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Abstract

Let w D w.x1; : : : ; xd /¤ 1 be a nontrivial group word. We show that if G is a
sufficiently large finite simple group, then every element g 2G can be expressed as
a product of three values of w in G. This improves many known results for powers,
commutators, as well as a theorem on general words obtained in [19]. The proof
relies on probabilistic ideas, algebraic geometry, and character theory. Our methods,
which apply the ‘zeta function’ �G.s/ D

P
�2IrrG �.1/

�s , give rise to various
additional results of independent interest, including applications to conjectures of
Ore and Thompson.
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1. Main result

A classical result in Number Theory, which goes back to Lagrange, states that
every positive integer is a sum of four squares. Results for some larger powers
were obtained, culminating in Hilbert’s celebrated solution to Waring’s Problem,
showing that every positive integer is a sum of f .k/ kth powers, where f is a
suitable function (see, for instance, [26]).

Are there analogs of this phenomenon for interesting nonabelian groups, such
as symmetric groups, or Chevalley groups? We are interested in situations where
every group element can be expressed as a short product of elements in the image
of a given word map.

To make this precise, let w D w.x1; : : : ; xd / be a nontrivial group word,
namely a nonidentity element of the free group Fd on x1; : : : ; xd . Then we may
write w D x

n1
i1
x
n2
i2
� � � x

nk
ik

where ij 2 f1; : : : ; dg, nj are integers, and we may
assume further that w is reduced. Let G be a group. For g1; : : : ; gd 2G we write

w.g1; : : : ; gd /D g
n1
i1
g
n2
i2
� � �g

nk
ik
2G:

Let

w.G/D fw.g1; : : : ; gd / W g1; : : : ; gd 2Gg

be the set of values of w in G. For subsets A;B �G let AB D fab j a 2A; b 2Bg
and Ak D fa1 � � � ak j ai 2Gg.

Fix a nontrivial group word w and let G be a finite simple group. If G is
large enough then it follows from Jones [15] that w.G/ ¤ f1g (namely w is not
an identity in G). Can we then find a constant c (which may depend on w but
not on G) such that w.G/c D G? This is equivalent to the verbal subgroup of
the Cartesian product of all finite simple groups generated by values of w being a
closed subgroup.

Various instances of this problem were considered in the past decade or two. For
w.x1; x2/D Œx1; x2�Dx

�1
1 x�12 x1x2, the commutator word, it was shown by Wilson

[34] in 1994, using methods of mathematical logic, that indeedw.G/cDG for some
absolute constant c. In 1996–7 Martinez and Zelmanov [25], and independently
Saxl and Wilson [31], solved the problem for the power word w D xk1 . It follows
from their result that every element of a large enough finite simple group is a product
of f .k/ kth powers.

Arbitrary words are dealt with by Liebeck and myself in [19]. Indeed we show
in ?? there that for every word w there is a positive integer c D c.w/ such that
if w.G/ ¤ f1g then w.G/c D G. The purpose of this paper is to obtain a much
stronger result. We show that, for large G, the constant c above does not depend
on w, and is in fact a surprisingly small number.
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THEOREM 1.1. Letw¤ 1 be a group word. Then there exists a positive integer
N D N.w/ such that for every finite simple group G with jGj � N.w/ we have
w.G/3 DG.

In fact for finite simple groupsG of Lie type we prove even more: ifw1,w2; w3
are any three nontrivial group words, then w1.G/w2.G/w3.G/DG provided jGj
is large enough (see Theorem 6.6 below). These results are new even for the
power words, which have been studied extensively in connection to Burnside type
problems.

Commutator words have also been studied extensively in these contexts, also
for profinite groups. Around 30 years ago Serre showed that in a finitely generated
pro-p group G, every element of the commutator subgroup G0 is a bounded product
of commutators. This has been extended by many authors, culminating in Segal’s
proof of a similar result for finitely generated prosolvable groups [32], and in
the proof of Nikolov and Segal [28], [29] for finitely generated profinite groups
in general. See also Nikolov [27] and the references therein for the concept of
commutator width and related positive and negative results.

We note that Theorem 1.1 does not hold for finite groups G in general, even
not in the sense of w.G/f .w;n/ coinciding with the verbal subgroup generated by
w, where f depends on the word w and the minimal number of generators n of G.
However, this latter statement does hold for certain (so called locally finite) wordsw,
as established by Nikolov and Segal in [28] and [29]. This fact then enables them
to show that any finite index subgroup of a finitely generated profinite group is
open. It is still unknown whether every product of kth powers in a n-generated
finite group can be expressed as a product of f .k; n/ kth powers.

Let us now describe the strategy of the proof of Theorem 1.1. The main tools
involved in the proof are algebraic geometry, character theory, and probabilistic
ingredients.

In the first stage of the proof we rely on a result of Borel [2] that a word map
is a dominant map at the level of simple algebraic groups, and consequences proved
by Larsen in [17] showing that word maps have large image in finite simple groups.
Combining these results with some extra-arguments we are able to show that if w is
a nontrivial group word, and G is a large finite simple group, then w.G/ contains
a ‘large’ conjugacy class Cw of G (for example, a conjugacy class of a regular
semisimple element in some cases).

In the next stage of the proof we use a probabilistic approach. Given a group
word w ¤ 1 we consider the large class Cw found inside w.G/, and study the
random variable y D y1y2y3 where yi 2 Cw are randomly chosen (with uniform
distribution).

At this point character theory comes into play. To understand its relevance
here, let G be a finite group, g 2G, and let Ci D xGi (i D 1; : : : ; k) be conjugacy
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classes. Let PC1;:::;Ck .g/ denote the probability that y1 � � �yk D g where yi 2 Ci
are randomly chosen. It follows from a classical result (see e.g. [33, �7.2], or [1,
10.1, p. 43]) that

(1) PC1;:::;Ck .g/D jGj
�1

X
�2IrrG

�.x1/ � � ��.xk/�.g
�1/

�.1/k�1
:

Unfortunately, in most cases we do not have the full character table of G at
our disposal, and it is impossible to compute the right-hand side of (1). However, in
our case, where k D 3 and Ci D Cw , the large conjugacy class found inside w.G/,
we are able to show that the main term in (1) comes from the trivial character �D 1,
and the contribution of the other terms is marginal.

The main tools in showing this are general character theory (see [14]), the
Deligne-Lusztig theory of characters of Chevalley groups [23], and the recent work
[22] on the ‘zeta function’

�G.s/D
X
�2IrrG

�.1/�s

encoding character degrees. More specifically, we use the fact (established in [22])
that there is an absolute constant c such that every finite simple group G has at most
cn irreducible representations of degree n, and closely related results on �G.s/.

At this stage it follows that the random variable y defined above is almost
uniformly distributed in the l1-norm. In particular, for large enough G, y attains
all values g 2G, and so

w.G/3 � C 3w DG;

completing the proof of our main result.
While we focussed above on the proof for groups of Lie type, which is the more

challenging task, it is intriguing that even the proof of Theorem 1.1 for alternating
groups An is not elementary, in that it relies implicitly on algebraic geometry via
[17], as well as on [1] and on the Erdős-Turán theory of random permutations. It
would be interesting to find out whether a purely combinatorial proof of Theorem
1.1 for alternating groups exists.

2. Intermediate results

In the course of the proof of Theorem 1.1 we establish a variety of results of
independent interest, which we state in this section. These are related to short prod-
ucts of conjugacy classes in finite Chevalley groups, and the probability distributions
they induce.
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We use the notation of the previous section. In particular, for conjugacy classes
C1; C2; C3 �G, and for g 2G, PC1;C2;C3.g/ is the probability that g D y1y2y3
where yi 2 Ci is chosen at random (with respect to the uniform distribution on Ci ).

Recall that an element x of a finite group G of Lie type is called regular if its
centralizer in the corresponding algebraic group xG has minimal dimension, namely
rank. xG/. We say that x is semisimple if its order is not divisible by p, where p is
the defining characteristic of G.

By o.1/ we mean a function of jGj alone, which tends to zero as jGj !1.

THEOREM 2.1. Let G be a finite simple group of Lie type, and let C1, C2, C3
be conjugacy classes of regular semisimple elements in G. Then

PC1;C2;C3.g/D .1C o.1//jGj
�1 for all g 2G:

This theorem shows that PC1;C2;C3 is almost uniform in the l1-norm. This
seems to be the first result of this kind for groups of Lie type. For alternating groups
An, and certain so called almost homogeneous classes C1; C2; C3�An, it is shown
in Theorem 1.14 of [20], that PC1;C2;C3 is almost uniform.

Theorem 2.1 is best possible in the sense that it does not hold for a product of
two classes C1; C2. Indeed, to begin with, 1 may not lie in C1C2. But even when
1 2 C1C2 (so C2 D C�11 ) it is clear that, fixing x1 2 C1, we have PC1;C2.1/ D
jC1j

�1 D jGj�1jCG.x1/j, which is much larger than jGj�1.
Theorem 2.1 has the following immediate consequence.

COROLLARY 2.2. There exists an absolute constant c such that, if G is a finite
simple group of Lie type, and C1; C2; C3 � G are conjugacy classes of regular
semisimple elements of G, then C1C2C3 DG provided jGj � c.

As already noted, this need not hold for two classes C1; C2.
It has been shown by Malle, Saxl and Weigel (see Theorem 2.11 of [24]) that

if G is a finite simple classical group which is not an orthogonal group in even
dimension, then G has a conjugacy class C with C 3 DG.

As an application of Corollary 2.2 we obtain the following.

COROLLARY 2.3. Every large enough finite simple group G has a conjugacy
class C such that C 3 DG. Moreover, if G is of Lie type, then any conjugacy class
C of a regular semisimple element will do.

For some particular classes of regular semisimple elements, namely those
in split tori, it has been shown by Ellers and Gordeev that C1C2 � G n f1g (see
for example Theorem 1 in [5]). However, the behavior of C1C2 for classes Ci of
regular semisimple elements outside split tori is much less understood (see Gow
[11] for interesting partial information).

Let Gr.q/ denote a finite simple group of Lie type of rank r over the field
with q elements. Here r is defined to be the rank of the ambient simple algebraic
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group, unless we deal with Lie types 2B2;2G2 or 2F4, in which case r D 1; 1; 2
respectively.

Note that if x 2G DGr.q/ is regular then jCG.x/j � qr (up to multiplicative
constants). In fact our methods enable us to extend Theorem 2.1 for a much larger
family of conjugacy classes, provided G has large rank. This extension is essential
for a whole range of applications (including our main result).

THEOREM 2.4. For every "> 0 there is a number r1."/ such that ifGDGr.q/
where r � r1."/, C1; C2; C3 �G are conjugacy classes of elements x1; x2; x3 2G
satisfying

jCG.x1/j � jCG.x2/j � jCG.x3/j � q
.4�"/r ;

Then

PC1;C2;C3.g/D .1C o.1//jGj
�1 for all g 2G:

Remark. In fact our proof shows that the conclusion of Theorem 2.4 holds
under the somewhat weaker assumption that

jCG.x1/j jCG.x2/j jCG.x3/j=q
4r�6

! 0;

and that r is larger than some absolute constant.

COROLLARY 2.5. For every " > 0 there is a number r2."/ such that if G D
Gr.q/ where r � r2."/, C1; C2; C3 � G are conjugacy classes of elements x1,
x2; x3 2G satisfying

jCG.x1/j � jCG.x2/j � jCG.x3/j � q
.4�"/r ;

Then
C1C2C3 DG:

In particular, if C is a conjugacy class of an element x 2G satisfying jCG.x/j �
q.4=3�"/r , then C 3 DG, provided r � r3."/.

Remark. The conclusion of Corollary 2.5 holds whenever r � c and

jCG.x1/j jCG.x2/j jCG.x3/j � ı � q
4r�6;

where c; ı > 0 are certain absolute constants.

Our proof of Theorems 2.1 and 2.4 relies heavily on character theory.
Let us now consider conjugacy classes of randomly chosen elements. It is

shown in Theorem 1.12 of [19] that there exists an absolute constant c, such that if
G is a finite simple group, and x 2G is chosen at random, then we have .xG/c DG
with probability tending to 1 as jGj!1. Here we are able to improve this, showing
that c D 3 will do. The exponent 3 is best possible here.

THEOREM 2.6. Let G be a finite simple group, and let x 2 G be chosen at
random. Then the probability that .xG/3 DG tends to 1 as jGj !1.
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Note that in [3] it is shown that a random conjugacy class C of the alternating
group An satisfies C 4 D An with probability tending to 1.

For more background on products of conjugacy classes in finite simple groups,
see [1], [19], and the references therein.

Results 2.3, 2.5 and 2.6 above all show that the cube of large (or random)
conjugacy classes in G is the whole of G. Our next result deals with smaller
conjugacy classes, and shows that their cubes are also large in some sense.

THEOREM 2.7. For every ı > 0 there is " > 0 such that, if G is a finite simple
group, and C �G is a conjugacy class of size at most jGj1�ı , then

jC 3j � jC j1C":

In fact for groups of Lie type of bounded rank we obtain an expansion result
for C 2 (see Proposition 10.4 below).

Finally, we apply our methods to study longstanding conjectures by Ore and
by Thompson. Ore conjectured that every element of a finite simple group is a
commutator [30]. Thompson conjectured that every finite simple group G has a
conjugacy class C such that C 2 DG.

Both conjectures have been proved for alternating groups, and for groups of
Lie type over fields with more than 8 elements [5]. A full proof of these conjectures
still seems out of reach.1 Of course, Theorem 1.1 shows that in every large finite
simple group all elements are products of three commutators. Using properties of
the function �G.s/ established in [22] we improve this as follows.

THEOREM 2.8. Let G be a finite simple group, and let x1; x2; x3; x4 2G be
randomly chosen. Then, for every g 2G,

Prob.Œx1; x2�Œx3; x4�D g/D .1C o.1//jGj�1:

In particular, there exists an absolute constant c such that if G is a finite simple
group of order at least c then every element of G is a product of two commutators.

We also show that almost all elements of a finite simple group G satisfy the
conjectures of Ore and Thompson in the following sense:

THEOREM 2.9. Let G be a finite simple group.
(i) Let Com.G/ denote the set of all commutators in G. Then

jCom.G/j=jGj ! 1 as jGj !1:

Moreover, there is an absolute constant c such that, if G DGr.q/, then

jCom.G/j � .1� cq�2r/jGj:

1Footnote added in proofs: The Ore conjecture has recently been proved by Liebeck, O’Brien,
Tiep and myself.
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(ii) There exists a conjugacy class CG in G such that

jC 2G j=jGj ! 1 as jGj !1:

Moreover, there is an absolute constant c such that, if G DGr.q/, then

jC 2G j � .1� cq
�r/jGj:

Our methods also yield results for longer commutators. For d > 2 the d -fold
commutator Œx1; : : : ; xd � is defined by induction as ŒŒx1; : : : ; xd�1�; xd �. We study
the property of being a d -fold commutator for all d simultaneously.

THEOREM 2.10. Let G be a finite simple group.
(i) The probability that a randomly chosen element g 2G is a d -fold commu-

tator for all d � 2 tends to 1 as jGj !1.
(ii) There exists an absolute constant c such that if jGj � c then every element

of G is a product of two elements of G which are d -fold commutators for all d � 2.

This paper is organized as follows. In Section 3 we prove the main results
for alternating groups. Section 4 deals with characters of finite simple groups of
Lie type, establishing a technical result (Theorem 4.1) which is a main tool in this
paper. In Section 5 we apply this result and prove results 2.1-2.6 for groups of
Lie type. Corollaries 2.3 and 2.5 are then applied in the proof of Theorem 1.1,
which is carried out in Section 6. In Section 7 we establish ‘expansion’ for powers
of arbitrary conjugacy classes, and prove Theorem 2.7. In Section 8 we examine
probability distributions induced by group words w and their products using a
noncommutative Fourier transform, and deduce that they are almost uniform in
some cases. Section 9 is devoted to the proof of Theorems 2.8-2.10. Finally, in
Section 10, some open problems and examples are presented.

I am grateful to Roman Bezrukavnikov and Michael Larsen for interesting
discussions, and to the referee for valuable comments.

Notation. For a groupG and x2G we let xG denote the conjugacy class of x in
G. Let k.G/ denote the number of conjugacy classes ofG. A normal subset ofG is a
subset closed under conjugation by the elements of G (namely a union of conjugacy
classes). By Gr.q/ we denote a finite simple group of Lie type, of rank r over the
field with q elements. IrrG stands for the set of irreducible complex characters of
G (so j IrrGj D k.G/). For g 2G we set R.g/Dmax1¤�2IrrG �.g/=�.1/.

If C1; : : : ; Ck are conjugacy classes in G, we denote by NC1;:::;Ck .g/ the
number of solutions to the equation y1 � � �yk D g where yi 2 Ci . We let PC1;:::;Ck
denote the corresponding probability distribution on G, so that PC1;:::;Ck .g/ D
NC1;:::;Ck .g/=.jC1j � � � jCkj/ is the probability that y1 � � �yk D g when yi 2 C are
randomly chosen.
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Given a group word w D w.x1; � � � ; xd / and a finite group G we let w.G/
denote the image of the word map fromGd toG induced byw. This is clearly a nor-
mal subset. Moreover, w.G/ is characteristic (invariant under automorphisms of G).
We denote by Nw;G.g/ the number of solutions to the equation w.x1; : : : ; xd /D g
in G. We let Pw;G be the corresponding probability distribution on G, so that, for
g 2G, Pw;G.g/DNw;G.g/=jGjd .

We say that words u; v are disjoint if their subsets of variables are disjoint.
For a word w and k � 1 we let wk denote a product of k disjoint copies of w (each
with its own set of variables).

Let UG denote the uniform distribution on G. Given distributions P;Q on G,
we define their l1-distance by

kP �Qk1 D jGj �max
g2G
jP.g/�Q.g/j:

Finally, following [22] we set

�G.s/D
X
�2IrrG

�.1/�s;

where G is a finite group and s > 0. This finite analogue of Witten’s ‘zeta function’
encoding representation degrees of compact Lie groups [35] plays a major role in
this paper.

3. Alternating groups

In this section we prove Theorems 1.1 and 2.6 for alternating groups An. The
proof of Theorem 2.7 for An is included in Section 7.

We denote the number of cycles (including 1-cycles) in a permutation � 2 Sn
by cyc.�/.

LEMMA 3.1. Let C be a conjugacy class in Sn and let � 2 C . Suppose
cyc.�/ < n=2. Then C 3 D �An.

Proof. By a result of Dvir ([1, Ch. 3, p. 219, Th. 10.2)] if cyc.�/� .nC 1/=2,
and � is not a fixed-point-free involution, then C 3 D �An. Our assumption on
cyc.�/ implies the two conditions above, and so the conclusion follows. �

LEMMA 3.2. Let w ¤ 1 be a group word, and let " > 0. There is a function
f such that if n > f .w; "/ then w.An/ contains an Sn-conjugacy class C of an
element � with cyc.�/ < n".

Proof. We apply Larsen’s paper [17]. It follows from the proof of Proposition 8
there, that for every ı >0 and large enough n, the set of values w.An/ of w contains
an element with at most nı logn cycles. Taking ı D "=2 and n large we obtain
� 2 w.An/ with cyc.�/� n".
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Since the set w.An/ is characteristic, it contains the Sn-conjugacy class of � .
The result follows. �

We conclude that, for large n (say n > N.w/), the set w.An/ contains an
Sn-class C of an element with less than n=2 cycles, and hence C 3 D An and so
w.An/

3 D An. This proves Theorem 1.1 for alternating groups.
We conclude this section by proving Theorem 2.6 for alternating groups.

LEMMA 3.3. Let � 2 An be chosen at random.
(i) The probability that cyc.�/ < 2 logn tends to 1 as n!1.

(ii) The probability that �An D �Sn tends to 1 as n!1.

Proof. The proof relies on the Erdős-Turán Theory of random permutations.
By [6, (2.2), p. 176], for any " > 0, the probability that � 2 Sn satisfies

.1� "/ logn < cyc.�/ < .1C "/ logn

tends to 1 as n!1. Of course a similar result follows for An. This proves part (i).
For part (ii) we use Theorem VI of [7], showing that the probability that � 2Sn

has no cycles of length a1; : : : ; as is at most .a�11 C : : :Ca
�1
s /�1. Letting ai be all

the even numbers up to n, we see that the probability that � 2 Sn has only cycles
of odd length tends to 0 as n!1. A similar result follows immediately for An.
We deduce that the probability that �An D �Sn tends to 1 as n!1. �

It follows from Lemma 3.3 that for almost all � 2 An we have cyc.�/ < n=2
and �An D �Sn . This fact, combined with Lemma 3.1, show that, for random
� 2 An, the probability that .�An/3 D An tends to 1 as n!1.

Theorem 2.6 is proved for An.

4. Character theoretic preparations

Our proofs for groups of Lie type rely heavily on character theory. In this
section we set the required machinery.

For a group G and elements x1; : : : ; xk 2G, define

E.G; x1; : : : ; xk/D
X

1¤�2IrrG

j
Qk
iD1 �.xi /j

�.1/
:

The main result of this section is the following.

THEOREM 4.1. Let G be a finite simple group of Lie type.
(i) Suppose x1; x2; x3 2G are regular semisimple elements and G ¤ PSL2.q/.

Then E.G; x1; x2; x3/! 0 as jGj !1.
(ii) For each " > 0 there is r1."/ such that, if G D Gr.q/, r � r1."/, k > 1,

x1; : : : ; xk 2 G, and
Qk
iD1 jCG.xi /j � q

.4�"/r , then E.G; x1; : : : ; xk/ ! 0 as
jGj !1.
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Remarks. 1. We note that, under the assumptions of part (i), we also have
E.G; x1; x2/! 0 and E.G; x1/! 0 (the proof is similar and somewhat easier).

2. Part (ii) above is applicable for k D 2; 3 (since by [8] there is an absolute
constant c > 0 such that jCG.x/j � cqr= log q for all x 2Gr.q/).

In this paper we mainly use it for k D 3, so we shall assume this in the proof
below. The case k D 2 can be proved in a very similar manner.

3. A version of part (ii) for kD 1 is stated and proved at the end of this section
(see Proposition 4.7 below).

4. It will be clear from the proof of Theorem 4.1 that that the conclusion of
part (ii) holds whenever r exceeds some absolute constant and

jCG.x1/j jCG.x2/j jCG.x3/j=q
4r�6

! 0:

To prove Theorem 4.1 we need a few results. First we quote Theorem 1.1 of
[22], which plays a major role in this paper.

THEOREM 4.2. Let G be a finite simple group, and for a real number s let
�G.s/D

P
�2IrrG �.1/

�s .
(i) If s > 1 then �G.s/! 1 as jGj !1.
(ii) If s > 2=3 and G ¤ PSL2.q/ then �G.s/! 1 as jGj !1.

We also need the following.

LEMMA 4.3. There are positive constants c1; c2 such that if G DGr.q/ then
(i) �.1/� c1qr for all 1¤ � 2 IrrG, and
(ii) k.G/� c2qr .

Proof. Part (i) follows from work of Landazuri-Seitz [16] and (ii) from work of
Fulman-Guralnick [8] (see also Liebeck-Pyber [18] for the case when r is bounded).

�

LEMMA 4.4. LetGDGr.q/ be a finite simple group of Lie type, and let x 2G
be a regular semisimple element. Then there is a number c D c.r/, depending on r
but not on q, such that

j�.x/j � c

for all � 2 IrrG.

Proof. This follows from the Deligne-Lusztig theory, see [23], and formula
4.26.1 in particular. �

LEMMA 4.5. Let G be a finite group, and N > 0. ThenX
�2IrrG;�.1/�N

j�.x1/�.x2/�.x3/j

�.1/
�
.jCG.x1/j jCG.x2/j jCG.x3/j/

1=2

N
:
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Proof. By the generalized orthogonality relations (see Isaacs [14]) we haveX
�2IrrG

j�.xi /j
2
D jCG.xi /j:

In particular j�.x1/j � jCG.x1/j1=2 for all �.
ClearlyX

�2IrrG;�.1/�N

j�.x1/�.x2/�.x3/j

�.1/
�N�1jCG.x1/j

1=2
X
�2IrrG

j�.x2/�.x3/j:

Now, by Cauchy-Schwarz inequality we have,

X
�

j�.x2/�.x3/j �

 X
�

j�.x2/j
2/

!1=2  X
�

j�.x3/j
2

!1=2
� jCG.x2/j

1=2
jCG.x3/j

1=2:

The result now follows from the two inequalities above. �

LEMMA 4.6. Let G DGr.q/ be a finite simple classical group. Then IrrG has
a subset W of so called Weil characters with the following properties:

(i) jW j � qC 1.
(ii) If x 2G and jCG.x/j � qm then j�.x/j � q

p
mCb where b is some absolute

constant.
(iii) If � 2 IrrG nW and r > 5 then �.1/ � cq2r�3 where c > 0 is some

absolute constant.

Proof. This follows from the discussion in Section 6 of [21] (see Lemma 6.1
and Lemma 6.2 in particular). �

We note that the set W is sometimes empty, but the lemma still holds in these
cases.

Proof of Theorem 4.1. We first prove part (ii) (with k D 3). So we assume
G DGr.q/ is classical and x1; x2; x3 2G satisfy

3Y
iD1

jCG.xi /j � q
.4�"/r :

Let W be the set of Weil characters of G. Set

E1.G; x1; x2; x3/D
X
�2W

j�.x1/�.x2/�.x3/j

�.1/
;

and

E2.G; x1; x2; x3/D
X

1¤� 62W

j�.x1/�.x2/�.x3/j

�.1/
:

Then E.G; x1; x2; x3/DE1.G; x1; x2; x3/CE2.G; x1; x2; x3/.
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By our assumptions jCG.xi /j � q4r (in fact better bounds can be easily
deduced), and so Lemma 4.6(ii) yields j�.xi /j � q

p
4rCb for i D 1; 2; 3. We also

have �.1/� c1qr for all nontrivial � 2 IrrG by Lemma 4.3(i). Therefore

E1.G; x1; x2; x3/�
X
�2W

q3
p
4rCb=�.1/� jW jq3

p
4rCb=.c1q

r/:

Since jW j � qC 1 we obtain

E1.G; x1; x2; x3/� c2q
3
p
4rCb�.r�1/:

It follows that for r sufficiently large (larger than some absolute constant) we have
E1.G; x1; x2; x3/! 0 as jGj !1.

Now, if 1 ¤ � 62 W , and r > 5, Lemma 4.6(iii) yields �.1/ � N , where
N D Œcq2r�3�. By Lemma 4.5 we obtain

E2.G; x1; x2; x3/�N
�1.jCG.x1/j jCG.x2/j jCG.x3/j/

1=2:

Using our assumptions on jCG.xi /j this yields

E2.G; x1; x2; x3/� c3q
�.2r�3/.q.4�"/r/1=2 D c3q

�.2r�3/C.2�"=2/r :

Therefore
E2.G; x1; x2; x3/� c3q

�"r=2C3:

We conclude that, if r > 6=" and q or r tend to infinity, then E2.G; x1; x2; x3/
tends to zero. The proof of part (ii) is complete. Remark 4 following Theorem 4.1
can also be deduced.

Indeed, E1.G; x1; x2; x3/! 0 provided r � c, and E2.G; x1; x2; x3/! 0

provided q�.4r�6/
Q3
iD1 jCG.xi /j ! 0.

It remains to prove part (i) of the theorem. Since jCG.xi /jDO.qr/ for regular
elements xi , part (i) follows from part (ii) for large rank r . Hence, to prove part (i),
we may assume that r is bounded. But then Lemma 4.4 shows that j�.xi /j � c for
some absolute constant c and for all �, and so

E.G; x1; x2; x3/� c
3

X
1¤�2IrrG

�.1/�1 D c3.�G.1/� 1/:

By Theorem 4.2 above we have �G.1/! 1 as jGj !1, provided G ¤ PSL2.q/.
Thus, under the same assumption, E.G; x1; x2; x3/ tends to 0. Theorem 4.1 is
proved. �

Remark. Note that G D PSL2.q/ is a genuine exception to (i). Here E.G; x1,
x2; x3/ may be bounded away from zero (e.g. when x1 D x2 D x3). However,
E.G; x1; x2; x3/ is also bounded above in this case (independently of q). These
facts can be easily verified using the well known character table of PSL2.q/.

For later applications we also need the following variation on Theorem 4.1(ii).
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PROPOSITION 4.7. Let G DGr.q/. For each " > 0 there is r1."/ such that, if
r � r1."/, and x 2G satisfies jCG.x/j � q.3�"/r , then E.G; x/! 0 as jGj !1.

Proof. Recall that

E.G; x/D
X

1¤�2IrrG

j�.x/j

�.1/
:

The proof follows that of 4.1(ii) with some adjustments. First, by Cauchy-Schwarz
inequality we haveX

�2IrrG

j�.x/j � .
X
�

j�.x/j2/1=2j IrrGj1=2 D jCG.x/j1=2k.G/1=2:

From this it follows that, given a positive integer N , we have

(2)
X

�2IrrG;�.1/�N

j�.x/j

�.1/
�
jCG.x/j

1=2k.G/1=2

N
:

Suppose G DGr.q/. We adopt the notation of the proof of 4.1. In particular
we set N D Œcq2r�3� and write E.G; x/DE1.G; x/CE2.G; x/, where

E1.G; x/D
X
�2W

j�.x/j

�.1/
;

and

E2.G; x/D
X

1¤� 62W

j�.x/j

�.1/
:

Assuming jCG.x/j � q.3�"/r we then have

jE1.G; x/j � jW jq
p
3rCb=.c1q

r/� c2q
p
3rCb�.r�1/;

which tends to zero as jGj !1, provided r is larger than some absolute constant.
Now, for 1¤ � 62W we have �.1/�N , so using (2) we obtain

E2.G; x/�
jCG.x/j

1=2k.G/1=2

N
�
q.3�"/r=2.c2q

r/1=2

cq2r�3
� c3q

�"r=2C3:

Thus E2.G; x/! 0 if r > 6=". The result follows. �

Remarks. 1. It follows from the proof above that

E.G; x/DO.q
p
3rCb�.r�1/

C q3�3r=2jCG.x/j
1=2/:

2. This implies that, if r � c, and jCG.x/j=q3r�6 ! 0, then E.G; x/! 0.
We shall also use this version of Proposition 4.7.
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5. Almost uniform distributions, I

In this section we show how the quantity E.G; x1; x2; x3/ estimated in the
previous section can be used to study the distributions PC1;C2;C3 and their l1-dis-
tance from the uniform distribution on G. We will show that, for large classes
Ci , PC1;C2;C3 is almost uniform, and prove Theorems 2.1, 2.4, 2.6, and related
corollaries.

Let G be a finite group, and let x1; x2; x3 2G. Set Ci D xGi . Recall that UG
denotes the uniform distribution on G.

LEMMA 5.1. With the above notation we have

kPC1;C2;C3 �UGk1 �E.G; x1; x2; x3/:

Proof. Let P D PC1;C2;C3 . Recall that by (1) we have for g 2G

P.g/D jGj�1
X
�2IrrG

�.x1/�.x2/�.x3/�.g
�1/

�.1/2
:

Set

�.g/D
X

1¤�2IrrG

�.x1/�.x2/�.x3/�.g
�1/

�.1/2
:

Then since j�.g�1/=�.1/j � 1 we obtain

j�.g/j �
X

1¤�2IrrG

j�.x1/�.x2/�.x3/j

�.1/
DE.G; x1; x2; x3/:

We also have

P.g/D jGj�1.1C�.g//:

Thus

jP.g/� jGj�1j � jGj�1j�.g/j � jGj�1E.G; x1; x2; x3/:

Since kP �UGk1 D jGjmaxg2G jP.g/� jGj�1j the result follows. �

The next result establishes an almost uniform distribution for the random
variable y1y2y3 where yi 2 Ci , for large classes Ci .

THEOREM 5.2. Let G DGr.q/.
(i) If C1; C2; C3 are classes of regular semisimple elements in G, then

kPC1;C2;C3 �UGk1! 0 as jGj !1:

(ii) The same holds when Ci D xGi .i D 1; 2; 3/,
Q3
iD1 jCG.xi /j � q

.4�"/r ,
and r � r1."/.
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Proof. Part (i) follows from Theorem 4.1(i) and Lemma 5.1, provided G ¤
PSL2.q/. Suppose G D PSL2.q/. For g 2 G let �.g/ be as in the proof above.
Then

kPC1;C2;C3 �UGk1 Dmax
g2G

�.g/;

so it suffices to show that �.g/! 0 as jGj !1.
Suppose first g ¤ 1. Recall that R.g/ is the maximal character ratio of g over

the characters �¤ 1. Thus j�.g/=�.1/j �R.g/ for all �¤ 1, and

j�.g/j �E.G; x1; x2; x3/R.g/:

By the character table of G we have R.g/� 2q�1=2. Since E.x1; x2; x3/� c for
some absolute constant c (see remark after the proof of Theorem 4.1), it follows
that �.g/! 0 as q!1, provided g ¤ 1.

It remains to show that this also holds for g D 1. In this case

�.1/D
X
�¤1

�.x1/�.x2/�.x3/

�.1/
;

and the fact that �.1/! 0 as q!1 can be easily verified using the character
table of G. This completes the proof of part (i).

To prove part (ii) we combine Lemma 5.1 with part (ii) of Theorem 4.1. �
Proof of results 2.1–2.5. Theorem 2.1 and 2.4 are parts (i) and (ii) of Theorem

5.2 respectively. The remark after Theorem 2.4 follows from Remark 4 after
Theorem 4.1.

Corollaries 2.2, 2.3 and 2.5 also follow. Indeed, we choose G large enough so
that kPC1;C2;C3 �UGk1 < 1. Then PC1;C2;C3.g/ > 0 for all g 2 G, so C1C2C3
D G. The remark following Corollary 2.5 follows from Lemma 5.1 and previous
remarks. �

To prove Theorem 2.6 we need the following.

LEMMA 5.3. Let G be a finite group and let x 2G be chosen at random. Then,
for each number N > 0, the probability that jCG.x/j<N is at least 1� k.G/=N .

Proof. Let S Dfx 2G W jCG.x/j�N g. Then for x 2S we have jxG j� jGj=N .
Now, S is a normal subset, which splits into at most k.G/ conjugacy classes. Hence
jS j � k.G/jGj=N . We see that jCG.x/j � N holds with probability at most
k.G/=N . The result follows. �

COROLLARY 5.4. Let G D Gr.q/, and let ˛ > 0. Then the probability that
jCG.x/j < q.1C˛/r is at least 1 � cq�˛r for some absolute constant c > 0. In
particular, this probability tends to 1 as jGj !1.

Proof. This follows from the lemma above, using the inequality k.G/� c2qr

(see Lemma 4.3 above). �
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We also rely on the following result of Guralnick and Lübeck [12].

LEMMA 5.5. There exists an absolute constant a such that the number of
regular semisimple elements in G DGr.q/ is at least .1� aq�1/jGj.

Hence for q!1 most elements of G are regular semisimple (but this is not
the case when q is bounded).

Proof of Theorem 2.6. It remains to prove the theorem for G DGr.q/ of Lie
type. Let jGj !1 and let x 2G be chosen at random.

Suppose first that r � r2.1=4/, where r2 is the function in the first assertion
of Corollary 2.5. Then, if jCG.x/j< q5r=4 we have jCG.x/j3 < q.4�1=4/r , and so
Corollary 2.5 shows that .xG/3 DG.

Combining this with Corollary 5.4 yields

Prob..xG/3 DG/� Prob.jCG.x/j< q5r=4/� 1� cq�r=4;

which tends to 1 as jGj !1.
So suppose now that r < r1.1=4/. In particular, since jGj ! 1 we have

q!1. By Corollary 2.3

Prob..xG/3 DG/� Prob.x is regular semisimple/� 1� aq�1;

where the last inequality is Lemma 5.5. We see that in this case too Prob..xG/3

DG/! 1. The result follows.
In fact our arguments show that for some absolute constants a; b > 0 we have

Prob..xG/3 DG/� 1� aq�br : �

6. Proof of main result

We now turn to the proof of Theorem 1.1. Fix the word w ¤ 1, and let
G D Gr.q/. We first quote Proposition 7 of Larsen [17] whose proof relies on
algebraic geometry and the Larsen-Pink method.

LEMMA 6.1. Given a positive integer r and a group word w ¤ 1 there is a
positive constant c.r; w/ depending only on r and w such that

jw.Gr.q//j � c.r; w/jGr.q/j:

We can now deduce the following.

LEMMA 6.2. If r is bounded and q is large enough, then w.Gr.q// contains a
regular semisimple element.

Proof. Combining Lemmas 6.1 and 5.5 we see that, if q is sufficiently large (so
that c.r; w/C1�aq�1>1), then w.G/must intersect the set of regular semisimple
elements of G. �
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To handle groups of unbounded rank, we may restrict to classical groups. Here
it is convenient to deal with quasi-simple groups which are covers of the finite
simple classical groups.

LEMMA 6.3. Consider the natural embedding � W SL2.qm/! SL2m.q/. Then
if m�N.w/ there exists x 2 w.SL2.qm// such that �.x/ is regular semisimple in
SL2m.q/.

Proof. Using the fact that jw.SL2.qm//j � ıq3m for some fixed ı > 0 and all
large m, it follows as in [17] that for every " > 0 and m>f .w; "/ there is a regular
semisimple element x 2 w.SL2.qm// whose order is at least .qm/1�". We use this
for "D 1=4.

Let y D �.x/ 2 SL2m.q/. Then y is semisimple and we claim it is regular.
To see this, note that y has a conjugate z 2 SL2m.q/ which can be written with
Jordan blocks �i 2 GLdi .q/ on the diagonal. Since y is in the image of SL2.qm/,
all these Jordan blocks have the same size di D e, where e divides 2m. In this case
we see that the order of y divides qe � 1.

This yields e � m.1� "/ D 3m=4. It follows that e D 2m or e D m. In the
first case z consists of a single Jordan block, and so is regular. In the second case z
consists of two Jordan blocks �1; �2 which must be distinct (since x is regular in
SL2.qm/), so again z is regular, and so is y. �

PROPOSITION 6.4. Let w be a nontrivial group word. There is an absolute
constant c and a number r1.w/ such that if G DGr.q/ is a finite simple classical
group of rank r � r1.w/, then there is an element x 2 w.G/ satisfying jCG.x/j<
qrCc .

Proof. It suffices to show this for the natural quasi-simple covers G of the
simple classical groups Gr.q/, since the result for the projective groups G=Z.G/
would easily follow.

Note that the method of [17] for dealing with classical groups of large rank
uses embeddings of alternating groups and produces elements of centralizer order
O.qr

1C"

/ which is not sufficiently small for our purpose here.
Instead we shall use embeddings of SL2 over larger fields to get elements with

much smaller centralizers.
If G D SLn.q/ where n D 2m is even, then Lemma 6.3 shows that, for m

large, w.G/ contains a regular semisimple element. Note that, if nD 2mC 1, then
the regular semisimple element constructed inside SL2m.q/ < SL2mC1.q/ remains
regular in SL2mC1.q/ (having an extra 1 on the diagonal).

For the other types of classical groups we use natural embeddings of SLn.q/
as follows:

SLn.q/ < Sp2n.q/;
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SLn.q/ < SOn;n.q/ < SO2nC1.q/ < SOnC2;n.q/;

SLn.q/ < SU2n.q/ < SU2nC1:

It is easy to verify that if x 2 SLn.q/ is a regular semisimple element and G
is one of the classical groups in which SLn.q/ is embedded as above, then we have
jCG.x/j � q

rCc where r is the rank of G and c is a small constant. Thus the regular
semisimple element x 2 w.SLn.q//� w.G/ satisfies the required conclusion.

The result follows. �

In fact for our purpose it is convenient to use the following weaker version of
Proposition 6.4.

COROLLARY 6.5. Let w be a nontrivial group word. There is a number r1.w/
such that ifGDGr.q/ and r � r1.w/, then there is an element x 2w.G/ satisfying
jCG.x/j< q

5r=4.

We can now prove the following.

THEOREM 6.6. Let w1; w2; w3 ¤ 1 be group words. Then there exists a
number N DN.w1; w2; w3/ such that, if G is a finite simple group of Lie type of
order at least N , then w1.G/w2.G/w3.G/DG.

Proof. Let r1; r2 be the functions appearing in Corollaries 6.5 and 2.5 respec-
tively. Set

r0 Dmaxfr1.w1/; r1.w2/; r1.w3/; r2.1=4/g:

Let G D Gr.q/. If r � r0 then, by 6.5, there are elements xi 2 wi .G/ such that
jCG.xi /j< q

5r=4 for i D 1; 2; 3. Corollary 2.5 now yields

w1.G/w2.G/w3.G/� x
G
1 x

G
2 x

G
3 DG:

So suppose r < r0. If G is large enough (larger than a constant depending on
w1; w2; w3), then, for i D 1; 2; 3, wi .G/ contains a regular semisimple element
xi by Lemma 6.2. Thus wi .G/ � xGi , and Corollary 2.2 yields xG1 x

G
2 x

G
3 D G

provided jGj � c. This implies the required conclusion. �

Proof of Theorem 1.1. This follows immediately from Theorem 6.6. �

7. Class expansion

Results proved in Section 5 show that C 3 DG for large conjugacy classes C
of finite simple groups G. In this section we turn our attention to smaller classes
C , showing that C 3 is usually significantly larger than C . In particular we prove
Theorem 2.7.

Our main tool is Theorem 1.1 of [19], which we state below.
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THEOREM 7.1. There exists an absolute constant a 2 N such that if G is a
finite simple group, and C �G is a normal subset of size greater than 1, then there
exists a positive integer k � a log jGj= log jC j such that C k DG.

From this deduce that a bounded power of a normal subset is fairly large.

COROLLARY 7.2. There exists an absolute constant b 2N such that for any
finite simple group G and a normal subset C �G we have

jC bj �minfjC j2; jGjg:

Proof. Let a be as in Theorem 7.1. We claim that b D 4a is as required. Let
C �G be a normal subset. We may assume jC j>1 otherwise the conclusion holds
trivially. We distinguish between two cases.

Case 1. jC j � jGj1=4. Then log jGj= log jC j � 4, and so by Theorem 7.1 we
have C 4a DG so jC bj D jGj.

Case 2. jC j < jGj1=4. We show that in this case jC bj � jC j2. Suppose, by
contradiction, that jC bj< jC j2. Choose k � a log jGj= log jC j such that C k DG.
Let m be the upper integral part of k=b. Then

(3) jGj D jC kj � j.C b/mj � jC bjm < .jC j2/m D jC j2m:

Now,

2m < 2

�
k

b
C 1

�
D

k

2a
C 2�

a log jGj= log jC j
2a

C 2D
1

2
log jGj= log jC jC 2:

Our assumption on jC j yields log jGj= log jC j> 4, and so

1

2
log jGj= log jC jC 2 < log jGj= log jC j:

It follows that 2m < log jGj= log jC j, which means that jC j2m < jGj. This contra-
dicts inequality (3) above. The result follows. �

We also need a recent lemma due to Helfgott.

LEMMA 7.3. Let b > 2 be an integer. Let A be a finite subset of a group G.
Suppose jAbj � jAj1Cı for some ı > 0. Then jA3j � jAj1C" where " > 0 depends
only on b and ı.

Proof. This follows easily from Lemma 2.2 of [13] and its proof. �

We can now prove

THEOREM 7.4. For every ı > 0 there is " > 0 such that for any finite simple
group G and a normal subset C �G satisfying jC j � jGj1�ı we have

jC 3j � jC j1C":
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Proof. We may assume ı < 1, otherwise the conclusion holds trivially. By
Corollary 7.2 we have jC bj � jC j2 or jC bj D jGj. Our assumption on jC j yields
jC j2 � jC j1Cı and jGj � jC j1Cı . Hence in any case we have jC bj � jC j1Cı , and
the required conclusion now follows from Lemma 7.3. �

Proof of Theorem 2.7. This follows immediately from Theorem 7.4. �

8. Almost uniform distributions, II

The idea of the proof of Theorem 1.1 for groups of Lie type was to find a
conjugacy class C �w.G/ with the property that the distribution PC;C;C is almost
uniform in the l1-norm. However, we may consider directly the distribution Pw3;G
associated with a product of three disjoint copies of w and ask whether it itself is
almost uniform. We shall show in this section how properties of the function �G
are important in this context too.

A natural machinery to examine this question is the so called noncommutative
Fourier transform. As is well known, Pw;G is a class function on G, and as such it
can be expressed uniquely as a linear combination of irreducible characters. For
convenience we write

Pw;G D jGj
�1

X
�2IrrG

aw;��;

where aw;� 2 C are the so called Fourier coefficients.
Given class functions f1; f2 WG! C define their convolution by

.f1 �f2/.g/D
X

g1g2Dg

f1.g1/f2.g2/:

It is easy to verify, using the generalized orthogonality relations, that, if f1D
P
a��

and f2 D
P
b�� then

f1 �f2 D jGj
X
�

a�b�

�.1/
�:

Now, if u; v are disjoint words, then we have

Puv;G D Pu;G �Pv;G :

This yields the basic relation

auv;� D
au;�av;�

�.1/
:

In particular it follows by induction on k that

(4) awk ;� D
.aw;�/

k

�.1/k�1
;
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so

Pwk ;G D jGj
�1

X
�2IrrG

.aw;�/
k

�.1/k�1
�:

Using an inverse Fourier transform we may reconstruct the Fourier coefficients
aw;� as follows.

aw;� D
1

jGjd

X
g1;:::;gd2G

�.w.g1; : : : ; gd /
�1/;

which is the average value of the character � on w. Ng/�1. In particular we have
aw;1D 1 for all words w. We note that equation (4) above was derived by Gallagher
in [9].

We can now obtain the following.

PROPOSITION 8.1. With the above notation we have
(i) kPw;G �UGk1 �

P
�¤1 jaw;�j�.1/.

(ii) kPwk ;G �UGk1 �
P
�¤1

jaw;�j
k

�.1/k�2
.

Proof. Fix g 2G. Thenˇ̌
Pw.g/� jGj

�1
ˇ̌
D jGj�1

ˇ̌̌̌
.
X
�

aw;��.g//� 1

ˇ̌̌̌
D jGj�1

ˇ̌̌̌X
�¤1

aw;��.g/

ˇ̌̌̌
:

Thus
jGj

ˇ̌
Pw.g/� jGj

�1
ˇ̌
�

X
�¤1

jaw;��.g/j �
X
�¤1

jaw;�j�.1/:

This proves part (i). Part (ii) follows by applying part (i) to wk , using the formula
awk ;� D

.aw;�/
k

�.1/k�1
. �

COROLLARY 8.2. (i) Suppose there is a constant c D c.w/ such that for all
� 2 IrrG we have jaw;�j � c. Then

kPwk ;G �UGk1 � c1.�G.k� 2/� 1/;

where c1 depends on w and k.
(ii) Suppose there are constants "D ".w/ > 0 and c D c.w/ such that for all

� 2 IrrG we have jaw;�j � c�.1/1�". Then

kPwk ;G �UGk1 � c2.�G."k� 2/� 1/;

where c2 depends on w and k.

Proof. This follows immediately from part (ii) Proposition 8.1. �

Now, if G is a finite simple group, then recent results on its zeta function
�G.s/ come into play, and yield the following.
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THEOREM 8.3. Let G be a finite simple group, and w a group word.
(i) Suppose G ¤ PSL2.q/ and jaw;�j � c.w/ for all � 2 IrrG. Then

kPw3;G �UGk1! 0 as jGj !1:

(ii) Suppose jaw;�j � c�.1/1�" for all � 2 IrrG, where c; " > 0 depend only
on w. Then there exists a constant k (depending only on w) such that

kPwk ;G �UGk1! 0 as jGj !1:

Proof. By Corollary 8.2(i) we have

kPw3;G �UGk1 � c1.�G.1/� 1/:

By Theorem 4.2 we have �G.1/�1! 0 as jGj!1, provided G¤ PSL2.q/. This
proves part (i).

Part (ii) is proved using 4.2(i) and 8.2(ii). Indeed, if k > 3=", then "k� 2 > 1,
hence �G."k� 2/! 0, and so kPwk ;G �UGk1! 0. �

We now apply this general result for some specific words.

COROLLARY 8.4. Let G be a finite simple group. Suppose G ¤ PSL2.q/.
Then

kPx21x
2
2x
2
3 ;G
�UGk1! 0 as jGj !1:

Proof. Given a character �2 IrrG let i.�/ be its Schur indicator (see e.g. [14]).
Recall that i.�/D 0 if � is not a real character, and i.�/ 2 f�1; 1g if � is real. By
a classical result of Frobenius and Schur we have

Nx21 ;G
.g/D

X
�2IrrG

i.�/�.g/:

This yields the Fourier expansion

(5) Px21 ;G
D jGj�1

X
�2IrrG

i.�/�;

and so jax21 ;�j D ji.�/j � 1.
It now follows from part (i) of Theorem 8.3 that kPx21x22x23 ;G �UGk1! 0 as

jGj !1 �

Remarks. 1. We claim that G D PSL2.q/ is a genuine exception to this result.
To analyze this case write

Px21x
2
2x
2
3 ;G
.g/D jGj�1

X
�2IrrG

i.�/
�.g/

�.1/2
:
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For g ¤ 1 we obtain

jGjjPx21x
2
2x
2
3 ;G
.g/� jGj�1j �

X
1¤�2IrrG

j�.g/j

�.1/2
�R.g/.�G.1/� 1/:

Since �G.1/ is bounded, while R.g/ � 2q�1=2 tends to zero as q ! 1, the
right-hand side above tends to zero. Thus nonidentity elements are obtained with
probability .1C o.1//jGj�1.

However, the behavior of the identity element in PSL2.q/ is different. Indeed,
it can be verified from the character table of G thatX

�2IrrG

i.�/

�.1/
! h as q!1;

where hD 3=2 if q is odd, and hD 2 if q is even. This shows that Px21x22x23 ;G.1/D

.hC o.1//jGj�1, and so, as q!1 we have

kPx21x
2
2x
2
3 ;G
�UGk1! h� 1;

which is 1=2 or 1.
2. Product of mth powers for m> 2 can also be analyzed in some cases. For

example, for alternating groups G D An we can show that

kPxm1 ���x
m
mC1

;G �UGk1! 0 as jGj !1:

Since this paper focusses on groups of Lie type we shall not include a detailed
proof.

For groups of fixed Lie type we can show the following.

PROPOSITION 8.5. Fix a group word w ¤ 1 and let G DGr.q/ with r fixed
and q!1. Then there exists k D k.r/ depending only on r such that

kPwk ;G �UGk1! 0 as jGj !1:

Proof. We use the upper bound

Pw;G.1/� cq
�1;

where c D c.r; w/ depends only on r and w. This bound essentially follows from
the fact that at the level of algebraic groups xG the equation w D 1 defines a proper
subvariety of xGd , and from counting q-rational points on algebraic varieties. See
Section 4 of [4] for the details.

Another tool we use is Gluck’s upper bound on the character ratio R.g/, which
shows that, if 1¤ g 2G and 1¤ � 2 IrrG, then

j�.g/j � aq�1=2�.1/;

where a is some absolute constant (see [10]).
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Using these bounds we obtain

jaw;G j � jGj
�d

X
g1;:::;gd2G

j�.w.g1; : : : ; gk/
�1/j � Pw;G.1/�.1/C aq

�1=2�.1/:

This yields
jaw;�j � .cq

�1
C aq�1=2/�.1/� bq�1=2�.1/;

for some constant b. Therefore, by 8.1(ii) we have

kPwk ;G �UGk1 �
X
�¤1

jaw;�j
k

�.1/k�2
�

X
�¤1

bkq�k=2�.1/k

�.1/k�2
� bkq�k=2

X
�

�.1/2:

This yields
kPwk ;G �UGk1 � b

kq�k=2jGj:

Now, we have jGr.q/j � q4r
2

. Therefore, fixing k > 8r2, we see that

kPwk ;G �UGk1! 0 as q!1: �

As we shall see in the next section, the methods described here for general
words w work even better for the commutator word.

9. Conjectures of Ore and Thompson

In this section we discuss some results related to following longstanding
conjectures by Ore and Thompson.

ORE CONJECTURE. Every element in a finite simple group is a commutator.

THOMPSON CONJECTURE. Every finite simple groupG has a conjugacy class
C such that C 2 DG.

It is easy to see that Thompson conjecture implies Ore conjecture. Both
conjectures are known to be true for alternating groups, and for groups of Lie type
over fields with more than 8 elements [5].

We show below how results from Section 8, properties of �G.s/, and Corollary
2.5 shed new light on these difficult problems.

Set wD Œx1; x2�. Then wk denotes a product of k commutators in independent
variables. We first the state a well known result.

LEMMA 9.1. Let w be the commutator word, k a positive integer, and G a
finite group. Then

Pwk ;G D jGj
�1

X
�2Irr.G/

�.1/�.2k�1/�:
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Proof. A classical result of Frobenius shows that

(6) PŒx1;x2�;G D jGj
�1

X
�2IrrG

�.1/�1�:

Hence, in the notation of the previous section, we have

aŒx1;x2�;� D �.1/
�1:

In view of (4) we obtain

awk ;G D
.�.1/�1/k

�.1/k�1
D �.1/�.2k�1/:

The result follows. �

LEMMA 9.2. With the above notation we have

kPwk ;G �UGk1 � �G.2k� 2/� 1:

Proof. Set

�.g/D
X

1¤�2Irr.G/

�.g/

�.1/2k�1
:

By Lemma 9.1 we have

jPwk ;G.g/� jGj
�1
j � jGj�1j�.g/j:

Since j�.g/j � �.1/ we have

j�g j �
X

1¤�2Irr.G/

�.1/�.2k�2/ D �G.2k� 2/� 1:

The result follows. �

Proof of Theorem 2.8. We claim that, for k � 2, and for G simple, Pwk ;G is
almost uniform in the l1-norm. Indeed, by Theorem 1.1 of [22] (see Theorem 4.2
here), �G.s/! 1 as jGj!1, for any fixed s > 1. Hence �G.2k�2/�1! 0, and
so Lemma 9.2 implies that kPwk ;G �UGk1! 0 as jGj !1.

This proves the claim. The case k D 2 gives Theorem 2.8. �

In particular, we conclude that every element of a large finite simple group is
a product of two commutators.

To prove Theorem 2.9 we need the following.

LEMMA 9.3. For every finite group G and an element g 2G we have

PŒx1;x2�;G.g/� jGj
�1.1�E.G; g//:

Consequently, if E.G; g/ < 1 then g is a commutator in G.
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Proof. Recall that

E.G; g/D
X

1¤�2Irr.G/

j�.g/j

�.1/
:

By (6) we have
PŒx1;x2�;G.g/D jGj

�1.1C�.g//;

where

�.g/D
X

1¤�2Irr.G/

�.g/

�.1/
:

Since j�.g/j �E.G; g/ the result follows. �
We can now show that every element with a small centralizer is a commutator

in Gr.q/.

THEOREM 9.4. There exists an absolute constant ">0 such that, ifGDGr.q/,
then every element g 2G satisfying

jCG.g/j � " � q
3r

is a commutator in G.

Proof. We may assume q � 8. Remark 1, following Proposition 4.7, shows
that

E.G; g/� cq
p
3rCb�.r�1/

C cjCG.g/j
1=2q3�3r=2:

Denote the two summands on the right-hand side by A and B respectively. Choose
r0 such that for all r > r0 we have A < 1=2. Note that, for some absolute constant
a > 0 we have jCG.x/j � aqr for all x 2G. Now, choose " > 0 such that

a=" > 64r0 and " < 2�14c�2:

Suppose jCG.g/j � " � q3r . Then aqr � "q3r so a=" � q2r � 64r . By the
choice of " this yields r > r0, and so A < 1=2.

Next we have

B D cjCG.g/j
1=2q3�3r=2 � c"1=2q3 � 64c"1=2:

By the choice of " it follows that B < 1=2, and so

E.G; g/� ACB < 1:

Thus g is a commutator by Lemma 9.3. �
Proof of Theorem 2.9(i). We may assume G DGr.q/ with q � 8. By Theorem

9.4 and Corollary 5.4 we have

Prob.g 2G is a commutator/� Prob.jCG.g/j � "q3r/� 1� c"q�2r :

The result follows. �
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PROPOSITION 9.5. Let G DGr.q/, let C1; C2 �G be conjugacy classes, and
let xi 2 Ci .i D 1; 2/.

(i) If x1; x2 are regular semisimple thenC1C2 contains all semisimple elements
of G.

(ii) If x1; x2 are regular semisimple, " > 0, and r � r."/, then C1C2 contains
all elements g 2G satisfying jCG.g/j � q.2�"/r .

(iii) If jCG.xi /j � q5r=4 for i D 1; 2, and r � c, then C1C2 contains all
elements g 2G satisfying jCG.g/j � q5r=4.

(iv) If jCG.x1/j jCG.x2/j � q.3�"/r where " > 0, and r � r."/, then C1C2
contains all elements g 2G satisfying jCG.g/j � q.1C"/r .

Proof. Part (i) is proved in [11]. To prove part (ii) we use Corollary 2.5. Let
D be the conjugacy class of g in G, where jCG.g/j � q.2�"/r . Thus D�1 is the
class of g�1. We have jCG.xi /j � cqr , so

jCG.x1/jjCG.x2/jjCG.g
�1/j � .cqr/2q.2�"/r D c2q.4�"/r :

If r � r1."/ then c2q.4�"/r � q.4�"=2/r . If, in addition, r � r2."=2/, where r2 is
as in 2.5, it follows that

C1C2D
�1
DG:

In particular 1 2C1C2D�1 and this implies D �C1C2, and g 2C1C2, as required.
Part (iii) is proved in a similar manner, using Corollary 2.5 with "D 1=4 and

c D r2.1=4/. Part (iv) follows again from 2.5. The result follows. �

COROLLARY 9.6. Let G DGr.q/, x 2G, and C D xG .
(i) If x is regular semisimple then

jC 2j=jGj ! 1 if jGj !1:

Moreover, we have
jC 2j=jGj � 1� q�.1�"/r ;

provided r � r."/.
(ii) If jCG.x/j � q5r=4 and r � c then

jC 2j=jGj ! 1 if jGj !1:

(iii) More generally, if x1; x2 2G satisfy

jCG.x1/jjCG.x2/j � q
.3�"/r ;

and Ci D xGi .i D 1; 2/, then, for r � r."/ we have

jC1C2j=jGj ! 1 as jGj !1:

Proof. By Proposition 9.5(i), C 2 contains all regular semisimple elements
of G, and by Lemma 5.5 the number of these elements is at least .1� aq�1/jGj.
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This shows that
jC 2j=jGj � 1� aq�1;

which proves part (i) when r is bounded (so q!1).
So suppose now that r !1. In this case we use 9.5(ii) to conclude that, if

r � r."=2/, then C 2 contains all elements with centralizer order at most q.2�"=2/.
Combining this with 5.4 we obtain for r large enough

jC 2j=jGj � 1� cq�.1�"=2/r � 1� q�.1�"/r ;

as required. In particular jC 2j=jGj ! 1 as jGj !1. Part (i) is proved.
The proof of part (ii) is similar, combining 9.5(iii) with 5.4. Part (iii) follows

from 9.5(iv) and 5.4. �
Proof of Theorem 2.9(ii). It suffices to prove the theorem for G DGr.q/ with

q � 8. Thus r!1 in our case. Part (i) of Corollary 9.6 now shows the existence
of a class CG �G such that jC 2G j=jGj ! 1. Moreover, letting C D CG be a class
of regular semisimple elements, and using the remark following Corollary 2.5, we
see that C 2 contains all elements g 2G satisfying

jCG.g/j � ı � q
2r ;

where ı > 0 is some absolute constant. Combining this with 5.4 yields

jC 2j=jGj � 1� cq�r ;

as required. �
To prove Theorem 2.10 we need the following.

PROPOSITION 9.7. Let G DGr.q/ and define

S D fs 2G W jCG.s/j � q
5r=4
g:

Then, if r � c, every s 2S can be expressed as sD Œs1; g1� where s1 2S is conjugate
to s and g1 2G. Consequently, all the elements of S are d -fold commutators for
all d � 2.

Proof. Suppose s 2 S is given, and let C D sG . Let c be as in 9.5(iii). Then
r � c implies C�1C � S .

In particular, there is s1 2C and g1 2G such that sD s�11 s
g1
1 D Œs1; g1�. This

proves the first assertion.
Now, in a similar manner we may write s1 D Œs2; g2� with s2 2 C � S , and

so s D ŒŒs2; g2�; g1�D Œs2; g2; g1�. Proceeding by induction it follows that s is a
d -fold commutator for all d . �

Proof of Theorem 2.10. The result is clear for groups for which Ore conjecture
holds, so we may assume G D Gr.q/ with q � 8. Hence, as jGj ! 1 we have
r!1, so we may assume r � c. Using Proposition 9.7 and its notation it follows
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that the probability that x 2G is a d -fold commutator for all d is at least jS j=jGj.
By 5.4 we have jS j=jGj ! 1, proving part (i) of the theorem.

Part (ii) follows from (i). Indeed, it suffices to take jGj large enough so that
jS j=jGj> 1=2 to deduce that S2 DG, hence the result. �

10. Open problems and examples

It is interesting to find out whether Theorem 1.1 is best possible. We pose the
following

Problem 10.1. Letw¤1 be a group word. Is there a positive integerN DN.w/
such that for every finite simple group G with jGj �N.w/ we have w.G/2 DG?

We have shown that this holds for example for the commutator word.
Additional positive evidence is given below.

PROPOSITION 10.2. Let w ¤ 1 be a group word and let G be a finite simple
group of Lie type. Then

jw.G/2j=jGj ! 1 as jGj !1:

Proof. Let c be the constant appearing in part (ii) of Corollary 9.6, and r1.w/
be as in Corollary 6.5. Let G DGr.q/.

If r �maxfc; r1.w/g then by 6.5 there exists x 2 w.G/ such that jCG.x/j �
q5r=4. Let C D xG . Then C � w.G/, and by 9.6(ii) we have jC 2j=jGj ! 1 as
jGj !1. Hence jw.G/2j=jGj ! 1.

Suppose now that r < maxfc; r1.w/g. Then by Lemma 6.2, if G is large
enough there exists x 2 w.G/ which is regular semisimple. Corollary 9.6(i) shows
that jC 2j=jGj ! 1 as jGj !1. Hence in this case too we have jw.G/2j=jGj ! 1.
The result follows. �

In fact, using Proposition 6.4, it follows that for G DGr.q/ with r � r."/ we
have

jw.G/2j=jGj � 1� q�.1�"/r :

Consider the following related problem on class expansion.

CONJECTURE 10.3. There exists an absolute constant "> 0 such that for every
finite simple group G and every conjugacy class C of G we have

jC 2j �minfjC j1C"; jGj � ıg;

where ı D 0 if C is real, and ı D 1 otherwise.

Recall that we obtained an expansion result for C 3, which makes the above
extension quite plausible. Its importance stems from the fact that it implies Thomp-
son Conjecture and Ore Conjecture up to finitely many exceptions. Indeed, if "� 1
is as in 10.3, then C 2 DG for any real conjugacy C of G of size at least jGj1�"=2
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(since then jC j1C" � jGj). Now, groups of large Lie rank (namely rank r � f ."/)
have such conjugacy classes, so Thompson conjecture would follow.

In certain cases we can indeed obtain an expansion result for C 2, though not
as strong as in 10.3.

PROPOSITION 10.4. There is an absolute constant b > 0 such that for every
finite simple group of Lie type over the field with q elements, and every nonidentity
conjugacy class C of G, we have

jC 2j � jC j � bq1=2:

Consequently, if G has rank r , then

jC 2j � jC j1C";

where " > 0 depends only on r .

Proof. Let C D xG and 1 ¤ g 2 G. Recall that NC;C .g/ is the number of
solutions to the equation y1y2 D g with yi 2 C . By (1) we have

NC;C .g/D
jC j2

jGj
.1C�.g//;

where

�.g/D
X

1¤�2IrrG

�.x/2�.g�1/

�.1/
:

Clearly

j�.g/j �
X
�¤1

j�.x/j2 �R.g/D .jCG.x/j � 1/R.g/:

We have already noted that R.g/� aq�1=2 for some absolute constant a (see [10]).
This gives

NC;C .g/�
jC j2

jGj
.1CjCG.x/jaq

�1=2/�
jC j2

jGj
jCG.x/ja1q

�1=2
D a1jC jq

�1=2;

where a1 > 0 is some absolute constant.
Now, since NC;C .1/� jC j we clearly have

jC j2 � jC jC
X

1¤g2C2

NC;C .g/� jC jC jC
2
j � a1jC jq

�1=2:

This yields jC j � 1CjC 2j � a1q�1=2, which implies

jC 2j � .jC j � 1/ � a�11 q1=2:

This implies the required conclusion. �
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This result provides an affirmative answer to Conjecture 10.3 for groups of
bounded rank.

We conclude this paper with a problem regarding certain distributions. The
modern approach to Waring’s problem (based on Hardy and Littlewood’s circle
method and other methods) is estimating the number of representations of a number
as a sum of a given number of kth powers. In our noncommutative context, the
analogous approach is to study the distributions associated with words w and their
disjoint powers. For example, can we strengthen Theorem 1.1, and show that not
only w.G/3 DG, in fact Pw3;G is almost uniform?

Problem 10.5. Let w ¤ 1 be a group word, and let G be a finite simple group.
(i) When can we deduce that

kPw3;G �UGk1! 0 as jGj !1‹

(ii) Show that there exists kD k.w/ depending only on w such that we always
have

kPwk ;G �UGk1! 0 as jGj !1:

Note that the answer to part (i) is not always positive. Indeed, w D x21 and
GD PSL2.q/ provide a counter-example (though kPw3;G�UGk1 is still bounded
in this case). We have shown that part (ii) holds for groups of bounded rank (see
8.5 above).

The methods of Section 8 provide a possible approach to solving Problem
10.5. For example, to prove (ii) it suffices to show that, if w ¤ 1, then there exist
positive constants "D ".w/ and c D c.w/ such that for every finite simple group
G and every � 2 IrrG we have

aw;� � c�.1/
1�":

Finally, note that while we do not have a counter-example to Problem 10.1,
the analogous probabilistic version fails drastically, in the sense that Pw2;G may be
highly nonuniform. To see this, let w D x21 . It follows from (4) and (5) that

Px21x
2
2 ;G
.g/D jGj�1

X
�2Real.G/

�.g/=�.1/;

where Real.G/ denotes the set of real characters of G. In particular we see that the
probability that x21x

2
2 D 1 is

Px21x
2
2 ;G
.1/D jGj�1jReal.G/j;

which is typically much larger than jGj�1. Indeed, for G D An or PSLn.q/ we
easily obtain Real.G/!1 as jGj !1, and this yields

kPx21x
2
2 ;G
�UGk1 � jReal.G/j � 1!1:
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