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Abstract

We prove that every finite split embedding problem is solvable over the field
K..X1; : : : ; Xn// of formal power series in n � 2 variables over an arbitrary field
K, as well as over the field Quot.AŒŒX1; : : : ; Xn��/ of formal power series in n� 1
variables over a Noetherian integrally closed domain A. This generalizes a theorem
of Harbater and Stevenson, who settled the case K..X1; X2//.

Introduction

A central problem in the study of absolute Galois groups is the solvability of
finite embedding problems. A sufficient condition for all finite embedding problems
for a given profinite group G to be solvable is that each Frattini embedding problem
and each finite split embedding problem for G are solvable [FJ05, Prop. 22.5.8],
[Mat91, p. 430]. The first condition is equivalent to G being projective. Thus, a
natural question for an arbitrary profinite group G is whether each split embedding
problem for G is solvable. Specifically, Dèbes and Deschamps made the following
conjecture for absolute Galois groups of Hilbertian fields.

CONJECTURE A [DD97, �2.1.2]. If F is a Hilbertian field, then every finite
split embedding problem over F is solvable.

Note that Conjecture A implies a positive answer to the Inverse Galois Problem:
is every finite group realizable over Q?

In this work we prove Conjecture A for a large class of Hilbertian fields. Indeed
we prove the conjecture when F is the quotient field of a Noetherian integrally
closed domain A of dimension at least 2 which is complete in some broad sense.

This research was conducted as a part of the author’s Ph.D. thesis in Tel-Aviv university, under the
supervision of Dan Haran, and was supported by the Minkowski Center for Geometry at Tel Aviv
University, established by the Minerva Foundation.
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Following [HS05] we abbreviate “finite split embedding problem” by FSEP.
An FSEP for a field F is an epimorphism � WGo�! � of finite groups, where
� D Gal.F 0=F / is the Galois group of a Galois extension F 0=F , G is a finite
group on which � acts, Go� is the corresponding semidirect product, and � is
the projection on � . A solution of the problem is a Galois extension L of F which
contains F 0 and an isomorphism 
 WGal.L=F /!Go� such that � ı 
 D resE .

Our result follows a route paved for the first time more than twenty years ago
by Harbater in [Har87]. In that paper Harbater introduced the concept of “formal
patching” and used it to prove that if F is the quotient field of a complete local ring,
then every Realization Problem over the field F.x/ of rational functions over F is
solvable. One can view Realization Problems as FSEPs where the group � is trivial.
Later Harbater [Har94] used formal patching to reduce Abhyankar’s generalized
conjecture to the special case settled by Raynaud [Ray94].

Harbater’s proof [Har87] is phrased in the language of formal geometry. It
was later translated to the language of Rigid Analytic Geometry by Liu [Liu95] and
Serre [Ser92]. Haran and Völklein [HV96] gave a self contained algebraic proof of
this result, introducing the concept of “algebraic patching”.

The next step is due to Pop [Pop96], who used methods of rigid analytic
geometry to prove that if F is a complete valued field (and more generally, if F
is an ample field), then every constant finite split embedding problem over F is
regularly solvable. That is, given a Galois extension F 0 of F with group � which
acts on a finite group G, there exists a Galois extension L of F 0.x/ (where x is
transcendental over F 0) and an isomorphism  WGal.L=F.x//!Go� such that
L=F is regular and � ı D resE (where � is the canonical projection).

Haran and Jarden [HJ98a] extended algebraic patching to give a self contained
(along with [HV96]) algebraic proof of that result.

Using formal patching, Lefcourt [Lef99] showed that if F is the quotient field
of a complete domain with respect to a prime ideal, then every realization problem
is solvable over F.x/. Extending the method of algebraic patching from complete
based fields to complete domains, [Par08] gives a self-contained algebraic proof to
Lefcourt’s result.

If F is a Hilbertian field, then one can specialize each solution over F.x/ and
solve FSEPs over F . Thus, by [Pop96] and [HJ98a] every FSEP is solvable over a
Hilbertian ample field, and by [Lef99] every realization problem is solvable over a
Hilbertian field which is the quotient field of a complete domain.

Harbater and Stevenson [HS05] took the next step and proved that every FSEP
is solvable over the field K..X1; X2// of formal power series in two variables over
an arbitrary field K. They showed that every FSEP over this field arises from an
FSEP over K..X1//.X2/, and the latter problem has a solution that can be lifted to
the solution of the original FSEP. Note that the field K..X1; X2// is the quotient
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field of the complete local ring KŒŒX1; X2��, and it is Hilbertian by a theorem of
Weissauer.

Our goal is to generalize the results of Pop and Haran-Jarden on the one hand,
and those of Lefcourt and Harbater-Stevenson on the other hand.

MAIN THEOREM. Let F be the quotient field of an integral domain A satisfy-
ing the following conditions:

(a) A is a Noetherian integrally closed domain.

(b) A has a proper nonzero ideal p such that vp.x/Dmax.n j x 2 pn/ extends to
a discrete valuation of Quot.A/, and A is complete with respect to vp.

Then every constant FSEP over F.x/ is regularly solvable.

As mentioned above, if F is Hilbertian, then one can specialize the regular
solution of constant FSEPs, thus solving FSEPs over F .

THEOREM B. Let F D Quot.A/ be a Hilbertian field, where A satisfies condi-
tions (a) and (b) above, then every FSEP over F is solvable.

The conditions of Theorem B hold for a large spectrum of fields:

COROLLARY C. Every FSEP over F is solvable in the following cases:

(a) F DK..X1; : : : ; Xn//D Quot.KŒŒX1; : : : ; Xn��/ is the field of formal power
series over an arbitrary field K in n� 2 variables.

(b) F D Quot.AŒŒX1; : : : ; Xn��/ is the field of formal power series in n � 1 vari-
ables series over a Noetherian integrally closed domain which is not a field
(for example AD Z or more generally, A is a Dedekind domain).

Note that [HS05] proves that there are “many” such solutions for every FSEP
over K..X1; X2//— that is, the cardinality of the set of solutions is equal to the car-
dinality of F . We do not prove this much in the general case given by Corollary C.

Corollary C would follow from the result of Haran-Jarden-Pop if the fields F
involved in the theorems were ample. However this is unknown and one suspects
that they are not.

To prove the Main Theorem, we generalize the fundamental ideas of algebraic
patching introduced in [HV96] and [HJ98a]. The basic framework for algebraic
patching of groups over complete domains was introduced in [Par08]. In this paper
we recall these generalized ideas, and adapt them to the solution of FSEPs.

Our general strategy is similar to that of [HJ98a]. The basic step is to realize all
cyclic subgroups of G as Galois extensions of F 0.x/, and embed these realizations
in suitable “analytic” rings. In order to construct these rings, we first construct
a complete ring whose quotient field is the given extension F 0 of F . The naive
approach is to choose that ring as the integral closure B of A in F 0. However B
may be ramified over A, which creates a severe technical difficulty in the following
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construction of the analytic rings. We therefore choose D D BŒ 1
f
�, where f is

the discriminant of a suitable primitive element of F 0=F . The ring D need not be
complete with respect to the absolute value that corresponds to vp (which extends
to an absolute value of F 0). So, we settle for less and instead construct a complete
norm for D which need not be an absolute value.

This norm is good enough for the construction of our ’analytic’ rings (which
were fields in [HJ98a]). They are quotient rings of rings of convergent power series
in several dependent variables overD. The properties of power series over a normed
ring are not as nice as the properties of power series over a valued field (which
were used in [HV96] and [HJ98a]). To overcome this difficulty we embed our rings
of convergent power series over D in rings of convergent power series over the
completion OF 0 of F 0 with respect to vp. The strong properties of the latter rings are
transferred, in a weaker form, to our rings. This is where the assumption that vp is
a valuation is used — this seemingly technical assumption allows this embedding
(otherwise, we could not extend vp from A to F and to F 0, so we could not define
the completion OF 0), which allows us to indirectly exploit the nice properties of
rings of convergent power series over a complete field.

Having done that, we are able to patch the realizations of the cyclic subgroups
of G to a realization L of G as a Galois group over F 0.x/. We then define a suitable
action of � on these rings, and use it to prove that L is a solution of the given FSEP.

The author wishes to acknowledge the work of D. Haran, H. Völklein and M.
Jarden, who developed algebraic patching in [HV96], [HJ98a], [HJ98b], [HJ00].
The results of this paper were obtained by generalizing their wonderful ideas.

The author wishes to express his gratitude to Dan Haran for his guidance and
help while working on this paper. He also wishes to thank Moshe Jarden for many
helpful discussions, and the referee, for his/her comments.

1. Algebraic patching

In [Par08, �1] a general setup for the patching of Galois groups is presented.
We recall the definitions and basic properties, and extend this setup for the solution
of FSEPs.

Definition 1.1. Let I be a finite set with jI j � 2. A generalized patching data

ED .E; Fi ;Qi ; �IGi ; G/i2I

consists of fields E � Fi ��, integral domains Qi contained in the field �, and
finite groups Gi �G, i 2 I , satisfying the following conditions:

(1a) Fi=E is a Galois extension with Galois group Gi , i 2 I .

(1b) Fi �Q0i , where Q0i D
S
j¤i Qj , i 2 I .
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(1c) Fi \Quot.Qi /DE, i 2 I .

(1d) G D hGi j i 2 I i.

(1e)
T
i2I Qi DE.

Definition 1.1 generalizes [HJ98a, Def. 1.1]. Note that our condition (1c) has
no parallel in [HJ98a, Def. 1.1]. This condition is important in order to construct
Galois extensions of the rings Qi , in the following sense:

Definition 1.2. Let Q � P be integral domains and Aut.P / the group of
automorphisms of P . Define Aut.P=Q/ WD f� 2 Aut.P / j �x D x for all x 2Qg.
We say that P=Q is a finite Galois domain extension, if P D QŒa� and f D
irr.a;Quot.Q// satisfies:

(a) f 2QŒX�, so that P ŠQŒX�=hf i.

(b) f factors in P ŒX� into a product of distinct linear monic polynomials.

We call Gal.P=Q/D Aut.P=Q/ the Galois group of P=Q.

Fix a generalized patching data ED .E; Fi ;Qi ; �IGi ; G/i2I . We extend E

by more rings and algebras. For each i 2 I let Pi DQiFi be the compositum of
Qi and Fi in �. By condition (1c) Quot.Qi /\ Fi D E. By [Par08, Lem. 1.3,
Lem. 1.4] Pi=Qi is a Galois domain extension, the Galois group of Pi=Qi is
isomorphic (via the restriction of automorphisms) to Gi D Gal.Fi=E/, Pi is a free
Qi -module of rank jGi j, and P Gal.Pi=Qi /

i DQi . Identify Gal.Pi=Qi / with Gi via
this isomorphism.

Consider the algebra

N D IndG1 �D
�X
�2G

a�� j a� 2�

�
of dimension jGj over �. Addition and multiplication are defined in N compo-
nentwise — thus 1D

P
�2G � , � is embedded diagonally in N , and G acts on N

by �X
�2G

a��
��
D

X
�2G

a��
�1� D

X
�2G

a���; � 2G:

The action of G commutes with the addition and the multiplication in N .
For each i 2 I consider the following Qi -subalgebra of N :

Ni D IndGGi Pi D
nX
�2G

a�� 2N j a� 2 Pi ; a
�
� D a�� for all � 2G; � 2Gi

o
:

By [Par08, Lem. 1.5], F D
S
i2I Ni is an E-algebra which is G-invariant.

We call F the pre-compound of the generalized patching data E.

PROPOSITION 1.3 [Par08, Prop. 1.8]. Assume that:
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(COM) There is a linear basis of N over � that is also a basis of Ni over Qi for
all i 2 I .

Then F D
T
Ni is a field and F=E is a Galois extension with group G.

For the rest of this section assume that E is a finite Galois extension of a field
E0 with group � . In order to solve FSEPs defined by an action of � on G we need
the following notion:

Definition 1.4. A proper action of � on the generalized patching data E is a
triple that consists of an action of � on the group G, an action of � on the field �,
and an action of � on the set I such that the following conditions hold:

(2a) The action of � on � extends the action of � on E.

(2b) F 
i D Fi
 , Q
i DQi
 , and G
i DGi
 , for all i 2 I and 
 2 � .

(2c) .a� /
 D .a
 /�



for all a 2 Fi , � 2Gi , i 2 I , and 
 2 � .

The action of � on G defines a semidirect product Go� such that �
 D 
�1�

for all � 2G and 
 2 � . Let � WGo�! � be the canonical projection.

The proof of the next proposition is verbally the same as of [HJ98a, Prop. 1.5]
(replacing Q there with � here).

PROPOSITION 1.5. Suppose that � properly acts on the patching data E

and that E satisfies (COM). Then F=E0 is Galois and there is an isomorphism
 WGo�! Gal.F=E0/ such that resE ı D � .

Definition 1.6. Consider the �-algebras homomorphism � W N ! � given
by
P
a�� 7! a1. Then �jF is a monomorphism. Since E is invariant under �,

�.F / is a Galois extension of E with group isomorphic to G. We call F 0 D �.F /
the compound of E. Then by Proposition 1.5 F 0=E0 is Galois and there is an
isomorphism  0WGo�! Gal.F 0=E0/ such that resE ı 0 D � .

2. Rings of convergent power series

The ringsQi that we use in this work for the patching data will be localizations
of complete rings under a norm.

Definition 2.1 (Normed ring). Let R be an associative ring with 1. A norm on
R is a function j � jWR! R that satisfies the following conditions for all a; b 2R:

(a) jaj � 0, and jaj D 0 if and only if aD 0; further j1j D j� 1j D 1.

(b) jaC bj �max.jaj; jbj/.

(c) jabj � jaj � jbj.
If j � j satisfies the following stronger condition

(c0) jabj D jaj � jbj,

we say that j � j is an absolute value on R.
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We sometimes prefer to use the additive notation for a norm v.a/D�log.a/.
That is, instead of j � j we shall have a map vWR! R[ f1g such that following
conditions hold:

(a) v.a/D1 if and only if aD 0; further v.1/D v.�1/D 0.

(b) v.aC b/�min.v.a/; v.b//.

(c) v.ab/� v.a/C v.b/.

The equivalence of these two definitions is standard. If j � j is an absolute value,
then v is a rank-1 valuation. We say that R is complete if every Cauchy sequence
in R converges.

In this section we study rings of convergent power series over a complete
normed domain D. These rings have been studied in [Par08, �2, �3, �4]. However,
some of the properties proven in that paper required the norm ofD to be an absolute
value. Here we replace this assumption by a weaker one — we will assume that
D is equipped with both a norm and an absolute value, with some compatibility
condition between the two. However, D is assumed to be complete only with
respect to the norm. This technique enables us to embed rings of convergent (with
respect to the norm) power series over D in rings of convergent (with respect to
the absolute value) power series over bK, where bK is the completion of K with
respect to its absolute value. We use the strong properties of the latter rings to gain
information about the former rings.

Fix a domain D, complete with respect to a nontrivial norm j � j and let I be a
finite set. For each i 2 I let r; ci 2D such that r; ci �cj 2D� if i ¤ j . We assume
that

(1)
ˇ̌̌̌

r

ci � cj

ˇ̌̌̌
� 1 for all i ¤ j:

Let K D Quot.D/ and let E DK.x/ be the field of rational functions over K. For
each i 2 I let wi D r=.x� ci / 2K.x/.

Consider the subset R0 D
P
i2I DŒwi � of the field E D K.x/. By [Par08,

�4] this is a ring and each element of R0 has a unique presentation of the form
a0C

P
i2I

P
n�1 ainw

n
i , where ain 2D are almost all zero. Moreover, we can

define a norm on R0 by ka0 C
P
i2I

P
n�1 ainw

n
i k D maxi;nfja0j; jainjg. Let

RDDfwi j i 2 I g be the completion of R0 with respect to k � k, and extend k � k to
R. By [Par08, Lem. 4.2] we have:

LEMMA 2.2. Each element f of R has a unique presentation as a multiple
power series:

(2) f D a0C
X
i2I

1X
nD1

ainw
n
i ;
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where a0; ain 2D, and jainj ! 0 as n!1. Moreover,

kf k Dmax
i;n
fja0j; jainjg:

We call the partial sum
P1
nD1 ainw

n
i in (2) the i -component of f .

For each J � I we denote the completion RJ of DŒwj j j 2 J � by Dfwj j
j 2 J g. By the preceding lemma RJ is contained in RI . By [Par08, Prop. 4.7] we
have:

PROPOSITION 2.3. Suppose D D K and j � j is an absolute value. Then the
ring RDKfwi j i 2 I g is a principal ideal domain.

For the rest of this section assume that, in addition to the norm j � j, D is also
equipped with a nontrivial absolute value j � j0, such that jaj0 � jaj for each a 2D
(but D need not be complete with respect to j � j0). We extend the absolute value j � j0

to the quotient field K. Let bK be the completion of K with respect to j � j0. Then,ˇ̌
r=.ci � cj /

ˇ̌0
� 1 for all i ¤ j . Thus we may consider the ring bKfwi j i 2 I g, and

its subrings bKfwi j i 2 J g; J � I .

Remark 2.4 (Embedding of R in bKfwi j i 2 I g). We distinguish between two
types of infinite sums. One with respect to the norm j � j, and one with respect to
j � j0. We denote the first type by

P
(as we have done so far) and the latter by

P0.
The assumption jxj0 � jxj implies that whenever a sum

P
ai is well defined, then

so is
P0

ai and we have
P
ai D

P0
ai . Therefore, we may consider the ring

RD fa0C
X
i2I

1X
nD1

ainw
n
i j ain 2D; jainj ! 0 for each i 2 I g

as a subring of

bKfwi j i 2 I g D fa0CX
i2I

1X
nD1

0 ainw
n
i j ain 2

OK; jainj
0
! 0 for each i 2 I g:

Moreover, the inclusion of R with the j � j-topology into bKfwi j i 2 I g with
the j � j0-topology is continuous.

By Proposition 2.3, bKfwi j i 2 I g is an integral domain, hence so is R. Denote
the quotient ring of R by �. For each J � I consider the rings OJ DDŒwi j i 2 J �
and QJ D .OJ r f0g/�1RJ D

˚f
a
j f 2RJ ; a 2OJ r f0g

	
.

In the rest of this section we describe crucial properties of these rings. The
following claims generalize Lemma 4.8, Proposition 4.9, Corollary 4.10, Lemma 6.4
and Lemma 6.5 of [Par08], respectively. Note that [Par08] makes stronger assump-
tions on the ring D (namely, that j � j itself is an absolute value), yet the proofs
remain verbally the same, and we omit them.
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LEMMA 2.5. Let J be a non-empty subset of I . Then:

(a) E D Quot.OJ /.

(b) The ring QJ is the compositum of E and RJ in �.

(c) If j 2 J then QJ D .Ofj g X f0g/�1RJ .

For each J � I , we denote the integral closure of QJ inside its quotient field
by C.QJ /. View C.QJ / as contained in �.

THEOREM 2.6. Let J; J 0 be non-empty subsets of I .

(a) If J \J 0 ¤∅, then QJ \QJ 0 DQJ\J 0 .

(b) If J \J 0 D∅, then QJ \C.QJ 0/DE.

For each i 2 I , let Qi D QIXfig;Q
0
i D Qfig. Note that by this notation,

Qi ¤Qfig.

COROLLARY 2.7.
T
i2I Qi DE.

For simplicity, assume I D f1; 2; : : : ; kg.

LEMMA 2.8. Let c be an element of D such that c� ci 2D�, jr=.c� ci /j � 1
for each 1� i � k. Consider the evaluation homomorphism �c WR!D given by
w1 7! r=.c � c1/; : : : ; wk 7! r=.c � ck/. Denote p D w1� r=.c � c1/ 2R. Then:

(a) Ker.�c/ is a principal ideal of R, generated by p.

(b) The localization Rp D fab 2� j a 2R; b 2RXpRg is a valuation ring of �.

LEMMA 2.9. Let fFigi2I be fields, and let G; fGigi2I be groups such that
ED .E; Fi ;Qi ; �IGi ; G/i2I is a generalized patching data (Definition 1.1). As-
sume that for each i 2 I we have Fi DE.ˇi /, where ˇi and its conjugates over E
are in R, and discrE .irr.ˇi ; E// 2R�. Then:

(a) Condition (COM) of Section 1 holds for E.

(b) Suppose that there is an element c2D such that c�ci 2D� and jr=.c�ci /j�1
for each i 2 I . Then the compound F 0 of E has a K-rational place.

3. Galois covers of complete domains

Let A be an integral domain with quotient field K0. Let K be a finite Galois
extension of K0, and let z be a primitive element of K=K0 that is integral over A.
Denote f D discr.irr.z;K0//. Suppose f is not invertible in A, and let a be the
ideal generated by f . Suppose A is complete and Hausdorff with respect to the
a-adic topology.

Let j � jf be the norm corresponding to a. That is, jxjf D min.e�i j x 2 ai /

for each x 2 A, where e is the base of the natural logarithms. In particular, since
f is not invertible, f k 2 ak r akC1, so jf kjf D e�k for each k 2 N. This norm
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need not be an absolute value, so we may not be able to extend it to a norm of K0.
However, let Af be the localization AŒf �1�. Then:

LEMMA 3.1. Every element of Af can be uniquely presented as f ng, where
n 2 Z and g 2 AX a, and j � jf extends to a norm on Af by jf ngjf D e�n.

Proof. The only nontrivial part in proving the first assertion is to show that a
nonzero element cannot be divided by f infinitely many times. This follows as A
is Hausdorff with respect to a, so

T1
iD1 ai D

T1
iD1hf i

i D
T1
iD1hf

i i D 0.
We define jf ngjf D e�n. Then jf ng1 C f mg2jf � max.e�n; e�m/ and

j.f ng1/ � .f
mg2/jf � e

�n � e�m for all g1; g2 2 A. �

PROPOSITION 3.2. The ring Af is complete with respect to j � jf .

Proof. Let fgig1iD1 be a Cauchy sequence in Af . Then either jgi jf ! 0 or for
each sufficiently large index i we have jgi jf D jgiC1jf D jgiC2jf D � � � . In the
latter case there exists m 2 N with gif m 2 A for all i . Then fgif mg is a Cauchy
sequence in A, hence fgif mg converges in A, since A is complete with respect to
j � jf . Consequently, fgig also converges in Af . �

Denote the ring Af Œz� by B .

PROPOSITION 3.3. The norm j � jf extends to a norm j � jf on the ring B , and
B is complete with respect to this norm.

Proof. The ringB is a freeAf -module with basis 1; z; : : : ; zd�1 (dD ŒK WK0�).
Define j

Pd�1
iD0 aiz

i jf D maxi jai jf for a0; : : : ; ad�1 2 Af . We show that this
defines a norm on B . The only nontrivial part is to prove that jabjf � jajf � jbjf .
Let aD

Pd�1
iD0 aiz

i ; bD
Pd�1
iD0 biz

i ; ai ; bi 2Af . Denote abD
Pd�1
iD0 ciz

i . Since
the coefficients of the minimal polynomial of z belong to A, each ci is a sum of
elements of the form ˛

P
iCjDl aibj for some l � 0 and ˛ 2 A. For each such

summand, we have j˛jf � 1, and so j˛
P
iCjDl aibj jf � j˛jf � j

P
iCjDl aibj jf �

j
P
iCjDl aibj jf �maxi .jai jf � jbl�i jf /�maxi jai jf �maxi jbi jf D jajf � jbjf . It

follows by the norm properties that jci jf � jajf � jbjf for each i , hence jabjf �
jajf � jbjf .

By definition, a sequence in B is Cauchy if and only if it is Cauchy coefficien-
twise. Since Af is complete, so is B . �

In [Par08, �6] a ring D is said to be large if it satisfies the following condition:

(Large) For each n 2 N there exist b1; : : : ; bn 2D such that bi � bj 2D� for all
i ¤ j .

It follows from the next proposition that the ring B is large in this sense. This
will be needed in the proof of our main result in the next section.
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PROPOSITION 3.4. There exists a bounded (with respect to j � j) series
c1; c2; : : :2B such that cıi �c

�
j 2B

� for all distinct .i; ı/; .j; �/2N�Gal.K=K0/.

Proof. The primitive element z satisfies zı � z" 2 B� for all distinct ı; " 2
Gal.K=K0/, since the discriminant f of irr.z;K0/ is invertible in Af � B .

Let m D maxı¤�.1; log j.zı � z�/�1jf /. For each i 2 N let ˛i D f mC1 C
f mC2C � � �Cf mCi . If 1� i < j , then

j̨ �˛i D f
mCiC1

Cf mCiC2C� � �Cf mCj D f mCiC1.1Cf C� � �Cf j�i�1/;

so j j̨ �˛i jf <e�m. Moreover, j̨ �˛i 2A
�
f

, because Af is complete with respect
to j�jf (Proposition 3.2) and jf C� � �Cf j�i�1jf <1 (so .1Cf C� � �Cf j�i�1/�1DP1
lD0.�f � � � � �f

j�i�1/l/. Define ci D zC˛i . Then for each ı 2 Gal.K=K0/
we have cıi � c

ı
j D ˛i � j̨ 2 B

�. If ı ¤ ", then j. j̨ �˛i /=.zı � z"/jf � j j̨ �
˛i jf � j.z

ı�z"/�1jf <1, hence 1C. j̨ �˛i /=.zı�z"/ is invertible in B , therefore
so is .zı � z"/C . j̨ �˛i /D cıj � c

"
i . Note that the series fjci jg1iD1 is bounded by

maxfjzj; 1g. �

PROPOSITION 3.5. Suppose that Gal.K=K0/ acts on B , that is, B� D B for
each � 2 Gal.K=K0/. Then the action is continuous with respect to j � jf .

Proof. Let fxig1iD0 be a convergent sequence in B , and let x be its limit
(with respect to j � jf ). We must prove that for each � 2 Gal.K=K0/ the sequence
x�i converges to x� . Without loss of generality we may assume that x D 0, and
prove that x�i converges to 0. Let xi D

Pd�1
jD0 aij z

j with aij 2 Af . Then jxi jf D
maxj jaij jf ! 0 as i!1, so for all 0� j � d �1 we have jaij jf ! 0 as i!1.
Now, jx�i jf D

ˇ̌Pd�1
jD0 aij .z

� /j
ˇ̌
f
�maxj jaij .z� /j jf �maxj .jaij jf �jz� j

j

f
/. Since

jaij jf ! 0 as i!1, also jaij j � jz� j
j

f
! 0 as i!1, for all 0� j � d �1. Thus

jx�i jf ! 0 as i !1. �

PROPOSITION 3.6. Let p be an ideal of A which contains f . For each x 2 A
let jxj D minfe�i j x 2 pig. Suppose that j � j extends to an absolute value on K0.
Extend j � j arbitrarily to an absolute value on K. Then for each x 2 B we have
jxj � jxjf .

Proof. Since f 2 p, we have jf j � e�1. Each 0¤ x 2 B may be written as
f ka, with a 2 AŒz�; jajf D 1; k 2 Z. Indeed, let x D

Pd�1
iD0 aiz

i with ai 2 Af .
Let k D maxi .�log.jai jf //, a D f �kx. Then x D f ka, a 2 AŒz� and jajf D 1.
Since AŒz� is an integral extension of A, jaj � 1, and so jxj D jf jk � jaj � e�k �1D
e�k D jxjf . �
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4. Solution of split embedding problems

Let A be a Noetherian integrally closed domain and let 0¤ p�A be a proper
ideal of A, such that A is complete with respect to the p-adic topology. Moreover,
suppose that the order function of p extends to a discrete valuation ofK0DQuot.A/.
Equivalently, the map A! R given by jxj0 D minfe�i j x 2 pig extends to an
absolute value on K0. Let K be a finite Galois extension of K0.

THEOREM 4.1. Let x be a free variable over K, and put E0 DK0.x/, E D
K.x/. Suppose that � D Gal.K=K0/ acts (from the right) on a finite group G.
Let Go� be the corresponding semidirect product and let � WGo�! � be the
canonical projection. Then the constant split embedding problem � WGo�! � D

Gal.E=E0/ has a rational (hence regular) solution. That is, there is an extension
F of E such that

(a) F=E0 is Galois,

(b) there is an isomorphism  WGal.F=E0/!Go� such that � ı D resE , and

(c) F has a K-rational place (hence F=K is regular).

Proof. We attach a generalized patching data E to the embedding problem
and define a proper action of � on E. Then by Proposition 1.5 we conclude that
the pre-compound F of E gives a solution to the embedding problem. Our proof
is similar to that of [HJ98a, Prop. 5.2], however here we must use a generalized
patching data defined over a suitable subring of K, instead of the patching data of
[HJ98a] that is defined over a complete field.

Fix a finite set I on which � acts from the right and a system of generators
T D f�i j i 2 I g of G such that for each i 2 I

(5a) f
 2 � j i
 D ig D f1g,

(5b) �
i D �i
 , for every 
 2 � , and

(5c) jI j � 2.

(For example, assuming G ¤ 1, let I D G �� , let � act on I by .�; 
/ı D
.�; 
ı/, and let �.�;
/ D �
 .) Let Gi be the subgroup generated by �i . Then
G


i DGi
 for all 
 2 � and G D hGi j i 2 I i. This establishes Condition (1d) of

Definition 1.1. Choose a system of representatives J for the �-orbits of I . Then
every i 2 I can be uniquely written as i D j 
 with j 2 J and 
 2 � .

Let w be a primitive element w for K=K0 which is integral over A, and take
an arbitrary element 0 ¤ ˛ 2 p. Then z D ˛w is a primitive element for K=K0
integral over A, and f D discr.irr.z;K0//D ˛d.d�1/ discr.irr.w;K0// 2 p.

Since A is integrally closed, so is Af DAŒf �1�. Let D be the integral closure
of Af in K. Since f is in .Af /�, D D Af Œz�, by [FJ05, Lem. 6.1.2].
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The ring A is complete with respect to the p-adic topology, and since it Noe-
therian, it is also Hausdorff with respect to this topology. By [ZS60, Th. VIII.5.14],
A is complete and Hausdorff in the b-adic topology for every ideal b contained in p.
In particular, for bD hf i. Thus D is complete with respect to the nontrivial norm
j � j that corresponds to f , given by Proposition 3.3. Extend j � j0 (the absolute value
that p defines on K0) arbitrarily to an absolute value on K. By Proposition 3.6,
jxj0 � jxj for each x 2D.

Construction AW Choice of .dependent/ variables. We choose the variables wi
that are used to define the rings in our patching data.

Proposition 3.4 gives an element c 2D and a subset fcj j j 2 J g �D such
that c � cıj 2 D

� and cıi � c


j 2 D

� for all distinct .i; ı/; .j; 
/ 2 J � � . For
each i D j ı 2 I we define ci D cıj . Then cıi D ciı for all i 2 I , ı 2 � and c�ci ,
ci�cj 2D

� if i ¤ j . Since f 2 p, we have jf j< 1, so we may choose a positive
integer t with jf t=.ci � cj /j � 1 and jf t=.c � ci /j � 1 for i ¤ j . Let r D f t and
define wi D r=.x� ci / for all i 2 I . Then condition (5) of Section 2 is satisfied.

Construction BW Construction of the rings Qi . By Remark 2.4, the ring RD
Dfwi j i 2 I g is an integral domain. Let � be its quotient field. For each i 2 I let

Qi DQIrfig D .DŒwj j j ¤ i �r f0g/�1RIrfig and Q0i DQfig

(we use the notation of �2). By Corollary 2.7,
S
i2I Qi D E, which establishes

Condition (1e) of Definition 1.1. Moreover, by Theorem 2.6(a), Q0i D
S
j¤i Qj ,

for all i 2 I .
The group � D Gal.K=K0/ leaves D D Af Œz� invariant, because D is the

integral closure of Af in K. By Proposition 3.5, � acts continuously on D with
respect to the norm j � j. Moreover, � lifts isomorphically to Gal.E=E0/. For all

 2� and i 2 I we havew
i Dwi
 (by Construction A). Hence, � acts continuously
on DŒwi j i 2 I �. Therefore, � lifts to a group of automorphisms of the completion
R D Dfwi j i 2 I g of DŒwi j i 2 I � with respect to j � j. Finally, � extends to
a group of automorphisms of D Quot.R/. Under this action, Q
i D Qi
 and
.Q0i /


 DQ0i
 for all 
 2 � and i 2 I .
For each j 2 J , [Par08, Prop. 6.1] gives a cyclic extension Fj =E with group

Gj D h�j i such that Fj =K has a prime divisor of degree 1. Moreover, Fj is an
unramified extension of E.

By [Par08, Rem. 4.3(a)] the map wj 7! x extends to a K-isomorphism of
K..wj // onto K..x// which maps Rfj g onto Dfxg. By Proposition 3.4, D satisfies
Condition 3 preceding [Par08, Lem. 6.3]. Hence, by [Par08, Lem. 6.3] we may
replace Fj =E by an isomorphic extension such that Fj D E. ǰ /, where ǰ and
its conjugates over E belong to Rfj g, and discrE .irr. ǰ ; E// 2R�fj g. In particular,
Fj �Q

0
j .
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For an arbitrary i 2 I there exist unique j 2 J and 
 2 � such that i D j 


(by (5a)). Let Fi D F


j D E.ˇ



j /. Since 
 acts on � and leaves E invariant,

Fi is a Galois extension of E and Fi � Q0i . This establishes Condition (1b) of
Definition 1.1.

Construction CW The action of � on the ringsQi . The isomorphism 
 WFj!Fi
gives an isomorphism Gal.Fj =E/ �D Gal.Fi=E/ which maps each � 2 Gal.Fj =E/
onto 
�1 ı � ı 
 2 Gal.Fi=E/ (notice that the elements of the Galois groups act
from the right). In particular, it maps �j onto 
�1 ı�j ı
 . We can therefore identify
Gi with Gal.Fi=E/ such that �i coincides with 
�1 ı �j ı 
 . This means that
.a� /
 D .a
 /�




for all a 2 Fj and � 2Gj .
It follows that for all i 2 I and 
 2 � we have F 
i D Fi
 . Moreover, .a� /
 D

.a
 /�



for all a 2 Fi and � 2Gi .

Construction DW Generalized patching data. Fix j 2 J , 
 2 � , and let i D j 
 ,
ˇi D ˇ



j . Then Fi D E.ˇi /. Consider an element � 2 Gi . There exists � 2 Gj

with � D 
�1�
 and ˇ�i D .ˇ


j /

�1�
 D .ˇ�j /


 2 .Rfj g/

 D Rfig. Similarly,

discr.irr.ˇi ; E//D .discr.irr. ǰ ; E///� , so discr.irr.ˇi ; E// 2R�fig.
If y 2 Quot.Qi /\Q0i is algebraic over E, then y is integral over Qi . Hence,

by Theorem 2.6(b), y 2E. It follows that Fi \Quot.Qi /DE, for all i 2 I . This
proves Condition (1c) of Definition 1.1.

Thus, ED .E; Fi ;Qi ; �IGi ; G/i2I is a generalized patching data (Definition
1.1) and � acts properly on E (Definition 1.4). By Lemma 2.9(a) E satisfies
Condition (COM). By Proposition 1.5, the pre-compound F of E satisfies assertions
(a) and (b).

Definition 1.6 gives an E-isomorphism of F onto the compound F 0 of the
patching data, which then also satisfies (a) and (b). The element c chosen in
Construction A enables us to use Lemma 2.9(b), which proves (c). �

THEOREM 4.2. Suppose K0 D Quot.A/ is Hilbertian. Then every finite split
embedding problem over K0 is solvable.

Proof. Given an FSEP over K0, we can solve the problem over K0.x/,
by Theorem 4.1, and specialize the solution to a solution over K0, by [FJ05,
Lem. 16.4.2]. �

THEOREM 4.3. Let L be an arbitrary field, and n� 2 an integer. Then:

(a) Every constant finite split embedding problem over L..X1; : : : ; Xn//.x/ has
a rational solution.

(b) Every finite split embedding problem over L..X1; : : : ; Xn// is solvable.
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Proof. The ring LŒŒX1; : : : ; Xn�� is an integrally closed Noetherian domain
[ZS60, VII.�1]. The order function of pD hX1; : : : ; Xni extends to a discrete valua-
tion on the quotient field L..X1; : : : ; Xn//, and LŒŒX1; : : : ; Xn�� is complete with re-
spect to this valuation [ZS60, VII.�1]. By a theorem of Weissauer L..X1; : : : ; Xn//
is Hilbertian [FJ05, Exa. 15.5.2]. We conclude from Theorem 4.2 that (a) and (b)
hold. �

Theorem 4.2 also helps solve FSEPs over the field Quot.ZŒŒX1; : : : ; Xn��/,
where n� 1. More generally:

THEOREM 4.4. Let B be a Noetherian integrally closed domain which is not a
field, and let n� 1 an integer. Then:

(a) Every constant finite split embedding problem over

Quot.BŒŒX1; : : : ; Xn��/.x/

has a rational solution.

(b) Every finite split embedding problem over

Quot.BŒŒX1; : : : ; Xn��/

is solvable.

Proof. The ring B is a Krull domain, by [Nag62, Prop. 33.4], so the quotient
field of BŒŒX1; : : : ; Xn�� is Hilbertian, again by Weissauer [FJ05, Exa. 15.5.3]. The
rest of the proof is identical to that of Theorem 4.3. �
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