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Abstract

Let X be an n-dimensional, finite, simply connected CW complex and set
ax = limsup; (log rank 77; (X))/i. We prove that either rank 77; (X) = 0,i > 2n,
or else that 0 < ey < oo and that for any ¢ > 0 there is a K = K(¢) such that

k+n
elax—ek Z rank 77; (X) < elex ok gorallk > K .
i=k+2

In particular, this sum grows exponentially in k.

1. Introduction

The homotopy groups of a finite simply connected CW complex, X, have the
form 7; (X) = ZP & T;, where p; is the rank of 7; (X) and T; is a finite abelian
subgroup. While the properties of the 7; remain by and large a mystery, even for
spheres, considerable information is available about the ranks. In fact the ranks of
7; (S™) and of 7; (§™ v §™) are simply the dimensions in degree i — 1 of the free
Lie algebra on one (resp. two) generators of degree n — 1 and, in particular, satisfy

rank 7; (S") =0, forall i >2n, while
(1) k+n
Z rank 77; (S v S™) grows exponentially in k .
i=k+2

(Note that we use the sum Zf‘i,? 4o in (1) because rank 77; (" v §") = 0 unless

i=1(modn-—1).)
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The principal result here is a remarkable asymptotic property for the ranks,
which in particular generalizes (1) to all finite simply connected CW complexes.

Definition. If X is a finite simply connected CW complex, then its log index,
oy, is the number given by

i log rank m; (X)
oy = hm.sup -
1

THEOREM 1. If X is an n-dimensional, finite, simply connected CW complex,
then either axy = —oo and

rank7;(X) =0, i>2n,

orelse 0 < ay < 0o, and for every ¢ > 0 there is a K = K(¢) such that

k+n
e@X~Ok < N rankm; (X) <@ FOK - forall k= K.
i=k+2
In particular this sum grows exponentially in k.

In fact a slightly weaker version of Theorem 1 (Theorem 4 in §5) holds more
generally for simply connected CW complexes Y of finite type and finite Lusternik-
Schnirelmann rational category, whose betti numbers dim Hy (Y ; Q) grow at most
exponentially in k. Such spaces are called elliptic if the total rank, > ;o , rank 7; (),
is finite, and hyperbolic otherwise.

Now it is known, [12], that if Y is elliptic then Y has the rational homotopy
type of a finite complex; in particular H; (Y ; Q) =0, i > n, for some n. Moreover
in the elliptic case, it is shown in [12] that, if Y is finite, then rank 7; (Y) = 0,
i > 2n and an explicit algorithm is given that determines all possible sequences
{rank 7r; (Y)}2<i <2n—1.

On the other hand if Y is hyperbolic then ([3], [5], [7]) it is shown that for
some A, K > 0,

k
Zrankm(Y) > e forallk > K.
=2
Replacing this by the much stronger asymptotic formulas of Theorems 1 and 4 is
the object of this paper.

Exponential growth of the sum aj = Zf‘: ,? 4, rank 7r; (X), was conjectured
in the early eighties [7, Prob. 6] and Theorem 1 was first proved for some special
families of spaces by Lambrechts [14]. The strongest general result prior to Theorem
1 was given in [8], where it is shown that the a; grow faster than any polynomial in
k. More recently further examples have been given of families for which Theorem

1 holds in [9], [10] and [11].
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As for the proof, Theorem 1 is essentially a corollary of Theorem 4, and the
key step in the proof of Theorem 4 is a remarkable growth property of certain
graded Lie algebras whose proof in Section 3 (Theorem 2) and Section 4 (Theorem
3) is the heart of the paper. It is preceded by preliminary definitions and remarks in
Section 2.

Since Theorem 1 may be thought of as establishing a strong ‘regularity’ prop-
erty for the ranks of the homotopy groups, it seems reasonable to ask the

Question. Are there ‘regularity’ properties as i — oo of the torsion subgroups
T; of the homotopy groups of a finite simply connected CW complex X ?

Finally, the authors would like to thank the referee for his careful reading and
many helpful questions and comments.

2. Growth and depth in graded Lie algebras

In this section we work over any field k of characteristic # 2. The dual
of a graded vector space V = {Vj} is denoted by V#, V,f = Hom (V_g, k), and
V is connected (resp. of finite type) if Vi = 0, k < 0 (resp. if each V is finite
dimensional). Note that our definition of a connected graded vector space differs
from that sometimes applied elsewhere, in which Vo = k. We denote by Vi 1
Vik,1)» Vsk and V< the graded subspaces {V; |k <i <1}, {Vi|k <i <},
{Vili=k}and {V;|i <k} respectively.

If V is connected and of finite type we define

log index V' = lim sup IOgdl—ka .
k k
It is obvious that log index V' < oo if and only if for some p > 0, dim Vj, < etk
for all k. In this case we say that V' grows at most exponentially.
A graded Lie algebra, L, is a graded vector space equipped with a bilinear
bracket [, |: L ® L — L of degree zero and satisfying

[x. y] = —(=D)dexdeer]y, x]

and
[x, [y, 2]] = [[x, ), 2] 4 (= 1) * Xy, [x, 2],

If char k = 3 we also require [x, [x, x]] = 0 when deg x is odd. (This last condition
is automatic for char k # 3.) A cft graded Lie algebra is a graded Lie algebra that,
as a graded vector space, is connected and of finite type.

The universal enveloping algebra of a graded Lie algebra L is, as usual, denoted
UL and a (graded) left UL-module will be called simply an L-module. In particular
the adjoint representation makes L into an L-module, and we denote the UL action
by (a,x)+—>aox,acUL,x € L.
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LEMMA 1. Given § and B > 0, there exists an integer N(8, f) such that:
if F is a cft graded Lie algebra satisfying Fr, = 0, forallk < N(8, ), and
dim(F/[F, F))x < e*P for all k, then dim(UF); < e B9k for all k > 0.

Proof. First note that the function 1 — x — x” has a single zero A(n) in (0, 1)
and that lim, .o A(n) = 1. Choose K = K(§) so that A(K) > e~%/2,

Now let E be the free graded Lie algebra generated by a graded vector space,
W, with W), =0, for all k < K and dim W}, the integral part of e*P forallk > K.
Then UE is the tensor algebra, T W. It follows that the respective Hilbert series
satisfy (< denotes coefficientwise inequality)

Bk N Bk (e
W(Z) < (Ze ) ];)(ze ) = m
and
1 1—zeP

UE)(z) = < .
WE)@) 1—W(z) — 1—zeP —(zeP)K
But the radius of convergence of (1—zef)/(1—zef —(zeP)K) is just e P A(K),
and so the radius of convergence, p, of UE(z) satisfies

0> e_ﬂA(K) > e B0/2

Thus for some N (8, 8) > K, dim(UE)x < eB+9k forall k > N(5, B). Let L be
the free graded sub Lie algebra generated by the Wy, k > N(§, B). Then (UL); =0,
1 <k < N(8, B) and for any F satisfying the hypothesis of the lemma we have

dim(UF) < dim(UL); < dim(UE); < e®+tD% k> N3, B).
Since dim(UF); =0, 1 <k < N(6, B), the lemma is proved. |

LEMMA 2. Suppose 6,y > 0 and N satisfies the condition for N(§,y) in
Lemma 1. Suppose also that N is sufficiently large so that log(x +1)/x <§,x > N.
Finally, suppose E C L and V,, C L, are respectively a sub Lie algebra and a
subspace of a cft graded Lie algebra, L.

If dim(UE); < eP?, for all i and some B <y, if dim V, <e¥", and if n> N,
then the sub Lie algebra, F, generated by E and V}, satisfies dim(UF); < e +20)i
foralli.

Proof. Put W = UE o V,,. Then W; = (UE);j—, o Vy, and so dim W; < eV,
for all i. By Lemma 1 the sub Lie algebra, G C L, generated by W satisfies
dim(UG); <e@ 9 all i. But since [E, G] C G, E + G is a sub Lie algebra; i.c.,
E+G = F.Ifi <n then (UF); = (UE);, while if i > n then 22(*1D < 5 anq
dim(UF); <Y g dim(UE); -dim(UG);—; < (i + 1)eW 9 < +20i
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LEMMA 3. Suppose for some oo > 0 and some cft graded Lie algebra, L, that
. . . . logdim Ly,
there is an infinite sequence 0 = g1 < g2 < --- such that lim sup; —
Then there is an infinite subsequence ry = q;, and a sub Lie algebra E such that
logdim(E/[E,E])r)L .
2\ -

limy

Proof. Choose an infinite strictly increasing sequence 0 < a1 < ap <--+ SO
that oy — . Set 8, = %(a 2+ a141). Now we construct inductively the sequence
) = qi, , together with an increasing sequence of sub Lie algebras, E (1), to satisfy
ra> ge2- ) >2,and e®2—1 <dim E(L),, <e®*"* and dim(UE(1)); <P,
forall A,i.

Indeed set r1 = g1 = 0 and E(1) = 0; these conditions are then satisfied for
A = 1. Suppose the rj and E(A) are constructed for A < m. By hypothesis there
are arbitrarily large ¢; with dim L4, > e%”%i. Since for each i, dim E(m — 1); <
ePm—1i < ®ml e may choose ry, arbitrarily large but such that E(m — Dy,
extends to a subspace V;,, C L, satisfying e*”'” —1 < dim V., < e*""m. But
for ry, sufficiently large Lemma 2 asserts that the Lie algebra E(m) generated
by E(m —1) and V,,, satisfies dim(UE(m)); < ePmi_ for all i. This closes the
induction.

Set E = Uy E(A). By construction, (E/[E, E])r, =V, /Ws,, where W,,, =
Vi, N[E(A—=1), E(A—=1)];,. Thus

e — 1 —ePr1h < dim(E/[E, E))y, <% —1.

But By_17) = % ry = opry + =52, < ayry —log?2. This gives

%(e‘“” —2) <dim(E/[E, E])r, <e%"* —1, and completes the proof. O

The invariants Exty (M, N) and Torf (M, N) for graded modules over a graded
algebra, A, will play an important role in this paper. We recall that each Extg (M,N)
converts direct sums in the first factor and direct products in the second factor to
direct products. However, if N has finite type as a graded vector space then a direct
sum decomposition is a direct product decomposition. In particular we have the
classical and useful

Remark. If N is A-free and N has finite type as a graded vector space then
Exty (M, N) # 0 if and only if Ext} (M, A) # 0.

Next let V' = {V;}i>o be a graded vector space of finite type and denote
by AV* the free graded commutative algebra on V¥. Then A?V* is the linear
span of the products f1 ... fz, f; € V¥*. The dual TV = (AV#*)* is just the free
divided powers algebra on V' with multiplication dual to the comultiplication in
AV# definedby f i~ f®1+1® f, f € V¥ Clearly TV = D, 'V with
LV = (N\1VH*,
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In particular, if L is a cft graded Lie algebra and M and N are L-modules then
TorYL (M, N) and Exty;; (M, N) may be computed as the homology of complexes
respectively of the form I'*(sL) ®x M ®i N and Homy (I'*(sL) @i M, N) with
twisted differentials [15]. (Here sL is the suspension of L; (sL)r = Lr_1.)
Now suppose E C L is a sub Lie algebra and write L = E @ S. This defines a

multiplicative isomorphism I'(sE) ® I'(sS) 3 I'(sL). Moreover, the filtration
Fpof I'(sL) ® M ® N corresponding under this isomorphism to @iﬁp rCE)®
I'(sS) ® M ® N is independent of the choice of S and is preserved by the
differential. The corresponding first quadrant spectral sequence converges from

E),=Tord®(I'?s(L/E)® M. N) to  TorJf, (M.N).

This spectral sequence was first introduced by Koszul in his thesis [13] for the case
of the Lie algebra of a connected closed subgroup, H, of a connected compact Lie
group, G. The generalization by Hochschild and Serre to general Lie algebras and
Lie modules includes the result that when E is an ideal then

Eg’q = TorgL/E (k, Tor;]E (M, N))

and the spectral sequence is generally known as the Hochschild-Serre spectral
sequence. In general the E2-term is mysterious; however in the original case
considered by Koszul, Eg,q = H,(G/H;R) ® Hy(H;R). Note there is a “dual”
Hochschild-Serre spectral sequence converging from Ext‘{] g(IPs(L/E)Y® M, N)
to ExtZ 14 (M, N).

LEMMA 4. Suppose M and N are L-modules where L is a cft graded Lie
algebra and each N; is finite dimensional. IfExty;; (M, N) # 0 then for some finitely
generated sub Lie algebra E C L and for some finitely generated L-submodule
P C M the restrictions Exty;; (M, N) — Extf;p (M, N) and Extj;; (M, N) —
Exty;; (P, N) are nonzero.

Proof. It suffices to observe that Exty;; (M, N) = [TorVZE (M, N*)]* and that
Tor commutes with direct limits in L and in M. O

PROPOSITION 1. Suppose L is an abelian cft graded Lie algebra and M is an
L-module. If Extf;; (M, UL) # 0, some m, then for some x € M and some n the
map U(L>p) — M, a — a-x, is injective.

Proof. If m = 0 then, because Ext%L = Homyy,, there is an x € M and an
f € Homyp (M, UL) such that f(x) # 0. Choose n such that f(x) € U(L<y).
Since UL = U(L <;) ® U(L>y) the proposition follows in this case.

We now proceed by induction and assume the proposition holds for p < m. It
is clearly sufficient to prove the conclusion for some subquotient of M. By Lemma
4 we may suppose M finitely generated. Then a simple exact sequence argument
reduces to the case where M has the foom M = UL - z.
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Denote the ideals (all subspaces of L are ideals) of elements of even (resp.
odd) degrees in L by E (resp. F). Write E(k) for E_j;. Next, let N C M be
the L-submodule of elements y such that UE — UE - y is not injective. Either
Exty;; (N,UL) # 0 or Ext{;; (M/N,UL) # 0 and we consider these two cases
separately.

In the first case there is a finitely generated L-submodule P C N such that
Exty;; (P,UL) # 0. Suppose y1,..., yr is a set of generators for P and let 0 #
a; € UE satisfy a; y; = 0. Since UE has no zero divisors, 0 # a = [[; a;; clearly
aP = 0. Let k be sufficiently large that a € UE (k) and write L = E(k) & I.

Now denote Torg E@) (P, (UE(k))*) simply by T,. Since a- P = 0 it follows
that Homyg (k) (P, UE (k)) =0, as UE (k) has no zero divisors. But this space is the
dual of Tp and so Tp = 0. On the other hand, the Hochschild-Serre spectral sequence
converges from Ethl (Tm—p,UI) to Exty;; (P,UL) and so Extgl (Tin—p, UI)#0
some p < m. Thus by induction for some « € T;,—, and some £ > k, U(L>y) —
U(Lsg) - o is injective (note that L, = I5y).

Suppose that the proposition fails for P and so there are integers [ < gg <
01 < -++ < o, and nonzero elements b; € U(Lq,_, 5,)) such that b; y; = 0. Set
b=T]; bi. Since ®; ULy, , o,y C UL it follows that b # 0. But bP = 0, which
implies that b - T),—, = 0. This contradiction establishes the proposition when
Exty;; (N, UL) # 0.

The second case is when Ext;; (M/N,UL) # 0 and it is sufficient to establish
the conclusion of the proposition for M/N . Thus we may restrict consideration to
modules M satisfying ay # 0if 0 # a € UE and 0 # y € M. If the proposition
fails here we may as above find an infinite sequence 0 < 09 < 01 < -+ and
nonzero elements a; € U(L(y,_, 5;)) such that a;z = 0. Now it is easy to find
b; € U(L(Ul.il’gl.)) such that 0 # b;a; = v;w; with v; € U(F(gl.ilygl.)) and w; €
U(E(;_,,0,))- Then w;v;z = 0 and so by construction, each v;z = 0. Since
M = UL -z it follows that each v; M = 0. In particular Homyr (M, UF) = 0,
and so it follows from the sublemma below that EXt*U g (M,UF) = 0. Since UL is
UF -free this implies (see the remark above) that Exty; (M, UL) = 0.

Thus the Hochschild-Serre spectral sequence

Exty); g (k. Extyp (M3 UL)) = Ext/ 9 (M, UL)
implies that Exty;; (M, UL) = 0, a contradiction. O

SUBLEMMA. If F is any cft graded Lie algebra concentrated in odd degrees
and if Q is any F-module then EXtZF(Q, UF)=0,p>1.

Proof. Since F is concentrated in odd degrees it is abelian. In view of Lemma
4 and the Remark before it, it is sufficient to prove the sublemma when F is finitely
generated (and therefore finite dimensional). Let vy, ..., v, be a basis of F. Since
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0—>v10 — Q — Q/v1Q — 0is a short exact sequence it is sufficient to prove the
sublemma for v1 Q and Q/v; Q. But v% = %[vl, v1]=0in UF andsovy-v1Q =0.
Thus we are reduced to the case of F-modules Q for which v; Q = 0. Iterating
this argument for v5, ..., v, reduces us to the case F'- Q = 0. Thus Q is the direct
sum of one dimensional F'-modules. But EXt*U g (=, UF) converts a direct sum in
the first factor to a direct product, which reduces us to proving the sublemma for
Q = k. In this case, however, the assertion Exty;, (k, UF) = Ext?]F (k,UF) is
proved in [4]. This completes the proof of the sublemma and of Proposition 1. [

The invariants Extyr (M, UL) will play a key role in the proof of the main
theorem, where UL acts on itself by left multiplication. We recall that the depth of
L is the least integer m (or oo) for which Extyj; (k, UL) # 0. We shall also need a
generalization, to be baptized weak depth.

Definition. Let L be a cft graded Lie algebra.

(i) An L-module, M, is weakly locally finite if M is the increasing union of finite
dimensional subspaces M (1) C M(2) C ... such that M(k) is preserved by
L.

(ii) A sub-Lie algebra E C L is admissible if the quotient L/ E is a weakly locally
finite £-module for the adjoint representation.

Note that if M and N are weakly locally finite L-modules, so are M ® N, each
A?M, and any sub-quotient module of M. If M has finite type then T'9(M) :=
(AN?M#*)* is also weakly locally finite.

Definition. The weak depth of L, w-depth L, is the least m (or co) such that
Exty;; (M, UL) # 0 for some weakly locally finite L-module, M.

LEMMA 5. (i) If E is admissible in a cft graded Lie algebra, L, then
w-depth E < w-depth L ;

(i1) w-depth L < depth L, and equality holds if L is finitely generated.

Proof. (i) Choose a weakly locally finite L-module M such that Ext;; (M, UL)

is nonzero, where m = w-depth L. Then the Hochschild-Serre spectral sequence
implies that

Ext{,z(P?s(L/E)® M,UL) #0, for some p+q =m.
But because E is admissible in L, L/ E is a weakly locally finite £-module; hence
sois'?s(L/E)® M, and w-depth E < g < m.

(i1) The inequality is obvious. Moreover if w-depth L = m then choose a weakly
locally finite L-module M for which Exty;; (M, UL) # 0. Since L is finitely gener-
ated, M is the union of an increasing sequence of finite dimensional modules M (r).
Thus (Lemma 4), for some r, Exty;; (M(r), UL) # 0. Now, since M(r) is finite
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dimensional, a simple long exact sequence argument shows that Exty;; (k, UL) # 0,
i.e., depth L <m. O

LEMMA 6. Let E C L be a sub Lie algebra of a cft graded Lie algebra L.
Suppose for some weakly locally finite L-module, M , and some m, that the restric-
tion map Exty;; (M, UL) — Ext};p (M, UL) is nonzero. Let Z be the centralizer
of E in L. Then for some q, Z>q is concentrated in odd degrees. If M = k then Z
is finite dimensional.

Proof. In view of Lemma 4 we may and do assume E is a finitely generated
Lie algebra. Then by Lemma 5, depth £ < co. Since Z N E is contained in the
center of E it is finite dimensional [4]. Let F' = Z>, where ¢ is chosen so that
FNE=0.

Again by Lemma 4 we may write I as the increasing union of finitely gen-
erated sub Lie algebras F(k), and M as the increasing union of finite dimen-
sional (E & F(k))-modules, M (k), such that p(k) : Extg(EeaF(k))(M(k), UL) —
Exty; (M (k), UL) is nonzero. Because M (k) is finite dimensional,

Exty;; (M(k), UL) = Exty;; (k, M(k)* @ UL).,

where U(E @ F (k)) acts diagonally in M (k)*® UL. Because UL is U(E & F (k))-
free and M (k)* is finite dimensional it follows that M (k)* ® UL is U(E & F (k))-
free. We therefore deduce that

Xt} g F () (k- U(E & F(k))) > Ext (k. U(E & F(k)))
is nonzero. But this is dual to the map
TorYE (k, (UE)*) ® (UF (k))* — TortY ESF®) (1 (UEY* @ (UF (k))*)
= @ ToYE WUEY)®@Torg" ® (K, (UF(k))*).
pt+q=m

whose image is in Tor%E ® Tor(l)] FO)  Thys Extg Fo (k, (UF(k))) # 0 and this,

by [4] implies that F(k) is concentrated in odd degrees. Hence so is F = UF (k).
Finally, if M = k then we may replace M (k) by k and F (k) by F in the argument
above to conclude that depth F = 0. This implies that F' is finite dimensional [4]. [

LEMMA 7. Let L be a cft graded Lie algebra of finite depth. Then for some r
the sub Lie algebra Z = {x € L | [x, L<;] = 0} is finite dimensional.

Proof. Choose r so that for some m, Ext{j; (k,UL) — Ext{j;(k,UL) is
nonzero, where E is the sub Lie algebra generated by L <, (Lemma 4). Then Z is
the centralizer of E and Lemma 7 is a special case of Lemma 6. O

LEMMA 8. Let E C L be a sub Lie algebra of a graded Lie algebra L such
that L/ E is finite dimensional and concentrated in odd degrees. Then for any
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L-module M, the restriction morphism
Exty;; (M, UL) — Ext};5 (M, UL)

is injective.

Proof. Choose r so that for some It is clearly sufficient to consider the case
L = E @& kx with x of odd degree. In this case E is an ideal in L and the
quotient Lie algebra L/ E has the exterior algebra /\x as its universal enveloping
algebra. It follows that the isomorphism UL >~ UE ® /\x induces an isomorphism
Exty;5 (M, UL) = Exty; 5 (M, UE) ® /\x, because /\x is finite dimensional. More-
over, the action of x in Ext};, (M, UL) satisfies x-(a ® 1) =x-a ®x £a ® x,

a € Ext};;(M,UE) ® 1, and so each Ext‘{,E (M,UL) is a free \x-module. Thus
in the Hochschild-Serre spectral sequence, converging to Exty;; (M, UL) we have

Eé”q = Extf\x(lk,Ext?]E(M, UL))=0, p=>1.
Hence
Extf, (M, UL) = E39 = Hom, o (k, Extf g (M, UL)).

Since the restriction morphism Ext({] 1 (M, UL) — Ext?] g (M, UL) is the composi-
tion
Ext!,, (M,UL) > E3? < Ext!, . (M,UL),

the injectivity of the restriction morphism follows. O

3. The first Lie algebra growth theorem

We consider the following conditions on a cft graded Lie algebra L:

(T1) For some B > 0 there is an infinite sequence g1 < g < --- of even integers
such that q{}# — 1, and
J

lim inf
J 4j

logdim Lg;
— =B

(T3) w-depth L < oo.

THEOREM 2. Suppose L is a cft graded Lie algebra satisfying (T1) and (T3).
Then
k+d 1.
lo ., dim L;
lim Tim inf 18 2=k Ps 8.
d—oo k k

Proof. Since Zf:,f dim L; increases with d so does

log Zf:,f dim L;
. :

lim inf
k
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Thus the limit in the theorem exists. Denote this limit by y:

... log chj,f dim L;
y = lim liminf —
d—oo k k

’

so that the theorem simply asserts the inequality 8 < y. We assume this inequality
fails, and deduce a contradiction.
Our assumption allows us to choose § > 0 so that

(T3) 26<B—y.
Then, by the definition of y, for any d there are arbitrarily large integers k such that

k+2d
(T4) > dim L; < etk
i=k
Next, let N(38, y + 23) be as in Lemma 1, and choose N so that

N> NG,y +26),
(T5) 1+t o ,(r+28)i i > N and
diquj > ¢(B=0)q; , gi = N.

Then, let F C L be the sub Lie algebra generated by the subspaces L; for which
i > N and dim L; < e 91

The main step in the proof of the theorem is the inductive construction of an
infinite sequence zg, z1, . .. of nonzero elements in L of strictly increasing even
degrees, and satisfying property (7s) below. Namely let E(r) denote the sub Lie
algebra generated by F<, and zg, ..., zr—1, and let UE(r) act on L by the adjoint
representation. Then we shall construct the z, so that

(Te) UE(r)+ o z; is finite dimensional and concentrated in odd degrees.

We show first that the existence of this sequence leads to the desired contradic-
tion, and then complete the proof of the theorem by carrying out the construction.

The relation (7g) clearly implies that for any r, i > 0, [E(r), z,4;] is finite
dimensional and concentrated in odd degrees. Now let £ = U, E(r) be the union
of the increasing sequence of sub Lie algebras E(r). Since F<, C E(r) it follows
that F C E andso L; C E ifi > N and dim L; < e 9 Thus (74) implies that
(L/E); =0fori € [k,k + d] where k and d can be arbitrarily large. In particular
E is admissible in L and so, by Lemma 5, w-depth £ < w-depth L < oo.

Let w-depth £ = m, and let Z(r) C E(r) be the sub Lie algebra of elements
that commute with each z,4+;, 0 <i <m. Since [E(r), zy+;] is finite dimensional
and concentrated in odd degrees it follows that £(r)/Z(r) is also finite dimensional
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and concentrated in odd degrees. By Lemma 8, the restriction morphism
EXtUE(r) (M,UE) — EXtUZ(r) (M,UE)

is injective for any E-module M .

On the other hand, since w-depth E = m there is a weakly locally finite
E-module M such that Ext; (M, UE) # 0. Moreover, since E = U, E(r), for
some r the restriction morphism Exty; (M, UE) — Exty; (r)(M , UE) is nonzero.
Hence also the composite

(T7) Exty; g (M, UE) — Extﬁz(r)(M, UE) is nonzero.

Since each [E (i), z;] is concentrated in odd degrees, it follows that [z;, z;] =0,
0<j <i<oo Thus Z = @ ,kz,4; is an abelian Lie algebra commuting
with Z(r). Because Z(r) — E factors as Z(r) — Z(r) + Z — E, the restriction
map Extjp (M, UE) — Ext'gz(r)(M, UE) factors through EXtrg(Z(r)—i—Z)(M’ UE).
Since UE is a free U(Z(r) 4+ Z)-module, it follows from (77) that

w-depth(Z(r) + Z) <m.

Since Z is an ideal in Z(r) + Z, there is a Hochschild-Serre spectral sequence
converging from

p q
EXtU((Z(r)JrZ)/Z) (k. EXtU(Z) (=)
to EXtZELZq(,H Z)(—, —). It follows that w-depth Z < m. But Z is finitely generated

and so Lemma 5 asserts that depth Z < m. On the other hand, since Z is abelian
and concentrated in even degrees, [4] asserts that depth Z = m + 1, and we have
the desired contradiction.

It remains to construct the sequence (z,). To begin note that £(0) = 0 and let
zo be any nonzero element of L of even degree > N. Then assume by induction
that zg, ..., zr—1 are constructed. Since the degrees of the z; are strictly increasing
with degzg > N and since F is generated by the spaces L; with i > N and
dim L; < e 97 it follows from (7) that

E . .
dim (#) <14Vt o r+28)i foralli >0.
[E(r), E(r)]/;
Moreover E(r); =0,i < N, and so Lemma 1 asserts that
(Ts) dim (UE(r)); < eV 39 forall j > 0.

Choose d so that
(To) d>r+degz,—;.
Then choose s so that

(Tho) qs > d (% + 1) :
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and
(T11) 4+t <l+o, forall j >,
4j
where 0 = M Finally, by (74) we may choose k so that
2y +56 ’
k+2d
(T12) k > g5 and Z dim L; < YTk
i=k

Then g5 > d > degz,—1 > degzgp > N and so by the choice of N (cf. T5),
(T13) dimLg; > eB=0a; forall j >s.

Since (cf. T3) B —y > 26, it follows from (772) and (773) that no ¢g; is in the
interval [k, k + 2d]. Thus for some £,

(Th4) ds <qu <k <k+2d <qgq1-
The adjoint representation of UE(r); in L ‘dualizes’ to linear maps

6;: Ly, — Li @ (UE(r))*

i—qg*
Then
k+2d
> dim(L; ® (VE(r)}_,,)

i=k+d k+2d

< ( Z dim Ll) e(y+45)(k+2d—qg) (Tg)
i=k+d

< oV (k+2d—q0)+5(5k+8d—4q.) (T12)
< ¢V Qae+1=90)+8(5q0+1—44¢) (T14)
< V8 +Qy+58)0q, (T11)
< B0 (T3) and (T11)
< dim qu (T13).

The inequalities above imply that some nonzero element x € L, is in the intersection
of the Ker0;, k +d <i <k + 2d. Therefore

UE(r)pox=0, pelk+d—q.k+2d—q.

Since E(r) is generated by F<, and zo, ..., z,—1, and since d was chosen (cf.
To)sothatd >r and d > degz;,0<i <r—1, we have (UE(r))>k+24—q; ©X =0,
and so UE(r) o x is finite dimensional.

Since x € Ly, and gy is even we may choose z, to be a nonzero element of
maximum even degree in UE(r) o x. Then degz, > gy > g5 > d > degz,_; (cf.
(Ty) and (T19)), and by choice UE(r) + o z, is finite dimensional and concentrated
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in odd degrees. This completes the inductive step of the construction and, with it,
the proof of Theorem 2. O

4. The second Lie algebra growth theorem
Consider the following conditions on a cft graded Lie algebra, L:

(X1) For some integer m > 2 and some fixed o € (0, o0), there is an infinite
sequence p1 < pp < --- of integers such that p; 11 <mp;, all j, and
logdim L,;

lim inf ~S 0P >
J Dj
(X32) L has finite depth.
THEOREM 3. Suppose L is a cft graded Lie algebra satisfying (X1) and (X>3).
Then there is an integer d such that
log Y4 dim L;
k =

lim inf
k

THEOREM 3'. Suppose L is a cft graded Lie algebra satisfying (X1) and (X3),
with o = logindex L. Then there is an integer d for which, given any & > 0 there is
a K = K(¢g) such that

k+d
ola—o)k < Z dim L; < etk , forall k > K .
i=k

Proof of Theorem 3. The main step of the proof is to show that

(X3) For any B < « there is an infinite sequence ¢; < g2 < --- of even integers
logdim L ;
o > ﬂ

q; -

Indeed, given (X3) we may apply Theorem 2 to find

such that £ — 1, and lim inf;
J

log Y/ 4y dim L; _ 4

lim liminf
s—00  k k

if B < «. It follows that

k+s ;-
log YKF5 dimL,;
lim Tim inf 08 2=k 4imLi _

s—>00  k k -

Choose d (Lemma 7) so that Z = {u | [u, L<4] = 0} is finite dimensional. Choose
D sothat Z>p =0.
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Next, for any k > s > 0, write

k+s
> dimL; = e?®9k,
i=k
i —_ ; o> 1 L yk—s,s)(k—s) ;
Then for some j € [k—s, k], dim L; > Te .Letuy,...,up beabasis

for L -4 and note that if j > D then for some A we have dim[uy, L;] > % dimL;.
Proceeding in this way yields an infinite sequence (u, ) such that

1 q
dimfuy,, [up,_ [ - [ua,, Ljl. .. 1= (—) dimL;, forallqg.
' p

But for some ¢ <s we have Y ?_ deguy  + j € [k, k +d]. It follows that
Q(s)
k b
for some Q(s) independent of k. Fixing s > d and letting k — oo we see that
liminfy y(k,d) = liminfy y(k, s). Thus

ylk.d)= (1 —s/k)y(k—s.s)—

lo -7 dim L; lo - dim L;
g 2i=k ' = lim liminf 8 2izk L>q
k s—>00  k k

lim inf
k
It remains to establish (X3). First we prove a weaker statement:

(X4) For any B < « there is an infinite sequence £1 < £, < --- such that ZJZ# -1,
J
and liminf; (logdim L¢;)/¢; > B.

For this we suppose (X4) false, and deduce a contradiction. By hypothesis, then,
there are numbers 8 < o and o > 1 such that there is no sequence £; < 5 < ---

. . L. logdim L, . .
with £; 11 < o/;, all j, and liminf; é—,ef > . In particular there exists k1
J

with dim L; < eP/, j € [ky, ok;]. Since there is no sequence beginning with k1,
there is ko > ok such that dim L; < eBJ | j € ks, oks]. This process gives an
infinite sequence k1 < k> < --- such that dim L; < eBi | j e ks, 0ks], all 5. By
starting with a sufficiently large k; we may also assume that for each s there is a
largest ig such that p; < UT_lks. Denote p;, by ry. Since p; 41 < mp;, we obtain

1 _
(Xs) O_mks =rs =< Tks

Now apply Lemma 3 to see that if we replace (kg) and (rg) by infinite sub-
sequences we may find a sub Lie algebra E C L such that 224™ (Eré LE.EDrs .
Denote [E, E] simply by 7.

Now the Hochschild-Serre spectral sequence

Extd, o (D?s(L/E),UL) = Ext} 19 (k,UL)
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implies that for some p, Exty; 5 (I'?s(L/E),UL) # 0, since L has finite depth. As
UL is UE-free it follows that Ext};, (I'?s(L/E), UE) # 0. The proof of Lemma
4.2 in [6] now applies verbatim to show that

Ext;; g (TPs(L/E),U(E/I)) #0.
But there is also a Hochschild-Serre spectral sequence converging to
Ext;; g (TPs(L/E), U(E/I))

from Ext;}(E/I)(TorUI (k,TPs(L/E)),U(E/I)). The latter Ext* is therefore

nonzero. Thus by Proposition 1 there are ann and a y € Torll,]/l (k,T'Ps(L/E)),
some p’, such that

(X6) U(E/I)>n) = U((E/I)>p) -y is injective.

Now TorY/ (k, T'?s(L/E)) is the homology of a complex of E-modules of
the form I'(s/) ® I'?s(L/E), where the representation of E is simply the adjoint
representation. In particular we may represent y by a cycle z € I'? SIQTP s(L/E).

Set sI @ sL/E = W. Then, clearly, for some N and withg = p+ p’, z €
I'"(W<n). Choose S so large that rg > N +n, and so that for some & < ﬁ(a —B),
we have @871 < dim(E/I),, < e @t forallsr > S.

Next, recall that I'W is an algebra, and that adjoint representations are denoted
by ~o”. A straightforward calculation shows that

(X7) EoT"W C(EoW)-T" W r>1.

Now fix s > S and let {u; } C E, represent a basis of (E/I),, and denote by
At ¢ (UE) 2, the linear span of the elements u;, ...u;, ,i; <iz <---<i,. The
map UE — UE /I maps each A% injectively and so it follows from (Xg) that

(Xg) dim(A4*oz) = dim A*.
Moreover given the inequalities above for dim(E/1),, we have

(Xo) % e@=OArs < dim A} < pl@t+e)Ars

Then, from the definition of AA, the fact that I'W is (graded) commutative,
and from (X7) we obtain:

(X10) A*oz C > (AM o Wop) ... (AM o W) TI T (Wen).

M-t A=A
A< <Ay

Let K = dim '=4(W<y). Then for any A;,

dim A% o Wey < Ke@tohirs
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Moreover, since N <ry it follows from (X5) that for some integer £, [£rg, £rs+N]| C
[ks,oks]. Thus Ao W< is contained in a graded vector space isomorphic to a
subspace of Lk, gk,]- Thus dim At o Wan < KePUrstN) by the choice of the
sequence ks and of 0.

Now set A = £q in (X1¢). Then in each summand of (X19) some A; > £, and
so dim A% o W<y <dim A*i=t dim At o W<n. Let p be the number of partitions
of £q. Then (X19) yields

dim A% 0 7 < pe@TOWa=0rs BLrs+N) grla+1.

Apply (X3g) and (X9) to find
1
o e(a—s)quS < IOe(a-f-a)ﬁqrse(ﬂ—oc)frseﬂNKﬁq-‘rl )
This last formula holds for ¢, N, K, p fixed and for arbitrarily large ry. Moreover, it
follows from (Xs) that okg < Mrs, and so £ = £(s) < w Take logs,

divide by £rs and let ks — oco. Then by (X5), rg — oo and hence

(@—¢e)g=(a+e)g+(f-a).

whence (o —f) <2qe. But & was chosen so that £ < ﬁ(a— B) and this contradiction
establishes (X4).

It remains to deduce (X3) from (X4). Denote by J the sub Lie algebra of L
generated by elements of odd degree. Since J is (obviously) an ideal it follows
from the Hochschild-Serre spectral sequence,

ExtU(L/J)(Ik Ext!,, (k,UL)) = Ext};?(k, UL),

that depth J < depth L. Choose a finite set yq, ..., ¥, of elements of odd degree
such that the sub Lie algebra F generated by the y; satisfies

Extyy(k,UJ) — Extyr (k,UJ) is a nonzero map ;

cf. Lemma 4. Then by Lemma 6, the centralizer of F in J is finite dimensional.
It follows that for £ large enough there is some A(£) such that dim[y; ), J¢g] >
%dim Jy . Since Jy = Ly for £ odd, it follows that

1
dim Lyeg y, o) +¢ = — dim Ly,  for £ odd and sufficiently large.
r

Now let £; < {5 < --- be the infinite sequence provided by (X4) for 8,

£ +1 logdim Ly,
T+ — 1 and 1iminfuz,8.
& j j

Deducing X3 from X4 means showing the existence of a sequence of even integers
with the same property. Let R = max{degy,|l < A < r}. By choosing a
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subsequence if necessary we may assume the subsequence ({;) also satisfies £; 1 >
R + {;. Define a new infinite sequence g1 < g> < --- of even integers by

{; if £; is even,
deg yae,) + ¢ if €; is odd.

qj =
Then L+l < LG+1tR 4 .14
q; — L; ’
logdim Lg; > log(1/r) N logdim Ly, - log(1/7) N logdim Ly, 7 |
qj q; q; q; z ¢ +R
log dim L
It follows that liminf; w > B.

This completes the proof of (X3) and of Theorem 3. O
Proof of Theorem 3'. Let d be as in Theorem 3. Clearly

log Y4 dim L,

logindex L = lim supy

k
.. .. logz k dim L;
Thus by Theorem 3, this is less than or equal to liminfy —==F——— and so
lim sup and lim inf coincide, whence the formula in the theorem. O

5. Growth of the ranks of homotopy groups

It is a classical result of Serre that the following conditions on a simply
connected CW complex X are equivalent: (i) Each H;(X; Q) is finite dimensional,
(i1) Each 7r; (X) ®Q is finite dimensional, and (iii) X has the rational homotopy type
of a CW complex with finitely many cells in each degree. When these conditions
hold we say X is rationally of finite type.

PROPOSITION 2. If X is a simply connected CW complex that is rationally
of finite type then the sequence dim i (X) ® Q grows at most exponentially if and
only if the sequence dim Hy (X ; Q) grows at most exponentially.

Proof. Suppose dim 73 (X) ® Q@ < ek for all k. By Sullivan’s theory of
minimal models ([17], [7]), H*(X;Q) =~ H(A\V.d), where V¥ =~ 7, (X) ® Q.
Now AV is a quotient of P72 2((X)V’) and so

dmAVF < ) dim V7' ... dim V" < p(k)e"*
q1="<dm
qrt-tam=k
where p(k) is the number of partitions of k. Since p(k) < ™ vk [18, Th. 15.7], it
follows that the sequence dim Hy (X ; Q) grows at most exponentially.
Conversely, suppose dim Hy (X; Q) < e#*, for all k. Then it follows from
the classic result of Adams-Hilton [1] that H«(Q2X; Q) =~ H(T W, d) where W, =~



RANKS OF HOMOTOPY GROUPS OF A FINITE 1-CONNECTED COMPLEX 461

Hj._1(X; Q). The Hilbert series for W and T W satisfy

" d TW() « L2
an z T
1 —2zek

It follows that dim(7" W), grows at most exponentially in k. Since

W(z) K«

1—ze#

dim 7 (X) @ Q =dim 1 (QX) @ Q < dim Hx—1 (QX; Q) <dim(T W)g—,
it follows that dim 7z (X) ® Q grows at most exponentially in k. O

Recall that the Lusternik-Schnirelmann category of a topological space X,
cat X, is the least integer m (or co) such that X can be covered by m + 1 open sets,
each contractible in X . The rational LS category of X, caty X, is the LS category
of the rationalization Xg and satisfies caty X < cat X.

Recall also that the classical result of Milnor-Moore-Cartan-Serre [16] asserts
that H.(2X; Q) is the universal enveloping algebra of a graded Lie algebra Ly =
7+(2X) ® Q: Ly is called the rational homotopy Lie algebra of X.

THEOREM 4. Let X be a simply connected CW complex satisfying the follow-
ing three conditions: (i) The sequence dim Hy (X ; Q) grows at most exponentially;
(ii) 7 (X) ® Q is nonzero for infinitely many k, and (iii) catg X =m — 1 < oo. Let
ay denote log index Ly. Then 0 < ay < oo and, for some fixed d, and for any
e >0, there is a K = K(¢g) such that

k+d
elax—e)k < Z dim7;(X)®Q < elax +ek forall k> K .
i=k

Proof. This is immediate from Theorem 3’ once we have verified that the
rational homotopy Lie algebra Ly satisfies hypotheses (X1) and (X3) with o = ay.

First note that oy < oo, by Proposition 2. Then recall from [5, Th. 4.1] that
there are a sequence p; and a constant C > 1 such that dim(Lx),; > C?/. It
follows that oy > 0. Now for simplicity denote Ly simply by L.

Choose a sequence

UL <Up < -+

such that (dim Lui)l/“" — %X Then puta = (ﬁ)m The formula in [5, p. 189]
gives a sequence

U = Vg < V] <+ <V =Ujt]
such that for j <k,2v; 1 +2<v; +2<m(vj—1 + 1), and

vj+2
dim L, za(dimLUj_l)vj—1+1 ., j<k.



462 YVES FELIX, STEVE HALPERIN, and JEAN-CLAUDE THOMAS

. 1 1 1
Since v; > 2v;_1 we have v; > 2/ vy anda% 2 >qa% >a?/v . Thus

1 1
(dim ij)v'j+l > (dim ij)ijrz
1 1 1 1
>a" (dim Ly, _,)%=17" > a0 (dim Ly,_,)%-17".

It follows that
1 1
(dim Ly, )% FT > (a® dim Ly,) 0T, j<k.

Interpolating the sequence u; with the sequences v; defines a sequence r; satisfying
ri+1 < (m+1)r; and
log dim Ly;

lim —— = ay.
J rj
Thus (X 1) holds. Finally recall from [4] that depth L. < caty X, so that (X3) holds
also. O

Theorem 1. Since the subject of Theorem 1 is a simply connected finite CW
complex X of dimension #, its rational LS category satisfies catg X < n/2. If
rank 7z (X)) = O for all but finitely many k then it is shown in [12] that rank 773 (X)
=0, k > 2n. Otherwise we may apply Theorem 4 to obtain for some d and any
& > 0 there is a K = K(&) such that

k+d
elax—ok < Z rank 7r; (X) < e@+9k - forallk > K .
i=k

We complete the proof by showing that for d > n,

log (Zf‘:,g rank 7; (X)) - log (ch:/?-l-Z rank 77; (X))
= lim inf
k k k
Put 4 = dim H4«(X; Q). In Corollary 7 of [14] Lambrechts shows that for some
Lo and any p > {g, thereis a py € (p, p+n) such that rank 7, (X) > I% rank 7, (X).
The desired inequality follows. Indeed let ¢ > 0 and choose K > K(&/2) such that
exd(d 4 1)h? < ¢#K/2_ Then forany k > K +d —2,

lim inf
k

k+2
Z rank 77; (X) > elax—5)(k—d+2)
i=k—d+2

Thus there is p € [k—d +2, k +2] such that rank 7, (X)) > e(“X_%)(k_dJrz)/(d +1).
It follows from Lambrechts’ result that we can extend p to a sequence p = pg <
p1<---suchthat p; 1 < p; +n and rank 7, (X) > elex—e/Dk=d+2) /((d 4 1)h?).



RANKS OF HOMOTOPY GROUPS OF A FINITE 1-CONNECTED COMPLEX 463

In particular for some i <d, p; € [k + 2, k + n]. Therefore,

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

k+n olax—5)(k—d+2) .
Z rank 77; (X) > FERNY > elax—ok O
k12 (d+1)
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