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Abstract

Complexity theory, being the metrical version of decision theory, has long
been suspected of harboring undecidable statements among its most prominent
conjectures. Taking this possibility seriously, we add one such conjecture, P* £ NP,
as a new “axiom” and find that it has an implication in 3-dimensional topology.
This is reminiscent of Harvey Friedman’s work on finitistic interpretations of large
cardinal axioms.

1. Introduction

This short paper introduces a new subject with a simple example. The theory
of computation defines a plethora of complexity classes. While the techniques of
diagonalization and oracle relativization have produced important separation results,
for nearly forty years the most interesting (absolute) separation conjectures, such as
P = NP, remain unproven, and with the invention of ever more complexity classes,
analogous separation conjectures have multiplied in number.

With no prospect in sight for proving these conjectures (within ZFC) and
the suspicion that some are actually independent, we propose considering them
instead as potential axioms and looking for what implications they might have in
mathematics as a whole. This program is analogous to the search for interesting
“finitistic” consequences of large cardinal axioms, an area explored by Harvey
Friedman and collaborators (e.g. [4]). (Although, in the latter case, the large
cardinal axioms are actually known to be independent of ZFC.)

What would be the best possible theorem in this subject? It would be to
postulate a very weak separation “axiom,” say P # PSPACE, and prove the Rie-
mann hypothesis, an important mathematical result apparently far removed from
complexity theory. Of course, we should be more modest. We will assume a
more technical but well accepted separation “axiom” P* % NP, which we call
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Axiom A, and prove a theorem, Theorem A, in knot theory. The theorem is easily
and briefly expressed in terms of classical notions such as “girth” and “Dehn surgery”
and appears to be as close to current research topics in knot theory as the known
finitistic implications of the large cardinal axioms are to research in Ramsey theory,
to continue that analogy. Theorem A is extremely believable but seems to exist in
a “technique vacuum.” What makes the theorem interesting is that it sounds both
“very plausible” and “impossible to prove.”

2. Theorem A

We consider smooth links L of finitely many components in R3 and their planar
diagrams D. The girth of a diagram D (in the xz-plane), g(D), may be defined
as the maximum over all lines z = constant of the cardinality of the horizontal
intersection |D N (z = constant)|. For a link L, we define girth(L) = min{g(D) |
D is a diagram of L}. Similarly, the complexity number ¢ (D) of a link diagram is
defined as half its number of crossings plus half the number of local maxima and
minima with respect to the z-coordinate. The complexity of a link, c¢(L), equals
min{c(D) | D is a diagram of L}. Theorem A addresses how girth can change
under certain equivalence relations ~, defined below.

Let r # 6 be an integer greater than or equal to 5. Consider passing from a
link L to L[] U, the disjoint union of L and an additional unknotted component
U, and then from L [[U to L’ by performing %—Dehn surgery on U. Denote by
~ the equivalence relation on links generated by L — L’. In other words, this
equivalence relation allows us to sequentially locate imbedded 2-disks A transverse
to L and perform a 8 r twist across A to modify L; after several steps, we have
arrived at a link, which we will denote L’, “equivalent” to L. In slight abuse of
notation, we also consider ~, as an equivalence relation on diagrams: D ~, D’ if
and only if D represents L, D' represents L', and L ~, L’.

If D and D’ are diagrams for the same link L, we may take their distance
to be the minimum number of Reidemeister/Morse moves connecting D to D’.
Representative examples of these moves are displayed in Figure 1. We consider
only diagrams in Morse position with respect to the z-coordinate and include in our
count births, deaths, and level crossings, as well as the three familiar Reidemeister
moves. Suppose next that D and D’ are diagrams for ~, equivalent links L and L’.
We need a measure of the distance between D and D’. It does not make sense to
count each Dehn surgery as one step since the disk A may have an unboundedly
complicated relation to L. There is no loss of generality, since D can be modified
by Reidemeister/Morse moves, in considering only disks A that meet D in the
standard form, seen in Figure 2. More precisely, after Reidemeister/Morse moves,
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we may assume that in D(L ] U), U bounds a disk A and a neighborhood of A in
D(L1IU) appears as in Figure 2.

Since +4r-twisting along A introduces 4rn(n—1) crossings, we will call half
this, 2rn(n—1), the distance between the twisted and untwisted diagrams. Now,
dist, (D, D’) can be defined to be the minimum number of (weighted) steps from
D to D’ where each isotopy induced, Reidemeister/Morse move is given weight 1,
except Reidemeister 1 which is weighted % since three features can appear, a
crossing, a local max and a local min, and each standard form 4r-twist along A is
given weight 2rn(n—1). (The exact form of dist, is irrelevant. What is important is
that if D and D’ have a polynomial “distance” (in max(c(D), ¢(D’))) then there is
a polynomial sized certificate demonstrating that L ~, L’. This clearly holds for
dist, as defined.)

THEOREM A. Ifr > 5 is an integer not equal to 6, p a polynomial of one
variable, and b, b’ > 0 any constants, then there exists a diagram D such that if
D ~, D’ then

g(D") > blog(c(D)) +b" wunless dist,(D,D’) > p(c(D)).

‘/ - ‘\‘ Part

| AT D of D(L11U)
| T
X L

Figure 2
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Roughly, the theorem says that some links L cannot be made, via ~, extremely
thin except possibly by an extraordinarily elaborate sequence of moves. It would
be a surprise if the second alternative actually occurred. In high dimensions [7],
unsolvability of the triviality problem for groups implies that geometric landscapes,
for example that of the 5-sphere in S®, are extremely (nonrecursively) rough.
However, this phenomenon has not been seen in three manifold topology so it would
be a surprise if girth could be reduced only by a very long sequence of moves.
We conjecture that Theorem A remains true with the second alternative omitted.
However, for this statement no complexity axiom appears to unlock the proof.

In the 1990’s, A. Thompson [11] pointed out to me that girth, by itself, can
sometimes be computed exactly (see Claim below). However, the equivalence
relation ~; is so disruptive of geometry that it appears to create the “technique
vacuum” which we puncture with axiom A.

CLAIM. Let k be the (p, q)-torus knot. Then g(k) = 2min(p, q).

Proof. So, k C T C R3, where T is an unknotted torus which we assume
without loss of generality to be in generic (Morse) position with respect to the
z-coordinate of R3. A straightforward homological argument shows that some
z-level must intersect 7 in one, in fact two, essential circles C [[C’ € T. One
easily builds imbedded disks (from bits of the level plane and subsurfaces of 7') D
and D’ withdD = DNT =C and 0D’ = D'NT = C’. Thus, C and C’ are both
meridians or both longitudes of 7" and therefore must contain at least 2 min(p, q)
points of k. |

3. A complexity reminder

The inclusions exhibited in Figure 3 are all theorems or tautologies. The
exhibited differences are all “separation conjectures” to which we might grant the
status of axioms. The existence of a problem y € P*F\ NP is the axiom, “Axiom A,”
we add to ZF, Zermelo-Fraenkel set theory, for the “proof” of Theorem A.

PSPACE

Figure 3
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Briefly, P consists of decision (yes/no) problems or languages for which mem-
bership is determined in polynomial time (in input size) on a classical computer
(Turing machine). NP (nondeterministic polynomial) is the class of languages
which have a polynomial time protocol such that “yes” instances have a certificate
which is accepted whereas there is no such requirement for “no” instances. #P is the
counting analogy to NP and asks how many of a fixed family of potential certificates
will be accepted; the paradigmatic example problem being to find the number of
assignments satisfying a boolean formula. Since #P is a class of functions, not
languages, one sometimes weakens #P to class PP of languages where membership
is determined by asking if more than half of the nondeterministic computations are
accepting. PP “sees” the first bit of #P. We use the oracle notation P4 in the sense
of Cook (also called “Turing reduction”), to mean polynomial time computation
assisted by (possibly repeated) calls to the A oracle (post processing permitted). It
is known that PP? = P*P_ so weakening #P to a language does not affect its oracular
power. A function f is called #P-hard if P** € P4, 4 an oracle for f. PH denotes
the polynomial time hierarchy, a game theoretic extension of NP allowing finite
quantification. Toda proved that PH € P*? [12]. Finally, PSPACE is the class
of decision problems solvable in an arbitrary amount of time, but using only a
polynomial memory resource. See [8] for more background.

We use Axiom A, P = NP, to prove Theorem A. Failure of Axiom A would
imply a large collapse of the polynomial hierarchy PH down to NP, so Axiom A
must be considered extremely safe.

4. Axiom A implies Theorem A

Our connection between links L and complexity is the Jones polynomial [13]
which we write as J7 (q). Evaluations of Jz, at roots of unity @ = e?™! /T are known
[14] to be computed as the partition function Zgy(2) k (S3, L) of the topological
quantum field theory (TQFT) associated with the Lie group SU(2) at level k =r —2.
What will be of critical importance for us is that these Jones evaluations Jz (w) will
be constant as L is transformed to L’ ~, L.

LEMMA 4.1. If L ~, L’ then Jp (e2™1/7) = Jy,(e271/7).

Proof. In the SU(2),—5 theories, all “labels” a (that is, positive normed irreps
of the quantum group, or “particle types” in physics language) have twist factor
6 (a) which is a 4r-th root of unity. Specifically, enumeratinga =0, ...,r —2, one
has 8(a) = /3“2+2“ where 8 = ¢271/47 [14].

Now consider LI [U where U is a single unknotted loop bounding an imbedded
disk A transverse to L. Recoupling transforms L to a superposition of trivalent
ribbon graphs ) «; G; with identical partition function, where each G; meets A
in one edge with label ;. Now the partition function Z(S3, L) = Jz, (e2%/") can
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d = 4@ fla)yr =1

Figure 4

be computed as Y «; Z(G;). But passing from L to L’ amounts only to adding 4r
full twists of the type drawn in Figure 4 to the a; labeled particle line crossing A.
Since A(a;)*" = 1, Z(G;) does not change under a 87 r twist. Consequently,
Jr (217 = Jp,(e27/7). 1 thank Ian Agol for pointing out that Fox [2] considered
a relation similar to ~, in the 1950’s and that Lackenby’s theorem 2.1 [6] contains
Lemma 4.1. O

It is a theorem of Vertigan ([15] or [16] assisted by the result of [10]) that all
nonzero algebraic evaluations of the Jones polynomial J; (¢) are #P -hard func-
tions! of the input L with the exceptions of those ¢ satisfying ¢g* = 1 or ¢® = 1.
Thus, in oracle notation, PYr = P** where J, accepts L as input and returns (an
encoding of the algebraic integer) Jy (e iy, provided r > 5 is an integer and
r 6.

From the lemma we see that the oracle J, can work equally well with any link
L’ ~, L as input or any diagram D’ for L. But if g(D’) < blog(c(L)) + b’, then
throughout the computation of the partition function, the “physical” Hilbert space
(i.e. the Hilbert space associated by SU(2); TQFT to the z = constant slices of L
(with charge a =1=fundamental)) will have dimension

r—2
d<Y_S, (bloge(DUNHEY _ noly (e (DY),
i=0

using the Verlinde formula (VF), where So; = m sin((i + 1)xr/r), the first
row of the S-matrix. We have used minus our bound on girth as a lower bound to
the Euler characteristic (the exponent in VF) for any z = constant slice of the link
complement in R3.

Thus, there is a prospect of replacing the oracle J, entirely with a classical
polynomial time computation in this small Hilbert space, by representing crossings
by R-matrices and maxima (minima) by (co)units (as in Turaev’s book [13]). To
do this, two things must happen. First, ¢(D’) cannot be larger than poly(c(D));

1 Actually, applying Lagrange interpolation, these functions are shown in [5] to be FP*F complete.
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that is, the diagram D’, although fairly thin, also must not be too long in the z-
direction. Second, there must be a polynomial number of advice bits which encode
the steps from D to D’ which certify that D’ ~, D. If Theorem A were false,
these poly-many advice bits could be used to certify transformations D ~, D’
where D’ would be thin enough, g(D’) < blog(c(L)) + b’ and short enough
¢(D') < ¢(D) + p(c(D)) for a poly-time calculation of Jp/(e27/7) to replace
appeal to the oracle J, implying PY» C NP, contradicting Axiom A. We have used
that dist, (D, D’) < p(c(D)) implies ¢(D’) < ¢(D) + p(c(D)) since no more than
two crossings or two critical points can be added to a diagram per unit weight step.
This completes the proof of Theorem A in ZF U Axiom A.

5. Conclusion

Mathematical structures such as tilings [1], groups [9], and, in several contexts,
links [3] are known to encode quite general computations. If transformations are
found which preserve the computational “content” of the structure, then it may be
expected that axioms stating a lower bound to computational complexity will limit
the scope of such transformations in simplifying the structure.
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