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Abstract

We prove that Donaldson-Thomas type invariants are equal to weighted Euler
characteristics of their moduli spaces. In particular, such invariants depend only on
the scheme structure of the moduli space, not the symmetric obstruction theory used
to define them. We also introduce new invariants generalizing Donaldson-Thomas
type invariants to moduli problems with open moduli space. These are useful for
computing Donaldson-Thomas type invariants over stratifications.

Introduction

Donaldson-Thomas type invariants. Donaldson-Thomas invariants ([DT98],
[Tho00]) are the virtual counts of stable sheaves (with fixed determinant) on Calabi-
Yau threefolds. Heuristically, the Donaldson-Thomas moduli space is the critical
set of the holomorphic Chern-Simons functional and the Donaldson-Thomas in-
variant is a holomorphic analogue of the Casson invariant. Recently [MNOP06],
Donaldson-Thomas invariants for sheaves of rank one have been conjectured to
have deep connections with Gromov-Witten theory of Calabi-Yau threefolds. They
are supposed to encode the integrality properties of such Gromov-Witten invariants,
for example.

Mathematically, Donaldson-Thomas invariants are constructed as follows (see
[Tho00]). Deformation theory gives rise to a perfect obstruction theory [BF97] (or
a tangent-obstruction complex in the language of [LT98]) on the moduli space of
stable sheaves X . As Thomas points out in [Tho00], the obstruction sheaf is equal
to �X , the sheaf of Kähler differentials, and hence the tangents TX are dual to the
obstructions. This expresses a certain symmetry of the obstruction theory and is
a mathematical reflection of the heuristic that views X as the critical locus of a
holomorphic functional.
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Associated to the perfect obstruction theory is the virtual fundamental class, an
element of the Chow group A�.X/ of algebraic cycles modulo rational equivalence
on X . One implication of the symmetry of the obstruction theory is the fact that the
virtual fundamental class ŒX�vir is of degree zero. It can hence be integrated over
the proper space of stable sheaves to a number, the Donaldson-Thomas invariant or
virtual count of X

#vir.X/D

Z
ŒX�vir

1 :

We take the point of view that the symmetry of the obstruction theory is the
distinguishing feature of Donaldson-Thomas invariants, and call any virtual count
of a proper scheme with symmetric obstruction theory a Donaldson-Thomas type
invariant.

Euler characteristics and �X . If the moduli spaceX is smooth, the obstruction
sheaf �X is a bundle, so the virtual fundamental class is the top Chern class e.�X /
and so the virtual count is, up to a sign, the Euler characteristic of X :

#vir.X/D

Z
ŒX�

e.�X /D .�1/
dimX�.X/ :

We will generalize this formula to arbitrary (embeddable) schemes.
More precisely, we will construct on any scheme X over C in a canonical way

a constructible function �X WX ! Z (depending only on the scheme structure of
X ), such that if X is proper and embeddable we have

(1) #vir.X/D �.X; �X /D
X
n2Z

n�f�X D ng ;

for any symmetric obstruction theory on X with associated Donaldson-Thomas
type invariant #vir.X/.

As consequences of this result we obtain:
� Donaldson-Thomas type invariants depend only on the scheme structure of

the underlying moduli space, not on the symmetric obstruction theory used to
define them.

� Even if X is not proper, and so the virtual count does not make sense as an
integral, we can consider the weighted Euler characteristic

Q�.X/D �.X; �X /

as a substitute for the virtual count. This generalizes Donaldson-Thomas type
invariants to the case of nonproper moduli space X . It also makes Donaldson-
Thomas invariants accessible to arguments involving stratifying the moduli
space X . For applications, see [BF08] and [BB07].

� The value of �X at the point P 2X should be considered as the contribution
of the point P to the virtual count of X .

Some of the fundamental properties of �X are:
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� At smooth points P of X we have �X .P /D .�1/dimX .

� If f W X ! Y is étale, then f ��Y D �X . Thus �X .P / is an invariant of the
singularity of X at the point P .

� Multiplicativity: �X�Y .P;Q/D �X .P /�Y .Q/.

� If X is the critical scheme of a regular function f on a smooth scheme M ,
that is, X DZ.df /, then

�X .P /D .�1/
dimM �1��.FP /� ;

where FP is the Milnor fibre, that is, the intersection of a nearby fibre of f
with a small ball in M centred at P .

Thus, if X is the Donaldson-Thomas moduli space of stable sheaves, one
can, heuristically, think of �X as the Euler characteristic of the perverse sheaf of
vanishing cycles of the holomorphic Chern-Simons functional.

The existence of a symmetric obstruction theory on X puts strong restrictions
on the singularities X may have. For example, reduced local complete intersection
singularities are excluded. Thus it is not clear how useful or significant �X is on
general schemes which do not admit symmetric obstruction theories.

Microlocal geometry. Embed X into a smooth scheme M . Then we have a
commutative diagram

(2)

Z�.X/
Eu
�
//

cM
0 %%

Con.X/

cSM
0

��

�

Ch // LX .�M /

0Šxx
A0.X/

where the two horizontal arrows are isomorphisms. Here Eu WZ�.X/! Con.X/ is
MacPherson’s local Euler obstruction [Mac74], which maps algebraic cycles to Z-
valued constructible functions and Ch W Con.X/! LX .�M / maps a constructible
function to its characteristic cycle, which is a conic Lagrangian cycle on �M
supported inside X . The maps to A0.X/ are the degree zero Chern-Mather class,
the degree zero Schwartz-MacPherson Chern class, and the intersection with the
zero section, respectively. (Of course, the left part of the diagram exists without the
embedding into M .)

Now, given a symmetric obstruction theory on X , the cone of curvilinear
obstructions cv ,! obD�X , pulls back to a cone in �M jX via the epimorphism
�M jX !�X . Via the embedding �M jX ,!�M we obtain a conic subscheme
C ,!�M , the obstruction cone for the embedding X ,!M . The virtual funda-
mental class is ŒX�vir D 0ŠŒC �.
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The key fact is that C is Lagrangian. Because of this, there exists a unique
constructible function �X on X such that Ch.�X / D ŒC � and cSM0 .�X / D ŒX�

vir.
Then (1) follows by a simple application of MacPherson’s theorem [Mac74] (or
equivalently from the microlocal index theorem of Kashiwara [KS90]).

The cycle cX such that Eu.cX /D �X is easily written down. It can be thought
of as the (signed) support of the intrinsic normal cone of X .

The class ˛X D cM .cX / D cSM .�X /, whose degree zero component is the
virtual fundamental class of any symmetric obstruction theory onX , was introduced
by Aluffi [Alu00] (although with a different sign) and we call it therefore the Aluffi
class of X .

We do not know if every scheme admitting a symmetric obstruction theory
can locally be written as the critical locus of a regular function on a smooth scheme.
This limits the usefulness of the above formula for �X .P / in terms of the Milnor
fibre. Hence we provide an alternative formula (19), similar in spirit, which always
applies.

If M is a regular holonomic D-module on M whose characteristic cycle is ŒC �,
then

�X .P /D
X
i

.�1/i dimCH
i
fP g.X;MDR/ ;

for any point P 2 M . Here H i
fP g

denotes cohomology with supports in the
subscheme fP g ,!M and MDR denotes the perverse sheaf associated to M via
the Riemann-Hilbert correspondence, as incarnated, for example, by the De Rham
complex MDR. It would be interesting to construct M or MDR in special cases, for
example the moduli space of sheaves. Maybe, as opposed to ŒC � and ŒX�vir, this
more subtle data could actually depend on the symmetric obstruction theory.

Conventions. We will always work over the field of complex numbers C. All
schemes and algebraic stacks we consider are of finite type (over C). The relevant
facts about algebraic cycles and intersection theory on stacks can be found in [Vis89]
and [Kre99].

We will often have to assume that our Deligne-Mumford stacks have the
resolution property or are embeddable into smooth stacks. We therefore consider
quasiprojective Deligne-Mumford stacks (see [Kre09]):

Definition 0.1 (Kresch). A separated Deligne-Mumford stack X , of finite type
over C, with quasiprojective coarse moduli space is called quasiprojective, if any
of the following equivalent conditions are satisfied:

(i) X has the resolution property, that is, every coherent OX -module is a quotient
of a locally free coherent OX -module.

(ii) X admits a finite flat cover Y !X , where Y is a quasiprojective scheme.
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(iii) X is isomorphic to a quotient stack ŒY=GLn�, for some n, where Y is a
quasiprojective scheme with a linear GLn-action.

(iv) X can be embedded as a locally closed substack into a smooth separated
Deligne-Mumford stack of finite type with projective coarse moduli space.

For Z-valued functions f , g on sets X , Y , respectively, we denote by f �g

the function on X�Y defined by .f �g/.x; y/Df .x/g.y/, for all .x; y/2X�Y .
We will often use homological notation for complexes. This means that

En DE
�n, for a complex : : :!Ei !EiC1! : : : in some abelian category.

For a complex of sheaves E, we denote the cohomology sheaves by hi .E/.
Let us recall a few sign conventions: If E D ŒE1

˛
�!E0� is a complex con-

centrated in the interval Œ�1; 0�, then the dual complex E_ D ŒE_0
�˛_
�!E_1 � is a

complex concentrated in the interval Œ0; 1�. Thus the shifted dual E_Œ1� is given by
E_Œ1�D ŒE_0

˛_
�!E_1 � and concentrated, again, in the interval Œ�1; 0�.

If � WE! F is a homomorphism of complexes concentrated in the interval
Œ�1; 0�, such that � D .�1; �0/, then the shifted dual �_Œ1� W F _Œ1�! E_Œ1� is
given by �_Œ1�D .�_0 ; �

_
1 /.
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1. A few invariants of schemes and stacks

1.1. The signed support of the intrinsic normal cone cX . Let X be a scheme.
Suppose X is embedded as a closed subscheme of a smooth scheme M . Consider
the normal cone C D CX=M and its projection � W C !X . Define the cycle cX=M
on X by

cX=M D
X
C 0

.�1/dim�.C 0/ mult.C 0/�.C 0/ :
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The sum is over all irreducible components C 0 of C . By �.C 0/ we denote the
irreducible closed subset (prime cycle) of X obtained as the image of C 0 under
� . Alternatively, we can define �.C 0/ as the (set-theoretic) intersection of C 0

with the zero section of C ! X . The multiplicity of the component C 0 in the
fundamental cycle ŒC � of C is denoted by mult.C 0/. Hence mult.C 0/ is the length
of C at the generic point of C 0. Note that even though ŒC �D

P
C 0 mult.C 0/C 0 is an

effective cycle of homogeneous degree dimM , the cycle cX=M is neither effective
nor homogeneous.

PROPOSITION 1.1. Let X be a Deligne-Mumford stack. There is a unique
(integral) cycle cX on X with the property that for any étale map U !X , and any
closed embedding U !M of U into a smooth scheme M we have

cX jU D cU=M :

Proof. Suppose given a commutative diagram of schemes

Y //

��

N

��
X // M

where Y !N and X !M are closed embeddings, Y !X is étale and M !N

is smooth, there is a short exact sequence of cones on Y

0 //TN=M jY //CY=N //CX=M jY //0 :

This shows that cX=M jY D cY=N .
Comparing any two embeddings of X with the diagonal, we get from this the

uniqueness of cX for embeddable X . Then we deduce that cX commutes with étale
maps and thus glues with respect to the étale topology. �

If X is smooth, cX D .�1/
dimX ŒX�.

PROPOSITION 1.2. The basic properties of cX are as follows:

(i) If f WX! Y is a smooth morphism of Deligne-Mumford stacks, then f �cY D
.�1/dimX=Y cX .

(ii) If X and Y are Deligne-Mumford stacks, then cX�Y D cX � cY .

Proof. Both of these follow from the product property of normal cones:
CX=M �CY=N D CX�Y=M�N . �

Remark 1.3. Maybe it would be appropriate to call cX the distinguished cycle
of X , in view of its relation to distinguished varieties in intersection theory [Ful84,
Def. 6.1.2].
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1.2. The Euler obstruction �X of cX . Consider MacPherson’s local Euler
obstruction Eu W Z�.X/ ! Con.X/, which maps integral algebraic cycles on
X to constructible integer-valued functions on X . Because Eu commutes with
étale maps and both Z� and Con are sheaves with respect to the étale topology,
Eu is well-defined for Deligne-Mumford stacks X and defines an isomorphism
Z�.X/! Con.X/.

If V is a prime cycle of dimension p on the Deligne-Mumford stack X , the
constructible function Eu.V / takes the value

(3)
Z
��1.P /

c.eT /\ s���1.P /;eV �
at the point P 2X . Here � W eV ! V is the Nash blowup of V (the unique integral
closed substack dominating V of the Grassmannian of rank p quotients of �V , or
the closure in the Grassmannian of �X of the canonical section over the smooth
locus of V ). The vector bundle eT is the dual of the universal quotient bundle.
Moreover, c is the total Chern class and s the Segre class of the normal cone to a
closed immersion. A proof that Eu.V / is constructible can be found in [Ken90].

Definition 1.4. LetX be a Deligne-Mumford stack. We introduce the canonical
integer valued constructible function

�X D Eu.cX /

on X .

On a smooth stack X , the function �X is locally constant and equals .�1/dimX .

PROPOSITION 1.5. Let X and Y be Deligne-Mumford stacks.

(i) If f WX ! Y is a smooth morphism, then f ��Y D .�1/dimX=Y �X ,

(ii) �X�Y D �X � �Y .

Proof. Both facts follow from the compatibility of Eu with products. �

Relation with Milnor numbers and vanishing cycles. Suppose that M is a
smooth scheme and f WM ! A1 is a regular function. Let X D Z.df / be the
critical locus of f . Then for any C-valued point P of X , we have

(4) �X .P /D .�1/
dimM �1��.FP /� ;

where �.FP / is the Euler characteristic of the Milnor fibre of f at P . For the
proof, see [PP01, Cor. 2.4 (iii)]. Hence our constructible function �X is equal to
the function denoted � in the literature (see, for example, [PP01]).
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Let f̂ be the perverse sheaf of vanishing cycles on X . It is a constructible
complex on X and therefore has a fibrewise Euler characteristic

�. f̂ /.P /D
X
i

.�1/i dimH i
fP g.X; f̂ / ;

which is a constructible function on X . As a consequence of (4), we have

(5) �X D .�1/
dimM�1�. f̂ / :

1.3. Weighted Euler characteristics. The Euler characteristic with compact
supports � is a Z-valued function on isomorphism classes of pairs .X; f /, where
X is a scheme and f a constructible function on X . It satisfies the properties:

(i) If X is separated and smooth, �.X; 1/D �.X/ is the usual topological Euler
characteristic of X .

(ii) �.X; f Cg/D �.X; f /C�.X; g/.
(iii) If X is the disjoint union of a closed subscheme Z and its open complement

U , then �.X; f /D �.U; f jU /C�.Z; f jZ/.
(iv) �.X �Y; f �g/D �.X; f / �.Y; g/.
(v) If X! Y is a finite étale morphism of degree d , then �.X; f jX /D d �.Y; f /,

for any constructible function f on Y .

These properties suffice to prove that � extends uniquely to a Q-valued function on
pairs .X; f /, where X is a Deligne-Mumford stack and f a Z-valued constructible
function on X . (Use the fact [LMB00, Cor. 6.1.1] that every Deligne-Mumford
stack is generically the quotient of a scheme by a finite group.) Properties (i)–(v)
continue to hold. We write �.X/ for �.X; 1/. The rational number �.X/ is often
called the orbifold Euler characteristic of X .

PROPOSITION 1.6 (Gauß-Bonnet). If the Deligne-Mumford stack X is smooth
and proper, we have that

�.X/D

Z
ŒX�

e.TX / ;

the integral of the Euler class (top Chern class) of the tangent bundle.

Proof. First one proves that �.IX /D �.X/, where IX is the inertia stack and
X the coarse moduli space of X . This can be done by passing to stratifications and
is therefore not difficult. Then, invoking the Lefschetz trace formula for the identify
on a smooth and proper X we get (see [Beh04] for details)Z

ŒIX �

e.TIX /D
X
i

.�1/i dimH i .X;C/D �.X/ :

Putting these two remarks together, we get the Gauß-Bonnet theorem for IX . To
prove the theorem for X , note that the part of IX whose dimension is equal to
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dimX is a closed and open substack Y of IX , which comes with a finite étale
representable morphism Y !X . By induction on the dimension, the theorem holds
for Y . Then it also holds for X by Property (v) of the Euler characteristic. �

Note that for stacks, �.X/ differs from the alternating sum of the dimensions
of the compactly supported cohomology groups.

Definition 1.7. Let X be a Deligne-Mumford stack. Introduce the weighted
Euler characteristic

Q�.X/D �.X; �X /D �
�
X;Eu.cX /

�
2Q :

More generally, given a morphism Z!X , define

Q�.Z;X/D �.Z; �X jZ/ :

This definition is particularly useful for locally closed substacks Z �X .

PROPOSITION 1.8. The weighted Euler characteristic Q�.Z;X/ has the basic
properties:

(i) If X is smooth, Q�.Z;X/D .�1/dimX�.Z/.

(ii) If Z!X is smooth, Q�.Z;X/D .�1/dimZ=X Q�.Z/.

(iii) If ZDZ1[Z2 is the disjoint union of two locally closed substacks, Q�.Z1; X/
C Q�.Z2; X/D Q�.Z;X/.

(iv) Q�.Z1 �Z2; X1 �X2/D Q�.Z1; X1/ Q�.Z2; X2/.

(v) Given a commutative diagram
Z

��

// X

��
W // Y

with X ! Y smooth and Z ! W finite étale, we have that Q�.Z;X/ D
.�1/dimX=Y deg.Z=W / Q�.W; Y /.

Proof. All these properties follow by combining the properties of �X with
those of the orbifold Euler characteristic. �

Remark 1.9. Suppose X is the disjoint union of an open substack U and a
closed substack Z. We have Q�.X/ D Q�.U /C Q�.Z;X/. But because, in general,
Q�.Z;X/ 6D Q�.Z/, we also have Q�.X/ 6D Q�.U /C Q�.Z/.

Remark 1.10. If X is smooth and proper,

Q�.X/D

Z
ŒX�

e.�X / :

Both Proposition 1.12 and Theorem 4.18 can be viewed as generalizations of this
formula.
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1.4. The Aluffi class. The Mather class is a homomorphism cM WZ�.X/!

A�.X/. It exists for Deligne-Mumford stacks as well as for schemes. The definition
is a globalization of the construction of the local Euler obstruction. For a prime
cycle V of degree p on X , we have

cM .V /D ��
�
c.eT /\ ŒeV �� ;

with the same notation as in (3). We will only need to use the degree zero part
cM0 WZ�.X/! A0.X/.

Definition 1.11. Applying cM to our cycle cX , we obtain the Aluffi class

˛X D c
M .cX / 2 A�.X/ ;

The class ˛X was introduced by Aluffi [Alu00], although one should note that
the sign conventions there differ from ours.

If X is smooth, its Aluffi class equals

˛X D .�1/
dimXc.TX /\ ŒX� :

PROPOSITION 1.12. Let X be a proper Deligne-Mumford stack. The formula
(note that only the degree zero component of ˛X enters into it)

(6) Q�.X/D

Z
X

˛X

is true in the following cases:

(i) if X is a global finite group quotient,

(ii) if X is a gerbe over a scheme,

(iii) if X is smooth.

Proof. In the smooth case, Formula (6) is the Gauß-Bonnet theorem.
For schemes, the proposition is true by a direct application of MacPherson’s

theorem, which says that

�
�
X;Eu.c/

�
D

Z
X

cM .c/ ;

for any cycle c 2Z�.X/.
Let f W X ! Y be a finite étale morphism of Deligne-Mumford stacks,

representable or not. Then both the local Euler obstruction and the Chern-Mather
class commute with pulling back via f . It follows that Q�.X/ D d Q�.Y / andR
X ˛X D d

R
Y ˛Y , where d 2Q is the degree of f . Thus Formula (6) holds for X

if and only if it holds for Y .
If X D ŒY=G� is a global quotient of a scheme Y by a finite group G, there is

the finite étale morphism Y !X , proving Case (i). If X is a gerbe, the morphism
X !X from X to its coarse moduli space is finite étale, proving Case (ii). �
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Remark 1.13. Of course, it is very tempting to conjecture Formula (6) to hold
true in general.

2. Remarks on virtual cycle classes

Let X denote a scheme or a Deligne-Mumford stack. Let LX be the cotangent
complex of X . Recall from [BF97] that a perfect obstruction theory for X is a
derived category morphism � WE! LX , such that

(i) E 2D.OX / is perfect, of perfect amplitude contained in the interval Œ�1; 0�,
(ii) � induces an isomorphism on h0 and an epimorphism on h�1.

Let us fix a perfect obstruction theory E! LX for X .
Recall that E defines a vector bundle stack E over X : whenever we write E

locally as a complex of vector bundles E D ŒE1!E0�, the stack E becomes the
stack quotient ED ŒE_1 =E

_
0 �.

Recall also the intrinsic normal cone CX . Whenever U ! X is étale and
U ! M a closed immersion into a smooth scheme M , the pullback CX jU is
canonically isomorphic to the stack quotient ŒCU=M=.TM jU /�, where CU=M is the
normal cone. The morphism E! LX defines a closed immersion of cone stacks
CX ,! E.

Recall, finally, that the obstruction theory E ! LX defines a virtual funda-
mental class ŒX�vir 2 ArkE .X/, as the intersection of the fundamental class ŒCX �
with the zero section of E:

ŒX�vir
D 0ŠEŒCX � :

(For the last statement in the absence of global resolutions, see [Kre99].) Here
Ar.X/ denotes the Chow group of r-cycles modulo rational equivalence on X with
values in Z.

2.1. Obstruction cones.

Definition 2.1. We call obD h1.E_/ the obstruction sheaf of the obstruction
theory E! LX .

Our goal is to prove that if X is a quasiprojective Deligne-Mumford stack and
�! ob an epimorphism, where � is an arbitrary vector bundle over X , then the
obstruction theory gives rise to a cone C inside � such that ŒX�vir D 0Š�ŒC �. For
the case of schemes, this was already observed by Li and Tian in [LT98].

A local resolution of E is a derived category homomorphism F !E_Œ1�jU ,
over some étale open subset U of X , where F is a vector bundle over U and the
homomorphism F !E_Œ1�jU is such that its cone is a locally free sheaf over U
concentrated in degree �1. Alternatively, a local resolution may be defined as a
local presentation F ! EjU (over an étale open U of X ) of the vector bundle stack
E associated to E.
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Recall that for every local resolution F !E_Œ1�jU there is an associated cone
C ,! F , the obstruction cone, defined via the cartesian diagram of cone stacks
over U

C

��

//

�

F

��
CjU // EjU

where C is the intrinsic normal cone of X .
Note that every local resolution F ! E_Œ1�jU comes with a canonical epi-

morphism of coherent sheaves F ! ob jU .

PROPOSITION 2.2. let� be a vector bundle onX and�!ob an epimorphism
of coherent sheaves. Then there exists a unique closed subcone C �� such that
for every local resolution F !E_Œ1�jU , with obstruction cone C 0 � F , and every
lift �

(7)

F

��
�jU //

�
;;

ob jU

we have that C jU D ��1.C 0/, in the scheme-theoretic sense.

Proof. Étale locally on X , presentations F and lifts � always exist. The
uniqueness of C follows.

So far, we have only considered ob as a coherent sheaf on X . We can extend
it to a sheaf on the big étale site of X in the canonical way. We may then think
of ob as the coarse moduli sheaf of E. Let cv be the coarse moduli sheaf of the
intrinsic normal cone C. The key facts are

(i) cv ,! ob is a subsheaf,
(ii) the diagram

(8)

C

��

� � //

�

E

��
cv � � // ob

is a cartesian diagram of stacks over X .

Both of these facts are local in the étale topology of X , so we may assume that
E has a global resolution E_ D ŒH ! F �. Let C 0 � F be the obstruction cone.
Then C 0 is invariant under the action of H on F . Note that ob is the sheaf-theoretic
quotient of F by H and cv the sheaf-theoretic quotient of C 0 by H . Simple sheaf
theory on the big étale site of X (exactness of the associated sheaf functor) implies

(i) cv ,! ob is a subsheaf,
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(ii) the diagram

(9)

C 0

��

� � //

�

F

��
cv � � // ob

is a cartesian diagram of sheaves on the big étale site of X . This implies that
Diagram (8) is cartesian, proving the key facts.

We now construct the subsheaf C �� as the fibred product of sheaves on the big
étale site of X

(10)

C //

��
�

�

��
cv // ob :

Then any diagram such as (7) gives rise to a cartesian diagram of big étale sheaves
C //

��
�

�

�

��
C 0 // F:

This latter diagram is cartesian, because Diagrams (9) and (10) are. This proves the
claimed property of C , as well as the fact that C is a closed subcone of �, in the
scheme-theoretic sense. �

Definition 2.3. We call C �� the obstruction cone associated to the epimor-
phism �! ob.

Remark 2.4. In [BF97], it was shown that the subsheaf cv ,! ob classifies
small curvilinear obstructions. Note that ob is in general bigger than the actual
sheaf of obstructions, which is the abelian subsheaf of ob generated by cv. Thus cv
is intrinsic to X , whereas ob depends on E! LX .

If X is smooth, then ob is a vector bundle and cvDX , so the obstruction cone
is the kernel of �! ob.

2.2. The virtual fundamental class.

LEMMA 2.5. If X is a quasiprojective Deligne-Mumford stack, every perfect
obstruction theory E! LX has a global resolution.

Proof. Let D.OX / be the derived category of sheaves of OX -modules on the
(small) étale site of X and let D.Qcoh-OX / be the derived category of the category
of quasicoherent OX -modules. First prove that the natural functorDC.Qcoh-OX /!
DCqcoh.OX / is an equivalence of categories. For this, show that the inclusion of
categories .Qcoh-OX /! .OX -mods/ has a right adjoint Q, which commutes with
pushforward along morphisms of quasiprojective stacks. Prove that quasicoherent
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sheaves are acyclic for Q and satisfy that QF ! F is an isomorphism. Thus the
right derivation of Q provides a quasi-inverse to the inclusion. To reduce all these
claims to the affine case use a groupoid U1 � U0 presenting X , which is étale and
has affine U1, U0. For the details of the proof, see Section 3 of Exposé II in SGA6.

Next, prove that every quasicoherent sheaf on X is a direct limit of coherent
sheaves. For this, it is convenient to choose a finite flat cover f W Y !X , where Y
is a quasiprojective scheme. Construct a right adjoint f Š to f�, from .Qcoh-OX / to
.Qcoh-OY /. (This can be done étale locally over X .) Now, let F be a quasicoherent
OX -module. There exist coherent sheaves Gi on Y , such that f ŠF D lim!Gi ,
because Y is quasiprojective. Since it admits a right adjoint, f� commutes with
direct limits and so we have f�f ŠF D lim! f�Gi . The trace map f�f ŠF ! F is
onto, and so we get a surjection lim! f�Gi ! F . Since the f�Gi are coherent, F
is, indeed, an inductive limit of coherent modules.

With these preparations, we can now construct a global resolution of the perfect
complex E 2Dbcoh.OX /. First, we may assume that E is given by a 2-term complex
E D ŒE1 ! E0�, where E0 and E1 are quasicoherent. (Our above argument
gives an infinite complex of quasicoherents, which we may cut off, because the
kernel of a morphism between quasicoherent sheaves is quasicoherent.) Then
we choose coherent sheaves Gi on X such that E0 D lim!Gi . The images of
the Gi in h0.E/ D cok.E1! E0/ stabilize, because X is noetherian and hence
the coherent OX -module h0.E/ satisfies the ascending chain condition. So there
exists a coherent sheaf Gi !E0, which maps surjectively onto h0.E/. Now find
a locally free coherent F0 mapping onto Gi (and hence onto h0.E/), and define
F1DE1�E0

F0. Then F1 is automatically locally free coherent and F D ŒF1!F0�

maps quasi-isomorphically to ŒE1! E0�. Thus F provides us with the required
global resolution of E. �

PROPOSITION 2.6. Consider a quasiprojective Deligne-Mumford stack X and
a perfect obstruction theory E! LX with obstruction sheaf ob. Let � be a vector
bundle over X and �! ob an epimorphism of coherent sheaves. Let C �� be the
associated obstruction cone. Then C is of pure dimension rkEC rk� and we have

ŒX�vir
D 0Š�ŒC � :

Proof. Let F ! E_Œ1� be a global resolution of E with obstruction cone
C 0 � F . Start by constructing the fibred product of coherent sheaves

(11)

P

��

//

�

F

��
� // ob
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and choosing an epimorphism of coherent sheaves F 0! P, where F 0 is locally
free. Wet get a commutative diagram of sheaf epimorphisms

F 0

����

// // F

����
� // // ob

which we can now consider as a diagram of sheaves on the big étale site of X .

Remark. Diagram (11) is a cartesian diagram of sheaves on the small étale site
of X . This is because fibred products of (small) coherent sheaves do not commute
with base change, and so if we had taken the fibred product of big sheaves, P would
not have ended up coherent. After having chosen F 0, we do not any longer have
use for the cartesian property of the diagram, and so we pass back to big sheaves,
as commutativity of diagrams and the property of being an epimorphism are stable
under base change.

Now, of course, F 0! � and F 0! F are epimorphisms of vector bundles.
The preimage of cv ,! ob in � is C , and in F is C 0. It follows that C 0 and C have
the same preimage in F 0. This implies by standard arguments the claim about the
dimension of C and the fact that ŒC 0�\ ŒOF �D ŒC �\ ŒO��. �

3. Symmetric obstruction theories

We will summarize the main features of symmetric obstruction theories. For
proofs, see [BF08]. Throughout this section, X will denote a Deligne-Mumford
stack.

3.1. Nondegenerate symmetric bilinear forms.

Definition 3.1. Let E 2 Dbcoh.OX / be a perfect complex. A nondegenerate
symmetric bilinear form of degree 1 on E is an isomorphism � W E ! E_Œ1�,
satisfying �_Œ1�D � .

Of course, it has to be understood that � is a morphism in the derived category,
and invertible as such. The duals appearing in the definition are derived.

Example 3.2. A simple example of a perfect complex with nondegenerate
symmetric bilinear form of degree 1 is given as follows. Let F be a vector bundle on
X , endowed with a symmetric bilinear form, inducing a homomorphism ˛ WF!F _.
To define the complex E D ŒF ! F _�, put F _ in degree 0 and F in degree �1.
Since the components of E are locally free, we can compute the derived dual as
componentwise dual. We find E_Œ1�DE. So we may and will define � to be the
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identity, that is, �1 D idF and �0 D idF _ :

E

�
��

D ŒF
˛ //

1

��

F _�

1
��

E_Œ1� D ŒF
˛ // F _�:

Note that � is an isomorphism, whether or not ˛ is nondegenerate.

Example 3.3. As a special case of Example 3.2, consider a regular function
f on a smooth variety M . The Hessian of f defines a symmetric bilinear form
on TM jX , where X DZ.df /. Hence we get a nondegenerate symmetric bilinear
form on the complex ŒTM jX !�M jX �, which is, by the way, a perfect obstruction
theory for X .

Definition 3.4. LetA andB be perfect complexes endowed with nondegenerate
symmetric forms � WA!A_Œ1� and � WB!B_Œ1�. An isometryˆ W .B; �/! .A; �/

is an isomorphism ˆ W B! A, such that the diagram

B

�

��

ˆ // A

�
��

B_Œ1� A_Œ1�
ˆ_Œ1�oo

commutes in D.OX /. Since � and � are isomorphisms, this amounts to saying that
ˆ�1 Dˆ_Œ1� (if we use � and � to identify).

3.2. Symmetric obstruction theories.

Definition 3.5. A perfect obstruction theoryE!LX forX is called symmetric,
if E is endowed with a nondegenerate symmetric bilinear form � WE!E_Œ1�.

If E is symmetric, we have

rkE D rk.E_Œ1�/D� rkE_ D� rkE

and hence rkE D 0. So the expected dimension is zero. Therefore, we can make
the following definition:

Definition 3.6. Let X be endowed with a symmetric obstruction theory and
assume that X is proper. The virtual count (or Donaldson-Thomas type invariant)
of X is the number

#vir.X/D degŒX�vir
D

Z
ŒX�vir

1 :

If X is a scheme (or an algebraic space), #.X/ is an integer, otherwise a rational
number.
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Remark 3.7. For a symmetric obstruction theory E ! LX , we have ob D
h1.E_/ D h0.E_Œ1�/ D h0.E/ D �X . So the obstruction sheaf is canonically
isomorphic to the sheaf of differentials.

Remark 3.8. Let X be endowed with a symmetric obstruction theory. Then
for any closed embedding X !M into a smooth Deligne-Mumford stack M , we
get a canonical epimorphism of coherent sheaves �M jX !�X D ob, and hence a
canonical closed subcone C ,!�M jX , the obstruction cone of Definition 2.3. (If X
is smooth, C is the conormal bundle of X in M .) Via the inclusion �M jX ,!�M
we think of C as a closed conic substack of�M . IfX is quasiprojective, Proposition
2.6 applies and so C is pure dimensional and

dimC D dimM D 1
2

dim�M :

We will show below that C is Lagrangian.

Remark 3.9. Any symmetric obstruction theory on X induces (by restriction)
in a canonical way a symmetric obstruction theory on U ! X , for every étale
morphism U !X .

Remark 3.10. If E is a symmetric obstruction theory for X and F a symmet-
ric obstruction theory for Y , then E � F (see [BF97]) is naturally a symmetric
obstruction theory for X �Y .

3.3. Examples. For proofs of the following statements, see [BF08].

Lagrangian intersections. Let M be a complex symplectic manifold and V ,
W two Lagrangian submanifolds. Let X be their scheme-theoretic intersection.
Then X carries a canonical symmetric obstruction theory. This generalizes to
Deligne-Mumford stacks.

Sheaves on Calabi-Yau threefolds. Let Y be a smooth projective Calabi-Yau
threefold and L a line bundle on Y . Let X be any open substack of the stack of
stable sheaves of positive rank r with determinant L. (For example, X could be
the stack of sheaves of a fixed Hilbert polynomial admitting no strictly semistable
sheaves. Then X would be proper.)

Let E be the universal sheaf and F the shifted cone of the trace map:

O

C1

��
F // RHom.E;E/

tr

bb

Then R��FŒ2� is a symmetric obstruction theory for X . Here � W Y �X !X is
the projection. For the proof, see [Tho00] or [BF08].

Note that X is a �r -gerbe over a quasiprojective scheme. Moreover, X is a
quasiprojective stack.
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Hilbert schemes of local Calabi-Yau threefolds. If we restrict to rank one
sheaves, we can consider the following more general situation. Let Y be a smooth
projective threefold with a section of the anticanonical bundle whose zero locus we
denote by D. Recall that stable sheaves with trivial determinant can be considered
as ideal sheaves on Y .

Let X be an open subscheme of the Hilbert scheme of ideal sheaves on Y .
We require that X consists entirely of ideal sheaves whose associated subschemes
of Y are disjoint from D. Then, with the same notation as above, R��FŒ2� is a
symmetric obstruction theory for X . Note that X is a quasiprojective scheme.

Stable maps. Let Y be a Calabi-Yau threefold. Let X be the open substack
of the stack of stable maps M g;n.Y; ˇ/, corresponding to stable maps which are
immersions from a smooth curve to Y . Then the Gromov-Witten obstruction theory
for M g;n.Y; ˇ/ is symmetric over X .

3.4. Local structure: almost closed 1-forms.

Definition 3.11. A differential form ! on a smooth Deligne-Mumford stack
M is called almost closed, if d! 2 I�2M . Here I is the ideal sheaf of the zero
locus of ! (in other words the image of !_ W TM ! OM ). Equivalently, we may
say that d!jX D 0 as a section of �2M jX , where X is the zero locus of !, that is,
OX D OM=I .

Of course, in local coordinates x1; : : : ; xn, where ! D
P
i fi dxi , being almost

closed means that
@fi

@xj
�
@fj

@xi
mod .f1; : : : ; fn/ ;

for all i; j D 1; : : : ; n.

Remark 3.12. Let M be a smooth Deligne-Mumford stack and ! an almost
closed 1-form on M with zero locus X D Z.!/. It is a general principle, that a
section of a vector bundle defines a perfect obstruction theory for the zero locus of
the section. In our case, this obstruction theory is given by

E

��

D ŒTM jX
r! //

!_

��

�M jX �

1

��
���1LX D ŒI=I 2

d // �M jX �:

Here r! is the composition d ı!_ of the other maps in the diagram and we have
only displayed the cutoff at �1 ofE!LX , as that is the only part of the obstruction
theory that intervenes in our discussion.

This obstruction theory is symmetric, in a canonical way, because under our
assumption that! is almost closed we have thatr! is self-dual, as a homomorphism
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of vector bundles over X . (See Example 3.2.) We denote this symmetric obstruction
theory by H.!/! LX , where

H.!/D ŒTM jX
r! //�M jX � :

We will show that, at least locally, every symmetric obstruction theory is given
in this way by an almost closed 1-form.

PROPOSITION 3.13. Suppose E! LX is a symmetric obstruction theory for
the Deligne-Mumford stack X . Then étale locally in X (Zariski locally if X is a
scheme) there exists a closed immersion X ,!M of X into a smooth scheme M
and an almost closed 1-form ! on M and an isometry E ! H.!/ such that the
diagram

E

  

// H.!/

||
LX

commutes in the derived category of X .

Proof. Let P be a C-valued point of X . By passing to an étale neighborhood
of P , we may assume given a closed immersion X ,!M into a smooth scheme M
of dimension dimM D dim�X jP . Moreover, we may assume that ED ŒE1!E0�

is given by a homomorphism of vector bundles such that rkE0 D rkE1 D dimM

and E! LX is given by a homomorphism of complexes

E

��

D ŒE1

�1

��

˛ // E0�

�0

��
���1LX D ŒI=I 2 // �M jX �:

Since �0 is an isomorphism at P , by passing to a smaller neighborhood of P , we
may assume that �0 is an isomorphism and use it to identify E0 with �M jX .

For the symmetric form � W E ! E_Œ1� let us use notation � D .�1; �0/.
Then the equality of derived category morphisms �_Œ1�D � implies that, locally,
�_Œ1� D .�_0 ; �

_
1 / and � D .�1; �0/ are homotopic. So let h W E0 ! E_0 be a

homotopy:
h˛ D �1� �

_
0

˛_hD �0� �
_
1 :

Now define
�0 D

1
2
.�0C �

_
1 /

�1 D
1
2
.�1C �

_
0 / :
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One checks that .�1; �0/ is a homomorphism of complexes, and as such, homotopic
to .�1; �0/. Thus .�1; �0/ represents the derived category morphism � , and has the
property that �1 D �_0 :

E

�
��

D ŒE1

�_

��

˛ // �M jX �

�
��

E_Œ1� D ŒTM jX
˛_ // E_1 �:

Since � is a quasi-isomorphism, � is necessarily an isomorphism at P , hence,
without loss of generality, an isomorphism. Use � to identify. Then we have written
our obstruction theory as

E

��

D ŒTM jX

�1

��

˛ // �M jX �

1

��
���1LX D ŒI=I 2 // �M jX �

with ˛ D ˛_. Lift �1 W TM jX ! I=I 2 in an arbitrary fashion to a homomorphism
!_ WTM ! I , defining an almost closed 1-form ! such that EDH.!/, completing
the proof. �

We need a slight amplification of this proposition:

COROLLARY 3.14. Let E be a symmetric obstruction theory for X and let
X ,!M 0 be an embedding into a smooth Deligne-Mumford stack M 0. Then étale
locally in M 0, there exists an almost closed 1-form ! on M 0, such that X DZ.!/
and E! LX is isometric to H.!/! LX .

Proof. Let P 2 X . The proof of Proposition 3.13 actually gives M is an
étale slice though P in M 0. Then write M 0 locally as a product of the slice with a
complement to the slice. �

4. Microlocal geometry

4.1. Conic Lagrangians inside �M . Let M be a smooth scheme. The cotan-
gent bundle�M carries the tautological 1-form ˛ 2�1.�M /. It is the image of the
identity under ���1M !�1�M

, the pullback map for 1-forms under the projection
� W �M ! M . Its differential d˛ defines the tautological symplectic structure
on �M .

Let � be the vector field on �M which generates the C�-action on the fibres of
�M . It is the image of the identity under ���M ! T�M

, the map which identifies
elements of the vector bundle �M with vertical tangent vectors for the projection � .

The basic relation between these tensors is

˛ D d˛.�; � / :
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Any local étale coordinate system x1; : : : ; xn onM induces the canonical coordinate
system x1; : : : ; xn; p1; : : : ; pn on �M . In such canonical coordinates we have
˛ D

P
i pi dxi and � D

P
i pi .@=@pi /.

Consider an irreducible closed subset C � �M . We call C conic, if � is
tangent to C at the generic point of C . We call C Lagrangian, if dimC D dimM

and d˛ vanishes when restricted to the generic point of C .

LEMMA 4.1. The irreducible closed subset C ��M is conic and Lagrangian
if and only if dimC D dimM and ˛ vanishes when restricted to the generic point
of C .

Proof. Suppose C is Lagrangian. The basic relation shows that ˛jC vanishes
at smooth points of C if and only if � 2 T?C D TC at such points. �

If V �M is an irreducible closed subset, the closure in �M of the conormal
bundle to any smooth dense open subset of V is conic Lagrangian. This already
describes all conic Lagrangians:

LEMMA 4.2. Let C � �M be a closed irreducible subset. Let V D �.C /
be its image in M and let N ��M be the closure of the conormal bundle of any
smooth dense open subset of V .

If C is conic and Lagrangian then it is equal to N .

Proof. (See also [Ken90], for a coordinate free proof.) Choose local coordinates
x1; : : : ; xn forM around a smooth point of V , in such a way that V is cut out by the
equations x1 D : : : ; xk D 0. Then dxkC1 : : : ; dxn are linearly independent at the
generic point of V . By generic smoothness of the projectionC!V , these forms stay
linearly independent at the generic point of C . Since ˛ restricts to

Pn
iDkC1 pi dxi

at the generic point of C , and ˛ vanishes there, we see that pkC1; : : : ; pn vanish at
the generic point of C . Thus x1; : : : ; xk; pkC1; : : : pk vanish at the generic point
of C .

On the other hand, N is cut out generically by x1; : : : ; xk; pkC1; : : : pk . Thus
we have proved that the generic point of C is contained in N . Then C D N for
dimension reasons. �

Definition 4.3. A closed subset of �M is called conic Lagrangian, if every
one of its irreducible components is conic and Lagrangian.

An algebraic cycle on �M is conic Lagrangian if its support is conic La-
grangian.

A conic closed subscheme of �M , that is, a closed subscheme of �M which
is a cone over a closed subscheme of M , is conic Lagrangian if its underlying
closed subset is conic Lagrangian.
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Remark 4.4. The property of being a conic Lagrangian is local in the étale
topology of M , so it makes sense also in the case when M is a smooth Deligne-
Mumford stack.

Cycles. Consider a smooth Deligne-Mumford stack M of dimension n. Let
L.�M/�Zn.�M/ be the subgroup generated by the conic Lagrangian prime cycles.

If V is a prime cycle (integral closed substack) of M , we consider the closure
in �M of the conormal bundle of any smooth dense open subset of V and denote it
by `.V /. Note that `.V / is a conic Lagrangian prime cycle on �M . This defines
the homomorphism

L WZ�.M/ �! L.�M /(12)

V 7�! .�1/dimV `.V / :

Conversely, if W is a conic prime cycle on �M , intersecting (set-theoretically)
with the zero section of � W�M !M or taking the (set-theoretic) image �.W /,
we obtain the same prime divisor in M . Restricting to conic Lagrangian cycles, we
obtain a homomorphism

� W L.�M / �!Z�.M/(13)

W 7�! .�1/dim�.W /�.W / :

By Lemma 4.2 the homomorphisms L and � between Z�.M/ and L.�M / are
inverses of each other.

Remark 4.5. The characteristic cycle map Ch W Con.X/ ! L.�M / is the
unique homomorphism making the diagram

Z�.M/

Eu %%

L // L.�M /

Con.M/

Ch

99

commute.

Microlocal view of the Mather class.

PROPOSITION 4.6. Let M be a smooth Deligne-Mumford stack. The diagram

Z�.M/
L //

cM
0 %%

L.�M /

0Š

��
A0.M/

commutes.
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Proof. (A proof in the case of schemes can also be deduced by combining
(1.2.1) in [Sab85] with Example 4.1.8 of [Ful84].) Assume V � M is a prime
cycle of dimension p. Let � WfM !M be the Grassmannian of rank-p quotients of
�M and � W eV ! V the closure inside fM of the canonical rational section V //fM .
Then cM0 .V /D .�1/

p��
�
cp.Q/\ ŒeV ��, where Q is the universal quotient bundle

on fM .
Let us denote the kernel of the universal quotient map by N . Then on eV we

have the exact sequence of vector bundles

0 //N jeV //���M jeV //QjeV //0 :

It implies that cp.Q/\ ŒeV �D 0Š�M
ŒN jeV � 2 A0.eV /.

N jeV
��

// ���M

��

// �M

��

Coo

��eV // fM � // M Voo

Let C D `.V /��M be the conic Lagrangian prime cycle defined by V . There is
a canonical rational section C //���M and the closure of the image is equal to
N jeV . Hence we have a projection map � WN jeV ! C which is a proper birational
map of integral stacks. It fits into the cartesian diagram:

eV
0
��

� // V //

0

��

M

0

��
N jeV � // C // �M :

Since refined Gysin homomorphisms (see Section 6.2 in [Ful84]) commute with
proper pushforward, we have

��.0
Š
�M

ŒN jeV �/D 0Š�M
��ŒN jeV �D 0Š�M

ŒC �

and
cM0 .V /D .�1/

p0Š�M
ŒC �D .�1/p0Š�M

`.V /D 0Š�M
L.V /: �

COROLLARY 4.7. If X is a closed substack of M , the diagram

Z�.X/
L //

cM
0 %%

LX .�M /

0Š
�M
��

A0.X/

commutes as well. Here LX .�M / denotes the subgroup of conic Lagrangian cycles
lying over cycles contained in X .
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Proof. We just have to remark that the Mather class computed inside M agrees
with the Mather class computed inside X . �

Remark 4.8. This proves the existence of Diagram (2).

4.2. The fundamental lemma on almost closed 1-forms. Let M denote a
smooth scheme. Let ! be a 1-form on M and X D Z.!/ its scheme-theoretic
zero-locus. Considering ! as a linear homomorphism TM ! OM , its image
I � OM is the ideal sheaf of X . The epimorphism !_ W TM ! I restricts to
an epimorphism !_ W TM jX ! I=I 2, which gives rise to a closed immersion of
cones CX=M ,!�M jX . Via�M jX ,!�M we consider C DCX=M as a subscheme
of �M .

THEOREM 4.9. If the 1-form ! is almost closed, the closed subscheme C �
�M it defines is conic Lagrangian.

The proof will follow after an example.

Example 4.10. The case where the zero locus X of ! is smooth is easy: if !
is almost closed with smooth zero locus, C ��M is equal to the conormal bundle
N_
X=M

��M and is hence conic Lagrangian.
For the general case, this implies that all components of C which lie over

smooth points of X are conic Lagrangian.

The proof of Theorem 4.9. We start with two lemmas.

LEMMA 4.11. Let B be an integral noetherian C-algebra, f 2B nonzero and
Q W B ! K a morphism to a field, such that Q.f /D 0. Then there exists a field
extension L=K, a morphism 
 W B! LŒŒt �� and an integer m> 0, such that

B
Q //




��

K

��
LŒŒt ��

tD0 // L

commutes and 
.f /D tm.

Proof. Without loss of generality, B is local with maximal ideal kerQ. Then
we can find a discrete valuation ringA inside the quotient field ofB which dominates
B . Pass to its completion OA. The image of f in OA is of the form utm, for a unique
m> 0 and unit u, parameter t for OA. In a suitable extension QA of OA, we can find an
m-th root of u and change the parameter such that we have that f maps to tm in
QA. Choosing a field of representatives L0 for QA we get an isomorphism QAŠL0ŒŒt ��

and hence a morphism 
 0 W B! L0ŒŒt �� satisfying the requirements of the lemma
with the residue field of B in place of K. Passing to a common extension L of K
and L0 over this residue field, we obtain 
 . �
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LEMMA 4.12. Let A be an integral noetherian C-algebra and I � A an ideal.
Let Q W

L
i�0 I

i=I iC1 ! K be a morphism to a field, which does not vanish
identically on the augmentation ideal. Then there exists a field extension L=K, a
morphism 
 W A! LŒŒt �� and an integer m> 0 such that the diagram

A //




��

A=I
Q // K

��
LŒŒt �� // L

commutes and

Q.f .1//D

.f /

tm

ˇ̌̌
tD0

;

for every f 2 I . Here f .1/ denotes the element f 2 I considered as an element of
the first graded piece of

L
i�0 I

i .

Proof. Choose g 2 I such that Q does not vanish on g.1/. Apply Lemma 4.11
to the localization of

L
i�0 I

i at the element g.1/, the nonzero element g.0/=g.1/

and the induced ring morphism to K. We obtain a commutative diagramL
i�0 I

i Q //

Q


��

K

��
LŒŒt �� // L

and an integer m> 0 with the property that Q
.g.0//D tm Q
.g.1//. By restricting Q

to the degree zero part of

L
i�0 I

i , we obtain 
 WA!LŒŒt ��. Now, for any element
f 2 I we have the equation f .0/g.1/ D g.0/f .1/ inside

L
i�0 I

i . Apply Q
 and
cancel out the unit Q
.g.1// to obtain 
.f /D tm Q
.f .1//. �

To prove the theorem, we may assume that M D SpecA is affine and admits
global coordinates x1; : : : ; xn giving rise to an étale morphism M ! An. Then we
write ! D

Pn
iD1 fi dxi , for regular functions fi on M .

LEMMA 4.13. The conic subscheme C � �M defined by the 1-form ! DP
i fi dxi onM is Lagrangian if for every fieldK=C, for every path 
 W SpecKŒŒt ��

!M and for every m> 0 such that tm j fi
�

.t/

�
, for all i , we have

(14)
nX
iD1

d
i .0/^ d

�
fi
�

.t/

�
tm

ˇ̌̌
tD0

�
D 0 ;

in �2
K=C

. Here 
i D xi ı 
 .
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Proof. First note that as a normal cone, C is pure-dimensional, of dimension
equal to dimM . So To prove that C is Lagrangian, we may show that the 2-
form d˛ defining the symplectic structure on �M vanishes when pulled back
via Q W SpecK ! C , for every morphism Q from the spectrum of a field to C .
Moreover, let us note that d˛ will vanish on SpecK if it vanishes on SpecL for
some extension L=K.

Note that we have a cartesian diagram

�M //

��

�An

��
M // An:

The coordinates p1; : : : ; pn on�AnDA2n pull back to functions on�M , which we
denote by the same symbols. Thus x1; : : : ; xn; p1; : : : ; pn are étale coordinates on
�M . In fact �M D SpecAŒp1; : : : ; pn�. The 2-form d˛ is equal to

P
i dpi ^ dxi

in these coordinates.
The ideal defining X is I D .f1; : : : ; fn/ � A. The normal cone C is the

spectrum of the graded ring
L
i�0 I

i=I iC1 and the embedding C !�M is given
by the ring epimorphism AŒp1 : : : ; pn�!

P
i�0 I

i=I iC1 sending pi to f .1/i .
Thus we have

Q�.d˛/DQ�
X

dpi ^ dxi D
X

dQ�.f
.1/
i /^ dQ�.x

.0/
i / :

If Q� vanishes on the entire augmentation ideal, this expression is obviously zero.
So assume that Q does not vanish on the entire augmentation ideal, and choose 
 ,
m as in Lemma 4.12. Then we get

Q�.d˛/D

nX
iD1

d

�
fi
�

.t/

�
tm

ˇ̌̌
tD0

�
^ d
i .0/ ;

which vanishes by hypothesis. �

We will now prove the theorem by verifying the condition given in Lemma
4.13. Thus we choose a field extension K=C, a path 
 W SpecKŒŒt ��!M and an
integer m > 0 such that tm j fi

�

.t/

�
, for all i . We claim that Formula (14) is

satisfied in the K-vector space �2
K=C

.

We will introduce some notation. Define the field elements c.p/i ; F
.p/
i 2K by

the formulas


i .t/D

1X
pD0

1

pŠ
c
.p/
i tp ; .fi ı 
/.t/D

1X
pD0

1

pŠ
F
.p/
i tp :

We claim that

(15)
X
i

F
.m/
i dc

.0/
i D 0 :
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This will finish the proof, becauseX
i

d
i .0/^ d

�
fi
�

.t/

�
tm

ˇ̌̌
tD0

�
D�

1

mŠ
d
X
i

F
.m/
i dc

.0/
i :

For future reference, let us remark that the assumption tm j fi
�

.t/

�
, for all i , is

equivalent to

(16) 8p <mW F
.p/
i D 0 ;

for all i .
Let us now use the fact that ! is almost closed. This means that

.d!/jX D 0 2 �.X;�
2
M jX / :

By considering the commutative diagram of schemes

SpecKŒt�=tm //

��

X

��
SpecKŒŒt ��


 // M

we see that this implies that


�.d!/jSpecKŒt�=tm D 0 2 �.SpecKŒt�=tm; �2KŒŒt��jSpecKŒt�=tm/(17)

D�2KŒŒt��˝KŒt�KŒt�=t
m :

Let us calculate 
�.d!/. This calculation takes place inside �2
KŒŒt��

:


�.d!/D
X
i

d.fi ı 
/^ d
i

D

X
i

� 1X
pD0

1

pŠ

�
.dF

.p/
i /tpCF

.p/
i ptp�1dt

�

�

1X
pD0

1

pŠ

�
.dc

.p/
i /tpC c

.p/
i ptp�1dt

��

D

1X
pD0

1

pŠ

� pX
kD0

 
p

k

!X
i

dF
.k/
i ^ dc

.p�k/
i

�
tp

C

1X
pD0

1

pŠ

� pX
kD0

 
p

k

!X
i

c
.pC1�k/
i dF

.k/
i

�
^ tpdt

�

1X
pD0

1

pŠ

� pX
kD0

 
p

k

!X
i

F
.kC1/
i dc

.p�k/
i

�
^ tpdt:
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By Property (17), the coefficient of tm�1dt vanishes. Thus, the equation

(18)
m�1X
kD0

 
m� 1

k

!X
i

c
.m�k/
i dF

.k/
i D

m�1X
kD0

 
m� 1

k

!X
i

F
.kC1/
i dc

.m�k�1/
i

holds inside �K=C. Now, by Assumption (16), all terms on the left-hand side of
(18) vanish, as well as the terms labeled k D 0; : : : ; m� 2 of the right-hand side.
Hence, the remaining term on the right-hand side of (18) also vanishes. This is the
term labeled k D m� 1 and is equal to the term claimed to vanish in (15). This
concludes the proof of Theorem 4.9.

4.3. Conclusions.

Obstruction cones are Lagrangian. Let X be a Deligne-Mumford stack with
a symmetric obstruction theory. Suppose X ,!M is a closed immersion into a
smooth Deligne-Mumford stack M and let C ��M be the associated obstruction
cone (see Remark 3.8).

The following fact was suggested to hold by R. Thomas at the workshop on
Donaldson-Thomas invariants at the University of Illinois at Urbana-Champaign:

THEOREM 4.14. The obstruction cone C is Lagrangian.

Proof. This follows by combining Theorem 4.9 with Corollary 3.14. �
COROLLARY 4.15. For the fundamental cycle of the obstruction cone we have

ŒC �D L.cX /D Ch.�X / :

Proof. Because ŒC � is Lagrangian, we have ŒC �D L.�ŒC �/, with notation as
in (12) and (13). It remains to show that �ŒC �D cX . But this is a local problem,
and so we may assume that our symmetric obstruction theory comes from an almost
closed 1-form on M . Then C D CX=M . �

Application to Donaldson-Thomas type invariants. Let X be a quasiprojective
Deligne-Mumford stack with a symmetric obstruction theory. Let ŒX�vir be the
associated virtual fundamental class.

PROPOSITION 4.16. We have

ŒX�vir
D .˛X /0 D c

SM
0 .�X / ;

where .˛X /0 is the degree zero part of the Aluffi class.

Proof. Embed X into a smooth Deligne-Mumford stack M . Then combine
Proposition 2.6 with Corollaries 4.7 and 4.15 to get ŒX�vir D cM0 .cX /. �

Remark 4.17. In the case that X D Z.df /, for a regular function f on a
smooth scheme M , the virtual fundamental class is the top Chern class of �M ,
localized to X . Proposition 4.16 in this case is implicit in [Alu00]. Aluffi proves
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that ˛X D c.�M /\ s.X;M/ 2 A�.X/. Thus, .˛X /0 D cn.�M /\ ŒM � 2 A�.X/,
by Proposition 6.1.(a) of [Ful84].

THEOREM 4.18. If X is proper, the virtual count is equal to the weighted
Euler characteristic

#vir.X/D Q�.X/D �.X; �X / ;

at least if X is smooth, a global finite group quotient or a gerbe over a scheme.

Proof. Combine Propositions 4.16 and 1.12 with one another. �

Remark 4.19. It should be interesting to prove Theorem 4.18 for arbitrary
proper Deligne-Mumford stacks with a symmetric obstruction theory.

Remark 4.20. Theorem 4.18 applies to all Examples discussed in Section 3.3
which give rise to proper X . In the case of nonproper X , define Q�.X/ to be the
virtual count.

Remark 4.21. Let us point out that for a Calabi-Yau threefold the Donaldson-
Thomas and the Gromov-Witten moduli spaces share a large open part, namely
the locus of smooth embedded curves. Both obstruction theories are symmetric on
this locus, and the associated virtual count of this open locus is the same, for both
theories.

This observation may or may not be significant for the conjectures of Maulik
et al [MNOP06].

Another formula for �X .P /. Let ! be an almost closed 1-form on a smooth
scheme M . Let X DZ.!/ be the scheme-theoretic zero locus of ! and P 2X a
closed point. Let x1; : : : ; xn be étale coordinates for M around P and x1; : : : ; xn,
p1 : : : ; pn the associated canonical étale coordinates for �M around P . Write
! D

Pn
iD1 fi dxi in these coordinates.

Let � 2 C be a nonzero complex number and consider the image of the
morphism M !�M given by the section 1

�
! 2 �.M;�/. We call this image �� .

It is a smooth submanifold of �M of real dimension 2n. It is defined by the
equations �pi D fi .x/.

Let � be the image of the morphism M ! �M given by the section d� of
�M , where �D

P
i xixi is the square of the distance function defined on M by

the choice of coordinates. Thus � is another smooth submanifold of �M of real
dimension 2n. It is defined by the equations pi D xi .

Orient �� and � such that the maps M ! �� and M ! � are orientation
preserving.

PROPOSITION 4.22. For " > 0 sufficiently small, and j�j sufficiently small with
respect to ", we have

(19) �X .P /D LS"
.�� \S"; �\S"/ ;
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where S" D f� D "2g is the sphere of radius " in �M centred at P and �� \ S",
�\S" are smooth compact oriented submanifolds of S" with linking number L.

Proof. Let C ,!�M be the embedding of the normal cone CX=M into �M
given by !. Then Ch.�X /D ŒC �. The inverse of Ch is calculated in Theorem 9.7.11
of [KS90] (see also [Gin86]). We get

�X .P /D IfP g.ŒC �; Œ��/ ;

the intersection number at P of the cycles ŒC � and Œ��. Note that P is an isolated
point of the intersection C \�, by Lemma 11.2.1 of [Gin86]. We should remark
that [KS90] deals with the real case. This introduces various sign changes, which
all cancel out.

Now use Example 19.2.4 in [Ful84], which relates intersection numbers to
linking numbers. We get

�X .P /D LS"
.ŒC �\S"; �\S"/ ;

for sufficiently small ". Next, use Example 18.1.6(d) in [Ful84], which shows that
lim�!0Œ���D ŒC �, that is, that there exists an algebraic cycle in �M �A1 which
specializes to Œ��� for � 6D 0 and to ŒC � for �D 0. It follows that for sufficiently
small �, we can replace ŒC � in our formula by ��. �

Remark 4.23. Note how Formula (19) is similar in spirit to Formula (4).
Combining these two formulas for �X .P /, using ! D df , gives an expression for
the Euler characteristic of the Milnor fibre in terms of a linking number.

Motivic invariants. Let A be a commutative ring and � an A-valued motivic
measure on the category of finite type schemes over C. For a scheme X , it is
tempting to define

Q�.X/D �.X; �X /D

Z
X

�X d�

and call it the virtual motive of X . Note that Q�.X/ encodes the scheme structure
of X in a much more subtle way than the usual motive �.X/, which neglects all
nilpotents in the structure sheaf of X .

If X is endowed with a symmetric obstruction theory, Q�.X/ may be thought
of as a motivic generalization of the virtual count, or a motivic Donaldson-Thomas
type invariant.

Here are two caveats:

Remark 4.24. The proper motivic Donaldson-Thomas type invariant should
probably motivate not only X but also �X . For example, in the case of the sin-
gular locus of a hypersurface, motivic vanishing cycles (and not just their Euler
characteristics) should play a role.
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Remark 4.25. Note that � will not satisfy Property (v) of Section 1.3, unless
�D �. So one encounters difficulties when extending the virtual motive to Deligne-
Mumford stacks. To extend � to stacks one formally inverts �.GLn/, for all n, but
then one looses the specialization to �, as �.GLn/D 0. So one cannot think of the
virtual motive of a stack as a generalization of the virtual count, even if the stack
admits a symmetric obstruction theory. For example, Q�.BZ=2/D 1.
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