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Abstract

Assuming the Riemann hypothesis, we obtain an upper bound for the moments
of the Riemann zeta function on the critical line. Our bound is nearly as sharp as
the conjectured asymptotic formulae for these moments. The method extends to
moments in other families of L-functions.

1. Introduction

An important problem in analytic number theory is to gain an understanding
of the moments

Mk.T /D

Z T

0

j�.1
2
C i t/j2kdt:

For positive real numbers k, it is believed thatMk.T /�CkT .logT /k
2

for a positive
constant Ck . A precise value for Ck was conjectured by Keating and Snaith [11]
based on considerations from random matrix theory. Subsequently, an alternative
approach, based on multiple Dirichlet series and producing the same conjecture,
was given by Diaconu, Goldfeld and Hoffstein [4]. Recent work by Conrey et al
[1] gives a more precise conjecture, identifying lower order terms in an asymptotic
expansion for Mk.T /.

Despite many attempts, asymptotic formulae for Mk.T / have been established
only for k D 1 (due to Hardy and Littlewood; see [22]) and k D 2 (due to Ingham;
see [22]). However we do have the lower bound Mk.T /�k T .logT /k

2

. This was
established by Ramachandra [13] for positive integers 2k, by Heath-Brown [6] for
all positive rational numbers k, and, assuming the truth of the Riemann hypothesis
(RH), by Ramachandra [12] for all positive real numbers k. See also the elegant
note [2] giving such a bound assuming RH, and [20] for the best known constants
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982 KANNAN SOUNDARARAJAN

implicit in these lower bounds. Analogous conjectures exist (see [1], [4], [10]) for
moments of central values of L-functions in families, and in many cases lower
bounds of the conjectured order are known (see [16] and [17]).

Here we study the problem of obtaining upper bounds for Mk.T /. When
0� k� 2, Ramachandra, in [13] and [14], and Heath-Brown, in [6] and [7], showed,
assuming RH, that Mk.T /� T .logT /k

2

. The Lindelöf hypothesis is equivalent to
the estimate Mk.T /�k;" T

1C" for all natural numbers k. Thus, for k larger than
2, it seems difficult to make unconditional progress on bounding Mk.T /. If we
assume RH, then a classical bound of Littlewood (see [22]) gives that (for t � 10
and some positive constant C )

(1) j�.1
2
C i t/j � exp

�
C

log t
log log t

�
;

and therefore Mk.T / � T exp.2kC logT= log logT /. We improve upon this,
obtaining an upper bound of nearly the conjectured order of magnitude.

COROLLARY A. Assume RH. For every positive real number k, and every
" > 0, we have

T .logT /k
2

�k Mk.T /�k;" T .logT /k
2C":

Our proof suggests that the dominant contribution to the 2k-th moment comes
from t such that j�.1

2
C i t/j has size .logT /k , and this set has measure about

T=.logT /k
2

.

COROLLARY B. Assume RH. Let k � 0 be a fixed real number. For large T
we have

measft 2 Œ0; T � W j�.1
2
C i t/j � .logT /kg D T .logT /�k

2Co.1/:

We will deduce these corollaries by finding an upper bound on the frequency
with which large values of j�.1

2
C i t/j can occur. Throughout we define

S.T; V /D ft 2 ŒT; 2T � W logj�.1
2
C i t/j � V g;

and observe that

(2)

Z 2T

T

j�.1
2
C i t/j2kdt D�

Z 1
�1

e2kV d meas.S.T; V //

D 2k

Z 1
�1

e2kV meas.S.T; V //dV:

To prove Corollaries A and B, we desire estimates for the measure of S.T; V / for
large T and all V �3. To place our main theorem in context, let us recall the beautiful
result of Selberg that as t varies in ŒT; 2T �, the distribution of logj�.1

2
C i t/j is

approximately Gaussian with mean 0 and variance 1
2

log logT . Precisely, Selberg’s
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theorem (see [18] and [19]) shows that for any fixed � 2 R, and as T !1,

meas
�

S.T; �
q
1
2

log logT /
�
D T

�
1
p
2�

Z 1
�

e�x
2=2dxC o.1/

�
:

Although Selberg’s result holds only for V of size
p

log logT , we may speculate
that in a much larger range for V a similar estimate holds:

(3) meas.S.T; V //� T

p
log logT
V

exp
�
�

V 2

log logT

�
:

Such an estimate would lead, via (2), to the bound Mk.T /�k T .logT /k
2

. In
our main theorem we establish that a weaker form of (3) holds in the range 3 �
V D o..log logT / log3 T /, where throughout we write log3 for log log log. In the
application to moments, the crucial range is when V is of size about k log logT ,
and our theorem shows that a version of (3) holds for such V . For larger values
of V , we obtain an upper bound of the form

meas.S.T; V //� T exp.� 1
129
V logV /

(at least when 1
2
.log logT / log3 T <V ), and the shape of this estimate is in keeping

with Littlewood’s bound (1).

THEOREM. Assume RH. Let T be large, let V � 3 be a real number, and let
S.T; V / be as defined above. If 10

p
log logT � V � log logT , then

meas.S.T; V //� T
Vp

log logT
exp

�
�

V 2

log logT

�
1�

4

log3 T

��
I

if log logT < V � 1
2
.log logT / log3 T , then

meas.S.T; V //� T
Vp

log logT
exp

�
�

V 2

log logT

�
1�

7V

4.log logT / log3 T

�2�
I

and, finally, if 1
2
.log logT / log3 T < V , then

meas.S.T; V //� T exp
�
�

1
129
V logV

�
:

In the limited range 0� V � log logT , Jutila [8] had previously shown that

meas.S.T; V //� T exp
�
�

V 2

log logT

�
1CO

�
V

log logT

��
:

I have shown recently in [21] that in the range 3 � V � 1
5

p
logT= log logT one

has

meas.S.T; V //� T

.logT /4
exp

�
�10

V 2

log logT
8V 2 logV

�
:

In contrast to our theorem above, these results are unconditional.
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As mentioned already, we build on Selberg’s work on the distribution of
log �.1

2
C i t/. Selberg computed the moments of the real and imaginary parts of

log �.1
2
C i t/. To achieve this, he found an ingenious expression for log �.1

2
C i t/

in terms of primes. His ideas work very well for the imaginary part of the logarithm,
but are more complicated for the real part of the logarithm owing to zeros of the
zeta function lying very close to 1

2
C i t . One novelty in our work is the realization

that if we seek an upper bound for logj�.1
2
C i t/j (which is what is needed for our

theorem), then the effect of the zeros very near 1
2
C i t is actually benign. This is

our main proposition given below, from which we will deduce our theorem. We
should comment that Selberg’s work is unconditional, and uses zero-density results
which put most of the zeros near the critical line. It would be interesting to see how
much of our work can be recovered unconditionally.

PROPOSITION. Assume RH. Suppose T is large, let t 2 ŒT; 2T �, and let
2� x � T 2. Let �0 D 0:4912 : : : denote the unique positive real number satisfying
e��0 D �0C�

2
0=2. For all �� �0, we have the estimate

logj�.1
2
Ci t/j�Re

X
n�x

ƒ.n/

n
1
2
C

�
logxCi t logn

log.x=n/
log x

C
.1C�/

2

logT
log x

CO
�

1

log x

�
:

Taking x D .logT /2�" in our proposition, and estimating the sum over n
trivially, we obtain the following explicit form of Littlewood’s bound (1), which im-
proves upon the previous estimate obtained by Ramachandra and Sankaranarayanan
[15]. There is certainly some scope to improve our Corollary C below, and it may be
instructive to understand what the limit of the method would be (in a way analogous
to the elegant treatment of Im log �.1

2
C i t/ given by Goldston and Gonek [5]).

COROLLARY C. Assume RH. For all large t , we have

j�.1
2
C i t/j � exp

��
1C�0
4
C o.1/

� log t
log log t

�
� exp

�
3

8

log t
log log t

�
:

The method developed here is robust and applies equally well to moments in
families of L-functions; we discuss this briefly in Section 4 below. We end the
introduction by deriving Corollaries A and B.

Proof of Corollaries A and B. As mentioned earlier, the lower bound for
Mk.T / in Corollary A is due to Ramachandra [12]. The upper bound follows upon
inserting the bounds of our theorem into (2). In performing this computation, it is
convenient to use our theorem in the crude form

meas.S.T; V //� T .logT /o.1/ exp.�V 2= log logT / for 3� V � 4k log logT ,

meas.S.T; V //� T .logT /o.1/ exp.�4kV / for V > 4k log logT .
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From our theorem, we may see that the contribution to Mk.T / from those
t 2 Œ0; T � with j�.1

2
C i t/j > .logT /kC" or with j�.1

2
C i t/j < .logT /k�" is

o.T .logT /k
2

/. Combining this with the lower bound Mk.T /�k T .logT /k
2

we
obtain the lower bound for the measure implicit in Corollary B. The upper bound
implicit there follows from our theorem. �

2. Proof of the main proposition

In proving our proposition we may suppose that t does not coincide with the
ordinate of a zero of �.s/. Letting �D 1

2
C i
 run over the nontrivial zeros of �.s/,

we define
F.s/D Re

X
�

1

s��
D

X
�

��1=2

.��1=2/2C.t�
/2
:

Visibly F.s/ is nonnegative in the half-plane � � 1=2. Recall Hadamard’s factor-
ization formula which gives (see [3, (8) and (11) of Ch. 12])

Re �
0

�
.s/D�Re 1

s�1
C
1
2

log� � 1
2

Re �
0

�
.1
2
sC 1/CF.s/;

so that for t 2 ŒT; 2T � an application of Stirling’s formula yields

(4) �Re �
0

�
.s/D 1

2
logT CO.1/�F.s/:

Integrating (4) as � D Re.s/ varies from 1
2

to �0.> 1
2
/, we obtain, setting s0 D

�0C i t ,

logj�.1
2
C i t/j � logj�.s0/j

D
�
1
2

logT CO.1/
�
.�0�

1
2
/�

Z �0

1=2

F.� C i t/d�

D .�0�
1
2
/
�
1
2

logT CO.1/
�
�
1

2

X
�

log
.�0�

1
2
/2C .t � 
/2

.t � 
/2
:

Since log.1C x2/� x2=.1C x2/, we deduce that

(5) logj�.1
2
C i t/j � logj�.s0/j � .�0� 1

2
/
�
1
2

logT CO.1/� 1
2
F.s0/

�
:

LEMMA 1. Unconditionally, for any s not coinciding with 1 or a zero of �.s/
and for any x � 2, we have

�
�0

�
.s/D

X
n�x

ƒ.n/

ns
log.x=n/

log x
C

1

log x

�
�0

�
.s/
�0
C

1

log x

X
�

x��s

.��s/2

�
x1�s

.1�s/2 log x
C

1

log x

1X
kD1

x�2k�s

.2kCs/2
:
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Proof. This is similar to an identity of Selberg; see Titchmarsh [22, Th. 14.20].
With c Dmax.1; 2� �/, we consider

1

2�i

Z cCi1

c�i1

�
�0

�
.sCw/

xw

w2
dw D

X
n�x

ƒ.n/

ns
log.x=n/;

which follows from integrating term by term using the Dirichlet series expansion of
�.�0=�/.sCw/. On the other hand, moving the line of integration to the left and
calculating residues, this equals

�
�0

�
.s/ log x�

�
�0

�
.s/
�0
�

X
�

x��s

.��s/2
C

x1�s

.1�s/2
�

1X
kD1

x�2k�s

.2kCs/2
:

Equating these two expressions we obtain the lemma. �

Take s D �C i t in Lemma 1, extract the real parts of both sides, and integrate
over � from �0 to1. Thus, for 2� x � T 2,

logj�.s0/j D Re
�X
n�x

ƒ.n/

ns0 logn
log.x=n/

log x
�

1

log x
�0

�
.s0/

C
1

log x

X
�

Z 1
�0

x��s

.��s/2
d� CO

�
1

log x

��
:

Using (4), and observing thatX
�

ˇ̌̌Z 1
�0

x��s

.��s/2
d�
ˇ̌̌
�

X
�

Z 1
�0

x1=2��

js0��j2
d�

D

X
�

x1=2��0

js0� �j2 log x
D

x1=2��0F.s0/

.�0�1=2/ log x
;

we deduce that

(6) logj�.s0/j � Re
X
n�x

ƒ.n/

ns0 logn
log.x=n/

log x

C
logT
2 log x

�
F.s0/

log x
C

x1=2��0F.s0/

.�0� 1=2/ log2 x
CO

�
1

log x

�
:

Adding the inequalities (5) and (6), we obtain that

(7) logj�.1
2
C i t/j � Re

X
n�x

ƒ.n/

ns0 logn
log x=n

log x
C
1
2

logT
�
�0�

1
2
C

1

log x

�
CF.s0/

� x1=2��0

.�0� 1=2/ log2 x
�

1

log x
�
1
2
.�0�

1
2
/
�
CO

�
1

log x

�
:
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We choose �0 D 1
2
C�=log x, where �� �0. This restriction on � ensures that the

term involving F.s0/ in (7) makes a negative contribution, and may therefore be
omitted. The proposition follows. �

3. Proof of the theorem

Our proof of the theorem rests upon our main proposition. We begin by
showing that the sum over prime powers appearing there may be restricted just to
primes.

LEMMA 2. Assume RH. Let T � t � 2T , let 2� x � T 2, and let � � 1
2

. Thenˇ̌̌̌ X
n�x
n¤p

ƒ.n/

n�Cit logn
log x=n

log x

ˇ̌̌̌
� log log logT CO.1/:

Proof. The terms n D pk for k � 3 clearly contribute an amount� 1, and
it remains to handle the terms nD p2. By following closely the explicit formula
proof of the prime number theorem (see [3, ��17 and 18]) we obtain that, on RH,X

p�z

.logp/p�2it � z=T C
p
z.log zT /2:

By partial summation, using this estimate when z � .logT /4 and the trivial� z

for smaller z, we deduce that for � � 1
2X

p�
p
x

1

p2�C2it
log.
p
x=p/

log
p
x
� log log logT: �

We also need a standard mean value estimate whose proof we include for
completeness.

LEMMA 3. Let T be large, and let 2� x � T . Let k be a natural number such
that xk � T= logT . For any complex numbers a.p/ we haveZ 2T

T

ˇ̌̌X
p�x

a.p/

p1=2Cit

ˇ̌̌2k
dt � T kŠ

�X
p�x

ja.p/j2

p

�k
:

Proof. Write �X
p�x

a.p/

p1=2Cit

�k
D

X
n�xk

ak;x.n/

n1=2Cit
;

where ak;x.n/D 0 unless n is the product of k (not necessarily distinct) primes, all
below x. In that case, if we write the prime factorization of n as nD

Qr
iD1 p

˛i

i ,



988 KANNAN SOUNDARARAJAN

then ak;x.n/D
�

k
˛1;:::;˛r

�Qr
iD1 a.pi /

˛i . NowZ 2T

T

ˇ̌̌X
p�x

a.p/

p1=2Cit

ˇ̌̌2k
dt D

X
m;n�xk

ak;x.m/ak;x.n/
p
mn

Z 2T

T

�
n

m

�it
dt

D T
X
n�xk

jak;x.n/j
2

n
CO

� X
m;n�xk

m¤n

jak;x.m/ak;x.n/j
p
mn jlog.m=n/j

�

upon separating the diagonal terms m D n and the off-diagonal terms m ¤ n.
Since 2

ˇ̌
ak;x.m/ak;x.n/=

p
mn

ˇ̌
� jak;x.m/j

2=mC jak;x.n/j
2=n, we see that the

off-diagonal terms above contribute

�

X
n�xk

jak;x.n/j
2

n

X
m�xk

m¤n

1

jlog.m=n/j

� xk log.xk/
X
n�xk

jak;x.n/j
2

n
� T

X
n�xk

jak;x.n/j
2

n
;

recalling that xk � T= logT . The lemma follows upon noting thatX
n�xk

jak;x.n/j
2

n

D

X
p1<���<pr�x

X
˛1;:::;˛r�1P

˛iDk

� k

˛1; : : : ; ˛r

�2 ja.p1/j2˛1 � � � ja.pr/j
2˛r

p
˛1

1 � � �p
˛r
r

� kŠ
X

p1<���<pr�x

X
˛1;:::;˛r�1P

˛iDk

� k

˛1; : : : ; ˛r

�
ja.p1/j

2˛1 � � � ja.pr/j
2˛r

p
˛1

1 � � �p
˛r
r

D kŠ
�X
p�x

ja.p/j2

p

�k
: �

In proving our theorem, we may assume that

10
p

log logT � V � 3
8

logT= log logT:

We also keep in mind that T is large. We define a parameter A by

AD

8̂<̂
:
1
2

log3 T if V � log logT;
log logT
2V

log3 T if log logT < V � 1
2
.log logT / log3 T;

1 if V > 1
2
.log logT / log3 T:
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We further set xD T A=V and zD x1= log logT . Using Lemma 2 and our proposition,
we find that

logj�.1
2
C i t/j � S1.t/CS2.t/C

1C�0
2A

V CO.log log logT /;

where

S1.t/D
ˇ̌̌X
p�z

1

p
1
2
C

�0
logxCi t

log.x=p/
log x

ˇ̌̌
;

S2.t/D
ˇ̌̌ X
z<p�x

1

p
1
2
C

�0
logxCi t

log.x=p/
log x

ˇ̌̌
:

If t 2 S.T; V / then we must either have

S2.t/�
V

8A
or S1.t/� V

�
1�

7

8A

�
DW V1:

By Lemma 3 we see that for any natural number k � V=A� 1, we haveZ 2T

T

jS2.t/j
2kdt � T kŠ

� X
z<p�x

1

p

�k
� T

�
k.log log logT CO.1//

�k
:

Choosing k to be the largest integer below V=A� 1, we obtain that the measure of
t 2 ŒT; 2T � with S2.t/� V=.8A/ is

(8) � T
�
8A

V

�2k
.2k log log logT /k� T exp

�
�
V

2A
logV

�
:

Next we consider the measure of the set of t 2 ŒT; 2T � with S1.t/ � V1. By
Lemma 3, we see that for any natural number k � log.T= logT /= log z,Z 2T

T

jS1.t/j
2kdt � T kŠ

�X
p�z

1

p

�k
� T
p
k
�
k log logT

e

�k
;

so that the measure of t 2 ŒT; 2T � with S1.t/� V1 is

� T
p
k
�
k log logT
eV 21

�k
:

When V � .log logT /2, we choose k as the greatest integer less than V 21 = log logT ,
and when V > .log logT /2 we choose k D Œ10V �. It then follows that the measure
of t 2 ŒT; 2T � with S1.t/� V1 is

(9) � T
Vp

log logT
exp

�
�

V 21
log logT

�
CT exp.�4V logV /:

Our theorem follows upon combining the estimates (8) and (9).
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4. Moments of L-functions in families

We briefly sketch here the modifications needed to obtain bounds for moments
of L-functions in families. Throughout we assume the generalized Riemann hy-
pothesis for the appropriate L-functions under consideration. If q is a large prime,
then Rudnick and Soundararajan [16] showed that, for positive rational numbers k,X�

� .modq/

jL.1
2
; �/j2k�k q.log q/k

2

;

where the sum is over primitive characters �. The argument given here carries
over to obtain the upper bound�k;" q.log q/k

2C" for all positive real k. The only
difference is that one uses the orthogonality relations of the characters .mod q/ to
treat nondiagonal terms in the analogue of Lemma 3.

More interesting is the case of quadratic DirichletL-functions. In [17] Rudnick
and Soundararajan showed that for rational numbers k � 1X[

jd j�X

L.1
2
; �d /

k
�k X.logX/k.kC1/=2;

where the sum is over fundamental discriminants d , and �d denotes the associated
primitive quadratic character. To obtain an upper bound, we seek to bound the
frequency of large values of L.1

2
; �d /. Analogously to our proposition, we find

that1, for any x � 2 and with �0 as in our proposition,

logL.1
2
; �d /�

X
2�n�x

ƒ.n/�d .n/

n
1
2
C

�0
logx logn

log.x=n/
log x

C
.1C�0/

2

logjd j
log x

CO
�

1

log x

�
:

Notice that, in contrast to Lemma 2, the contribution of the prime squares in our
sum is � 1

2
log log x, since �d .p2/D 1 for all p − d . Taking this key difference

into account, we may argue as in Section 4, using now quadratic reciprocity and
the Pólya-Vinogradov inequality to develop the analogue of Lemma 3. Thus we
obtain that the number of d with jd j �X and logL.1

2
; �d /� V C

1
2

log logX is

�X exp
�
�

V 2

2 log logX
.1C o.1//

�
when

p
log logX � V D o..log logX/ log3X/; when V � .log logX/ log3X this

number is�X exp.�cV logV / for some positive constant c. From these estimates
we deduce that X[

jd j�X

L.1
2
; �d /

k
�k;" X.logX/k.kC1/=2C":

1Since we are assuming GRH we know that L.12 ; �d / � 0. If L.12 ; �d / D 0 we interpret
logL.12 ; �d / as �1 so that the claimed inequality is still valid.
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As a last example consider the family of quadratic twists of a given elliptic
curve E. We write the L-function for E as L.E; s/ D

P1
nD1 a.n/n

�s , where
the a.n/ are normalized so that ja.n/j � d.n/ (the number of divisors of n). The
methods of [16] and [17] can be used to show that for rational numbers k � 1,X[

jd j�X

L.E˝�d ;
1
2
/k�k X.logX/k.k�1/=2:

Writing a.p/D p̨C p̌ with p̨ p̌ D 1 we obtain analogously to our proposition
that, for x � 2 and �0 as before,

logL.E˝�d ; 12/�
X

nDp`�x

`�1

�d .p
`/.˛`pCˇ

`
p/

`n1=2C�0=logx

log.x=p`/
log x

C .1C�0/
logjd j
log x

CO
�

1

log x

�
:

The contribution of the terms `� 3 above is O.1/, and the contribution of `D 2
(the prime squares) isX

p�
p
x

p−d

a.p2/� 1

2p1C2�0=logx

log.x=p2/
log x

��
1
2

log log x:

After taking this feature into account, we may develop the analogous argument
of Section 4. Thus, the number of d with jd j � X and logL.E ˝ �d ; 12/ �
V � 1

2
log logX is

�X exp
�
�

V 2

2 log logX
.1C o.1//

�
when

p
log logX � V D o..log logX/ log3X/; when V � .log logX/ log3X this

number is� X exp.�cV logV / for some positive constant c. This leads to the
upper bound X[

jd j�X

L.E˝�d ;
1
2
/k�X.logX/k.k�1/=2C":

Our work above is in keeping with conjectures of Keating and Snaith [10]
(see (51) and (79) there) that an analogue of Selberg’s result holds in families
of L-functions. Thus in the unitary family of � .mod q/, we expect that the
distribution of logjL.1

2
; �/j is Gaussian with mean 0 and variance � 1

2
log log q.

In the symplectic family of quadratic Dirichlet characters, we expect that the
distribution of logL.1

2
; �d / is Gaussian with mean � 1

2
log logjd j and variance

� log logjd j. Thus most values ofL.1
2
; �d / are quite large. In the orthogonal family

of quadratic twists of an elliptic curve, first we must restrict to those twists with
positive sign of the functional equation, or else the L-value is 0. In this restricted
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class, we expect that the distribution of logL.E˝�d ; 12/ is Gaussian with mean
� �

1
2

log logjd j and variance � log log jd j. Thus the values in an orthogonal
family tend to be small. With a little more work, the ideas in this paper would show
(assuming GRH) that the frequency with which logjLj exceeds MeanC� �

p
Var is

bounded above by 1p
2�

R1
� e�x

2=2dx for any fixed real number �. If in addition
to GRH, we assume that most of the L-functions under consideration do not have
a zero very near2 1

2
, then Selberg’s techniques would yield these Keating-Snaith

analogues.
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