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Abstract

We prove that every finite split embedding problem is solvable over the field
K((X1,...,Xn)) of formal power series in n > 2 variables over an arbitrary field
K, as well as over the field Quot(A[[X1,..., X,])) of formal power series in n > 1
variables over a Noetherian integrally closed domain A. This generalizes a theorem
of Harbater and Stevenson, who settled the case K((X1, X3)).

Introduction

A central problem in the study of absolute Galois groups is the solvability of
finite embedding problems. A sufficient condition for all finite embedding problems
for a given profinite group G to be solvable is that each Frattini embedding problem
and each finite split embedding problem for G are solvable [FJ05, Prop. 22.5.8],
[Mat91, p. 430]. The first condition is equivalent to G being projective. Thus, a
natural question for an arbitrary profinite group G is whether each split embedding
problem for G is solvable. Specifically, Debes and Deschamps made the following
conjecture for absolute Galois groups of Hilbertian fields.

CONJECTURE A [DD97, §2.1.2]. If F is a Hilbertian field, then every finite
split embedding problem over F is solvable.

Note that Conjecture A implies a positive answer to the Inverse Galois Problem:
is every finite group realizable over Q7

In this work we prove Conjecture A for a large class of Hilbertian fields. Indeed
we prove the conjecture when F' is the quotient field of a Noetherian integrally
closed domain A of dimension at least 2 which is complete in some broad sense.

This research was conducted as a part of the author’s Ph.D. thesis in Tel-Aviv university, under the
supervision of Dan Haran, and was supported by the Minkowski Center for Geometry at Tel Aviv

University, established by the Minerva Foundation.
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Following [HS05] we abbreviate “finite split embedding problem” by FSEP.
An FSEP for a field F is an epimorphism 7: G x I' — T of finite groups, where
I' = Gal(F'/F) is the Galois group of a Galois extension F’/F, G is a finite
group on which I' acts, G x I is the corresponding semidirect product, and 7 is
the projection on I'. A solution of the problem is a Galois extension L of F' which
contains F’ and an isomorphism y:Gal(L/F) — G x T" such that m oy =resg.

Our result follows a route paved for the first time more than twenty years ago
by Harbater in [Har87]. In that paper Harbater introduced the concept of “formal
patching” and used it to prove that if F is the quotient field of a complete local ring,
then every Realization Problem over the field F'(x) of rational functions over F is
solvable. One can view Realization Problems as FSEPs where the group I is trivial.
Later Harbater [Har94] used formal patching to reduce Abhyankar’s generalized
conjecture to the special case settled by Raynaud [Ray94].

Harbater’s proof [Har87] is phrased in the language of formal geometry. It
was later translated to the language of Rigid Analytic Geometry by Liu [Liu95] and
Serre [Ser92]. Haran and Vélklein [HV96] gave a self contained algebraic proof of
this result, introducing the concept of “algebraic patching”.

The next step is due to Pop [Pop96], who used methods of rigid analytic
geometry to prove that if F is a complete valued field (and more generally, if F
is an ample field), then every constant finite split embedding problem over F is
regularly solvable. That is, given a Galois extension F’ of F with group I" which
acts on a finite group G, there exists a Galois extension L of F’(x) (where x is
transcendental over F’) and an isomorphism v: Gal(L/ F(x)) — G x I such that
L/F is regular and 7 oy = resg (where 7 is the canonical projection).

Haran and Jarden [HJ98a] extended algebraic patching to give a self contained
(along with [HV96]) algebraic proof of that result.

Using formal patching, Lefcourt [Lef99] showed that if F is the quotient field
of a complete domain with respect to a prime ideal, then every realization problem
is solvable over F(x). Extending the method of algebraic patching from complete
based fields to complete domains, [Par08] gives a self-contained algebraic proof to
Lefcourt’s result.

If F is a Hilbertian field, then one can specialize each solution over F(x) and
solve FSEPs over F. Thus, by [Pop96] and [HJ98a] every FSEP is solvable over a
Hilbertian ample field, and by [Lef99] every realization problem is solvable over a
Hilbertian field which is the quotient field of a complete domain.

Harbater and Stevenson [HS05] took the next step and proved that every FSEP
is solvable over the field K((X1, X3)) of formal power series in two variables over
an arbitrary field K. They showed that every FSEP over this field arises from an
FSEP over K((X1))(X2), and the latter problem has a solution that can be lifted to
the solution of the original FSEP. Note that the field K((X1, X)) is the quotient
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field of the complete local ring K[[X1, X3]], and it is Hilbertian by a theorem of
Weissauer.

Our goal is to generalize the results of Pop and Haran-Jarden on the one hand,
and those of Lefcourt and Harbater-Stevenson on the other hand.

MAIN THEOREM. Let F be the quotient field of an integral domain A satisfy-
ing the following conditions:

(a) A is a Noetherian integrally closed domain.

(b) A has a proper nonzero ideal p such that vp(x) = max(n | x € p") extends to
a discrete valuation of Quot(A), and A is complete with respect to vy,.
Then every constant FSEP over F(x) is regularly solvable.

As mentioned above, if F is Hilbertian, then one can specialize the regular
solution of constant FSEPs, thus solving FSEPs over F.

THEOREM B. Let F = Quot(A) be a Hilbertian field, where A satisfies condi-
tions (a) and (b) above, then every FSEP over F is solvable.

The conditions of Theorem B hold for a large spectrum of fields:
COROLLARY C. Every FSEP over F is solvable in the following cases:

(A F=K(X1,...,Xn)) =Quot(K[[X1,...,Xn]) is the field of formal power
series over an arbitrary field K in n > 2 variables.

(b) F =Quot(A[[X1,...,X,]) is the field of formal power series in n > 1 vari-
ables series over a Noetherian integrally closed domain which is not a field
(for example A = Z or more generally, A is a Dedekind domain).

Note that [HS05] proves that there are “many” such solutions for every FSEP
over K((X1, X»)) — that is, the cardinality of the set of solutions is equal to the car-
dinality of F. We do not prove this much in the general case given by Corollary C.

Corollary C would follow from the result of Haran-Jarden-Pop if the fields F
involved in the theorems were ample. However this is unknown and one suspects
that they are not.

To prove the Main Theorem, we generalize the fundamental ideas of algebraic
patching introduced in [HV96] and [HJ98a]. The basic framework for algebraic
patching of groups over complete domains was introduced in [Par08]. In this paper
we recall these generalized ideas, and adapt them to the solution of FSEPs.

Our general strategy is similar to that of [HI98a]. The basic step is to realize all
cyclic subgroups of G as Galois extensions of F’(x), and embed these realizations
in suitable “analytic” rings. In order to construct these rings, we first construct
a complete ring whose quotient field is the given extension F’ of F. The naive
approach is to choose that ring as the integral closure B of A in F’. However B
may be ramified over A, which creates a severe technical difficulty in the following
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construction of the analytic rings. We therefore choose D = B[%], where f is
the discriminant of a suitable primitive element of F’/F. The ring D need not be
complete with respect to the absolute value that corresponds to vy, (Which extends
to an absolute value of F’). So, we settle for less and instead construct a complete
norm for D which need not be an absolute value.

This norm is good enough for the construction of our ’analytic’ rings (which
were fields in [HJ98a]). They are quotient rings of rings of convergent power series
in several dependent variables over D. The properties of power series over a normed
ring are not as nice as the properties of power series over a valued field (which
were used in [HV96] and [HJ98a]). To overcome this difficulty we embed our rings
of convergent power series over D in rings of convergent power series over the
completion F’ of F’ with respect to vy. The strong properties of the latter rings are
transferred, in a weaker form, to our rings. This is where the assumption that vy, is
a valuation is used — this seemingly technical assumption allows this embedding
(otherwise, we could not extend v, from 4 to F and to F’, so we could not define
the completion F’ ), which allows us to indirectly exploit the nice properties of
rings of convergent power series over a complete field.

Having done that, we are able to patch the realizations of the cyclic subgroups
of G to arealization L of G as a Galois group over F’(x). We then define a suitable
action of I" on these rings, and use it to prove that L is a solution of the given FSEP.

The author wishes to acknowledge the work of D. Haran, H. Vélklein and M.
Jarden, who developed algebraic patching in [HV96], [HJ98a], [HJ98b], [HJOO].
The results of this paper were obtained by generalizing their wonderful ideas.

The author wishes to express his gratitude to Dan Haran for his guidance and
help while working on this paper. He also wishes to thank Moshe Jarden for many
helpful discussions, and the referee, for his/her comments.

1. Algebraic patching

In [Par08, §1] a general setup for the patching of Galois groups is presented.
We recall the definitions and basic properties, and extend this setup for the solution
of FSEPs.

Definition 1.1. Let I be a finite set with || > 2. A generalized patching data
Cé = (E,E9 QiaQ;GiaG)iGI

consists of fields £ C F; C Q, integral domains Q; contained in the field €2, and
finite groups G; < G, i € I, satisfying the following conditions:

(1a) F;/E is a Galois extension with Galois group G;,i € I.
(Ib) F; € Q;, where O} = ;4 Qj.i €.
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(Ic) F;NQuot(Q;)=E,iel.
(1d) G =(G; |i el).
(Ie) (ier Qi = E.
Definition 1.1 generalizes [HJ98a, Def. 1.1]. Note that our condition (1c) has

no parallel in [HJ98a, Def. 1.1]. This condition is important in order to construct
Galois extensions of the rings Q;, in the following sense:

Definition 1.2. Let Q € P be integral domains and Aut(P) the group of
automorphisms of P. Define Aut(P/Q) :={o € Aut(P) |ox = x for all x € Q}.
We say that P/Q is a finite Galois domain extension, if P = Qla] and f =
irr(a, Quot(Q)) satisfies:

(a) f € Q[X], so that P = Q[X]/(f).

(b) f factors in P[X] into a product of distinct linear monic polynomials.
We call Gal(P/Q) = Aut(P/ Q) the Galois group of P/Q.

Fix a generalized patching data € = (E, F;, Q;,2;Gi, G);cy. We extend ¢
by more rings and algebras. For each i € [ let P; = Q; F; be the compositum of
Q; and F; in Q2. By condition (1¢) Quot(Q;) N F; = E. By [Par08, Lem. 1.3,
Lem. 1.4] P;/Q; is a Galois domain extension, the Galois group of P;/Q; is
isomorphic (via the restriction of automorphisms) to G; = Gal(F;/E), P; is a free
Q;-module of rank |G|, and PP/ — 0, Tdentify Gal(P;/Q;) with G; via
this isomorphism.

Consider the algebra

N:Ind?Qz% Zagelageﬁ}
0eG

of dimension |G| over 2. Addition and multiplication are defined in N compo-
nentwise —thus 1 = ) g5 0, Q is embedded diagonally in N, and G acts on N

by
(ZaOG)U: Zaea_lez Zagge, o €q.

0eG 0eG 0eG
The action of G commutes with the addition and the multiplication in N.
For each i € I consider the following Q;-subalgebra of N:

N; =Ind8i P; ={Za90€N |ag € Pi, ap =ag, forall € G, feGi}.
0eG

By [Par08, Lem. 1.5], F = |J,; N; is an E-algebra which is G-invariant.
We call F the pre-compound of the generalized patching data €.

PROPOSITION 1.3 [Par08, Prop. 1.8]. Assume that:
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(COM) There is a linear basis of N over Q2 that is also a basis of N; over Q; for
alli el.

Then F = (\ N; is a field and F/E is a Galois extension with group G.

For the rest of this section assume that E is a finite Galois extension of a field
Eo with group I'. In order to solve FSEPs defined by an action of I' on G we need
the following notion:

Definition 1.4. A proper action of " on the generalized patching data € is a
triple that consists of an action of I' on the group G, an action of I" on the field €2,
and an action of I" on the set / such that the following conditions hold:

(2a) The action of I" on €2 extends the action of I" on E.
(2b) F/' = Fi», Q) = Qiv,and G} = Gjv, foralli € [ andy €T,
(2¢) (@%)Y = (a¥)" forallae F;,1€G;,ie€l,andy eT.
The action of " on G defines a semidirect product G x I such that t¥ =y~ Ity
forallte G and y € I'. Let 7: G x I' — I" be the canonical projection.

The proof of the next proposition is verbally the same as of [HJ98a, Prop. 1.5]
(replacing Q there with €2 here).

PROPOSITION 1.5. Suppose that T" properly acts on the patching data €
and that € satisfies (COM). Then F/Ey is Galois and there is an isomorphism
Y:G x ' — Gal(F/Eg) such that resg oy = 7.

Definition 1.6. Consider the 2-algebras homomorphism ¢ : N — Q given
by Y agf — aj. Then ¢|F is a monomorphism. Since E is invariant under ¢,
¢ (F) is a Galois extension of E with group isomorphic to G. We call F' = ¢(F)
the compound of €. Then by Proposition 1.5 F’/Ey is Galois and there is an
isomorphism ¥': G x I' — Gal(F’/ Ey) such that resg oy’ = 7.

2. Rings of convergent power series
The rings Q; that we use in this work for the patching data will be localizations
of complete rings under a norm.

Definition 2.1 (Normed ring). Let R be an associative ring with 1. A norm on
R is a function | - |: R — R that satisfies the following conditions for all a,b € R:

(a) |a] =0, and |a| = 0 if and only if @ = O; further |1| = |—1| = 1.
(b) |a+b| < max(|al, |b]).
(c) lab| < la|-|bl.
If | - | satisfies the following stronger condition
() lab| = la|-|bl,

we say that | - | is an absolute value on R.
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We sometimes prefer to use the additive notation for a norm v(a) = —log(a).
That is, instead of | - | we shall have a map v: R — R U {oo} such that following
conditions hold:

(a) v(a) = oo if and only if a = 0; further v(1) = v(—1) = 0.
(b) v(a + b) = min(v(a), v(b)).
(c) v(ab) = v(a)+ v(b).

The equivalence of these two definitions is standard. If | - | is an absolute value,
then v is a rank-1 valuation. We say that R is complete if every Cauchy sequence
in R converges.

In this section we study rings of convergent power series over a complete
normed domain D. These rings have been studied in [Par08, §2, §3, §4]. However,
some of the properties proven in that paper required the norm of D to be an absolute
value. Here we replace this assumption by a weaker one — we will assume that
D is equipped with both a norm and an absolute value, with some compatibility
condition between the two. However, D is assumed to be complete only with
respect to the norm. This technique enables us to embed rings of convergent (with
respect to the norm) power series over D in rings of convergent (with respect to
the absolute value) power series over K, where K is the completion of K with
respect to its absolute value. We use the strong properties of the latter rings to gain
information about the former rings.

Fix a domain D, complete with respect to a nontrivial norm |- | and let / be a
finite set. Foreachi € I letr,c; € D such thatr,c; —c; € D* if i # j. We assume
that

(D <1 foralli #j.

ci —¢j
Let K = Quot(D) and let E = K(x) be the field of rational functions over K. For
eachi el letw; =r/(x—¢;) € K(x).

Consider the subset Ro = Y _;; D[w;] of the field E = K(x). By [Par08,
§4] this is a ring and each element of Ry has a unique presentation of the form
ao+ Y jcr anl ainw;’, where a;, € D are almost all zero. Moreover, we can
define a norm on Ro by [[@o + X ey D _py>1 @inw] || = max; n{laol, |ainl}. Let
R = D{w; |i € I} be the completion of Ry with respect to || - ||, and extend | - || to
R. By [Par08, Lem. 4.2] we have:

LEMMA 2.2. Each element f of R has a unique presentation as a multiple
power series:

) f=ao+) ) aimuw},

iel n=1
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where ag, ain € D, and |ajn| — 0 as n — co. Moreover,
171 = max{laol. lainl}

We call the partial sum Z?,":l ajpwi in (2) the i-component of f.

For each J C I we denote the completion Ry of D[w; | j € J] by D{w; |
j € J}. By the preceding lemma R is contained in Ry. By [Par08, Prop. 4.7] we
have:

PROPOSITION 2.3. Suppose D = K and | -| is an absolute value. Then the
ring R = K{w; | i € I} is a principal ideal domain.

For the rest of this section assume that, in addition to the norm |- |, D is also
equipped with a nontrivial absolute value |- |, such that |a|” < |a| for each a € D
(but D need not be complete with respect to | -|). We extend the absolute value |- |’
to the quotient field K. Let K be the completion of K with respect to |- |". Then,
}r/(c,- —CJ)}/ <1 foralli # j. Thus we may consider the ring E{wi |i el},and
its subrings I’(\{wi liedJ}, JCI.

Remark 2.4 (Embedding of R in K {w; | i € I}). We distinguish between two
types of infinite sums. One with respect to the norm |- |, and one with respect to
|-|’. We denote the first type by 3 (as we have done so far) and the latter by .
The assumption |x|" < |x| implies that whenever a sum ) _ a; is well defined, then
sois Y a; and we have 3" a; = 3 a;. Therefore, we may consider the ring

o0
R={a0+ZZ ajnwi | ain € D, |ajn| — 0 foreachi € I}

iel n=1

as a subring of

o0
I?{w,- |iel}={ao+ZZ'a,~nw}1 | ain c K, |ain| — 0 for eachi € I}.

iel n=1

Moreover, the inclusion of R with the | - |-topology into K {w; |i € I} with
the | - |"-topology is continuous.

By Proposition 2.3, K {w; | i € I}1is an integral domain, hence so is R. Denote
the quotient ring of R by Q2. For each J C I consider the rings Oy = D[w; |i € J]
and Q7 = (07~ {0 'Ry ={L | fe Ry, ac 05~ {0}}.

In the rest of this section we describe crucial properties of these rings. The
following claims generalize Lemma 4.8, Proposition 4.9, Corollary 4.10, Lemma 6.4
and Lemma 6.5 of [Par08], respectively. Note that [Par08] makes stronger assump-
tions on the ring D (namely, that |- | itself is an absolute value), yet the proofs
remain verbally the same, and we omit them.
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LEMMA 2.5. Let J be a non-empty subset of I. Then:
(@) E =Quot(0y).
(b) The ring Q j is the compositum of E and Ry in Q.
(©) If j € J then Qj = (O3 ~{0}) "' Ry.

For each J C I, we denote the integral closure of Q j inside its quotient field
by C(Q ). View C(Q j) as contained in 2.

THEOREM 2.6. Let J, J' be non-empty subsets of I.

@ IfJNJ' #a,then QN Qy = Qyny-
b) IfINJ =, then QyNC(Qy)=E.
For each i € I, let Q; = Q1. Q; = Q. Note that by this notation,
Qi # Q-
COROLLARY 2.7. (\;¢; Qi = E.
For simplicity, assume [ = {1,2,...,k}.

LEMMA 2.8. Let ¢ be an element of D such that ¢ —c; € D>, |[r/(c —c¢;)| <1
for each 1 <i <k. Consider the evaluation homomorphism ¢.: R — D given by
wy—>r/(c—c1),...,wg = r/(c—cg). Denote p=wi—r/(c—c1) € R. Then:

(a) Ker(¢) is a principal ideal of R, generated by p.
(b) The localization R, = {3 € Q2 |a € R, b € R~ pR} is a valuation ring of Q.

LEMMA 2.9. Let {F;}icq be fields, and let G,{G;}ic be groups such that
€= (FE, F;, 0i,2;Gi,G)jcq is a generalized patching data (Definition 1.1). As-
sume that for each i € I we have F; = E(B;), where B; and its conjugates over E
are in R, and discrg (irr(B;, E)) € R*. Then:

(a) Condition (COM) of Section 1 holds for ‘€.

(b) Suppose that there is an element ¢ € D such that c—c; € D™ and |r/(c—c;)| <1
foreachi € I. Then the compound F’ of € has a K -rational place.

3. Galois covers of complete domains

Let A be an integral domain with quotient field Ky. Let K be a finite Galois
extension of Ky, and let z be a primitive element of K /K that is integral over A.
Denote f = discr(irr(z, Ko)). Suppose f is not invertible in A, and let a be the
ideal generated by f. Suppose A4 is complete and Hausdorff with respect to the
a-adic topology.

Let | - | be the norm corresponding to a. That is, |x|r = min(e ™ | x € a’)
for each x € A, where e is the base of the natural logarithms. In particular, since
f is not invertible, f¥ € ak < ak*1, s0 |fk|f = e for each k € N. This norm
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need not be an absolute value, so we may not be able to extend it to a norm of K.
However, let A7 be the localization A[ f ~1]. Then:

LEMMA 3.1. Every element of Ay can be uniquely presented as f" g, where
n

neZandg € A~a,and |- |s extends toanormon Ay by | f"g|r =e™".

Proof. The only nontrivial part in proving the first assertion is to show that a
nonzero element cannot be divided by f infinitely many times. This follows as A
is Hausdorff with respect to a, so ()72, a/ = N, (f) = N2, (f1) =0.

We define | f"g|r = e™". Then | f"g1 + f™g2|r < max(e™,e™™) and
I(f"g1) - (f"g2)ly <e "-e ™ forall g1, g2 € A. O

PROPOSITION 3.2. The ring Ay is complete with respect to | - | f.

Proof. Let {g; }72, be a Cauchy sequence in Ay. Then either |g;|s — 0 or for
each sufficiently large index i we have |g;|f = |gi+1lf = |gi+2]f =---. In the
latter case there exists m € N with g; f™ € A for all i. Then {g; ™} is a Cauchy
sequence in A, hence {g; f™} converges in A, since A is complete with respect to
|-|r. Consequently, {g;} also converges in Ar. |

Denote the ring Az [z] by B.

PROPOSITION 3.3. The norm |- |y extends to a norm |- |¢ on the ring B, and
B is complete with respect to this norm.

Proof. Thering B is afree Ar-module withbasis 1, z, ..., z4-1(d = [K: Ko)).
Define |sz=_ol aizilf = max; |a;|f for ap,...,aq_1 € Ay. We show that this
defines a norm on B. The only nontrivial part is to prove that |ab|s < |a|s-|b|.
Leta = f;ol ajz b= Zlfl:_()l biz', a;, b; € Ay . Denote ab = Z?;OI ¢;iz'. Since
the coefficients of the minimal polynomial of z belong to A4, each ¢; is a sum of
elements of the form a ), j=1aibj for some [ > 0 and o € A. For each such
summand, we have ||y < 1,and so | ) ; ;—yaibjly <|a|r-| D4 = aibjly <
| D i+ j=1aibjly <max;(|a;|s-1bj—i|r) < max; |a;|f-max; |bi|y = la|r-|b|s. 1t
follows by the norm properties that |c;|s < |a|s - |b|s for each i, hence |ab|s <

laly -1blf.
By definition, a sequence in B is Cauchy if and only if it is Cauchy coefficien-
twise. Since Ay is complete, so is B. O

In [Par08, §6] a ring D is said to be large if it satisfies the following condition:

(Large) For each n € N there exist b1, ..., b, € D such that b; —b; € D* for all
i#].
It follows from the next proposition that the ring B is large in this sense. This
will be needed in the proof of our main result in the next section.
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PROPOSITION 3.4.  There exists a bounded (with respect to | - |) series
€1,C2, ... € B such that cf —c;- € B> for all distinct (i, 6), (j, €) € NxGal(K/Kj).

Proof. The primitive element z satisfies z8 —z¢ € B for all distinct §, ¢ €
Gal(K/Ky), since the discriminant f of irr(z, Ko) is invertible in A¢ C B.

Let m = maxg-c(1,log (2% — Ze)_1|f). For eachi e Nlet o; = f™m+! +
fmt2 44 fmH O If1<i <, then

o —a; :fm+i+1+fm+i+2+...+fm+j :fm+i+1(1+f+'-'+fj_i_l),

so |aj —aj|r <e™™. Moreover, aj —a; € A}(, because Ay is complete with respect
to || (Proposition 3.2) and | f +---+ /77 s <1(so (1+ f+---+ f/ 7771 =
S0 o(—f —+--— f/771)]). Define ¢; = z + a;. Then for each § € Gal(K/Ko)
we have cl‘.s —cf =a; —aj € B*. If § # ¢, then |(¢; —a;)/(2° —z9)|f <o —

ailr- |(Z —z&)~1 |f <1, hence l+ (o) —a;)/(z% —z¢) is invertible in B, therefore
sois (z8 —z8) + (aj —oa;) = c —c;7. Note that the series {|c;|}72, is bounded by
max{|z|, 1}. O

PROPOSITION 3.5. Suppose that Gal(K /Kg) acts on B, that is, B° = B for
each o € Gal(K/Ky). Then the action is continuous with respect to | - | .

Proof. Let {x;}72, be a convergent sequence in B, and let x be its limit
(with respect to |- [r). We must prove that for each o € Gal(K/Ky) the sequence
x7 converges to x?. Without loss of generality we may assume that x = 0, and
prove that x7 converges to 0. Let x; = Zd_é ajjz’ " with ajj € Ay. Then |x;|r =
max; |a,J|f—>0asz — 00, s0 forall0 < j <d —1 we have |a;j|f — 0asi — oo.
Now, |x7 | = }ZJ —o 4ij (z")f}f <max; |a;; (z%)/ |r <max; (la;;|f- |Z"|f) Since
lajj|f — 0asi— oo, also |a;;]- |Z"|f —0asi —>o0,forall0 <j <d—1. Thus
|x7|f —0asi — oo. O

PROPOSITION 3.6. Let p be an ideal of A which contains f. For each x € A
let |x| = min{e™" | x € p'}. Suppose that | - | extends to an absolute value on K.
Extend | - | arbitrarily to an absolute value on K. Then for each x € B we have
x| < Ix]g.

Proof. Since f € p, we have | f| <e™!. Each 0 # x € B may be written as
f*a, with a € A[z], lalf =1, k € Z. Indeed, let x = Zf‘l:_ol a;z" with a; € Ay.
Let k = max; (—log(la;|f)), a = f~kx. Then x = f¥a, a € A[z] and lalr = 1.
Since A[z] is an integral extension of 4, |a| <1, and so |x| =|f|*-|a| <e*-1=

= |x|f. O
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4. Solution of split embedding problems

Let A be a Noetherian integrally closed domain and let 0 # p C A be a proper
ideal of A, such that A is complete with respect to the p-adic topology. Moreover,
suppose that the order function of p extends to a discrete valuation of Ko = Quot(A).
Equivalently, the map A — R given by |x|' = min{e™ | x € p’} extends to an
absolute value on K. Let K be a finite Galois extension of Kj.

THEOREM 4.1. Let x be a free variable over K, and put Eg = Ko(x), E =
K(x). Suppose that T' = Gal(K/Ky) acts (from the right) on a finite group G.
Let G X T" be the corresponding semidirect product and let w: G X I' — T be the
canonical projection. Then the constant split embedding problem m:G X I' — ' =
Gal(E/ Ey) has a rational (hence regular) solution. That is, there is an extension
F of E such that

(a) F/Ey is Galois,
(b) there is an isomorphism . Gal(F/ Eg) — G x I such that w oy =resg, and
(¢) F has a K-rational place (hence F/K is regular).

Proof. We attach a generalized patching data € to the embedding problem
and define a proper action of I" on €. Then by Proposition 1.5 we conclude that
the pre-compound F' of ‘€ gives a solution to the embedding problem. Our proof
is similar to that of [HJ98a, Prop. 5.2], however here we must use a generalized
patching data defined over a suitable subring of K, instead of the patching data of
[HIJ98a] that is defined over a complete field.

Fix a finite set / on which I'" acts from the right and a system of generators
T ={t; | i € I} of G such that for eachi € [

(Sa) {y e [i¥ =i} ={1},
(5b) riy = tjv, forevery y € I', and

5¢) 1] > 2.

(For example, assuming G # 1,let ] = G x ', let I" act on I by (0, y)® =
(0,y8), and let 74 ,) = o¥.) Let G; be the subgroup generated by 7;. Then
Giy = Gjv forall y e " and G = (G; | i € I). This establishes Condition (1d) of
Definition 1.1. Choose a system of representatives J for the I'-orbits of /. Then
every i € I can be uniquely written as i = j¥ with j € J and y € T.

Let w be a primitive element w for K/ K¢ which is integral over A, and take
an arbitrary element 0 # « € p. Then z = qw is a primitive element for K /Ky
integral over A, and f = discr(irr(z, Kop)) = a?@=1) discr(irr(w, Ko)) € p.

Since A is integrally closed, sois Ay = A[ f ~1]. Let D be the integral closure
of Ar in K. Since f isin (Af)™, D = Ar[z], by [FJO5, Lem. 6.1.2].
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The ring A is complete with respect to the p-adic topology, and since it Noe-
therian, it is also Hausdorff with respect to this topology. By [ZS60, Th. VIII.5.14],
A is complete and Hausdorff in the b-adic topology for every ideal b contained in p.
In particular, for b = ( f'). Thus D is complete with respect to the nontrivial norm
| -| that corresponds to f, given by Proposition 3.3. Extend |- |’ (the absolute value
that p defines on Kj) arbitrarily to an absolute value on K. By Proposition 3.6,
|x|" < |x| for each x € D.

Construction A: Choice of (dependent) variables. We choose the variables w;
that are used to define the rings in our patching data.

Proposition 3.4 gives an element ¢ € D and a subset {c; | j € J} € D such
that ¢ — cj‘-S € D* and cl-a — c}’ € D* for all distinct (i,6),(j,y) € J x I'. For
eachi = jS € I we define ¢; = c]‘.g. Then cl‘.S =c;sforalli el,§ el and c—c;,
ci—cj € D*ifi # j. Since f € p, we have | f| < 1, so we may choose a positive
integer ¢ with | f*/(c; —¢j)| < land | f'/(c—¢;)| <1fori # j.Letr = f" and
define w; = r/(x —¢;) for all i € I. Then condition (5) of Section 2 is satisfied.

Construction B: Construction of the rings Q;. By Remark 2.4, the ring R =
D{w; | i € I} is an integral domain. Let Q be its quotient field. For each i € I let

Qi =01y =Dw; | j #i]~{O0) 'Ry iy and Q) =0

(we use the notation of §2). By Corollary 2.7, | J;; Qi = E, which establishes
Condition (1e) of Definition 1.1. Moreover, by Theorem 2.6(a), Ql/. =U i 0;,
foralli e 1.

The group I' = Gal(K/Ky) leaves D = Ay|[z] invariant, because D is the
integral closure of Ar in K. By Proposition 3.5, I' acts continuously on D with
respect to the norm | - |. Moreover, I" lifts isomorphically to Gal(E/ Eyp). For all
yel andi € I we have wl?/ = wj» (by Construction A). Hence, I" acts continuously
on D[w; | i € I]. Therefore, I lifts to a group of automorphisms of the completion
R = D{w; |i € I} of D[w; | i € I] with respect to | -|. Finally, " extends to
a group of automorphisms of m = Quot(R). Under this action, Qly = Q;» and
(Q))Y = Qj, forally eT"andi € 1.

For each j € J, [Par08, Prop. 6.1] gives a cyclic extension F; /E with group
G, = (t;) such that F; /K has a prime divisor of degree 1. Moreover, F; is an
unramified extension of E.

By [Par08, Rem. 4.3(a)] the map w; +— x extends to a K-isomorphism of
K((wy)) onto K((x)) which maps Ry;, onto D{x}. By Proposition 3.4, D satisfies
Condition 3 preceding [Par08, Lem. 6.3]. Hence, by [Par08, Lem. 6.3] we may
replace F;/E by an isomorphic extension such that F; = E(f;), where ; and
its conjugates over E belong to Ry, and discrg (irr(B;, E)) € R?j}. In particular,

Fj € Q;.
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For an arbitrary i € I there exist unique j € J and y € T" such thati = jV
(by (5a)). Let F; = F jy =F (,3}’). Since y acts on 2 and leaves E invariant,
F; is a Galois extension of E and F; C Q; This establishes Condition (1b) of
Definition 1.1.

Construction C: The action of T" on the rings Q. The isomorphism y: F; — F;
gives an isomorphism Gal(F;/E) = Gal(F; / E) which maps each v € Gal(F;/E)
onto y~l ot oy € Gal(F;/E) (notice that the elements of the Galois groups act
from the right). In particular, it maps 7; onto y~lo 7; oy. We can therefore identify
G; with Gal(F;/E) such that 7; coincides with y~! o 7; o y. This means that
(@®)’ = (a¥)" foralla € Fjand 7 € G;.

It follows that for all i € I and y € I" we have Fl.y = Fj». Moreover, (a®)Y =
(a?)" foralla € F; and 7 € G;.

Construction D: Generalized patching data. Fix j € J,y €', andleti = j?,
Bi = ,By Then F; = E(B;). Con51der an element o € G;. There exists 7 € G;
with 0 = y~ !ty and By = (,By)y = (,3 )Y € (Rj)Y = Ry;y. Similarly,
discr(irr(B;, E)) = (dlSCI‘(lI‘I‘(,BJ, E)))?, so dlscr(lrr(,B,, E)) e R{l}

If y € Quot(Q;) N Q] is algebraic over E, then y is integral over Q;. Hence,
by Theorem 2.6(b), y € E. It follows that F; N Quot(Q;) = E, foralli € I. This
proves Condition (1c) of Definition 1.1.

Thus, € = (E, F;, Q;,2; G;, G);eg is a generalized patching data (Definition
1.1) and I" acts properly on € (Definition 1.4). By Lemma 2.9(a) € satisfies
Condition (COM). By Proposition 1.5, the pre-compound F of € satisfies assertions
(a) and (b).

Definition 1.6 gives an E-isomorphism of F onto the compound F’ of the
patching data, which then also satisfies (a) and (b). The element ¢ chosen in
Construction A enables us to use Lemma 2.9(b), which proves (c). O

THEOREM 4.2. Suppose Ko = Quot(A) is Hilbertian. Then every finite split
embedding problem over Ky is solvable.

Proof. Given an FSEP over Kj, we can solve the problem over Ko(x),
by Theorem 4.1, and specialize the solution to a solution over Ky, by [FJOS,
Lem. 16.4.2]. |

THEOREM 4.3. Let L be an arbitrary field, and n > 2 an integer. Then:

(a) Every constant finite split embedding problem over L((X1, . .., X»))(x) has
a rational solution.

(b) Every finite split embedding problem over L((X1, ..., X)) is solvable.
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Proof. The ring L[[X1,..., X,] is an integrally closed Noetherian domain
[ZS60, VIL.§1]. The order function of p = (X1, ..., X, ) extends to a discrete valua-
tion on the quotient field L((X1,..., X)), and L[[ X1, ..., X] is complete with re-
spect to this valuation [ZS60, VIL.§1]. By a theorem of Weissauer L((X1, ..., X))
is Hilbertian [FJO5, Exa. 15.5.2]. We conclude from Theorem 4.2 that (a) and (b)
hold. O

Theorem 4.2 also helps solve FSEPs over the field Quot(Z[X1,..., Xx]),
where n > 1. More generally:

THEOREM 4.4. Let B be a Noetherian integrally closed domain which is not a
field, and let n > 1 an integer. Then:

(a) Every constant finite split embedding problem over
Quot(B[[X1,..., Xu])(x)

has a rational solution.

(b) Every finite split embedding problem over
Quot(B[ X1, ..., Xal)
is solvable.

Proof. The ring B is a Krull domain, by [Nag62, Prop. 33.4], so the quotient
field of B[[X1, ..., Xy] is Hilbertian, again by Weissauer [FJOS5, Exa. 15.5.3]. The
rest of the proof is identical to that of Theorem 4.3. O
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