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Abstract

We prove a new upper bound for diagonal two-colour Ramsey numbers, showing
that there exists a constant C such that

r.kC 1; kC 1/� k�C log k=log log k
�
2k
k

�
:

1. Introduction

The Ramsey number r.k; l/ is the smallest natural number n such that, in any
red and blue colouring of the edges of the complete graph on n vertices, we are
guaranteed to find either a red Kk or a blue Kl .

That these numbers exist is a consequence of Ramsey’s original theorem
[Ram29], but the standard upper bound,

r.kC 1; l C 1/�
�kCl
k

�
;

is due to Erdős and Szekeres [ES35].
Very little progress was made on improving this bound until the mid-eighties,

when a number of successive improvements were given, showing that, as expected,
r.kC 1; l C 1/D o

��
kCl

k

��
. Firstly, Rödl showed that for some constants c and c0

we have

r.kC 1; l C 1/�
c
�
kCl

k

�
logc0

.kC l/
:

This result was never published, but a weaker bound,

r.kC 1; l C 1/�
6
�
kCl

k

�
log log.kC l/

;
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appears in the survey paper concerning Ramsey bounds by Graham and Rödl
[GR87].

Not long after these bounds were proved, Thomason [Tho88] proved that there
was a positive constant A such that, for k � l ,

r.kC 1; l C 1/� exp
�
�
l

2k
log kCA

p
log k

��kCl
k

�
;

this being a major improvement on Rödl’s bound when k and l are of approximately
the same order, implying in particular that

r.kC 1; kC 1/� k�1=2CA=
p

log k
�2k
k

�
:

In this paper we will improve Thomason’s result:

THEOREM 1.1. For all " with 0 < "� 1, there exists a constant C" such that,
for k � l � "k,

r.kC 1; l C 1/� k�C" log k=log log k
�kCl
k

�
:

In particular, there exists a constant C such that

r.kC 1; kC 1/� k�C log k=log log k
�2k
k

�
:

2. An outline of the proof

Our argument (and also Thomason’s) begins by assuming that we are trying
to prove a bound of the form r.k C 1; l C 1/ � f .k; l/

�
kCl

k

�
, where f .k; l/ is

some slowly changing function in k and l . To construct an inductive argument we
will assume that for some such function we have r.aC 1; bC 1/� f .a; b/

�
aCb

a

�
whenever a is less than k or b is less than l , and that we would like to show that
the same holds for aD k and b D l .

To this end, let us suppose that n D
�
f .k; l/

�
kCl

k

�˘
D f �.k; l/

�
kCl

k

�
, say.

Then by the argument that proves the Erdős-Szekeres inequality

r.kC 1; l C 1/� r.k; l C 1/C r.kC 1; l/;

we see that, within any red/blue colouring of the edges ofKn that does not contain a
redKkC1 or a blueKlC1, every vertex x can have red degree at most r.k; lC1/�1
and blue degree at most r.kC 1; l/� 1. Therefore, if dx is the red degree of the
vertex x (so that n� 1� dx is the blue degree),

dx < r.k; l C 1/� f .k� 1; l/
�kCl�1
k�1

�
D
f .k�1; l/

f �.k; l/

k

kCl
n:
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Similarly, we may use the fact that n� 1� dx � r.kC 1; l/� 1 to show that

dx �

�
1�

f .k; l�1/

f �.k; l/

l

kCl

�
n:

Now, note that if f were always one, then we would know that dx was less than
kn=.kCl/ for each vertex x and also that it was greater than or equal to kn=.kCl/,
a contradiction which is equivalent to the Erdős-Szekeres argument.

If, instead, we allow the size of f .k; l/ to change with both k and l , albeit
slowly, then we find that for each vertex x the red degree dx is not much greater
than kn=.kC l/ nor much less than it. So we find that the graph is approximately
regular in degree, the proximity to true regularity being dependent upon how slowly
f .k; l/ changes.

This approximate degree-regularity is not however the only structural informa-
tion that we have about graph colourings that contain neither a red KkC1 nor a blue
KlC1. We also know, for example, that in such a graph any red edge can lie in at
most r.k� 1; l C 1/� 1 red triangles, and if the vertices of this red edge are x and
y, then there are at most r.k; l/� 1 vertices that are connected to x by a red edge
and to y by a blue edge. If we let dxy be the number of vertices that are connected
to both x and y by a red edge, then these two conditions are enough to tell us that

dxy �

�
k

kCl

�2
n;

the exact proximity being again dependent upon the rate at which f .k; l/ changes.
That is, providing that we don’t try and improve too much on the Erdős-Szekeres
bound, we can conclude that across any red edge we have approximately the
expected number of red triangles (that would be in a random graph formed by
choosing red edges with probability k=.kC l/). As a consequence, we see that
across any red edge there are approximately the expected number of red C4s of
which the red edge is a diagonal. Importantly, this latter result is not restricted to
red edges alone — it is straightforward to use the degree-regularity conditions and
the analogous condition that we have approximately the expected number of blue
C4s across a blue edge in order to show that we have approximately the expected
number of red C4s across that edge as well.

At this stage it is appropriate to recall (at least roughly) the definition of
quasirandomness: a regular or approximately regular graph is called quasirandom
if it contains approximately the expected number of C4s that would be in a random
graph chosen with the edge probability dictated by the density of the graph (see
for example [CGW89], [Tho87]). The standard results of the theory imply that if a
graph satisfies this criterion then it also satisfies many of the properties of a random
graph that are expected with high probability. For example, and this is what will be
important to us, it contains approximately the expected number of any small graph.
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The properties that we now know about a colouring of a Kn not containing
either a red KkC1 or a blue KlC1 are enough to tell us that both the red and blue
components of our colouring are quasirandom, so we see that in such a colouring
we have approximately the expected number of any small graph in either colour. In
particular, for any fixed r , we have approximately�

k

kCl

��r
2

�
nr

ordered red r-tuples. (We find it more convenient to count r-tuples rather than Krs
since we then don’t have to worry about multiple counting in our estimates, but it
might perhaps be best to think of it in terms of counting Krs.)

If this were in fact precise then it would be inconsistent with the fact that any
red .r�1/-tuple lies in at most r.k� rC2; lC1/�1 red r-tuples, since this gives
an upper bound on the number of red r-tuples of

r.k� r C 2; l C 1/
�
k

kCl

��r�1
2

�
nr�1;

which, since

r.k� r C 2; l C 1/�
f .k�rC1; l/

f �.k; l/

k � � � .k�rC2/

.kCl/ � � � .kCl�rC2/
n;

is strictly less than the expected number if the rate of change of f is sufficiently
small.

It is precisely this contradiction that allows us to prove our result. There are
of course several technical caveats, the most interesting of which is that, in order to
derive Theorem 1.1, it is not sufficient to know that the graph is simply quasirandom.
It is necessary to apply instead our local condition that we have approximately the
expected number of red C4s across any given edge. If we were to use only the
ordinary quasirandomness property, the best bound derivable from our method is
this:

THEOREM 2.1. For all " with 0 < "� 1, there exists a constant C" such that,
for k � l � "k,

r.kC 1; l C 1/� k�C"

p
log k

�kCl
k

�
:

Secondly, the argument as stated above is slightly illusory — in order to derive
a useful result it is necessary to take into account the fact that a change in the
number of Kr�1s will be reflected by a change in the number of Krs. Without
doing this, we would be able to do no better than Thomason’s result.

Where, incidentally, do we depart from Thomason’s work? His proof is
essentially the argument given above in the case r D 3. He counts, in two different
ways, the number of monochromatic triangles within a graph not containing a red
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KkC1 or a blue KlC1, showing that, unless a bound of the form

r.kC 1; l C 1/� exp
�
�
l

2k
log kCA

p
log k

��kCl
k

�
held, there would be a contradiction. While his method of finding an upper bound
for the number of monochromatic triangles is similar to ours above (the number of
red triangles across a given red edge is at most r.k� 1; l C 1/� 1, and we know,
approximately, the number of red edges), his method for finding a lower bound is
to apply Goodman’s formula

T D
1

2

�X
x

�dx

2

�
C

X
x

�n�1�dx

2

�
�

�n
3

��
;

where by dx we mean the red degree of the vertex x. This formula is only dependent
upon the degree sequence, and so, knowing that every degree is approximately
what’s expected, we can show that the number of monochromatic triangles is
approximately what’s expected. Our main advance then is to have shown how we
can use the quasirandomness conditions to circumvent the fact that there is no
Goodman-type formula for r � 4.

We begin the proof proper in the next section by considering, more formally,
the various regularity conditions that a graph containing neither a red KkC1 nor
a blue KlC1 must satisfy, and showing what these conditions imply about such a
graph.

3. The regularity conditions

The following notation will prove essential to us in what follows:

Definition. Suppose we have a red/blue colouring of the edges of the complete
graph on n vertices, and let V be the set of vertices. Then we define the balanced
function of the colouring around probability p as the function g W V �V ! R with
g.x; y/DR.x; y/�p, where R W V �V ! R is the characteristic function of red
edges, that is, R.x; y/ is 1 if there is a red edge between x and y and 0 otherwise.
The characteristic function of blue edges, denoted by B , may be written in terms of
g as

B.x; y/D .1�p/�g.x; y/� �.x; y/;

where � W V �V ! R is 1 if x D y and 0 otherwise.

Note that normally one chooses the probability p in such a way as to makeP
x;y g.x; y/ D 0, but for the sake of simplicity in our exposition, we will be

centring around a probability that is not quite the correct balanced probability, but
that is very close.

We will also need to introduce two constants,  and ı, which bound the growth
(or rather fall) of f .k; l/ with respect to k and l , respectively. Our main result
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in the next section will be an inequality telling us what kind of rate of change of
f .k; l/ is admissible. Specifically, we will assume that we have two real numbers
 and ı and a natural number nD

�
f .k; l/

�
kCl

k

�˘
D f �.k; l/

�
kCl

k

�
such that, for

mD 1; 2 and r � 1, each of the inequalities

(1)
r.kC 1�m; l C 1/� f .k�m; l/

�k�mCl
k�m

�
;
f .k�m; l/

f �.k; l/
� 1Cm;

r.kC 1; l C 1�m/� f .k; l �m/
�kCl�m

k

�
;

f .k; l�m/

f �.k; l/
� 1Cmı

holds. What we will show (by the counting Krs argument we discussed in the
last section) is that if k � l , where k and l are sufficiently large numbers of
approximately the same magnitude, and if

(2) k C lı �
r�3

2

l

k
;

then

r.kC 1; l C 1/� f .k; l/
�kCl
k

�
:

The conditions on  and ı essentially amount to  and ı being the partial derivatives
of �.k; l/D� logf .k; l/ with respect to k and l , respectively. Thus, if we consider
the inequality (2) as a partial differential equation (by putting  D @�=@k and
ı D @�=@l), it is easy to see that taking

f .k; l/D exp
�
�
r�3

2

l

k
log k

�
for k � l

works as a potential solution. Indeed, a more careful treatment of this argument,
taking into account the fact that  and ı do not quite equal the respective derivatives,
is what will allow us to derive our results.

The specifics of this must, however, wait until later sections. The task at hand
is show what we can say about large graphs not containing either red KkC1s or
blue KlC1s. We begin by writing our various regularity conditions as constraints
on the size of certain products of the balanced function:

LEMMA 3.1. Let k and l be natural numbers, let  and ı be real numbers,
and let nD

�
f .k; l/

�
kCl

k

�˘
D f �.k; l/

�
kCl

k

�
. Suppose that for mD 1 and mD 2

each of the inequalities in (1) holds. Then, in any red/blue colouring of Kn not
containing either a red KkC1 or a blue KlC1, the balanced function g.x; y/ of the
colouring around p D k=.kC l/ satisfies

�
lı

kCl
n�

X
y

g.x; y/�
k

kCl
n
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for all x, and X
y

g.x; y/g.y; z/� 2
max.k; l/
.kCl/2

.k C lı/nC 1

for all x and z with x ¤ z.

Proof. The first part of the lemma follows from an observation made in
Section 2 that, for any vertex x in our colouring, we have�

1�
f .k; l�1/

f �.k; l/

l

kCl

�
n� dx �

f .k�1; l/

f �.k; l/

k

kCl
n:

Noting that dxD
P

y R.x; y/,R.x; y/DpCg.x; y/ and applying our assumptions
on the growth rate of f gives the required result. To prove the upper bound, for
example, note that

k

kCl
nC

X
y

g.x; y/D dx �
f .k�1; l/

f �.k; l/

k

kCl
n

� .1C /
k

kCl
n:

Subtracting kn=.kC l/ from either side then gives the required bound.
For the second part of the lemma, note that no red edge .x; z/ can lie in more

than r.k� 1; l C 1/� 1 red triangles. This implies thatX
y

R.x; y/R.y; z/� r.k� 1; l C 1/� 1:

If we split up the left side we then get, by using the conditions of the theorem, that

p2nCp
X

y

g.x; y/Cp
X

y

g.y; z/C
X

y

g.x; y/g.y; z/� p2.1C 2/n;

and hence by the first part of the lemmaX
y

g.x; y/g.y; z/� 2
k

.kCl/2
.k C lı/n:

The result follows similarly for blue edges, although we need to be a little bit
careful, since we get two extra degenerate “triangles” (those for which y D x or
y D z) coming from the extra � term. �

In counting the number of red Krs in a given colouring, we will use the
following notation:

Notation. Fix a red/blue colouring on Kn and let g.x; y/ be the balanced
function of the colouring around probability p. Suppose also thatKr is the complete
graph on the r vertices v1; v2; : : : ; vr , with r � n. Then, for every subgraph H of
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Kr ,we write

gH D

X
x1;:::;xr

Y
.vi ;vj /2E.H/

g.xi ; xj /;

where the sum is taken over all r-tuples of vertices in Kn (including degenerate
terms where two or more of the xi are the same).

By rights this is a function of n and r as well as H , but we will be almost
universally consistent about countingKrs withinKns, so these labels are essentially
redundant.

Given this notation, the number of redKrs (or rather red r-tuples) in a colouring
of Kn is given byX

x1;��� ;xr

Y
.vi ;vj /2E.Kr /

R.xi ; xj /D
X

x1;��� ;xr

Y
.vi ;vj /2E.Kr /

.pCg.xi ; xj //

D

X
H�Kr

pr.r�1/=2�e.H/gH ;

where, again, the sum is taken over all r-tuples of vertices in Kn. So in order
to estimate the number of Krs we will need to be able to estimate gH for every
subgraph H of Kr . Almost all of the estimates we will need are encapsulated in the
next lemma, which shows how we may use our local quasirandomness condition to
obtain estimates on products of the balanced function.

Utilising the information provided by the previous lemma, we shall now assume
that we have

P
y g.x; y/g.y; z/� �n for all x and z with x ¤ z, where � is some

positive constant. The next lemma tells us that if H has a vertex of degree d then
(to the highest order in n) jgH j �

p
2�d=2nr . Within the statement of the lemma,

we will make the simple assumption that � � 1. This is not strictly necessary but
tidies up the form of the lemma, and as we shall see later is trivially satisfied for k
and l large.

LEMMA 3.2. Suppose that the balanced function g.x; y/ of a red/blue colour-
ing of a graph on n vertices satisfies

P
y g.x; y/g.y; z/� �n for all x and z with

x ¤ z, and some fixed positive real �. Then, provided that � � 1,ˇ̌̌X
y

X
x1;���;xcCd

g.y; x1/ � � �g.y; xd /h.x1; : : : ; xcCd /
ˇ̌̌

�
p
2�d=2ncCdC1

C
1

p
2�d=2C1

ncCd ;

for any function h of cC d vertices bounded above in absolute value by 1.
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Proof. For d odd, we haveˇ̌̌X
y

X
x1;:::;xcCd

g.y; x1/g.y; x2/ � � �g.y; xd /h.x1; : : : ; xcCd /
ˇ̌̌2

� ncCd
X

x1;:::;xcCd

ˇ̌̌X
y

g.y; x1/g.y; x2/ � � �g.y; xd /h.x1; : : : ; xcCd /
ˇ̌̌2

� ncCd
X

x1;:::;xcCd

ˇ̌̌X
y

g.y; x1/g.y; x2/ � � �g.y; xd /
ˇ̌̌2

D n2cCd
X
y;y0

�X
x

g.y; x/g.x; y0/
�d
� �dn2cC2dC2

Cn2cC2dC1;

where the remainder comes from the degenerate terms. Since this is less than the
square of �d=2ncCdC1C 1=.2�d=2/ncCd , we are done in this case.

For d even, the proof is the same until we reach the second last line, when
we need to estimate

P
y;y0.

P
x g.y; x/g.x; y

0//d . To do this, we split our sum
into two pieces, a set P of edges .y; y0/ where

P
x g.y; x/g.x; y

0/ is positive and
a similar set N where

P
x g.y; x/g.x; y

0/ is negative. Then the proof in the odd
case tells us, since a sum of squares is positive, thatX

.y;y0/2P

�X
x

g.y; x/g.x; y0/
�dC1

� �

X
.y;y0/2N

�X
x

g.y; x/g.x; y0/
�dC1

;

which impliesX
y;y0

ˇ̌̌X
x

g.y; x/g.x; y0/
ˇ̌̌dC1

� 2
X

.y;y0/2P

�X
x

g.y; x/g.x; y0/
�dC1

� 2�dC1ndC3
C 2ndC2:

Finally, applying the power mean inequality, we getX
y;y0

�X
x

g.y; x/g.x; y0/
�d
� n2=.dC1/

�X
y;y0

ˇ̌̌X
x

g.y; x/g.x; y0/
ˇ̌̌dC1�d=.dC1/

� n2=.dC1/.2�dC1ndC3
C 2ndC2/d=.dC1/

� 2�dndC2
C 2ndC1=�;

so we are done in this case as well. �

The result mentioned before the lemma now follows from taking y to be a
vertex within H of degree d . The function h is then what remains, that is, a certain
product of balanced functions, and so satisfies the requirement of the lemma.

Ultimately, as we shall see in the next section, we would like to show that as
many gH terms as possible vanish to more than the first order in  and ı. While the
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above results are sufficient to show that this is so when the graph H has maximum
degree 3 or more, it still leaves a large collection of graphs of maximum degree 2
for which we have not reached this bound. The next lemma shows, however, that if
we use the degree-regularity condition as well as the quasirandomness condition,
then we have the required bounds except in the two cases where H is a K2 or a K3.

LEMMA 3.3. Suppose that the balanced function g.x; y/ of a red/blue colour-
ing of a graph on n vertices satisfiesˇ̌̌X

y

g.x; y/
ˇ̌̌
� �n

for all x, and X
y

g.x; y/g.y; z/� �n

for all x and z with x ¤ z, and some fixed positive constants � and � with � � 1.
Then, for l � 3,ˇ̌̌ X
x1;:::;xl

g.x1; x2/g.x2; x3/ � � �g.xl�1; xl/
ˇ̌̌

� 2�lC1�2bl=2c�bl=2c�1nl
C
2�lC1�2bl=2c

�3
nl�1

and ˇ̌̌ X
y1;:::;yl

g.y1; y2/g.y2; y3/ � � �g.yl ; y1/
ˇ̌̌
� 2�bl=2cnl

C 2nl�1=�:

Proof. For the first part we simply apply the Hölder inequality:ˇ̌̌ X
x1;:::;xl

g.x1; x2/ � � �g.xl�1; xl/
ˇ̌̌dl=2e

D

ˇ̌̌ X
x2;x4;:::

�X
x1

g.x1; x2/
��X

x3

g.x2; x3/g.x3; x4/
�
� � �

ˇ̌̌dl=2e

�

� X
x2;x4;:::

ˇ̌̌X
x1

g.x1; x2/
ˇ̌̌dl=2e�� X

x2;x4;:::

ˇ̌̌X
x3

g.x2; x3/g.x3; x4/
ˇ̌̌dl=2e�

� � �

�
�
�dl=2enl

�lC1�2bl=2c�
2�dl=2enl

C 2nl�1=�
�bl=2c�1

�
�
2�lC1�2bl=2c�bl=2c�1nl

�dl=2e
�
1C

1

�dl=2eC1n

�dl=2e
;

which implies the result. The second part follows similarly. �

4. The fundamental lemma
In this section we will prove an extension of a lemma due to Thomason

[Tho88], which gives an inequality telling us how quickly our function f .k; l/
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may change. The main idea of our proof is one that we have already seen. Instead
of counting the number of monochromatic triangles as Thomason did, we will
count the number of monochromatic Krs (or rather a certain weighted sum of the
number of red Krs and the number of blue Krs), showing, using the fact that our
graph must be random-like if it does not contain the required cliques, that this
is approximately what is expected. On the other hand, we can again bound the
number of monochromatic Krs above using the following further generalisation
of the Erdős-Szekeres condition: in a graph not containing a red KkC1 or a blue
KlC1, any red Kr�1 is contained in at most r.k � r C 2; l C 1/� 1 red Krs, and
any blue Kr�1 is contained in at most r.kC1; l � rC2/�1 blue Krs. Then since
the number of Kr�1s can also be estimated (as approximately the expected number)
we have an upper bound which we can balance against our lower bound.

Again, as we mentioned in the outline, it will be necessary in the proof to
take into account the fact that the number of Krs and the number of Kr�1s are
not independent of one another, being composed almost entirely of like terms,
although in different proportions. While most of these terms may be reduced to
o.1/ factors at the outset as being quite unimportant to the argument, the terms
coming from single edges and triangles, which are the highest order, and hence the
critical, terms, will be left unestimated until after we have balanced the number
of red Krs against r.k� r C 2; l C 1/ times the number of red Kr�1s. Doing this
allows us to reduce the error term coming from the single edges from being of the
order of r2

P
x;y g.x; y/ to being r

P
x;y g.x; y/, since the single edge terms that

occur in counting the number of Kr�1s cancel out most of the like terms that we
get in counting the number of Krs. Without this care, our result would yield no
improvement over the old bound.

Before we begin, we need to present a few more remarks, in order to illuminate
some of the assumptions of the lemma. What we will prove is that if k and l are
sufficiently large depending on r and ", with

k � l � "k and k C lı �
r�3

2

l

k
;

then (given the obvious induction hypothesis), we have

r.kC 1; l C 1/� f .k; l/
�kCl
k

�
:

Now, as at the start of Section 3, we see that with an inequality of this form,
we expect f .k; l/ to be roughly of the form

exp
�
�
r�3

2

l

k
log k

�
;

or some multiple thereof. One result of this is that we expect both j j and jıj to be
bounded by ..r � 3/=2/ log k=k. Since our eventual hope is to prove that f .k; l/
has such a form we will in the course of our forthcoming proof, in order to simplify



952 DAVID CONLON

the final form of the result, make the assumptions that f .k; l/ is at the smallest
equal to exp.�r.l=k/ log k/ and that both j j and jıj are smaller than r log k=k.
There is no deep mystery to our using r rather than .r � 3/=2 here. It’s just neater,
and makes the lemma look slightly more digestible.

We are now ready to begin the formalities.

LEMMA 4.1. Let k; l and r be natural numbers, and let ; ı and 0 < " � 1
be real numbers. Moreover, let nD

�
f .k; l/

�
kCl

k

�˘
D f �.k; l/

�
kCl

k

�
and suppose

that, formD 1, mD 2 andmD r�1, each of the inequalities in (1) holds. Suppose
also that

(1) k � l � "k,

(2) j j and jıj are both smaller than r log k=k, and

(3) f .k; l/� exp.�r.l=k/ log k/.

Then there exists a constant c", such that if k and l are both greater than rc"r , and

k C lı �
r�3

2

l

k
;

then we have the inequality

r.kC 1; l C 1/� n� f .k; l/
�kCl
k

�
:

Proof. To begin, note that, from Lemma 3.1 , in a colouring avoiding red
KkC1s and blue KlC1s, we must have that the balanced function g.x; y/ satisfies

�
lı

kCl
n�

X
y

g.x; y/�
k

kCl
n

for all x, and therefore, using assumption (2) of the lemma, we have thatˇ̌̌X
y

g.x; y/
ˇ̌̌
� r

log k
k

n:

Also from Lemma 3.1, note that, since k C lı � .r � 3/=2, we have thatX
y

g.x; y/g.y; z/�
r�3

kCl
n

for all x and z with x ¤ z (we may subsume the O.1/ term into the n term for k
and l larger than some fixed constant — it is in performing this kind of estimate
that we will use assumption (3) of the lemma).

For later brevity we will use the notationsX
x;y

g.x; y/D
s

kCl
n2 and

X
x;y;z

g.x; y/g.y; z/g.z; x/D
t

kCl
n3:
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Moreover, we will denote the quantity .r � 3/=.kC l/ by � so thatX
y

g.x; y/g.y; z/� �n;

noting that, for kC l � r , we have � � 1.
Recall that the number of r-tuples spanning a red clique is given byX

H�Kr

pr.r�1/=2�e.H/gH :

Our first aim will be to show that the contribution of all terms in this sum other than
the main term (corresponding to the null set), the edge terms and the triangle terms
can be made smaller in absolute value than .pr.r�1/=2=.rdrk//nr for any fixed d ,
by taking k and l to be larger than rcr for some appropriately large c (depending
on ").

Let us denote by S the set of subgraphs of Kr other than the null graph, the
edges, and the triangles. We will split this set into two further subsets, S 0, the
set of all subgraphs with maximum degree greater than or equal to 3, and S 00, the
complement of this set in S .

For graphs in S 0, Lemma 3.2 tells us that, for k and l greater than rcr ,

jgH j �
p
2��=2nr

C
1

p
2��=2C1

nr�1

�
p
2
�
r

k

��=2
nr
C

1
p
2

�
k

r

��=2C1
nr�1

�
1

rc1�rk
nr ;

where � is the maximum degree of H , and where c1 depends on and grows with c.
Now, every graph in S 00 either contains a path of length at least two or a cycle

of length at least 4, in which case we have, from Lemma 3.3 and our bounds on
�Dmaxxj

P
y g.x; y/j and �, that

jgH j � 2r
2 log2 k

k2
nr
C 2

�
k

r

�3
nr�1

�
1

rc2rk
nr

or is a product of single edges and triangles, in which case

jgH j � 4r
2 log2 k

k2
nr
C 8nr�1

C 4
�
k

r

�2
nr�2

�
1

rc2rk
nr ;

where again c2 is just some constant that grows with c.
Before we proceed with our estimate, we also need to note firstly that the

number of graphs with maximum degree � or less is at most r�r and also that the
maximum number of edges in such a graph is �r . (We may of course divide by a
2 here but this is not necessary for our estimates.)
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We now have thatX
H2S

pr.r�1/=2�e.H/
jgH j � p

r.r�1/=2nr
� X

H2S 0

1

pe.H/rc1�rk
C

X
H2S 00

1

pe.H/rc2rk

�
� pr.r�1/=2nr

� rX
�D3

r�r

p�rrc1�rk
C

r2r

p2rrc2rk

�
�
pr.r�1/=2

rdrk
nr

for c chosen sufficiently large depending on " and d .
So, getting back to our original intentions, we see that the number of r-tuples

spanning a red Kr is greater than or equal to

pr.r�1/=2nr

�
1C

�r
2

�
s

k
C

�r
3

�
.kCl/2t

k3
�

1

rdrk

�
:

On the other hand, we have that the number of r-tuples with a red Kr across
it is less than the number of .r�1/-tuples with a red Kr�1 across it times r.kC
2� r; l C 1/. So the number of Krs is at most

pr.r�1/=2nr�1

�
1C

�r�1
2

�
s

k
C

�r�1
3

�
.kCl/2t

k3
C

1

.r�1/d.r�1/k

�
�P;

where

P D
k.k�1/ � � � .k�rC2/

.kCl/.kCl�1/ � � � .kCl�rC2/
.1C .r � 1//n:

Now
k�j

kCl�j
� p

�
1�

jl

k.kCl/
C
r2

k2

�
;

so

P � pr�1n

�
1�

�r�1
2

�
l

k.kCl/
C
2rr2

k2

�
.1C .r � 1//:

We therefore see, since

j j;
ˇ̌̌
s

kCl

ˇ̌̌
;
ˇ̌̌
t

kCl

ˇ̌̌
�
3r log k
k

(the latter follows from an application of Lemma 3.3), that the number of red Krs
is, for some appropriate constant D, at most

pr.r�1/=2nr

�

�
1C

�r�1
2

�
s

k
C

�r�1
3

�
.kCl/2t

k3
�

�r�1
2

�
l

k.kCl/
C .r � 1/ C

1

rDrk

�
:
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Comparing our lower bound and our upper bound, we see that we must have

 �
r�2

2

l

k.kCl/
C
s

k
C
r�2

2

.kCl/2t

k3
�

1

rErk

>
r�3

2

l

k.kCl/
C
s

k
C
r�2

2

.kCl/2t

k3
:

A similar argument for blue Krs, taking account of the degenerate terms, gives

ı >
r�3

2

k

l.kCl/
�
s

l
�
r�2

2

.kCl/2t

l3
;

yielding

k3 C l3ı >
r�3

2
kl C s.k2

� l2/:

Recall now that

s D
.kC l/

P
x;y g.x; y/

n2
� �lı;

so therefore, since k � l ,

k C lı >
r�3

2

l

k
:

This contradicts the assumptions of the lemma, and so we are done. �

5. Using the inequality

All that now remains to be done is to find a function that satisfies the condi-
tions of Lemma 4.1. The basic idea is to note that if we choose a continuously
differentiable function ˛ W Œ0;1/! Œ0;1/, then the function

f .k; l/D exp.�˛.l=k/ log.kC l//

satisfies the equation k 0Clı0D˛.l=k/, where by  0 and ı0 we mean the derivatives
of � logf .k; l/ with respect to k and l .

To use this fact we will choose a function ˛r;" that is everywhere less than or
equal to the function ..r � 3/=2/�", where

�".x/D

8<:
0 if 0� x < ",
x if "� x � 1,
�".1=x/ if x � 1.

and that, moreover, is twice-differentiable. The specific function, if chosen appro-
priately, will then be such that the true  and ı differ by very little from  0 and ı0

for k and l chosen quite large, and this will allow us to conclude, for a suitably
chosen ˛r;", that

k C lı �
r�3

2
�".l=k/:
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It is easy then to check that for some large multiple of ˛r;" the conditions of
Lemma 4.1 are satisfied.

The first step in formalising this argument is to define an appropriate collection
of functions ˛r;", which we do as follows:

Notation. Let r � 5 be a positive integer. We write ˇ W Œ0; 1�! Œ0;1/ for the
polynomial function given by

ˇ.z/D 6z5
� 15z4

C 10z3;

and ˛r;" W Œ0;1/! Œ0;1/ for the function given by

˛r;".x/D

8<:
0 if 0� x � ",
1
4
.r � 4/ˇ ..x� "/=.1� "// if "� x � 1,
˛r;".1=x/ if x � 1.

This slightly bizarre looking set of functions is chosen just so as to satisfy the
following simple lemma:

LEMMA 5.1. For all r � 5 and 0 < " < 1=2, ˛r;" is a twice-differentiable
function such that

(1) 0� ˛r;".x/�
1
2
.r � 4/x for 0� x � 1,

(2) j˛0r;".x/j � r and j˛00r;".x/j � 10r for all x.

Before we start into the next lemma, we will again need some notation:

Notation. Suppose that r � 5 and 0 < " < 1=2. We then write

�r;".k; l/D ˛r;".l=k/ log.kC l/:

Our aim now is to show that fr;" D exp.��r;"/ (or rather some large multiple
of it) is an admissible function. The first step towards this is contained in the
following lemma (this is essentially the same as [Tho88, Lem. 4]):

LEMMA 5.2. For k and l not less than 200r4="2, the inequalities

exp.�r;".k; l/��r;".k�m; l//� 1Cm�;

exp.�r;".k; l/��r;".k; l �m//� 1Cm�;

where

� D ˛r;".l=k/
1

kCl
�˛0r;".l=k/

l log.kCl/
k2

C
"

4.kCl/
;

�D ˛r;".l=k/
1

kCl
C˛0r;".l=k/

log.kCl/
k

C
"

4.kCl/

hold for mD 1; 2 and r � 1.

For a tidier proof, we will suppress all function subscripts throughout.
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Proof. If we regard �.k; l/ as a function of k with l fixed, then we have, using
Taylor’s theorem and the fact that � is twice differentiable, that

�.k; l/��.k�m; l/Dm
@�

@k
.k; l/�

m2

2

@2�

@k2
.k� �m; l/

for some � between 0 and 1. Now we have that

@�

@k
D ˛.l=k/

1

kCl
�˛0.l=k/

l log.kCl/
k2

;

and

@2�

@k2
.k; l/D�˛.l=k/

1

.kCl/2
� 2˛0.l=k/

l

k2.kCl/
C 2˛0.l=k/

l log.kCl/
k3

C˛00.l=k/
l2 log.kC l/

k4
:

Now note (by using part (2) of Lemma 5.1) that j@2�=@k2.k; l/j is less than or
equal to "=.4r.kC l// for k and l both greater than or equal to 200r4="2.

Therefore, in this case, we have that

�.k; l/��.k�m; l/�m
�
˛.l=k/

1

kCl
�˛0.l=k/

l log.kCl/
k2

C
"

8.kC l/

�
:

For brevity let’s call the right hand side mx, noting that mx � 1 for k and l greater
than or equal to 200r4.

Therefore, using the fact that ez � 1C zC z2 for jzj � 1, we see that

exp.�.k; l/��.k�m; l//� 1CmxCm2x2:

Note then that, as for the second derivative, by taking k and l larger than 200r4="2,
we can make rx2 smaller than "=.8.kC l//. Therefore, adding everything together,
we see that

xCmx2
� ˛.l=k/

1

kCl
�˛0.l=k/

l log.kCl/
k2

C
"

4.kCl/
;

which yields the required result. The result follows similarly for l . �

We are now ready to tie together everything we have learned in the preceding
sections to prove a theorem improving the general upper bound for Ramsey numbers.
This theorem is as follows:

THEOREM 5.1. Given 0 < " < 1=2 and r � 5, there exists a constant c" such
that

r.kC 1; l C 1/� rc"r2

exp.��r;".k; l//
�kCl
k

�
:

We will again suppress function subscripts in the proof.



958 DAVID CONLON

Proof. Suppose that f is a function of the form f .a; b/DC exp.��.a; b// for
some fixed constant C , and let nD

�
f .k; l/

�
kCl

k

�˘
D f �.k; l/

�
kCl

k

�
, say. Suppose

also that � W Œ0;1/! Œ0;1/ is the function given by

�.x/D

8<:
0 if 0� x < "=2,
x if "=2� x � 1,
�.1=x/ if x � 1.

Then, by Lemma 5.1, since ˛.x/� .r�4/=2x and r�5, we see that, for 1�x�"=2,
we have

r�3

2
�.x/� ˛.x/C

"

2
:

If we now choose k and l to both be greater than 200r4="2, we can apply Lemma 5.2
to see that

f .k�m; l/

f .k; l/
D exp.�.k; l/��.k�m; l//� 1Cm�;

where
� � ˛.l=k/

1

kCl
�˛0.l=k/

l log.kCl/
k2

C
"

4.kCl/
:

Furthermore, we have that

f .k�m; l/

f �.k; l/
�

�
1C

1

n

�
f .k�m; l/

f .k; l/
� 1Cm;

where
 � ˛.l=k/

1

kCl
�˛0.l=k/

l log.kCl/
k2

C
"

2.kCl/
:

Similarly, we have that, for k and l both larger than 200r4="2,

f .k; l�m/

f �.k; l/
�

�
1C

1

n

�
f .k; l�m/

f .k; l/
� 1Cmı;

where
ı � ˛.l=k/

1

kCl
C˛0.l=k/

log.kCl/
k

C
"

2.kCl/
:

Note therefore that

k C lı � ˛.l=k/C
"

2
�
r�3

2
�.l=k/;

provided that min.l=k; k=l/� "=2. For min.l=k; k=l/ < "=2, we have, provided
k and l are large (again 200r4="2 will easily suffice), that f .a; b/ is equal to 1
close to .a; b/D .k; l/ and so we again have

k C lı �
r�3

2
�r.l=k/:

Finally, choose k and l to be sufficiently large, greater than rc"r , for some appropri-
ate c", such that Lemma 4.1 holds in the following form: suppose that for mD 1; 2
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and r � 1, each of the inequalities of (1) holds. Suppose also that j j and jıj are
both smaller than r log k=k and that f .k; l/� exp.�r.l=k/ log k/. Then, provided
that

k C lı �
r�3

2
�.l=k/;

we have that

r.kC 1; l C 1/� f .k; l/
�kCl
k

�
:

To conclude, suppose that N > max.200r4="2; rc"r/ D rc"r , for c" chosen
large enough, and consider the function f .a; b/D .2N /r exp.��.a; b//. For either
a or b less than or equal to N we have straightforwardly for a � b with b �N that

f .a; b/�
.2N /r

.aCb/rb=a
� 1;

using the fact that .aC b/b=a is a decreasing function in a. Now, both  and ı
defined above are less than or equal to r log k=k, and f .k; l/ is certainly larger
than exp.�r.l=k/ log k/. Finally, we have by the construction of � and the choice
of N that

k C lı �
r�3

2
�.l=k/:

Consequently our induction holds good with this function f . �

We can now prove our main theorem:

Proof of Theorem 1.1. Suppose that k � l � "k. From Theorem 5.1, we know
that, for integers r � 5,

r.kC 1; l C 1/� rc"r2

exp.��r;".k; l//
�kCl
k

�
� rc"r2

exp.�r�4
4
" log k/

�kCl
k

�
�
rc"r2

kd"r

�kCl
k

�
for some fixed constants c" and d".

If now, for any sufficiently large k, we take

r D
j

d" log k
2c" log log k

k
(a value which is close to that which minimises rc"r2

=kd"r ), we see that for some
constant C" we have

r.kC 1; l C 1/� k�C" log k=log log k
�kCl
k

�
;

as required. �
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