex. Apply this first to a p with D.p/ a component domain
of .D.k/; w/, reaching a slice �i 0 (i 0 � i ) containing .p; u0/ with u0 the last vertex
of p. Now for all j � i 0, as long as .k; w/ has not been advanced to .k; w0/,
the pair .p; u0/ must still be in �j . This is because no other move can affect p:
since D.p/ is a component domain of .D.k/; w/, there is no intervening k0 in the
slice with D.p/�D.k0/� d.k/. Thus we can apply the same argument to other
component domains of .D.k/; w/ (if any) without removing .p; u0/. Once these
component domains have had their pairs advanced to satisfy (M1), we repeat the
argument successively in their component domains. In finitely many moves we
will therefore reach a point where .k; w/ is forward movable, and we can apply
(R). The same argument applies in the backward direction. Repeating this, we can
obtain all the simplices of k, which establishes (G).

Now let .h; v/ be any pair, and let � be any maximal slice (say, � D �0). We
claim that there is a unique pair .k; w/ 2 � such that D.h/�D.k/ and �k.D.h//
does not contain w. We find this pair by induction: let .g; u/ 2 � be a pair with
D.h/ � D.g/ (the bottom pair has this property). If u … �g.D.h//, then .g; u/
satisfies our conditions, and no other pairs in � with domain in D.g/ can contain
D.h/. (Note, this case includes h D g, in which case �g.D.h// D ∅.) If u 2
�g.D.h//, then let W be the component domain of .D.h/; u/ containing D.h/.
Since I.H/jD.h/ and T.H/jD.h/ are nonempty (by Theorem 5.6), so are I.H/jW
and T.H/jW , and again by Theorem 5.6 W must be the support of some geodesic
g0 2H . (A special case is when D.h/ is an annulus with core a component of u,
and then g0D h.) Since � is saturated, there is a pair .g0; u0/ 2 � . We can repeat the
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argument with .g0; u0/. Thus starting with the bottom pair .gH ; u/ of � we arrive
at the unique .k; w/ as claimed.

If hD k, then we can apply (G) to advance � by forward or backward elemen-
tary moves to a slice containing .h; v/, and we are done.

Suppose now that D.h/ is properly contained in D.k/. Now since w …
�k.D.h//, either �k.D.h// D ∅, or (without loss of generality) assume w <

min�k.D.h//. In either case,D.h/ intersects the first vertex of k so k 2†�.D.h//
and hence k . h by Theorem 5.6. This in turn rules out the possibility that
�k.D.h//D∅. Now again using property (G), we can advance � by elementary
moves until we obtain a slice � 0 containing .k; x/, where x Dmin�k.D.h//. The
claim above implies that there is a new pair .k0; w0/ in � 0, with D.h/�D.k0/�
D.k/, and w0 … �k0.D.h//. We can therefore repeat the argument with .k0; w0/
replacing .k; w/. Since �.D.k0// < �.D.k//, the process must terminate in a finite
number of steps.

This proves the first statement of the lemma, that every pair .h; v/ is obtained.
Now consider a transition .h; v/ to .h; v0/ where v0D succ.v/. In [42] we introduce
a strict partial order �s on V.H/ (this is done there for a complete hierarchy, but
the proof carries through in our setting as well), which has the following properties:
First, if � �s � 0 and .h; u/2 � , .h; v/2 � 0, then u precedes v in h. Second, if �! � 0

is an elementary move, then � �s � 0.
Now if the transition .h; v/ to .h; v0/ occurs twice, then in particular there are

i < j < k such that .h; v/ 2 �i , .h; v0/ 2 �j , and then again .h; v/ 2 �k . But this is
a contradiction to the two properties of �s . �

5.3. Projections and lengths. Lemma 6.2 of Masur-Minsky [42] states the
following, for any hierarchy H .

LEMMA 5.9. If Y is any essential subsurface in S and

dY .I.H/;T.H// >M2;

then Y is the support of a geodesic h in H .
Conversely if h 2H is any geodesic with Y DD.h/,

jjhj � dY .I.H/;T.H//j � 2M1:

The constants M1 and M2 depend only on S .

The proof of this lemma goes through in the infinite setting as well. The
implications of the lemma are that it is possible to detect, just from the initial and
terminal marking, which subsurfaces in S participate “strongly” in the hierarchy,
and how long their supported geodesics are. In fact a slightly more refined fact is
shown (in the course of the proof of this lemma):
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Figure 5. A twist move in S0;5.
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Figure 6. A flip move in S0;5.

LEMMA 5.10. IF h 2H is any geodesic with Y DD.h/, then

dY .I.h/; I.H//�M1;

dY .T.h/;T.H//�M1:

Thus the endpoints of the geodesics are determined up to bounded error, also. This
implies, for annulus geodesics, a statement for signed lengths (see (4.5)):

LEMMA 5.11. If Y is an annulus supporting a geodesic h in H , then

j twY .I.H/;T.H//� Œh�j �M3

where the constant M3 depends only on S .

5.4. Elementary moves on clean markings. Let � be a maximal clean mark-
ing, which we recall is determined by a pants decomposition .ui / and a curve Nti for
each ui which intersects ui in a standard way and meets none of the other uj . A
twist move on � changes one Nti by a Dehn twist, or half-twist, around ui , preserving
all the other curves.

A flip move interchanges a pair ui and Nti , and adjusts the remaining Ntj by a
surgery so that they are disjoint from Nti . Figures 5 and 6 illustrate these moves in
S0;5. For more details see [42].

Any two markings are related by a sequence of elementary moves, and we let
del.�; �

0/ be the length of the shortest such sequence.
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In [42] we give ways of estimating del.�; �
0/ using hierarchies and subsurface

projections. First let us introduce some notation. The relation

x .a;b y

will denote x � ayC b, and x . y denotes the same where a; b are understood as
independent of the situation. Similarly let

x �a;b y

denote x .a;b y and y .a;b x. Let

ffxggK D

(
x if x �K

0 if x < K

be the “threshold function”.

Now, every maximal slice � of a hierarchy has an associated maximal marking
�� . �� may not be clean, but there is always a clean marking �0 with the same
base and satisfying the property that for any u in base.�/ with transversal t , u
has a transversal t 0 in �0 such that dui .ti ; t

0
i / � 2. We say that �0 is compatible

with � . An elementary move �1! �2 on maximal slices yields a bounded number
of elementary moves on compatible clean markings (roughly, a move advancing a
pair .h; v/ gives rise to twist moves if �.D.h//D 2, a flip move if �.D.h//D 4,
and nothing at all if �.D.h// > 4).

Given two maximal clean markings �; � there exists (by Theorem 4.6 of [42])
a complete hierarchyH with I.H/D� and T.H/D �. The length of any resolution
of H is equal to the sum of lengths

jH j �
X
h2H

jhj;

and hence, by considering the sequence of compatible clean markings, we obtain
an upper bound for del.�; �/. In fact in Theorem 6.10 of [42] we show that

(5.3) del.�; �/�a;b jH j

for a; b depending only on S .
Using the ideas of Lemma 5.9 we further deduce in [42] that jH j can be

estimated in terms of the set of subsurface projection distances fdW .�; �/g, and in
particular:

LEMMA 5.12 (Thm. 6.12 of [42]). Given S there exists K0 such that, for any
K �K0 there are a; b such that, for any pair of maximal clean markings �; � and
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hierarchy H connecting them,

(5.4) del.�; �/�a;b
X
W�S

ffdW .�; �/ggK :

This also follows from the counting results in Section 9.4.

5.5. Existence of infinite hierarchies. In Theorem 4.6 of [42] we showed
that a hierarchy exists connecting any two finite markings. In fact with a closer
look we can now obtain

LEMMA 5.13. For any two generalized markings I;T of S , which do not
share any infinite-leaf components, there exists a hierarchy H with I.H/D I and
T.H/D T.

Proof. The main gap between the finite and infinite existence theorems is
filled by this lemma:

LEMMA 5.14. Let X be a surface with �.X/� 4. Let � and � be two distinct
points in C0.X/[EL.X/. There exists a tight geodesic g connecting � and �.

In the case �.X/D 2 we need not consider vertices at infinity, and the existence
of a tight geodesic in that case is trivial.

Proof of Lemma 5.14. The case where � and � are both vertices of C.X/ is
covered by [42, Lemma 4.5]. (Of course in this case we need not require them to
be distinct.)

In a locally compact ı-hyperbolic space the other cases, which correspond to
endpoints at infinity, would then follow from the finite case by a limiting argument.
This limiting step requires a special argument in our setting.

Consider first the case that � is a finite point, i.e. � 2 C0.X/, and � 2 EL.X/

is a point at infinity. By definition there exists a sequence of points �i 2 C0.X/

such that �i ! �, and we may form tight geodesics Œ�; �i � (not necessarily unique).
Our goal is to extract a limiting ray Œ�; �/. By ı-hyperbolicity and the definition
of the boundary at infinity, we have the following:

.�/ For each R > 0 there exists n so that for i; j � n the initial segment of length
R of in Œ�; �i � is within ı of Œ�; �j �, and vice versa.

Thus, let us extend � to a maximal clean marking I, and let Ti be the marking
consisting just of the endpoint �i . By [42, Th. 4.6], there exists a hierarchy Hi
with I.Hi /D I and T.Hi /D Ti . In fact we may assume that the main geodesic of
Hi is Œ�; �i �.

We now reprise an argument used in Lemma 6.13 of [42]. Pick R > 5ı, and
let n be as in .�/. For j � n, let v0 be a simplex of Œ�; �j � within distance R=2 of �,
and let v be a simplex of Œ�; �n� such that (via .�/) dC.X/.v; v

0/� ı. Let � and � 0 be
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saturated slices of Hn and Hj whose bottom simplices are v and v0, respectively.
In fact � and � 0 must be maximal for large n: Since I is maximal, it intersects
any subsurface, and since Tj or Tn are far away in C.X/, they must intersect any
subsurface W � X for which Œ@W � is at C1.X/-distance 1 from v or v0. Hence
(using Theorem 5.6) every component domain that arises in the construction of �
and � 0 must support a geodesic, and it follows that � and � 0 are maximal. Let m and
m0 be maximal clean markings compatible with � and � 0, respectively; we wish to
bound the elementary-move distance del.m;m

0/.
Let J be a hierarchy with I.J /Dm and T.J /Dm0 (J exists again by [42,

Th. 4.6]). If W is a subsurface that occurs in J , then Œ@W � is within ı of v. We
claim that dW .�j ; �n/ is uniformly bounded, independently of j � n. Let w and w0

be points on Œ�; �n� and Œ�; �j � that are at least 2ıC2 further from � than v and v0,
respectively, and such that d.w;w0/� ı (this is possible since R is large enough).
We can connect w to w0 with a geodesic all of whose vertices are distance at least
2 from Œ@W �, and hence by the Lipschitz property of �W , we have dW .w;w0/� ı
(if W is an annulus and �.X/ D 4, then the bound is 3ı; see �4 for a discussion
of the Lipschitz property). Now dW .w; �n/ and dW .w0; �j / are each bounded by
Lemma 4.1, and this gives us a bound of the form

(5.5) dW .�n; �j /DO.1/:

It is a consequence of Lemmas 6.1 and 6.9 of [42] (see the proof of Lemma 6.7 of
that paper) that given any hierarchy H and any subsurface W �X , the projection
�W .v/ for any vertex occurring in H , if nonempty, is in an M -neighborhood of
a geodesic in A.W / connecting �W .I.H// and �W .T.H//, where M DM.X/.
Applying this to the hierarchy Hn we see that �W .m/ is in an M -neighborhood of
a geodesic in A.W / connecting �W .�/ and �W .�n/ (and similarly using Hj , for
�W .m

0/, �W .�/ and �W .�j /), and we conclude using (5.5) that

dW .m;m
0/� dW .�; �n/CO.1/:

This gives a uniform bound on the length of the hierarchy J for any j � n, and
hence on del.m;m

0/ by (5.3).
We conclude that, fixing � and m, there are only finitely many possibilities

for m0, and in particular for v0. Thus, there are only finitely many possibilities for
the initial segment of length R=2 of Œ�; �j �, for all j � n. We can therefore take
a subsequence for which these initial segments are all the same, and then increase
R and make the usual diagonalization argument.

The limiting sequence must be tight (since tightness is a local property) and
it must accumulate on �, since its initial segments are equal to the initial segments
of Œ�; �j � for all large j (in the subsequence). Hence this is the desired geodesic
Œ�; �/.
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Now consider the case that both � and � are distinct points in EL.X/. Let
�i ! �, and �i ! � be sequences in C0.X/, and form segments Œ�i ; �i �. In this
case a similar condition to .�/ holds: There is a constant ı0 and a sequence of
points xi 2 Œ�i ; �i � which remain in a bounded subset of C.X/, such that

(**) For any R> 0 there exists n such that for all i � n the subsegments of Œ�i ; �i �
of radius R centered on xi are within ı0 of each other.

The proof is left as an exercise in applying the notion of ı-thinness of triangles.
Now as before, we take hierarchies Hi with base geodesic Œ�i ; �i � and apply

an argument similar to the previous case to argue that a subsequence converges to
a biinfinite geodesic .�; �/. In fact this is the exact case treated in Lemma 6.13
of [42].

This concludes the proof of Lemma 5.14. �

Continuing with the proof of Lemma 5.13, given generalized markings I and T
with no common infinite-leaf components, we construct a hierarchy by following
the argument of [42, Th. 4.6]: We begin by constructing a main geodesic g in
C.S/: If simp.I/ is nonempty we choose one of its vertices to be the initial vertex
of the geodesic. If not, then I is a lamination in EL.S/ and gives a point at infinity.
The same holds for T, and we connect the resulting points with a tight geodesic
via Lemma 5.14. We then inductively build up a sequence of “partial hierarchies”
Hn. At each stage we find an “unutilized configuration” in Hn, which is a triple
.W; b; f / where W is a component domain in some geodesic in Hn, b; f 2Hn
are tight geodesics such that b .d W &

d f , but W is not the support of a geodesic
in Hn. For such a domain we use Lemma 5.14 to get a tight geodesic h with
I.h/D I.W; b/ and T.h/D T.W; f /, and let HnC1 DHn[fhg.

In the finite case, this was sufficient: the process was guaranteed to termi-
nate after finitely many steps and the last Hn is a hierarchy, because there are no
more domains to fill in. In the general case, because of the possibility of infinite
geodesics, the process of filling in unutilized configurations may be infinite. Thus
we must order the process in such a way that the union of the Hn is a hierarchy,
i.e. so that every unutilized configuration is filled in a finite number of steps.

To do this, we maintain an order on each Hn, and in addition fix a choice of
basepoint vh for each geodesic h. At the first step H1 is just the main geodesic
with an arbitrary choice of basepoint. At each step of the process, consider the
first geodesic h in the order. If there are any unutilized configurations .W; b; f /
with W a component domain of h, choose one minimizing the distance of Œ@W �
to vh in C.D.h// (there are finitely many such). Construct a new tight geodesic
k with D.k/DW and b .d k &d f , pick an arbitrary basepoint vk , and add k to
Hn obtaining HnC1, with the ordering unchanged except that h and k should now
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be the last two elements. If there are no such unutilized configurations, adjust the
order so that h becomes the last element.

Repeating this, we see that every time a geodesic is created or examined, it
will be examined again in a finite time. The component domains are examined
by order of distance from the basepoints, and hence every unutilized configuration
will be filled after a finite number of steps. Thus the union of the Hn will have no
unutilized configurations, and must therefore be a hierarchy. �

5.6. Vertices, edges and 3-holed spheres. We can now consider in a little
more detail how vertices appear in a hierarchy. An edge e D Œvw� in a geodesic
h 2H with �.D.h//D 4 is called a 4-edge. We write v D e� and w D eC, where
v < w in the natural order of h (note in this case both v and w are actually vertices,
not general simplices).

We say that a vertex v “appears in H” if it is part of a simplex in some
geodesic in H . If v is not a vertex of simp.I.H// or simp.T.H//, then it is called
internal. A vertex of simp.I.H// which does not have a transversal in I.H/ is
called parabolic in I.H/, and similarly for T.H/.

LEMMA 5.15. Let v be a vertex appearing in H. Then 
v intersects base.T.H//
if and only if there exists a 4-edge e1 with vDe�1 . Similarly 
v intersects base.I.H//
if and only if there exists a 4-edge e2 with v D eC2 .

The edges e1 and e2 are unique.

Proof. Suppose 
v intersects base.T.H//. We must find a geodesic h with
�.D.h//D 4, such that v is a vertex in h but not the last, and we must show that
h is unique.

The condition that v appears in H is equivalent to the condition that the annu-
lus AD collar.
v/ is a component domain in H , and the condition that v intersects
base.T.H// means that †C.A/ is nonempty, since it contains the main geodesic
gH . By part (3) of Theorem 5.6, there exists a geodesic f such that A& f , so by
definition there must be some h 2H with A&d h.

The condition A&d hmeans that v appears as a vertex in a simplex w of h, and
that succ.w/jA ¤ ∅. If w is not the last simplex, then, if �.D.h// > 4, succ.w/
would be a simplex disjoint from w and hence from v, a contradiction. Thus
�.D.h//D 4, v D w, and succ.w/ is a vertex w0. This gives us our 4-edge, e2 D
Œvw0�.

We claim that w cannot be the last simplex of h. If, by way of contradiction,
it is, then succ.w/D T.h/ and v 2 base.T.h//, so T.h/ must contain a transversal
to v. If hDgH , then 
v is a base curve of T.H/, contradicting the hypothesis of the
lemma. Hence h&d h0 for some h0. Now since T.h/ contains a transversal, D.h/
must be a component domain for the last simplex of h0, and T.h/ D T.h0/jD.h/.
Hence v must be a component of base.T.h0// with a transversal, and we repeat
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this by induction until we terminate with the main geodesic gH , and obtain our
contradiction.

Uniqueness of e2 is seen as follows. If there were two such edges, there would
be two geodesics h; h0 with � D 4, and such that A&d h, A&d h0. Hence both are
in †C.A/, but this contradicts part (1) of Theorem 5.6, which says that †C.A/ is
a sequence f0 &d f1 &

d � � � .
In the converse direction, if a 4-edge e exists with v D e�, then v appears in

a geodesic h1 with � D 4, where v is not the last vertex. Thus 
v intersects the last
vertex of h1, and in particular it intersects base.T.h1//. Note that A &d h1, and
Theorem 5.6 gives us a sequence h1&d h2&d � � �&d gH . We claim by induction that

v intersects base.T.hi // for each i . Let wi Dmax�hi .D.hi�1//, so thatD.hi�1/
is a component domain of .D.hi /; wi /. By Lemma 5.5, wi must equal max�hi .A/.
If wi is not the last simplex, then the last simplex of hi intersects 
v, and hence
does base.T.hi //. If wi is the last simplex, then T.hi�1/ D T.hi /jD.hi�1/, so
that the statement for hi follows from the statement for hi�1. Hence 
v intersects
base.T.H//, which is what we wanted to show.

The argument for e1 is identical, with directions reversed. �

Now given v appearing in a hierarchy H , and fixing a resolution f�igi2I of H ,
with I a subinterval of Z, let

J.v/D fi 2 I W v 2 base.��i /g:

The following fact will be fundamental for us:

LEMMA 5.16. Let H be a 4-complete hierarchy and f�igi2I a resolution. If
v is a vertex in H , then J.v/ is an interval in Z.

Recall that an interval can be finite, one-sided infinite, or bi-infinite.

Proof. The only type of elementary move that can change the vertex set of
a slice is a move along a 4-edge e, which replaces one vertex e� by its successor
eC. By Lemma 5.8, there is exactly one step in the resolution which advances
along any given edge. By Lemma 5.15, there is at most one 4-edge, e1, for which
eC1 D v, and at most one 4-edge, e2, for which e�2 D v. Thus there is at most one
move �i�1! �i at which v appears, and at most one move �j ! �jC1 at which v
disappears. The possibilities for J.v/, depending on the existence of e1 and e2, are
therefore Œi; sup I�, Œinf I; j �, I, Œi; j � (if i � j ), or Œinf I; j �[ Œi; sup I� (if j < i ).
Only the last of these fails to be an interval and must be ruled out (note that inf I

may be �1 and sup I may be1, yielding infinite intervals).
In the last case where j < i , v must be in all slices after �i . We claim that v

is therefore in simp.T.H//. Let .gH ; wk/ be the bottom pair of �k . For k > i we
have dC1.S/.wk; v/� 1, and on the other hand Lemma 5.8 implies that all vertices
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of gH are obtained in the resolution – hence gH is finite in the forward direction,
and for sufficiently large k we must have wk equal to the last vertex of gH , which
is in simp.T.gH //D simp.T.H//. If v ¤ wk , then it is contained in a component
W of S n collar.wk/, which must therefore support a geodesic g0 (otherwise the
slice �k cannot have any vertices in W ), and we have T.g0/ D T.gH /jW . The
same argument implies that g0 is finite in the forward direction, and we proceed
inductively. The process must terminate, and at that point v must be a vertex of
simp.T.H//.

However Lemma 5.15 then implies that v never appears as e� for a 4-edge e,
and this is a contradiction. This rules out the case j < i . �

Three-holed spheres. The following result for three-holed spheres is analo-
gous to Lemma 5.15.

LEMMA 5.17. Let Y a component domain of a geodesic in H , and suppose
�.Y / D 3. If T.H/jY ¤ ∅, then there exists a unique geodesic f 2 H with
�.D.f // D 4 and Y &d f . Similarly, if I.H/jY ¤ ∅, then there exists a unique
geodesic b 2H with �.D.b//D 4 and b .d Y .

Note that T.H/jY ¤∅ just means that Y has an essential intersection with a
base curve of T.H/. In particular, if Y intersects both base.T.H// and base.I.H//,
then the lemma gives b; f with � D 4 and b .d Y &d f . We call this a gluing
configuration, and it will be used in the model manifold construction in Section 8.

Proof. If T.H/jY ¤∅, part (3) of Theorem 5.6 gives some f with Y &d f .
Thus it only remains to verify that �.D.f //D 4.

The condition Y &d f means that there is a simplex w of f , with Y a compo-
nent domain of .D.f /; w/, and such that succ.w/jY ¤∅. Suppose that w is not the
last vertex of f . If �.D.f //> 4, then succ.w/ is disjoint from w, and since a three-
holed sphere can have no nontrivial nonperipheral simple curves, succ.w/jY D∅.
This contradiction implies �.D.f //D 4.

If w is the last vertex, then w � base.T.f // and succ.w/D T.f /. Since Y is
a three holed sphere bounded by w in D.f /, it cannot contain other components
of base.T.f //, so we obtain succ.w/jY D∅, again a contradiction.

Uniqueness of f follows from the sequential structure of †C.Y / (part (1) of
Theorem 5.6). The backwards case is proved in the same way. �

6. The coarse projection property

In this section we will begin the geometric argument that connects the geom-
etry of a Kleinian surface group � W �1.S/! PSL2.C/ with the structure of the
complex of curves C.S/. The main tool for this is the “short-curve projection” …�,
which takes any element a 2A.S/ to the set of short curves on pleated surfaces in
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N mapping the curves associated to a geodesically. This projection was studied in
[48] and [49], where it was shown to have properties analogous to a nearest-point
projection to a convex set. Here we will refine these to obtain relative statements
about projections �Y to subsurfaces. In Section 7, we will use …� to generate our
main geometric estimates.

We proceed to define the projection map. Fix L � L0, where L0 is Bers’
constant (see �3.2). As in [49], we define for a hyperbolic structure � on int.S/

shortL.�/D f˛ 2 C0.S/ W `� .˛/� Lg:

For any lamination � 2 GL.S/, we define

…�;L.�/D
[

f 2pleat�.�/

shortL.�f /:

(If L is understood we write just …�.) In particular any x 2 A.S/ determines a
lamination �x consisting of leaves representing the vertices of the smallest simplex
containing x, and we define …�;L.x/�…�;L.�x/. This gives us a map

…�;L WA.S/! P.C.�; L//

where P.X/ denotes the set of subsets of X .
We will establish the following “coarse projection” property, generalizing

Lemma 3.2 of [49]:

THEOREM 6.1. For a surface S and a constant L�L0 there existD0;D1>0
such that, if � 2 D.S/ and Y � S is an essential subsurface with �.Y /¤ 3, then:

(P1) (Coarse definition). If v is any vertex in A.S/ with �Y .v/¤∅, then

diamY .…�;L.v//�D0:

(P2) (Relative Coarse Lipschitz). If v;w are adjacent vertices in A.S/ with �Y .v/
¤∅ and �Y .w/¤∅, then

diamY .…�;L.v/[…�;L.w//�D1:

(P3) (Relative Coarse Idempotence). If v 2 C.�; L/ and �Y .v/¤∅, then

dY .v;…�;L.v//D 0:

Note that property (P2) translates to a weak sort of Lipschitz condition for the
map �Y ı…�;L: If v0; v1; : : : ; vn is a sequence of vertices in A.S/ with vi ; viC1
adjacent such that �Y .vi /¤∅, and in addition �Y .…�;L.vi //¤∅, then repeated
application of (P2) yields

diamY .…�;L.v0/[…�;L.vn//�D1n:

The issue of when …�;L is nonempty will be addressed in Lemma 7.4.
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6.1. Train tracks. Before proceeding with the proof of Theorem 6.1, let us
digress a bit to discuss the construction and properties of train tracks. Thurston [60]
first introduced the notion of a train track in a surface as a finite approximation to
a geodesic lamination. Although it has by now become a standard tool in the field,
we will attempt to be careful with details here, especially because of the presence
of thin parts.

Definitions (See Penner-Harer [53]). A train track in a surface S is an em-
bedded 1-complex � with a special structure at the vertices. It is convenient to
describe this in terms of a foliation of a small neighborhood of � by leaves (called
“ties”) that are transverse to � at every point. A tie passing through a vertex locally
divides the ends of adjacent edges according to which side of the tie they are on.
One thinks of these as “incoming” and “outgoing” sides, and both sets must be
nonempty. Vertices of a train track are called “switches” and edges are called
“branches.”

Two branch ends coming in to the same side of a switch bound between them
a corner of a complementary region which we call a “cusp”. If a switch meets n
branch ends, then a small neighborhood of the switch is cut by � into n corners,
n� 2 of which are cusps. The other two are called smooth. A further condition
usually imposed on the train track is that each complementary region is hyperbolic,
in the sense that it is not a disk with 2 or fewer boundary cusps, a once punctured
disk with no boundary cusps, or an annulus with no boundary cusps.

When @S ¤ ∅, we will also allow train tracks to have branches which ter-
minate in the boundary. A regular neighborhood of a boundary component is cut
by � into regions which we think of as cusps for the purpose of the hyperbolicity
condition.

A train route in � is an immersion of a 1-manifold into � which always tra-
verses switches from one side to the other, and whose endpoints (if any) map to
@S . An element of A.S/ is is carried by � if it can be represented by a train route.
If ˛ is carried in � it imposes a measure on its branches counting how many times
each is traversed by ˛. For each branch b we denote this measure by ˛.b/. We let

`� .˛/D
X
b

˛.b/

denote the combinatorial length of ˛.
A train track in int.S/ is just the restriction of a train track in S to the interior.

In particular branches that terminate in @S become branches that exit cusps of
int.S/.

Collapsing curves to train tracks. Fix a Margulis constant N� > 0, and let � be a
complete (finite-area) hyperbolic metric on int.S/. If 
 is a geodesic representative
of a vertex in A.S/, or in general any geodesic lamination, and 0< � < N�, we define
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an �-collapse of 
 to a train track to be a map

q W int.S/! S 0

that is homotopic to a homeomorphism, and such that:

(1) q.
/ is a train track � in S 0, and q restricted to any leaf of 
 is a train route.

(2) There is a metric on � such that qj
 is a local isometry.

(3) For each x 2 � the preimage q�1.x/ is a point or arc. If q�1.x/ touches
SŒN�;1/, then its length is at most �.

LEMMA 6.2. Given a surface S and N� > 0, for each � < N�, for any hyperbolic
metric � on S and any geodesic lamination 
 there is an �-collapse of 
 to a train
track. The total length of

�N� � q.
 \SŒ�;1//

is bounded by a constant K depending only on �.

Proof. A version of this construction is discussed in Thurston [60, �8.9]. See
Brock [17] for a complete discussion in the case without thin parts.

First, for simplicity let us add enough leaves to 
 to obtain a lamination �
whose complement is a union of (interiors of) ideal hyperbolic triangles. Fixing a
small �, let F� be the foliation of the ends of each of these triangles by horocyclic
arcs of length less than �. Thus F� is supported in an open subset of S n � we
will call U� . Because the tangent directions of the horocycles form a Lipschitz line
field, F� may be extended across the leaves of � to be a foliation of the interior of
the closure U � . Let us continue to call this foliation F� . In fact F� extends to give
a decomposition of all of U � into leaves, where the boundary consists of endpoints
of leaves or boundary horocycles of length �.

This foliation inherits a transverse measure from the length measure along
leaves of �. This is evident from the fact that, in each end of a triangle, the
horocyclic flow preserves length for its family of orthogonal geodesics.

Let us establish the following claims:

(1) Each cusp of S has a neighborhood that is foliated by closed leaves of F�.

(2) All leaves of F� are compact.

(3) There are constants C;C 0 such that, if � < C N�, then any leaf meeting the
N�-thick part of S is an arc, and has length bounded by C 0�.

Proof. Claim (1) is fairly clear: There is a uniform ı such that the ı-Margulis
tube associated to a cusp avoids all simple geodesics except those which go ver-
tically all the way up the cusp. Since the complement of � is a union of ideal
triangles it penetrates every such neighborhood. Hence if we choose ı < �=2, say,



THE CLASSIFICATION OF KLEINIAN SURFACE GROUPS, I 53

the leaves of F� in this neighborhood are complete horocycles going around the
cusp.

Let a foliated rectangle of F� denote a region on which F� is equivalent to the
foliation of Œ0; 1�2 by vertical arcs, and for which the horizontal arcs are geodesics
orthogonal to F� (e.g. leaves of �). The leaves of F� identified with f0g � Œ0; 1�
and f1g � Œ0; 1� are its boundary leaves, and the distance along � between them is
called the width w.R/. The lengths of the leaves vary by a factor of at most ew .
Note that the area of R is at least the smaller leaf length times the width.

We can make the same definitions for the lift zF� of F� to the universal cover
H2. Let R be a foliated rectangle in the universal cover, with boundary leaves l0; l1.
Suppose that l0 and l1 can be extended indefinitely in one direction (say the upward
vertical direction in the identification with Œ0; 1�2). There is an a depending only on
F� such that, provided w.R/ < a, the whole rectangle can be extended indefinitely
in the upward direction – that is the region between the extensions of l0 and l1 can
be foliated to make a foliated rectangle in H2 for arbitrarily long extensions. To
see this, choose a less than the minimal length of an arc of � in the boundary of a
complementary region of zF� . Suppose R has been extended to a rectangle R0 with
boundary leaves l 00 and l 01. Since w.R0/D w.R/ < a, and by assumption l 00 and l 01
can be extended further, the top boundary of R0 does not lie on the boundary of a
complementary region, and hence the rectangle can be extended further.

This gives at least an immersed foliated rectangle. However this must in fact
be an embedding (in H2), since a self-intersection would give rise to a disk whose
boundary consists of one arc of zF� and one arc transverse to zF� – violating the
index formula for line fields since F� has an extension to a foliation of S with
negative-index singularities.

Now suppose that l is a noncompact leaf of F�. In view of (1), l must accu-
mulate somewhere in S . Hence there must be two segments l0 and l1 close enough
together to bound a foliated rectangle R, and such that l0 and l1 extend infinitely
in one direction. In the universal cover, the lift of R must extend indefinitely by
the above argument. The extension R1 Š Œ0; 1�� Œ0;1/ has infinite area, so its
immersed image downstairs cannot be embedded. It follows that it is an annulus
in which the half-leaf f0g � Œ0;1/ (which is part of l) either spirals or maps to a
closed leaf. In the former case the annulus has infinite area, and in the latter case
l is a closed leaf after all. We conclude that there are no noncompact leaves. This
proves claim (2).

For claim (3), if x is in the N� thick part it is the center of an embedded N�=2-disk.
Consider the intersection m of a leaf of F� passing through x with a ball of radius
N�=4 around x. Every interval of m n� is the boundary leaf of a foliated rectangle
on one side or the other, of width at least N�=4, these rectangles are all disjoint, and
hence m is in the boundary of a region of F� with area at least C jmj, for a uniform
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q

Figure 7. The local picture of F0�, collapsing to a train track.

C (see Brock [17] for details). On the other hand the total area of F� is at most
N�, where N is the number of vertices of ideal triangles in the lamination, by an
easy computation (and using the fact that area.�/ D 0; see [25]). It follows that
jmj is bounded by C 0� where C 0 depends on N�. In particular, if � is sufficiently
small, then the leaf containing m must terminate before reaching the boundary of
the N�=4 disk, and claim (3) follows. �

In order to get rid of the closed leaves of F�, we make the following adjust-
ment. If A is a cusp neighborhood foliated by closed leaves, then A is cut by
leaves of � into one or more cusp regions, each equal to an end of one of the
complementary triangles of �. Pick one of these regions and erase all the arcs of
F� inside the corresponding end. This will cut all the loops in A into arcs.

If A is the collar of a geodesic with length less than N�, and contains closed
leaves of F� , then there are leaves of � passing all the way through A. Choose one
complementary region R of A n� – it is contained in the cusp end of a triangle in
S n�. For that end choose �0 sufficiently small that, if we remove all the F� arcs
of length at least �0 in the cusp end containing R, then this will remove all the arcs
in R, again cutting all the closed leaves.

By claim (3) there are no other closed leaves in F�.
Call the new foliation F0�. Now consider the quotient q W S ! S 0 D S=F0�

obtained by identifying each leaf of F0� to a point. We claim this is our desired
map, if � is taken sufficiently small. Since all leaves of F0� are arcs, one can see
by Moore’s theorem [50], [51] that S 0 is a surface homeomorphic to S and that q
is homotopic to a homeomorphism. In fact if x is a point on a leaf of F0�, we can
explicitly describe a neighborhood of q.x/ by considering a neighborhood of the
leaves passing near x (Figure 7).

The image � D q.�/ in S 0 is a finite graph (with some edges going out the
punctures). To see the train track structure on � , extend the foliation F0� slightly to
obtain, in the image, a foliation in a neighborhood of � transverse to � . An interior
leaf a of F0� maps to an interior point of � . This is because a terminates on two leaf
segments of �, and leaves sufficiently close to a terminate on the same segments;
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hence producing a foliated rectangle that maps to a segment in � . A boundary leaf
b of F� maps to a switch of � : The leaves on either side of b map to arcs of � on
either side of q.b/, hence producing the switch structure.

The complementary regions of � are all three-cusped disks, obtained directly
from the triangular components of S n� by the quotient map.

A branch b of � is the q-image of a foliated rectangle Rb in S . The lengths
of �-leaves in Rb induce a metric on b with total length w.Rb/. Two leaves of �
in Rb lie on the boundary, and are also boundary arcs of triangles in S n �. The
intersection of these boundary arcs with SŒ�;1/ has total length bounded by some
K.�/ (proportional to log 1=�). This gives a bound on the total length of �N�.

Now any point x of � has preimage q�1.x/ which is an arc of F0�, with both
endpoints on �. If q�1.x/ meets the N�-thick part of S , then its length is bounded
by C 0�, as in the proof of claim (3).

Thus to obtain an �-collapse, we take the quotient S=F�=C 0 , and then restrict
to the sub-track �
 D q.
/, noting that all the properties of a collapse are inherited
by this track. �

Nice representatives. If � is obtained from 
 by an �-collapse q, and ˇ is a
curve carried on � (more accurately, q.ˇ/ is carried on �), then ˇ can be realized
after homotopy as a chain of segments

ˇ� D ˇ1 � t1 � � � � �ˇn � tn;

where nD `� .ˇ/, ˇi are arcs of 
 and each ti is a subarc of q�1.s/ for a switch s.
This is done by first choosing, for each branch b of � , an arc of 
 in q�1.b/ which
maps isometrically to b, and then for branches meeting at a switch, connecting
their preimage arcs with the preimage of the switch. The total length of ˇ� in the
N�-thick part of S is bounded by

(6.1) `.ˇ� \SŒN�;1//� .K.�/C �/`� .ˇ/

since each ti has length at most � and each ˇi has length at most K.�/ in the thick
part.

Short curves with prescribed intersection properties. This lemma will be used
in the final stages of the proof in Section 6.2:

LEMMA 6.3. For any compact surface S there is a number A such that, for
any train track � in S , if ˇ 2C0.S/ has essential intersection with some 
 2A0.S/

carried on � , then there exists ˛ 2A0.S/ carried on � with

`� .˛/� A;

which also intersects ˇ essentially.
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Proof. Since, up to homeomorphisms of S , there are only finitely many train
tracks in S (see e.g. Penner-Harer [53]), and since for any finite set of curves or
arcs carried in � there is an upper bound on `� , it will suffice to prove the following
statement: For any train track � there is a finite set f˛1; : : : ; ˛kg �A0.S/ carried
in � so that, for any ˇ 2 C0.S/, if i.ˇ; j̨ / D 0 for each j , then i.ˇ; 
/ D 0 for
every 
 2A0.S/ carried on � .

For any set X in A0.S/ there is an essential subsurface SX filled by X ,
which is unique up to isotopy. To form SX place representatives of X in minimal
position (for example using geodesic representatives in a hyperbolic metric on S ),
form a regular neighborhood, and adjoin all complementary components which are
disks or annuli with one boundary component in @S . If ˇ 2 C0.S/ intersects SX
essentially, then ˇ must intersect one of the elements of X essentially.

Let X.�/ be the set of elements of A0.S/ carried on � , and let X1 �X2 � � � �
be an exhaustion of X.�/ by finite sets. An Euler characteristic argument implies
that the sequence SX1 � SX2 � � � � is eventually constant (up to isotopy), and hence
there exists some k for which SXk D SX.�/.

Xk is therefore our desired finite set f˛ig. �

(Note there ought to be a more concrete proof of this lemma, which gives
estimates on A, but I have not found it.)

6.2. Proof of coarse projection. We can now proceed with the proof of The-
orem 6.1.

Property (P3). This property is immediate: v is realized with its minimal �-
length in any f 2 pleat�.v/, and since this is at most L we have v 2 shortL.�f /�
…�.v/. Since �Y .v/ is not empty, it is also a component of �Y .…�.v// which
establishes the property.

Property (P1) H) Property (P2). Suppose first that �.Y /� 4. Then Y has
essential intersection with any pants decomposition. Since L�L0, …�.x/ contains
a pants decomposition, and hence �Y .…�.x// is nonempty for any lamination x.
Now if v and w are adjacent in A0.S/, the disjoint union of their representatives
is a lamination which we denote v[w. We have

�Y .…�;L.v[w//� �Y .…�;L.v//\�Y .…�;L.w//;

and in particular this intersection is nonempty. Thus Property (P1) for v and w
immediately yields (P2), with D1 D 2D0.

Now suppose �.Y /D 2, so Y is an annulus. Let u 2 C0.S/ represent the core
curve of Y . If either �Y .…�;L.v// or �Y .…�;L.w// are empty there is nothing to
prove; so assume they are nonempty. In particular for some f 2 pleat�.v/, 
u is
intersected by a curve of �f -length at most L, and hence `�f .u/� ".L/. It follows
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that f .S/ must stay out of the tube T�0.u/, where �0 D �T .".L// (see �3.2.2 and
�3.2.3 for the definitions of �T and "). Now for any h 2 pleat�.v[w/, since it also
maps 
v to its geodesic representative, it follows that `�h.u/� �

0. Therefore there
is a curve intersecting 
u of �h-length at most L0 � max.L;L.�0// (see �3.2.2),
and thus �Y .…�;L0.v [w// is nonempty. As in the �.Y / � 4 case we therefore
obtain a bound on

diamY .…�;L0.v/[…�;L0.w//

and since this contains …�;L.v/[…�;L.w/, we obtain Property (P2).

Proof of Property (P1). Let 
 D 
v. Since …�.v/ is the union of short.�f /
for f 2 pleat�.
/, it suffices to bound

diamY .short.�f /[ short.�g//

for any two f; g 2 pleat�.
/.
Note first that there is a K.L/ such that

(6.2) diamY .shortL.�//�K

for any hyperbolic metric � on S . This is because two curves of bounded length in
the same metric have a bound on their intersection number, and this readily gives
a bound on the distance between the corresponding curve systems in A.Y /. From
now on we will assume that �Y .shortL.�f // and �Y .shortL.�g// are nonempty,
since otherwise there is nothing to prove (this is of consequence only if Y is an
annulus – in other cases it holds automatically).

Thus our goal will be to find a curve ˛, intersecting Y essentially, whose
length in both �f and �g is bounded by some a priori L00 � L. This would give us
a nonempty intersection �Y .shortL00.�f //\�Y .shortL00.�g//, and hence by (6.2)
bound the diameter of the union.

Bounding bridge arcs. Let us invoke some machinery developed in [48]. First,
by Lemma 3.3 of [48], up to precomposing g with a homeomorphism isotopic to
the identity, we may (and will) assume that f and g are homotopic rel 
 : this
means that f j
 D gj
 and f and g are homotopic keeping the points of 
 fixed. A
bridge arc for 
 is an arc with endpoints on 
 , which is not homotopic rel endpoints
into 
 .

We have the following lemma, which is part (1) of Lemma 3.4 of [48]:

LEMMA 6.4. Fixing O�, for any ı1 there exists ı0 2 .0; ı1/ such that, if f; g 2
pleat�.
/ and are homotopic rel 
 , then for any bridge arc t for 
 in the O�-thick
part of �f we have

`�f .t/� ı0 H) `�g.t/� ı1:

This lemma is a fairly direct consequence of Thurston’s Uniform Injectivity
Theorem [62], which uses a compactness argument on the space of all pleated maps
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to conclude that different leaves of a pleating lamination cannot line up too closely
in the image, in a uniform sense.

Now let �2 Dmin.�1=2; ".L//. Let � denote the system of simple closed �f -
geodesics in S whose �f -lengths are less than �2, and which intersect 
 essentially
(on a first reading one should consider the case that �f is �2-thick, and in particular
� D∅). For each component ˛ of � , its f -image must be in the �2 thin part of N .
Since ˛ crosses 
 , and f and g are homotopic rel 
 , g.˛/ meets the �2 thin part
of N as well. By the choice of �1 (see �3.2.2), the �g -length of the �g -geodesic
representative of each component of � is bounded by �0. Hence if Y crosses �
essentially, we may let ˛ be a component of � intersecting Y , and we are done.

Assume therefore that Y has no essential intersections with � . If �.Y / � 4,
Y must be an essential subsurface in a component R of S n .collar.�; �f / [
collar.@S; �f /. If �.Y /D 2, then there is the possibility that Y is the collar of a
component of � . However, since �Y .shortL.�f //¤∅, there is a curve of length
at most L crossing Y , and because �2 � ".L/ this is not true for any component
of � . Thus Y is a nonperipheral annulus in R.

Train track. We now apply Lemma 6.2 from Section 6.1 to find a good train-
track approximation of 
 .

Setting O� D �2=2 and ı1 D �2, let ı0 be the constant provided by Lemma 6.4.
Now let � D min.�2=4; ı0/. Setting the Margulis constant N� in Lemma 6.2 to �2,
we obtain an �-collapse q W int.S/! S 0 (with respect to the metric �f ) where S 0

is homeomorphic to int.S/, taking 
 to a train track � .
Now since � carries 
 and 
 has an essential intersection with some curve ˇ

in Y (possibly a component of @Y ), it follows from Lemma 6.3 that there exists
˛0 carried in � with `� .˛0/� A (with A a bound depending only on S), such that
˛0 also intersects ˇ essentially. We will use ˛0 to construct our curve of bounded
length in both �f and �g .

Bridge arcs and nice representatives. Using the discussion in Section 6.1, ˛0

is homotopic to
˛� D ˛1 � t1 � � � � �˛n � tn;

where n D `� .˛0/ � A, each ˛i runs along 
 , and each ti is in the q-preimage
of a switch. Lemma 6.2 gives us a uniform bound K.�/ on the length of the
intersection of each ˛i with the �2-thick part of .S; �f /, and a bound of � on each
ti that meets the �2-thick part. We also note that, by definition of � , no ˛i crosses
a thin collar of a curve of �f -length � �2, unless that curve is in � . It follows that
˛R D ˛

� \R remains in the �2-thick part, and hence has uniformly bounded length.
The endpoints of ˛R lie in @R, which is part of @ collar.�; �f /[ @ collar.@S; �f /.
Since ˛0 intersects Y essentially and Y is an essential subsurface of R, there must
be some arc a of ˛R that intersects Y essentially.



THE CLASSIFICATION OF KLEINIAN SURFACE GROUPS, I 59
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Figure 8. The surgery yielding the final curve ˛ from the arc a.
The two possible configurations are shown.

We already have a uniform bound on `�f .a/. To view this arc in �g , note the
following: Each arc ˛i has exactly the same length in �g as in �f . Each ti is a
bridge arc for 
 , and since the ones occurring in a touch the �2-thick part of �f ,
their length is bounded by �. Since � < �2=4, the entire ti is contained in the �2=2
thick part. Now since � � ı0, then we may apply Lemma 6.4 to conclude that each
ti may be deformed rel endpoints to an arc of �g -length at most �2. Thus, a may
be deformed (rel endpoints if it is an arc) to have uniformly bounded �g -length.

If a is a closed curve, this is our desired curve ˛, and we are done.
If a is an arc, its endpoints lie in standard collars of � , whose boundaries have

�f -length �1. We may assume (possibly adjusting the curve ˛� slightly) that these
endpoints lie on 
 . Thus their g-images agree with their f -images, and lie in the
�1-thin parts of N ; hence the endpoints lie in the �0-thin parts of �g . Now we can
do the same mild surgery in both surfaces: form a small regular neighborhood of
the union of a with the standard collar (or collars) meeting its endpoints. Let ˛
be the boundary component of this neighborhood which passes close to a once or
twice, and makes one or two additional trips along the collar boundaries. These
arcs again are bounded in both metrics, and ˛ still intersects ˇ essentially. (See
Figure 8.) This concludes the proof of Theorem 6.1.

6.2.1. A variation on Theorem 6.1. It will be useful to have the following
minor variant of the Coarse Lipschitz property (P2) of Theorem 6.1, for a special
case in the proof of Theorem 7.1. If W � S and a is a vertex in A.W / represented
by an arc, let �a be the lamination obtained by spinning this arc leftward around
@W (as in Figure 2) and including @W . Using this, we can define pleat�.a/ to be
pleat�.�a/, and this allows us to define …�;L.a/.

LEMMA 6.5. Let Y � W � S , with @W ¤ ∅. Let � 2 D.S/ be a Kleinian
surface group such that `�.@W / < �0. If v;w 2A0.W / and dW .v; w/� 1, then

diamY .…�;L.v/[…�;L.w//�D2

where D2 depends only on S and L.

Proof. The proof proceeds as in Theorem 6.1, where the main point is to
bound

diamY .shortL.�f /[ shortL.�g//
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for f; g 2 pleat�.v/, where v is now a vertex of A.W /. We construct a train track
� from �v in the metric �f , and note that � has arcs that enter the collar of each
component of @W that contains an endpoint of v. We can consider � \W as a
train track in W , and find as before an element of A.W / carried on � which has
bounded length, outside thin parts, in both �f and �g . To obtain a closed curve in
C0.W /, we do the same surgery construction as in Figure 8, but using the collars
of @W rather than those of @S . Because `�.@W / < �0, the surgered curve still has
bounded length. �

7. The projection bound theorem and consequences

In this section we will associate to a pair � of end invariants a hierarchy H� ,
and prove Theorem 7.1, which in particular states that

dY .v;…�;L.v//;

where defined, is uniformly bounded above for all vertices v in H�.�/ and essential
subsurfaces Y � S . Theorem 7.1 generalizes Theorem 3.1 of [49], which only
applies to the case Y D S .

This bound should be taken as an indication that the vertices in H�.�/ and the
bounded-length curves in N� are somehow close to each other in a combinatorial
sense. Indeed we will deduce the following two corollaries of this theorem:

The Tube Penetration Lemma 7.7 controls which pleated surfaces can pen-
etrate deeply into a Margulis tube in N . In particular it states if we pleat along
the curves of a pants decomposition coming from a slice of H� , then the resulting
surface cannot enter any �-tubes (for a certain �) except those corresponding to the
pants curves.

The Upper Bound Lemma 7.9 then shows that there is a uniform upper bound
on the length `�.v/ for every v appearing in H . This is the main step to obtaining
Lipschitz bounds on the model map in Section 10.

7.1. From end invariants to hierarchy. Given a pair � D �˙ of end invari-
ants we now produce a hierarchy H� . This is done by associating to �C and �� a
pair of generalized markings �C and ��, and then applying Lemma 5.13.

The ending laminations in �˙ will be part of the base of the markings, so that
what is left to do is encode the Teichmüller data. Note that �˙ are not uniquely
recoverable from �˙. In what follows let �s denote �C or ��.

IfR is a component ofRTs (see �2.2 for notation), then the hyperbolic structure
�R 2T.R/ admits a pants decomposition of total length at most L0 (see 3.2), which
includes all curves of length bounded by �0. Let �s.R/ be a maximal clean marking
in R whose base is such a pants decomposition, and whose transversals Nti are taken
to be of minimal possible length (There is a bounded number of choices.) Note
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that, by Bers’ inequality relating lengths on the conformal boundary with lengths
in the interior of a hyperbolic manifold (see [9]), we have `�.base.�s.R///� 2L0.

Recall that �Ls is the union of parabolic curves ps and ending laminations
associated to the s side. Define �s to be the clean marking whose base is the union
of �Ls and base.�s.R// for all components R of RTs , and whose transversals are
the transversals of the markings �s.R/.

By the discussion in Section 2, �C and �� do not share any infinite-leaf com-
ponents. Thus we can apply Lemma 5.13 to conclude that there exists a hierarchy
H� with I.H�/D �� and T.H�/D �C.

Note that base.�˙/ is maximal, and therefore H� is 4-complete and in partic-
ular the base of every slice of H� is a pants decomposition (see discussion in �5.2).

Note also that H� is not uniquely defined by �, as there were choices in
the construction of �˙, and there are choices in the construction of a hierarchy.
However, our results will hold for any choice of H� , and we emphasize that no
properties of the representation � other than its end invariants are used in the con-
struction.

The main theorem of this section can now be stated:

THEOREM 7.1. Fix a surface S . There exists L1 � L0 such that for every
L� L1 there exist B;D2 > 0 such that, given � 2 D.S/, a hierarchy H DH�.�/,
and an essential subsurface Y in S with �.Y /¤ 3, the set

�Y .C.�; L//

is B-quasiconvex in A.Y /. Furthermore,

(7.1) dY .v;…�;L.v//�D2

for every vertex v appearing in H such that the left-hand side is defined.

Note that the left-hand side of (7.1) is defined provided both �Y .v/ and
�Y .…�;L.v// are nonempty. The former is satisfied whenever 
v intersects Y
essentially. For the latter, since …�;L.v/ contains a pants decomposition, its �Y -
image is always nonempty provided �.Y /� 4.

7.2. Quasiconvexity. We first consider the bound (7.1) in a case that is only
a slight perturbation of the result proved in [49]. After proving this version, we will
prove Theorem 7.1 in the nonannulus case in Section 7.3. As a consequence of this
we will obtain the Tube Penetration Lemma in Section 7.4, and then in Section 7.5
we will complete the proof of Theorem 7.1 for the case of annuli.

LEMMA 7.2. Fix L� L0, and suppose that h 2H with �.D.h//� 4 satisfies:

(7.2) dD.h/.u;…�;L.u//� d
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whenever u is a vertex of simp.I.h// or simp.T.h//. Then

(7.3) dD.h/.v;…�;L.v//� d
0

for all simplices v in h, where d 0 depends on d and L.

Proof. We will need the following lemma, which we proved in [49]:

LEMMA 7.3 (Lemma 3.3 of [49]). Let X be a ı-hyperbolic geodesic metric
space and Y� X a subset admitting a map … W X! Y which is coarse-Lipschitz
and coarse-idempotent. That is, there exists C > 0 such that

(Q1) If d.x; x0/� 1, then d.….x/;….x0//� C , and

(Q2) If y 2 Y, then d.y;….y//� C:

Then Y is quasi-convex, and furthermore if g is a geodesic in X whose endpoints
are within distance a of Y, then

d.x;….x//� b

for some b D b.a; ı; C /, and every x 2 g.

The proof uses a variation of the “stability of quasigeodesics” argument orig-
inating in Mostow’s rigidity theorem.

Proceeding with the proof of Lemma 7.2, let us consider first the case that
h is a finite geodesic, with endpoints u; u0 for which condition (7.2) holds. Let
Z D D.h/. In this case we will not use the fact that h is in the hierarchy – the
Lemma will hold for any finite geodesic h.

Short boundary case. Consider now the case that `�.@Z/ < �0. If x 2 C0.Z/,
then, letting f 2 pleat�.x [ @Z/, the induced metric �f satisfies `�f .@Z/ < �0,
and therefore by our choice of L0 (�3.2.2), there is a pants decomposition of S of
length at most L0 � L which contains @Z as components, and hence also contains
elements of C0.Z/. Hence

(7.4) …�;L.x/\C0.Z/¤∅:

In order to apply Lemma 7.3, set

XD C1.Z/;

YD C.�; L/\C0.Z/;

and define a map … W X! Y by letting ….x/ be an arbitrary choice of vertex in
…�;L.x/\C0.Z/: Note that X is ı-hyperbolic by Theorem 4.2.

Hypothesis (Q2) of Lemma 7.3 follows from property (P3) of Theorem 6.1,
noting that any vertex y of Y is also a vertex of C.�; L/ that satisfies �Z.y/¤∅.

If �.Z/ > 4, then hypothesis (Q1) follows from property (P2) of Theorem 6.1,
since two adjacent vertices of C.Z/ are also adjacent vertices of C.S/.
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If �.Z/D 4, then two adjacent vertices x; x0 of C.Z/ represent curves that
intersect, and hence are not adjacent in A.S/, so we cannot apply Theorem 6.1
directly. However, there are vertices a; a0 2 A0.Z/ (represented by arcs) such
that Œx; a�; Œa; a0� and Œa0; x0� are edges in A.Z/. We can make sense of …�;L.a/
and …�;L.a0/ as in Section 6.2.1, and apply Lemma 6.5 (with Y D W D Z) to
bound diamZ.…�;L.v/[…�;L.w// for .v; w/ D .x; a/; .a; a0/ and .a0; x0/. We
then conclude (Q1) for x and x0 via the triangle inequality.

For each endpoint w of h, of Theorem 6.1(P1) bounds diamZ.…�;L.w//, and
the hypotheses of Lemma 7.2 tell us that dZ.w;…�;L.w// � d . Together this
bounds dX.w;….w//, and hence we can apply Lemma 7.3 to get the desired bound
(7.3) on dZ.v;…�;L.v// for each simplex v in h.

Long boundary case. Now consider the case that `�.@Z/ � �0. The main
theorem of [48] states that there is a constant K depending only on L, �0 and S
such that

diamZ C.�; L/�K:

This means, since the endpoints of h are within d of their �Z ı…�;L images which
are in �Z.C.�; L//, that the length of h is at most 2d CK. The desired bound
(7.3) now follows from the relative coarse Lipschitz property (P2) of Theorem 6.1
(note that �Z ı…�;L is never empty since �.Z/� 4). This concludes the proof of
the lemma when h is a finite geodesic.

Suppose that base.T.h// has no finite vertices, meaning it is an element of
EL.Z/. Then base.T.h// is a component of base.T.H//, and in particular an
ending lamination component of �C.�/. The structure of ending laminations (�2.2)
implies that @Z must be parabolic in �, and hence we are in the short boundary case
above. Thurston’s Theorem 2.2 gives us a sequence f˛ig1iD1 in C0.Z/\C.�; L0/,
such that ˛i ! T.h/ as i !1. A similar statement is true if I.h/ has no finite
vertices.

Note that, since the parabolics in �C and �� must be distinct, if T.h/ has no
finite vertices, then I.h/ has a finite vertex, and vice versa, unless h D gH and
Z D S . Thus let us assume now that I.h/ has a finite vertex ˛0.

The geodesics hi D Œ˛0; ˛i � then satisfy the conditions of Lemma 7.3, and
hence the bound (7.3) holds for all vertices of hi . Because C.Z/ is ı-hyperbolic
and base.T.h// is a point in @C.Z/ by Klarreich’s Theorem 4.3, the hi are fellow-
travelers of h on larger and larger subsets. That is, for any simplex u in h, for large
enough i , u is at most ı from a vertex u0 in hi .

Connecting u to u0 by a geodesic in C1.Z/, we can apply the Coarse Lipschitz
property (P2) of…�;L to bound dZ.….u/;….u0//. We already have the bound (7.3)
on dZ.u0;….u0//, so the triangle inequality then bounds dZ.u;….u//.

The case that I.h/ and T.h/ are both infinite (and Z D S ) is similar: there is
a biinfinite sequence f˛ig1iD�1 so that hi D Œ˛�i ; ˛i � are fellow travelers of h on
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larger and larger segments, and ˛i 2 C.�; L0/ for all i . The bound is then obtained
in the same way. �

7.3. Proof of the projection bound theorem: nonannulus case. To proceed
with the proof of Theorem 7.1, we will need the following lemma:

LEMMA 7.4. There exists L such that, for any essential subsurface Y with
�.Y /¤ 3, and any vertex v in the hierarchy H�.�/ with �Y .v/¤∅, we have

�Y .…�;L.v//¤∅:

This will allow us to effectively use the Coarse Lipschitz statement of Theo-
rem 6.1.

If �.Y /� 4, the lemma evidently holds with L�L0, since as we have already
observed, …�;L.v/ always contains a pants decomposition, which must intersect Y
essentially. The proof of the lemma for �.Y /D 2 will be postponed to Section 7.5.

Thus, although the rest of this section is written to be valid for any Y , we
may only apply it for �.Y /D 2 after Lemma 7.4 has been established in that case.
Let us henceforth assume that L has been given at least as large as the constant in
Lemma 7.4, and denote …� D…�;L.

Bounds between levels. We next consider conditions on a geodesic h that al-
low us to establish (7.1) for Y �D.h/ and for simplices appearing in h.

LEMMA 7.5. Suppose h 2H with �.D.h//� 4, Y �D.h/, and

(1) dD.h/.v;…�.v//� d for all simplices v in h,

(2) dY .u;…�.u// � d if u is a vertex of simp.I.h// or simp.T.h// that inter-
sects Y .

Then

(7.5) dY .v;…�.v//� d
0

for all simplices v of h which intersect Y , where d 0 depends on d .

Proof. Let v be a simplex of h that intersects Y . Then v is not in �h.Y /, and
let us assume without loss of generality that max�h.Y / < v.

Suppose that the distance from v to the last simplex ! of h is no more than
2dC1. Let ˛ be the segment of h from v to !. Since every simplex in ˛ crosses Y ,
the 1-Lipschitz property for �Y implies

diamY .˛/� 2d C 1:

The Relative Coarse Lipschitz property (P2) of …� in Theorem 6.1 says that for
every two successive simplices x,x0 of ˛ we have

diamY .…�.x/[…�.x0//�D1:
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By Lemma 7.4, �Y .…�.x// is nonempty for each x in ˛, so we can sum this over
˛ to obtain

diamY .…�.˛//�D1.2d C 1/:

Finally, we have by hypothesis (2) the bound

dY .!;…�.!//� d:

Noting that �Y .!/ 2 �Y .˛/ and �Y .…�.!//� �Y .…�.˛//, we can then put these
three bounds together to obtain

diamY .˛[…�.˛//� d C .D1C 1/.2d C 1/:

In particular this bounds dY .v;…�.v//, and we have the desired statement.
Alternatively, suppose that the distance from v to the last simplex of h is at

least 2d C 2 (including the possibility that it is infinite). Let ˛ be the segment of
length 2dC2 beginning with v, and let w be the other endpoint of ˛. By hypothesis
we have

dD.h/.w;…�.w//� d

and hence we can join w with �D.h/.…�.w// with a path in A1.D.h// of length
at most d , and whose first and last vertex (by Lemma 7.4) intersect Y . Using
the 2-Lipschitz map  W A0.D.h//! C0.D.h// described in Section 4, we can
replace this with a path ˇ with the same endpoints and whose interior vertices are
in C.D.h//, of length at most 2d . Now recalling that max�h.Y / < v, we find
that dC1.D.h//.w;max�h.Y // � 2d C 3. By the triangle inequality in C1.D.h//,
every point in ˇ is at least distance 3 from max�h.Y / and hence at least distance 2
from Œ@Y �. In particular every interior vertex in ˇ has nontrivial intersection with
Y . Now the 1-Lipschitz property of �Y again applies, to give us diamY .ˇ/� 2d .
In particular

dY .w;…�.w//� 2d:

Now we can apply exactly the same argument as in the previous case. �
Inductive argument. We will now establish, by induction, the following claim:

LEMMA 7.6. Let h 2H be a geodesic with �.D.h//� 4, and Y �D.h/. If v
is a simplex of h or simp.I.h// or simp.T.h//, and �Y .v/¤∅, then

dY .v;…�.v//� d

where d depends on �.D.h// and �.S/.

Proof. Consider first the case where h D gH and Y D S , and let us apply
Lemma 7.2. If gH is bi-infinite there are no conditions to check. If not, suppose
that I.gH / D I.H/ contains a finite vertex u. Then by definition of I.H/ (�7.1)
we have `�.u/ � 2L0. This uniformly bounds dS .u;…�.u//, since u and any
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element of…�.u/ have lengths bounded by 2L0 and L0 on the same pleated surface
f 2 pleat�.u/. Hence the condition of Lemma 7.2 holds for u. The same is true
for T.gH /, and we therefore have

(7.6) dS .v;…�.v//� d

for every simplex v of gH , where d is a constant depending only on S .
We may now apply Lemma 7.5 to hDgH , with every subsurface Y : Condition

(1) of the lemma follows from (7.6) which we have just proved. For condition (2),
note as above that for any finite vertex u in I.H/ or T.H/, u 2…�.u/ and hence
if u intersects Y we have dY .u;…�.u//D 0. Thus the conclusion of Lemma 7.6
holds for the geodesic gH , and we have established the base case.

Now let h 2H be any geodesic other than gH , and suppose that Lemma 7.6
holds for all h0 with �.D.h0// > �.D.h//, for some constant d . In order to apply
Lemma 7.2 to h, we must consider the condition on its endpoints. Let b; f be such
that b .d h&d f . If T.h/ is in EL.D.h// (h is infinite in the forward direction),
then there is nothing to check. Otherwise T.h/ has a finite simplex w, which by
definition of h&d f appears either in a simplex of f or in T.f /. By the induction
hypothesis applied to f we have dD.h/.w;…�.w// � d . The same reasoning
applies to I.h/, using b. Thus, we may apply Lemma 7.2 to obtain the bound (7.3)
for all simplices of h.

This then establishes condition (1) of Lemma 7.5 for h. To obtain condition
(2) for any Y �D.h/, we again use the fact that the endpoints of h are contained
in b and f , and hence the inductive hypothesis for b and f yields this bound also
(for suitable constants). Thus, we apply Lemma 7.5 to give us the statement of
Lemma 7.6 for h. �

Reduction to nested case. So far we have proved the bound on dY .v;…�.v//
in the case where v is in a geodesic h with Y �D.h/. It remains to show that the
general case reduces to this one.

For any geodesic h 2H with �.D.h//� 4 and simplex v in h, let v[ @D.h/
denote the simplex of C.S/ corresponding to the disjoint union of curves 
v and
(the nonperipheral components of) @D.h/. Let us fix Y and prove, by induction on
�.D.h//, that

(7.7) dY .v[ @D.h/;…�.v[ @D.h///� C;

provided the left-hand side is defined (where C is a uniform constant). By Lemma
7.4, all that is necessary for the left-hand side to be defined is that v[ @D.h/ have
nontrivial intersection with Y .

For any h such that Y �D.h/, (7.7) reduces to what we have already proven.
This applies in particular to h D gH . Now given any other h 2 H , suppose the
claim is true for all h0 with �.D.h0// > �.D.h//. Let h &d f . Then D.h/ is a
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component domain of .D.f /; w/ for some simplex w in f , and hence @D.h/ is
contained in w[ @D.f /.

If @D.h/ intersects Y essentially, then so does w [ @D.f /, and hence the
inductive hypothesis bounds dY .w [ @D.f /;…�.w [ @D.f ///. Now note that
v[ @D.h/ and w[ @D.f / have intersection @D.h/, and since this has nonempty
projection �Y .@D.h//we have a bound on diamY .v[@D.h/[w[@D.f //. Further-
more …�.@D.h// contains …�.v[ @D.h// and …�.w[ @D.f //. Thus, invoking
Theorem 6.1 we may deduce a bound on

dY .v[ @D.h/;…�.v[ @D.h///:

If @D.h/ does not intersect Y essentially, but v does, then Y �D.h/, and we
have already proven the bound.

This concludes the proof of Theorem 7.1, in the nonannulus case.

7.4. Tube penetration lemma. Applying the nonannulus case of Theorem
7.1, we are now going to control which pleated surfaces arising from a hierarchy
can meet Margulis tubes in N�.

LEMMA 7.7. There exists �3 > 0 with the following property: Let u be a vertex
appearing in H�.�/ and let ˛ 2 �1.S/ satisfy `�.˛/ < �3. A map

f 2 pleat�.u/

meets the Margulis tube T�3.˛/ only if ˛ represents a simple curve which has no
essential intersection with 
u.

COROLLARY 7.8. Let � be a pants decomposition whose components are
vertices of H , and ˛ 2 �1.S/ a primitive element with `�.˛/ < �3. A map

f 2 pleat�.�/

meets the Margulis tube T�3.˛/ if and only if ˛ represents an element of �.

The “if” direction of the corollary is obvious. For the “only if” direction, if f
meets T�3.˛/, then Lemma 7.7 implies that every component of � has no essential
intersection with the simple curve ˛. Since � is a pants decomposition, ˛ must be
one of the components.

Proof of the Tube Penetration Lemma. We will choose �3 � �1, and assume
that f .S/ meets T�3.˛/. By the choice of �1 in Section 3.2.2 we know that ˛ has
length at most �0 in �f . Hence it is a multiple of the core of a thin collar and since
we assumed it was primitive it must in fact be the core, and in particular represents
a vertex of C.S/.

The vertex u must appear in some simplex v of a geodesic h 2 H , with
�.D.h// � 4. Assuming 
v intersects ˛ essentially, we will prove that f .S/ can
penetrate no further than a distance d into T�1.˛/, where d depends on �.D.h//.



68 YAIR MINSKY

The proof will be by downward induction on �.D.h// with D.h/D S being the
base case.

Since v …�h.˛/, we may assume without loss of generality that v >max�h.˛/
(otherwise we reverse the directions in the rest of the argument). Let J denote the
largest segment of h beginning with v so that for every vertex x of J its geodesic
representative x� in N� meets T�1.˛/. For any x 2 J , every f 2 pleat�.x/ has
nontrivial intersection with T�1.˛/. As above this means `�f .˛/ � �0, and in
particular

˛ 2…�.x/:

Since �.D.h//� 4 we may apply the nonannulus case of Theorem 7.1 to obtain

(7.8) dD.h/.x; ˛/� b

where b is a constant derived from that theorem using the bound D0 supplied by
Theorem 6.1 for diamD.h/.…�.x//. We conclude, since J is geodesic in C1.D.h//,
a bound of the form

(7.9) jJ j � b0:

If J is the entire portion of h following v, then let w denote the last simplex
of J and hence the last of h. If h D gH (the base case of the induction), then
w � base.T.H// and hence represents curves in N� of length at most 2L0. This
bounds by L0 the distance which w can penetrate into T�1.˛/, since w� cannot be
completely contained in this Margulis tube (if it were it would be ˛ itself, but we
have w >max�h.˛/).

If h¤gH , then there exists f 2H such that h&d f , and hence w is contained
in a simplex of f . By the induction, w� cannot penetrate further than d�.D.f //
into T�1.˛/.

If the last simplex of J is not the last simplex of h, then let w denote its
successor, so by definition w� does not meet T�1.˛/. Define J 0 D J [ fwg (so
jJ 0j � jJ jC 1).

We will now construct a path in N� joining any point qv 2 v�\T�1.˛/ to the
boundary of T�1.˛/, whose length will be bounded. There are two possible cases:

Case 1: �.D.h// > 4. Consider any two successive simplices x; x0 in J 0, and
let q be a point of x� \T�1.˛/. Since x and x0 determine two disjoint curves in
D.h/, there is a pleated surface f 2 pleat�.Œxx0�/.

Again by the choice of �1, q is the f -image of a point p 2 
x in the �0-thin
part of �f associated to ˛. By our construction both x and x0 cross ˛, so there
is a point p0 on 
x0 in this thin part, a �f -distance of at most �0 from p. Thus
q0 D f .p0/ is connected to q by a path of length at most �0.

Apply this successively to all the vertices of J 0, beginning with qv. Each
new point is either outside T�1.˛/, in which case we stop, or inside it, in which



THE CLASSIFICATION OF KLEINIAN SURFACE GROUPS, I 69

case we continue, and reach w� in at most jJ 0j steps. Since w� is either disjoint
from T�1.˛/ or penetrates no more than d�.D.h//C1 into it, we conclude that the
distance from q to the boundary of T�1.˛/ is at most jJ 0j�0Cd�.D.h//C1 � b0�0C
d�.D.h//C1 � d�.D.h//.

Case 2: �.D.h//D 4. Now successive vertices x; x0 in J 0 are not disjoint and
hence we cannot form pleat�.x[x0/. Instead, extend x[@D.h/ and x0[@D.h/ to
pants decompositions p; p0 which differ by an elementary move, and consider the
corresponding surfaces g 2 pleat�.p/, g0 2 pleat�.p0/, and the halfway surface
f D fp;p0 (see �3.1). The halfway surface f is pleated along a lamination contain-
ing a leaf (or two leaves) l that is part of the pleating locus of g inD.h/, and a leaf or
two l 0 that is part of the pleating locus of g0 in D.h/. The discussion in Section 3.1
tells us that ˛ intersects l essentially since it intersects 
x , and intersects l 0 since
it intersects 
x0 .

Thus in �g both 
x and l pass through the collar of ˛, in �f both l and l 0 pass
through it, and in �g 0 both l 0 and 
x0 do. It follows that we can apply the argument
of case 1 to produce a path as before, but with three times the number of steps.

Thus we have shown that v� cannot penetrate more than a certain d�.D.h//
into T�1.˛/. Now using (3.7) this implies that for a certain uniform �3, v� cannot
meet the tube T�3.˛/.

7.5. Projection bounds in the annulus case. We are now ready to complete
the proof of Theorem 7.1 in the case that Y is an annulus. It suffices to give the
proof of Lemma 7.4 in this case:

Proof. Let ˛ denote the core of the annulus Y . Let �3 be the constant
in Lemma 7.7, and take L � L.�3/. Then �Y .v/ ¤ ∅ implies that, for any
f 2 pleat�.v/, f .S/ does not meet T�3.˛/. Thus, `�f .˛/ � �3 and it follows
by definition of the function L./ (see �3.2) that there is a pants decomposition of
total length at most L which crosses ˛ essentially. Thus, �Y .…�;L.v//¤∅, which
gives the statement of Lemma 7.4. �

The rest of the proof of Theorem 7.1 proceeds exactly as in Section 7.3.

7.6. Upper length bounds. Our final application of the projection mecha-
nism will be to obtain an a priori upper bound on the length of every curve that
appears in the hierarchy.

LEMMA 7.9. For every vertex v in the hierarchy H�.�/,

`�.v/�D3

where D3 is a constant depending only on the topological type of S .
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Proof. Any vertex v in H is contained in some maximal slice � , by Lemma
5.8. Let �D �� be the associated marking, and fix

f 2 pleat�.base.�//� pleat�.v/:

Let �3 be the constant in Lemma 7.7 and Corollary 7.8. Applying Corollary 7.8,
we find that all curves ˛ in S with `�f .˛/ � �3 must be components of base.�/.
If `�f .v/ � �3, then we already have our desired bound, and we are done. Thus
assume `�f .v/ > �3. Since 
v is disjoint from the other curves of base.�/, it must
be contained, nonperipherally, in a component R of the �3-thick part of �f .

Since �3 < �0, there is a pants decomposition � of R of �f -length at most L0,
and in particular

��…�;L0.base.�//:

Since R is �3-thick, there is a constant L depending on �3 so that each component
of � is crossed by a transversal curve of �f -length at most L, which misses the rest
of �. Let �2 be the clean marking with base.�2/D � and these bounded-length
transversal curves.

By Theorem 7.1, if Y is any subsurface of R that has essential intersection
with both � and base.�/ (including Y DR), then

dY .base.�/; �/�D2:

The only subsurfaces of R excluded by this are annuli associated with components
of base.�/ or �. Let Y be an annulus whose core is a component of �, but not a
component of base.�/. The transversal t in �2 crossing Y , since it has �f -length
at most L, is contained in …�;L.base.�//. Thus applying Theorem 7.1 again, there
is a D02 such that

dY .base.�/; t/�D02:

To deal with the remaining annuli, extend base.�/ to a new clean marking �0

by adding for each component ˛ a transversal t satisfying d˛.t; �2/ � 2 (this is
always possible by picking some transversal and applying Dehn twists). Thus for
all annuli Y with cores in base.�/D base.�0/ we also have

dY .�
0; �2/� 2:

In other words we have shown that the two clean markings satisfy

dY .�
0; �2/�D

for a uniform D, and all domains Y � R. By Lemma 5.12, this gives an upper
bound E on the elementary move distance del.�2; �

0/ (to obtain the bound, set
K Dmax.K0;DC 1/ in the lemma).

Since the base curves and transversals of �2 have �f lengths bounded by L,
and since an elementary move can change the lengths of components of a maximal



THE CLASSIFICATION OF KLEINIAN SURFACE GROUPS, I 71

clean marking by at most a bounded factor, we obtain a bound on the �f -lengths
of the curves of �0, in terms of L and E. In particular we have an upper bound on
`�.v/, and we are done. �

8. The model manifold

In this section we will construct an oriented metric 3-manifold M� associated
to the end invariants � D �˙.�/. M� is intended to be a model for the geometry of
the augmented convex core yCN of N�. The following is a summary of the structure
of M� .

(1) M� is properly embedded in yS �R, and is homeomorphic to yCN .

(2) An open subset U �M� is called the set of tubes of M� . Each component
U �U is of the form

collar.v/� I

where v is either a vertex of H� or a boundary component of S , and I � R is
an open interval. I is bounded except for the finitely many v corresponding
to parabolics. The correspondence U $ v is bijective.

(3) LetM� Œ0� beM� nU. M� Œ0� is a union of standard “blocks” of a finite number
of topological types.

(4) Except for finitely many blocks adjacent to @M� , all blocks fall into a prede-
termined finite number of isometry types.

(5) Each tube U is isometric to a hyperbolic or a parabolic tube, and with respect
to a natural marking has boundary parameters .!M .U /; �1/. (See �3.2.) We
call !M .U / the meridian coefficient of U .

LetHDH� be associated to � as in Section 7.1. We will begin by constructing
M� Œ0� abstractly as a union of blocks. We will then show how to embed it in yS �R,
and in its complement we will find the tubes U which we adjoin to obtain M� .

8.1. Blocks and gluing. The typical blocks from which we build M� Œ0� are
called internal blocks. There are some special cases of blocks associated to the
boundary of the convex core, but these can be ignored on a first reading (and do
not appear, for example, in the doubly degenerate case).

Given a 4-edge e in H , let g be the 4-geodesic containing it, and let D.e/
be the domain, D.g/. Recall (�5.6) that e� and eC denote the initial and terminal
vertices of e.

To each e we will associate a block B.e/, defined as follows:

B.e/D .D.e/� Œ�1; 1�/ n
�
collar.e�/� Œ�1;�1=2/[ x collar.eC/� .1=2; 1�

�
:
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A
AB

B

Figure 9. Constructing an internal block B.e/. If D.e/ is a one-
holed torus, then B.e/ is obtained by gluing face A to face A0, and
B to B 0. The curved vertical faces become @D.e/ � Œ�1; 1�. If
D.e/ is a 4-holed sphere, then B.e/ is obtained by doubling this
object along A;A0; B and B 0.

That is, B.e/ is the product D.e/� Œ�1; 1�, with solid-torus trenches dug out of its
top and bottom boundaries, corresponding to the two vertices of e. See Figure 9.

We remark that, in this construction, we think of blocks of distinct edges as
disjoint (for example think of the intervals Œ�1; 1� as disjoint copies of a standard
interval). Afterwards we will glue them together using specific rules, and embed
the resulting manifold in yS �R.

We break up the boundary of B.e/ into several parts (see Figure 10 for a
schematic). The gluing boundary of B.e/ is

@˙B.e/� .D.e/ n collar.e˙//� f˙1g:

Note that the gluing boundary is always a union of three-holed spheres.
The rest of the boundary is a union of annuli, with

@jjB.e/� @D.e/� Œ�1; 1�

being the outer annuli.
The inner annuli @˙i B.e/ are the boundaries of the removed solid tori. That

is,
@˙i B.e/D @B.e/\ @.collar.e˙/�˙.1=2; 1�/

(where C.a; b� denotes .a; b� and �.a; b�D Œ�b;�a/). These annuli break up into
a horizontal part

@˙ihB.e/D collar.e˙/� f˙1=2g

and a vertical part

@˙ivB.e/D @ collar.e˙/�˙Œ1=2; 1�:

Boundary blocks. Recall from Section 2.2 that RT
C

denotes the union of sub-
surfaces in the top of the relative compact core that face geometrically finite ends.
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∂+B

 ∂ +
ivB

∂ B

   ∂−B

 ∂
−
ivB ∂

−
ivB

 ∂
−
ihB

   ∂−B

∂ B

∂+B

 ∂ +
ivB

 ∂ +
ihB

‖‖

Figure 10. Schematic diagram of an internal block.

∂0
∂‖∂‖

∂−∂−∂−

∂i ∂i

B′
top(νR)

Figure 11. Schematic for a boundary block

Let R be a subsurface of S homotopic to a component of RT
C

, and let �R be the
associated component of �T

C
in T.R/. We construct a block Btop.�R/ as follows:

Let TR be the set of curves of base.T.H�//D base.�C/ that are contained in R.
Define

B 0top.�R/DR� Œ�1; 0� n .collar.TR/� Œ�1;�1=2//

and let
Btop.�R/D B

0
top.�R/[ @R� Œ0;1/:

This is called a top boundary block (see Figure 11). Its outer boundary @oBtop.�R/

is R � f0g [ @R � Œ0;1/, which we note is homeomorphic to int.R/. This will
correspond to a boundary component of yCN . The gluing boundary of this block
lies on its bottom: it is

@�Btop.�R/D .R n collar.TR//� f�1g:
Similarly if R is a component of RT� we let IR D I.H�/\R and define

B 0bot.�R/DR� Œ0; 1� n collar.IR/� .1=2; 1�:
and the corresponding bottom boundary block

Bbot.�R/D B
0
bot.�R/[ @R� .�1; 0�:

The gluing boundary here is @CBbot.�R/D .R n collar.IR//� f1g:
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The vertical annulus boundaries are now @jjBtop.�R/D @R� Œ�1;1/ and the
internal annuli @˙i are are a union of possibly several component annuli, one for
each component of TR or IR.

Since the interior of each block is a subset of Z � Œ�1; 1� for a subsurface Z
of S , it inherits a natural orientation from the fixed orientation of S and R.

Gluing instructions. We obtainM� Œ0� by taking the disjoint union of all blocks
and identifying them along the three-holed spheres in their gluing boundaries. The
rule is that whenever two blocks B and B 0 have the same three-holed sphere Y
appearing in both @CB and @�B 0, we identify these boundaries using the identity
on Y . The hierarchy will serve to organize these gluings and insure that they are
consistent.

By definition, all these three-holed spheres are component domains in the
hierarchy. Conversely, we will now check that every component domain Y in H
with �.Y /D 3 must occur in the gluing boundary of exactly two blocks.

Lemma 5.17 tells us that T.H/jY ¤∅ if and only if there exists a 4-geodesic
f 2 H with Y &d f , and f is unique if it exists. When f exists, there is an
edge ef in f with Y a component domain of .D.f /; e�

f
/, and hence Y � f�1g is

a component of @�B.ef /.
If f does not exist and T.H/jY D ∅, Y must be a component domain of

base.T.H//, and hence Y � f�1g occurs on the gluing boundary @�Btop.�R/ for
some top boundary block.

Similarly, if I.H/jY ¤∅, then b .d Y for a unique 4-geodesic b, and Y �f1g
is in @CB.eb/, and if I.H/jY D ∅, then Y � f1g appears in the gluing boundary
of a bottom boundary block.

We conclude that each Y serves to glue exactly two blocks, and in particu-
lar M� Œ0� is a manifold. The orientations of the blocks extend consistently to an
orientation of M� Œ0�.

8.2. Embedding in yS �R. The interior of each block B.e/ inherits a 2-di-
mensional “horizontal foliation” from the foliation of the product D.e/� Œ�1; 1�
by surfaces D.e/� ftg. Let us call the connected leaves of this foliation the level
surfaces of B.e/. (For boundary blocks we do similarly, and for the added vertical
annuli of the form @R� Œ0;1/ or @R� .�1; 0�, we also include the level circles
as leaves of this foliation.) An embedding f WM� Œ0�! S �R will be called flat
if each connected leaf of the horizontal foliation Y � ftg in M� Œ0� is mapped to a
level set Y � fsg in the image, with the map on the first factor being the identity.

THEOREM 8.1. M� Œ0� admits a proper flat orientation-preserving embedding
‰ WM� Œ0�! S �R.

Remark. Once we have fixed the embedding ‰ we will adopt notation where
M� Œ0� is identified with its image in S �R, and ‰ is the identity.
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Proof. In the course of the proof we will fix a certain exhaustion of M� Œ0�

(minus its boundary blocks) by subsets M j
i , where M j

i and M jC1
i differ by the

addition of one block on the “top”, and M j
i�1 and M j

i differ by the addition of a
block on the bottom. The map will be built inductively on M j

i .
Let f�igi2I be a resolution of H , as in Lemma 5.8.
The pants decompositions base.��i / form a sequence that may have adjacent

repetitions – that is, base.��i / and base.��iC1/ may be the same because the move
�i ! �iC1 involves a � D 2 geodesic (twists in an annulus complex) or a � > 4 geo-
desic (reorganization moves). If we remove such repetitions we obtain a sequence
of pants decompositions f�igi2I0 , where I0 is a new index set, so that each step
�i ! �iC1 corresponds to an edge in a � D 4 geodesic. For a vertex v appearing
in H , define

J 0.v/D fi 2 I0 W v 2 �ig:

Lemma 5.16 implies that J.v/ is an interval in Z, and it follows that J 0.v/ is an
interval as well.

To each �i we associate a subsurface Fi of M� Œ0� whose components are level
surfaces of blocks, as follows. A complementary component Y of �i is necessarily
a three-holed sphere which appears as a component domain in H . Thus there
are blocks B1 and B2 such that Y is isotopic to a component of @CB1 and to a
component of @�B2, which are identified in M� Œ0�. Let this identified subsurface
be a component of Fi . Repeating this for all complementary components of �i we
obtain all of Fi , which we call a split-level surface.

If �i and �iC1 differ by a move in a � D 4 geodesic k, then there is a block
Bi with domain D.k/, so that FiC1 is obtained from Fi by removing @�Bi and
replacing it with @CBi .

Now define M 0
0 D F0, and inductively define

M
jC1
i DM

j
i [Bj

and
M
j
i�1 DM

j
i [Bi�1:

Thus we are building up M� Œ0� by successively adding blocks above and below.
Since the resolution f�ig contains an elementary move for every 4-edge of H by
Lemma 5.8, every internal block is included in fM j

i g.
Now the map ‰ can easily be defined inductively on M1�1 D [i;j2ZM

j
i .

Begin by mapping F0 DM 0
0 to S � f0g by the map that restricts to the identity on

the surface factors. Now suppose we wish to add a block Bj to M j
i . By induction

the boundary components of @�Bj , which are part of Fj , are already mapped flatly
by‰. We extend‰ to Bj so that it is a orientation-preserving flat embedding. Since
there may be two components of @�Bj which are mapped to different heights, we
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may have to stretch the two “legs” of Bj by different factors, but the map can be
piecewise-affine on the vertical directions, and the identity on the surface factors.
(See Figure 12 for a schematic example.) We always choose ‰ on Bj so that the
image of every annulus in @jjBj has height at least 1. This will guarantee that ‰
is proper.

To define the map on the boundary blocks, note that the gluing boundary of
a boundary block must be part of the boundary of M1�1, and is mapped by ‰ so
that each component is mapped flatly. Hence we can extend ‰ as an orientation-
preserving flat embedding on each boundary block, making sure that the map on
the added annuli @R� Œ0;1/ (or @R� .�1; 0�) is proper.

We observe that ‰.M j
i / always lies “below” ‰.Fj /, in the following sense:

First, for each component Y of Fj , if ‰.Y / D Y � ftg, then Y � .t;1/ does
not meet ‰.M j

i /. Second, let A be a component annulus of collar.�j /. Let s be
the minimum image height of the (one or two) subsurfaces of Fj which project to
complementary components of collar.�j / adjacent to A. Then A� .s;1/ does not
meet ‰.M j

i /. This property holds trivially for M 0
0 , and it is easy to see that it is

preserved with the addition of each block. The corresponding property holds in the
opposite direction, i.e. ‰.M j

i / lies “above” ‰.Fi /. From this we may conclude
that ‰ is an embedding. �

We next wish to keep track of how the solid tori fU.v/g arise in the comple-
ment of ‰.M� Œ0�/.

LEMMA 8.2. Let v be vertex of H and let F.v/ be the union of annuli in the
boundaries of blocks of M� Œ0� that are in the homotopy class of v. Then F.v/ is a
torus or an annulus, and ‰jF.v/ is an embedding with image

@.collar.v/� Œs1; s2�/

if v is not parabolic in either I.H/ or T.H/,

@.collar.v/� Œs1;1//

if v is parabolic in T.H/, and

@.collar.v/� .�1; s2�/

if v is parabolic in I.H/.

Proof. If v intersects base.I.H//, then Lemma 5.15 gives us a unique 4-edge
e1 with vD eC1 . Thus the block B.e1/ has inner annulus @Ci B.e1/ in the homotopy
class of v. Let us call the horizontal subannulus @C

ih
B.e1/ the bottom annulus of v.

By the definition, ‰ maps this annulus to collar.v/�fs1g for some s1.v/ 2 R, and
the vertical part @CivB.e1/ is mapped to annuli of the form ˛� Œs1; t � where ˛ is a
boundary component of collar.v/ and t > s1.
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The elementary move associated to e1 introduces v into the resolution of the
hierarchy, so that all other annuli in this homotopy class occur after e1.

If v is a component of base.I.H//, and if it has a transversal, then a similar
description holds, where B.e1/ is replaced by a bottom boundary block. If v 2
base.I.H// but has no transversal, it is parabolic in I.H/, and there is no block B
with an inner annulus homotopic to v.

The same discussion holds with regard to T.H/, yielding a unique top annulus
for v in the bottom boundary of an appropriate block, unless v is parabolic in T.H/.
We note that v cannot be parabolic in both I.H/ and T.H/. All other annuli in
the homotopy class of v must occur as outer annuli, i.e. in the sides of blocks
whose domains have boundary components homotopic to v. These blocks occur
in the resolution in the interval J.v/, that is between the move that introduces v in
the resolution and the one that takes it out. Since ‰ is locally an embedding (by
the orientation-preserving condition) these annuli must fit together into a torus or
annulus, as described in the statement of the lemma. �

We note also that these annuli and tori, together with the outer boundaries
of boundary blocks, form the entire boundary of M� Œ0�. From the description of
‰.F.v// it clearly bounds an open solid torus in S �R, namely collar.v/�.s1; s2/,
collar.v/� .s1;1/, or collar.v/� .�1; s2/ in the various cases, and we denote
this solid torus U.v/.

Each solid torus U.v/ is in fact disjoint from ‰.M� Œ0�/: For j D infJ 0.v/,
the block Bj�1 contains the bottom annulus of v, and ‰.M j

i / is below the image
annulus collar.v/�fs1.v/g as in the proof of Theorem 8.1, and in particular disjoint
from U.v/ which lies above this annulus. For infJ 0.v/ < j � supJ 0.v/, Bj�1 is
disjoint from collar.v/�R and in particular from U.v/. For j D supJ 0.v/C 1,
Bj contains the top annulus of v and lies above it in the image, and all subsequent
blocks are placed above this, and hence disjoint from U.v/.

Peripheral tubes. It remains to describe the tubes U.v/ for v a component of
@S . So far, both M� Œ0� and the tubes U.v/ for vertices v have embedded, disjointly,
into S�R. Now for a boundary component v, the annulus collar.v/ is a component
of yS nS . We let U.v/ be simply collar.v/�R.

The intersection of @U.v/ with ‰.M�/ is the union of all vertical annuli of
blocks which are in the homotopy class of v. As we observed above for vertices,
these annuli cover all of @U.v/.

Let U be the union of the open tubes U.v/ we have described, so that U

is disjoint from ‰.M� Œ0�/ and @U is contained in @‰.M� Œ0�/. From now on we
identify M� Œ0� with its ‰-image, and define M� DM� Œ0�[U.

8.3. The model metric. We will describe a metric for each of the finitely
many block types of which M� Œ0� is constructed, and use this to piece together
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F0

Figure 12. A schematic of a flat embedding of M j
i into S � R.

Note that some portions of blocks are stretched vertically. This
picture is a fairly accurate rendition of the case S D S0;5.

a metric on all of M� Œ0�. Then we will discuss the structure of the tubes U, and
extend the metric to them as well.

Internal blocks. Fix one copy W1 of a four-holed sphere, and one copy W2
of a one-holed torus. Mark W1 with a pair v�1 ; v

C
1 of adjacent vertices in C.W1/,

and similarly v�2 ; v
C
2 for C.W2/. This determines two blocks yBk D B.Œv�k v

C

k
�/,

k D 1; 2. That is, yBk is constructed from Wk � Œ�1; 1� by removing solid torus
neighborhoods of 
v�

k
�f�1g and 


v
C

k

�f1g, as in the construction at the beginning
of the section.

Let us define some standard metrics on the surfaces S0;2, S0;3, S0;4 and S1;1:
Call an annulus standard if it is isometric to collar.
/ for a geodesic 
 of

length �1=2. Fix a three-holed sphere Y 0 with a hyperbolic metric so that @Y 0 is
geodesic with components of length �1=2. call a three-holed sphere standard if it
is isometric to Y 0 n collar.@Y 0/.

Now fix a surface W 0
k

homeomorphic to Wk , and endowed with a fixed hyper-
bolic metric � for which @W 0

k
is geodesic with components of length �1=2, and fix

an identification of Wk with W 0
k
n collar.@W 0

k
/. We can do this, for specificity, in

such a way that the curves 

v˙
k

are identified with a pair of orthogonal geodesics

of equal length. Finally, choose the identification so that the collars collar.v˙
k
/ in

Wk (fixed by our global convention in �3.3) are identified with collar.v˙
k
; �/ in

W 0
k

. We call this metric standard on Wk .
Now we may fix a metric on yBk with the following properties:

(1) The metric restricts to standard metrics on Wk � f0g, and on each 3-holed
sphere in @˙ yBk .



THE CLASSIFICATION OF KLEINIAN SURFACE GROUPS, I 79

(2) Each annulus component of @jj yBk (respectively @˙i yBk) is isometric to S1 �
Œ0; �1� (resp. S1� Œ0; �1=2�), with S1 normalized to length �1, and this product
structure agrees with the product structure imposed by the inclusion in Wk �
Œ0; 1�.

(The details of the construction do not matter, just that these properties hold and
that a fixed choice is made. The length of �1 for the cores of all the Euclidean
annuli is made possible by the definition of collars in �3.2.3.)

Note that, by definition of a standard metric, each component of the gluing
boundary @˙ yBk admits an orientation-preserving isometry group realizing all six
permutations of the three boundary components. This will enable us to glue the
blocks via isometries.

We will call these two specific blocks the “standard blocks.” Every block
B.e/ in M� Œ0� associated to a 4-edge e can be identified with one of yB1 or yB2,
depending on the homeomorphism type ofD.e/, by a map that takes e˙ to v˙

k
. This

identification is unique up to isotopy preserving the various parts of the boundary,
and any such identification yields what we call a standard metric on B.e/.

Boundary blocks. Consider a top boundary block B D Btop.�R/. Recall that
the outer boundary @oB was constructed as R�f0g[@R� Œ0;1/, which is homeo-
morphic to int.R/. Endow it with the Poincaré metric �1 representing �R, in such
a way that collar.@R; �1/ is identified with @R� .0;1/, and collar.TR; �1/ is
identified with collar.TR/� f0g. Let �m be the conformal rescaling described in
Section 3.4, which makes the collars of curves of length less than �1 into Euclidean
cylinders. Note that (by definition of TR) these collars are either components of
collar.TR/ or of collar.@R/.

Let � 01 be a hyperbolic metric on int.R/ for which every component of TR
has length less than �1=2, and which differs from �1 by a uniformly bilipschitz
distortion (the constant can be chosen to depend only on �1=L0). Let � 0m be the
conformal rescaling of � 01 that makes component of collar.TR [ @R/ a Euclidean
cylinder, and equals � 01 elsewhere. Then � 0m=�m is uniformly bounded above and
below.

Now we can transport � 0mjR�f0g to R � f�1=2g via the identity on the first
factor. Extend these to a metric on on R� Œ�1=2; 0� which is in uniformly bounded
ratio with the product metric of �m and dt (here t 2 Œ�1; 0�). The rest of the block,
.R n collar.TR// � Œ�1;�1=2�, may be metrized as follows: The restriction of
� 0m to each component Y of R n collar.TR/ is uniformly bilipschitz equivalent to a
standard metric on a three-holed sphere, since all the curves of TR have �1-length
at most L0 by the choice of TR (see �7.1). Thus we may place a standard metric
on the corresponding gluing surface Y � f�1g, and interpolate between them on
Y � Œ�1;�1=2� so that the resulting metric is uniformly bilipschitz equivalent to
the product metric of �1jY and dt .
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We may do this, as for the internal blocks, in such a way that the annulus
boundaries are given a flat Euclidean structure, and the natural product structure
agrees with that inherited from S �R.

The metric on bottom boundary blocks is defined analogously.

LEMMA 8.3. There is a metric on M� Œ0� which restricts on each block to a
standard metric.

Proof. By definition, each block admits a homeomorphism to a standard block,
and we can pull back the metric via this identification. A gluing surface Y will then
be mapped to the gluing surfaces of the standard block (which are all standard 3-
holed spheres) in two possibly different ways by the identifications of the blocks on
its two sides. However, in each isotopy class of self-homeomorphisms of a standard
3-holed sphere there is an isometry, by construction. Therefore, after adjustment
by an appropriate isotopy, we may assume that the metrics on the gluing surfaces
match. �

Meridian coefficients. Let v be a nonparabolic vertex in H . The torus @U.v/
inherits a Euclidean metric from M� , and a boundary orientation from U.v/. It
also has a natural marking .˛; �/, where ˛ is the homotopy class of the cores of
the annuli making up @U.v/, homotopic to 
v in S , and � is the meridian class
of @U.v/. To describe the meridian explicitly, recall that we represent U.v/ as
a product collar.v/ � .s; t/. If a is any simple arc in collar.v/ connecting the
boundaries, then

(8.1) @.a� Œs; t �/

is a meridian. Note that the choice of a does not affect the isotopy class of this
curve in @U.v/.

As in Section 3.2, we can describe the geometry of this oriented marked Eu-
clidean torus with parameters .!; t/. In this case t D �1, since the circumference
of the annuli in @U.v/ is �1 by construction. The Teichmüller parameter ! 2 H2

will be called the meridian coefficient of v, and denoted !M .v/.
Note that �1j!M .v/j is the length of the meridian, and also that the imaginary

part �1 Im! is simply the sum of the heights of the annuli that make up @U.v/.
We have Im! � 1 since @U.v/ contains at least the annuli from its bottom and top
blocks.

If U.v/ is a parabolic tube, we define !M D i1.

Metrizing the tubes. For each nonparabolic tube U.v/, Lemma 3.2 gives us
a unique hyperbolic tube T.�; r/ whose boundary parameters with respect to the
natural marking, are .!M .v/; �1/, so we identify this tube with U.v/ via a marking
preserving isometry on the boundary. There is clearly a unique way to do this up
to isotopy of U.v/.
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@U.v/ for a parabolic v or a boundary component of S is an infinite Euclidean
cylinder of circumference �1, and there is a unique (up to isometry) rank-1 para-
bolic tube with circumference �1, so we impose that metric on U.v/.

This completes the definition of the model metric on all of M� .
We remark that our eventual goal (in [18]) is to show that these hyperbolic

tubes are in fact bilipschitz equivalent to the tubes in the hyperbolic manifold N�.
In this paper we will only obtain a Lipschitz map, and only for those tubes with
j!M j bounded above by a certain constant.

Fillings of M� Œ0�. As in the introduction, we define

UŒk�D
[

j!M .v/j�k

U.v/

and
M� Œk��M� Œ0�[

[
j!M .v/j<k

U.v/:

Note that M� Œ1� indicates the inclusion of all the nonparabolic tubes.

9. Comparing meridian coefficients

We introduced the meridian coefficient !M .v/ in Section 8, to describe the
geometry of the model torus associated to a vertex v of a hierarchyH . Now we will
describe two more ways of estimating this coefficient: one, !H .v/, will be defined
using the data in the hierarchy H� , and the third, !�.v/, using the subsurface
projection maps �W applied directly to the end invariants �.

We will prove that these invariants are close in the following sense:

THEOREM 9.1. For any pair of end invariants � and associated hierarchy H
and model manifold M , and for any nonparabolic vertex v in H , we have bounds

dH2.!H .v/; !M .v//�D(9.1)

and
dH2.!H .v/; !�.v//�D(9.2)

whereD depends only on the topological type of S . Here dH2 refers to the Poincaré
metric in the upper half-plane.

Note that we are interpreting the !’s as Teichmüller parameters, so this es-
timate is natural since dH2 can be identified with the Teichmüller distance in Te-
ichmüller space of the torus.

If v is a vertex of C.S/, let us denote the two boundary components of
collar.v/ (arbitrarily) as vl and vr. Now for ˛ D vr or vl, define

(9.3) X˛ D fh 2H W ˛ � @D.h/g:
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Note that the same h can be in both Xvl and Xvr , if its domain borders collar.v/
from both sides. We similarly define

(9.4) X˛;k D fh 2H W h 2X˛; �.D.h//D kg

and

(9.5) X˛;kC D fh 2H W h 2X˛; �.D.h//� kg:

Coefficients for internal vertices. From now until Section 9.7, we will assume
that v is an internal vertex of H – that is, it is not a vertex of simp.I.H// or
simp.T.H//. Let hv be the annulus geodesic in H with domain collar.v/. We can
then define:

(9.6) !H .v/D Œhv�C i

�
1C

X
˛Dvl;vr

X
h2X˛;4

jhj

�
:

(Here Œhv� is the signed length of hv, defined as in (4.5).)
For the next definition, again with ˛ D vl or vr, let

(9.7) Y˛ D fY � S W ˛ � @Y g

(where we recall our convention of only taking the standard representatives of
isotopy classes of surfaces, whose boundaries are collar boundaries). Define also
Y˛;4 and Y˛;4C in analogy with (9.4) and (9.5).

We now define

(9.8) !�.v/D twv.��; �C/C i
�
1C

X
˛Dvl;vr

X
Y2Y˛;4C

ffdY .��; �C/ggK

�
where K will be determined later, and ffxggK is the threshold function, defined in
Section 5.4. Here for convenience we have defined dY .��; �C/ � dY .��; �C/
and similarly for twY , where �˙ are the generalized markings derived from �˙ in
Section 7.1.

9.1. Shearing. Let us recall from [49] the notion of shearing outside a col-
lar for two hyperbolic metrics on a surface, and some of its properties. Let 
 2
C0.S/, and suppose that �1 and �2 are two hyperbolic metrics on S for which
collar.
; �1/D collar.
; �2/ (therefore denote both as collar.
/). We emphasize
that �i are actual metrics rather than isotopy classes.

We define a quantity
shear
 .�1; �2/

as follows. Let yY denote the compactified annular cover of S associated to 
 (as
in �4), let yB be the annular lift of collar.
/ to this cover, and letb�1 andb�2 denote
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the lifts of �1 and �2 to int. yY /. Define shear
 .�1; �2/ to be

sup
E;g1;g2

dA.E/.g1\E; g2\E/:

Here E varies over the two complementary annuli E1; E2 of yB in yY , and gi (for
i D 1; 2) varies over all arcs in yY connecting the two boundaries which are b� i -
geodesic in int. yY /. Thus we are measuring the relative twisting, outside yB , of any
two geodesics in the two metrics.

Note that the shear is not an approximation to the twisting parameter tw
 .
Rather, it is used for bounding the error in twisting that can accumulate outside of
a collar, and our purpose will be to bound it from above (via Lemma 9.2), enabling
us to measure twisting by restricting to a collar.

If ˛i are simple closed �i -geodesics in S crossing 
 (for i D 1; 2) and ai are
components of ˛i \ collar.
/ that cross collar.
/, then we will show

(9.9) j twcollar.
/.a1; a2/� tw
 .˛1; ˛2/j � 2 shear
 .�1; �2/C 2

where we recall from Section 4 that twcollar.
/.a1; a2/ is a quantity that depends
on the exact arcs of intersection with the collar, whereas tw
 .˛1; ˛2/ depends only
on the homotopy classes of ˛1 and ˛2.

Proof of (9.9). Let a0i for i D 1; 2 be the �i -geodesic arc in yY that represents
�Y .˛i / – that is, a choice of (geodesic) lift of ˛i to the annulus that connects the
boundaries. By definition,

tw
 .˛1; ˛2/D tw yY .a
0
1; a
0
2/:

The right-hand side decomposes as the sum

twE1.a
0
1\E1; a

0
2\E1/C tw xB.a

0
1\
xB; a02\

xB/C twE2.a
0
1\E2; a

0
2\E2/;

by two applications of the additivity property (4.3) (where xB is the closure of yB ,
i.e. the lift of collar.
/ to yY ). The absolute values of the first and third terms are
bounded by shear
 .�1; �2/, by the definition and inequality (4.1).

The arcs a1 and a2 in collar.
/ lift to two arcs in xB , which we still call a1 and
a2, and which are disjoint from or equal to a01\ xB and a02\ xB , respectively. Thus
tw xB.ai ; a

0
i \
xB/D 0, and using the additivity inequality (4.4) twice, we conclude

j twcollar.
/.a1; a2/� tw xB.a
0
1\
xB; a02\

xB/j � 2:

The estimate (9.9) follows. �

We can bound the shear between two metrics in the following setting:

LEMMA 9.2 ([49]). Suppose R is a subsurface of S each component of which
is convex in two hyperbolic metrics � and � , and that � and � are locally K-bi-
lipschitz in the complement of R. Suppose that one component of R is an annulus
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B which is equal to both collar.
; �/ and collar.
; �/ for a certain curve 
 . Then

shear
 .�; �/� ı0K;

where ı0 depends only on the topological type of S .

We remark that this lemma in [49] is stated for a slightly different definition
of collar.
; �/. However, the same argument applies for our definition, resulting
in a different constant ı0.

Another property of shearing that follows immediately from the definition
and the triangle inequality is subadditivity: If 
 has the same collar with respect
to three metrics �1; �2 and �3, then

(9.10) shear
 .�1; �3/� shear
 .�1; �2/C shear
 .�2; �3/:

9.2. Sweeping through the model. Let us elaborate on the sequence of split-
level surfaces fFigi2I0 constructed in the proof of Theorem 8.1. Each Fi cor-
responds via the projection S � R ! S to a subsurface Zi � S which is the
complement of a union of annuli collar.�i /, where �i is a pants decomposition
coming from the resolution of the hierarchy.

We can add “middle” surfaces FiC1=2 as follows: Each transition Fi ! FiC1
corresponds to an edge ei in a 4-geodesic, and hence a block Bi D B.ei /, so that
Fi and FiC1 agree except on Fi \Bi D @�Bi and FiC1 \Bi D @CBi . Define
the surface FiC1=2 to be Fi \ FiC1 union the middle surface D.ei / � f0g. The
projection of this to S , which we call ZiC1=2, is the complement of collar.�iC1=2/,
where �iC1=2 is �i \ �iC1.

Now for s either integer or half-integer, Let � 0s be the metric on Zs inherited
from Fs . By construction, this metric is “standard” on each component (see �8.3)
and hence can be extended to a hyperbolic metric �s on all of S , such that the
components of collar.�s/ are standard collars with respect to �s . Note that �s is
not unique but we will fix some choice for each s.

Now consider the interval J 0.v/� I0, consisting of those i for which v is a
component of �i . Since v is internal, t DmaxJ 0.v/ < sup I0 and bDminJ 0.v/ >
inf I0. Thus there is a transition �b�1! �b that replaces some vertex u by v, and a
transition �t ! �tC1 replacing v by some w. The block Bb�1DB.eb�1/ contains
the bottom annulus of @U.v/, and the block Bt D B.et / contains the top annulus
of @U.v/.

In order to understand how !M .v/ is related to !H .v/, we will have to un-
derstand something about the relation between the metrics �b�1=2 and �tC1=2:

LEMMA 9.3. shearv.�b�1=2; �tC1=2/�K Im!M .v/ where K depends only
on the topological type of S .
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Proof. We will apply Lemma 9.2 to the transitions �s! �sC1=2, where s (for
the rest of the proof) is an integer or half-integer in Œb� 1=2; t �.

For every integer s 2 Œb; t �, ZsC1=2 has a component W.es/ of type � D 4
which is the union of one or two components of Zs and a collar. The metrics �s
and �sC1=2 agree pointwise on Zs nW.es/DZsC1=2 nW.es/. On each component
Y of Zs which is contained in W.es/, the metrics �s and �sC1=2 are related by
a uniform bilipschitz constant L, which only depends on our model construction.
This is because these two metrics on Y come from subsurfaces of one of the blocks,
and the identification is inherited from one of our finite number of standard blocks,
where there is some bilipschitz constant. The corresponding statement holds for s
and s� 1=2.

For each s 2 Œb; t �, let Vs denote the union of components (one or two) of Zs
that are adjacent to collar.v/. Let Q denote the union of intervals Œs; sC 1=2� in
Œb; t � for which Vs D VsC1=2.

Let Œx; y� be a component of Q. Then Vx D Vy . Let R be the subsurface
S nVx . Then R contains collar.v/ as a component, and is convex in both metrics
�x and �y , since each boundary component 
 of R is a boundary component of the
standard collar.
/ which is contained in R. Since every transition s! sC 1=2 in
Œx; y� does not involve Vs D Vx , we conclude that �x and �y are pointwise identical
in the complement of R. Thus we may apply Lemma 9.2 to conclude that

(9.11) shearv.�x; �y/� ı0:

Let s 2 Œb�1=2; t � be such that .s; sC1=2/ is not in Q, and suppose first that
s is an integer. Let R be the complement of Vs . This is still convex in both metrics
�s and �sC1=2 just as in the previous paragraph, and has collar.v/ as a component.
This time the transition does involve Vs , so at least one component of Vs is con-
tained in the component W.es/ of ZsC1=2, and the two metrics on this component
are related by a uniform bilipschitz constant L. On all other components they are
identical, so we have a bilipschitz bound of L on the complement of R. Again
applying Lemma 9.2 we obtain

(9.12) shearv.�s; �sC1=2/� ı0L:

(Note that this goes through correctly if sD t , even thoughW.et / contains collar.v/
in that case.)

The same bound holds if s is a half-integer, since then sC 1=2 is an integer
in Œb; t � and we can apply the same argument in the opposite direction.

Thus, applying the subadditivity property (9.10), we conclude that

(9.13) shearv.�b�1=2; �tC1=2/� ı0#QC ı0LN
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where #Q is the number of components of Q, and N is the number of intervals
.s; s C 1=2/ outside of Q. We note now that every such .s; s C 1=2/ with s ¤
b � 1=2; t corresponds to half of a block B with the property that @jjB contains
an annulus on @U.v/ (in other words the domain subsurface of B is adjacent to
collar.v/). The intervals .b � 1=2; b/ and .t; t C 1=2/ correspond to the blocks
meeting U.v/ on the bottom and top, respectively, in annuli of height �1=2. The
sum of heights of all annuli of U.v/ is exactly �1 Im!M .v/, and hence we obtain
N � 2�1 Im!M .v/.

It is evident that #Q �N � 1, and we conclude

(9.14) shearv.�b�1=2; �tC1=2/� 2ı0.1CL/�1 Im!M .v/:

9.3. Comparing !H and !M . Recall now that u is the predecessor of v on
the 4-edge eb�1, and let u� denote the geodesic representative of u in the metric
�b�1=2. Note that the length of u� in this metric is one of two values and hence
uniformly bounded above and below. Similarly w is the successor of v on et , and
we let wC be its geodesic representative in the metric �tC1=2, also with the same
length bounds.

Let a� be a component (there may be two) of the intersection of u� with
collar.v/, and let aC be a component of the intersection of wC with collar.v/.
Writing U.v/ as collar.v/� Œp; q�, we can use the curve

�D @.aC � Œp; q�/

as a meridian. The real part of !M .v/ is the amount of twisting of � around the v
direction in the torus, and this gives rise to the following estimate:

LEMMA 9.4.

j twcollar.v/.a
�; aC/�Re!M .v/j DO.1/:

Proof. Recalling the definition of the marked torus parameters in Section 3.2,
and the discussion in Section 8.3, we have an orientation-preserving identification
of the torus @U.v/ as the quotient of C=.ZC!M .v/Z/, which is an isometry with
respect to 1=�1 times the model metric on @U.v/. After possibly translating we
may assume that the annulus collar.v/� fpg lifts to a horizontal strip V1 D fz W
Im z 2 Œ0; k1�g and collar.v/�fqg lifts to a horizontal strip V2Dfz W Im z 2 Œk2; k3�g

with 0 < k1 < k2 < k3 < Im!M .v/ (See Figure 13.)
The meridian � lifts to four arcs in the cover (and their translates): aC � fpg

lifts to an arc aC1 in V1 connecting 0 to a point in RC ik1, aC � fqg lifts to an arc
aC2 in V2 connecting RC ik2 to RC ik3, and the arcs @aC � Œp; q� lift to vertical
arcs connecting aC1 to aC2 , and aC2 to !M .v/, as shown in Figure 13.
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ωM (v)

V2

a+
2

V1

a+
1

0

Figure 13. A representative of the meridian of @U.v/, lifted to C.

Thus, it is immediate that Re!M .v/D b1C b2, where bi is the real part of
the vector from the bottom to the top of aCi . Since the length of aC in the metric
�tC1=2 is O.1/, the same is true for its length in the annulus collar.v/� fqg, and
hence b2DO.1/. On the other hand, b1 may be large because in the lower annulus
collar.v/� fpg, it is a� that has length O.1/, and aC twists around a� possibly
many times. The number of twists is determined by j twcollar.v/.a

�; aC/j, and the
sign convention is such (see �4) that b1 D twcollar.v/.a

�; aC/CO.1/. The lemma
follows. �

Now we note, applying (9.9) and Lemma 9.3, that

j twv.u;w/� twcollar.v/.a
�; aC/j DO.shearv.�b�1=2; �tC1=2//

DO.Im!M .v//:(9.15)

We also have

(9.16) j twv.u;w/� Œhv�j � 1

by the definition of annulus geodesics in hierarchies, and inequality (4.1). Recall
that Œhv�D Re!H .v/.

Combining these with Lemma 9.4, we have

(9.17) jRe!M .v/�Re!H .v/j DO.Im!M .v//:

(Here we are using Im!M .v/� 1 to subsume O.1/ terms into the O.Im!M .v//

term.)
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We also have

(9.18) Im!H .v/D Im!M .v/:

This is because the sums
P
h2X˛;4

jhj in equation (9.6) for !H count the number of
4-edges associated to domains bordering collar.v/, counting an edge once for each
side that its domain borders. This therefore gives exactly the number of vertical
annuli in @U.v/, each of which has height �1. Counting also the annuli from
the bottom and top blocks for U.v/, whose heights add to �1, and recalling that
�1 Im!M .v/ is the sum of these heights, we have the equality (9.18).

It follows immediately from (9.17) and (9.18) that the distance in H2 between
!M .v/ and !H .v/ is bounded. This gives inequality (9.1) of Theorem 9.1.

9.4. Counting in a hierarchy. In order to compare !� and !H , we must
consider more carefully the structure of a hierarchy, and prove some counting
lemmas that allow us to estimate the “size” of a hierarchy or certain subsets of
it by various approximations.

Recall that if f &d g, then there is a unique simplex v of g for which D.f /
is a component domain of .D.g/; v/. Let us say in this situation that f &d g

at v. Call v an interior simplex of g if it is neither the first or the last. If v
is interior, then there exactly one f &d g at v, namely the one whose domain
contains the predecessor and successor of v. If v is last, then it is a single vertex
(by construction; see Definition 5.2) and there are at most three component domains
of .D.g/; v/ supporting a geodesic f &d g (including the annulus collar.v/). If
v is the first vertex, then there are at most 2 such f ’s, since the option of f &d g

supported on collar.v/ can only occur when �.g/D 4. This gives us:

(9.19) jgj � 1� #fh&d gg � jgjC 4:

Now consider subsets X � H with the following property, for some fixed
number M :

.�/ If g … X , then there are at most M geodesics h&d g for which there exists
h0 2X , h0 &D h.

The two main examples of X satisfying this property are X DH (trivially),
and, of interest to us:

LEMMA 9.5. For any vertex v in C.S/, ˛ D vr or vl, and k � 4, the sets X˛
and X˛;kC satisfy property .�/ with M depending only on S .

Proof. Let g …X˛ . If h0 &D h&
d g, thenD.h0/�D.g/, so if h0 2X˛ , then ˛ is

in @D.h0/ and hence in D.g/, where it must be nonperipheral since g …X˛. Now
D.h/ is a component domain for some simplex u of g, and since D.h0/�D.h/,
we have dD.g/.u; v/� 1. It follows that u is restricted to an interval of diameter 2
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in g, so there are at most 3 possibilities for u. The discussion leading to (9.19)
then yields at most M D 6 possibilities for h.

Now to prove the property for X˛;kC: if g … X˛;kC, then either g … X˛, in
which case the estimate follows from property .�/ for X˛ together with the fact
that X˛;kC �X˛, or �.D.g// < k in which case there is no h&D g in X˛;kC, and
the estimate is trivial. �

Recalling the notation “x �a;b y” from Section 5.4, we can state:

LEMMA 9.6. If X �H satisfies .�/ and ' WX ! RC is a function satisfying

'.h/�a;b jhj

for all h 2X , then X
h2X

jhj �A;B
X
h2X

'.h/

where A;B depend only on a; b; S and the constant M in .�/.

The point of this lemma is that, although the additive errors b can accumulate
when X has many members, the additive errors at one level are swallowed up by
the multiplicative constant at a lower level.

Proof. Define

(9.20) ˇ.g/D
X
h2X

h&Dg

jhj; ˇ0.g/D
X
h2X

h&Dg

'.h/:

We will show inductively for each m� �.S/ that ˇ.g/�a0;b0 ˇ0.g/ for all g with
�.D.g// � m, where a0; b0 depend on m. The lemma then follows from setting
mD �.S/. The base case, mD 2, is immediate from the hypothesis '.g/�a;b jgj,
with .a0; b0/D .a; b/.

Now note that, by Theorem 5.6, whenever f & g there exists a unique h with
f &D h&

d g. This allows us to inductively decompose ˇ and ˇ0:

(9.21) ˇ.g/D

8̂̂̂<̂
ˆ̂:
jgjC

X
h&d g

ˇ.h/ g 2XX
h&d g

ˇ.h/ g …X

and similarly with ˇ0 replacing ˇ and '.g/ replacing jgj.
For both ˇ and ˇ0, in case g 2 X there are at most jgj C 4 terms in the

summation, by (9.19). In case g … X , there are at most M nonzero terms in the
summation, by property .�/.
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Now we can compare ˇ and ˇ0. Suppose first that g 2X . We have:

ˇ.g/D jgjC
X
h&d g

ˇ.h/

and by the inductive hypothesis:

� jgjC
X
h&d g

a0ˇ0.h/C b0I

then by (9.19):

� .1C b0/jgjC 4b0C a0
X
h&d g

ˇ0.h/

and using '.g/� jgj,

� .a'.g/C b/.1C b0/C 4b0C a0
X
h&d g

ˇ0.h/

D a.1C b0/'.g/C a0
X
h&d g

ˇ0.h/C b.1C b0/C 4b0

� a00ˇ0.g/C b00

where the last line follows from the ˇ0 version of (9.21), using

a00 Dmax.a.1C b0/; a0/ and b00 D b.1C b0/C 4b0:

In case g …X , we have:

ˇ.g/D
X
h&d g

ˇ.h/

�

X
h&d g
ˇ.h/>0

a0ˇ0.h/C b0

and by property .�/:

� b0M C a0
X
h&d g

ˇ0.h/

D a0ˇ0.g/C b0M:

The inequality ˇ0.g/. ˇ.g/ is obtained in the same way (with slightly differ-
ent constants). �

Counting with top-level domains. In the following proposition we show that
the size of X˛;4C can be estimated by the size of X˛;4. This is in keeping with the
intuition that the moves in the level 4 domains are the places where “real” change
happens, and all the rest is a bounded amount of bookkeeping.
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PROPOSITION 9.7. For any x 2 C0.S/ and ˛ D xl or xr, we haveX
h2X˛;4

jhj �
X

h2X˛;4C

jhj:

Proof. The proof has the same inductive structure as the proof of Lemma 9.6.
Let


.g/D
X
h&Dg

h2X˛;4

jhj; 
 0.g/D
X
h&Dg

h2X˛;4C

jhj:

We shall inductively prove 
.g/�a;b 
 0.g/ for constants a; b depending on
�.D.g//. First, if �.D.g// � 4, then 
.g/D 
 0.g/ is obvious. It is also obvious
that 
 � 
 0. Now assume 
 0.h/.a;b 
.h/ for �.D.h// < �.D.g// and let us prove
it for g.

We first need a few lemmas.

LEMMA 9.8. Suppose that h &d g at an interior simplex v. If �.D.h// > 4
jhj � 3, and if �.D.h//D 4, then jhj � 1.

Proof. By assumption, the predecessor and successor u and w of v must be
contained inD.h/ and by tightness of g, they fillD.h/. If �.D.h//>4, this implies
that their distance in C1.D.h// is at least 3. If �.D.h//D 4 it just means they are
distinct, so the distance is at least 1. �

LEMMA 9.9. Suppose g 2X˛ and �.D.g// > 4. If m&d g at v and m0 &d g

at v0, where v0 is the successor of v and both are interior in g, then at least one of
m and m0 is in X˛;4C.

Proof. Note that D.m/ and D.m0/ cannot be annuli since v and v0 are interior
vertices and �.D.g// > 4. Thus it suffices to show one of them is in X˛ . Suppose
m0 … X˛, i.e. @D.m0/ does not contain ˛. Since v0 is not last or first, v must be
contained in D.m0/. It follows that v0 separates v from ˛. This means that the
component domain of .D.g/; v/ that meets ˛ must contain v0. This domain is
D.m/, so we conclude m 2X˛. �

Finally we have:

LEMMA 9.10. If h 2X˛;4C and jhj � 3, then 
.h/� 1.

Proof. We proceed by induction. If �.D.h//D 4 the statement is obvious, in
fact 
.h/ D jhj. Suppose �.D.h// > 4. Since jhj � 3 it has at least two interior
simplices, and by Lemma 9.9 for at least one of them there is a k &d h with
k 2 X˛;4C. If �.D.k// > 4, then, by Lemma 9.8, jkj � 3. Thus by induction

.k/ � 1. If �.D.k//D 4, then 
.k/D jkj, and Lemma 9.8 gives jkj � 1. Since
clearly 
.h/� 
.k/, we are done. �



92 YAIR MINSKY

We return to the proof of Proposition 9.7. Recall that we are in the case
�.D.g// > 4, so in particular

(9.22) 
.g/D
X
h&d g


.h/:

Now suppose that g 2X˛. The recursive formula for 
 0 gives


 0.g/D jgjC
X
h&d g


 0.h/:

By the inductive hypothesis this is

� jgjC
X
h&d g

a
.h/C b:

Using (9.19), we obtain

� 4bCjgj.bC 1/C
X
h&d g

a
.h/

D 4bCjgj.bC 1/C a
.g/:(9.23)

By (9.22). If jgj � 2 this becomes

� a
.g/C 2C 6b

and we are done. Now suppose that jgj � 3. By Lemma 9.9, for least
�
jgj�1
2

˘
of the interior simplices of g, the corresponding h&d g are in X˛;4C. Applying
Lemmas 9.8 and 9.10, we have 
.h/� 1 for those h. This tells us that


.g/D
X
h&d g


.h/� #fh&d g W 
.h/� 1g

�
jgj � 3

2
:

Hence jgj � 3C 2
.g/, so that (9.23) becomes


 0.g/� 7bC 3C .2.bC 1/C a/ 
.g/:

Finally if g …X˛, we use property .�/ as in the previous section to argue


 0.g/D
X
h&d g


 0.h/

�

X
h&d g

 0.h/>0

a
.h/C b

�MbC a
.g/:

This completes the inductive step, and establishes the proposition. �



THE CLASSIFICATION OF KLEINIAN SURFACE GROUPS, I 93

9.5. Comparing !H and !� . A uniform bound on the difference between
real parts, jRe!H �Re!� j, follows directly from Lemma 5.11, which compares
Œhv� to twv.I.H/;T.H//D twv.��; �C/. Since the imaginary parts are at least 1,
this gives us

(9.24) jRe!�.v/�Re!H .v/j DO.Im!H .v//:

If we can establish a bound of the form

(9.25)
1

c
�

Im!H .v/

Im!�.v/
� c

for some uniform c, then a bound on dH2.!�.v/; !H .v// will follow.
It will suffice to establish

(9.26)
X

Y2Y˛;4C

ffdY .��; �C/ggK �
X

h2X˛;4

jhj

where ˛ D vl or vr. For convenience let dY � dY .��; �C/ throughout this proof.
Choose K > M2, the constant in Lemma 5.9, so that by that lemma if dY � K,
then Y is the support of some geodesic in H . With this choice, we note thatX

Y2Y˛;4C

ffdY ggK D
X

h2X˛;4C

˚̊
dD.h/

		
K
:

Now since
˚̊
dD.h/

		
K
� dD.h/ and dD.h/ � jhj by Lemma 5.9, and since X˛;4C

satisfies property .�/ (Lemma 9.5), Lemma 9.6 gives us

�

X
h2X˛;4C

jhj

and then Proposition 9.7 gives us

�

X
h2X˛;4

jhj:

This establishes (9.26), and since both sides of this estimate are positive and Im!�
and Im!H are obtained from them by adding 1, (9.25) follows.

9.6. Global projection bounds. The same type of counting arguments that
led to Theorem 9.1 can give us the following a priori bound on j!H j from bounds
on projections dY .�C; ��/. Define Yv D Yvl [Yvr .

THEOREM 9.11. Given end invariants � and an associated hierarchy H , for
any internal vertex v in H we have

j!H .v/j � C

�
1C sup

Y2Yv

dY .��; �C/

�a
where the constants a; C > 0 depend only on S .
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Proof. Let
B D 1C sup

Y2Yv

dY .��; �C/:

It suffices to find a bound of the form

(9.27) ˇ.h/� cjB
j

where j D �.D.h//� 1, and ˇ is defined as in (9.20) with X DX˛ (˛ D vl or vr).
Since jRe!H .v/j is the � D 2 term of ˇ.gH / and Im!H .v/ is the sum of terms
from ˇ.gH / with � > 2, the bound (9.27) applied to ˇ.gH / gives us a bound of
the form j!H .v/j DO.B�.S/�1/, which proves Theorem 9.11.

By choice of B , and Lemma 5.9, we have

jgj � BC 2M1

for each g 2X˛. Choose c1 such that BC 2M1C 4 < c1B (for all B � 1). Then
for �.D.h//D 2 we have

ˇ.h/D jhj � BC 2M1 < c1B

ifD.h/Dcollar.v/ and ˇ.h/D 0 otherwise. This establishes the base case of (9.27).
Now assume (9.27) for �.D.h// < �.D.g// and let us prove it for �.D.g//.

Let j D �.D.g//� 1. Suppose first g 2X˛ . Using the recursive formula for ˇ.g/
and then (9.19),

ˇ.g/D jgjC
X
h&d g

ˇ.h/

� BC 2M1C .jgjC 4/cj�1B
j�1

� BC 2M1C .BC 2M1C 4/cj�1B
j�1

� c1BC c1cj�1B
j

� 2c1cj�1B
j :

For g …X˛, we have, using property .�/,

ˇ.g/D
X
h&d g

ˇ.h/

�Mcj�1B
j�1:

Thus by induction we have established (9.27), and the theorem. �

9.7. Noninternal vertices. If v is not an internal vertex of H , the definitions
of the coefficients must be adjusted somewhat before proving Theorem 9.1. Let us
first dispense with the cases not included in that theorem, and which correspond to
cusps in the hyperbolic 3-manifold:
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� If v is parabolic in I.H/ or T.H/, then U.v/ is an unbounded solid torus,
and we define !M .v/D !H .v/D !�.v/D i1.

� A component of @S cannot be a vertex of H , but it does have an associated
solid torus U, and it is convenient again to define all the coefficients to be i1.

We are left with the case that v is a vertex of base.I.H// which does have a
transversal, or similarly for base.T.H// (or both).

In these cases v appears as a curve of length at most L0 in the top or bottom
(or both) of @1N . Recall from Section 2.2 the conformal structure �T

C
on the top

conformal boundary, and let �m be the rescaled metric, as in Section 3.4, which
makes the thin collars Euclidean. In particular, if v is sufficiently short in the top
boundary, then collar.v; �T

C
/ is Euclidean in �m, and we let rC.v/ denote 1=�1

times its height. If not, then let rC.v/D 0. Define r�.v/ similarly. Now we can
redefine !�.v/ and !H .v/, by adding the term

i.rC.v/C r�.v//

to the expressions in (9.6) and (9.8). The definition of !M is unchanged from
Section 8.3.

The bound (9.2) on dH2.!H .v/; !�.v// is now immediate, since we have
added the same thing to both imaginary parts.

In order to bound dH2.!H .v/; !M .v//, we have to reconsider the sweeping
discussion of Section 9.2:

Suppose that v 2 base.T.H//, and let R denote the component of RT
C

(see
�2.2) that contains v. Thus there is a top block B D Btop.�R/ associated to R.
The interval J 0.v/, as defined in Section 9.2, may be infinite because there may be
infinitely many i 2 I0 such that v is a component of �i . However, as in Section 8.2,
there is a first point i 2 I0 such that Fi contains all of @�B . Redefine J 0.v/ so that
t DmaxJ 0.v/ is this value of i . The block B is then attached to Ft independently
of the rest of the sweep, and so we define FtC1=2 to be Ft n@�Btop.�R/, union @oB 0

(where we recall from �8.1 that B 0 is B minus the cusp annuli @R� Œ0;1/), and
@oB

0DR�f0g). Thus @oB , in the isotopy class ofR, can play the role of the middle
surface D.et /� f0g in Section 9.2. We project FtC1=2 to ZtC1=2 � S , and define
� 0
tC1=2

on theR component ofZtC1=2 to be the projection of �1j@oB , the Poincaré
metric associated to �R, as in Section 8.3. We define �tC1=2 as before by extending
across collars, though we may have to make a small (uniform) adjustment to � 0

first near @R, since �1 has cusps rather than compact collars associated with @R.
If v 2 base.I.H// we may use the bottom blocks to analogously define Fb ,

Fb�1=2, �b�1=2, etc. (and otherwise we use the same definition as in �9.2).
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The shear computation that yields Lemma 9.3 now goes through as before –
the argument, and particularly the appeal to Lemma 9.2, is insensitive to the fact
that collar.v/ may now have large radius in �b�1=2 and/or �tC1=2.

In order to complete the comparison of !M .v/ and !H .v/ we need to consider
changes to Section 9.3, and particularly to Lemma 9.4. If v 2 base.T.H// then the
curve w should be chosen to be the transversal of v in the marking T.H/ – recall
that this means that w is a minimal-length curve crossing v with respect to the �1
metric. Letting wC be its geodesic representative in �tC1=2 and letting aC be a
component of wC \ collar.v/, we note that we no longer have an upper bound
on the length of aC, but that its twist in collar.v/ with respect to a geodesic arc
orthogonal to the boundaries is at most 2, by the minimal-length choice of w. This
means that, lifting @U.v/ to C and using the notation of Section 9.3, that the real
part b2 of the vector associated to aC2 is still O.1/ (although the imaginary part
may be large). A similar argument applies when v 2 base.I.H// and we choose
u to be the transversal to v from ��. The proof of Lemma 9.4 then proceeds as
before. Thus we obtain (9.17) as before, namely

jRe!M .v/�Re!H .v/j DO.Im!M .v//:

The equality (9.18), slightly adjusted to

Im!H .v/D Im!M .v/˙O.1/;

follows as before, using the additional information that the top (resp. bottom) annu-
lus of @U.v/ has width rC.v/ (resp. r�.v/), and that these are the quantities added
by definition to Im!H .v/. Thus the estimate on dH2.!H .v/; !M .v// follows as
before.

Theorem 9.11, which is stated for the internal case, is easily generalized to
yield

(9.28) j!H .v/j � C

��
1C sup

Y�S
v2Œ@Y �

dY .��; �C/

�a
C rC.v/C r�.v/

�
:

The proof is exactly the same counting argument as for the internal case, with the
added imaginary part in the definition of !H .v/ yielding the extra terms.

10. The Lipschitz model map

We are now ready to prove the Lipschitz Model Theorem, whose statement
appears in the introduction. We will build the map f in several stages.

Step 0. Let f0 W yS �R! N be any map in the homotopy class determined
by �. Via the embedding M� � yS �R we restrict f0 to M� .

Step 1. On each three-holed sphere Y appearing as the gluing boundary of a
block, we find a homotopy from f0 to f1 so that f1 is uniformly Lipschitz. This
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is done as follows: There is a map pY W Y !N , homotopic to f0jY , and which is
pleated on @Y (with the usual proviso if a component of @Y corresponds to a cusp).
Let �Y be the metric induced by pY on int.Y /, and let Y0 D Y n collar.@Y; �Y /.
Then, since Lemma 7.9 gives us a uniform upper bound for the �Y -lengths of @Y ,
there is a uniform K0 such that there is a homeomorphism 'Y W Y ! Y0 homotopic
to the identity, which is K0-bilipschitz with respect to the model metric on Y and
the induced metric �Y on Y0. Now define

f1jY D pY ı'Y :

This is clearly a K0-Lipschitz map, and homotopic to f0jY .

Step 2. Extend f1 to a map f2, defined on the middle surfaces of internal
blocks, and on the outer boundaries of boundary blocks.

For any internal block B DB.e/, consider the middle subsurface W DD.e/�
f0g in B (in its original identification as a subset of D.e/� Œ�1; 1�). Extend @W to
a curve system v0 which cuts S into components that are either 3-holed spheres, or
W itself. Then v�D v0[e� and vCD v0[eC are pants decompositions differing
by an elementary move, and we can define a halfway surface gv�;vC 2 pleat�.v0/,
as in Section 3.1. Let �e be the metric induced by this map on int.W /. Now,
Lemma 7.9 gives us a uniform bound

`�.x/�D

where x is any component of @W , or e˙, since these are all vertices in the hierarchy.
Lemma 3.1 then gives us uniform upper bounds in the induced metric �e:

`�e .e
˙/�DCC:

This immediately gives lower bounds on `�e .e
˙/ as well, since the curves cross

each other. Furthermore it means that W under �e is not far from being our “stan-
dard” hyperbolic structure on W . More precisely, letting W0DW ncollar.@W; �e/
there is an identification 'W WW !W0 which is K1-bilipschitz with respect to the
model metric on W and �e on W0. Hence as in the previous paragraph,

f2jW D gv�;vC ı'W

is the desired definition, and is clearly homotopic to f1jW .

Let B be a boundary block associated to a subsurface R, and let us define f2
on its outer boundary @oB . Recall that @oB is identified with a component R1 of
@1N , and its metric is equal to the rescaled Poincaré metric, �m. In Lemma 3.4
we obtain a map ' W E� ! EN which, restricted to the bottom boundary of E�
(identified with @1N ) gives a uniformly bilipschitz homeomorphism from R1 to
the corresponding component of @ yCN .
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Figure 14. A homotopy of a bounded figure-8 cannot be too long

By composing this map with the identification @oB!R1, we obtain a home-
omorphism from @oB to the corresponding component of @ yCN , satisfying uniform
bilipschitz bounds. This is our desired map f2.

Step 3. We can extend f2 to a continuous map f3 defined on all of M� , and
still homotopic to f0. This is possible by an elementary argument because each of
the surfaces where f2 is defined so far is collared in M� . By appropriately defining
the extension on these collars using the homotopy from f2 to the restriction of f0,
we can then extend to the whole manifold.

Step 4. We “straighten” f3 on M� Œ0� to obtain a map f4, as follows:
Fix an internal block BDB.e/. Let f4 agree with f3 on the gluing boundaries

@˙B , and on the middle surface W DD.e/� f0g.
On D.e/� Œ�1=2; 1=2�, define f4 D f3 ı q where q.y; t/ D .y; 0/. This is

certainly Lipschitz with a uniform constant. Now consider a component of @CB ,
which has the form Y � f1g where Y is a component of D.e/ n collar.eC/. f4 is
already defined on Y � f1=2; 1g, so for each x 2 Y extend f4 to fxg � Œ1=2; 1� as
the unique constant speed parametrization of the geodesic connecting the endpoints
in the homotopy class determined by f3 (negative curvature is used here for the
definition to be unique, and for f4 to be continuous and homotopic to f3). This
extends f4 to Y � Œ1=2; 1�.

To prove that f4jY�Œ1=2;1� is uniformly Lipschitz it suffices to find an upper
bound on the lengths of the geodesics f4.fxg� Œ1=2; 1�/. This is exactly the “figure-
8” argument of [47, Lemma 9.3]. That is, since f4 is already K1-Lipschitz on
Y � f1=2; 1g, there is a figure-8 X � Y , or bouquet of two circles, which is a
deformation retract of Y with bounded tracks (see Figure 14), and such that f4.X�
f1=2g/ and f4.X � f1g/ have uniformly bounded lengths (depending on K1). If
f4jX�Œ1=2;1� has a very long trajectory then at some middle point t 2 Œ1=2; 1� the
two loops of f4.X � ftg/ are either both very short or nearly parallel to each other.
In either case discreteness, or Jørgensen’s inequality, is violated.

For a component Y � f�1g of @�B the definition of f4 on Y � Œ�1;�1=2� is
analogous.
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The very same discussion works for boundary blocks, except that the outer
boundary (minus its vertical annuli) takes the role of the middle surface.

The map f4 is now defined on all of M� Œ0�, uniformly Lipschitz (with respect
to the path metric on M� Œ0�), and homotopic to f0.

Step 5. We adjust f4 slightly to obtain a map f5 satisfying:

(1) f5.M� Œ0�/� yCN

(2) Whenever `�.v/� �1 for a vertex v of H� , f5.@U.v//� T�1.v/.

f4 restricted to the middle surfaces, gluing surfaces and outer boundaries of
boundary blocks already has image contained in yCN . For internal blocks, the image
is in fact already in CN itself, and since the extension was done with geodesic arcs
f4 takes each internal block into CN by convexity. The f4-image of a boundary
block could leave yCN , but only by a bounded amount because of the Lipschitz
bound. In Section 3.4 we show in particular that the geometry of @ yCN is relatively
tame: it consists of parts of @C 1N and Margulis tube boundaries, meeting together
with outward dihedral angles of more than �=2. It follows that there is a uniformly
sized collar neighborhood of the boundary and a uniform Lipschitz retraction of
this neighborhood back into @C 1N . Composing f4 with this retraction yields a map
with image in yCN .

Let v be a vertex with `�.v/ < �1. The tube boundary @U.v/ maps by a uni-
formly Lipschitz map and is homotopic into T�1.v/. It can therefore be pushed into
T�1.v/ by a uniformly Lipschitz map which comes from the orthogonal projection
to a lift of T�1.v/ to H3. Using this homotopy in a collar neighborhood of @U.v/,
we can adjust f4 to get a map, still Lipschitz with a uniform constant, that satisfies
(2). This map is f5.

Step 6. We extend f5 to all the nonparabolic tubes in U. The resulting map
f6 is still homotopic to f0. Note that some continuous extension exists because
f5 is homotopic to f3jM� Œ0�. To get geometric control we extend using a “coning”
argument: For each U (which we recall is isometric to a hyperbolic tube) we take
a totally geodesic meridian disk D. Foliating D by geodesic segments emanating
from one boundary point, we extend f6 to the interior of D to be totally geodesic
on each of these segments. U nD is now isometric to a convex region in H3 which
we can again foliate by geodesics emanating from a single point, and repeat.

The extension has these properties:

(1) Whenever `�.v/ < �1 for a vertex v of H , f6.U.v// is inside T�1.v/.

(2) For any k there exists L.k/ such that f6 is L-Lipschitz on M� Œk�.

(3) Given k > 0 there exists �.k/ 2 .0; �0/ such that f6.M� Œk�/ avoids the �.k/-
thin part of N .
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For property (1), we apply property (2) of f5 to see that f5.@U.v//� T�1.v/

whenever `�.v/ < �1. The extension of f6 to U using geodesics is therefore also
contained in T�1.v/.

For property (2), we use the fact that if j!M .v/j < k, then the hyperbolic
tube U.v/ comes from a compact set of possible isometry types. The boundary
length of the meridian disk, for example, is bounded by k�0, and this together with
the negative curvature of the target and our method of extension by coning gives
us some Lipschitz bound L. Note that property (2) also implies part (5) of the
statement of the Lipschitz Model Theorem – that is, that the map on each tube U
is Lipschitz with a constant that depends only j!M .U /j.

Property (3) follows from property (2) and the following argument: First note
(following an argument of Thurston in [59]) that through every point x 2M� Œ0�

there is a pair of loops ˛; ˇ that generate a non-abelian subgroup of �1.S/, and have
uniformly bounded lengths. The images of these therefore cannot be contained in
a Margulis tube. This, together with the Lipschitz bound on f5, gives a uniform
r0 > 0 so that f5.M� Œ0�/ cannot penetrate more than r0 into the �1-Margulis tubes
of N . Because of the L.k/-Lipschitz property of f6 on the tubes of U\M� Œk�, and
their bounded geometric type, there is a uniform r1.k/ so that f6.M� Œk�/ cannot
penetrate more than r1 into the �0-Margulis tubes. This gives the desired �.k/, by
inequality (3.7).

Step 7. We next adjust f6 to obtain a map f7 such that, for a certain k1,
the image f7.M� Œk1�/ avoids the interiors of the “large” tubes TŒk1� in N (recall
from the introduction that TŒk� is the union of �1-Margulis tubes in N , if any,
corresponding to the homotopy classes of the model tubes UŒk�). We will need the
following lemma:

LEMMA 10.1. Given �, there exists k0.�/ such that if j!M .v/j � k0, then
`�.v/� �.

Proof. Suppose first that v is an internal vertex of H . In [48] we prove that,
if `�.v/ > �, then

dY .��; �C/� B

for each Y � S such that v 2 Œ@Y �, where B depends only on � and S . (This is a
combination of Theorem B of [48] with the proof of Theorem A.) By Theorem 9.11,
this implies

j!H .v/j � n;

where n depends only on the topology of S and on B . An upper bound on j!M .v/j
then follows from Theorem 9.1, and this gives the k0 of the lemma.

Suppose v is noninternal. If it is parabolic, then j!M .v/j D1 and `�.v/D 0,
so the lemma continues to hold. If v is not parabolic, then we have the definition of
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!M .v/ and !H .v/ from Section 9.7, which has an added term i.rC.v/Cr�.v//. If
`�.v/ > �, then we obtain (via Bers’ inequality [12]) a lower bound on its length in
the conformal boundary of N�, which yields upper bounds on r˙.v/. Combining
this with the previous argument and the restatement (9.28) of Theorem 9.11 for the
noninternal case, we obtain an upper bound on j!M .v/j. �

Now let k0 D k0.�1=2/, let �4 D �.k0/=2 (where � is the function in property
(3) of Step 6), and let k1 D k0.�4/. Consider a homotopy class of simple curves v
with `�.v/ � �4 – In particular v can be any vertex of H with j!M .v/j � k1, by
Lemma 10.1, but v can also be a parabolic homotopy class, or a vertex of C.S/

which a priori may not appear in H . In the latter case let U.v/D∅.
We claim that M� nU.v/ must all be mapped outside of T2�4.v/ by f6. For

M� Œk0� this follows from property (3) in Step 6 and the choice of �4.
If w¤ v is parabolic or a vertex of H with j!M .w/j � k0, by Lemma 10.1 we

have `�.v/� �1=2, and by Step 6, U.w/ is mapped into T�1.w/, which is disjoint
from T�1.v/. This establishes the claim.

Since `�.v/ � �4, using the “outward” orthogonal projection of the tube
T�1.v/ minus its geodesic core to its outer boundary @T�1.v/, we can obtain a
map 'v W T�1.v/! T�1.v/ which is Lipschitz with uniform constant, homotopic
to the identity, and equal on the collar T�1.v/ nT2�4.v/ to the outward orthogonal
projection. Let ˆ WN�!N� be equal to 'v on T�1.v/ for each v with `�.v/� �4
and to the identity elsewhere.

Let f7 D ˆ ı f6. This map takes each (nonparabolic) component of UŒk1�

to its corresponding component of TŒk1�, and the complement of all these to the
complement of TŒk1�. It is Lipschitz with a uniform constant on M� Œk1�. f7 is not
defined on the parabolic tubes, but their boundaries are mapped (because of the
retraction ˆ) to the boundaries of the corresponding �1-cusps.

Step 8. To obtain f8 we extend the definition of f7 to the parabolic tubes of U.
Let U be such a tube and T its corresponding �1-cusp neighborhood. We already
know that f7 maps @U to @T. Let us identify U with @U � Œ0;1/ and T with
@T� Œ0;1/. We can then define f8jU with the rule f8.x; t/D .f7.x/; t/. This has
the property that, if f7j@U W @U ! @T is a proper map, then so is f8jU W U ! T.

f8 is our final map f . It takes each component of UŒk1� to the corresponding
Margulis tube T�1.v/, and the complement M� Œk1� to the complement of these
tubes. On M� Œk1� it is still Lipschitz with a uniform constant.

Proper and degree 1. We wish to show that f is proper in both senses: that it
takes @M� to @ yCN , and that the inverse images of compact sets are compact. By our
construction (Step 2), if @M� is nonempty, then f maps it to @ yCN by orientation-
preserving homeomorphism. Hence the first notion of properness holds.
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Let us show that f jM� Œ0� is proper. If fxi 2M� Œ0�g leaves every compact set,
let us show the same for f .xi /. Each internal block is compact, and the noncompact
pieces of the finitely many boundary blocks are the added vertical annuli, which by
construction are mapped properly. Hence we may assume that each xi is contained
in a different internal block Bi . Writing Bi D B.ei / for a 4-edge ei , let vi D eCi .
This is a sequence of distinct vertices of H . Each vi has a representative 
i in Bi
of length bounded by a constant, and since f is Lipschitz we obtain a bound on the
lengths of f .
i /. This means that f .
i / must leave every compact set in N . Since
the blocks have bounded diameters, the same is true for f .Bi / and hence f .xi /.

Now let Ui be any infinite sequence of distinct, nonparabolic tubes in U.
The generator curves of @Ui map to curves of bounded length in N , in distinct
homotopy classes, and hence must leave every compact set. For tubes satisfying
j!M .Ui /j < k1 there is an upper bound on image diameter, and so their images
must leave every compact set as well. The images of tubes with j!M .Ui /j � k1
are the corresponding Margulis tubes, which are all distinct and hence again must
leave every compact set.

Let U be a parabolic tube. The boundary @U is in M� Œ0� and hence maps
properly to the boundary of the corresponding cusp tube in N . The extension that
we constructed in Step 7 is therefore automatically proper.

We conclude that f is proper. The boundary @M� , if nonempty, is mapped by
an orientation-preserving homeomorphism to @ yCN , and in particular has degree 1.
Hence in this case f has degree 1.

In the remaining cases M� is all of S �R. Since f is a homotopy-equivalence,
to show that it has degree 1 it suffices to show that it preserves the ordering of ends
(determined by our orientation convention in both domain and range).

Let Bi be a sequence of blocks of M� Œ0� going to infinity in S �R, in the
positive direction (without loss of generality). The associated 4-edges ei must
eventually be subordinate to one of the infinite geodesics of H , which terminates
in the forward direction in a lamination component �R of �C. Thus the vertices vi
converge to �R in UML.S/. By Thurston’s theorem on ending laminations (�2.2),
the geodesic representatives f .
vi /

� in N must exit the end of N0 associated with
�R, which is a “C” end. Since f .Bi / is a bounded distance from either f .
vi /

�

or its Margulis tube, the block images exit this end as well. Hence f has degree 1.
This establishes the Lipschitz Model Theorem, where K is the uniform Lips-

chitz constant obtained by this argument, and k D k1. �

The extended model map. It is now a simple matter to prove the Extended
Model Theorem, as stated in the introduction.

We note that the outer boundary ofM� is naturally identified with the “bottom”
boundary of E� , namely @1N � f0g, and furthermore that the metric with which
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both these boundaries were endowed is the same �m. Thus we can glue @M� to
the bottom boundary of E� , obtaining the extended model ME� . The model map
f restricted to @M� is also exactly the same as the map '. Thus we can combine
the maps together to obtain a map f 0 WME�!N . The desired properties of this
map follow immediately from Lemma 3.4 and the Lipschitz Model Theorem.

11. Length bounds

We can now complete the proof of the Short Curve Theorem, stated in the
introduction. To prove part (1), let N� D �4. We saw in the proof of the Lipschitz
Model Theorem that f .M� Œk1�/ avoids the �4-thin part, and that each component
of UŒk1� maps into the Margulis tube associated to its homotopy class. Since
f .M�/ covers all of yCN and all Margulis tubes are contained in yCN , it follows
that all �4-Margulis tubes are in fact covered by tubes of UŒk1�.

Part (2) is exactly the statement of Lemma 10.1. Thus it remains to prove Part
(3), which is the content of this lemma:

PROPOSITION 11.1. There exists a constant c depending only on S , so that

j��.v/j �
c

j!M .v/j
(11.1)

for any vertex v of H . Furthermore the real part `�.v/ satisfies

`�.
v/�
c

j!M .v/j2
:(11.2)

Proof. If v is a parabolic vertex, then ��.v/D `�.v/D 0 and j!M .v/j D1,
so the inequalities hold in the natural extended sense.

Let v be a nonparabolic vertex of H . If `�.v/ � �4, then, since j!M .v/j is
always at least 1, our inequalities hold for appropriate choice of c.

Assume now that `�.v/ < �4. Then as we saw in the proof of the Lipschitz
Model Theorem, the model map f maps the complement of U.v/ to the comple-
ment of T�1.v/. Since f has degree 1, it must take U.v/ to T�1.v/ with degree 1.

It follows that the image of the meridian of U.v/ is a meridian of T�1.v/. The
meridian of U.v/ has length �1j!M .v/j by definition of !M , and the model map
is K-lipschitz. On the other hand we know that the meridian of a hyperbolic tube
of radius r is at least 2� sinh r (see �3.2). Hence

2� sinh r.v/�K�1j!M .v/j:

The Brooks-Matelski inequality (3.5) then implies

2� sinh
�

log
1

j�.
v/j
� c1

�
�K�1j!M .v/j
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and the Meyerhoff inequality (3.6) gives

2� sinh
�
1
2

log
1

`.
v/
� c2

�
�K�1j!M .v/j:

A brief calculation yields (11.1) and (11.2). �
This concludes the proof of the Short Curve Theorem, and gives us a priori

bounds on our Lipschitz model for the thick part of a surface group. What remains
to be done to prove the Ending Lamination Conjecture for surface groups is to pro-
mote this Lipschitz map to a bilipschitz map (enabling an application of Sullivan’s
rigidity theorem). The argument for this involves deeper analysis of the structure
of level surfaces in the model manifold, and a local embedding argument that relies
heavily on passage to geometric limits. This will be carried out in [18].
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