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Abstract

Let .W; S/ be a crystallographic Coxeter group (this includes all finite and affine
Weyl groups), and let J �S . LetW J denote the set of minimal coset representatives
modulo the parabolic subgroup WJ . For w 2W J , let f w;Ji denote the number of
elements of length i below w in Bruhat order on W J (with notation simplified to
f wi in the case when W J DW ). We show that

0� i < j � `.w/� i implies f w;Ji � f w;Jj :

Also, the case of equalities f wi D f
w
`.w/�i

for i D 1; : : : ; k is characterized in terms
of vanishing of coefficients in the Kazhdan-Lusztig polynomial Pe;w.q/.

We show that ifW is finite then the number sequence f w0 ; f
w
1 ; : : : ; f

w
`.w/

cannot
grow too rapidly. Further, in the finite case, for any given k � 1 and any w 2W of
sufficiently great length (with respect to k), we show

f w`.w/�k � f
w
`.w/�kC1 � � � � � f

w
`.w/:

The proofs rely mostly on properties of the cohomology of Kac-Moody Schubert
varieties, such as the following result: if Xw is a Schubert variety of dimension
d D `.w/, and �D c1.L/ 2H 2.Xw/ is the restriction to Xw of the Chern class of
an ample line bundle, then

.�k/ � WHd�k.Xw/!HdCk.Xw/

is injective for all k � 0.

1. Introduction

Let .W; S/ be a Coxeter system with S finite. Fix a subset J � S , and let
W J denote the set of minimal coset representatives modulo the parabolic subgroup
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WJ D hJ i. For w 2W J , let

f w;Ji WD cardfu 2W J
j u� w and `.u/D ig:

In words, f w;Ji is the number of length i elements contained in the Bruhat interval
Œe; w�J D Œe; w�\W J . For terminology and basic facts concerning Coxeter groups,
Weyl groups, and Bruhat order, we refer to [BB05], [Hum90].

For a certain class of Coxeter groups we can apply geometric methods to study
the numbers f w;Ji . The groups to which our methods are applicable are those
for which the order of a product of two generators is 2, 3, 4, 6, or 1; these are
usually called the crystallographic Coxeter groups. They are precisely the groups
that appear as Weyl groups of Kac-Moody algebras (cf. [Kac83, Proposition 3.13]).
The main purpose of this paper is to prove the following relations and some of their
ramifications.

THEOREM A. Let .W; S/ be a crystallographic Coxeter group, J � S , and
w 2W J . Then

0� i < j � `.w/� i implies f w;Ji � f w;Jj :

This theorem follows immediately from a certain cohomological injectivity
condition. Similar injectivity properties have recently appeared in other contexts
(cf. [HS02, Theorem 7.4] and [Swa06, �3]). For the definition of Schubert variety
see the beginning of Section 4.

THEOREM B. Let Xw be a Schubert variety of dimension d D `.w/ of a
Kac-Moody group, and let � WD c1.L/ be the Chern class of an ample line bundle
on Xw . Then the map

.�k/ � WHd�k.Xw/!HdCk.Xw/

is injective for all k � 0.

Combining the cohomological arguments used for proving Theorem A with
a linear-algebraic argument of Stanley [Sta80], we can sharpen Theorem A to a
combinatorial statement giving structural reasons for these inequalities.

THEOREM C. Let .W; S/ be a crystallographic Coxeter group, and let J � S .
Fix w 2 W J and i such that 0 � i < `.w/=2. Then, in Œe; w�J there exist f w;Ji

pairwise disjoint chains ui < uiC1 < � � �< u`.w/�i such that `.uj /D j .

The inequalities of Theorem A are equivalent to the combination of the two
sets of inequalities

f
w;J
i � f

w;J
`.w/�i

for all i < `.w/=2; and(1)

f
w;J
0 � f

w;J
1 � � � � � f w;J

d`.w/=2e:(2)
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For the rest of this section we treat only the J D∅ case. Then W J DW , so for
simplicity we drop “J ” from the notation. In this case the relations (1), conjec-
tured independently by Carrell [Car95] and by the present authors, sharpen the
inequalities

P
i�k f

w
i �

P
i�k f

w
`.w/�i

for all 0�k <`.w/=2, due to Brion [Bri00,
Corollary 2].

The case of equality in some of the relations (1) is interesting. Fix w 2 W ,
and let m WD b.`.w/� 1/=2c. Let

Pe;w.q/D 1Cˇ0Cˇ1qC � � �Cˇmq
m

be the Kazhdan-Lusztig polynomial of the interval Œe; w�. It is known [Kum02,
Theorem 12.2.9] that all Kazhdan-Lusztig polynomials have nonnegative coefficients
if W is crystallographic, and that ˇ0 D 0.

THEOREM D. Suppose that .W; S/ is crystallographic. Let w 2 W and
0� k �m. Then the following conditions are equivalent:

(a) f wi D f
w
`.w/�i

, for i D 0; : : : ; k, and

(b) ˇi D 0, for i D 0; : : : ; k.

Furthermore, if k < m then (a) and (b) imply

(c) ˇkC1 D f w`.w/�k�1�f
w
kC1

.

In the case k Dm, the equivalence of (a) and (b) specializes to a criterion, due
to Carrell and Peterson [Car94], for rational smoothness of the Schubert variety Xw .

The next result shows, among other things, that for finite groups the increasing
sequence (2) cannot grow too fast. The condition of being an M -sequence is
recalled in Section 6.

THEOREM E. Let .W; S/ be a finite Weyl group and w 2W . Then the vectors
.f w0 ; f

w
1 ; : : : ; f

w
`.w/

/ and .f w0 ; f
w
1 �f

w
0 ; f

w
2 �f

w
1 ; : : : ; f

w
b`.w/=2c

�f w
b`.w/=2c�1

/

are M -sequences.

The increasing inequalities (2) have decreasing counterparts at the upper end
of the Bruhat interval, but the information we are able to give about this is much
weaker.

THEOREM F. For all k � 1, there exists a number Nk such that for every finite
Coxeter group .W; S/ and every w 2W such that `.w/�Nk , we have

f w`.w/�k � f
w
`.w/�kC1 � � � � � f

w
`.w/

:

The paper is organized as follows. Sections 2 and 3 contain preliminary
material on the algebraic geometry underlying the proofs of Theorems A, B and
D in Section 4. The proofs of Theorems C, E and F can be found in Sections 5, 6
and 7, respectively. Section 8 expands on some algebraic geometry needed for the
proofs.
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2. The pure cohomology

Let F be an endomorphism of a graded Q`-vector space V that is finite
dimensional in each degree. It will be said to be of weight � w (respectively of
pure weight w) with respect to a positive integer q if the eigenvalues of F on V i

are algebraic numbers all of whose conjugates have the same absolute value qj=2

for some j � wC i (respectively j D wC i). A theorem of Deligne provides a
large number of such vector spaces in the following way.

Consider a proper variety X0 over a finite field Fq and étale cohomology
H�.X;Q`/, considered as a graded vector space. (We shall follow the usual
convention of using 0 as a subscript to denote objects over a finite field and drop
the subscript when we extend scalars to an algebraic closure of that field). The
Frobenius map on X0 induces an endomorphism F of H�.X;Q`/ and Deligne’s
theorem [BBD82, 5.1.14] says that the action of F on H�.X;Q`/ is of weight � 0.
We shall only be interested in the pure part, H�p .X;Q`/, of H�.X;Q`/, which
by definition is obtained from H�.X;Q`/ by factoring out by the F -generalized
eigenspaces of weight < 0. Our first result will identify H�p .X;Q`/ with the image
of H�.X;Q`/ in the (middle perversity) intersection cohomology IH�.X;Q`/
of X .

We start by recalling the construction of [GM83, �5.1] (which, as the authors
note, works also in an étale context) of a map of sheaves Q`;X ! jŠ�Q`;U , where
j WU !X is the inclusion of its nonsingular locus of the algebraic variety X (when
confusion needs to be avoided, we shall use Q`;Z for the constant sheaf Q` on the
scheme Z). This map induces a map from ordinary cohomology to intersection
cohomology. (We use the degree conventions of [BBD82], which means that we
have a map Q`;X ! jŠ�Q`;U rather than Q`;X Œn�! jŠ�Q`;U as in [GM83].)

Note now that, by definition, if X0 is an algebraic variety over a finite field Fq ,
a mixed complex E0 on X0 (cf. [Del80, 1.1.2]) is of weight � w precisely when
the graded vector space H�.ENs/ is of weight � w (with respect to q) for every
geometric point Ns of X0 with image a closed point of X0 whose residue field has
cardinality q.

THEOREM 2.1. Let X0 be a proper variety over a finite field. Then the kernel
of the map from ordinary cohomology to intersection cohomology H�.X;Q`/!
IH�.X;Q`/ consists exactly of the part of H�.X;Q`/ of weight less than 0. In
particular, H�p .X;Q`/ is the image of H�.X;Q`/ in IH�.X;Q`/.

Proof. Let j W U0!X0 be the inclusion of the smooth locus. We fit the map
Q`;X0

! jŠ�Q`;U0
into a distinguished triangle

! F!Q`;X0
! jŠ�Q`;X0

! :
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We start by showing that F is of weight < 0. By [BBD82, Corollary 5.4.3] we
know that jŠ�Q` is pure of weight 0. Let now Ns be a geometric point of X0 with
image a closed point (whose residue field then is finite). We have an exact sequence

H i�1..jŠ�Q`;U0
/Ns/!H i .FNs/!H i ..Q`;X0

/Ns/!H i ..jŠ�Q`;U0
/Ns/;

and, since H i�1..jŠ�Q`;U0
/Ns/ is of weight � i � 1, it is enough to show that

H i ..Q`;X0
/Ns/!H i ..jŠ�Q`;U0

/Ns/ is injective, which is a nontrivial condition only
for i D 0. In that case it is indeed injective as the composite Q`;X0

! jŠ�Q`;U0
!

Rj�Q`;U0
induces an isomorphism on H 0. � /. By Deligne’s theorem [BBD82,

5.1.14] we get that H�.X;F/ is of weight < 0, and since the sequence

H�.X;F/!H�.X;Q`/!H�.X; jŠ�Q`/

is exact, we see that the kernel of H�.X;Q`/!H�.X; jŠ�Q`/ is of weight < 0.
On the other hand, again by Deligne’s theorem and duality, H�.X; jŠ�Q`/ is

pure of weight 0, and hence everything in H�.X;Q`/ of weight < 0 lies in the
kernel. �

Remark. (i) Over the complex numbers this result is proved in [Web04] (using
instead Deligne’s Hodge-theoretically defined weight filtration). For the applications
of this paper, that result could also be used. In any case, the filtration by weights of
`-adic cohomology is defined for a variety over any field, commutes appropriately
under specialization of the base field, and coincides with Deligne’s Hodge-theoretic
weight filtration over the complex numbers. Thus our results are compatible with
those of [Web04].

(ii) Nothing changes in the argument if one replaces U0 by a smaller open
dense subset and Q` by j�E, where E is a local system of pure weight 0.

Since it seems reasonable, we shall introduce the pure Betti numbers bpi WD
dimQ`

H i
p.X;Q`/. Our next result is a weakening of some well-known numeric

consequences for the Betti numbers of a smooth and proper variety that arise as
a consequence of the hard Lefschetz theorem. The stated restriction to varieties
defined over finite fields is easily dispensed with, but we keep it to avoid too many
details.

THEOREM 2.2. Let X0 be a projective variety over a finite field, of pure
dimension n. We have that bpi � b

p
iC2j for all 0 � j � n� i . In particular, for

i � n we have that bpn�i � b
p
nCi .

Proof. By Theorem 2.1, it follows that the map H�.X;Q`/!IH�.X;Q`/
has H�p .X;Q`/ as its image. Since it is induced by a map of Q`-complexes of
sheaves, this map is an H�.X;Q`/-module map. In particular, for 0� j � n� i
it commutes with multiplication by c1.L/j (the first Chern class of an ample line
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bundle), giving a commutative diagram

H i
p.X;Q`/ //

\c1.L/
j

��

IH i .X;Q`/

\c1.L/
j

��
H
iC2j
p .X;Q`/ // IH iC2j .X;Q`/:

By what we have proved, the horizontal maps are injective, and the right vertical
map is an injection by the hard Lefschetz theorem (see [BBD82, Theorem 5.4.10],
and note that there they have made a shift by n of the cohomology sheaves, hence
the difference in indexing). This implies that the left vertical map is injective, giving

b
p
i D dimQ`

H i
p.X;Q`/� dimQ`

H iC2j
p .X;Q`/D b

p
iC2j : �

Using these theorems for motivation and consistency we define the pure
cohomologyH�p .X;Q`/, for any proper varietyX over an algebraically closed field,
as the image of H�.X;Q`/ in IH�.X;Q`/, and similarly for rational coefficients
when the base field is the field of complex numbers.

3. The number of cells

We define a stratification of a proper variety X as a (necessarily finite) col-
lection fV˛g˛2I of subvarieties of X , called strata, such that X is the disjoint
union of them and the closure of each stratum is a union of strata. We get a partial
order on the index set I of the strata by saying that ˛ � ˇ when V˛ � Vˇ . It then
follows that if J � I is downwards closed (i.e., if ˛ � ˇ and ˇ 2 J then ˛ 2 J )
then XJ WD

S
˛2J V˛ is a closed subset, as it is the union of the closed subsets

V˛ D
S
ˇ�˛ Vˇ for all ˛ 2 J .

An algebraic cell decomposition of X is a stratification for which each stratum
(which in this case will also be called a cell) is isomorphic to the n-dimensional
affine space An for some n.

THEOREM 3.1. Let X be a proper variety over an algebraically closed field,
having an algebraic cell decomposition with fi cells of dimension i .

(i) H 2iC1.X;Q`/D 0 for all integers i . In particular, b2iC1 D b
p
2iC1 D 0.

(ii) H 2i .X;Q`/DH 2i
p .X;Q`/ for all i , and this space has a basis in bijection

with the set of cells of dimension i . In particular, b2i D b
p
2i D fi for all i .

(iii) Assuming that X is projective of pure dimension n we have that fi � fj for all
i � j � n� i .

Proof. Although parts (i) and (ii) are well known, we give a sketch for the
convenience of the reader. In any case, by standard specialization arguments we
may assume that X is defined over the algebraic closure of a finite field Fq , and
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after possibly extending the finite field we may assume that X as well as the strata
are defined over Fq . Parts (i) and (ii) are now proved by induction over the number
of cells using the long exact sequence of cohomology,

� � � !H i
c .U;Q`/!H i .X;Q`/!H i .F;Q`/! � � � ;

which holds for U � X open with complement F , where the cohomology with
compact support, H�c , is as defined in [AGVC73, exposé XVII, définition 5.1.9].
This is then combined with the fact thatH i

c .An/D 0 for i ¤ 2n andH 2n
c .An/DQ`

is pure of weight 2n. As X , U , and F are defined over Fq the Frobenius map acts
on all the vector spaces involved compatibly with all the maps. (Note that this
long exact sequence is for cohomology with compact supports, but as X and F are
compact, cohomology with compact supports is equal to ordinary cohomology.)

Part (iii) now follows from Theorem 2.2. �

4. Proofs of Theorems A, B and D

As was mentioned in the introduction, the crystallographic groups are precisely
the ones that appear as Weyl groups of Kac-Moody algebras. We are now going to
apply the results of previous sections to such Weyl groups. General references for
background to this material are the books by Kac [Kac83] and Kumar [Kum02];
for the algebraic-geometric aspects see [Kum02], [Slo86].

We start by recalling some properties of the Schubert varieties for a Kac-
Moody algebra (group). (It seems that no attempt has been made to extend the
construction of Kac-Moody groups to positive characteristic, à la Chevalley, so
we restrict ourselves to characteristic zero from now on.) Let .W; S/ be the Weyl
group of the Kac-Moody algebra (which is a Coxeter group on the generating set
S ), pick J � S , and let WJ be the subgroup of W generated by the elements of J .
As is well known, there is a unique element w of minimal length in any WJ -coset
w. The set of such elements will be denoted W J .

For each w 2 W J there exists [Kum02, Chapter 7; Slo86, �2.2] a complex
projective variety Xw , which we shall call the Schubert variety of w, containing
locally closed subvarieties Xu for all u2 Œe; w�J whose closures are disjoint unions

Xu D
]
z�u

Xz;

where z is assumed to be in W J . The partial order � is the Bruhat order, and Xu
is a subvariety of Xw isomorphic to A`.u/ [Slo86, Theorem 2.4].

Remark. The varietyXw depends, at least a priori, on the choice of a dominant
weight. However, we are just going to use its existence and not any uniqueness. (It
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is in any case true that any two choices give varieties that are related by algebraic
maps that are homeomorphisms [Slo86], and hence have the same cohomology.)

Going further, the Kac-Moody group has a Borel subgroup B which acts on
each Xw such that the Xu for u�w are the orbits. Note that B is not an algebraic
group but only a group scheme (i.e., not of finite type). However, the action on any
Xw factors through a quotient which is an algebraic group, and we shall therefore
allow ourselves to act as if B itself was an algebraic group. Using this action we
get the next result.

LEMMA 4.1. The restriction of a B-complex (see §8 for the definition) of Xw
to some Xu, for u� w, is constant.

Proof. Recall (cf. [Slo86, 1.8]) that there is a subvariety Uu of B and a point x
on Xu such that the map g 7! gx gives an isomorphism Uu!Xu. Now, if C is the
B-complex, then by assumption we have an isomorphism between p�2C and m�C
on B �Xw . Taking the restriction of this isomorphism to Uu � fxg, we obtain an
isomorphism between C and the constant extension of Cx to Xu. �

Remark. By Proposition 8.3 this result can be applied to the intersection com-
plex. In the setup of [BM01], rather than assuming a B-action, an equisingularity
condition along Xu is assumed (which should follow from the fact that Xu is a
B-orbit). This implies that the restriction to Xu is locally constant, and then the
fact that Xu is isomorphic to an affine space and hence contractible implies that
locally constant complexes are constant.

Using the Kac-Moody Schubert varieties we can now undertake the proofs of
the main results.

Proof of Theorems A and B. Theorem B follows immediately from Theorem
2.2, and Theorem A follows immediately from Theorem 3.1, both applied to Xw .

�

Remark. In connection with the inequalities of Theorem A it might be tempting
to speculate that the f -vectors .f w;J0 ; f w;J1 ; : : : ; f w;J

`.w/
/ are unimodal, meaning

that they increase up to some maximum and then decrease. However, as pointed
out by Carrell [Car95], this is false. See Stanton [Sta90] for nonunimodal examples
in groups of type An modulo maximal parabolic subgroups.

For the proof of Theorem D we need to extend the monotonicity theorem
of Braden and MacPherson (see [BM01, Corollary 3.7]) to the case of a general
Kac-Moody Schubert variety.

THEOREM 4.2. Let x � y � z in a crystallographic Coxeter group. Then
P ix;z � P

i
y;z , where P i�;z denotes the coefficients of qi of the respective Kazhdan-

Lusztig polynomials.
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Remark. It is no doubt true that the Whitney stratification condition, which is
one of the standing hypotheses of [BM01], is indeed fulfilled also in this case. But
rather than trying to verify that, we note that the fact that the Schubert cells are the
orbits of a group action can be used more directly to prove the necessary conditions.
Since the proofs of [BM01] are also sometimes somewhat sketchy, we have therefore
chosen to go through the needed steps rather than leaving to the reader the task of
checking that the proofs of Braden and MacPherson go through. At the same time,
this allows us to give the results in our context of `-adic cohomology rather than in
the de Rham-cohomology context of [BM01]. We have deferred to Section 8 the
part of the argument that does not directly pertain to Kac-Moody Schubert varieties.
We will here take that material for granted.

Proof. Here, as in the more familiar case of finite and affine Weyl groups,
these Kazhdan-Lusztig coefficients can be interpreted as the dimension of the fibre
of the cohomology of the intersection complex for Xz at a point of Xx . Hence the
monotonicity Theorem 4.2 follows from our analogue of [BM01, Theorem 3.6],
which we now have the appropriate tools for proving. We state it as a separate
proposition. �

PROPOSITION 4.3. For x � y � z 2 W J we have a surjective map of Q`-
vector spaces IH�.Xz/x! IH�.Xz/y , where the IH�.Xz/ are the cohomology
sheaves of the intersection complex of Xz and . � /t denotes a fibre at any point
of Xt .

Proof. This is [BM01, Theorem 3.6] in our context. Its proof, as well as proofs
of the supporting [BM01, Lemma 3.1, Lemma 3.3, Proposition 3.4, and Theorem
3.5], can now be carried through:

� The analogue of [BM01, Lemma 3.1] follows from [Spr84, Proposition 1] and
Proposition 8.3.

� The analogues of [BM01, Lemma 3.3, Proposition 3.4, and Theorem 3.5]
can be proved with the same proofs, using [Del80] instead of [Sai89] for the
weight results (note that in sheaf theory the relative cohomology H�.X;U;F/
is defined as the cohomology with support H�Y .X;F/, where Y WDX nU ).

� In the proof of (the analogue of) [BM01, Theorem 3.6], we use Lemma 4.1 to
conclude that the intersection complex is constant on each Xt and hence its
cohomology on Xt is equal to its fibre for any point on Xt .

� To get a contracting action on Xz with the same fixed points as for the torus
T � B , we use Corollary 8.2 applied to Z consisting of a single fixed point
(note that Xz is irreducible). To verify the needed conditions, we use that Xz
lies in an ind-variety that set-theoretically is equal to G=PJ , where G is the
Kac-Moody group and PJ is the parabolic subgroup corresponding to J . The
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fixed points of T on G=PJ are the cosets wPJ , where w runs overW J (where
W is identified with the normalizer N of T in G divided by T itself). What we
want to show is that the cone spanned by the weights of the cotangent space of
x D xPJ 2Xz does not contain a line. For this it is enough to show the same
thing for the cotangent space of x in G=PJ . By multiplying by x�1 2N we
reduce to x D e and by (vector space) duality to the case of the tangent space
of e 2 G=PJ . However, that tangent space is equal to g=pJ , where g is the
corresponding Kac-Moody Lie algebra and pJ is the corresponding parabolic
subalgebra. That means that the weights form a subset of the weights of g=b,
where b is the Lie algebra of B . These weights are exactly the negative roots
of the root system of the Lie algebra, and they lie in the cone generated by the
negatives of the simple roots, a cone that indeed does not contain a line. �

We are now ready to prove our fourth main theorem.

Proof of Theorem D. Assume condition (b), and let

Fw.q/D

`.w/X
iD0

aiq
i
WD

X
x�w

q`
.x/
Px;w.q/:

Theorem 4.2 implies that the qi -coefficient of Px;w.q/ is 0 for all i D 1; : : : ; k and
all x � w. Hence, since also degPx;w.q/� b.`.w/� `.x/� 1/=2c, we get

a0 D 1; a`.w/ D 1;

a1 D f
w
1 ; a`.w/�1 D f

w
`.w/�1;

:::
:::

ak D f
w
k ; a`.w/�k D f

w
`.w/�k;

akC1 D f
w
kC1CˇkC1; a`.w/�k�1 D f

w
`.w/�k�1:

Here the last row requires that k < m.
Now use that ai D a`.w/�i for all i . This is valid in all Coxeter groups by

[KL79, Lemma 2.6(v)] (in this case it is also implied by Poincaré duality of middle
intersection cohomology of Xw ). From this we conclude condition (a), as well
as (c).

Finally, assume that condition (b) fails, say d � k is minimal such that ˇd ¤ 0.
Applying that (b) implies (c), we get that f w

`.w/�d
�f w

d
Dˇd ¤ 0, so also condition

(a) fails. �

5. Proof of Theorem C

As mentioned in the introduction we shall use an argument of Stanley. When
adapting it, it is more natural, both from a geometric and linear algebra point of
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view, to consider homology than cohomology (it will be clear that formally this is
not required). Even though there is a sheaf theoretic definition, for our purposes
it is enough to define the homology Hi .X;Q`/, for a projective variety X , as the
dual vector space to H i .X;Q`/. Then the homology becomes a covariant instead
of a contravariant functor. We denote by f� the map induced by a map f WX! Y .
Furthermore, if X is proper and purely n-dimensional, then there is the trace map
H 2n.X;Q`/!Q`, which is surjective and hence gives an element, the fundamental
class, ŒX� 2 H2n.X/. If X is a closed subvariety of Y , then we get an element
ŒX� WD i�ŒX�, the class of X , where i WX ! Y is the inclusion. Now, if U �X is
an open n-dimensional subset, then the composite H 2n

c .U /!H 2n.X/!Q` is
surjective and depends only on U . When U D An, the map H�c .An/!Q` is an
isomorphism. Assuming now that X has a cell decomposition, combining this with
Theorem 3.1 (or rather its proof) gives that H2i .X/ has the classes of the closures
of the i -dimensional cells as basis.

Remark. This result may seem to contradict [Sta80, Theorem 2.1], as together
they would imply that if X is n-dimensional, then the number of i -cells is equal to
the number of .n� i/-cells, which is not true in general (e.g., for a Schubert variety
this is true, by the Carrell-Peterson criterion, if and only if it is rationally smooth).
However, when X is smooth, [Sta80, Theorem 2.1] is true, and that is the only case
considered there.

Now, as H�.X/ is a Q`-algebra, H�.X/ becomes a module over H�.X/.
Furthermore, if f W X ! Y is a map, then H�.X/ becomes a H�.Y /-module
through y � x D f �y � x and then, purely formally, we have the projection formula
y �f�x D f�.f

�y �x/ for y 2H�.Y / and x 2H�.X/. We are now ready to prove
the analogue of [Sta80, Lemma 2.2] (which as it stands is true only in the smooth
case).

LEMMA 5.1. Let X be a variety with an algebraic cell decomposition, and
let L be a line bundle on X . Then for any cell C , the expansion c1.L/ � ŒC � DP
D dC;DŒD �, where D runs over the cells of X , has the property that dC;D D 0

unless D � C .

Proof. Let i W C !X be the inclusion, and consider ŒC � 2H�.C /. Since C
has a cell decomposition, the cells of which are the D for which D � C , we get
that

i�c1.L/ � ŒC �D
X
D

dC;DŒD � 2H�.C /;

where D runs over the cells of C . Applying i� to this formula gives c1.L/ � ŒC �DP
D�C dC;Di�ŒD �. However, ŒD�2H�.C / is equal to j�ŒD�, where j WD!C is

the inclusion. Hence i�ŒD�D i�j�ŒD�D .ij /�ŒD�, but the right side is by definition
the class of D in X . �
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We are now almost ready to adapt Stanley’s proof. However, in [Sta80] the
hard Lefschetz theorem is combined with [Lemma 1.1] for the desired conclusion
and in our situation the hard Lefschetz theorem does not quite give a bijective map.
Luckily the proof of [Lemma 1.1] needs only a slight modification to be applicable
to our situation (where we also, contrary to [Sta80], do not turn the geometric poset
“upside down”).

LEMMA 5.2. Let P be a finite graded poset of rank n. Let Pj denote the set
of its elements of rank j , and let Vj be the vector space with basis Pj over some
given field. For each i � j < n� i , assume there exists a linear transformation
'j W VjC1! Vj such that the following two conditions are satisfied:

(a) The composite map 'i ı'iC1 ı � � � ı'n�i�2 ı'n�i�1 is surjective.

(b) If x 2 PjC1 and 'j .x/D
P
y2Pj

c
j
x;yy, then c jx;y D 0 unless y < x.

Then, in P there exist card.Pi / pairwise disjoint chains xi < xiC1 < � � � < xn�i
such that rank.xj /D j for all j .

Proof. The proof of [Sta80, Lemma 1.1] goes through in this situation with
only slight modification. For the reader’s convenience we repeat the argument.

Let m WD card.Pi /, and put ' WD 'i ı � � � ı 'n�i�1. Since ' is surjective,
so is ƒm' W ƒmVn�i ! ƒmVi . By the definition of ', we get that ƒm' D
ƒm.'i / ı � � � ı ƒ

m.'n�i�1/. Using the bases Pj we get bases for ƒmVj and
hence a matrix for each ƒm.'j /. An entry of the product matrix of the composite
ƒm.'i / ı � � � ıƒ

m.'n�i�1/ has the formX
det'i ŒQiC1;Qi � det'iC1ŒQiC2;QiC1� � � � det'n�i�1ŒQn�i ;Qn�i�1�;

where Qj � Pj with card.Qj /DmD card.Pi /, Qn�i specifies the entry of the
matrix of the composite, 'j ŒQjC1;Qj � is the submatrix of 'j corresponding to the
sets of basis elements Qj and QjC1, and the sum runs over all the choices of Qj
for i � j < n� i . By assumption there is a Qn�i such that this sum is nonzero,
and hence there is a summand that is nonzero. This gives us a set of Qj such that
all the det'j ŒQjC1;Qj � are nonzero. In particular, one term of the expansion of
this matrix must be nonzero, which gives us a bijection �j WQjC1!Qj such that
c
j

x;�j .x/
¤ 0 for all x 2QjC1. By assumption (b), this implies that �j .x/ < x for

all x 2QjC1. �

Proof of Theorem C. We apply Lemma 5.2 to the interval Œe; w�J , a graded
poset of rank `.w/. We identify the vector space Vj with H2j .X/, where X is the
Schubert variety of w, and we let 'j WH2jC2.X/!H2j .X/ be multiplication by
c1.L/. Condition (a) of the lemma follows from the proof of Theorem 2.2, which
shows that multiplication by c1.L/n�2i gives an injective map from H 2i .X/ to
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H 2n�2i .X/ and hence by duality it gives a surjective map from H2n�2i .X/ to
H2i .X/. Condition (b) follows from Lemma 5.1. �

6. Proof of Theorem E

We begin by recalling the definition of an M -sequence. For n; k � 1 there is
a unique expansion

nD
�ak
k

�
C

�ak�1
k�1

�
C � � �C

�ai
i

�
;

with ak > ak�1 > � � �> ai � i � 1. This given, let

@k.n/ WD
�ak�1
k�1

�
C

�ak�1�1
k�2

�
C � � �C

�ai�1
i�1

�
and @k.0/WD 0:

THEOREM (Macaulay and Stanley [Sta78, Theorem 2.2]). For an integer
sequence .1;m1; m2; : : :/ the following conditions are equivalent (and this defines
an M -sequence):

(1) @k.mk/�mk�1 for all k � 1;

(2) dim.Ak/ D mk for some graded commutative algebra A D ˚k�0Ak (over
some field) such that A is generated by A1.

PROPOSITION 6.1. Let H�.Xw/ be the cohomology algebra of a Schubert
variety Xw .

(a) If W is finite then H�.Xw/ is generated in degree one for all w 2W .

(b) There exist elements u in the affine Weyl group eC 2 for which H�.Xu/ is not
generated in degree one.

Proof. Suppose that W is finite. We are to show that H�.Xw/ is generated in
degree one (or, equivalently, in dimD 2). For w D w0 this is classical — it can be
seen either from the description of H�.Xw0

/ in terms of special Schubert classes
or from the isomorphism of H�.Xw0

/ with the coinvariant algebra of W .
For w ¤ w0 we use that the inclusion Xw ,! Xw0

induces an injective
map on homology H�.Xw/!H�.Xw0

/, as is apparent from the cell decompo-
sition. Hence, dually there is an algebra surjection H�.Xw0

/!H�.Xw/. Since
H�.Xw0

/ is generated in degree one, so is H�.Xw/. This proves part (a).
For part (b) we observe that the Poincaré series of eC 2 beginsX

q`
.w/
D 1C 3qC 5q2C 8q3C � � � :

Let u 2 eC 2 be an upper bound (in Bruhat order) to all eight elements of length
3. That such elements exist follows from [BB05, Proposition 2.2.9]. Then f u D
.1; 3; 5; 8; : : :/, which is not an M -sequence since @3.8/ D 6 6� 5. So, by the
Macaulay-Stanley theorem, H�.Xu/ is not generated in degree one. �
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Proof of Theorem E. The vector f w D ff0; f1; : : : ; f`.w/g satisfies fk D
dimH 2k.Xw/. Hence, to prove that f w is an M -sequence it suffices to show that
H�.Xw/ is generated in degree one. This was done in Proposition 6.1.

To prove that

.f w0 ; f
w
1 �f

w
0 ; f

w
2 �f

w
1 ; : : : ; f

w
b`.w/=2c�f

w
b`.w/=2c�1/

is an M -sequence, we apply the Macaulay-Stanley theorem to the algebra

H�.X;Q`/=c1.L/H�.X;Q`/CH>`.w/
.X;Q`/;

which by Theorem 2.2 corresponds to the desired vector. �

Remark. The M -sequence property fails for general intervals Œx; w� in finite
groups. For instance, for a particular x 2 C4,X

x�y�w0

q`
.y/�`.x/

D 1C 4qC 11q2C � � � :

This information can be read off from Goresky’s tables [Gor81] by letting xD zw0,
where z is element number 377 of C4 (i.e., x D 1 2 4 3 and z D 1 2 4 3 in signed
one-line notation). Since @2.11/D 5 6� 4, this is not an M -sequence.

7. Proof of Theorem F

Let Œu; v� be a Bruhat interval. The elements of Œu; v� of length `.u/C 1 are
its atoms. We let f u;v

`.u/C1
denote the number of atoms in Œu; v�.

It has been shown by Dyer [Dye91] that (up to isomorphism) only finitely
many posets of each given length r occur as intervals in the Bruhat order on finite
Coxeter groups. Therefore, the function

M.r/ WDmaxŒu;v�ff
u;v
`.u/C1

j `.v/� `.u/� rg

is well defined. That is, M.r/ denotes the maximum number of atoms of a Bruhat
interval of length at most r occurring in any finite Coxeter group.

As usual, denote by w0 the element of maximal length in any given finite
group W . It follows from the classification of irreducible finite Coxeter groups that

Q.s/ WDmax.W;S/f `.w0/ j card.W / <1; card.S/D sg

is a well-defined number-theoretic function for s ¤ 2, where the maximum is taken
over all irreducible finite Coxeter groups of rank s, of which there are only finitely
many. The classification shows that Q.s/D s2 for s � 9 (the maximum occurring
in type B), whereas there are irregularities occurring for s� 8 due to the exceptional
groups.
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LEMMA 7.1. Let .W; S/ be a finite irreducible Coxeter group, and let w 2W .
We have that

`.w/ >Q.j / implies f w`.w/�1 > j:

Proof. Suppose that f w
`.w/�1

� j . By Theorem A we have f w1 � f
w
`.w/�1

.
(Remark: Theorem A does not cover the groups H3 and H4. They can easily be
dealt with directly, since f w1 � 3 and f w1 � 4 for all w in H3 and H4, respectively.
Or, one can give a separate argument based on the relation ˇ1 D f w`.w/�1

� f w1
(cf. Theorem D(c)) together with the nonnegativity of ˇ1, the coefficient of q in
Kazhdan-Lusztig polynomials. See for example [BB05, Exercise 5.38] and the
reference there to Dyer and Tagawa.)

Hence f w1 � j , which means that there is a set J � S of cardinality jJ j � j
(the set of atoms of Œe; w�) such that every reduced expression for w uses letters
only from the set J (by the subword property of Bruhat order [Hum90, Theorem
5.10]). In particular, we have w 2 WJ , and so `.w/� `.w0.J //�Q.j /, where
w0.J / denotes the element of maximal length in the parabolic subgroup WJ . �

Proof of Theorem F. Assume that W is irreducible. The easy extension of the
proof to the general case is left to the reader. For given k � 1, put

Nk WDQ.M.k/� 1/C k;

and let n WD `.w/ � Nk . We are going to consider the bipartite graphs induced
between adjacent rank levels in Bruhat order near the top of the interval Œe; w�.

For r such that 1 � r � k, let Vn�r WD fx 2 Œe; w� j `.x/ D n � rg. Now
consider the bipartite graph with vertices Vn�r [Vn�rC1 and edges Er Df.x; y/2
Vn�r �Vn�rC1 j x < yg. If .x; y/ 2Er then

deg.x/�M.r/�M.k/;

where deg.x/ denotes the number of edges adjacent to x in Er . Similarly, by
Lemma 7.1 and the choice of Nk , we have deg.y/�M.k/. Thus,

jVn�r j �M.k/� jEr j � jVn�rC1j �M.k/;

and hence

f w`.w/�r D jVn�r j � jVn�rC1j D f
w
`.w/�rC1: �

In closing we would like to raise a question: Does there exist ˛ < 1 such that

f w
b˛�`.w/c

� � � � � f w`.w/

for all w 2W ?
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8. Appendix: Contracting Gm-actions

As was mentioned in Section 4, we have deferred to here some general alge-
braic-geometric material needed for the proof of Theorem 4.2. The first result is a
criterion for when a Gm-action is contracting (which certainly is standard but for
which we have not found an appropriate reference).

Suppose that X D SpecR is an affine variety with a Gm-action. The action
immediately translates to a grading R D

L
i2ZRi so that � 2 k� D Gm.k/ acts

as � � r D �ir for r 2 Ri . The condition that the action be contracting is then
equivalent to Ri D 0 for i < 0. This implies that if x 2 X.k/ is a k-point, then
the linear action of Gm on the cotangent space mx=m

2
x has the property that only

nonnegative weights occur. (Recall that a linear representation of Gm is a direct
sum of 1-dimensional representations of the form � 7! �n, and that n is the weight
of that subrepresentation.) It turns out that there is a converse to this result (where
for simplicity and because it is the only case we shall use, we consider only the
irreducible case).

PROPOSITION 8.1. Let X be an irreducible variety with a Gm-action, and
let Z be a closed subvariety of fixed points such that for each closed point of Z
the action of Gm on its cotangent space has only nonnegative weights. Then the
action of Gm is contracting on the union of the open Gm-invariant affine subsets
that meet Z.

Proof. An extension of the Gm-action to an A1-action is unique if it exists, as
Gm is dense in A1. Hence it is enough to show that the action extends to any open
Gm-invariant affine subset that meetsZ. We may therefore assume thatXDSpecR
and the Gm-action then corresponds to a grading R D

L
i Ri . We may further

assume that Z contains the closed point z. What we want to show is that Ri D 0
for i < 0.

Now, asZ is irreducible we have thatR embeds in the local ringRmz
, and by a

theorem of Krull we have that
T
nmnz D 0 in Rmz

. Hence it will be enough to show
that Ri �mnz for i < 0 and every n. We do this by induction on n, where the case
nD 1 is true as z is a fixed point so that Gm acts trivially on R=mz . The case nD 2
is then true as the map Ri!mz=m

2
z is a map from a Gm-representation, consisting

only of negative weight representations, to a representation that by assumption
contains only nonnegative weight representations. Multiplication in R now gives
a surjective Gm-equivariant map Sn.mz=m2z/! mnz=m

nC1
z , which implies that

mnz=m
nC1
z consists only of nonnegative weight representations. By the induction

assumption we have an induced map Ri !mnz=m
nC1
z , which therefore also is the

zero map. �
Remark. The case of the action of Gm on P2 given by .xWyW z/ 7! .xW�yW�2z/

is instructive. The point .1W 0W 0/ is then a fixed point whose cotangent space has



ON THE SHAPE OF BRUHAT INTERVALS 815

weights 1 and 2. The only invariant affine open subset that contains .1W 0W 0/
is fx ¤ 0g, and on it the action visibly extends to an A1-action; .1WyW z/ 7!
.1W�yW�2z/ makes sense also for �D 0.

This proposition has the following corollary, which is the only consequence
that we shall actually use.

COROLLARY 8.2. Assume that T is an algebraic torus (i.e., isomorphic to Gnm
for some n > 0), and let � be its group of characters (i.e., the group of algebraic
homomorphisms T !Gm). Let X be a variety with an action of T such that there
exists an ample line bundle on X with a compatible T -action. Suppose z 2 X is
a T -fixed point such that the cone generated by the characters that appear in the
cotangent space of z does not contain a line (or, equivalently, no nonzero element
and its inverse). Then there is an algebraic group homomorphism Gm! T such
that XT DXGm and such that there exists an affine T -invariant neighborhood of z
for which the action is contracting.

Proof. Let �� be the group of cocharacters of T (i.e., algebraic group homo-
morphisms Gm!T ), which is identified with the dual of � by pairing � WGm!T

and ' W T !Gm using the integer n for which the composite ' ı� is of the form
� 7!�n. We want to apply Proposition 8.1, so what we are looking for is an element
� 2 �� such that its fixed point set is equal to that of T and such that its weights on
the cotangent space of z are all nonnegative. For the first condition it is well known
that there is a finite set of hyperplanes in �� such that if � is not contained in any
of them, then it has the same fixed point set as T . For the second condition it is
clear that we are looking for a � with nonnegative values on each character of T
that appears in the cotangent space of z. By the assumption on the cone generated
by them (and the fact that �� is the dual of �) there is such a � outside of any finite
number of hyperplanes, so that we may simultaneously fulfill both conditions. Now,
by the assumption that X admits a T -linearized ample line bundle, we may find a
T -invariant affine neighborhood of z, and then Proposition 8.1 is applicable. �

We are now left with establishing that the intersection complex is a Gm-
complex. However, we shall need the corresponding results for other actions, so we
put ourselves in a somewhat more general situation. It would be possible to refer to
the general results of [BL94]. Unfortunately the discussion there is formulated in a
topological rather than an étale context. It is true that enough of their results are
valid (with essentially the same proof) for the étale case, but rather than leaving
the task of checking that to the reader, we make the following ad hoc construction.
Thus, if G is an algebraic group acting on a variety X , we say that a complex C of
`-adic sheaves is a G-complex if the two complexes p�2C and m�C are isomorphic
in the derived category, where p2; m WG �X !X is the projection and G-action
map, respectively.
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PROPOSITION 8.3. Let X be a variety on which the algebraic group G acts.
Then the intersection complex of X is a G-complex.

Proof. Notice that m is the composite of p2 and the automorphism

t WG �X !G �X; .g; x/ 7! .g; gx/;

so that it will be enough to show that t�C is isomorphic to C , where C is the
pullback by p2 of the intersection complex on X . We shall prove this by showing
that C is the intersection complex of G �X and then that the intersection complex
is invariant under automorphisms. The last property follows directly from the
characterization [GM83, Theorem 4.1], and that characterization is also invariant
(with the degree conventions of [BBD82]) under smooth pullbacks, which implies
that C is indeed the intersection complex on G �X . �

Acknowledgments. We are grateful to E. Nevo and B. Shapiro for help with
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