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Abstract

In this paper we prove the existence of Kihler metrics of constant scalar curvature
on the blow up at finitely many points of a compact manifold that already carries
a constant scalar curvature Kéhler metric. In the case where the manifold has
nontrivial holomorphic vector fields with zeros, we give necessary conditions on
the number and locations of the blow up points for the blow up to carry constant
scalar curvature Kéhler metrics.

1. Introduction and statement of the results

1.1. Introduction. Letting (M, J, g, w) be a Kéhler manifold of complex di-
mension m > 2, we recall that the metric g, the complex structure J and the Kédhler
form w are related by

(X, Y)=¢g(J X,Y)

for all X,Y € TM. Assume that the scalar curvature of g is constant. Given n
distinct points p1q, ..., pn € M, the question we would like to address is whether
the blow up of M at the points p1, ..., p, can be endowed with a constant scalar
curvature Kéhler metric. In the case where the answer to this question is positive,
we would like to characterize the Kihler classes on the blown up manifold for
which we are able to find such a metric. In [2], we have already given a positive
answer to these questions in the case where the manifold M has no nontrivial
holomorphic vector field with zeros (this condition is for example fulfilled when the
group of automorphisms of M is discrete). Under this condition, we have obtained
the following:

THEOREM 1.1 ([2]). Assume that (M, J, g, ) is a constant scalar curvature
compact Kdihler manifold and further assume that (M, J) does not have any non-
trivial holomorphic vector field with zeros. Given finitely many points p1, ..., pn
€ M and positive numbers ay, . ..,a, > 0, there exists ¢g > 0 such that, for all
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e € (0, &9), the blow up of M at p1, ..., pn carries a constant scalar curvature
Kdiihler metric g, which is associated to the Kdhler form

_1 _1
we € 7* [w] —&* (@]""" PD[E1] + ... + a7~ " PD[E,)),

where the PD[E ] are the Poincaré duals of the (2m — 2)-homology classes of the
exceptional divisors of the blow up at pj. Moreover, as ¢ tends to 0, the sequence
of metrics (g¢)e converges to g (in smooth topology) on compact subsets away from
the exceptional divisors.

If the scalar curvature of g is not zero then the scalar curvatures of g, and of
g have the same signs. Also, if the scalar curvature of g is zero and the first Chern
class of M is nonzero, then one can arrange so that the scalar curvature of g, is also
equal to 0. This last result complements in any dimension previous constructions
which have been obtained in complex dimension m = 2 and for zero scalar curvature
metrics by Kim-LeBrun-Pontecorvo [11], LeBrun-Singer [16] and Rollin-Singer
[23]. Indeed, using twistor theory, Kim-LeBrun-Pontecorvo and LeBrun-Singer
have been able to construct such metrics by desingularizing some quotients of
minimal ruled surfaces and, more recently, Rollin-Singer [23] have shown that,
keeping the scalar curvature zero, one can desingularize compact orbifolds of zero
scalar curvature with cyclic orbifold groups by solving, on the desingularization,
the hermitian anti-selfdual equation (which implies the existence of a zero scalar
curvature Kédhler metric).

Theorem 1.1 is obtained using a connected sum of the Kéhler form w at each
p; with a zero scalar curvature Kéhler metric go which is defined on C™, the blow
up of C™ at the origin. This metric g¢ is associated to a Kihler form 7y and has
been discovered, inspired by previous work of Calabi [6], by Burns when m = 2
(and first described by Lebrun in [13]) and by Simanca [25] when m > 3. Since it
is at the heart of our construction, we will briefly describe it in Section 2.

In the present paper, we focus our attention on the case where M has nontrivial
holomorphic vector fields with zeros (this condition implies in particular that M
has a nontrivial continuous automorphism group).

Given n > 1, we define

MR :={(p1.....pn) €M" : paF#pp Va#b}.

A consequence of our main result states that the blow up of M at sufficiently many
carefully chosen points can be endowed with a constant scalar curvature Kihler
metric.

THEOREM 1.2. Assume that (M, J, g, w) is a constant scalar curvature com-
pact Kéhler manifold. There exists ng > 1 and for all n > ng there exists a
nonempty open subset V,, C M, such that for all (p1, ..., pn) € Vy the blow up of
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M at py, ..., pn carries a family of constant scalar curvature Kihler metrics (g¢)e
converging to g (in smooth topology) on compact subsets away from the exceptional
divisors, as the parameter ¢ tends to 0.

This result is a consequence of Theorem 1.3, Lemma 1.1 and Lemma 1.2
below. In particular Theorem 1.3 gives more details about the structure of the
Kaihler classes on the blow up in which the constant scalar curvature Kéhler forms
can be found.

In the case where (M, J) does not have any nontrivial holomorphic vector
fields with zeros, Theorem 1.2 reduces to Theorem 1.1 with ng =1 and V;, = M}.
We emphasize that, in the presence of a nontrivial holomorphic vector field with
zeros, the number and position of the blow up points are not arbitrary anymore.

1.2. The main result. The determination of the least value of ng for which the
result holds, the location of the points which can be blown up as well as the Kéhler
classes obtained on the blow up, are rather delicate issues. To describe these we
need to digress slightly. Now assume that (M, J, g, w) is a constant scalar curvature
compact Kihler manifold. Thanks to the Matsushima-Lichnerowicz Theorem, the
space of holomorphic vector fields with zeros is also the complexification of the
real vector space of holomorphic vector fields & that can be written as

E=X—-iJX,
where X is a Killing vector field with zeros. We denote by 0, the space of Killing
vector fields with zeros and by

£:M+—b*,

the moment map which is defined by requiring that, for all X € b, the (real-valued)
function f := (£, X) is a Hamiltonian for the vector field X. Namely it is the
unique solution of

_df = (l)(X, _)7

which is normalized by

/ f dvolg =0.
M

Equivalently the function f is a solution of

where E = X —i J X is the holomorphic vector field associated to X. The map &

is nothing but the moment map for the action of the hamiltonian isometry group.
Our main result is a consequence of the following sequence of results. The

first one gives a sufficient condition on the number and location of the blow up
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points as well as on the Kihler classes on the blow up manifold for Theorem 1.2 to
hold:

THEOREM 1.3. Assume that (M, J, g, ) is a compact Kdhler manifold with

constant scalar curvature and that (p1, . .., pp) € M) are chosen so that:
(1) $(p1)77§(17n) span b*7
and

n
) there exist ai,...,anp >0 such that Zaj E(pj)=0eh™.
j=1
Then, there exist ¢ > 0, g9 > 0 and for all € € (0, g9), there exists on the blow up of

M at p1,..., pn a constant scalar curvature Kihler metric gz which is associated
to the Kdhler form

_1 _1
ws € 7 [] — & (a]’; " PD[E1] + -+ + a5 " PD[Ey)).

where the PD[E ] are the Poincaré duals of the (2m — 2)-homology classes of the
exceptional divisors of the blow up at p; and where

2
laje—aj| <ce2m+T,

Finally, the sequence of metrics (g¢)e converges to g (in smooth topology) on
compacts, away from the exceptional divisors.

Therefore, in the presence of nontrivial holomorphic vector fields with zeros,
the number of points which can be blown up, their location, as well as the possible
Kéhler classes on the blown up manifold have to satisfy some constraints. We em-
phasize the Riemannian nature of the result which is reflected first in the hypothesis
since conditions (1) and (2) do depend on the choice of the metric g and second in
the conclusion since the metrics we construct on the blow up of M are, away from
the exceptional divisors of the blown up points, small perturbations of the initial
metric g.

Remark 1.1. A fundamental result concerning Kihler constant scalar curvature
metrics is their uniqueness up to automorphisms in their Kéhler class, as recently
proved (even for the more general class of extremal metrics) by Chen-Tian [7]. This
implies that, up to automorphisms, all the constant scalar curvature Kéhler metrics
produced in this paper are uniquely representative of their Kéhler class. Nonetheless
Theorem 1.3 can be applied to any of the metrices obtained from a fixed one by
moving it with an automorphism of M. We shall exploit this fact in a forthcoming
paper [1] to analyze the behaviour of the conditions (1) and (2) which appear in the
statement of Theorem 1.3 under the action of the automorphism group.
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From a Kihlerian point of view we can interpret the role of the a;’s as giving
a direction in the Kéhler cone of the blown up manifold in which one can deform
the Kihler class 7*[w] (which of course lies on the boundary of this Kéhler cone)
to find a family of constant scalar curvature Kéhler metrics on the blow up of M.

As will be explained in Section 6, the first condition (1) is easily seen to be
generic (and open) in the sense that:

LEMMA 1.1. With the above notation, assume that n > dim ) then, the set of
points (p1. ..., pn) € M} such that condition (1) is fulfilled is an open and dense
subset of M}.

When d > dimb, it is well known that, for a choice of blow up points
(p1,-.., pg) in some open and dense subset of M d the group of automorphisms
of M blown up at py,..., pg is trivial (observe that dim f is also equal to the
dimension of the identity component of the automorphisms group of M). In view
of all these results, one is tempted to conjecture that condition (1) is equivalent to
the fact that the group of automorphisms of M blown up at py,..., py is trivial.
However, this is not the case since these two conditions turn out to be of a different
nature. The role of the zeros of the elements of h will be clarified in [1]. For
example, let us assume that h = Span { X} for X # 0. If we denote by f := (£, X),
it is enough to choose py, ..., p, not all in the zero set of f for condition (1) to
hold, while the group of automorphisms of M blown up at py, ..., p, is trivial if
and only if one of the p; is chosen away from the zero set of X, which corresponds
to the set of critical points of function f !

Condition (2) is more subtle and more of a nonlinear nature. We will prove,
in Section 6, that this condition is always fulfilled for some careful choice of the
points, provided their number 7 is chosen larger than some value ng > dimb + 1.

LEMMA 1.2. With the above notation, assume that n > dim b + 1, then the set
of points (p1, ..., pn) € MR for which (1) and (2) hold is an open (possibly empty)
subset of MZ Moreover, there exists ng > dimb + 1 such that, for alln > ng the
set of points (p1, ..., pn) € M} for which (1) and (2) hold is a nonempty open
subset of My.

The proof of the Lemma 1.2 is due to E. Sandier, and we are very grateful to
him for allowing us to present it here. In contrast with condition (1), it is easy to
convince oneself that condition (1) does not hold for generic choice of the points.
For example, assuming that h = Span {X } for X # 0, we say f := (£, X) and we
choose n > 2. Then (1) holds provided f(p1),..., f(pn) are not all equal to 0 and
(2) holds provided f(p1),..., f(pn) do not all have the same sign. Clearly, the
set of such points is a nonempty open subset of M which is not dense.

Remark 1.2. By definition ng is larger than dim b, which also corresponds to
the dimension of the space of holomorphic vector fields with zeros on (M, J) (in
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particular, dim h does not depend on the metric !). It is interesting to determine the
least value of ng, i.e. the minimal number of points for which the two conditions
(1) and (2) are fulfilled for a given constant scalar curvature Kihler metric g. Even
in explicit examples, the determination of ng seems to be a hard exercise.

Remark 1.3. We believe that (2) is a necessary condition for the result of
Theorem 1.3 to hold. To give further credit to this belief, we refer to the discussion
of this issue by Thomas [28, pp. 27, 28] and also to the recent preprint by Stoppa
[27] where some partial result is obtained in this direction.

We now give a number of explicit examples to which our result can be applied.
If we take M = P™ endowed with a Fubini-Study metric ggs, we have:

PROPOSITION 1.1. When M = P™ and g = gs, then dimh = m? + 2m and
Ngps <2m (m+1).

This result yields the existence of constant scalar curvature Kédhler metrics on the
blow up of P at n points which belong to some nonempty open set of (P")7,
provided n > ng.

1.3. The equivariant setting. As already mentioned, ¢ is (by definition) larger
than the dimension of the space of holomorphic vector fields vanishing somewhere
on M. Nevertheless, in some explicit cases, one can make use of the symmetries
of the manifold M and work equivariantly to construct constant scalar curvature
Kihler forms on the blow up of M at fewer points than the number ng given in
Theorem 1.1. At first glance, there seems to be some apparent contradiction in this
statement; however, one should keep in mind that since one requires the sequence
of metrics (g¢), to converge to g as ¢ tends to 0 away from the exceptional divisors,
these equivariant constructions do not hold anymore for choices of the blow up
points in some open subset of M} .

To state the equivariant version of Theorem 1.3, we assume that we are given
I, a finite subgroup of isometries of (M, J, g, w), we denote by hT' C b the Lie
subalgebra consisting of elements of ) which are I'-invariant and we denote by

EF:M—)[]F*,

the corresponding moment map. Observe that I" acting on M will lift as a discrete
subgroups of isometries T on the blow up of M at a finite number of points
P1,--., pn provided the set of blow up points is closed under the action of I (i.e.
for all p; and all 0 € I', o(p;) € {p1..... pn}). We then have the equivariant
version of Theorem 1.3:

THEOREM 1.4. Assume that I is a finite subgroup of isometries of (M, J, g, w),
a constant scalar curvature Kdhler manifold. Then, the result of Theorem 1.3 holds
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provided p1, ..., pn € M are chosen so that:

3) the set {p1,..., pn} is closed under the action of T,
@) §5(p1).... 8" (pn) span HT*.

and there exist aq, . .. ,a, > 0 with:

n
(5) aj=aj if pj =0(pj) for someo €I' and Zaj Er(pj) =0¢ f)F *.
j=1

Moreover, the constant scalar curvature metrics gz on the blow up of M at
P1s- -, Pn are invariant under the action of T" (the lift of T to the blow up of M).

On the one hand, working equivariantly with respect to a large finite group of
isometries I" certainly decreases the dimension of the space of Killing vector fields
which are invariant under the action of I' and hence weakens the hypothesis which
are needed for the construction to work. On the other hand, observe that the set of
points which can be blown up has to be closed under the action of I' and in general
this substantially increases the number of points that have fo be blown up. There is
therefore some delicate balancing between the size of the finite group I'" and the
number of blow up points.

We illustrate this fact in Section 7 where we once more consider the case of
the projective space P™. Working equivariantly, we obtain the:

COROLLARY 1.1. Given q1,...,qm+1 linearly independent points on P™,
there exists g9 > 0 and for all € € (0, ¢), there exists a constant (positive) scalar
curvature Kiihler metric gg on the blow up of P™ at q1, . . . , gm+1 with associated
Kdihler form

ws € 1 [wps] — &2 (PD[E1] + -+ - + PD[Epm+1]),

where the PD[E ;] are the Poincaré duals of the (2m — 2)-homology classes of the
exceptional divisors of the blow up at q;.

Observe that all volumes of the exceptional divisors are identical. Moreover,
the above result is optimal in the number of points because P blown up at n < m
points is known not to carry any constant scalar curvature Kihler metric since it
violates the Matsushima-Lichnerowicz obstruction. Finally, observe that P blown
up at pp, ..., pm+1 still has holomorphic vector fields vanishing somewhere.

It is well known that on P™, m 4+ 2 points forming a projective frame are
enough to kill all holomorphic vector fields after blow up, and we can prove that
this condition also guarantees the existence of a Kihler constant scalar curvature
metric. Indeed, working equivariantly, we also have:
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COROLLARY 1.2. Given n > m + 2 and points q1, ...,qn € P™ such that
41, ..,qm+2 form a projective frame, the blow up of P at q1, .. ., qn carries con-
stant scalar curvature Kdhler metrics and no holomorphic vector fields. Moreover
Gm+3, - - - »qn can be chosen arbitrarily on P™ blown up at q1, . .., ¢m+2.

Let us emphasize that, even though the choice of m + 1 linearly independent
points (resp. the choice of a projective frame) ranges into an open and dense subset
of (I]j’m)XJrl (resp. (IPm)X’Lz), Corollary 1.1 and Corollary 1.2 do not show that the
constant ng.¢ in Proposition 1.1 can be taken to be equal to m + 1. For example, as
will be explained in Section 8, given two different sets of linearly independent points
P1s---» Pm+1 and ¢1, ..., gm+1, the Kéhler metrics on the blow up of P at these
different sets of points are in general close to two different Fubini-Study metrics,
one of which is the pull back of the other one by a biholomorphic transformation
that sends the points p; into the points ¢;. Again, this reflects the Riemannian
nature of Theorem 1.3 and Theorem 1.4 while the statements of Corollary 1.1 and
1.2 are more of a Kéhlerian flavor.

Recall that, for 2-dimensional complex manifolds, Kédhler metrics with zero
scalar curvature have been obtained by Rollin-Singer [23] on blow ups of P! x P!,
P2 (for n > 10) or T! x P! (for n > 4) using a different approach based on both
algebraic tools and a connected-sum result. Moreover in [22] they have been able
to find constant (nonzero) scalar curvature Kihler metrics also on the blow up of
P! x P! at n > 6 points. Also, the existence of zero scalar curvature Kihler metrics
on blow ups of P! x X, when ¥ is a Riemann surface of genus greater than or equal
to 2, is due to LeBrun-Singer [16], using twistor theory. Our results also help to
complement these constructions and we obtain constant scalar curvature metrics on
the blow up (at carefully chosen points) of P! x P™2 endowed with the product
of Fubini-Study metrics and also on the blow up of P! x M endowed with the
product metric, where (M, J, g, ) is any my-dimensional Kéhler manifold with a
constant scalar curvature metric and without any a nontrivial holomorphic vector
field with zeros. We refer to Section 8 for detailed statements.

1.4. Relation with GIT. To end this rather long introduction, let us briefly
comment on the relation between our result and the different stability notions which
arise in GIT. Recent years have seen some spectacular works, inspired by the
analogy with the Hitchin-Kobayashi correspondence for vector bundles, relating
the existence of canonical metrics to different stability notions of manifolds [29],
[8], [21], [18]. It is then natural to try to interpret our results in terms of algebraic
stability of the underlying manifold. Particular care must be taken since such
algebraic notions (as Hilbert, Chow or K-stability) need what is called a polarizing
class, i.e. a rational Kéhler class. Clearly, the 1results of Theorem 1.3 and Theorem

1.4 do not guarantee the rationality of all e* a /%" for some e and forall j =1, ..., n.
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Nevertheless, if we blow up enough points to kill all the automorphisms of the
base manifold and if we succeed in applying Theorem 1.3, then the rationality of
the Kéhler class with a canonical representative can be achieved using the implicit
function theorem [15], and one can conclude that the resulting polarized manifold
is, for example, asymptotically Chow stable using the result of Donaldson [8] or
K-semistable as proved by Chen-Tian [7] and Donaldson [9]. We shall return to
this question in [1], where we study in detail the margins of freedom in choosing
the weights and the position of points for which the present construction works.

With the help of symmetries in particular cases, rationality of the Kihler class
can be achieved even in the presence of a continuous automorphism group (as is
for example the case of (P™, grs) blown up at m + 1 points in general position).
Again when this happens one can conclude, using Donaldson [9] and Chen-Tian’s
results [7], that the resulting polarized manifolds are K-semistable. In the remaining
cases one should recall that Tian [30] conjectured that the existence of a Kihler
constant scalar curvature metric should be equivalent to the analytic G-stability of
the manifold (M, [@]) (a notion independent of the rationality of the Kéhler class)
for some maximal compact subgroup G of the automorphism group.

Finally, as already mentioned, condition (2) that arises in the statement of
our main result can be understood as a balancing condition and we believe that
it should be related to some suitable stability property of the blown up manifold.
Again, we refer to the recent survey by Thomas [28, pp. 27-28] for a discussion
of how this condition can be interpreted geometrically and to the recent preprint
by Stoppa [27]. The fact that some positivity condition must hold is present in all
known examples in different veins, and has been deeply investigated in the case of
complex surfaces with zero scalar curvature by LeBrun-Singer [16], Rollin-Singer
[23], and for Del Pezzo surfaces by Rollin-Singer [22].

1.5. Plan of the paper. In Section 2, we describe weighted Holder spaces
which constitute the key tool for our perturbation result. This will also be the
opportunity to give some details about Burns-Simanca’s metric g¢ defined on cm,
the blow up of C™ at the origin. In Section 3, we explain the structure of the scalar
curvature operator under some perturbation of the Kidhler metric in a given Kéhler
class. Section 4 is devoted to the study of the mapping properties of the linearized
scalar curvature operators either about the manifold (M, J, g, w) with finitely many
points removed or about the complete noncompact manifold ((Em, Jo, go,N0)- In
Section 5 we construct infinite-dimensional families of constant scalar curvature
Kéhler metrics on the complement of finitely many small balls in M or in some
large ball in C™. These families are parametrized by the boundary data of the
Kihler potential. We finally explain at the end of this section how the boundary data
on the different summands can be chosen so that the different Kéhler metrics can
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be connected together. This will complete the proof of Theorem 1.3. In Section 6,
we give the proofs of Lemma 1.1 and Lemma 1.2. Finally, the last two sections are
devoted to the study of the examples to which our result applies.

2. Weighted spaces

In this section, we describe weighted Holder spaces on the noncompact (not
complete) open manifold (M ™* := M \{p1,..., pn}. g), as well as weighted Holder
spaces on the noncompact complete manifold ((Em, g0), the blow up of C™ at the
origin endowed with a scalar flat Kihler metric.

For all r > 0, we agree that

B, ={zeC" : |z|<r},

denotes the open ball of radius » > 0 in C™, B, denotes the corresponding closed
ball and
B} := B, \ {0},

the punctured closed ball. We will also define

C,:=C"\ B, and C,:=C"\ By,
to be respectively the complement in C™ of the closed the ball and the open ball of
radius r > 0.

Definition 2.1. Assume that £ € N and « € (0, 1) are fixed. Given 7 > 0 and a
function f € (Gfoac‘ (BZ), we define

1 gtz = sup_r= ILfGgeas,\p, -

o<r<r

and, for any function f € %éfooé (Cy), we define

I/ gy = fligr_g 17 G Mge. By \m1):
The norm || - [| ,¢.c (B*) (resp. || - [l e (57)) measures the polynomial rate of blow
s (Br s (CF
up or decay of functions at O (resp. at co).

2.1. Weighted spaces on M*. Assume that (M, J, g, w) is a m-dimensional
Kihler manifold and that we are also given n distinct points pp,..., p, € M. Near
each p;, the manifold M is biholomorphic to a neighborhood of 0 in C” and we
can choose complex coordinates z := (zl, ..., z™) in a neighborhood of 0 in C™,
to parametrize a neighborhood of p; in M. In order to distinguish between the
different neighborhoods and coordinate systems, we agree that, for all r small
enough, say r € (0, rp), Bj , (resp. B j.r and B ;r) denotes the open ball (resp. the
closed and closed punctured ball) of radius r in the coordinates z parametrizing a
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fixed neighborhood of p;. We assume that rg is chosen small enough so that the
B; s, do not intersect each other. Without loss of generality, we can assume that
near p;, the coordinates we choose are normal coordinates and it follows from the
9 9-Lemma (see [10, 107-108]) that the K&hler form w can be expanded as

(6) w:=i00(%|z>+¢)),

for some function {; € %i’“ (B J’." ro)' This in particular implies that, in these coordi-
nates, the Euclidean metric on C" and the metric g induced by w agree up to order
2.

For all r € (0, rg), we set
(7) Mr ::M\UJ Bj’r.
We have already mentioned that

®) M*:=M\{p1.....pn}

The weighted spaces of functions defined on the noncompact (not complete) mani-
fold (M*, g) is then defined as the set of functions whose decay or blow up near
any p; is controlled by a power of the distance to p;. More precisely, we have:

Definition 2.2. Given £ e N, o € (0, 1) and § € R, we define the weighted space
€% (M*) to be the space of functions f € €5:%(M*) for which the following
norm is finite:

”f”(@g‘a(M*) = ||fl/‘7’ro/2 ”%e’a(ﬂroﬂ) +j=8113.1?.,n ”f'E;,ro H%g‘a(gj",ro).

Burns-Simanca’s metric and weighted spaces on the blow up of C™. We now
turn to the description of weighted space on ((Em, Jo, g0, No), the blow up at the
origin of C™ endowed with Burns-Simanca’s metric. As already mentioned in the
introduction, the scalar curvature of the Kéhler form ¢ is equal to 0. By construction,

the Kihler form g is invariant under the action of U(m). If u = (u', ..., u™) are
complex coordinates in C” \ {0}, the Kahler form 7o can be written as
©) no =109 (3lul®*+ Em(lul).

More precisely
(10) no =190 (%|u|2+10g|u|),

in dimension m = 2. In dimension m > 3, even though there is no explicit formula,
we have

(11) no=1i00 (Lu|®—ul*"2" +0(u>~2™)).
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These expansions follow from the analysis in [2]. Observe that there is some
flexibility in the definition of ng since, for all @ > 0, the metric associated to a2 ng is
still a zero scalar curvature Kihler metric on C. In the expansion of 7, the effect
of this scaling amounts, after a change of variables, to modifying the coefficient
in front of — log |u| into —a? log |u|, when m = 2 or the coefficient in front of
|u|#=2™ into a?>™~2 |u|*~2™, in higher dimensions. We have chosen to normalize
these coefficients to be equal to 1.

An important property which will be crucial for our construction is that, in
the expansion of 7g, the coefficient in front of log |u|, in dimension m = 2 or the
coefficient in front of —|u|*~2™ in dimension m > 3 are positive. Another property
the reader should keep in mind is that, for any choice of complex coordinates
(modulo U(m)) on C™, one can construct Burns-Simanca’s metric. This flexibility
will play an important role in Section 5 where the coordinates ¥ must be adapted to
the action of I', a compact group of isometries.

To simplify the notation, we set

N :=C",
and, for all R > 1, we define
(12) Ng:=N\Cg.

We will denote by go the metric associated to the Kihler form 1. We are now in a
position to define weighted spaces on the noncompact complete manifold (¥, go).
This time, we are interested in functions which decay or blow up at infinity at a
rate which is controlled by a power of the distance to a fixed point in N. More
precisely:

Definition 2.3. Given £ € N, a € (0,1) and 6 € R, we define the weighted
space ‘6(‘;’“ (N) to be the space of functions f € %f{’)oé(N ) for which the norm

||f||<@§~°‘(N) = ”ﬁﬁz ”%W(Nz) + ”f|61 ||<@§~“(61)

is finite.

3. The geometry of the equation

If (M, J, g, w) is a Kéhler manifold, we will indicate by Ricg the Ricci tensor
and by either s(g) or s(w) the scalar curvature of the metric g associated to .

Following LeBrun-Simanca [15], we want to understand the behavior of the
scalar curvature under deformations of the Kihler form given by

B=w4+iddf

where f is a (real-valued) function defined on M . In local coordinates (vl ... ,v™),
if we write
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~ __ i ~ _g.a =b
0=z Zgabdv AdV7,
a,b
then the scalar curvature of @ is given by

(13) $@) ==Y % 8y 0 log (det (7)),
a,b

where §“5 are the coefficients of the inverse of (g ), the matrix of the coefficients
of the metric g associated to w. The following result is proven in [15] (or [4,
Lemma 2.158] and [6, p. 271]:

PROPOSITION 3.1. The scalar curvature of @ can be expanded in powers of
f and its derivatives as

s (@) =s(®)— 3 (A7 +2Ricg-VZ) [+ Qg(V> /),

where Qg is a second order nonlinear differential operator that collects all the
nonlinear terms.

We shall return to the structure of the nonlinear operator Q later and for the
time being, let us concentrate on the operator

. 2 : 2
(14) Lg := Ag +2Ricg - Vg,
which will play a key role in our construction. To analyze this operator, we define
a second order operator Pg by

Pg: € (M) — A%Y(M,T1),
(15) _
f —  LoE,,
where
Er=JVf+iVf

Following [15], we find that
(16) P} Py =1AZ 4 Ricg - VZ+ (Vs +iJ Vs),

where s is the scalar curvature of the metric g. The key observation is that, when
the scalar curvature of g is constant we simply have

(17) Py Py = 3A% + Ricg - V3.

In particular, to any element f of Kerlg one can associate E7:=J V f +iV f a
holomorphic vector field with zeros and X¢ := J V f € b a Killing field with zeros.
For constant scalar curvature Kéhler metrics, more is true and the following result
provides the crucial relation between the kernel of the linearized scalar curvature
operator g and the space of holomorphic vector fields with zeros or Killing vector
fields with zeros:
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THEOREM 3.1 ([15]). Assume that (M, J, g, w) is a compact constant scalar
curvature Kdihler manifold. Then the complexification of the subspace of the kernel
of Lg spanned by functions whose mean over M is 0, is in one to one correspondence
with the (complex) vector space of holomorphic vector fields with zeros and also
with §y the (real) vector space of Killing vector fields with zeros.

The previous considerations extend to (@m, Jo, g0, no) and this implies the
following important result which states that there are no elements in the kernel of
the operator Lg, which decay at infinity.

PROPOSITION 3.2 ([2]). There are no nontrivial solution to Lg, f = 0, which
belong to %?’a (N), for some § < 0.

The proof of this result is given in [2] and borrows idea from a proof of
a similar, more general, result proved in [12]. Since it is a key element of our
construction we briefly sketch the proof here.

Proof. Assume that for § < 0 we have some real-valued function f € %%g’a (N)
satisfying g, f = 0. Multiplying this equation by f* and integrating by parts over
N, we find that the vector field E defined by —0 f = %r}o(E, —) is a holomorphic
vector field which tends to O at infinity. Using Hartogs’ Theorem, the restriction of
E to Cp, for r > 0, can be extended to a holomorphic vector field on C”. Since
this vector field decays at infinity, it has to be identically equal to 0. This implies
that & is identically equal to 0 on C; and this vector, field being holomorphic, is
identically equal to 0 on N. However f being a real-valued function, this implies
that 3/ = 9 f = 0. Hence the function f is constant and decays at infinity. This
implies that f is identically equal to O in N. O

4. Mapping properties

We collect some mapping properties for the linearized scalar curvature opera-
tors defined between weighted Holder spaces.

4.1. Analysis of the operator defined on M *. The results we want to obtain
are based on the fact that, near each p;, and in suitable coordinates, the metric g
on M is asymptotic to the Euclidean metric. This implies that, in each Bj ;, the
operator Lg is close to the operator A2, where A denotes the Laplacian in C™ when
endowed with the Euclidean metric.

Let L be some elliptic operator (with smooth coefficients) acting on functions
defined in the ball B, C C™. The indicial roots of L at 0 € C™ are the real numbers
§ € R for which there exists a function v € €*°(S2"~1), v # 0, with

L(|z1 v(8)) = 6(|z 1)

near 0.
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Let ¥ be an eigenfunction of the Laplace-Beltrami operator —A g2»—1 that is
associated to the eigenvalue A = a (2m — 2 + a) for some a € N. We have

A2 (P y) =0,
in C"™ \ {0} if
§=2-2m—a,4—-2m—a,a,a+?2.

This, together with the fact that the eigenfunctions of —A g2»—1 constitute a Hilbert
basis of L2(S2™~1), shows that the set of indicial roots of A2 at 0 is given by
Z—{5—-2m,...,—1} when m > 3 and is given by Z when m = 2. Using the
normal coordinates near p; as defined in Section 2, it is easy to check that the
indicial roots of L, at p; are the same as the indicial roots of A2 at 0.

The mapping properties of Ly when defined between weighted spaces are very
sensitive to the choice of the weight parameter and the indicial roots play here a
crucial role. We refer to [17], [20] and [19] for further details on the general theory

of these operators defined between weighted function spaces.
We define the function G by

G(z):=—log |z| whenm =2 and G(z):=|z|*"2™ whenm > 3.

Observe that, unless the metric g is the Euclidean metric, these functions are not
solutions of the homogeneous problem associated to Lg in the punctured ball B J’.'i ro'
However, reducing ry if this is necessary, they can be perturbed into G j solutions
of the homogeneous problem g G 7 =0in B ;jro. Indeed, we have the following:

LEMMA 4.1. There exist ro > 0 and functions 6j which are solutions of
Lg G; =0in Ej*,ro and which are asymptotic to G in the sense that G; — G €
C(%gf;m(l?]’.“m) when m > 4 and Gj -G e %g’a(EZ‘rO)for any § < 6 —2m, when
m=2,3.

Proof. When m > 3, observe that
AlzP =8@m=2+8) 1212 and Az’ 2=(-2)2m—4+38)|z|" .

When § € (4—2m, 0) the coefficients on the right-hand side are negative and the
maximum principle yields, for all ¢ € (égf‘4(§;"0) the existence of ¢ € C@g’a (Bry)
the solution of
A g =1y,

in By}, with p=A¢=0 on dBy,. Schauder’s estimates then imply that ”(/)”(G;L,a (Bro)
<c|vy ||<€gix4 (Bry) for some constant independent of ro. Thanks to the expansion
given in (6), a simple perturbation argument shows that a similar result is true when
By, is replaced by Bj , and A? is replaced by L, provided rg is chosen small
enough.
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Now, Ly G = (Lg — A?) G and, thanks to the expansion given in (6), we
conclude that
Le G €65%,,(Bf,).
When m > 4, we fix § = 6 —2m and § € (—2,0) when m = 3. According to the
above discussion, we can define ¢; € %%g’a (B ;,ro) to be the solution of
(18) Leyj =L G,

with ¢; = Ag; = 0 on 9B} ;. In this case, we simply take Gj =G +gj.

When m = 2, one shows that there exists ¢; solution of (18) which is the sum
of an affine function z — £;(z) and a function belonging to ‘Gg’“(E ]’.':ro) for any
d € (1,2). Since any affine function is annihilated by the operator Lg, this time we
define éj =G+ —¢;. O

With the functions G 7 at hand, we define the deficiency spaces
Do := Span{y1,..., xn} and %, := Span{y1 61,...,)(,1 6n},

where y; is a cutoff function which is identically equal to 1 in B} ,, /» and identically
equal to 0 in M — Bj ;.
When m > 3, we fix § € (4 —2m, 0) and define the operator

Ls: (65%(M*) ®@D1) xR —> 6%, (M*)

(/. B) — Lg [+,

Whereas, when m = 2, we fix § € (0, 1) and define the operator

Ls: (€5%(M*) ® Do ®D1) xR —> €% (M*)

(/. B) — Lg f+ B

To keep notation short, it will be convenient to set ¥ := % when m > 3 and
9D =D b D1 when m = 2. The main result of this section reads:

PROPOSITION 4.1. Assume that the points p1, ..., pn € M are chosen so that
E(p1),...,E(pn) span b*, then the operator Lg defined above is surjective (and
has an (n + 1)-dimensional kernel).

Proof. The proof of this result follows from the general theory described in
[17], [20] and [19] (see also the corresponding proof in [2]). However, we choose
here to describe an almost self contained proof. Recall that the kernel of Lg is
spanned by the functions fy = 1 and the functions

Sri=EX1), ... fa:=(§ Xa),

where X1,..., X4 is a basis of h and d = dim §j. Recall, that, by construction the
functions f;, for j =1,...,d have mean 0. We use the fact that, thanks to (17),
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the operator L is self-adjoint and hence, for ¢ € L!(M), the problem

"—gf:‘/’v

is solvable if and only if ¢ satisfies

/ ¢ fjdvolg =0,
M

for j =0,....,d.
Observe that ‘Ggf‘4(M*) C L'(M) when § > 4—2m. Now, given ¢ € L1 (M),
we choose

__ 1
’B_VOI(M) /Mgodvolg,

and, since £(p1),...,&(pn) span h*,we also choose aq, ..., a, € R so that
n
/ p&dvolg = Zaj &(pj).
M —
j=1
Applying this equality to any of the X;/, we can also be write
n
/ ¢ firdvolg =Y aj fir(p)),
M =
for j/=1,...,d. Then, the problem

n
[Lgf+:3:‘/’—zaj5pw

Jj=1

is solvable in WP (M) for all p € [1, zfn’f 1) and uniqueness of the solution
is guarantied if we impose in addition that f be orthogonal to the functions
fo, f1,.... fa. To complete the proof, we invoke regularity theory [19] which
implies that f € €3**(M*) ® @1 when m > 3 and 65** (M*) ® Do & 9 when
m = 2. The estimate of the dimension of the kernel will not be used in the paper

and is left to the reader. O

Observe that, when solving the equation Ly f + B = ¢ in M *, the constant f8

is determined by
1

B = Vol (M) /M @ dvolg.

4.2. Analysis of the operator defined on N. We denote by go Burns-Simanca’s
metric associated to the Kéhler form 7.

Let L be some elliptic operator (with smooth coefficients) acting on functions
defined in C, C C™. The indicial roots of L at infinity are the real numbers § € R
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for which there exists a function v € € (§2"~1), v # 0, with
L(zI° v(8)) = 0(|z"),

at infinity.

As above, we use the fact that g¢ is asymptotic to the Euclidean metric, as the
expansions given in (10) and (11) show. This implies that, in Cy, the operator Lgo
is close to the operator A2 and, at infinity, they have the same indicial roots. Using
the analysis at the beginning of the previous subsection, one checks that this set is
equalto Z—{5—2m,...,—1} when m > 3 and to Z when m = 2.

Given § € R, we define the operator

Ls: €P“(N) — €3%(N)
f — Lg f,
and recall the following result from [2]:

PROPOSITION 4.2. Assume that § € (0, 1). Then the operator L defined above
is surjective and has a one-dimensional kernel spanned by a constant function.

Proof. The result of Proposition 3.2 precisely states that the operator Zg/
is injective when §’ < 0. This implies that the operator Zg is surjective when
8 > 4—2m. When § € (0, 1), this also implies that the operator Z5 has a one-
dimensional kernel, spanned by a constant function. O

4.3. Bi-harmonic extensions. Two results concerning the bi-harmonic exten-
sions of boundary data will be needed.

PROPOSITION 4.3. There exists ¢ > 0 and given h € €**(dB), k € €>%(3B)
there exists a function H }’l € €*%(By) such that
A*Hy, =0 in By,
with
H}i,k =h and AH;;,k =k on 0B;.

Moreover,

| H] g lesacgyy < € (hlltam) + 1kllea@s,).
We will also need the following result which differs slightly from the corre-
sponding result used in [2].
PROPOSITION 4.4. There exists ¢ > 0 and given h € €**(dBy), k € €>*(3dB1)
such that

k=0,
0B
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there exists a function H ;l’, k€ C@gf;m (C1) such that
A*HP =0, in  Ci,
with
H}(;,k =h and AH}?,k =k on 0B;.

Moreover,

IR gl @) = € UIRlles.eomy) + 1K le2.aam,))-

The proof of this result follows the proof of Proposition 5.6 in [2], the rationale
being that there exists a bi-harmonic extension of the boundary data (%, k) which
is defined on the complement of the unit ball and decays at infinity (at least when
m > 3). Moreover, this function is bounded by a constant times the distance from
the origin to the power 4 — 2m (when m > 3). In the case where the function k is
assumed to have mean 0, then the rate of decay can be improved and estimated
as the distance to the origin to the power 3 —2m. To see this we decompose both
functions % and k over eigenfunctions of the Laplacian on the sphere. Namely

(o, ] o0
h = Z K9 and k= Z k@,
a=0 a=0

where the functions 4@ and 7@ satisfy
~Agom1 B =a 2m—2+a)h?D,

and
—Aszm—l k(a) =a (2m -2 + Cl) k(a)

Since we have assumed that k(®) = 0, the function H ;l’ & 18 explicitly given by

(19) Hp o =h® |z]>72m

o0
+ Z ((h(a) + 4(a+1m—2) k(a)) 2|22 — m k(@ |Z|4_2m_“) .
a=1

At least, one can check that the series converges for all |z| > 1 and has the correct
decay at infinity.

5. Perturbation results

Building on the results of the previous section we perturb the Kahler form
@ on M with small ball centered at the points p; excised and we also perturb
the Kihler form 7 on a large ball of C™. These perturbation results will lead to
the existence of infinite dimensional families of constant scalar curvature Kihler
metrics parametrized by their boundary data.
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5.1. Perturbation of w. We consider the Kéhler metric g associated to the
Kihler form

(20) B=w+iddc.

As mentioned in Proposition 3.1, the scalar curvature of g can be expanded in
powers of the function ¢ and its derivatives as

1) $(8) =5(8)— 3 Lg £+ 04 (VZ0),

where the operator Lg is the one defined in (14) and where Qg collects all the
nonlinear terms. The structure of Q4 is quite complicated however; it follows from
the explicit computation of the scalar curvature of g in normal coordinates as given
by the formula (13), that, near p;, the nonlinear operator Q¢ can be decomposed
as

(22) Q¢ (V)= Bgan(V*f.V?f)Cqaa(V>f)
q
+Y By33(V2 V2 [)Cq33(V2S)
q
+zI D By 2V V2 ) Caaa(V2f)
q

+ " Bg2a(V2AV2 ) Caan(V2 ),
q

where the sum over g is finite, the operators (U, V) — B, 4 (U, V') are bilinear in
their entries and have coefficients that are smooth functions on B, . The nonlinear
operators W —— C, 4 (W) have Taylor expansions (with respect to W) whose
coefficients are smooth functions on B; ;.

Assume we are given dg, a1, ..., d, > 0 such that there exists a solution of
n
(23) Le Ha =ao—cm Y _a;j 8y,
Jj=1

where the constant ¢, is defined by
cm:=8(m—2) (m—1)Vol(S*" 1) whenm >3 and ¢, := 4 Vol(S?>).
Here we have set

a:=(ag,...,an).
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Observe that such a function H, exists if and only if ag is given by

n
ag = Cm E aj,
j=1

and the coefficients ay, ..., a, are solutions of the system
n

> aj&(pj)=0.

j=1
(Simply test (23) with the constant function and the functions (¢, X') with X € §.)
It is not hard to check that:

LEMMA 5.1. Near each pj, the function H, satisfies
Hy +aj éj +bj € C@T’Q(E}tro),

for some constant b; € R.

We fix

(24) Tg 1= g2m+1,
We would like to find a function ¢ defined in M,, and a constant v € R so that
(25) s(8) =s(g) +v,

where g is the metric associated to the Kiihler form & = w 4 i 99¢.

This equation is a fourth order nonlinear elliptic equation and boundary data
are required to define a solution. Assume that we are given h; € 6*%(dB;) and
kj € 6>*(3By), for j = 1,...,n, satisfying

(26) 1 llga.oam,y + 1k llg2.0(am,) < K T4

where « > 0 will be fixed later on. Further assume that

27) / kj =0.
0B

It will be convenient to set
h:=(hy, ..., hy) and k:=(k1,....kn).

We define in M,, the function

n
. .o :
(28) Hige =) xj Hy, 4, C/7e),
j=1
where, for each j = 1,...,n, the cutoff function y; is identically equal to 1 in

B; ;,/2 and identically equal to 0 in M \ B r,.
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The idea is to find the solution ¢ of (25) as a perturbation of the function
e2™~2 H, + Hp . The result we obtain reads:

PROPOSITION 5.1. There exist y > 0, ¢ > 0 and &, > 0 such that, for all
& € (0, &x), there exists a constant scalar curvature Kdiihler metric g¢ p x defined in
Mrg, such that, forall j = 1,...,n, the Kdhler form associated to g¢ p k can be
written as

99 (1,2 i
g =190 (3122 +¢9) ).
in B iro \ Bjr. for some function é‘é]z x satisfying the following estimates:

@) e )+ 214 G = HY  Nsoomy < €78

) ) _
B0 N Cehg = Lem ) Te) = Hy g, g I\ By)
S 4 8y ||(h - h/a k - k/)”((@‘ha)'lx((gla)n .
Moreover the scalar curvature of g¢ p k satisfies
G |5 (ge.n k) —$(Q)| <2
and
(32)  Is(genk) —S(@en k) Sce” [[(h—h' k —k)|| gty 2oy

Before we proceed with the proof of this result, we would like to mention, and
this is an essential point, that the constant ¢ which appears in the statement of the
result does not depend on k, provided ¢ is small enough. Also, the constant y can
be made explicit even though this is not useful. The remaining of the section is
devoted to the proof of this result.

Proof of Proposition 5.1. We change variables:
(=" Hy+ Hp i + /.
and
V= % (B—e*2ay).
Now, (25), now reads
(33) s(w+i 99 (622 Hy + Hp g + ) =s)+ % (B —e2""2qy),

where f and B € R have to be determined. Thanks to (21), this amounts to solving
the equation

(34) Le f+B=20g(V*(*™ > Hy+ Hpt + f) —Lg Hh,
in M,,.
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Definition 5.1. Givenr € (0,r9/2),£ €N, o € (0,1) and § € R, the weighted
space (6(6;,05 (M5) is defined to be the space of functions f € €% (M5) endowed
with the norm

”f”(@ﬁ(x(ﬂr) = ||f|Mr0/2 ||<g£.a(Mr0/2)
n
-6
T sup |l fiz (rMgea(d, \B: 1)
; 2r<r<ro le»"o\Bj»7 €©«(Bj1\Bj.1/2)

For each 7 € (0, r¢/2), it will be convenient to define an extension (linear)
operator
€ 05" (My) — €57 (M),

as follows:

(@) In M7, 67 (f) = £,

(i) in each Bj7 — Bj7/2

Er () 2) = xzl/r) f(Fz/lz]),

(iii) in each B; 7/, € (f) =0,

where t —> y(t) is a smooth cutoff function identically equal to 0 for < 5/8 and
identically equal to 1 for ¢ > 7/8. It is easy to check that there exists a constant
¢ > 0, depending on &’ but independent of 7 € (0, ro/2), such that

35 ér @O gy = @05 ( jif)"
(35) [ r(f)”@‘;/ M =€ ”f”@(s)/ (M)
Instead of solving (34) in Mrs, we prefer to solve the equation

(36) Ly f+B =%, ((20g(V ™2 Hot Hage + ) ~ g Hii) |7, ) -

in M*. We fix
€ (4—-2m,5—2m),

and we make use of the analysis of Section 5 that allows us to find s a right inverse
for the operator Lg. We can then rephrase the solvability of (36) as a fixed point
problem

(f:B) =N(e. h.k: ),
where the nonlinear operator N is defined by
Ne.hok: £):=%5 (67, (2 Qg (V2™ Ha + Huge + )~ Lg Huk) |yz,,))-
To keep notation short, it will be convenient to denote
F = (6% (M*) ® D) x R.

This space is naturally endowed with the product norm.
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The existence of a fixed point to this nonlinear problem is based on the
following technical Lemma. Let us agree that ¢, is a constant that depends on
k, whereas ¢ is a constant that does not depend on x provided ¢ is chosen small
enough. These constants do not depend on ¢ and may vary from line to line. This
being understood, we have the:

LEMMA 5.2. There exist ¢ > 0, ¢, > 0 and &, > 0 such that, for all € € (0, &)
(37) IN(e B, k;0) |5 < ¢ (r2MTL 4 ghm—4 po=dm=5y
and
(38) Nk f)=N(eh ks[5 < ce 2 rE 0 f = [

Finally,
(39) [IN(e, b, ks f)—=N(e, ' ks )|z

< e (" M =B k= K| gy s
provided f, f' € (6;’“ (M™) ® D satisfy

2m+1 | _4m—4 6—4m—8
||f||<g§°‘(M*)@gb + ”f,”c@gva(M*)@@ < 4k (rgm+ +e&" Te ” ),

and the all the components of h, b’ k, k' satisfy (26) and (27).

Proof. The proof of these estimates follows what is already done in [2] with
minor modifications. We briefly recall how the proof of the first estimate is obtained
and leave the proof of the second and third estimates to the reader.

First, we use the result of Proposition 4.4 to estimate

(40) 1Hh kgt (g, ) = cx gL
Observe that, by construction, Hp x =0 in 1\7[r0 and A2 Hp  =01in each Ej,ro 2\
Bj ., hence

Le Hhk = (Lg =A%) Hpx,
in this set. Making use of the expansion (6) which reflects the fact that the metric g
is, in each B; ,, asymptotic to the Euclidean metric, we get the estimate

2 1 5—2m—4§ 2 1
|||]_g Hh’k”(@gix‘l(ﬂrg) < Cg rgm-f- (1+7’8 m ) <2c¢ rgm-f- ,

provided ¢ is chosen small enough. This is where we implicitly use the fact that
§<5-2m.

Next, we use the structure of the nonlinear operator O as described in (22),
the estimate (40) and also the fact that

2
IV Hall e, 7, <
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to evaluate the term Qg (V2(¢?™~2 Hy + Hp x)). Roughly speaking, in an ex-
pression of the form Q4 (V2 ), the most relevant terms (as far as estimates are
concerned) are the ones of the form By 4> (V4 y, V2y) and Bg33(V3y, V3y)
provided the second derivatives of ¥ remain bounded (which is precisely our case).
We find

1 Qe (V62" Ha + Ha ) 0 g,y < ¢ €4 (141747 70)

<c ghm—4 },86—4m—8,

for some constant ¢ > 0 which does not depend on k provided ¢ is chosen small
enough. The last inequality implicitly uses the fact that 6 —4m —§ <2 —2m <0
since § > 4 —2m. The first estimate then follows at once. The proof of the other
estimates follows the same lines. One should keep in mind that the function space
we are working with is %g’a(M*) @® 9% and not %g’“ (M*). O

Reducing &, > 0 if necessary, we can assume that,

2m—2 .6—4m—§ 1
41) Cee IO < 3,

for all € € (0, &, ). Then, the estimates (37) and (38) in the above lemma are enough
to show that

(¢, B) > N(e, h,k;9),

is a contraction from
{(@.B)eF : |l(@.B)llg <2cp (r2mT1 4 ghm=4 po-dm=dyy

into itself and hence has a unique fixed point (f¢ s k. Be.n k) in this set. This fixed
point yields a solution f; p & of (33) in M,,, with B = B, s x and hence provides a
Kéhler metric g¢ p & on M, associated to the Kahler form

Wepk =0+ 90 (82m_2 Hqg+ Hp g + fg,h’k) .

(Reducing ¢, if necessary, it is easy to check that the associated metric g p k 1S
indeed positive in M,,.) By construction, the scalar curvature of this metric is
constant and equal to

(42) s(we.n k) =s()+ % Beh ok — £2Mm=2 40y,
Since

|:38,h,k| <2¢ (V§m+1 + 84m—4 r86—4m—8) < 682m—2,
for all & small enough, we immediately get (31).

The Kihler potential ¢ éjh) & Which appears in the statement of Proposition 5.1
is defined as follows: In dimension m > 3 we consider the function

f(Jh) k= (D 422 Hy + Hyg + fehks

e,n,
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which is defined in B, \ By, and where ¢ (@) is the potential defined in (6). When
m = 2 minor modifications are needed and we define

é-(jh)k — g-(j) + &2 Ho+ Hp g+ fenk 4 g2 (bj +aj logry),

e,n,

where the constant b; is the one which appears in Lemma 5.1. Observe that, locally,
adding a constant to the Kdhler potential does not alter the corresponding Kéhler
metric.

The estimate (29) derives at once from the the following ingredients: ¢(/) e
%1’“ (E;:ro), the results of Lemma 4.1 and Lemma 5.1 used to estimate H, —a; G
and finally (37) used to estimate f; 5 x. The estimates (30) and (32) follow from

(39) together with the fact that r, = s%;ll . We also find that the constant y > 0
can be chosen to be

. (2m—1 2m—1
)/<m1n(w,2m—2—i—2m+1

(6—2m—8)).

(Be careful to see that f;  r belongs to C6;‘""(M*) @ 9 and not to <6§"°‘ (M™*).)
Notice that the restriction § € (0,2/3) is needed in dimension m = 2 in order to
obtain (29) and (30). This completes the proof of Proposition 5.1. O

5.2. Perturbation of no. We perform an analysis similar to the one in the
previous subsection starting from the blow up of C™ at the origin endowed with
Burns-Simanca’s metric gg. We keep the notation of Section 2.

Given a > 0, we consideron N = Em, the perturbed Kihler form

T=a?no+iddc.

Everything we will do will be uniform in a as long as this parameter remains both
bounded from above and bounded away from 0. Therefore, we will assume that

(43) ae [amin, amax]7

where 0 < amin < amax are fixed.
Using the fact that

s(@no+iddt)=s@*(o+ia2000)=a 2s(no+ia29807),
we see that the scalar curvature of 7 can be expanded as
(44) () = —5a " Lgg { +a72 Qgo (a2 V20).

Observe that we have used the fact that the scalar curvature of 7o is identically
equal to 0 ! Again, the structure of the nonlinear operator Q g, is also quite involved
but, in Cq, it enjoys a decomposition similar to the one described in the previous
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section. Indeed, using the expansions (10) and (11) we see that we can decompose

Qeo(V2 )= Bgao(V*£.V?f) Chaa(V2S)
q
+ 3 Bgaa(V2 V3 f) Caaa(V2f)
q

+ ) ul' 2" By s o (VP £V f) Caa (V2 f)
q

+ ) Ul By a2V V2 f) Caan (V2 f)
q

where the sum over ¢ is finite, the operators (U, V') — By ; j-(U, V) are bilinear
in the entries and have coefficients which are bounded in €%%(C;). The nonlinear
operators W +—— Cy 4 (W) have Taylor expansions (with respect to W) whose
coefficients are bounded in 6% (Cy).

We define

(45) Rg = —,

where 7, is given by (24). We would like to find a function Zdeﬁned in Ng,/q»
solution of the equation

(46) s () =e?v,
where v € R is a given constant satisfying

V € [Vimin, Vmax]-
The estimates we obtain will not depend on v provided v remains in this range and
Vmin < Vmax are fixed.
Again, (46) is a fourth order nonlinear elliptic equation which has to be

complemented with boundary data. Given & € €*%(dB;) and k € €>%(3B;)
satisfying

(47) gt oy + 1K N2 amyy < € RET2™,
where k > 0 will be fixed later on, we define
(48) Hy g := ¥ (H}, i (a - /Re) — Hj, . (0) + Hj 1 (0),

where Y is a cutoff function which is identically equal to 1 in C, and identically
equal to 0 in Nj.

We would like to find E a solution of (46) as a perturbation of the function
H k- As in the previous analysis, let us agree that ¢, is a constant which depends
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on k, whereas ¢ is a constant that does not depend on « provided ¢ is chosen small
enough. These constants do not depend on & and may vary from line to line. The
result we obtain parallels the result obtained in the previous subsection.

PROPOSITION 5.2. There exist ¢ > 0 and &, > 0 such that, for all € € (0, &),
there exists a constant scalar curvature Kiihler metric gg 4 p kv defined in Ng_ /4,
whose Kdhler form can be written as

ool 2002 | F
Ne,a,hk,w =1 00 (ja lul” + é_s,a h,k,v)7
in N Re/a — NR, /24 for some function ¢ g p k. Moreover the scalar curvature of

8e,a,h.k,v IS equal to €2 v and the function Ce.ah kv Satisfies

49) |Ceankv(Re - /a)+a*™ 2RI G — H;i,k||<@4-a(B,\Bl/2) <c R},

(50) ” (é‘s,a,h,k,v - é‘s,a/,h’,k/,v/)(Rs : /a) - H}i,_h/,k_kf ”<@4.a(§1\31/2)

< e (RN (= H' k=K raxqza + RI2" (jv =/ +|a —d']).
Again, and this is an essential point, we would like to emphasize that the constant
¢ which appears in the statement of the result does not depend on k, provided ¢ is

small enough.
The remainder of the section is devoted to the proof of this technical result.

Proof of Proposition 5.2. Replacing in (44) the function Eby H ni+ f,we
see that (46) can be written as
G Lgy (Hpg+ f) =2a% Qo (@™ V2 (Hpge + f)) =267 a* v,
equation which we would like to