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Abstract

We prove new theorems that are higher-dimensional generalizations of the
classical theorems of Siegel on integral points on affine curves and of Picard on
holomorphic maps from C to affine curves. These include results on integral
points over varying number fields of bounded degree and results on Kobayashi
hyperbolicity. We give a number of new conjectures describing, from our point
of view, how we expect Siegel’s and Picard’s theorems to optimally generalize to
higher dimensions.

1. Introduction

In this article we prove new theorems that are higher-dimensional generaliza-
tions of the classical theorems of Siegel on integral points on affine curves and
of Picard on holomorphic maps from C to affine curves. In Section 2, we will
give the statements of Siegel’s and Picard’s theorems, and we will recall how these
two theorems from such seemingly different areas of mathematics are related. We
will then proceed to give a number of new conjectures describing, from our point
of view, how we expect Siegel’s and Picard’s theorems to optimally generalize
to higher dimensions. These include conjectures on integral points over varying
number fields of bounded degree and conjectures addressing hyperbolic questions.
These conjectures appear to be fundamentally new.

We will then summarize our progress on these conjectures. We have been able
to get results in all dimensions, with best-possible results in many cases for surfaces.
Our technique is based on the new proof of Siegel’s theorem given by Corvaja and
Zannier in [CZ02]. They showed how one may use the Schmidt subspace theorem
to obtain a very simple and elegant proof of Siegel’s theorem. More recently, they
have used this technique to obtain other results on integral points (see [CZ03],
[CZ04a], and [CZ04b]) and Ru has translated the approach to Nevanlinna theory
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[Ru04]. We will use the Schmidt subspace theorem approach to get results on
integral points on higher-dimensional varieties, and analogously, we will use Vojta’s
version of Cartan’s second main theorem to obtain results on holomorphic curves
in higher-dimensional complex varieties, generalizing Picard’s theorem.

As an application of our results, we show how to improve a result of Faltings
on integral points on the complements of certain singular plane curves, proving a
statement about hyperbolicity as well. We end with a discussion of our conjectures,
relating them to previously known results and conjectures, and giving examples
limiting any improvement to their hypotheses and conclusions.

2. Theorems of Siegel and Picard

It has been observed by Osgood, Vojta, Lang, and others that there is a strik-
ing correspondence between statements in Nevanlinna theory and in Diophantine
approximation (see [Ru01] and [Voj87]). This correspondence has been extremely
fruitful, influencing results and conjectures in both subjects considerably. The
correspondence can be formulated in both a qualitative and quantitative way. In this
section, we will concentrate on the simplest case of the qualitative correspondence,
Siegel’s and Picard’s theorems.

Let V � An be an affine variety defined over a number field k. We will also
view V as a complex analytic space. Then it has been noticed that V.OL;S / (the
set of points with all coordinates in OL;S , the S -integers of L) seems to be infinite
for sufficiently large number fields L and sets of places S if and only if there exists
a non-constant holomorphic map f W C! V . When V D C is a curve (i.e., a
one-dimensional variety), this correspondence has been proved to hold exactly, and
it is known precisely for which curves C the two statements hold. On the number
theory side, Siegel’s theorem is the fundamental theorem on integral points on
curves. On the analytic side, the analogue is a theorem of Picard. We now give the
following formulations of these two theorems.

THEOREM 2.1A (Siegel). Let k be a number field. Let S be a finite set of
places of k containing the archimedean places. LetC be an affine curve defined over
k embedded in affine space Am. Let zC be a projective closure of C . If # zC nC > 2
(over k), then C has finitely many points in Am.Ok;S /.

THEOREM 2.1B (Picard). Let zC be a compact Riemann surface. Let C � zC .
If # zC nC > 2, then all holomorphic maps f W C! C are constant.

In other words, Siegel’s and Picard’s theorems state that if D consists of
many distinct points on a curve X , then any set of integral points on X nD is
finite and any holomorphic map f W C! X nD is constant. We will thus view
as generalizing Siegel’s or Picard’s theorem any theorem that asserts that if D
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has “enough components” then there is some limitation on the integral points on
X nD or on the holomorphic maps f W C! X nD. In Picard’s theorem it may
also be shown that the curves C in question satisfy the stronger condition of being
Kobayashi hyperbolic. We will frequently be able to generalize this fact to higher
dimensions as well.

Siegel’s theorem is usually stated with the extra information that the hypothesis
# zC nC > 2 is unnecessary for nonrational affine curves C . However, it may be
shown that this stronger version of Siegel’s theorem may be derived from Siegel’s
theorem as we have stated it by using étale coverings of the curve C ; see [CZ02].
A similar statement holds for Picard’s theorem. It is Siegel’s and Picard’s theorems
in the form we have given above that we will generalize.

We note that when the geometric genus of C is greater than one, Siegel’s
theorem follows from the much stronger theorem of Faltings that C has only
finitely many k-rational points. Similarly, it is a theorem of Picard that there are
no nonconstant holomorphic maps f W C! zC when zC is a projective curve of
geometric genus greater than one.

3. Some preliminary definitions

In order to state our conjectures and results we will need a few definitions.
In Vojta’s Nevanlinna-Diophantine dictionary [Voj87], the Diophantine object
corresponding to a holomorphic map f W C! X nD is a set of .D; S/-integral
points on X . We now sketch the definition of a set of .D; S/-integral points on X
in terms of Weil functions.

Let k be a number field. Let Ok be the ring of integers of k. As usual, we have
a set Mk of absolute values (or places) of k consisting of one place for each prime
ideal p of Ok , one place for each real embedding � W k! R, and one place for each
pair of conjugate embeddings �; � W k!C. Let kv denote the completion of k with
respect to v. We normalize our absolute values so that jpjv D p�ŒkvWQp�=ŒkWQ� if
v corresponds to p and pjp, and jxjv D j�.x/jŒkvWR�=ŒkWQ� if v corresponds to an
embedding � (in which case we say that v is archimedean). If v is a place of k and
w is a place of a field extension L of k, then we say that w lies above v, or w jv, if
w and v define the same topology on k.

Let D be a Cartier divisor on a projective variety X , both defined over a
number field k. Let v 2Mk . Extend j � jv to an absolute value on kv. We define a
local Weil function for D relative to v to be a function �D;v WX.kv/nD!R such
that if D is represented locally by .f / on an open set U then

�D;v.P /D� log jf .P /jvC˛v.P /;

where ˛v is a continuous function on U.kv/ (in the v-topology).
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By choosing embeddings k! kv and k! kv , we may also think of �D;v as a
function on X.k/ nD or X.k/ nD. A global Weil function consists of a collection
of local Weil functions, �D;v, for v 2 Mk , where the ˛v above satisfy certain
reasonable boundedness conditions as v varies. We refer the reader to [Lan83] and
[Voj87] for a further discussion of this.

Definition 3.1. Let D be an effective Cartier divisor on a projective variety
X , both defined over a number field k. Let S be a finite set of places in Mk

containing the archimedean places. Let R �X.k/ nD. Then R is defined to be a
.D; S/-integral set of points if there exists a global Weil function �D;v such that
for all v 2Mk nS and all embeddings k! kv, the inequality

�D;v.P /� 0 holds for all P in R.

For us, the key property of a set of .D; S/-integral points is given by the
following theorem.

THEOREM 3.2. Let R � X.k/ nD be a set of .D; S/-integral points on X .
Then for any regular function f on X nD (defined over k), there exists a constant
a 2 k� such that af .P / is S-integral for all P in R, that is, af .P / lies in the
integral closure of Ok;S in k for all P in R.

In fact, in what follows, most of our results hold, and our conjectures should
hold, for any k-rational set R satisfying the conclusion of Theorem 3.2. However,
we will prefer to work with sets of .D; S/-integral points because they are better
geometrically behaved (e.g., under pullbacks) and because they are the right objects
to use so that the Diophantine exceptional set we are about to define matches
(conjecturally) the holomorphic exceptional set we will define.

We will frequently just sayD-integral, omitting the reference to S , when S has
been fixed or when the statement is true for all possible S . Except where explicitly
stated otherwise, we will also require from now on that a set of .D; S/-integral
points be k-rational, i.e., R�X.k/. We note that sets of D-integral points are also
essentially the same as the sets of scheme-theoretic integral points one would get
from working with models of X nD over Ok;S ; see [Voj87, Prop. 1.4.1].

It will be necessary to define various exceptional sets of a variety; see also
[Lan91].

Definition 3.3A. LetX be a projective variety, and letD be an effective Cartier
divisor on X , both defined over a number field k. Let L be a number field with
L� k, and let S be a finite set of places of L containing the archimedean places.
We define the Diophantine exceptional set of X nD with respect to L and S to be

ExcDio;L;S.X nD/D
[
R

dim>0.R/;
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where the union runs over all sets R of L-rational .D; S/-integral points on X and
dim>0.R/ denotes the union of the positive-dimensional irreducible components
of the Zariski-closure of R. We define the absolute Diophantine exceptional set of
X nD to be

ExcDio.X nD/D
[

L�k;S

ExcDio;L;S.X nD/;

with L ranging over all number fields containing k and S ranging over all sets of
places of L as above.

These definitions depend only on X nD and not on the choices of X and D.

Definition 3.3B. Let X be a complex variety. We define the holomorphic
exceptional set Exchol.X/ of X to be the union of all images of non-constant
holomorphic maps f W C!X .

Conjecturally, it is expected that ExcDio.X nD/D Exchol.X nD/ (it may also be
necessary to take the Zariski-closures of both sides first).

Definition 3.4A. Let X be a projective variety defined over a number field k.
LetD be an effective Cartier divisor on X . Then we define X nD to be Mordellic if
ExcDio.X nD/ is empty. We define X nD to be quasi-Mordellic if ExcDio.X nD/

is not Zariski-dense in X .

Definition 3.4B. Let X be a complex variety. We define X to be Brody
hyperbolic if Exchol.X/ is empty. We define X to be quasi-Brody hyperbolic if
Exchol.X/ is not Zariski-dense in X .

Note that X being quasi-Brody hyperbolic is a stronger condition than the
non-existence of holomorphic maps f WC!X with Zariski-dense image. Similarly,
X nD being quasi-Mordellic is stronger than the non-existence of Zariski-dense
sets of D-integral points on X .

We will use OX .D/, or simply O.D/ when there is no ambiguity, to denote
the invertible sheaf associated to a Cartier divisor D on X , and hi .D/ to denote
the dimension of the vector space H i .X;O.D//. When h0.D/ > 0, we will fre-
quently use the notation ˆD to denote the rational map (unique up to projective
automorphisms) from X to Ph

0.D/�1 corresponding to a basis of H 0.X;O.D//.
The following definition gives a convenient measure of the size of a divisor.

Definition 3.5. For D a divisor on a nonsingular projective variety X , we
define the dimension of D to be the integer �.D/ such that there exist positive
constants c1 and c2 such that

c1n
�.D/
� h0.nD/� c2n

�.D/

for all sufficiently divisible n > 0. If h0.nD/ D 0 for all n > 0, then we let
�.D/D�1.
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If the divisor D is effective, then “sufficiently divisible n” can be replaced by
“sufficiently large n” in the definition. As an alternative definition, if �.D/� 0, one
can show that

�.D/DmaxfdimˆnD.X/ j n > 0; h
0.nD/ > 0g:

If D is a Cartier divisor on a singular complex projective variety X , we define
�.D/D �.��D/, where � WX 0!X is a desingularization of X . It is easy to show
that this is independent of the chosen desingularization. For more properties of
�.D/, see [Iit82, Ch. 10].

Definition 3.6. We say a Cartier divisor D on X is big if �.D/D dimX .

4. General setup and notation

Throughout, we will use the following general setup and notation.

General setup. For X a complex projective variety, let D D
Pr
iD1Di be a

divisor on X with the Di effective Cartier divisors for all i . Suppose that at most m
of the Di meet at a point, so that the intersection of any mC1 distinct Di is empty.

In the Diophantine setting, we will also assume that X and D are defined
over a number field k, and we let S be a finite set of places of k containing the
archimedean places.

Note that we do not require the Di to be irreducible, and moreover, the Di
may have irreducible components in common. From now on, we will freely use the
notation X , D, Di , r , m, k, and S as above without further explanation.

5. Siegel and Picard-type conjectures

This section gives conjectures generalizing Siegel’s theorem and Picard’s
theorem in various directions.

5.1. Main conjectures. Some special cases of the conjectures given in this
section are related to Vojta’s main conjecture [Voj87, Conj. 3.4.3]. In the next
section we will also give conjectures related to Vojta’s general conjecture [Voj87,
Conj. 5.2.6], hence our terminology in this section and the next (see �14.2 for
details). We remind the reader that throughout we are using the general setup of
the last section.

CONJECTURE 5.1A (Main Siegel-type conjecture). Suppose that

�.Di /� �0 > 0 for all i .

If r > mCm=�0, then there does not exist a Zariski-dense set of k-rational .D; S/-
integral points on X .
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CONJECTURE 5.1B (Main Picard-type conjecture). Suppose that

�.Di /� �0 > 0 for all i .

If r >mCm=�0, then there does not exist a holomorphic map f W C!X nD with
Zariski-dense image.

As mentioned earlier, we will usually just say D-integral, omitting k and S
from the notation. Siegel’s theorem (respectively Picard’s theorem) is the case
mD �0 D dimX D 1 of Conjecture 5.1A (respectively Conjecture 5.1B). We note
that the dimension of X does not appear in the conjectures, but �.Di / is bounded
by dimX . We will now discuss some consequences and special cases of these
conjectures which seem important enough in their own right to be listed separately
as new conjectures. At the two extremes of �0 we have this:

CONJECTURE 5.2A. If �.Di / > 0 for all i and r > 2m, then there does not
exist a Zariski-dense set of D-integral points on X .

CONJECTURE 5.2B. If �.Di / > 0 for all i and r > 2m, then there does not
exist a holomorphic map f W C!X nD with Zariski-dense image.

CONJECTURE 5.3A. If Di is big for all i and r > mCm=dimX , then there
does not exist a Zariski-dense set of D-integral points on X .

CONJECTURE 5.3B. If Di is big for all i and r > mCm=dimX , then there
does not exist a holomorphic map f W C!X nD with Zariski-dense image.

We note that when the Di are in some sort of general position, so that mD
dimX , the inequalities in the last two conjectures above take the nicer form r >

dimX C 1.
Of particular interest is the case where Di is ample for all i . In this case, one

easily deduces the following conjectures as consequences of Conjectures 5.3A and
5.3B.

CONJECTURE 5.4A (Main Siegel-type conjecture for ample divisors). Suppose
that Di is ample for all i . Let R be a set of D-integral points on X .

(a) If r > mCm=dimX , then dimR �m=.r �m/.

(b) In particular, if r > 2m, then X nD is Mordellic.

CONJECTURE 5.4B (Main Picard-type conjecture for ample divisors). Suppose
that Di is ample for all i . Let f W C!X nD be a holomorphic map.

(a) If r > mCm=dimX , then dimf .C/�m=.r �m/.

(b) If r > 2m, then X nD is complete hyperbolic and hyperbolically imbedded in
X . In particular, X nD is Brody hyperbolic.
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The main conjectures for ample divisors might possibly extend to big divisors
as follows. Let D D

Pr
iD1Di be a sum of big divisors on a projective variety X .

Let n > 0 be large enough such that the map ˆDˆnD , corresponding to nD, is
birational onto its image. It is then quite plausible that Conjectures 5.4A and 5.4B
extend to the big divisorD if we state things in terms of ˆ, i.e., if we replace dimR

and dimf .C/ by dimˆ.R/ and dimˆ.f .C//, respectively, in the conjectures. In
particular, this would imply that if Di is big for all i and r > 2m, then X nD is
quasi-Mordellic and quasi-Brody hyperbolic (this might even be true with r � 2m).

5.2. General conjectures. We now consider the situation where the field that
the integral points are defined over is allowed to vary over all fields of degree less
than or equal to d over some fixed field k. So in this section we do not require that
integral points be k-rational.

Definition 5.5. Let R �X.k/. We define the degree of R over k to be

degk RD sup
P2R

Œk.P / W k�:

The next conjecture generalizes the main Siegel-type conjecture of the last
section.

CONJECTURE 5.6 (General Siegel-type conjecture). Suppose that

�.Di /� �0 > 0 for all i .

Let d be a positive integer. If r > mCm.2d � 1/=�0, then there does not exist a
Zariski-dense set of D-integral points on X of degree d over k.

We will also want to define a degree d Diophantine exceptional set for a variety
V . With the notation from our earlier definition for ExcDio, we make the following
definition.

Definition 5.7. Let X be a projective variety and D an effective Cartier divisor
on X , both defined over a number field k. Let L be a number field with L� k, and
let S be a finite set of places of L containing the archimedean places. We define
the degree d Diophantine exceptional set of X nD with respect to L and S to be

ExcDio;degd;L;S.X nD/D
[
R

dim>0.R/;

where the union runs over all sets R of .D; S/-integral points on X of degree d
over L. We define the degree d absolute Diophantine exceptional set of X nD to
be

ExcDio;degd.X nD/D
[

L�k;S

ExcDio;degd;L;S.X nD/;

with L ranging over all number fields containing k and S ranging over all sets of
places of L as above.
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Similarly, we define X nD to be degree d Mordellic (resp. degree d quasi-
Mordellic) if ExcDio;degd.X nD/ is empty (resp. not Zariski-dense in X).

Conjecture 5.6 implies the following conjecture for ample divisors.

CONJECTURE 5.8 (General Siegel-type conjecture for ample divisors). Sup-
pose that Di is ample for all i . Let R be a set of D-integral points on X of degree
d over k.

(a) If r > mCm.2d � 1/=dimX , then dimR �m.2d � 1/=.r �m/.

(b) In particular, if r > 2dm, then X nD is degree d Mordellic.

This conjecture might possibly be extended to big divisors as in the comments after
Conjectures 5.4A and 5.4B.

6. Overview of results

Sections 8–12 will be concerned with proving special cases of the above
conjectures. In this section we highlight some of our results. Along the lines of the
main conjectures, we prove the following theorems.

THEOREM 6.1A. Suppose r > 2m dimX .

(a) If Di is big for all i , then X nD is quasi-Mordellic.

(b) If Di is ample for all i , then X nD is Mordellic.

THEOREM 6.1B. Suppose r > 2m dimX .

(a) If Di is big for all i , then X nD is quasi-Brody hyperbolic.

(b) If Di is ample for all i , then X nD is complete hyperbolic and hyperbolically
imbedded in X . In particular, X nD is Brody hyperbolic.

With some additional mild hypotheses (see Theorems 10.4A and 10.4B), both parts
(a) above can be improved to r >2Œ.mC1/=2� dimX , where Œx� denotes the greatest
integer in x.

For any X , the mD 1 cases of the main conjectures follow essentially from
Siegel’s and Picard’s theorems (see Theorem 9.14). When X is a nonsingular
surface, mD 2, and the Di have no irreducible components in common, we are
able to prove the main conjectures, Conjectures 5.1A through 5.4B.

THEOREM 6.2A. Suppose X is a nonsingular surface and the Di have no
irreducible components in common.

(a) If mD 1, �.Di / > 0 for all i , and r > 2, then there does not exist a Zariski-
dense set of D-integral points on X .

(b) If mD 2, �.Di / > 0 for all i , and r > 4, then there does not exist a Zariski-
dense set of D-integral points on X .
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(c) If mD 2, Di is big for all i , and r > 3, then X nD is quasi-Mordellic.

(d) If mD 2, Di is ample for all i , and r > 4, then X nD is Mordellic.

THEOREM 6.2B. Suppose X is a nonsingular surface and the Di have no
irreducible components in common.

(a) IfmD1, �.Di />0 for all i , and r >2, then there does not exist a holomorphic
map f W C!X nD with Zariski-dense image.

(b) IfmD2, �.Di />0 for all i , and r >4, then there does not exist a holomorphic
map f W C!X nD with Zariski-dense image.

(c) If mD 2, Di is big for all i , and r > 3, then X nD is quasi-Brody hyperbolic.

(d) If mD 2, Di is ample for all i , and r > 4, then X nD is complete hyperbolic
and hyperbolically imbedded in X . In particular, X nD is Brody hyperbolic.

As to the general conjectures, when the integral points are allowed to vary
over fields of a bounded degree, we prove this:

THEOREM 6.3. Let d be a positive integer. If Di is ample for all i and
r > 2d2m dimX , then X nD is degree d Mordellic (all sets of D-integral points
on X of degree d over k are finite).

As an application of our results, we will discuss an improvement to a result
of Faltings, who recently [Fal02] showed how theorems on integral points on the
complements of divisors with many components may occasionally be used to prove
theorems on integral points on the complements of irreducible divisors. He shows
how to do this with certain very singular curves on P2 by reducing the problem to a
covering surface and applying the method of [FW94]. In [Zan05], Zannier uses the
subspace theorem approach instead of [FW94] to prove a result similar to Faltings.
In Section 13, we will prove a theorem that generalizes both results. As a bonus,
we also prove the theorem in the case of holomorphic curves.

7. Preliminaries

7.1. Diophantine approximation. Let k be a number field with canonical set
of places Mk (see Section 3). A basic identity is the product formulaY

v2Mk

jxjv D 1 for all x 2 k�:

For a point P D .x0; : : : ; xn/ 2 Pn.k/, we define the height to be

H.P /D
Y
v2Mk

max.jx0jv; : : : ; jxnjv/:
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It follows from the product formula that H.P / is independent of the choice of
homogeneous coordinates for P . It is also easy to see that the height is independent
of k. We define the logarithmic height to be

h.P /D logH.P /:

At the core of our Diophantine results is Vojta’s version of Schmidt’s subspace
theorem [Voj89].

THEOREM 7.1A. Let k be a number field. Let S be a finite set of places in Mk

containing the archimedean places. Let H1; : : : ;Hm be hyperplanes in Pn defined
over k with corresponding Weil functions �H1

; : : : ; �Hm
. Then there exists a finite

union of hyperplanes Z, depending only on H1; : : : ;Hm (and not k or S), such
that for any " > 0,

(1)
X
v2S

max
I

X
i2I

�Hi ;v.P /� .nC 1C "/h.P /

holds for all but finitely many points P in Pn.k/ nZ, where the maximum is taken
over subsets I � f1; : : : ; mg such that the linear forms defining Hi for i 2 I are
linearly independent.

Explicitly, if H is a hyperplane on Pn defined by the linear form L.x0; : : : ; xn/,
then a Weil function for H is given by

(2) �H;v.P /D log max
i

jxi jv

jL.P /jv
;

where P D .x0; : : : ; xn/ and we have chosen embeddings k! kv for each v.
For easy reference, we now collect various properties of D-integral points that

we will use (sometimes implicitly) throughout the paper; see also [Voj87].

LEMMA 7.2. Let k be a number field and S a finite set of places in Mk

containing the archimedean places. Let D be an effective Cartier divisor on a
projective variety X , both defined over k.

(a) Let L be a finite extension of k, and let T be the set of places of L lying
over places in S . If R is a set of .D; S/-integral points, then it is a set of
.D; T /-integral points.

(b) Let E be an effective Cartier divisor on X . If R is a set of .DCE/-integral
points, then R is a set of D-integral points.

(c) TheD-integrality of a set is independent of the multiplicities of the components
of D.

(d) Let Y be a projective variety defined over k. Let � W Y ! X be a morphism
defined over k with �.Y / 6�D and �jY n��D W Y n��D!X nD a finite étale
map. If R is a set of .D; S/-integral points on X , then there exists a number
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field L such that ��1.R/� Y.L/ (the Chevalley-Weil theorem). Furthermore,
��1.R/ is a set of .��D;T /-integral points on Y , where T is the set of places
of L lying above places of S .

7.2. Nevanlinna theory and Kobayashi hyperbolicity. We will be interested in
Nevanlinna theory as it applies to holomorphic maps f WC!Pn and hyperplanes on
Pn. Let f W C! Pn be a holomorphic map. Then we may choose a representation
f D .f0; : : : ; fn/ of f , where f0; : : : ; fn are entire functions without common
zeros. Let us define kf kD .jf0j2C� � �Cjfnj2/1=2. Then we define a characteristic
function Tf .r/ of f to be

Tf .r/D

Z 2�

0

logkf .rei� /k d�
2�
:

Note that by Jensen’s formula, this function is well defined up to a constant. Let H
be a hyperplane in Pn defined by a linear form L. Then we define a Weil function
�H .f .z// of f with respect to H by

(3) �H .f .z//D� log
jL.f .z//j

kf .z/k
:

We note that this is independent of the choice of f and depends on the choice of L
only up to a constant. The analogue of Schmidt’s subspace theorem that we will
need is the following version of Cartan’s second main theorem.

THEOREM 7.1B (Vojta [Voj97]). Let H1; : : : ;Hm be hyperplanes in Pn with
corresponding Weil functions �H1

; : : : ; �Hm
. Then there exists a finite union of

hyperplanes Z such that for any " > 0 and any non-constant holomorphic map
f W C! Pn with f .C/ 6�Z, the inequality

(4)
Z 2�

0

max
I

X
i2I

�Hi
.f .rei� //

d�

2�
� .nC 1C "/Tf .r/

holds for all r outside a set of finite Lebesgue measure, where the maximum is taken
over subsets I � f1; : : : ; mg such that the linear forms defining Hi for i 2 I are
linearly independent.

Closely connected to questions about holomorphic curves is the Kobayashi
pseudo-distance and Kobayashi hyperbolicity. See [Lan87] for the definitions of
the Kobayashi pseudo-distance, Kobayashi hyperbolic, complete hyperbolic, and
hyperbolically imbedded. It is trivial that Kobayashi hyperbolic implies Brody
hyperbolic. We will want a criterion for proving the converse in special cases. On
projective varieties, this is given by Brody’s theorem. More generally, we will use
the following theorem; see [Gre77] and [Lan87].
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THEOREM 7.3 (Green). Let X be a complex projective variety. Suppose
Y D

S
i2I Di is a finite union of effective Cartier divisors Di on X . Suppose that

for every subset ∅� J � I , \
j2J

Dj n
[
i2InJ

Di

is Brody hyperbolic, where
T
j2∅Dj DX . Then X nY is complete hyperbolic and

hyperbolically imbedded in X .

7.3. Nef and big divisors. We now recall some basic definitions and facts
regarding nef and big divisors. We will assume a basic familiarity with intersection
theory (see [Ful98] for a thorough modern account). We will use the notation Dn

to denote the intersection number of the n-fold intersection of D with itself. In
what follows, X will be a projective variety over an algebraically closed field of
characteristic 0.

Definition 7.4. A Cartier divisor D (or invertible sheaf O.D/) on X is said to
be numerically effective, or nef, if D:C � 0 for any closed integral curve C on X .

The next lemma summarizes some basic properties of nef divisors; see [Kle66].

LEMMA 7.5. Nef divisors satisfy the following:

(a) Let nD dimX . If D1; : : : ;Dn, are nef divisors on X , then

D1 :D2: : : : :Dn � 0:

(b) Let D be a nef divisor and A an ample divisor on X . Then ACD is ample.

(c) Let f WX! Y be a morphism and let D be a nef divisor on Y . Then f �O.D/

is nef on X .

Recall that in Definitions 3.5 and 3.6 we defined �.D/ and what it means for
a Cartier divisor to be big. If D is big then there exists an n > 0 such that ˆnD is
birational onto its image. It is always true that �.D/� dimX , so D is big if and
only if it has the largest possible dimension for a divisor on X . For nef divisors it is
possible to give a more numerical criterion for a divisor to be big. It is also possible
in this case to get an asymptotic formula for h0.nD/. We have the following lemma,
due to Sommese, as it appears in [Kaw82].

LEMMA 7.6. Suppose D is a nef divisor on a nonsingular projective varietyX.
Let q D dimX . Then h0.nD/D .Dq=qŠ/nqCO.nq�1/. In particular, Dq > 0 if
and only if D is big.

Proof. Let KX denote the canonical divisor on X . Let L be an ample divisor
on X such that LCKX is very ample. Since D is nef, nDCL is ample, and so
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by Kodaira’s vanishing theorem we have

H i .X;O.nDCLCKX //D 0 for i > 0:

Therefore,

h0.nDCLCKX /D �.O.nDCLCKX //D
Dq

qŠ
nqCO.nq�1/

by Riemann-Roch. Let Y be a general member of the linear system jLCKX j, so
that Y is nonsingular and irreducible. Then we have an exact sequence

0!H 0.X;O.nD//!H 0.X;O.nDCLCKX //!H 0.Y; i�O.nDCLCKX //

where i W Y !X is the inclusion map. But since dimY D q� 1, we have

dimH 0.Y; i�O.nDCLCKX //�O.n
q�1/:

It follows that h0.nD/D .Dq=qŠ/nqCO.nq�1/. �

Since we will use it multiple times, we state the exact sequence used above as
a lemma.

LEMMA 7.7. Let D be an effective Cartier divisor on X with inclusion map
i WD!X . Let L be an invertible sheaf on X . Then we have exact sequences

0! L˝O.�D/ �! L! i�.i
�L/ �! 0;

0!H 0.X;L˝O.�D// �!H 0.X;L/ �!H 0.D; i�L/:

Proof. IfD is an effective Cartier divisor, then a fundamental exact sequence is

0! O.�D/ �! OX �! i�OD! 0:

Tensoring with L and using the projection formula, we get the first exact sequence.
Taking global sections then gives the second exact sequence. �

On surfaces, Lemma 7.6 can be expanded to include effective divisors with positive
self-intersection.

LEMMA 7.8. Let D be an effective divisor on a nonsingular projective surface
X . If D2 > 0, then h0.nD/� 1

2
n2D2CO.n/ and D is big.

Proof. By Riemann-Roch,

h0.nD/� h1.nD/C h0.K �nD/D 1
2
n2D2� 1

2
nD:KC 1Cpa:

Since D is effective and D ¤ 0, h0.K � nD/ D 0 for n � 0 (for example,
choose n > K :H , where H is an ample divisor). We also have h1.nD/ � 0, so
h0.nD/� 1

2
n2D2CO.n/ and D is big. �

Unlike when E is effective, it is not always true that if E is nef, then
h0.D�E/� h0.D/. We will therefore find the following lemma useful.
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LEMMA 7.9. Let X be a nonsingular projective variety of dimension q. Let D
and E be any divisors on X , and let F be a nef divisor on X . Then

h0.nDCE �mF /� h0.nD/CO.nq�1/ for all m; n� 0,

where the implied constant is independent of m and n.

Proof. We first claim that if B is any nef divisor, then there exists a divisor
C , independent of B , such that h0.B C C/ > 0. Explicitly, we may take C D
.qC2/ACKX , where A is a very ample divisor on X . We prove this by induction
on the dimension q. The case q D 1 is easy. For the inductive step, we have an
exact sequence

0!H 0.X;O..qC 1/ACKX CB//!H 0.X;O..qC 2/ACKX CB//

!H 0.Y; i�.O..qC 2/ACKX CB///!H 1.X;O..qC 1/ACKX CB//;

where Y is an irreducible nonsingular element of jAj whose inclusion map is
i W Y !X . Since .qC1/ACB is ample, by Kodaira vanishing, the last term above
is 0. Since !Y Š i�.O.ACKX //, by induction we get that

dimH 0.Y; i�.O..qC 2/ACKX CB/// > 0:

Since the penultimate map in the exact sequence above is surjective, we therefore
also have h0..qC2/ACKXCB/D h0.BCC/> 0, proving our claim. Therefore,

h0.nDCE �mF /� h0.nDCE �mF C .C CmF //D h0.nDCC CE/

� h0.nD/CO.nq�1/

independently of m, where the last inequality follows from Lemma 7.7 as in the
proof of Lemma 7.6. �

For completeness, we mention that there exist examples showing that Lemma
7.9 is false if O.nq�1/ is replaced by O.nq�2/.

8. Fundamental theorems on large divisors

In this section we prove a slightly expanded version of a theorem of Corvaja
and Zannier and its analogue for holomorphic curves. These theorems will be
fundamental to our future results.

Let D be a divisor on a nonsingular projective variety X defined over a
field k. Let k.X/ denote the function field of X over k. We will write D � E
if D � E is effective. Let div.f / denote the principal divisor associated to f .
Let L.D/ be the k-vector space L.D/ D ff 2 k.X/ j div.f / � �Dg, and let
l.D/ D dimL.D/ D h0.D/. If E is a prime divisor, we let ordEf denote the
coefficient of E in div.f /. We make the following definition.
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Definition 8.1. LetD be an effective divisor on a nonsingular projective variety
X defined over a field k. Then we define D to be a very large divisor on X if
for every P 2D.k/ there exists a basis B of L.D/ such that ordE

Q
f 2B f > 0

for every irreducible component E of D such that P 2 E. We define D to be
a large divisor if some nonnegative integral linear combination of its irreducible
components is very large on X .

Note that in the definition of very large, a basis function f 2 B may have
a high-order pole along E. We just require that (after cancellation) the productQ
f 2B f has a zero along E.

Remark 8.2. Suppose D is very large. Let P 2 D, and let E be the set of
irreducible components E of D such that P 2E. If B is a basis of L.D/ that has
the property in the definition of very large with respect to P , then B also works as
a basis with respect to any suitably generic Q 2

T
E2EE. Thus, it is easily seen

that in the definition of very large, one only needs to use bases B 2 B for some
finite set of bases B for any very large divisor D.

We will see (Theorem 9.9) for example that on any nonsingular projective
variety X , the sum of sufficiently many ample effective divisors in general position
is large. On the other hand, it is obvious from the definition that ifD is an irreducible
effective divisor on X , then D cannot be large. Roughly speaking, large divisors
have a lot of irreducible components of high D-dimension. With this definition we
have the following theorems.

THEOREM 8.3A (Corvaja–Zannier). Let X be a nonsingular projective variety
defined over a number field k. Let S �Mk be a finite set of places of k containing
the archimedean places. Let D be a large divisor on X defined over k. Then there
does not exist a Zariski-dense set of D-integral points on X . Furthermore, if D is
very large and ˆD is a rational map to projective space corresponding to D, then
there exists a proper Zariski-closed subset Z �X depending only on D (and not
k or S) such that ˆD.R nZ/ is finite for any set R of D-integral points on X . In
particular, if ˆD is birational onto its image, X nD is quasi-Mordellic.

THEOREM 8.3B. Let X be a nonsingular complex projective variety. Let D be
a large divisor on X . Then there does not exist a holomorphic map f W C!X nD

with Zariski-dense image. Furthermore, ifD is very large andˆD is a rational map
to projective space corresponding to D, then there exists a proper Zariski-closed
subset Z �X such that for all holomorphic maps f WC!X nD, either f .C/�Z
or ˆD ı f is constant. In particular, if ˆD is birational onto its image, X nD is
quasi-Brody hyperbolic.

Theorem 8.3A appears, essentially, in the proof of [CZ04b, Main Theorem],
and for curves in [CZ02]. We have added the last two statements to the theorem
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by using Vojta’s result on the exceptional hyperplanes in the Schmidt subspace
theorem.

Given Theorems 8.3A and 8.3B, many of our results mentioned in the intro-
duction reduce to showing that certain divisors are large. Let us prove Theorem
8.3A first. Before proving this theorem, we need a lemma.

LEMMA 8.4. Let X be a projective variety defined over a number field k. Let
R � X.k/ be a Zariski-dense subset of X . Let v 2Mk . Then there exists a point
P in X.kv/ and a sequence fPig in R such that fPig ! P in the v-topology on
X.kv/ and

S
fPig is Zariski-dense in X .

Proof. We will work throughout the proof in the v-topology on X.kv/. Let Rv

denote the closure of R in X.kv/ in the v-topology. First we claim that there exists
a P in Rv �X.kv/ such that for every neighborhood U of P in X.kv/, U \R is
Zariski-dense in X . Indeed, suppose there is no such P . Then for each P in Rv,
let UP be a neighborhood of P such that UP \R is not Zariski-dense in X . Since
X.kv/ is compact because X is projective, Rv is compact, so we may cover Rv by
finitely many open sets UP1

; : : : ; UPn
. But then RD .UP1

\R/[ � � � [ .UPn
\R/

is not Zariski-dense in X , a contradiction.
Now pick someP as in the claim above. EmbedX in Pn

k
for some n. Since k is

countable, the set of hypersurfaces in Pn
k

not containingX is countable. Let fHig be
an enumeration of these. There also exists a countable collection of neighborhoods
fUig of P in X.kv/ such that Ui �Uj for i > j and

T
Ui D fP g. Since Ui \R is

Zariski-dense in X , for all i there exists a Pi 2 Ui \R such that Pi …Hi . Then
fPig ! P in X.kv/, and

S
fPig is Zariski-dense in X since it is not contained in

any hypersurface. �

Proof of Theorem 8.3A. Let D be a large divisor, and let S and X be as in
Theorem 8.3A. Since our first assertion depends only on the support of D, we
may assume without loss of generality that D is very large on X . Extending k if
necessary and enlarging S , we may assume without loss of generality that every
irreducible component of D is defined over k and that all of the finitely many
functions in L.D/ we use (see Remark 8.2) are defined over k. Let f�1; : : : ; �l.D/g
be a basis of L.D/ over k. Let R be a .D; S/-integral set of points on X . It suffices
to prove the theorem in the case that R is irreducible. By repeatedly applying
Lemma 8.4, we see that there exists a sequence Pi in R such that for each v in S ,
fPig converges to a point Pv 2X.kv/ and

S
fPig is Zariski-dense in R.

Let S 0 be the set of places v 2 S such that Pv 2D.kv/, and let S 00 D S nS 0.
Since D is very large, for each v 2 S 0 we may let Liv for i D 1; : : : ; l.D/ be a
basis for L.D/ such that ordE

Ql.D/

iD1 Liv > 0 for all irreducible components E of
D such that Pv 2E.kv/. Of course, each Liv is a linear form in the �j over k. For
v 2 S 00, we set Ljv D �j for j D 1; : : : ; l.D/. Let �.P /D .�1.P /; : : : ; �l.D/.P //
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for P 2X nD. Let Hjv denote the hyperplane in Pl
.D/�1 determined by Ljv with

respect to the basis �1; : : : ; �l.D/. Let �Hjv;v be the Weil function for Hjv given in
(2). We will now show that there exists " > 0 and a constant C such that for all i ,

(5)
X
v2S

l.D/X
jD1

�Hjv;v.�.Pi // > .l.D/C "/h.�.Pi //CC:

Since R is a set of .D; S/-integral points, we have

h.�.Pi // <
X
v2S

log max
j
j�j .Pi /jvCO.1/:

Using this, it suffices to prove thatX
v2S

l.D/X
jD1

log max
j 0

j�j 0.Pi /jv

jLjv.Pi /jv
> .l.D/C "/

X
v2S

log max
j 0
j�j 0.Pi /jvCC

0

for some C 0, or rearranging things, simplifying, and exponentiating,Y
v2S

max
j 0
j�j 0.Pi /j

"
v

l.D/Y
jD1

jLjv.Pi /jv

is bounded for some " > 0. Let

M Dmaxf�ordE�j jE is an irreducible component of D, j D 1; : : : ; l.D/g:

Let "D 1=M . For v 2 S 00, both j�j 0.Pi /jv and jLjv.Pi /jv are bounded for all i
since Pv …D.kv/ and �j 0 and Ljv have poles lying only in the support of D. Let
v 2 S 0. So Pv 2 D.kv/. It follows from the definition of M and the fact that
ordE

Ql.D/

iD1 Liv > 0 for any irreducible component E of D such that Pv 2E.kv/
that

ordE�j 0.
Ql.D/

iD1 Liv/
M � �M CM � 0

for any irreducible component E of D such that Pv 2E.kv/. Since the �j 0 and Liv
have poles only in the support of D, it follows from the previous order computation
that maxj 0 j�j 0.Pi /j"v

Ql.D/

jD1 jLjv.Pi /jv is bounded for all i and all v 2 S when
"D 1=M > 0. This proves (5).

Note that either h.�.Pi //!1 as i !1 or �.Pi / D �.R/ and �.Pi / is
constant for all i . In the latter case the theorem is proved, so we may assume the
former. Therefore, making " smaller, we see that (5) holds with C D 0 for all but
finitely many i . So by Schmidt’s subspace theorem, there exists a finite union of
hyperplanes Z � Pl.D/�1 such that all but finitely many of the points in the set
f�.Pi /D .�1.Pi /; : : : ; �l.D/.Pi // j i 2Ng lie in Z. Using Remark 8.2 we see that
we may choose the hyperplanes Hiv used above from a finite set of hyperplanes
independent of R. Therefore, using the statement on the exceptional hyperplanes
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in Schmidt’s subspace theorem, we see that Z may be chosen to depend only on
D and not R, k, or S . Since it was assumed that R is irreducible and �.R/ is
not a point, it follows that �.R/�Z. Since �1; : : : ; �d are linearly independent
functions in k.X/ and Z is a finite union of hyperplanes, it follows that ��1.Z/ is
a finite union of proper closed subvarieties of X . So R � ��1.Z/ and the theorem
is proved. �

The next proof is very similar.

Proof of Theorem 8.3B. Since our first assertion depends only on the support
of D, we may assume without loss of generality that D is very large on X . By
Remark 8.2 there exists a finite set J of elements in L.D/ such that for any P 2D
there exists a subset I � J that is a basis of L.D/ such that ordE

Q
g2I g > 0 for

every irreducible component E of D such that P 2E. Let �1; : : : ; �l.D/ be a basis
for L.D/. Let � D .�1; : : : ; �l.D// WX nD! Pl

.D/�1. Let J 0 be the set of linear
forms L in l.D/ variables over C such that Lı� 2 J . If L is a linear form, let HL
be the corresponding hyperplane. Let f W C!X nD be a holomorphic map. We
will now show that there exists " > 0 and a constant C such that

(6)
Z 2�

0

max
I

X
L2I

�HL
.� ıf .rei� //

d�

2�
> .l.D/C "/T�ıf .r/�C

for all r > 0, where the maximum is taken over subsets I � J 0 such that I consists
of exactly l.D/ linearly independent linear forms. Substituting the definition of the
Weil function in (3) and the definition of T�ıf , we find after some manipulation
that the inequality in (6) becomesZ 2�

0

" logk� ıf .rei� /kCmin
I

X
L2I

logjL ı� ıf .rei� /jd�
2�

< C

with I as before. Since k� ı f .rei� /k �
p
l.D/maxj j�j ı f .rei� /j, it clearly

suffices to show that

(7) max
j
j�j ıf .re

i� /j" min
I

Y
L2I

jL ı� ıf .rei� /j

is bounded independently of r and � for some " > 0. Let D1; : : : ;Dm be the
irreducible components of D. Let

M Dmaxf�ordDi
�j j i D 1; : : : ; m; j D 1; : : : ; l.D/g:

We will work in the classical topology. Let P 2D. Then there exists a neighborhood
U of P such that for all Q 2 U , if Q 2Di for some i , then P 2Di . Let I 0 � J 0

be a subset of J 0 such that ordDi

Q
L2I 0 L ı � > 0 for all i such that P 2Di . If

P 2 Di , then by the definition of M we have ordDi
�j .

Q
L2I 0 L ı �/

M � 0 for
all j . By the definition of U we see that j�j .

Q
L2I 0 L ı �/

M j is bounded for all
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j on the compact set U . Since D is compact and may be covered by such sets,
we see that maxj j�j jminI

Q
L2I jL ı �j

M is bounded on X nD (using also that
away from D everything is obviously bounded since the �j have poles only in D).
Therefore the function in (7) is bounded independently of r and � for "D 1=M .

If � ı f is constant then there is nothing to prove, so assume otherwise. Then
T�ıf .r/!1 as r!1, and so making " smaller, we see that we have proved the
inequality (6) with C D 0 for all sufficiently large r . Therefore by Cartan’s second
main theorem, there exists a finite union of hyperplanes Z � Pl

.D/�1 depending
only on D (the HL depended only on D) such that �.f .C// � Z. Since the �j
are linearly independent and Z is a finite union of hyperplanes, ��1.Z/ is a finite
union of proper closed subvarieties of X , and f .C/� ��1.Z/. �

Remark 8.5. If D is very large and one can explicitly compute the map �
and the hyperplanes used in the above proofs, then one can explicitly compute the
closed set Z in the theorems above. This follows from the explicit description of
the exceptional hyperplanes in [Voj89] and [Voj97].

9. Results on higher-dimensional varieties

For an effective divisor D D
Pr
iD1Di on X and P 2 D.k/, we define

DP D
P
i WP2Di

Di .

LEMMA 9.1. Let D D
Pr
iD1Di be a divisor on a nonsingular projective

variety X with Di effective for each i . For P 2D, let

fP .m; n/D l.nD�mDP /� l.nD� .mC 1/DP /:

If there exists n > 0 such that
P1
mD0.m�n/fP .m; n/ > 0 for all P 2D, then nD

is very large.

Proof. Let n> 0 be such that
P1
mD0.m�n/fP .m; n/ > 0 for all P 2D. This

sum is clearly finite for all P 2D, and we let MP .n/ be the largest integer such
that fP .MP .n/; n/ > 0. Let P 2D, M DMP .n/, and Vj D L.nD� jDP /. So
dimVj =VjC1 D fP .j; n/. We have L.nD/D V0 � V1 � � � � � VM ¤ 0. Choose
a basis of VM and successively complete it to bases of VM�1; VM�2; : : : ; V0 to
obtain a basis f1; : : : ; fl.nD/. Let E be an irreducible component of D such that
P 2E. If fj 2 Vm, then ordEfj � .m�n/ ordE D. So we get that

ordE
l.nD/Y
iD1

fi � .ordE D/
MX
mD0

.m�n/fP .m; n/ > 0:

Therefore nD is very large. �

THEOREM 9.2. Suppose X is a nonsingular projective variety, and let q D
dimX . Let D D

Pr
iD1Di be a divisor on X such that Di is effective and nef for
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each i . Suppose also that every irreducible component of D is nonsingular. If

Dq > 2qDq�1 :DP for all P 2D;

then nD is very large for n� 0. In particular, D is large.

Proof. Let P 2D. Let DP D
Pk
jD1 ajEj , where each Ej is a distinct prime

divisor. Repeatedly applying Lemma 7.7, we obtain

dimH 0.X;O.nD�mDP //� dimH 0.X;O.nD� .mC 1/DP //

�
Pk
jD1

Paj�1

lD0
dimH 0.Ej ; i

�
Ej

O.nD�mDP �
Pj�1
j 0D1 aj 0Ej 0 � lEj //:

Since DP is nef, i�Ej
O.DP / is nef. Thus, setting D, E, F in Lemma 7.9 to divisors

associated to

i�Ej
O.D/; i�Ej

O.�
Pj�1
j 0D1 aj 0Ej 0 � lEj /; i�Ej

O.DP /;

respectively, we obtain

dimH 0.Ej ; i
�
Ej

O.nD�mDP �
Pj�1
j 0D1 aj 0Ej 0 � lEj //

� dimH 0.Ej ; i
�
Ej

O.nD//CO.nq�2/:

Therefore,

dimH 0.X;O.nD�mDP //� dimH 0.X;O.nD� .mC 1/DP //

�

kX
jD1

aj dimH 0.Ej ; i
�
Ej

O.nD//CO.nq�2/:

Since D is nef, l.nD/D .nq=qŠ/Dq CO.nq�1/. Since i�Ej
O.D/ is also nef, we

have

dimH 0.Ej ; i
�
Ej

O.nD//D
nq�1

.q�1/Š
Dq�1 :Ej CO.n

q�2/:

So

fP .m; n/�
nq�1

.q�1/Š

kX
jD1

ajD
q�1 :EjCO.n

q�2/D
nq�1

.q�1/Š
Dq�1 :DPCO.n

q�2/:

To use this estimate, we borrow a lemma from [CZ04b].

LEMMA 9.3. Let h and R be integers with R � h, and let x1; : : : ; xh
and U1; : : : ; UR be real numbers. If 0 � xi � Ui for i D 1; : : : ; R andPR
jD1 Uj �

Ph
jD1 xj , then

Ph
jD1 jxj �

PR
jD1 jUj .
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Proof. We have

RX
jD1

jUjC

hX
jD1

.RC 1� j /xj �

RX
jD1

jUjC

RX
jD1

.RC 1� j /xj

�

RX
jD1

jUjC

RX
jD1

.RC 1� j /Uj D .RC 1/

RX
jD1

Uj :

So, rearranging things,

hX
jD1

jxj �

RX
jD1

jUj C .RC 1/
� hX
jD1

xj �

RX
jD1

Uj

�
;

and the last term is nonnegative by assumption. �

Let Rn D .nq=qŠ/Dq and Sn D .nq�1=.q � 1/Š/Dq�1 :DP . In the notation
of Lemma 9.1, we have

MP .n/X
mD0

fP .m; n/D l.nD/DRnCO.n
q�1/

and fP .m; n/ � SnCO.nq�2/. We will assume from now on that Sn ¤ 0 (the
case Sn D 0 is similar). Then using our estimate, we have

MP .n/�Rn=SnCO.1/ and
Rn=SnCO.1/X

mD0

.SnCO.n
q�2//�

MP .n/X
mD0

fP .m; n/:

So using Lemma 9.3 with xi D fP .i; n/ and Ui D SnCO.nq�2/, for n� 0 we
get the estimate

MP .n/X
mD0

.m�n/fP .m; n/�

Rn=SnCO.1/X
mD0

m.SnCO.n
q�2//�n

MP .n/X
mD0

fP .m; n/

�
R2n
2Sn
�nRnCO.n

q/

�
Rn
Sn

�
nq

2qŠ

�
Dq � 2qDq�1 :DP

�
CO.nq�1/

�
:

So for n� 0,
PMP

mD0.m� n/fP .m; n/ > 0 if Dq > 2qDq�1 :DP . Then we are
done by Lemma 9.1. �

The result for q D 1 is this:

COROLLARY 9.4. Let D be an effective divisor on a nonsingular projective
curve X . If D is a sum of more than 2 distinct points on X then D is large.
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By Theorems 8.3A and 8.3B we then recover two corollaries.

COROLLARY 9.5A. Siegel’s theorem (Theorem 2.1A).

COROLLARY 9.5B. Picard’s theorem (Theorem 2.1B).

Actually, we have only proved these theorems for nonsingular curves zC , but
the general case follows from this case by looking at the normalization of zC .

Suppose that we have a divisor D D
Pr
iD1Di satisfying the hypotheses of

Theorem 9.2. We would like to modify D to a divisor D0 D
Pr
iD1 aiDi so that

we may optimally apply the theorem. When each Di is ample, this amounts to
choosing the ai so that in the embedding given by nD0 for n� 0 the degree of each
aiDi is the same. In terms of intersection theory, we would like aiDi :.D0/q�1 to
be the same for each i . We make the following definition:

Definition 9.6. Suppose X is a q-dimensional nonsingular projective variety.
Let D D

Pr
iD1Di be a divisor on X with D1; : : : ;Dr effective. We say D has

equidegree with respect to D1; : : : ;Dr if Di :Dq�1 DDq=r for i D 1; : : : ; r . We
say that D is equidegreelizable (with respect to D1; : : : ;Dr ) if there exist real
numbers ai > 0 such that if D0 D

Pr
iD1 aiDi then D0 has equidegree with respect

to a1D1; : : : ; arDr (where we extend intersections to DivX ˝R in the canonical
way).

We will frequently just say D is equidegreelizable, omitting the reference to
the Di when it is clear what we mean.

LEMMA 9.7. Let X be a nonsingular projective variety. Let q D dimX .
Let D1; : : : ;Dr be divisors on X with Dqi > 0 for all i . Suppose that all q-fold
intersections of the Di are nonnegative. Then

Pr
iD1Di is equidegreelizable with

respect to D1; : : : ;Dr .

Proof. Consider the function f .a1; : : : ; ar/D .
Pr
iD1 e

aiDi /
q on Rr subject

to the constraint g.a1; : : : ; ar/D
Pr
iD1 ai D 0. Since all q-fold intersections of the

Di are nonnegative, f .a1; : : : ; ar/� eqaiD
q
i for any i . Since Dqi > 0 for all i , as

maxfaig !1 we have f .a1; : : : ; ar/!1. It follows that f attains a minimum
on the plane

Pr
iD1 ai D 0. Therefore there exists a solution �; a1; : : : ; ar to the

Lagrange multiplier equations

g D 0;
@f

@ai
D qeaiDi :

� rX
iD1

eaiDi

�q�1
D �

@g

@ai
D �; for i D 1; : : : ; r:

So D0 D
Pr
iD1 e

aiDi has equidegree with respect to ea1D1; : : : ; e
arDr , and

trivially eai > 0 for all i . �

We give an example to show that not all divisor sums are equidegreelizable.
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Example 9.8. Let X D P1 �P1. Let

D1 D P1 �P1; D2 D P2 �P1; D3 D P1 �Q;

where P1, P2, and Q are points in the various P1. So

D1 :D2 DD
2
1 DD

2
2 DD

2
3 D 0 and D1 :D3 DD2 :D3 D 1:

LetDD a1D1Ca2D2Ca3D3. Since a3D3 :DD a1D1 :DCa2D2 :D, it is clear
that there do not exist a1; a2; a3 > 0 such that aiDi :D DD2=3 for i D 1; 2; 3. So
D DD1CD2CD3 is not equidegreelizable with respect to D1;D2, and D3.

With this definition, we have the following theorem.

THEOREM 9.9. Let X be a nonsingular projective variety; let q D dimX . Let
DD

Pr
iD1Di be a big divisor on X equidegreelizable with respect toD1; : : : ;Dr ,

with D1; : : : ;Dr nef and effective. Suppose that every irreducible component of D
is nonsingular. Suppose that the intersection of any mC 1 distinct Di is empty. If
r > 2mq, then D is large. Furthermore, there exists a very large divisor E with the
same support as D such that ˆE is birational onto its image.

Proof. Since D is equidegreelizable, we may find positive integers ai such
that if D0 D

Pr
iD1 aiDi then .aiDi :.D0/q�1=.D0/q/ is arbitrarily close to 1=r

for each i . Note that D0 is again big. Since for any P 2D.k/, P belongs to at
most m divisors Di , and r > 2mq, we have

2q.D0/q�1 :.D0/P D 2q
X

i WP2Di .k/

aiDi :.D
0/q�1 < .D0/q:

Therefore by Theorem 9.2, nD0 is very large for n� 0. The last statement follows
from the fact that D0 is big. �

LEMMA 9.10. Let X be a complex projective variety. Let D D
Pr
iD1Di be a

sum of effective Cartier divisors on X . Then there exists a nonsingular projective
variety X 0, a birational morphism � W X 0 ! X , and a divisor D0 D

Pr
iD1D

0
i

on X 0 such that SuppD0i � Supp��Di for all i , every irreducible component of
D0 is nonsingular, jD0i j is base-point free for all i (in particular D0i is nef ), and
�.D0i / D �.Di / D dimˆD0

i
.X 0/ for all i . Also, if X and D are defined over a

number field, then X 0, D0, and � are defined over some number field.

Proof. Taking a resolution of the singularities of X and of the embedded
singularities of the irreducible components of D, we may assume that X and every
irreducible component of D are nonsingular. For each i , let mi > 0 be such that
dimˆmiDi

.X/D �.Di /. Let � WX 0!X be the map obtained by blowing up the
schemes of base-points [Har77, pp. 168–169] of all the linear systems jmiDi j. Then
��.miDi /DD

0
iCFi for each i , where jD0i j is base-point free andFi is the fixed part

of j��.miDi /j. We have, trivially from the definition, �.Di /D �.miDi /. Further,
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�.miDi /D �.�
�.miDi // (in fact l.mDi /D l.��.mDi // for all m follows easily

from ��OX 0 D OX and the projection formula). Finally, �.��.miDi // D �.D0i /
since by construction �.D0i /D maxn>0 dimˆnD0

i
.X 0/ � �.Di /D �.�

�.miDi //

(the other inequality being trivial). So �.D0i /D �.Di / for all i and therefore X 0; � ,
and D0 D

Pr
iD1D

0
i satisfy the requirements of the lemma. �

We now obtain one of our main results.

THEOREM 9.11A. Let X be a projective variety defined over a number field k.
Let q D dimX . Let D D

Pr
iD1Di be a divisor on X defined over k such that the

Di are effective Cartier divisors and the intersection of any mC 1 distinct Di is
empty.

(a) If Di is big for each i and r > 2mq, then X nD is quasi-Mordellic.

(b) If Di is ample for each i and r > 2mq, then X nD is Mordellic.

THEOREM 9.11B. Let X be a complex projective variety. Let q D dimX . Let
D D

Pr
iD1Di be a divisor on X such that the Di are effective Cartier divisors

and the intersection of any mC 1 distinct Di is empty.

(a) If Di is big for each i and r > 2mq, then X nD is quasi-Brody hyperbolic.

(b) IfDi is ample for each i and r > 2mq, then X nD is complete hyperbolic and
hyperbolically imbedded in X . In particular, X nD is Brody hyperbolic.

Aside from the statement about being complete hyperbolic and hyperbolically
imbedded, the same proof works for both Theorems 9.11A and 9.11B.

Proof. We will first prove parts (a) for both theorems. Let � W X 0! X and
D0 be as in Lemma 9.10 with respect to X and D D

Pr
iD1Di . Since SuppD0 �

Supp��D, it is easily seen that if the conclusions of parts (a) of the theorems hold
for D0 D

Pr
iD1D

0
i and X 0, then they hold for D D

Pr
iD1Di and X . Therefore,

replacing .X;D;D1; : : : ;Dr/ by .X 0;D0;D01; : : : ;D
0
r/, we can assume (extending

k in the Diophantine case if necessary) that X is nonsingular, every irreducible
component of D is nonsingular, and Di is nef for all i . The desired statements then
follow from Lemma 9.7, Theorem 9.9, and Theorems 8.3A and 8.3B.

For part (b) of Theorem 9.11A (resp. Theorem 9.11B), we note that by (a) any
set of D-integral points (resp. the image of any holomorphic map f W C!X nD)
is not Zariski-dense. Let R be a set of D-integral points (resp. the image of a
holomorphic map f W C! X nD). Let Y be an irreducible component of the
Zariski-closure of R. Suppose dimY > 0. Then D pulls back to a sum of r ample
(hence big) divisors on Y such that the intersection of any mC 1 of them is empty.
But R\Y is a Zariski-dense set of DjY -integral points on Y (resp. the image of
a holomorphic map f W C! Y nD), contradicting part (a) proved above since
r > 2mq > 2m dimY . Therefore dimY D 0.
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To prove the extra hyperbolicity statements in (b) in the analytic case, we
use Theorem 7.3. Let ∅� J � f1; : : : ; rg. Let s D #J . Let X 0 be an irreducible
component of

T
j2J Dj . In checking the hypotheses of Theorem 7.3, we can clearly

assume thatX 0 6�Di for any i 2 I nJ and that dimX 0>0. LetD0D
P
i2InJ Di jX 0 .

ThenD0 is a sum of r�s ample divisors on X 0 and the intersection of anym�sC1
of the ample divisors is empty since X 0 is already contained in an intersection of s
of the Di . Since r > 2mq implies that r � s > 2.m� s/ dimX 0, by what we have
proved above, X 0 nD0 is Brody hyperbolic. So by Theorem 7.3, X nD is complete
hyperbolic and hyperbolically imbedded in X . �

We end this section by showing that our main conjectures in the simple case
mD 1 can be proved by reducing to Siegel’s and Picard’s theorems. We will need
the following Bertini theorem; see [Iit82, Th. 7.19].

THEOREM 9.12. Let jDj be a base-point free linear system on a nonsingular
projective variety X with dimˆD.X/� 2. Then every member of jDj is connected,
and a general member of jDj is nonsingular and irreducible.

LEMMA 9.13. Suppose D D D1 CD2 is an effective Cartier divisor on a
projective variety X with �.D1/ > 0, �.D2/ > 0, and D1 \ D2 D ∅. Then
�.D/D �.D1/D �.D2/D 1.

Proof. By Lemma 9.10, we may assume that X is nonsingular and jDj is base-
point free. If �.D/ � 2, then dimˆnD.X/ � 2 for some n > 0. But by Theorem
9.12, every divisor in jnDj is connected, which contradicts that D1\D2 D∅. �

THEOREM 9.14. The main conjectures, Conjectures 5.1A through 5.4B, are
true if mD 1 (i.e., Di \Dj D∅ for all i ¤ j ).

Proof. By Lemma 9.13, it is sufficient to prove the conjectures when D DPr
iD1Di with r > 2 and �.D/D 1. By Lemma 9.10, we may assume that X is

nonsingular and D is base-point free. For n� 0, ˆnD.X/ is a nonsingular curve
C and ˆnD has connected fibers. Therefore, since Di \Dj D ∅ for i ¤ j , we
have ˆnD.X nD/ � C n fr pointsg. Since r > 2, we are done by Siegel’s and
Picard’s theorems. �

10. A filtration lemma

We now show how some of the results in the last section may be improved by
use of a linear algebra lemma on filtrations. The idea of using this lemma, as well
as its statement and proof, are taken from the paper [CZ04b]. Corvaja and Zannier
used it to prove a result on integral points on surfaces, and it will be essential for
our results on surfaces in the next section also.
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LEMMA 10.1. Let V be a vector space of finite dimension d over a field k. Let
V DW1 �W2 � � � � �Wh and V DW �1 �W

�
2 � � � � �W

�
h�

be two filtrations on
V . There exists a basis v1; : : : ; vd of V that contains a basis of each Wj and W �j .

Proof. The proof will be by induction on d . The case d D 1 is trivial. By
refining the first filtration, we may assume without loss of generality that W2 is a
hyperplane in V . LetW 0i DW

�
i \W2 for iD1; : : : ; h�. By the inductive hypothesis,

there exists a basis v1; : : : ; vd�1 of W2 containing a basis of each of W3; : : : ; Wh
andW 01; : : : ; W

0
h

. Let l be the maximal index withW �
l
6�W2, and let vd 2W �l nW

0
l
.

We claim that BDfv1; : : : ; vd g is a basis of V with the required property. It clearly
contains a basis of Wi for each i . Let i 2 f1; : : : ; h�g. If i > l , then W �i DW

0
i , and

so by constructionB contains a basis ofW �i . If i � l , then vd 2W �l nW
0
l
�W �i nW

0
i .

Since B contains a basis B 0i of W 0i and W 0i is a hyperplane in W �i , we see that
B 0i [fvd g is a basis of W �i . �

Using our notation from the last section, suppose that for P 2 D we have
DP DDP;1CDP;2, whereDP;1 andDP;2 are effective divisors with no irreducible
components in common. We may then prove the following versions of Lemma 9.1
and Theorem 9.2.

LEMMA 10.2. Let D D
Pr
iD1Di be a nonzero divisor on a nonsingular

projective variety X with Di effective for each i . Let P 2D. Let

fP;j .m; n/D l.nD�mDP;j /� l.nD� .mC 1/DP;j /

for j D 1; 2. If there exists n > 0 such that for every P 2 D and j D 1; 2 eitherP1
mD0.m�n/fP;j .m; n/ > 0 or DP;j D 0, then nD is very large.

THEOREM 10.3. Suppose X is a q-dimensional nonsingular projective variety.
Let D D

Pr
iD1Di be a divisor on X such that DP;j is effective and nef for all

P 2 D and j D 1; 2. Suppose also that every irreducible component of D is
nonsingular. If

Dq > 2qDq�1 :DP;j for all P 2D and j D 1; 2,

then nD is very large for n� 0.

The proofs are similar to the proofs of Lemma 9.1 and Theorem 9.2. The
only difference is that in the proof of Lemma 10.2, we look at the two filtrations of
L.nD/ given by Wj D L.nD � jDP;1/ and W �j D L.nD � jDP;2/, and we use
the filtration lemma to construct a basis f1; : : : ; fl.nD/ that contains a basis for
each Wj and W �j .

Suppose now that D D
Pr
iD1Di , where the Di are effective divisors and

the intersection of any mC 1 distinct Di is empty. We may then write DP D
DP;1CDP;2, where DP;1 and DP;2 are each not a sum of more than Œ.mC 1/=2�
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of the Di , where Œx� denotes the greatest integer in x. Using this, we get the
following improvements to Theorems 9.11A(a) and 9.11B(a).

THEOREM 10.4A. Let X be a nonsingular projective variety defined over a
number field k. Let q D dimX . Let D D

Pr
iD1Di be a divisor on X defined over

k such that the Di are effective divisors with no irreducible components in common
and such that the intersection of any mC 1 distinct Di is empty. Suppose also that
every irreducible component of D is nonsingular. If Di is nef and big for each i
and r > 2Œ.mC 1/=2�q, then X nD is quasi-Mordellic.

THEOREM 10.4B. Let X be a nonsingular complex projective variety. Let
q D dimX . Let D D

Pr
iD1Di be a divisor on X such that the Di are effective

divisors with no irreducible components in common and such that the intersection
of any mC 1 distinct Di is empty. Suppose also that every irreducible component
of D is nonsingular. If Di is nef and big for each i and r > 2Œ.mC 1/=2�q, then
X nD is quasi-Brody hyperbolic.

11. Surfaces

When X is a surface, the results of the last two sections can be made more
precise. With regards to integral points, this section builds on some of the work
in [CZ04b]. Corvaja and Zannier prove, essentially, Theorem 11.2 [CZ04b, Main
Theorem], and they prove Theorem 11.5A when mD 2 and the Di have multiples
that are all numerically equivalent. The Nevanlinna-theoretic analogues of the
results in [CZ04b] were proved by Ru and Liu in [LR05]. Our results overlap with
their results as well.

We first prove a consequence of the Hodge index theorem.

LEMMA 11.1. Let D be a divisor on a nonsingular projective surface X with
D2 > 0. Then .D2/.E2/� .D:E/2 for any divisor E on X .

Proof. Using the Hodge index theorem, we can diagonalize the intersection
pairing on NumX

N
R with one C1 on the diagonal and all other diagonal entries

�1. We will identify elements of PicX as elements of NumX
N

R in the canonical
way. Extend D to an orthogonal basis B of NumX

N
R. Let E be any divisor on

X . Writing E in the basis B , it is apparent from the Hodge index theorem that
.D2/.E2/� .D:E/2. �

For surfaces, Theorem 10.3 can be improved as follows:

THEOREM 11.2 (Corvaja and Zannier). Let X be a nonsingular projective
surface. Let D D

Pr
iD1Di be a nef divisor on X with effective divisors Di and

D2 > 0. For P 2D, let

DP D
X

i WP2Di

Di DDP;1CDP;2;
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where DP;1 and DP;2 are effective divisors with no irreducible components in
common. Suppose that for all P 2 D, j D 1; 2, and m; n > 0, we have either
l.nD�mDP;j /D 0 or

l.nD�mDP;j /� l.nD� .mC 1/DP;j /� .nD�mDP;j /:DP;j CO.1/;

where the implied constant does not depend on m or n. For j D 1; 2, let

AP;j DDP;j :DP;j ; BP;j DD:DP;j and C DD:D:

If for all P 2D and j D 1; 2, either we have DP;j D 0 or we have

AP;j>0 implies B2P;j � 2AP;jCC3AP;jBP;j
C.3AP;j �BP;j /.B

2
P;j �AP;jC/

1=2<0;

AP;j D 0 implies C > 4BP;j ;

AP;j<0 implies B2P;j�2AP;jC C 3AP;jBP;j
C .3AP;j �BP;j /.B

2
P;j �AP;jC/

1=2 > 0;

then nD is very large for n� 0 (note that by Lemma 11.1, B2P;j �AP;jC > 0).

Proof. Let P 2D and j 2 f1; 2g with DP;j ¤ 0. Let ADAP;j and B DBP;j .
By assumption, in the notation of Lemma 10.2, for all m; n > 0 we have either
fP;j .m; n/D 0 or

fP;j .m; n/D l.nD�mDP;j /� l.nD� .mC 1/DP;j /� nB �mACO.1/;

where the implied constant in the O.1/ does not depend on m or n. Note that

l.nD/D 1
2
D2n2CO.n/D 1

2
Cn2CO.n/:

Solving
M.n/X
mD0

nB �mACO.1/D 1
2
Cn2CO.n/D l.nD/

for M.n/, we obtain

M.n/D ..B˙
p

B2�AC/=A/nCO.1/ if A¤ 0;

M.n/D .C=2B/nCO.1/ if AD 0 and B ¤ 0,

M.n/� n2 if AD 0 and B D 0.

From now on, we will always choose the minus sign in the first expression above.
Note that nB �mA � O.1/ for 0 � m �M.n/ in the above three cases. So the
estimate fP;j .m; n/� nB �mACO.1/ is valid for 0�m�M.n/. We also have
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mD0 fP;j .m; n/D l.nD/. Therefore by Lemma 9.3,

(8)
1X
mD0

.m�n/fP;j .m; n/�

M.n/X
mD0

m.nB �mACO.1//�nl.nD/:

Let t D .B �
p
B2�AC/=A. If A¤ 0, then substituting t into (8) yields

1X
mD0

.m�n/fP;j .m; n/�
�
�
1
3
At3C 1

2
Bt2� 1

2
C
�
n3CO.n2/:

So if �1
3
At3C 1

2
Bt2 � 1

2
C > 0, then by Lemma 10.2 nD will be very large for

n� 0. Algebraic simplification then gives the theorem in the case A ¤ 0. The
other cases are similar. �

LEMMA 11.3. Let X be a nonsingular projective surface. Let C be an irre-
ducible curve on X and D any divisor on X . Then

h0.D/� h0.D�C/�maxf0; 1CC :Dg:

Proof. The statement depends only on the linear equivalence class of D. So
replacing D by an appropriate divisor linearly equivalent to D, we may assume that
the support of D does not contain any possible singularity of C . By Lemma 7.7,

h0.D/� h0.D�C/� dimH 0.C;O.D/jC /:

Since the support of D does not contain any singularity of C , O.D/jC has degree
C :D on C , and dimH 0.C;O.D/jC /�maxf0; 1CC :Dg. �

LEMMA 11.4. Let X be a nonsingular projective surface. Let D be a nef
divisor on X . Let E be an effective divisor on X such that either E is linearly
equivalent to an irreducible curve or C :E � 0 for every irreducible component C
of E. Then for all m; n > 0, either l.nD�mE/D 0 or

(9) l.nD�mE/� l.nD� .mC 1/E/� .nD�mE/:ECO.1/;

where the implied constant is independent of m and n.

Proof. Suppose that E is linearly equivalent to an irreducible curve C . If
.nD�mE/:E � 0, then (9) holds by Lemma 11.3. If

.nD�mE/:E D nD:C �mC :C < 0;

then sinceD is nef we must have C :C >0. But if l.nD�mE/>0, then nD�mE
is linearly equivalent to an effective divisor F DGCm0C , wherem0�0 andG is an
effective divisor not containingC . Since clearlyG:C �0, F :C D .nD�mE/:E <
0 implies C :C < 0, a contradiction. So either l.nD�mE/D 0 or (9) holds in this
case.
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Now suppose we are in the second case, where C :E � 0 for every irreducible
component C of E. Let ED

Pk
jD1 ajCj , where each Cj is a distinct prime divisor.

Then as in the proof of Theorem 9.2 we have

l.nD�mE/� l.nD� .mC 1/E/

�

kX
jD1

aj�1X
lD0

dimH 0.Cj ; i
�
Cj

O.nD�mE �
Pj�1
j 0D1 aj 0Cj 0 � lCj //:

But

dimH 0
�
Cj ; i

�
Cj

O
�
nD�mE �

Pj�1
j 0D1 aj 0Cj 0 � lCj

��
� dimH 0.Cj ; i

�
Cj

O.nD�mE//CO.1/

� .nD�mE/:Cj CO.1/;

where the implied constant is independent of m and n. The second inequality
follows since .nD�mE/:Cj � nD:Cj � 0 as D is nef and E :Cj � 0. Combining
the above inequalities, we then see that (9) always holds in this case. �

Going back to the general setup of Section 4, we prove these theorems:

THEOREM 11.5A. Let X be a nonsingular projective surface. Suppose the Di
have no irreducible components in common.

(a) If Di is big for all i and r � 4Œ.mC 1/=2�, then X nD is quasi-Mordellic.

(b) If Di is ample for all i and either m is even and r > 2m or m is odd and
r > 2mC 1, then X nD is Mordellic.

THEOREM 11.5B. Let X be a nonsingular projective surface. Suppose the Di
have no irreducible components in common.

(a) IfDi is big for all i and r�4Œ.mC1/=2�, thenXnD is quasi-Brody hyperbolic.

(b) If Di is ample for all i and either m is even and r > 2m or m is odd and
r > 2mC 1, then X nD is complete hyperbolic and hyperbolically imbedded
in X . In particular, X nD is Brody hyperbolic.

Proof. We first prove parts (a). It suffices to prove these in the case r D 4Œ.mC
1/=2�. For any effective divisor E on the surface X , there exists an effective divisor
E 0 on X with SuppE 0 � SuppE, jE 0j base-point free, and dimˆE 0.X/D �.E/

(this follows, for instance, from [Zar62, Th. 6.1]). Therefore we can reduce to the
case where jDi j is base-point free for all i and dimˆDi

.X/D 2 for all i . SoD2i >0
and Di is nef for each i . By Lemma 9.7, D is equidegreelizable. So we may find
positive integers a1; : : : ; ar such that if D0 D

Pr
iD1 aiDi then aiDi :D0=.D0/2

is arbitrarily close to 1=r for all i . Since at most m of the Di meet at any given
point, D0P is a sum of at most m of the aiDi for any P 2D0. Therefore we may
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write D0P DD
0
P;1CD

0
P;2; where each D0P;j is a sum of at most Œ.mC 1/=2� of

the aiDi , and D0P;1 and D0P;2 have no irreducible components in common. Note
that when D0P;j ¤ 0, from our assumptions on the Di we have jD0P;j j is base-point
free and dimˆD0

P;j
.X/D 2. So by Theorem 9.12, D0P;j is linearly equivalent to

an irreducible curve. Therefore, by Lemma 11.4, we will be able to apply Theorem
11.2 to D0.

The hardest case is clearly when D0P;j is a sum of the maximum Œ.mC 1/=2�

of the aiDi . For simplicity, we will now restrict to this case. It follows that, in the
notation of Theorem 11.2, for all such P and j ,ˇ̌̌

C

BP;j
�

r

Œ1
2
.mC1/�

ˇ̌̌
D

ˇ̌̌
C

BP;j
� 4

ˇ̌̌
< ";

where by adjusting the ai in D0, " may be made arbitrary close to 0, while at
the same time AP;j =BP;j is positive and bounded away from 0. Furthermore, by
Lemma 11.1, AP;j =BP;j � BP;j =C . Let aD AP;j =BP;j and c D C=BP;j . Then
by Theorem 11.2, we must show that

(10) 1� 2acC 3aC .3a� 1/
p
1� ac < 0;

where 0 < a � 1=c. When c D 4, the left side of the inequality becomes 1� 5aC
.3a� 1/

p
1� 4a. This is easily seen to have a root only at aD 0 for 0� a � 1=4,

and is negative for 0 < a � 1=4, since putting a D 1=4 gives �1=4. So when
cD 4C", since a is bounded away from zero as "! 0, we see that (10) is satisfied
for small enough ". Therefore by Theorem 11.2, for an appropriate choice of D0,
nD0 is very large for n� 0. Since D0 is big, ˆnD0 is a birational map onto its
image for some arbitrarily large n. By Theorems 8.3A and 8.3B we are done, as D
and D0 have the same support.

Assume the hypotheses in parts (b). Let Y be the Zariski-closure of a set of
D-integral points (resp. image of a holomorphic map f WC!X nD). By what we
have proved above, dimY � 1. If dimY D 1, let C be an irreducible component
of Y with dimC > 0. Since each Di is ample, Di must intersect C in some point.
Since at most m of the Di meet at a point and r > 2m, we see that DjC contains at
least three distinct points. Therefore by Siegel’s (resp. Picard’s) theorem, we get a
contradiction since we have a Zariski-dense set of DjC -integral points on C (resp.
a holomorphic map C! C nDjC with Zariski-dense image). This same argument
and Theorem 7.3 show that in the analytic case, X nD is complete hyperbolic and
hyperbolically embedded in X . �

It is possible to make certain minor improvements to these theorems.

THEOREM 11.6A. Let X be a nonsingular projective surface. Suppose mD 2,
D D

P4
iD1Di , Di :Dj > 0 for i ¤ j , D21 > 0, Di is nef for all i , and the Di

have no irreducible components in common. Suppose also that the conclusion of
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Lemma 11.4 holds with D any positive integral linear combination of the Di and
E DDj for j D 1; 2; 3; 4. Then X nD is quasi-Mordellic.

THEOREM 11.6B. With the same hypotheses as above, in the analytic setting,
X nD is quasi-Brody hyperbolic.

Proof. We first show that for any " > 0,� 4X
iD1

eaiDi

�2
� exp.2

3
max
i
faig/

on the real plane .1C "/a1C
P4
iD2 ai D 0. If maxifaig D a1 then� 4X

iD1

eaiDi

�2
� e2a1D21 � e

2a1 :

Otherwise, if maxifaig D aj , j > 1, then clearly we must have ak � �aj =3 for
some j ¤ k. Then � 4X

iD1

eaiDi

�2
� eajCakDj :Dk � e

2aj =3

since Dj :Dk � 1. Therefore .
P4
iD1 e

aiDi /
2 takes a minimum on the plane

.1C "/a1 C
P4
iD2 ai D 0. Looking at the Lagrange multiplier equations as in

Lemma 9.7, we see that there exist real numbers bi > 0 and � > 0 (depending on
") such that if D0 D

P4
iD1 biDi , then b1D1 :D0 D .1C "/� and biDi :D0 D � for

i D 2; 3; 4. Written differently,

.D0/2

b1D1 :D0
D
4C"

1C"
and

.D0/2

biDi :D0
D 4C " > 4 for i D 2; 3; 4.

Note also that it follows from the first inequality we proved that in terms of a1; : : :
: : : ; a4, the region where .

P4
iD1 e

aiDi /
2 takes a minimum may be bounded inde-

pendently of " < 1. Therefore there exist positive constants K and K 0, independent
of " < 1, such that we may choose K <bi <K 0 for all i , and in particular, as "! 0,
.b1D1/

2=.b1D1 :D
0/ is bounded away from zero.

We now choose positive integers ci such that ci=cj closely approximates
bi=bj , and let E D

P4
iD1 ciDi . Having chosen " small enough and the integers

ci correctly, we will then have E2 > 4ciDi :E for i D 2; 3; 4, and we will have
E2=.c1D1 :E/ close enough to 4 (see the proof of Theorems 11.5A and 11.5B)
so that the inequalities in Theorem 11.2 hold for E and EP;j D ciDi for any i .
Since mD 2, we may always take EP;j D 0 or EP;j D ciDi for some i . By our
hypotheses, we may apply Theorem 11.2, so nE is very large for n� 0. Since
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D21 > 0, E is big. So we are done by Theorems 8.3A and 8.3B, as D and E have
the same support. �

Example 11.7. Let X DP1�P1. Let D1D f0g�P1, D2DP1�f0g, and let
D3 and D4 be ample effective divisors on X . Suppose also that the intersection of
any three of theDi is empty. LetDD

P4
iD1Di . Then the hypotheses of Theorems

11.6A and 11.6B are satisfied and X n D is quasi-Mordellic and quasi-Brody
hyperbolic. Note also that

X nD1[D2 Š A2 Š P2 n fa lineg:

Therefore, we can also prove many theorems for P2 nD, where D is a sum of three
prime divisors on P2.

Recently, Corvaja and Zannier [CZ06] have shown another way how their
methods may get results on P2 nD, where D is a sum of three prime divisors
satisfying certain hypotheses.

We have the following corollaries to Theorems 11.6A and 11.6B.

COROLLARY 11.8A. Let X be a nonsingular projective surface. Suppose
mD 2, D D

P4
iD1Di , D1, D2, and D3 are big, �.D4/ > 0, and the Di have no

irreducible components in common. Then X nD is quasi-Mordellic.

COROLLARY 11.8B. Let X be a nonsingular projective surface. Suppose
mD 2, D D

P4
iD1Di , D1, D2, and D3 are big, �.D4/ > 0, and the Di have no

irreducible components in common. Then X nD is quasi-Brody hyperbolic.

Proof. As in the proofs of Theorems 11.5A and 11.5B, we can reduce to the
case where jDi j is base-point free for all i , dimˆDi

.X/D 2 for i D 1; 2; 3, and
dimˆD4

.X/D �.D4/. So in particular, Di is nef for all i , D21 ;D
2
2 ;D

2
3 > 0, and

D24 � 0. By Lemma 9.13, Di :Dj > 0 for i ¤ j . For i D 1; 2; 3, Di is linearly
equivalent to an irreducible curve by Theorem 9.12, since by our reductions jDi j is
base-point free and dimˆDi

.X/D 2. The same holds for D4 if D24 >0. If D24 D 0,
then for every irreducible component C of D4 we must have C :D4 D 0 since D4
is nef. This verifies the hypotheses of Lemma 11.4 with E DDi for i D 1; 2; 3; 4.
Therefore, we may apply Theorems 11.6A and 11.6B to X and D. �

We note that one can construct examples where mD 2, D D
P4
iD1Di , D1

and D2 are big, �.D3/D �.D4/D 1, the Di have no irreducible components in
common, and there exist Zariski-dense sets of D-integral points. We now prove a
theorem in the case where we only have �.Di / > 0 for all i .

THEOREM 11.9A. Let X be a nonsingular projective surface. Suppose the
Di have no irreducible components in common. If �.Di / > 0 for all i and r >
4Œ.mC 1/=2�, then there does not exist a Zariski-dense set of D-integral points
on X .
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THEOREM 11.9B. Let X be a nonsingular projective surface. Suppose the
Di have no irreducible components in common. If �.Di / > 0 for all i and r >
4Œ.mC 1/=2�, then there does not exist a holomorphic map f W C! X nD with
Zariski-dense image.

Proof. As usual, we can reduce to the case where jDi j is base-point free for all
i . In this case, for any subset I � f1; : : : ; rg, if DI D

P
i2I Di is big, then there

exists nI > 0 such that dimˆnIDI
.X/D 2. Since the Di are nef, this happens if

and only if Di :Dj > 0 for some i; j 2 I . Let N D
Q
I nI , where I ranges over

subsets such that DI is big. Let

D0 DND and D0i DNDi :

We see that for any nonnegative integral linear combination E of the D0i , if E is big,
thenE is linearly equivalent to an irreducible divisor since jEj is base-point free and
dimˆE .X/D 2, and otherwise, for every irreducible component C of E we have
C :E D 0. Therefore, by Lemma 11.4, replacing D by D0, we may assume that we
can apply Theorem 11.2 to any nonnegative integral linear combination of the Di .

By Theorem 9.14, we are done if any three of the Di have pairwise empty
intersection. So suppose that this is not the case. Then we havem� 2 and r � 5. We
now show thatD is equidegreelizable. As in the proof of Lemma 9.7, it is sufficient
to show that .

Pr
iD1 e

aiDi /
2 attains a minimum on the plane

Pr
iD1 ai D 0. For

this, it will suffice to show that� rX
iD1

eaiDi

�2
� exp.1

3
max
i
faig/:

Suppose maxifaig D aj for j 2 f1; : : : ; rg. Let ak and al be some choice of the
next largest ai . Clearly, since

Pr
iD1 ai D 0 and r � 5, we must have ak; al �

�2aj =.r � 2/ � �2aj =3. We now show that either Dj :Dk � 1 or Dj :Dl � 1.
Suppose otherwise. Then by an earlier assumption, we must have Dk :Dl � 1. But
then DkCDl is big, and so we must have .DkCDl/:Dj � 1 by Lemma 9.13, a
contradiction. So if, say, Dj :Dk � 1 then� rX

iD1

eaiDi

�2
� eajCakDj :Dk � exp.1

3
max
i
faig/;

as was to be shown. Since D is equidegreelizable, there exist positive integers ci
such that if D0 D

Pr
iD1 ciDi , then ciDi :D0=.D0/2 is as close as we like to 1=r .

Since we may choose D0P;j to consist of a sum of at most Œ.mC 1/=2� of the ciDi
and r > 4Œ.mC1/=2�, we may choose the ci so that we always have C > 4BP;j in
Theorem 11.2 (applied to D0). We also have AP;j � 0. But then, as we have seen
previously, the needed inequalities of Theorem 11.2 will be satisfied. �
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12. Integral points over varying number fields

We now consider the case where the integral points are allowed to vary over
number fields of a bounded degree over some number field k. As an application
of their results on surfaces in [CZ04b], Corvaja and Zannier prove the following
theorem.

THEOREM 12.1. Let X be a projective curve defined over a number field k.
Let D D

Pr
iD1 Pi be a divisor on X defined over k such that the Pi are distinct

points. If r > 4, then all sets of D-integral points on X quadratic over k are finite.

This theorem can also be obtained as a consequence of a result of Vojta (see �14.3).
Using the same technique Corvaja and Zannier used, looking at symmetric powers
of X , our higher-dimensional results give the following theorem.

THEOREM 12.2. Let nD dimX . IfDi is ample for all i and r > 2d2mn, then
all sets of D-integral points on X of degree d over k are finite.

Proof. Suppose r > 2d2mn, and let R�X.k/ be a set of D-integral points on
X of degree d over k. It suffices to prove the finiteness of R in the case where for
every P 2R we have Œk.P / W k�D d . Let Xd be the d -fold product of X with itself,
and let �i WXd!X be the i -th projection map for iD1; : : : ; d . Let Symd X denote
the d -fold symmetric product of X with itself, and let � WXd ! Symd X be the
natural map. Let Ei D �.��1Di / and E D

Pr
iD1Ei . Since ��Ei D

Pd
jD1 �

�
j Di

is ample on Xd and � is a finite surjective morphism, it follows that Ei is ample.
By looking at the corresponding statement on Xd , we see that the intersection
of any dmC 1 distinct Ei is empty. We also have dim SymXd D dn. Since
r > 2.dm/.dn/, by Theorem 9.11A(b) all sets of k-rational E-integral points on
Symd X are finite. For P 2 R, let P .1/; : : : ; P .d/ denote the d conjugates of P
over k. ThenR0Df.P .1/; : : : ; P .d//2Xd jP 2Rg is a set of

Pd
iD1 �

�
i D-integral

points on Xd . So �.R0/ is a set of E-integral points on Symd X . Note that �.R0/
is actually a set of k-rational points on Symd X . Therefore, from above, �.R0/
must be finite, and so clearly R must be finite. �

13. A result of Faltings

In [Fal02], Faltings proves the finiteness of integral points on the complements
of certain irreducible singular curves in P2. Recently, a similar result has also been
obtained by Zannier in [Zan05]. We show, as a corollary of our work on surfaces,
how we may improve both results on integral points, and at the same time we will
prove an analogous statement for holomorphic curves.

Let X be a nonsingular projective surface over an algebraically closed field k
of characteristic 0. Let LD OX .L/ be an ample line bundle on X with KX C 3L
ample. Assume that the global sections �.X;L/ generate
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(a) Lx=m
4
xLx for all points x 2X ,

(b) Lx=m
3
xLx˚Ly=m

3
yLy for all pairs fx; yg of distinct points, and

(c) Lx=m
2
xLx˚Ly=m

2
yLy˚Lz=m

2
zLz for all triples fx; y; zg of distinct points.

A three-dimensional subspace V ��.X;L/ that generates L gives a morphism
fV WX ! P2. Faltings studies this map when V is suitably generic.

Definition 13.1. Let V � �.X;L/ be a three-dimensional subspace. We call
V generic if

(a) V generates L,

(b) the discriminant locus Z �X of fV is nonsingular,

(c) the restriction of fV to Z is birational onto its image D � P2, and

(d) D has only cusps and nodes as singularities.

Three-dimensional subspaces V � �.X;L/ are naturally parametrized by a
Grassmannian G. Let nD L2. Faltings proves the following theorem.

THEOREM 13.2. Let the notation be as above.

(a) Generic V form a dense open subset G0 of G.

(b) For generic V , let � W Y ! X ! P2 denote the associated normal Galois
covering. Then Y is nonsingular, Z is irreducible, and the covering group
Aut.Y=P2/ is the full symmetric group Sn.

From now on we assume that we are in situations associated to a generic V .
Faltings gives the following description of the geometry of ��D.

THEOREM 13.3. Let ��D be the pullback of D to Y . Then

��D D 2
X

1�i<j�n

Zij D

nX
iD1

Ei ;

where Zij is effective and nonsingular for every i and j and Ei D
P
j¤i Zij is the

pullback of Z under the i-th projection map Y !X . Furthermore, let P 2 ��D.
Then one of the following holds:

(a) �.P / is a smooth point of D, and P 2Zij for exactly one pair fi; j g.

(b) �.P / is a node of D, and exactly two components Zij and Zkl of ��D for
disjoint pairs fi; j g and fk; lg intersect at P .

(c) �.P / is a cusp of D, and exactly three components Zij ; Zik; Zjk intersect at
P for some i; j; k.

Let d D degD, and assume that everything above is defined over a number
field. The main result of [Fal02] is this:
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THEOREM 13.4 (Faltings). If dL�˛Z is ample on X for some ˛ > 12, then
P2 nD is Mordellic.

Zannier proves this without the ampleness condition if the Kodaira number of
X is nonnegative, and more generally he gives a numerical condition replacing the
condition on L and Z above. We will be able to completely remove the ampleness
condition from Theorem 13.4. We also prove the analogue for holomorphic curves.

THEOREM 13.5A. P2 nD is Mordellic.

THEOREM 13.5B. P2 nD is complete hyperbolic. In particular, P2 nD is
Brody hyperbolic.

Proof. Let Zij and Ei be as in Theorem 13.3. Note that since we assumed
that Z � KX C 3L is ample, Ei is ample for all i . Let N be such that NEi is
very ample for all i . Let D0 D N��D. Since � W Y nD0 ! P2 nD is a finite
étale covering, we are reduced to proving the theorems for Y nD0; see Lemma
7.2(d) and [Lan87, Ch. 1, Prop. 3.6]. We now use Theorem 11.2 to show that
D0 D 2N

P
1�i<j�nZij is large. Let P 2 D0. By Theorem 13.3, for l D 1; 2,

we can always choose D0
P;l
D 2NZij , D0

P;l
D 2NZij C 2NZik , or D0

P;l
D 0 for

some i; j; k. An examination of the proof of Theorem 11.2 shows that in checking
its hypotheses, we may replace D0

P;l
by any divisor F with F � D0

P;l
, so in

particular, we can replace D0
P;l

by 2NEi for some i .
Since 2NEi is very ample, 2NEi is linearly equivalent to a prime divisor, and

so the technical hypothesis related to Lemma 11.4 in Theorem 11.2 is satisfied.
SinceD0DN

Pn
iD1Ei , by symmetry among theEi , we have .D0/2=.D0 :.2NEi //

D n=2. The assumption (a) on L given at the beginning of the section implies that
nDL2� 9, so .D0/2=.D0 :.2NEi //� 9=2. Since Ei is ample, .2NEi /2>0. Thus,
in checking the hypotheses of Theorem 11.2, we have AP;j >0 and C=BP;j � 9=2.
It then follows from the proof of Theorems 11.5A and 11.5B that the relevant
inequality in Theorem 11.2 is satisfied (in fact, C=BP;j � 4 is sufficient for this).
So D0 is large. It follows from Theorem 13.3 that at most four Ei meet at a point.
Since n � 9, any curve on Y must therefore meet D0 D N

Pn
iD1Ei in at least

three distinct points. Thus, combining Theorems 8.3A and 8.3B with Siegel’s and
Picard’s theorems, we find that Y nD0 is Mordellic and Brody hyperbolic. A simple
application of Theorem 7.3 shows that furthermore, in the analytic case, Y nD0 is
complete hyperbolic. �

14. Remarks on the Siegel and Picard-type conjectures

In this section we will discuss the sharpness of the inequalities and the necessity
of certain hypotheses in many of the conjectures, how our conjectures relate to
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Vojta’s conjectures, and what special cases of the conjectures are known by previous
work.

14.1. Examples constraining improvements to the conjectures. As is well
known, the algebraic tori Gnm admit both a Zariski-dense set of integral points
(over number fields k with O�

k
infinite) and, over the field C, a holomorphic map

f W C! Gnm with Zariski-dense image. As natural compactifications of Gnm, we
have Pn with nC1 ample divisors at infinity and .P1/n with 2n divisors at infinity of
D-dimension � D 1. Taking slightly more general compactifications, the following
example shows that the inequalities in the main Siegel and Picard-type conjectures,
Conjectures 5.1A and 5.1B, are sharp for all values of m and �0 > 0.

Example 14.1. Let X D .Pn/q , and let �j be the j -th projection map from X

to Pn for j D 1; : : : ; q. Let k be a number field with O�
k

infinite, and let S be the
set of archimedean places of k. Let Hi be the hyperplane on Pn defined by xi D 0
for i D 0; : : : ; n. Let

Di;j D �
�
j Hi for 0� i � n and 1� j � q.

Let 1�m� nq. Let r D ŒmCm=n� and r 0 D Œr=.nC 1/�D Œm=n�. Let

D D

r 0X
jD1

nX
iD0

Di;j C

r�r 0.nC1/X
iD1

Di;r 0C1:

Then G
nq
m embeds as a Zariski-dense subset of X nD. Therefore there exists

a Zariski-dense set of .D; S/-integral points on X nD and a holomorphic map
f W C! X nD with Zariski-dense image. Furthermore, there are at most nr 0C
r � r 0.nC 1/D r � r 0 Dm of the Di;j in D meeting at a given point, and D is a
sum of r D ŒmCm=n� of the Di;j with �.Di;j /D n for all i and j .

We have not yet discussed the �0 D 0 case. Let D be a nontrivial effective
divisor on a projective surface X such that there exists either a Zariski-dense set of
D-integral points on X or a holomorphic map f W C!X nD with Zariski-dense
image. By blowing up points of D on X , we can get a divisor D0 on a surface X 0

such that X nD ŠX 0 nD0 and D0 has arbitrarily many components. Note that the
exceptional curves E in D0 have �.E/D 0. So, as is suggested by the �0 in the
denominators of the inequalities in the conjectures, there is no possible result of
the type in the main Siegel and Picard-type conjectures if one allows divisors Di
with �.Di /D 0; see, however, the results in Section 14.3.

There are also examples showing that even if the hypotheses of the main Siegel
and Picard-type conjectures are satisfied, the exceptional sets involved may be
Zariski-dense. For example, let X D P1 �P1, and let D D

P
i2I Pi �P1 be a
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finite sum with Pi 2 P1.k/ for i 2 I and some number field k. Then it is easy to
show that ExcDio.X nD/D Exchol.X nD/DX nD.

We give the following examples related to the main conjectures for ample
divisors; see [Fuj72], [Gre72], and [NW02] for the constructions.

Example 14.2A. Let D be the sum of any r hyperplanes in general position
(i.e., the intersection of any n C 1 of them is empty) in Pn with n < r � 2n.
Assume also that D is defined over a number field. Then one may show that there
exists a linear subspace L� Pn with dimLD Œn=.r �n/� such that L contains a
Zariski-dense set of DjL-integral points (for some k and S ).

Example 14.2B. In the same situation as above, one may also show that there
exists a holomorphic map f W C! L nD with Zariski-dense image.

In the simplest case, where r D 2m D 2n, we may simply take L to be a line
that passes through points P and Q, where P is the intersection of, say, the
first n hyperplanes and Q is the intersection of the last n hyperplanes. Then
L nL\D Š Gm, and so we see that we may not have finiteness or constancy for
the objects in question.

We now give two examples related to the general conjectures (so in these two
examples we do not require sets of D-integral points to be k-rational). The next
example shows that the inequalities in the general conjectures are best possible
when X is a curve.

Example 14.3. Let X be a projective curve defined over a number field k
with O�

k
infinite. Let f WX ! P1 be a morphism of degree d defined over k. Let

P;Q2P1.k/ be two distinct points over which f is unramified, and letDDPCQ.
Then there exists an infinite set R of k-rational D-integral points on P1 nD. Since
f has degree d , f �1.R/ is a set of f �D-integral points on X n f �D of degree
d over k, and f �D is a sum of 2d distinct points on X .

Taking products of curves, we can get examples in all dimensions showing
that the inequality in the general Siegel-type conjecture cannot be improved in the
case �0 D 1. A related example shows that the inequality in part (b) of the general
Siegel-type conjecture for ample divisors cannot be improved.

Example 14.4. LetDD
P2md
iD1 Hi be a sum of hyperplanes on Pn defined over

a number field k such that the intersection of anymC1 of theHi is empty. Suppose
also that

Tjm

iD.j�1/mC1
Hi D fPj g consists of a single point for j D 1; : : : ; 2d and

the Pj are collinear. Then there exist infinite sets of D-integral points of degree
d on Pn nD over large enough number fields. Indeed, the line L through the Pj
intersects D in 2d points, and by an appropriate use of Example 14.3, we see that
L nL\D contains infinite sets of integral points of degree d over large enough
number fields.
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14.2. Relations to Vojta’s conjectures. We first show how some special cases
of the main conjectures are related to Vojta’s main conjecture. If D is a divisor on a
nonsingular complex variety X , we say that D has normal crossings if every point
P 2 D has an analytic open neighborhood in X with analytic local coordinates
z1; : : : ; zn such that D is locally defined by z1 � z2 � � � zi D 0 for some i . Let
m.D;P /D

P
v2S �D;v.P /. Inspired by results in equi-dimensional Nevanlinna

theory, Vojta made the following conjecture in [Voj87].

CONJECTURE 14.5A (Vojta’s main conjecture). Let X be a nonsingular pro-
jective variety with canonical divisor K. Let D be a normal crossings divisor
on X , and let k be a number field over which X and D are defined. Let A be
a big divisor on X . Let " > 0. Then there exists a proper Zariski-closed subset
Z DZ.X;D; "; A/ of X such that

m.D;P /C hK.P /� "hA.P /CO.1/ for all points P 2X.k/ nZ.

The analogue is conjectured for holomorphic curves:

CONJECTURE 14.5B. Let X be a nonsingular complex projective variety with
canonical divisor K. Let D be a normal crossings divisor on X . Let A be a
big divisor on X . Let " > 0. Then there exists a proper Zariski-closed subset
Z D Z.X;D; "; A/ of X such that for all holomorphic maps f W C! X whose
image is not contained in Z, the inequality

m.D; r/CTK.r/� "TA.r/CO.1/

holds for all r outside a set of finite Lebesgue measure.

See [Voj87] for the definitions and properties of the terms appearing in the con-
jectures. Qualitatively, these conjectures have the following simple consequences.

CONJECTURE 14.6A. Let X be a nonsingular projective variety defined over
a number field k. Let K be the canonical divisor of X , and let D be a normal
crossings divisor on X defined over k. Suppose that KCD is big. Then X nD is
quasi-Mordellic.

CONJECTURE 14.6B. Let X be a nonsingular complex projective variety. Let
K be the canonical divisor of X , and let D be a normal crossings divisor on X .
Suppose that KCD is big. Then X nD is quasi-Brody hyperbolic.

To relate these conjectures to our conjectures, we recall the following theorem,
which is a consequence of Mori theory [Mor82, Lemma 1.7].

THEOREM 14.7. Let X be a nonsingular complex projective variety of di-
mension n. If D1; : : : ;DnC2 are ample divisors on X , then K C

PnC2
iD1 Di is

ample.
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So, when X is nonsingular, the Di are ample, and D has normal crossings,
we see that Conjectures 5.3A and 5.3B are consequences of Conjectures 14.6A and
14.6B.

Similarly, we now show that the general Siegel-type conjecture for normal
crossings divisors on Pn follows from Vojta’s general conjecture. Let X be a variety
defined over a number field k and let P 2X.k/. Let

d.P /D
1

Œk.P / WQ�
logjDk.P /=Qj;

where Dk.P /=Q is the discriminant of k.P / over Q. We call d.P / the absolute
logarithmic discriminant of P .

CONJECTURE 14.8 (Vojta’s general conjecture). Let X be a nonsingular pro-
jective variety with canonical divisor K. Let D be a normal crossings divisor on X ,
and let k be a number field over which X and D are defined. Let A be a big divisor
on X . Let " > 0. If � is a positive integer, then there exists a proper Zariski-closed
subset Z DZ.�;X;D; "; A/ of X such that

(11) m.D;P /C hK.P /� d.P /C "hA.P /CO.1/

for all points P 2X.k/nZ such that Œk.P / W k�� �.

Actually, Vojta’s general conjecture as it appears in [Voj87] has the discriminant
term as .dimX/d.P /, but it is now believed that the dimX term is unnecessary;
see [Voj99, Conj. 8.7] or the discussion at the end of [Voj89].

THEOREM 14.9. Assume Vojta’s general conjecture. Let D D
Pr
iD1Di be

a sum of r nontrivial effective divisors on Pn such that D is a normal crossings
divisor defined over k. Let � be a positive integer. If r > 2�Cn� 1, then XnD is
degree � quasi-Mordellic.

Proof. Let " < 1 and let Z D Z.�;Pn;D; ";H/ be the exceptional set in
Vojta’s general conjecture, where H is a hyperplane on Pn. Let R be a set of
D-integral points on Pn of degree � over k. If r � 2�Cn, then

(12) m.D;P /C hK.P /D hD.P /C hK.P /CO.1/� .2� � 1/h.P /CO.1/

for allP 2R, where h is the usual absolute logarithmic height on Pn. An elementary
inequality relating the discriminant and height on projective space, due to Silverman
[Sil84], is

(13) d.P /� .2� � 2/h.P /CO.1/

for all P 2 Pn.k/ with Œk.P / W k� � �. Combining inequalities (12) and (13),
and using the fact that there are only finitely many points of bounded height and
bounded degree, we see that the inequality (11) in Vojta’s general conjecture (with
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ADH and " < 1) is violated for all but finitely many P 2R. Therefore R nZ is
finite, proving the theorem. �

So assuming Vojta’s general conjecture, we see that the general Siegel-type
conjecture is true for projective space in the case that D has normal crossings.

14.3. Previously known results related to the conjectures. As was discussed
earlier, our work builds on previous work of Corvaja and Zannier, who obtained
results on surfaces in [CZ04b], and initiated the general method we have used in
[CZ02]. The Nevanlinna-theoretic analogues of [CZ04b] were proved by Liu and
Ru in [LR05]. We briefly discussed these previous results in Section 11.

Previous results on integral points and holomorphic curves on X nD when D
has “lots of components” have been given by, among others, Vojta, Noguchi, and
Winkelmann. As a consequence of his work on integral points on subvarieties of
semi-abelian varieties, Vojta [Voj96] proved this:

THEOREM 14.10A. LetX be a projective variety defined over a number field k.
Let � denote the Picard number of X . Let D be an effective divisor on X defined
over k that has more than dimX � h1.X;OX /C � irreducible components over k.
Then there does not exist a Zariski-dense set of D-integral points on X .

Similarly, the analogue for holomorphic curves follows as a special case of
work of Noguchi [Nog81].

THEOREM 14.10B. Let X be a complex projective variety. Let � denote the
Picard number ofX . LetD be an effective divisor onX that has more than dimX�

h1.X;OX /C � irreducible components. Then there does not exist a holomorphic
map f W C!X nD with Zariski-dense image.

We note that it is easily shown that both theorems are sharp in that there
are divisors with dimX � h1.X;OX /C � irreducible components for which the
conclusions of the theorems are false. For a weaker, but more elementary, theorem
along the lines of Theorem 14.10A, see also [Voj87, Th. 2.4.1]. As consequences of
Theorems 14.10A and 14.10B, we see that Conjectures 5.3A and 5.3B are true when
m� dimX and X is a projective variety with Picard number one (e.g., X D Pn).

From the work of Noguchi and Winkelmann [NW02], we have the following
theorems related to our main conjectures for ample divisors (some special cases of
these results had been obtained previously by various other people; see [NW02] for
the history).

THEOREM 14.11A. Let X be a projective variety of dimension n defined over
a number field k. Let S be a finite set of places of k containing the archimedean
places. Let � be the Picard number of X . Let D D

Pr
iD1Di be a divisor on X

defined over k with the Di being effective reduced ample Cartier divisors such that
the intersection of any nC 1 of them is empty.
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(a) If r > nC 1 then all sets of D-integral points R have dimR � n�=.r �n/.

(b) If r > n.�C 1/, then X nD is Mordellic.

(c) If X � PN , all Di are hypersurface cuts of X , and r > 2n, then X nD is
Mordellic.

THEOREM 14.11B. Let X be a complex projective variety of dimension n. Let
� be the Picard number of X . Let D D

Pr
iD1Di be a divisor on X with the Di

being effective reduced ample Cartier divisors such that the intersection of any
nC 1 of them is empty.

(a) If r > nC 1 then all holomorphic maps f W C!X nD have

dimf .C/�
n

r�n
�:

(b) If r >n.�C1/, thenXnD is complete hyperbolic and hyperbolically imbedded
in X . In particular, X nD is Brody hyperbolic.

(c) If X � PN , all Di are hypersurface cuts of X , and r > 2n, then X nD is
complete hyperbolic and hyperbolically imbedded in X . In particular, X nD
is Brody hyperbolic.

Thus, when mD dimX , the Di are reduced divisors, and �.X/D 1, the main
conjectures for ample divisors, Conjectures 5.4A and 5.4B, are true. Similarly, parts
(c) of the above theorems give special cases of parts (b) of Conjectures 5.4A and
5.4B.

In [Voj92], Vojta proved the following generalization of the Thue-Siegel-Roth-
Wirsing theorem and Faltings’ theorem on rational points on curves.

THEOREM 14.12. Let X be a nonsingular projective curve defined over a
number field k with canonical divisorK. LetD be an effective divisor on X defined
over k with no multiple components and A an ample divisor on X . Let � be a
positive integer, and let " > 0. Then

m.D;P /C hK.P /� da.P /C "hA.P /CO.1/

for all P 2X.k/nD with Œk.P / W k�� �, where da.P / is an arithmetic discriminant
on X .

An arithmetic discriminant on X is determined by the choice of a regular
model for X over Ok and is unique up to O.1/ (see [Voj91] for the definition and
properties). To obtain a qualitative result about integral points from Theorem 14.12,
we use the following discriminant-height inequality of Song and Tucker [ST99,
Eq. 2.0.3].

THEOREM 14.13. Let X be a nonsingular projective curve defined over a
number field k with canonical divisor K. Let A be an ample divisor on X . Let � be
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a positive integer. Let " > 0. Then

da.P /� hK.P /C .2Œk.P / W k�C "/hA.P /CO.1/

for all P 2X.k/ with Œk.P / W k�� �.

Using Theorems 14.12 and 14.13, we easily obtain a qualitative result on
integral points on curves.

COROLLARY 14.14. Let X be a nonsingular projective curve defined over a
number field k. Let D be an effective divisor on X that is a sum of more than 2�
distinct points. Then X nD is degree � Mordellic.

Therefore our general Siegel-type conjectures are true for curves. Of course,
for P1 this was already known from the Thue-Siegel-Roth-Wirsing theorem. As
mentioned earlier, the special case � D 2 of Corollary 14.14 was also proved by
Corvaja and Zannier using the Schmidt subspace theorem technique [CZ04b].
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