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Abstract

If �1; : : : ; �n are limit groups and S � �1 � � � � ��n is of type FPn.Q/ then S
contains a subgroup of finite index that is itself a direct product of at most n limit
groups. This answers a question of Sela.

1. Introduction

The systematic study of the higher finiteness properties of groups was initiated
forty years ago by Wall [28] and Serre [25]. In 1963, Stallings [27] constructed the
first example of a finitely presented group � with infinite-dimensional H3.�IQ/;
his example was a subgroup of a direct product of three free groups. This was the
first indication of the great diversity to be found amongst the finitely presented
subgroups of direct products of free groups, a theme developed in [5].

In contrast, Baumslag and Roseblade [3] proved that in a direct product of
two free groups the only finitely presented subgroups are the obvious ones: such
a subgroup is either free or has a subgroup of finite index that is a direct product
of free groups. In [10] the present authors explained this contrast by proving that
the exotic behaviour among the finitely presented subgroups of direct products of
free groups is accounted for entirely by the failure of higher homological-finiteness
conditions. In particular, we proved that the only subgroups S of type FPn in a
direct product of n free groups are the obvious ones: if S intersects each of the direct
factors nontrivially, it virtually splits as the direct product of these intersections.
We also proved that this splitting phenomenon persists when one replaces free
groups by the fundamental groups of compact surfaces [10]; in the light of the work
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of Delzant and Gromov [16], this has significant implications for the structure of
Kähler groups.

Examples show that the splitting phenomenon for FP1 subgroups does not
extend to products of more general 2-dimensional hyperbolic groups or higher-
dimensional Kleinian groups [6]. But recent work at the confluence of logic, group
theory and topology has brought to the fore a class of groups that is more profoundly
tied to surface and free groups than either of the above classes, namely limit groups.

Limit groups arise naturally from several points of view. They are perhaps
most easily described as the finitely generated groups L that are fully residually free
(or !-residually free): for any finite subset T � L there exists a homomorphism
from L to a free group that is injective on T . It is in this guise that limit groups
were studied extensively by Kharlampovich and Myasnikov [17], [18], [19]. They
are also known as 9-free groups [20], reflecting the fact that these are precisely the
finitely generated groups that have the same existential theory as a free group.

More geometrically, limit groups are the finitely generated groups that have a
Cayley graph in which each ball of finite radius is isometric to a ball of the same
radius in some Cayley graph of a free group of fixed rank.

The name limit group was introduced by Sela. His original definition involved
a certain limiting action on an R-tree, but he also emphasized that these are precisely
the groups that arise when one takes limits of stable sequences of homomorphisms
�n WG!F , where G is an arbitrary finitely generated group and F is a free group;
stable means that for each g 2G either

Ig D fn 2 N W �n.g/D 1g or Jg D fn 2 N W �n.g/¤ 1g

is finite, and the limit of .�n/ is the quotient of G by fg W jIg j D1g.
In his account of the outstanding problems concerning limit groups, Sela [21]

asked whether the main theorem of [10] could be extended to cover limit groups.
The present article represents the culmination of a project to prove that it can.
Building on ideas and results from [10], [7], [8], [9], [12] we prove:

THEOREM A. If �1; : : : ; �n are limit groups and S � �1 � � � � � �n is a
subgroup of type FPn.Q/, then S is virtually a direct product of n or fewer limit
groups.

Combining this result with the fact that every finitely generated residually free
group can be embedded into a direct product of finitely many limit groups ([18,
Cor. 2], [22, Claim 7.5]), we obtain:

COROLLARY 1.1. Every residually free group of type FP1.Q/ is virtually a
direct product of a finite number of limit groups.

Baumslag [2] proved that a finitely generated, residually free group is fully
residually free (that is, a limit group) unless it contains a subgroup isomorphic to
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F �Z, where F is a free group of rank 2. Corollary 1.1 together with the methods
used to prove Theorem A yield the following generalization of Baumslag’s result:

COROLLARY 1.2. Let � be a residually free group of type FPn.Q/ where n�1,
let F be a free group of rank 2 and let F n denote the direct product of n copies
of F . Either � contains a subgroup isomorphic to F n �Z or else � is virtually a
direct product of n or fewer limit groups.

We also prove that if a subgroup of a direct product of n limit groups fails to
be of type FPn.Q/, then one can detect this failure in the homology of a subgroup
of finite index.

THEOREM B. Let �1; : : : ; �n be limit groups and let S � �1 � � � � ��n be a
finitely generated subgroup with Li D �i \S nonabelian for i D 1; : : : ; n.

If Li is finitely generated for 1 � i � r and not finitely generated for i > r ,
then there is a subgroup of finite index S0 � S such that S0 D S1 � S2, where
S1 is the direct product of the limit groups S0 \ �i , for i � r and (if r < n)
S2DS0\.�rC1�� � ���n/ hasHk.S2IQ/ infinite dimensional for some k� n�r .

In Section 9 we shall prove a more technical version of Theorem B and account
for abelian intersections.

Theorems A and B are the exact analogues of [10, Ths. A and B]. In Section 3
we introduce a sequence of reductions that will allow us to deduce both theorems
from the following result (which, conversely, is an easy consequence of Theorem B).
We remind the reader that a subgroup of a direct product is called a subdirect product
if its projection to each factor is surjective.

THEOREM C. Let �1; : : : ; �n be nonabelian limit groups and let S � �1 �
� � � � �n be a finitely generated subdirect product which intersects each factor
nontrivially. Then either

(1) S is of finite index, or

(2) S is of infinite index and has a finite index subgroup S0<S such thatHj .S0IQ/
has infinite Q-dimension for some j � n.

For simplicity of exposition, the homology of a group G in this paper will
almost always be with coefficients in a QG-module — typically the trivial module Q.
But with minor modifications, our arguments also apply with other coefficient
modules, giving corresponding results under the finiteness conditions FPn.R/ for
other suitable rings R.

A notable aspect of the proof of the above theorems is that following a raft
of reductions based on geometric methods, the proof takes an unexpected twist
in the direction of nilpotent groups. The turn of events that leads us in this direc-
tion is explained in Section 4 — it begins with a simple observation about higher
commutators from [12] and proceeds via a spectral sequence argument.
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Several of our results shed light on the nature of arbitrary finitely presented
subgroups of direct products of limit groups, most notably Theorem 4.2. These
results suggest that there is a real prospect of understanding all such subgroups, that
is, all finitely presented residually free groups. We take up this challenge in [11],
where we describe precisely which subdirect products of limit groups are finitely
presented and present a solution to the conjugacy and membership problems for
these subgroups (see also [12], [13]). But the isomorphism problem for finitely
presented residually free groups remains open, and beyond that lie many further
challenges. For example, with applications of the surface-group case to Kähler
geometry in mind [16], one would like to know if all finitely presented subdirect
products of limit groups satisfy a polynomial isoperimetric inequality.

2. Limit groups and their decomposition

Since this is the fourth in a series of papers on limit groups (following [7;
8; 9]), we shall only recall the minimal necessary amount of information about
them. The reader unfamiliar with this fascinating class of groups should consult
the introductions in [1], [4], the original papers of Sela [22], [23], [24], or those of
Kharlampovich and Myasnikov [17], [18], [19] where the subject is approached
from a perspective more in keeping with traditional combinatorial group theory; a
further perspective is developed in [15].

2A. Limit groups. Our results rely on the fact that limit groups are the finitely
generated subgroups of !-residually free tower (!-rft) groups [22, Def. 6.1] (also
known as NTQ-groups [18]). A useful summary of Sela’s proof of this result was
given by Alibegović and Bestvina in [1, Appendix] (see also [23, (1.11) and (1.12)]).
The equivalent result of Kharlampovich and Myasnikov [18, Th. 4] is presented in
a more algebraic manner.

An !-rft group is the fundamental group of a tower space assembled from
graphs, tori and surfaces in a hierarchical manner. The number of stages in the
process of assembly is the height of the tower. Each stage in the construction involves
the attachment of an orientable surface along its boundary, or the attachment of
an n-torus T along an embedded circle representing a primitive element of �1T .
(There are additional constraints in each case.)

The height of a limit group � is the minimal height of an !-rft group that
has a subgroup isomorphic to � . Limit groups of height 0 are free products of
finitely many free abelian groups (each of finite rank) and surface groups of Euler
characteristic at most �2.

The splitting described in the following proposition is obtained as follows:
embed � in an !-rft group G of minimal height, take the graph of groups decom-
position of G that the Seifert-van Kampen Theorem associates to the addition of



SUBGROUPS OF DIRECT PRODUCTS OF LIMIT GROUPS 1451

the final block in the tower, then apply Bass-Serre theory to get an induced graph
of groups decomposition of � .

Recall that a graph-of-groups decomposition is termed k-acylindrical if in the
action on the associated Bass-Serre tree, the stabilizer of each geodesic edge-path
of length greater than k is trivial; if the value of k is unimportant, one says simply
that the decomposition is acylindrical.

PROPOSITION 2.1. If � is a freely-indecomposable limit group of height h� 1,
then it is the fundamental group of a finite graph of groups that has infinite cyclic
edge groups and has a vertex group that is a nonabelian limit group of height
� h� 1. This decomposition may be chosen to be 2-acylindrical.

Note also that any nonabelian limit group of height 0 splits as A�C B with C
infinite cyclic or trivial, and this splitting is 1-acylindrical for surface groups, and
0-acylindrical for free products.

2B. The class of groups C. We define a class of finitely presented groups C

in a hierarchical manner; it is the union of the classes Cn defined as follows.
At level 0 we have the class C0 consisting of free products A�B of nontrivial,

finitely presented groups, where at least one of A and B has cardinality at least 3—
in other words, all finitely presented nontrivial free products with the exception of
Z2 �Z2.

A group lies in Cn if and only if it is the fundamental group of a finite,
acylindrical graph of finitely presented groups, where all of the edge groups are
cyclic, and at least one of the vertex groups lies in Cn�1.

An immediate consequence of Proposition 2.1 is

COROLLARY 2.2. All nonabelian limit groups lie in C.

2C. Other salient properties. In the proof of Theorems A and B, the only
properties of limit groups � that will be needed are:

(1) Limit groups are finitely presented, and their finitely generated subgroups are
limit groups.

(2) If � is nonabelian, it lies in C (Corollary 2.2).

(3) Cyclic subgroups are closed in the profinite topology on � . (This is true for
all finitely generated subgroups [29].)

(4) If a subgroup S of � has finite-dimensional H1.S IQ/, then S is finitely
generated (and hence is a limit group) [7, Th. 2].

(5) Limit groups are of type FP1 (in fact F1). This follows directly from the
fact that the class of limit groups coincides with the class of constructible limit
groups [4, Def. 1.14].
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2D. Notation. Throughout this paper, we consistently use the notational con-
vention that S is a subgroup of the direct product of the limit groups �i (1� i � n),
that Li denotes the intersection S \ �i , and that pi W �1 � � � � � �n ! �i is the
coordinate projection.

2E. Subgroups of finite index. Throughout the proof of Theorems A, B and C
we shall repeatedly pass to subgroups of finite index Hi � �i . When we do so,
we shall assume that our original subgroup S is replaced by p�1i .H/\S and that
each �j (j ¤ i) is replaced by pjp�1i .Hi /. This does not affect the intersections
Lj D S \�j (j ¤ i ).

Recall [14, VIII.5.1] that the property FPn is inherited by finite index subgroups
and persists in finite extensions. In the proof of Theorem C we detect the failure
of property FPn by considering the homology of subgroups of finite index: if
Hk.S1IQ/ is infinite-dimensional for some S1 < S of finite index, then neither S
nor S1 is of type FPk .

Some care is required here because one cannot conclude in the previous sen-
tence that S has an infinite-dimensional homology group: the finite dimensionality
of homology groups is a property that persists in finite extensions but is not, in
general, inherited by finite index subgroups. In the context of the proof of Theorem
C, care has been taken to ensure that each passage to a finite index subgroup respects
this logic.

3. Reductions of the main theorem

Theorem A can be reduced to Theorem C by

PROPOSITION 3.1. Theorem A is true if and only if it holds under the following
additional assumptions:

(1) n� 2;

(2) each projection pi W S ! �i is surjective;

(3) each intersection Li D S \�i is nontrivial;

(4) each �i is a nonabelian limit group;

(5) each �i splits as an HNN extension over a cyclic subgroup Ci with stable
letter ti 2 Li .

Proof. (1): The case nD 0 of Theorem A is trivial.
In the case n D 1, S < �1 has type FP1.Q/, so is finitely generated. But a

finitely generated subgroup of a limit group is again a limit group, and there is
nothing more to prove. (The case nD 2 was proved in [9] but an independent proof
is given below.)
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(2): Since S has type FPn.Q/ it is finitely generated, hence so is pi .S/ and we can
replace each �i by pi .S/.

(3): If, say, Ln is trivial, then the projection map qn W S ! �1 � � � � � �n�1 is
injective, and S is isomorphic to a subgroup qn.S/ of �1 � � � � � �n�1. After
iterating this argument, we may assume that each Li is nontrivial.

(4): Suppose that one or more of the �i is abelian. A group is an abelian limit
group if and only if it is free abelian of finite rank. Hence a direct product of finitely
many abelian limit groups is again an abelian limit group. This reduces us to the
case where precisely one of the �i — say, �n — is abelian.

Now, replacing �n by a finite index subgroup if necessary, we may assume
that Ln � �n is a direct factor of �n: say �n D Ln˚M . Since M \S is trivial,
the projection �1 � � � � � �n ! �1 � � � � � �n�1 � Ln with kernel M maps S
isomorphically onto a subgroup T of �1 � � � � � �n�1 � Ln. Since Ln � T , it
follows that S Š T DU �Ln for some subgroup U of �1�� � ���n�1. But then U
has type FPn.Q/, since S does, and if Theorem A holds in the case where all the �i
are nonabelian, then U is virtually a direct product of n� 1 or fewer limit groups.
But then S Š U �Ln is virtually a direct product of n or fewer limit groups, so
Theorem A holds in full generality.

(5): The subgroup Li of �i is normal by (2) and nontrivial by (3). Hence it
contains an element ti that acts hyperbolically on the tree of the splitting described
in Proposition 2.1 (see [8, �2]). Then by [8, Th. 3.1], ti is the stable letter in
some HNN decomposition (with cyclic edge stabilizer) of a finite index subgroup
�i � �i .

Replacing each �i by the corresponding subgroup �i , and S by S \ .�1 �
� � � ��n/, gives us the desired conclusion.

(The above argument extends to all groups in C under the additional hypothesis
that the edge groups in the splittings defining C are all closed in the profinite
topology.) �

4. The elements of the proof of Theorem C

We have seen that Theorem A follows from Theorem C. The proof of Theorem
C extends from Section 5 to Section 8. In the present section we give an overview of
the contents of these sections and indicate how they will be assembled to complete
the proof.

In Section 5 we prove the following extension of the basic result that nontrivial,
finitely generated normal subgroups of nonabelian limit groups have finite index
[7].
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THEOREM 4.1. Let � be a group in C, and 1¤N <G <� with N normal in
� and G finitely generated. Then j� WGj<1.

Using this result, together with the HNN decompositions of the �i described
in Proposition 3.1, we deduce (Section 6):

THEOREM 4.2. Let �1; : : : ; �n be nonabelian limit groups. If S ��1�� � ���n
is a finitely generated subgroup withH2.S1IQ/ finite dimensional for all finite index
subgroups S1 < S , and if S satisfies conditions (1) to (5) of Proposition 3.1, then

� the image of each projection S ! �i ��j is of finite index in �i ��j ;

� the quotient groups �i=Li are virtually nilpotent of class at most n� 2.

We highlight the case nD 2.

COROLLARY 4.3. If �1 and �2 are nonabelian limit groups, and S < �1��2
is a subdirect product intersecting each factor nontrivially, with H2.S1IQ/ finite
dimensional for all finite index subgroups S1<S , then S has finite index in �1��2.

An important special case of Theorem C, considered in Section 7, arises where
S is the kernel of an epimorphism �1 � � � � ��n! Z.

THEOREM 4.4. Let �1; : : : ; �n be nonabelian limit groups, and N the kernel
of an epimorphism �1 � � � � � �n ! Z. Then there is a subgroup of finite index
N0 �N such that at least one of the homology groups Hk.N0IQ/ (0� k � n) has
infinite Q-dimension.

We complete the proof of Theorem C in Section 8. We have seen that each of
the �i=Li is virtually nilpotent. Setting �D�1�� � ���n and noting that S contains
the product LD L1 � � � � �Ln, we argue by induction on the difference in Hirsch
lengths d Dh.�=L/�h.S=L/ to prove thatHk.S IQ/ has infinite Q-dimension for
some k � n if d > 0. The initial step of the induction is provided by Theorem 4.4,
and the inductive step is established using the LHS spectral sequence. Section 9
contains a proof of Theorem B.

5. Subgroups containing normal subgroups

In this section we prove Theorem 4.1. We assume that the reader is familiar
with Bass-Serre theory [26], which we shall use freely. All our actions on trees are
without inversions.

LEMMA 5.1. Let � be a group acting k-acylindrically, cocompactly and
minimally on a tree X . Let H be a finitely generated subgroup of �. Suppose that
M <H is a nontrivial subgroup which is normal in �. Then the action of H on X
is cocompact.
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Proof. If X is a point there is nothing to prove, so we may assume that X has
at least one edge. By hypothesis, � has no global fixed point in its action on X . By
[8, Cor. 2.2], the nontrivial normal subgroup M <� contains elements which act
hyperbolically on X , and the union of the axes of all such elements is the unique
minimal M -invariant subtree X0 of X . Since M is normal in �, the M -invariant
subtree X0 is also invariant under the action of �. But X is minimal as a �-tree,
so X0 DX .

We have shown that M acts minimally on X . Since M <H , it follows that H
acts minimally on X , so the quotient graph of groups G has no proper subgraph of
groups such that the inclusion induces an isomorphism on �1. A standard argument
in Bass-Serre theory shows that since H is finitely generated, the topological graph
underlying G is compact, as claimed. �

PROPOSITION 5.2. Let � 2 C, and let C;G be subgroups of � with C cyclic
and G finitely generated. If jGn�=C j<1, then j� WGj<1.

Proof. Let � be a group in C. We argue by induction on the level `D `.�/ in
the hierarchy CD

S
n Cn where � first appears. By definition, � has a nontrivial,

k-acylindrical, cocompact action on a tree T , with cyclic edge stabilizers. Without
loss of generality we can suppose that this action is minimal.

If `D 0 there is a single orbit of edges, the edge stabilizers are trivial and the
vertex stabilizers are nontrivial. If ` > 0 the edge stabilizers are nontrivial and the
stabilizer of some vertex w is in C`�1.

Let c be a generator for C . We treat the initial and inductive stages of the
argument simultaneously, but distinguish two cases according to the action of c.

Case 1. Suppose that c fixes a vertex v of T .
Then, by our double coset hypothesis, the �-orbit of v consists of only finitely

many G-orbits Gvi . Since the action of � on T is cocompact, there is a constant
m > 0 such that T is the m-neighborhood of �v, and hence the quotient graph
X DGnT is the m-neighborhood of the finitely many vertices Gvi . In other words,
X has finite diameter.

Note also that �1X has finite rank, because it is a retract of G which is finitely
generated.

Finally, note that X D GnT has only finitely many valency 1 vertices. For
otherwise, we can deduce a contradiction as follows. Since G is finitely generated,
if there are infinitely many vertices of valency 1, then the induced graph-of-groups
decomposition of G is degenerate, in the sense that there is a valency 1 vertex Nu
with G Nu DG Ne, where Ne is the unique edge of GnT incident at Nu.

Now NuDGu for some vertex u in T , and Ne DGe for an edge e incident at u.
The group G Nu is the stabilizer of u in G, and G Ne is the stabilizer of e in G. The
fact that NuDGu has valency 1 in GnT means that G Nu acts transitively on the link
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Lk of u in T . Hence jLkj D jG Nu W G Nej D 1, so u is a valency 1 vertex of T . But
this contradicts the fact that T is minimal as a �-tree.

We have shown that X DGnT has finite diameter, finite rank, and only finitely
many vertices of valency 1. It follows that X is a finite graph.

In the case where � has level ` D 0, the stabilizer �e of any edge e of T
is trivial. The number of edges in X D GnT that are images of edges e 2 �e
can therefore be counted as jGn�=�ej D jGn�j D j� W Gj. Hence, in this case,
j� WGj<1, as required.

In the case where ` > 0, there is a vertex w of T whose stabilizer �w in � is
a group in C`�1. Let �e denote the stabilizer of some edge e incident at w. Then
j.G \�w/n�w=�ej is bounded above by the finite number of edges of X DGnT
incident at Gw 2GnT that are images of edges e 2 �e. By inductive hypothesis,
G \�w has finite index in �w . Similarly, for each  2 � , G \ �w�1 has finite
index in �w�1. Consider the action of �w by right multiplication on Gn�:
the orbits are the double cosets Gn�=�w and hence are finite in number because
they index a subset of the vertices of X DGnT ; moreover the stabilizer of G is
�1G \�w , which we have just seen has finite index in �w . Thus Gn� is finite.

Case 2. Suppose that c acts hyperbolically on T , with axis A say.
Then the double coset hypothesis implies that the axes .A/, for  2� , belong

to only finitely many G-orbits. On the other hand, the convex hull of
S
2� .A/

is a �-invariant subtree of T , and hence by minimality is the whole of T .
Let T0 be the minimal G-invariant subtree of T . If T0 D T then X DGnT is

finite since G is finitely generated, and so jGn�=�ej<1 for any edge stabilizer
�e in � . If `D 0, then �e is trivial, so j� WGj<1. Otherwise, choose e incident
at a vertex w whose stabilizer � is in C`�1 and apply the inductive hypothesis as
above to deduce that j� WGj<1.

It remains to consider the case T0 ¤ T .
Now, for any subgraph Y of T , and any g 2G, we have

d.g.Y /; T0/D d.g.Y /; g.T0//D d.Y; T0/:

Since the �-orbit of A contains only finitely many G-orbits, there is a global upper
bound K, say, on d..A/; T0/ as  varies over � .

Since T ¤ T0 and T is spanned by the �-orbit of A, there is a translate .A/
of A that is not contained in T0. Recall that the action is k-acylindrical. Choose a
vertex u on .A/ with d.u; T0/ > KC kC 2 and let �u denote its stabilizer in � .
Let p be the vertex a distance K from T0 on the unique shortest path from T0 to u.
Since d..A/; T0/�K, the geodesic Œp; u� is contained in .A/. Similarly, Œp; u�
is contained in any translate of A that passes through u. In particular, if ı 2 �u
then Œp; u�� ı.A/, and since ı fixes u we have ı.p/D p or ı.p0/D p, where p0

is the unique point of .A/ other than p with d.u; p/D d.u; p0/.
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If ı fixes the edge of Œp; u� incident at u, then ı.p/D p hence ı fixes Œp; u�
pointwise, which contradicts the k-acylindricality of the action unless ı D 1. Thus
the stabilizer of this edge is trivial, which is a contradiction unless `D 0.

If `D 0 then, replacing u by an adjacent vertex if necessary, we may assume
that j�uj> 2. Choose distinct nontrivial elements ı1; ı2 2 �u. It cannot be that all
three of ı1; ı2; ı1ı�12 send p0 to p. Thus one of them fixes p, hence Œp; u�, which
again contradicts the k-acylindricality of the action. �

We are now able to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Suppose that � 2C, G <� is finitely generated, and N
is a nontrivial normal subgroup of � that is contained in G. Then by definition of C,
� acts nontrivially, cocompactly and k-acylindrically on a tree T with cyclic edge
stabilizers. There is no loss of generality in assuming the action is minimal, so we
may apply Lemma 5.1 to see that the action of G is cocompact. The stabilizer �e in
� of an edge e is cyclic, and the finite number of edges in GnT is an upper bound
on jGn�=�ej. It follows from Proposition 5.2 that j� WGj<1, as claimed. �

6. Nilpotent quotients

In this section we prove Theorem 4.2, which steers us away from the study of
groups acting on trees and into the realm of nilpotent groups.

We first prove a general lemma (from [12]) about a subdirect product S of n
arbitrary (not necessarily limit) groups �1; : : : ; �n. As before, we write Li for the
normal subgroup S \�i of �i . We also introduce the following notation. We write
Ki for the kernel of the i -th projection map pi W S! �i , and Ni;j for the image of
Ki under the j -th projection pj W S ! �j . Thus Ni;j is a normal subgroup of �j .

We shall denote by Œx1; x2; : : : ; xn� the left-normed n-fold commutator

ŒŒ: : : ŒŒx1; x2�; x3�; : : : �; xn�:

LEMMA 6.1. ŒN1;j ; N2;j ; : : : ; Nj�1;j ; NjC1;j ; : : : ; Nn;j �� Lj .

Proof. Suppose that �i;j 2Ni;j for a fixed j and for all i ¤ j . Then there exist
�i 2S with pi .�i /D 1 and pj .�i /D �i;j . Let � denote the .n�1/-fold commutator
Œ�1; : : : ; �j�1; �jC1; : : : ; �n� 2 S . Then pj .�/ is the .n� 1/-fold commutator

Œ�1;j ; : : : ; �j�1;j ; �jC1;j ; : : : ; �n;j � 2 �j :

On the other hand, for i ¤ j , we have pi .�/ D 1 since pi .�i / D 1. Hence
� 2 Lj , and pj .�/D � 2 Lj .

Since the choice of �i;j 2Ni;j was arbitrary, we have

ŒN1;j ; N2;j ; : : : ; Nj�1;j ; NjC1;j ; : : : ; Nn;j �� Lj

as claimed. �
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We now consider a finitely generated subdirect product S of nonabelian limit
groups �1; : : : ; �n such that H2.S1IQ/ is finite-dimensional for every finite index
subgroup S1 < S .

Let Li ; Ci and ti be as in Proposition 3.1. We consider the image Ai;j WD
pj .p

�1
i .Ci // under the projection pj of the preimage under pi of the cyclic group

Ci . Clearly Ni;j < Ai;j < �j .
In the remainder of this section we shall prove that Ni;j � �j is of finite index

for all i and j . Lemma 6.1 then implies that �i=Li is virtually nilpotent of class at
most n� 2, as is claimed in Theorem 4.2.

As a first step towards showing that Ni;j � �j is of finite index, we prove

LEMMA 6.2. Let �1; : : : ; �n be nonabelian limit groups. If S < �1� � � ���n
is a finitely generated subgroup with H2.S IQ/ finite dimensional, and if S satisfies
conditions (1) to (5) of Proposition 3.1, then for all i; j ,

(1) j�j W Ai;j j<1 and

(2) Ai;j =Ni;j is cyclic.

Proof. (1) It suffices to consider the case i D 1. The HNN decomposition �1D
B1�C1

described in Proposition 3.1 (5) pulls back to an HNN decomposition of S
with stable letter yt1D .t1; 1; : : : ; 1/, base group yB1Dp1�1.B1/, and amalgamating
subgroup yC1 D p1�1.C1/. As C1 is cyclic, yC1 DK1 Ì hyc1i where yc1 is a choice
of a lift of a generator of C1. Consider the Mayer-Vietoris sequence for the HNN
decomposition of S :

� � � !H2.S IQ/!H1. yC1IQ/
�
!H1. yB1IQ/!H1.S IQ/! � � � :

The map � is the difference between the map induced by inclusion and the map
induced by the inclusion twisted by the action of yt1 by conjugation. Notice that yt1
commutes with K1 and so acts trivially on H�.K1IQ/. Thus � factors through the
mapH1. yC1IQ/!H1.hyc1iIQ/; in particular the image of � has dimension at most
1. Since H2.S IQ/ is finite-dimensional by hypothesis, it follows that H1. yC1IQ/
is finite-dimensional. For each j , A1;j D pj . yC1/ is a homomorphic image of yC1,
so H1.A1;j IQ/ is finite-dimensional. Since A1;j is a subgroup of the nonabelian
limit group �j , it follows that it is finitely generated. Since it contains the nontrivial
normal subgroup Lj , Theorem 4.1 now implies that A1;j has finite index in �j , as
claimed.

(2) As pj is surjective,

Ai;j =Ni;j D pj . yCi /=pj .Ki /

is a homomorphic image of yCi=Ki , so it is also cyclic, as claimed. �

The other crucial ingredient in the proof of Theorem 4.2 is this:
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PROPOSITION 6.3. Let G be an HNN extension of the form B�C with stable
letter t , finitely generated base group B and infinite cyclic edge group C . Suppose
that G has normal subgroups L and N such that t 2 L, C \N D f1g and G=N is
infinite cyclic. Suppose further that H1.N IQ/ is infinite-dimensional. Let ��G
be the unique subgroup of index 2 that contains B . Then, there exists an element
x 2L\B \N such that R Nx �H1.N \�IQ/ is a free R-module of rank 1, where
RDQŒ�=.N \�/� and Nx is the homology class determined by x.

Proof. Let T be the Bass-Serre tree of the splitting GDB�C and consider the
graph of groups decomposition of N2 WDN \� with underlying graph X DN2nT ;
since N2C has finite index in G, this is a finite graph. Each vertex group in this
decomposition is a conjugate of B \ N2, and the edge groups are trivial since
C \N2 D f1g.

Thus, as an abelian group, H1.N2IQ/ is the direct sum of H1.X IQ/ and p
copies of H1.B \N2IQ/, where p is the index of BN2 in G. The first of these
summands is finite-dimensional, and hence H1.B \N2IQ/ is infinite-dimensional
(since H1.N IQ/ is infinite-dimensional, implying that H1.N2IQ/ is too).

Let � be a generator of G=N . Then

M WDH1.B \N2IQ/

is a QŒ�˙pŠ�-module, which is finitely generated because B is finitely generated and
B=.B \N2/ is finitely presented. Since QŒ�˙pŠ� is a principal ideal domain, the
module M has a free direct summand. We fix z 2 B \N2 so that Nz 2M generates
this free summand. It follows that R Nz has infinite Q-dimension, and so is a free
submodule of the R-module H1.N2IQ/.

Since t …�, z1 WD z and z2 WD tzt�1 belong to distinct vertex groups in X .
Hence x WD Œz; t �D z1z�12 2 L\N \� is such that Nx D Nz1� Nz2 generates a free
QŒ�˙pŠ�-submodule of H1.N2IQ/, and hence also a free R-submodule. �

The following proposition completes the proof of Theorem 4.2.

PROPOSITION 6.4. Let �1; : : : ; �n be nonabelian limit groups. If S < �1 �
� � � � �n is a finitely generated subgroup with H2.S1IQ/ finite dimensional for
each subgroup S1 of finite index in S , and if S satisfies conditions (1) to (5) of
Proposition 3.1, then (in the notation of Lemma 6.2) Ni;j � �j is of finite index for
all i and j .

Proof. It suffices to consider the case .i; j /D .2; 1/. Let T be the projection
of S to �1 � �2, and define Mi D T \ �i for i D 1; 2. Notice that M1 D N2;1,
the projection to �1 of the kernel of the projection p2 W S ! �2, and similarly
M2 DN1;2.



1460 M. R. BRIDSON, J. HOWIE, C. F. MILLER, and H. SHORT

Since S projects onto each of �1 and �2, the same is true of T . Hence we
have isomorphisms

�1

M1
Š

T

M1 �M2
Š
�2

M2
:

We will assume that these groups are infinite, and obtain a contradiction.
By Lemma 6.2, T=.M1 �M2/ is virtually cyclic, so we may choose a finite

index subgroup T0 < T containing M1 �M2 such that T0=.M1 �M2/ is infinite
cyclic. Hence Gi WD pi .T0/ is a finite index subgroup containing Mi for i D 1; 2,
such that Gi=Mi is infinite cyclic. Choose � 2 T0 such that �:.M1�M2/ generates
T0=.M1 �M2/, and let �i D pi .�/ 2Gi for i D 1; 2.

The HNN decomposition of �i from Proposition 3.1 (5) induces an HNN
decomposition Gi D B 0i�C 0

i
with stable letter t 0i 2 Li , where C 0i D Ci \Gi and

t 0i an appropriate power of the stable letter ti of �i . Notice that, by Lemma 6.2,
C 0i \Mi D f1g. For each i D 1; 2, Proposition 6.3 (with G D Gi , N D Mi ,
LD Li , t D t 0i , B D B

0
i , C D C

0
i ) provides an index 2 subgroup �i in Gi and an

element xi 2Mi \�i \Li such that Nxi generates a free QŒ�˙1i �-submodule of
H1.Mi \�i IQ/.

Now setM 0i WDMi\�i . It follows that Nx1˝ Nx2 generates a free QŒ�˙11 ; �˙12 �-
submodule of

H1.M
0
1IQ/˝QH1.M

0
2IQ/�H2.M

0
1 �M

0
2IQ/:

Let T1 be the finite index subgroup of T0 defined by T1 WD .M 01 �M
0
2/Ì h�i,

and let S1 < S be the preimage of T1 under the projection S ! T . Using the LHS
spectral sequence for the short exact sequence M 01 �M

0
2! T1! h�i, we see that

H0
�
h�iIH2.M

0
1 �M

0
2IQ/

�
�H2.T1IQ/

has an infinite-dimensional Q-subspace generated by the images of

f.�m1 x1�
�m
1 /˝ .�n2 x2�

�n
2 /I m; n 2 Zg:

In particular, the image of the map H2.L1 � L2IQ/ ! H2.T1IQ/ induced by
inclusion is infinite-dimensional. But this contradicts the hypothesis thatH2.S1IQ/
is finite-dimensional, since the inclusion .L1 �L2/! T1 factors through S1. This
is the desired contradiction which completes the proof. �

7. Normal subgroups with cyclic quotient

PROPOSITION 7.1. If �1; : : : ; �n are groups of type FPn.Z/ and � W �1 �
� � � ��n! Z has nontrivial restriction to each factor, then Hj .ker�IZ/ is finitely
generated for j � n� 1.
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Proof. We first prove the result in the special case where the restriction of � to
each factor is epic. Thus we may write �i DLiÌhti i where S D ker�, Li DS\�i
is the kernel of �j�i

and �.ti / is a fixed generator of Z.
If n � 2 and we fix a finite set Ai � Li such that �i D hAi ; ti i, then S is

generated by A1[ � � � [An[ft1t�12 ; : : : ; t1t
�1
n g.

We proceed by induction on n (the initial case nD 1 being trivial), considering
the LHS spectral sequence in homology for the projection of S to �n,

1! Sn�1! S
pn
! �n! 1;

where Sn�1 is the kernel of the restriction of � to �1 � � � � ��n�1. In particular,
the inductive hypothesis applies to Sn�1.

Since �n is of type FPn.Z/ andHq.Sn�1IZ/ is finitely generated for q�n�2,
by induction, on the E2 page of the spectral sequence there are only finitely
generated groups in the rectangle 0� p � n and 0� q � n�2. It follows that all of
the groups on the E1 page that contribute to Hj .S IZ/ with j � n� 1 are finitely
generated, with the possible exception of that in position .0; n� 1/.

On the E2 page, the group in position .0; n� 1/ is H0
�
�nIHn�1.Sn�1IZ/

�
,

which is the quotient of Hn�1.Sn�1IZ/ by the action of �n. This action is deter-
mined by taking a section of pn W S ! �n and using the conjugation action of S .
The section we choose is that with image Ln Ì ht1t�1n i. Since Ln and tn commute
with Sn�1, we have

H0
�
�nIHn�1.Sn�1IZ/

�
DH0

�
ht1iIHn�1.Sn�1IZ/

�
:

The latter group is the .0; n� 1/ term on the E2 page of the spectral sequence for
the extension

1! Sn�1! �1 � � � � ��n�1
�
! Z! 1:

This is a 2-column spectral sequence, so the E2 page coincides with the E1

page. Since �1 � � � � ��n�1 is of type FPn�1 (indeed of type FPn), it follows that
H0
�
ht1iIHn�1.Sn�1IZ/

�
is finitely generated, and the induction is complete.

For the general case, replace Z by the finite index subgroup � .�1/\� � �\� .�n/
(DmZ, say); replace each �i by the finite index subgroup�i D�i\��1.mZ/, and
replace S by the finite index subgroup T DS\.�1�� � ���n/. Since � .�i /DmZ

for each i , the above special-case argument applies to T , to show that Hj .T IZ/ is
finitely generated for each 0� j � n�1. Moreover, T is normal in S , and we may
consider the LHS spectral sequence of the short exact sequence

1! T ! S ! S=T ! 1:

On the E2 page of this spectral sequence, the terms E2pq in the region 0� q � n�1
are homology groups of the finite group T=S with coefficients in the finitely
generated modules Hq.T IZ/, and so they are finitely generated abelian groups.
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But all the terms that contribute to Hj .S IZ/ for 0� j � n�1 lie in this region, so
Hj .S IZ/ is finitely generated for j � n� 1, as required. �

THEOREM 7.2. Let �1; : : : ; �n be nonabelian limit groups and let S be the
kernel of an epimorphism � W �1 � � � � ��n! Z. If the restriction of � to each of
the �i is epic, then Hn.S IQ/ has infinite Q-dimension.

Proof. The proof is by induction on n. The case nD 1 was established in [7]:
the group S D ker� is a normal subgroup of the nonabelian limit group �1, and if
H1.S;Q/ were finite-dimensional then S would be finitely generated, and hence
would have finite index in �1.

The preceding proposition shows thatHj .S IZ/ is finitely generated, and hence
Hj .S IQ/ is finite-dimensional for j < n. As in the proof of that proposition, we
consider the LHS spectral sequence for

1! Sn�1! S
pn
! �n! 1;

now with Q-coefficients. There are now only finitely generated Q-modules in the
region 0� q � n�2. (Recall that �i is of type FP1.) In particular, the terms on the
E2 page involved in the calculation of Hn.S IQ/ are all finitely generated except
for

H0
�
�nIHn.Sn�1IQ/

�
DH0

�
ht1iIHn.Sn�1IQ/

�
and H1

�
�nIHn�1.Sn�1IQ/

�
:

It suffices to prove that the latter is infinite-dimensional over Q. (The former
is actually finite-dimensional, but this is irrelevant.)

The module M D Hn�1.Sn�1IQ/ is a homology group of the kernel of a
map from an FP1 group to Z. It is thus a homology group of a chain complex
of free RDQŒt; t�1� modules of finite rank. The ring R is Noetherian, so such a
homology group is finitely generated as an R-module. By the inductive hypothesis,
M has infinite Q-dimension. So by the classification of finitely generated modules
over a principal ideal domain, M has a free direct summand, that is M DM0˚R.

The �n-action on M factors through the quotient �n! �n=Ln D htni, since
Ln acts trivially, so the direct sum decomposition passes to M considered as a Q�n
module. Hence

H1.�nIM/DH1.�nIM0/˚H1.�nIR/:

Finally, as a Q�n module,

RDQ�n˝QLn
Q;

so by Shapiro’s Lemma H1.�nIR/ŠH1.LnIQ/ (see for instance [14, III.6.2 and
III.5]) .

As Ln is an infinite index normal subgroup of a nonabelian limit group, it is
not finitely generated, and therefore neither is the Q-module H1.LnIQ/ [7]. �
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Theorem 4.4 follows immediately from Theorem 7.2 in light of the Künneth
formula, after one has passed to a subgroup of finite index to ensure that whenever
�i ! Z is nontrivial it is onto.

8. Completion of the proof of the Main Theorem

The following lemma and its corollary provide an extension to the virtual
context of known results about finitely generated nilpotent groups. We shall apply
them to direct products of the virtually nilpotent quotients of �i=Li resulting from
Theorem 4.2.

LEMMA 8.1. Let G be a finitely generated virtually nilpotent group and let S
be a subgroup of infinite index. Then there exists a subgroup K of finite index in G
and an epimorphism f WK! Z such that .S \K/� ker.f /.

Proof. We argue by induction on the Hirsch length h.G/, which is strictly
positive, since G is infinite.

In the initial case, h.G/D 1 means that G has an infinite cyclic subgroup K
of finite index. Since S has infinite index in G, S is finite, so .S \K/ is trivial,
and we can take f WK! Z to be an isomorphism.

For the inductive step, let H be a finite index torsion-free subgroup of G, and
C an infinite cyclic central subgroup of H . If CS has infinite index in G, then the
inductive hypothesis applies to H=C and we are done. Otherwise, S has infinite
index in CS , so C \ S has infinite index in C Š Z. But then C \ S D f1g, and
since C <H , it follows that CS \H D C � .S \H/. Put K D CS \H and let
f be the projection K! C with kernel S \H . �

We note that Lemma 8.1 would not remain true if one assumed only that G
were polycyclic. For example, it fails for lattices G D Z2Ì hti in the 3-dimensional
Lie group Sol if one takes S D hti.

Repeated applications of Lemma 8.1 yield

COROLLARY 8.2. Let G be a finitely generated, virtually nilpotent group and
let S be a subgroup of G. Then there is a subnormal chain

S0 < S1 < � � �< Sr DG;

where S0 is a subgroup of finite index in S and for each i the quotient group
S iC1=S i is either finite or cyclic.

For the benefit of topologists, we should note that the following algebraic
argument is modeled on the geometric proof of the Double Coset Lemma in [8].

Proof of Theorem C. Let � D �1 � � � � ��n. Recall that the �i are nonabelian,
the projections pi W S ! �i are surjective, and the intersections Li D S \�i are
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nontrivial. By passing to a subgroup of finite index we may assume that each �i
splits as in Proposition 3.1 (5). Let LD L1 � � � � �Ln.

We only need consider the case when S has infinite index in � . We shall
derive a contradiction from the assumption that for all subgroups S0 < S of finite
index and for all 0� j � n, Hj .S0;Q/ is finite-dimensional.

From Theorem 4.2 we know that each of the quotient groups �i=Li is virtually
nilpotent, and hence so is �=L.

Since L � S and S has infinite index in � , the image S of S in �=L is
of infinite index and we may apply Lemma 8.1 with �=L in the role of G. Let
ƒ < � be the preimage of the subgroup K provided by the lemma. Note that ƒ
has finite index in � , contains L, and admits an epimorphism f W ƒ! Z such
that S \ƒ� ker.f /. As in Section 2E, we may replace the groups �i and S by
finite index subgroups so as to ensure that L� S �N , where N is the kernel of an
epimorphism � ! Z. By Theorem 4.4, there is a finite index subgroup N0 < N
and an integer j � n such that Hj .N0IQ/ is infinite-dimensional.

By Corollary 8.2 (applied to the image of S \N0 in �=L) there is a subgroup
S0 contained in S \N0, which has finite index in S , and a subnormal chain of
subgroups S0 GS1 G � � � GSk DN0 with SiC1=Si either finite or cyclic for each i .
We now use the following lemma to contradict the assumption that Hj .S0IQ/ is
finite-dimensional.

LEMMA 8.3. Let S0GS1 be groups with S1=S0 finite or cyclic. IfHj .S0IQ/ is
finite-dimensional for 0� j �n, thenHj .S1IQ/ is finite-dimensional for 0� j �n.

Proof. In the LHS spectral sequence for the group extension S0 ! S1 !

.S1=S0/ we have

E2p;q DHp
�
S1=S0IHq.S0IQ/

�
:

By hypothesis,E2p;q has finite Q-dimension for q�n. Moreover,E2p;qD0 for p>1,
since S1=S0 has homological dimension at most 1 over Q. Thus the derivatives on
the E2 page all vanish and the spectral sequence stabilizes at the E2 page. Hence,
for 0� j � n, we have

dimQ.Hj .S1IQ//D dimQ.E
2
0;j /C dimQ.E

2
1;j�1/ <1;

as required. �

Repeatedly applying this lemma to the subnormal sequence S0 G S1 G � � � G
Sk DN0 implies that Hj .N0IQ/ is finite-dimensional for all j � n, contradicting
Theorem 4.4. �

This completes the proof of Theorem C, from which Theorem A follows
immediately.
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9. From Theorem C to Theorem B

Let �i ; Li and S be as in the statement of Theorem B, but without necessarily
assuming that the Li are nonabelian for all i . We first discuss how this situation
differs from the special case stated in Theorem B.

If some Li is trivial, then S is isomorphic to a subgroup of the direct product
of the �j with j ¤ i , as in Proposition 3.1 (3). We now assume that Li ¤ f1g for
each i .

As in Proposition 3.1 (2), we may replace each �i by pi .S/, where pi WS!�i
is the projection, and hence assume that pi is surjective, and so each Li is normal
in �i .

If some Li is nontrivial and abelian, then it is free abelian of finite rank, by [4,
Cor. 1.23]. Since Li is normal, it has finite index in �i , and it follows immediately
from the !-residually free property that �i is itself abelian.

Arguing as in Proposition 3.1 (4), we may assume that only one of the �i is
abelian, say �1, and that L1 is the only nontrivial abelian Li . We may also assume
that L1 is a direct factor of �1, say �1 D L1 �M1. But then S virtually splits as a
direct product L1 �S 0, where S 0 D S \ .�2 � � � ��n/.

Note that the above reduction involved only one passage to a finite index
subgroup, and that was within the abelian factor �1. The other �i and Li are left
unchanged. In particular, the Li remain nonabelian.

We have now reduced to the situation of the statement of Theorem B, with the
additional hypothesis that each pi W S ! �i is surjective.

In particular, each Li is normal in �i , and hence is of finite index for i D
1; : : : ; r .

Let …r W �1 � � � � � �n ! �1 � � � � � �r be the natural projection, let ƒ D
L1 � � � � �Lr and let

yS0 D S \…
�1
r .ƒ/:

Then yS0 has finite index in S and yS0Dƒ� yS2, where yS2D yS0\ .�rC1�� � ���n/.
Theorem C now says that yS2 has a subgroup of finite index S2 with Hk.S2IQ/
infinite dimensional for some k � n� r .
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