
ANNALS OF

MATHEMATICS

anmaah

SECOND SERIES, VOL. 170, NO. 1

July, 2009

Fitting a Cm-smooth function to data, III
By Charles Fefferman





Annals of Mathematics, 170 (2009), 427–441

Fitting a Cm-smooth function to data, III
By CHARLES FEFFERMAN

Abstract

Fix m; n� 1. Given an N -point set E � Rn, we exhibit a list of O.N/ subsets
S1; S2; : : : ; SL � E, each containing O.1/ points, such that the following holds:
Let f W E! Rn. Suppose that, for each `D 1; : : : ; L, there exists F` 2 Cm.Rn/
with norm � 1, agreeing with f on S`. Then there exists F 2 Cm.Rn/, with norm
O.1/, agreeing with f on E.

We give an application to the problem of discarding outliers from the set E.

0. Introduction

Let m; n� 1, and suppose we are given N points in RnC1. Throughout this
paper, we regard m, n as fixed, and N as arbitrarily large. How can we find a
function F 2 Cm.Rn/, whose graph passes through (or close to) the given points,
with the Cm-norm of F having the smallest possible order of magnitude? How
small can we take that order of magnitude?

In [4], [5], we studied these questions from the viewpoint of theoretical
computer science. We exhibited algorithms to compute F , and we estimated
the resources required by an (idealized) computer to carry out those algorithms.
Here, we prove a theorem announced in [4], and apply it to study what happens
when we are allowed to discard some of the N given points as outliers. We want to
know which points to discard, and how much we can reduce the order of magnitude
of the Cm norm of an optimal F , as a function of the number of points discarded.

To state our results precisely, we introduce some notation and definitions. Let
X; Y � 0 be real numbers determined by m; n and other data (e.g., N given points
in RnC1). Then we say that X and Y have the “same order of magnitude”, and we
write “X � Y ”, provided we have cX � Y �CX , with c and C depending only on
m and n. (More generally, throughout this paper, c, C , C 0, etc., denote constants
depending only on m and n. These constants may change from one occurrence to
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428 CHARLES FEFFERMAN

the next.) To “compute the order of magnitude” of X is to compute some Y such
that X � Y .

For any finite set S , we write #.S/ to denote the number of elements of S . If
S is infinite, then we define #.S/D1.

As usual Cm.Rn/ denotes the space of all m-times continuously differentiable
F W Rn �! R, for which the norm

kF k D max
j˛j�m

sup
x2Rn

j@˛F.x/j

is finite.
Next, suppose we are given a finite set E � Rn, and functions f W E �! R,

� WE �! Œ0;1/. We want to find F 2 Cm.Rn/ and M 2 .0;1/ such that

(0.1) kF k �M; and jF.x/�f .x/j �M�.x/ for all x 2E:

We define kf k.E;�/ as the infimum of all M 2 .0;1/ for which there exists
F 2 Cm.Rn/ that satisfies (0.1).

The function � serves as a “tolerance”. It gives a precise meaning to our
demand that the graph of F pass “close to” N given points. Taking � � 0 amounts
to demanding that the graph pass through the given points.

Let E, f , � be as above, and let S � E. For simplicity, we write kf k.S;�/
to denote kf k.S;� jS /, where (as usual) � jS is the restriction of � to S . Clearly,
kf k.S;�/ � kf k.E;�/.

We will exhibit algorithms, to be run on an idealized computer with standard
von Neumann architecture [12], able to deal with exact real numbers. The resources
required to carry out an algorithm are the “number of operations” (or “work”), and
the “storage”. Here, an “operation” means, e.g., an addition or multiplication of two
given real numbers, or an application of the “greatest integer” function. See [5] for
a more careful discussion, including a model of computation with finite-precision
numbers. The “storage” is simply the number of reals that can be held in memory.

The main theorem of this paper is the following result, announced in [4].

THEOREM 1. Let E � Rn, with #.E/DN <1, and let � WE �! Œ0;1/.
Then there exists a list of subsets S1; S2; : : : ; SL � E, with the following

properties.

(A) Each S` has at most C elements.

(B) The number of subsets S` is L� CN .

(C) For any f WE �! R, we have

kf k.E;�/ � max
`D1;:::;L

kf k.S`;�/:

(D) The list of subsets S1; S2; : : : ; SL may be computed from E, � , m, n using at
most CN logN operations, and using storage at most CN .
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In view of (A), the order of magnitude of any given kf k.S`;�/ may be easily
computed by standard linear algebra, using at most C 0 operations. (We spell out
the details in Section 1.)

Hence, Theorem 1 allows us to preprocess E; � , after which we can compute
the order of magnitude of kf k.E;�/ for any given f , using at most CN operations.
The preprocessing takes at most CN logN operations, using storage CN .

Theorem 1 is a refinement of the following result, proven in [8].

THEOREM 10. Let E � Rn be finite, and let f W E �! R, � W E �! Œ0;1/.
Then

kf k.E;�/ �maxfkf k.S;�/ W S �E; #.S/� kg;

where k depends only on m and n.

Theorem 10 in turn overlaps with the earlier results of Y. Brudnyi and P.
Shvartsman [2]. They conjectured a “finiteness principle” analogous to Theorem 10,
but with � � 0, and with Cm.Rn/ replaced by more general function spaces. For
certain function spaces, including C 2.Rn/, they proved their finiteness principle,
with an optimal constant k, by the method of “Lipschitz selection”.

Recent works of Bierstone-Milman [1] and of Shvartsman [2] have made
significant progress toward finding the best constant k in Theorem 10 for general
m; n. Their work applies also to the constant C in Theorem 1(A).

More broadly, Theorems 1 and 10 pertain to “Whitney’s extension problem”.
We refer the reader to works of Whitney, Glaeser, Brudnyi-Shvartsman, Zobin,
Bierstone-Milman-Pawlucki, as cited in [2], [4], [5], [8], [11].

We apply Theorem 1 to the problem of finding and discarding outliers. Our
result is as follows.

THEOREM 2. Suppose we are given the following data:

� A finite set E � Rn, with #.E/DN � 2;

� Functions f WE �! R, � WE �! Œ0;1/;

� An integer Z � 0.

Then, in C CCZN logN operations, using storage CN , we can compute a
subset S� �E, with the following properties:

(˛) #.S�/� CZ; and

(ˇ) For any S �E with #.S/�Z, we have

kf k.EŸS�;�/ � Ckf k.EŸS;�/:

Thus, if we are allowed to discard �Z points, then, essentially, we can do no
better than to discard S�.
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It is easy to deduce Theorem 2 from Theorem 1. We explain heuristically
the algorithm to produce S�, and say a few words about why it works. A careful
discussion is given in Section 2.

Let E; f; �;Z be as in Theorem 2. We have to find a subset S��E satisfying
.˛/ and .ˇ/. To do so, we first compute the list of subsets S1; S2; : : : ; SL from
Theorem 1, and then compute the order of magnitude of each kf k.S`;�/, ` D
1; : : : ; L. This takes at most CN logN operations and storage CN .

Next, we discard from E the points of S`� , with `� picked to maximize the
order of magnitude of kf k.S`� ;�/

.
To see why we do so, suppose S �E with kf k.EŸS;�/�kf k.E;�/. Then

S`� must contain at least one point of S . In fact, otherwise,

kf k.S`� ;�/
� kf k.EŸS;�/�kf k.E;�/ � C �max

`
kf k.S`;�/

by Theorem 1(C), contradicting the fact that kf k.S`� ;�/
has the maximal order of

magnitude among the kf k.S`;�/.
Thus, with work at most CN logN , we have found a set S`� � E with

#.S`�/� C , guaranteed to contain at least one point of any “bad” set S �E.
Once we have discarded the points of S`� , we find ourselves in the same

situation as before, but with EŸS`� and Z � 1 in place of E and Z, respectively.
Proceeding recursively until we reach the trivial caseZD 0, we discard at most CZ
points from E; and the set S� of discarded points will satisfy the conclusions .˛/,
.ˇ/ of Theorem 2. Again, we refer the reader to Section 2 for a rigorous discussion
of the ideas sketched above.

We have no reason to think that the work C CCZN logN in Theorem 2 is
best possible, and we look forward to future improvements.

We turn our attention to the proof of Theorem 1. There are two main ingredi-
ents.

The first ingredient is a construction of an F 2 Cm.Rn/, satisfying (0.1) with
the order of magnitude of M as small as possible. That F has the form F D Tf

for a linear operator T . This construction is described in [7], [4], [5].
For any x 2 Rn and j˛j �m, we therefore have

(0.2) @˛.Tf /.x/D
X
y2E

�˛.x; y/ f .y/, with coefficients �˛.x; y/ independent of

f . Moreover, for the operator T constructed in the references just mentioned,
the coefficients �˛.x; y/ are “sparse.” More precisely, �˛.x; y/ vanishes for
all y 2E outside a subset S.x/�E, with

(0.3) #.S.x//� C . Thus, (0.2) may be rewritten in the form

(0.4) @˛.Tf /.x/D
X

y2S.x/

�˛.x; y/ f .y/ for j˛j �m, x 2 Rn, and we have
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(0.5) kTf k �M; j.Tf /.x/�f .x/j �M�.x/ for all x 2E, with

(0.6) M � Ckf k.E;�/, since F D Tf satisfies (0.1) with the order of magnitude
of M as small as possible.

The existence of T , S.x/, �˛.x; y/ satisfying (0.3), . . . , (0.6) is proven in the
discussion of “operators of finite depth” in [7].

Furthermore it was shown in [4], [5] how to compute S.x/ and the �˛.x; y/
.y 2 S.x/; j˛j �m/ for any given x. In particular, after preprocessing E; � , we
can compute S.x/ for any given x 2 Rn using at most C logN operations. The
preprocessing takes at most CN logN operations, with storage CN . (Here, as
usual, N D #.E/ <1.) See Theorem 6 in [5].

We will need to compute S.x/ only for x 2E, and we will not need to compute
the �˛.x; y/. According to the above remarks, we can compute all the S.x/ .x 2E/
with at most CN logN operations and storage CN .

The second main ingredient in the proof of Theorem 1 is the work of Callahan
and Kosaraju [3] from computational geometry. We state here only the subset of
their results needed for our proof.

Let � 2 .0; 1/ be a small constant. We write c� , C� , C 0� , etc., to denote constants
depending only on �, and on the dimension n. As usual, let E � Rn, with #.E/D
N <1. According to [3], we can partition the set of pairs f.x; y/2E�E W x¤ yg
into subsets

(0.7) E 01 �E
00
1 , E 02 �E

00
2 , . . . , E 0L �E

00
L with the following properties.

(0.8) In (0.7), we have L� C�N:

(0.9) For each `D1; : : : ; L, we have diam.E 0
`
/; diam.E 00

`
/�� dist.E 0

`
; E 00

`
/, where,

as usual,

diam.A/Dmaxfjx�yj W x; y 2 Ag and

dist.A;B/Dminfjx�yj W x 2 A; y 2 Bg for finite A;B � Rn:

Moreover, we can pick “representatives”

(0.10) x0
`
2E 0

`
and x00

`
2E 00

`
for each `D 1; : : : ; L, in such a way that

(0.11) The x0
`
; x00
`

for `D 1; : : : ; L can all be computed, using at most C�N logN
operations and storage C�N .

See [3], and also Har-Peled and Mendel [9] for further results. We call (0.7)
the “Callahan-Kosaraju decomposition”. (In the computer science literature, it is
called the ”well-separated pairs decomposition”.)

We now indicate how our two main ingredients (0.3) : : : (0.6) and (0.7) : : :
(0.11) are used in the proof of Theorem 1. Let E; �;N be as in the hypotheses of
Theorem 1. We have to find a list of subsets S1; : : : ; SL �E satisfying conclusions
(A) : : : (D).
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Taking � to be a small enough constant depending only on m and n, we
produce the Callahan-Kosaraju decomposition (0.7). Let x0

`
; x00
`
.`D 1; : : : ; L/ be

the “representatives”, as in (0.10) and (0.11). Also, let S.x/.x 2E/ be as in (0.3)
: : : (0.6). As our list of subsets S1; : : : ; SL, we take

(0.12) S` D S.x0`/[S.x
00
`
/[fx0

`
; x00
`
g for `D 1; : : : ; L:

In view of (0.3), we have #.S`/ � C 0 for each `. Also, from (0.8), we have
L � CN , since � depends only on m; n. Recall that with CN logN operations
using storage CN , we can compute all the x0

`
, x00
`

and all the S.x/ .x 2 E/. A
glance at (0.12) shows that all the S`.1 � ` � L/ can therefore be computed in
CN logN operations using storage CN . Thus, conclusions (A), (B) and (D) are
obvious for our S1; : : : ; SL. It remain to establish (C). This comes down to finding
an F 2 Cm.Rn/ satisfying (0.1), with M �max

`
kf k.S`;�/.

The proof of (C) occupies Section 4 below.
This concludes our introductory remarks on the proof of Theorem 1.
Theorem 1 can be generalized, as in [5], by bringing “Whitney t -convex sets”

into the statement of the problem. (See also [6].) Our proofs below are easily
adapted to this case, so we omit further discussion.

It is a pleasure to thank Bo’az Klartag for many valuable discussions, and
Gerree Pecht, for LATEXing this paper to lofty “Gerree standards”.

1. Small subsets of Rn

In this section, we show how to compute the order of magnitude of kf k.S;�/,
under the assumption

(1.1) #.S/� C:

We start by setting up notation, to be used throughout this paper. For F 2 Cm.Rn/,
and for x 2 Rn, we write Jx.F / to denote the .m� 1/rst degree Taylor polynomial
of F at x. Thus, Jx.F / belongs to P, the vector space of all (real) .m�1/rst degree
polynomials on Rn.

Next, let S � Rn, f W S �! R, � W S �! Œ0;1/, with S finite. Suppose that
F 2 Cm.Rn/ and M > 0 satisfy

(1.2) kF k �M; and jF.x/�f .x/j �M�.x/ for all x 2 S:

Define a collection of polynomials

(1.3) EP D .Px/x2S 2
X
x2S

˚P;

by setting Px D Jx.F / for each x 2 S . From (1.2) and Taylor’s theorem, we have:

(1.4) jPx.x/�f .x/j �M�.x/ for x 2 S ;
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(1.5) j.@˛Px/.x/j �M for x 2 S; j˛j �m� 1; and

(1.6) j@˛.Px �Py/.y/j � CM jx�yjm�j˛j for x; y 2 S; j˛j �m� 1.

Conversely, suppose S � Rn, f W S �! R, � W S �! Œ0;1/ with S finite, and
suppose EP D .Px/x2S satisfies (1.3) : : : (1.6). Then, by the classical Whitney
extension theorem [10], there exists F 2 Cm.Rn/, such that

(1.7) kF k � C 0M; and Jx.F /D Px for each x 2 S:

In particular, (1.4) and (1.7) give

(1.8) jF.x/�f .x/j �M�.x/ for all x 2 S:

Consequently, kf k.S;�/ has the same order of magnitude as the infimum of
all M > 0 for which there exists EP D .Px/x2S satisfying (1.3) : : : (1.6). Under
assumption (1.1), the order of magnitude of this infimum is easily computed by linear
algebra, as follows. Let H be the affine space of all EP D .Px/x2S 2

P
x2S ˚P

such that Px.x/D f .x/ whenever �.x/D 0. On H , we define a quadratic function
Q. EP /D Q1. EP /CQ2. EP /CQ3. EP /, by setting

Q1. EP /D
X
x2S
�.x/¤0

�
Px.x/�f .x/

�.x/

�2
;

Q2. EP /D
X
x2S

X
j˛j�m�1

Œ.@˛Px/.x/�
2;

Q3. EP /D
X
x;y2S
.x¤y/

X
j˛j�m�1

�
@˛.Px �Py/.y/

jx�yjm�j˛j

�2
:

Suppose S satisfies (1.1). Then, clearly, the desired infimum (of all M > 0 for
which (1.3) : : : (1.6) can be satisfied) has the same order of magnitude as the square
root of the minimum of Q. EP / over all EP 2H .

Since Q is a quadratic function and H is an affine space of dimension at most
C 0, we can compute minfQ. EP / W EP 2 H g by linear algebra, using at most C 00

operations.
Hence, if f; S; � are given, with #.S/� C , then we can compute the order of

magnitude of kf k.S;�/ with work at most C 00.

2. Removing outliers

In this section, we prove Theorem 2, assuming Theorem 1. The algorithm
sketched in the introduction in connection with Theorem 2 is as follows.
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PROCEDURE. Outliers.E; f; �;Z/.

/* Defined for E � Rn finite, f W E �! R, � W E �! Œ0;1/, Z � 0 an integer.
Prints out a finite list of points of E. The set S�, consisting of all the points printed
out, will later be shown to have the properties asserted in Theorem 2.
*/
LINE 1 fwhile (Z ¤ 0 and E ¤∅)

LINE 2 fCompute the list of sets S1; : : : ; SL � E associated to .E; �/, as in
Theorem 1.

LINE 3 For each `D 1; : : : ; L, compute X` � kf k.S`;�/, as in Section 1.

LINE 4 Find `� .1� `� � L/ such that X`� �X` for `D 1; : : : ; L.

LINE 5 Print out the elements of S`� .

LINE 6 Replace .E; f; �;Z/ by .EŸS`� ; f jEŸS`�
; � jEŸS`�

; Z � 1/.

LINE 7 g

LINE 8 g

The loop body here consists of Lines 2 : : : 7. Every time we execute the
loop body, Z decreases by one. Once we reach Z D 0, the procedure terminates.
(Perhaps the procedure terminates before we reachZD 0.) Consequently, execution
of Outliers.E; f; �;Z/ always terminates, and the loop body is executed at most Z
times.

Let #.E/ � N , with N � 2. From Theorem 1 and Section 1, we see that
execution of LINE 2 requires work�CN logN and storage�CN , while execution
of LINE 3 requires work and storage � CN . We also need storage CN , simply
to hold .E; f; �;Z/. Inspection of LINES 2 : : : 7 now shows that we can execute
the loop body with work � CN logN and storage � CN . Since the loop body is
executed at most Z times, we see that

(2.1) Outliers.E; f; �;Z/ requires work � C CCZN logN , and storage � CN .

Here, the extra work C enters because we must execute LINE 1, even if Z D 0.
Next, note that each S` computed in LINE 2 satisfies #.S`/� C , by Theorem

1(A). Consequently, each time we execute the loop body, we print out at most C
points. Since the loop body is executed at most Z times, Outliers .E; f; �;Z/ prints
out at most CZ points. Let us write S� D S�.E; f; �;Z/ for the set of points
printed out by Outliers.E; f; �;Z/. Thus,

(2.2) S� �E and #.S�/� CZ:

To complete the proof of Theorem 2, we have to demonstrate this:

(2.3) Let S �E with #.S/�Z: Then kf k.EŸS�;�/ � C1kf k.EŸS;�/:
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We prove (2.3) by induction on Z. For Z D 0, we have S� D ∅ (see LINE 1),
and therefore (2.3) simply asserts that kf k.E;�/ � C1kf k.E;�/. Thus, (2.3) holds
trivially for Z D 0.

For the induction step, we fix Z � 1, and assume the analogue of (2.3) with
Z replaced by Z � 1. We will prove (2.3) for our given Z.

If E D∅, then again (2.3) holds trivially. (By definition, kf k.E;�/ D 0 when
E D∅.) Hence, we may suppose E ¤∅.

Consequently, we have initially that (Z ¤ 0 and E ¤∅), as in LINE 1, and
therefore the loop body is executed at least once. Let S1; : : : ; SL, X1; : : : ; XL, and
`� be as they are computed the first time we execute the loop body.

Also, let S�� D S�.EŸS`� ; f jEŸS`�
; � jEŸS`�

; Z � 1/.
That is, S�� is the analogue of S�, when we take as input .EŸS`� ;

f jEŸS`�
; � jEŸS`�

; Z � 1/ in place of .E; f; �;Z/.
Inspection of LINES 5 and 6 shows that

(2.4) S� D S`� [S
��:

On the other hand, our induction hypothesis (namely, (2.3) for Z � 1) tells us
the following.

(2.5) Let OS �EŸS`� , with #. OS/�Z � 1. Then

kf k..EŸS`� /ŸS��;�/ � C1kf k..EŸS`� /Ÿ
OS;�/

:

Now let S �E, with #.S/�Z. We show that (2.3) holds for S . We consider
separately two cases.

Case 1: S \S`� D∅. Then Theorem 1(C) gives

kf k.EŸS�;�/ � kf k.E;�/ � C max
`D1;:::;L

kf k.S`;�/

� C 0 max
`D1;:::;L

X` D C
0X`� � C

00
kf k.S`� ;�/

� C 00kf k.EŸS;�/;

since S`� �EŸS and X` � kf k.S`;�/ for each `. Thus, (2.3) holds in Case 1, for
C1 large enough.

Case 2: S \S`� ¤ ∅. Set OS D SŸS`� . Then #. OS/ � Z � 1, and therefore (2.5)
applies. Since also .EŸS`�/Ÿ OS �EŸS , we learn from (2.4) and (2.5) that

kf k.EŸS�;�/ D kf k..EŸS`� /ŸS��;�/

� C1kf k..EŸS`� /Ÿ
OS;�/
� C1kf k.EŸS;�/:

Thus, (2.3) holds also in Case 2. This completes our induction on Z, proving (2.3).
The conclusions of Theorem 2 are our results (2.1), (2.2), (2.3). Thus, we have

established Theorem 2, assuming Theorem 1.
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As a conclusion to this section, we compare Outliers.E; f; �;Z/ with Out-
liers.E; f; �;Z0/ for Z0<Z. These two procedures print out the same points, in the
same order, until Outliers.E; f; �;Z0/ terminates, after which Outliers .E; f; �;Z/

may print out additional points. Consequently, the list of points x1; x2; : : : ; xkmax

printed out by Outliers.E; f; �;Z/ has the following property, strengthening Theo-
rem 2:

(2.6) Suppose S �E; with #.S/DZ0 �Z:

Let S� D fxk W 1� k �min.CZ0; kmax/g. Then

kf k.EŸS�;�/ � Ckf k.EŸS;�/:

Detailed verifications are left to the reader.

3. Comparing polynomials at representative points

In this section, we suppose we are given the following data:

� a finite set E � Rn, with #.E/DN � 2;

� a constant � 2 .0; 1/;

� a Callahan-Kosaraju decompositionE 01�E
00
1 ; : : : ; E

0
L�E

00
L; and representatives

.x0
`
; x00
`
/ 2E 0

`
�E 00

`
.`D 1; : : : ; L/, as in (0.7) : : : (0.11);

� a polynomial Px 2 P, for each x 2E; and

� a number M 2 .0;1/.

(Recall that P is the vector space of .m�1/rst degree polynomials on Rn.) Motivated
by the classical Whitney extension theorem as in Section 1, we want to know whether

j@˛.Px �Py/.y/j �M jx�yj
m�j˛j for x; y 2E; j˛j �m� 1:

The next result shows that it is enough to look at the case x D x0
`
, y D x00

`
for

`D 1; : : : ; L.

LEMMA 3.1. Suppose � is less than a small enough constant c1, and assume
we have

(3.1) j@˛.Px0
`
�Px00

`
/.x00

`
/j �M jx0

`
� x00

`
jm�j˛j for j˛j �m� 1; `D 1; : : : ; L:

Then we have

j@˛.Px �Py/.y/j � CM jx�yj
m�j˛j for all x; y 2E; j˛j �m� 1:

Proof. Let A be a large enough constant, to be picked in (3.15) below. We will
prove by contradiction that

(3.2) j@˛.Px �Py/.y/j � AM jx�yjm�j˛j for j˛j �m� 1; x; y 2E:
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In fact, suppose (3.2) fails. SinceE is finite, we can pick Nx; Ny2E and N̨ .j N̨ j�m�1/
violating (3.2), with j Nx� Nyj as small as possible. Thus,

(3.3) j@ N̨ .P Nx �P Ny/. Ny/j> AM j Nx� Nyjm�j N̨ j; and

(3.4) Nx; Ny 2E and j N̨ j �m� 1; but

(3.5) j@˛.Px �Py/.y/j � AM jx � yjm�j˛j for j˛j �m� 1; x; y 2 E, jx � yj <
j Nx� Nyj:

Note that Nx ¤ Ny, as we see at once from (3.3). Since the E 0
`
�E 00

`
.`D 1; : : : ; L/

form a Callahan-Kosaraju decomposition, there exists `.1� `� L/ such that

(3.6) Nx 2E 0
`

and Ny 2E 00
`
:

We fix such an ` for the rest of the proof of Lemma 3.1.
By (0.10), the representatives x0

`
; x00
`

satisfy

(3.7) x0
`
2E 0

`
and x00

`
2E 00

`
:

From (3.6), (3.7) and (0.9), we conclude that

(3.8) j Nx� x0
`
j, j Ny � x00

`
j � �j Nx� Nyj, and therefore (3.5) applies to the pairs

.x; y/D .x0`; Nx/ and .x; y/D .x00` ; Ny/:

Thus,

(3.9) j@˛.Px0
`
�P Nx/. Nx/j �AM jx

0
`
� Nxjm�j˛j � �AM j Nx� Nyjm�j˛j for j˛j �m�1,

and

(3.10) j@˛.Px00
`
�P Ny/. Ny/j�AM jx

00
`
� Nyjm�j˛j��AM j Nx� Nyjm�j˛j for j˛j�m�1:

We will combine (3.1), (3.9) and (3.10) to estimate P Nx �P Ny . To do so, we
must first move the base point in (3.9) from Nx to Ny, and similarly for (3.1).

For j˛j �m� 1, (3.9) gives

(3.11) j@˛.Px0
`
�P Nx/. Ny/j D

ˇ̌̌̌
ˇ X
jˇ j�m�1�j˛j

1

ˇŠ
.@ˇC˛.Px0

`
�P Nx/. Nx//. Ny � Nx/

ˇ

ˇ̌̌̌
ˇ

� C
X

jˇ j�m�1�j˛j

.�AM j Nx� Nyjm�.j˛jCjˇ j//j Nx� Nyjjˇ j

� C 0�AM j Nx� Nyjm�j˛j:

Regarding (3.1), we first note that (3.8) yields

jx0`� x
00
` j � jx

0
`� NxjC j Nx� NyjC j Ny � x

00
` j � 3j Nx� Nyj and jx00` � Nyj � j Nx� Nyj:

Therefore, for j˛j �m� 1, (3.1) gives



438 CHARLES FEFFERMAN

(3.12) j@˛.Px0
`
�Px00

`
/. Ny/j D

ˇ̌̌̌
ˇ X
jˇ j�m�1�j˛j

1

ˇŠ
.@ˇC˛.Px0

`
�Px00

`
/.x00` //. Ny � x

00
` /
ˇ

ˇ̌̌̌
ˇ

� C
X

jˇ j�m�1�j˛j

M jx0`� x
00
` j
m�.j˛jCjˇ j/

� j Ny � x00` j
jˇ j

� C 0M j Nx� Nyjm�j˛j:

Now, combining (3.10), (3.11) and (3.12), we obtain

(3.13) j@˛.P Nx �P Ny/. Ny/j � C 00.1C �A/M j Nx� Nyjm�j˛j for j˛j �m� 1:

We now take

(3.14) � < 1=.2C 00/

and

(3.15) AD 2C 00,

with C 00 as in (3.13). Thus,

C 00.1C �A/D C 00C .C 00�/A < C 00C 1
2
AD A;

and (3.13) implies

(3.16) j@˛.P Nx �P Ny/. Ny/j � AM j Nx� Nyjm�j˛j for j˛j �m� 1:

Taking ˛ D N̨ in (3.16), we obtain a contradiction to (3.3) and (3.4).
Consequently, our initial assumption (that (3.2) fails) is absurd, and we have

(3.2), with A given by (3.15), provided � satisfies (3.14).
The proof of Lemma 3.1 is complete. �

We invite the reader to compare Lemma 3.1, and its use below, with the
computation of Lipschitz norms using the Callahan-Kosaraju decomposition (see
[9], for example).

We close this section with an obvious remark on the Callahan-Kosaraju de-
composition.

LEMMA 3.2. Every x 2E arises as an x0
`

for some `.1� `� L/.

Proof. Let x 2 E. We pick y 2 EŸfxg to minimize jx � yj. Since the
E 0
`
�E 00

`
.1� `� L/ form a Callahan-Kosaraju decomposition, we have .x; y/ 2

E 0
`
�E 00

`
for some `. Fix such an `.

Then we have x; x0
`
2E 0

`
, and y; x00

`
2E 00

`
, thanks to (0.10). Consequently, (0.9)

gives jx�x0
`
j � �jx�yj< jx�yj. Since y was picked to satisfy jx� zj � jx�yj

for all z 2 EŸfxg, it follows that x0
`

does not belong to EŸfxg. On the other
hand, x0

`
2E 0

`
�E, by (0.10). Thus, x D x0

`
, proving the lemma. �
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4. Proof of Theorem 1

Let E; � be as in the hypotheses of Theorem 1, with N D #.E/. We take
� 2 .0; 1/ to be a constant, depending only on m and n, and small enough that
Lemma 3.1 applies. We then introduce the Callahan-Kosaraju decomposition for �,
as in (0.7) : : : (0.11). Also, we introduce the linear operator T , the sets S.x/ .x2E/,
and the coefficients �˛.x; y/ .j˛j �m; x; y 2E/, as in (0.3) : : : (0.6).

As promised in Section 0, we take

(4.1) S` D S.x0`/[S.x
00
`
/[fx0

`
; x00
`
g for `D 1; : : : ; L:

(See (0.12).) We have already seen that conclusions (A), (B), (D) of Theorem 1
hold for our S1; : : : ; SL. Our task here is to prove conclusion (C), i.e., kf k.E;�/ �

max
`D1;:::;L

kf k.S`;�/, for any f W E �! R. Since obviously kf k.E;�/ � kf k.S`;�/

for each `, our task is really to show that

(4.2) kf k.E;�/ � CM; where

(4.3) M Dmax`D1;:::;L kf k.S`;�/:

That is, we must show that there exists F 2 Cm.Rn/ satisfying

(4.4) kF k � CM , and jF.x/� f .x/j � CM�.x/ for all x 2 E, with M as in
(4.3).

To find F , we will define polynomials Px 2 P for all x 2E, and check that they
satisfy

(4.5) j.@˛Px/.x/j � CM for j˛j �m� 1; x 2EI

(4.6) j@˛.Px �Py/.y/j � CM jx�yjm�j˛j for j˛j �m� 1; x; y 2EI and

(4.7) jPx.x/�f .x/j � CM�.x/ for all x 2E:

As in our discussion of (1.3) : : : (1.8), the classical Whitney extension theorem
then produces an F 2 Cm.Rn/, satisfying

kF k � C 0M; and Jx.F /D Px for x 2E;

and consequently satisfying (4.4).
To summarize: We will define Px 2 P for each x 2E, and prove (4.5), (4.6),

(4.7), with M as in (4.3). This will complete the proof of Theorem 1.
For x 2E, we specify Px 2 P by stipulating that

(4.8) .@˛Px/.x/D
P
y2S.x/ �˛.x; y/ f .y/ for j˛j �m� 1:

(Clearly, given x 2E, there is one and only one Px 2 P satisfying (4.8).)
We begin proving (4.5) : : : (4.7) for the above Px . By definition (4.3), we

have kf k.S`;�/ �M for `D 1; : : : ; L.
Thus, for each `D 1; : : : ; L, there exists F` 2 Cm.Rn/, with
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(4.9) kF`k � 2M; and jF`.x/�f .x/j � 2M�.x/ for all x 2 S`:

Fix such F`. For `D 1; : : : ; L, we define f` WE �! R, by setting

(4.10) f`.x/D f .x/ for x 2 S`; f`.x/D F`.x/ for x 2EŸS`:

In particular, (4.1) and (4.10) give

(4.11) f` D f on S.x0
`
/[S.x00

`
/[fx0

`
; x00
`
g; for each `D 1; : : : ; L:

From (4.9) and (4.10), we obtain the estimates

kF`k � 2M; and jF`.x/�f`.x/j � 2M�.x/ for all x 2E:

This shows that
kf`k.E;�/ � 2M for `D 1; : : : ; L:

Therefore, applying (0.5) and (0.6), we learn that the function

(4.12) QF` D Tf` 2 Cm.Rn/

satisfies the estimates

(4.13) k QF`k � CM; and j QF`.x/�f`.x/j � CM�.x/ for all x 2E:

Also, (4.12) and (0.4) yield

(4.14) @˛ QF`.x0`/D
X

y2S.x0
`
/

�˛.x
0
`; y/f`.y/

and

(4.15) @˛ QF`.x00` /D
X

y2S.x00
`
/

�˛.x
00
` ; y/f`.y/;

for j˛j �m� 1 and `D 1; : : : ; L.
Thanks to (4.11), equations (4.14), (4.15) may be rewritten in the form

(4.16) @˛ QF`.x0`/D
X

y2S.x0
`
/

�˛.x
0
`; y/ f .y/;

and

(4.17) @˛ QF`.x00` /D
X

y2S.x00
`
/

�˛.x
00
` ; y/ f .y/;

for j˛j �m� 1 and `D 1; : : : ; L.
Comparing (4.16) and (4.17) with (4.8), we conclude that

(4.18) Jx0
`
. QF`/D Px0

`
; and Jx00

`
. QF`/D Px00

`
:

Since k QF`k � CM by (4.13), it follows from (4.18) and Taylor’s theorem that

(4.19) j@˛.Px0
`
�Px00

`
/.x00

`
/j �C 0M jx0

`
�x00

`
jm�j˛j for j˛j �m�1; `D 1; : : : ; LI

and that
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(4.20) j.@˛Px0
`
/.x0

`
/j � CM for j˛j �m� 1; `D 1; : : : ; L:

Also, from (4.11), (4.13), and (4.18), we see that

(4.21) jPx0
`
.x0
`
/�f .x0

`
/j D j QF`.x

0
`
/�f`.x

0
`
/j �CM�.x0

`
/ for each `D 1; : : : ; L:

It is now easy to complete the proof of (4.5), (4.6) and (4.7).
In fact, by virtue of Lemma 3.2, our results (4.20) and (4.21) imply the estimates

(4.5) and (4.7), respectively. Also, (4.19) implies (4.6), thanks to Lemma 3.1.
Thus, (4.5), (4.6), (4.7) hold for our Px , with M given by (4.3). The proof of

Theorem 1 is complete.

References

[1] E. BIERSTONE and P. D. MILMAN, Cm-norms on finite sets and Cm extension criteria, Duke
Math. J. 137 (2007), 1–18. MR 2008f:58009

[2] Y. BRUDNYI and P. SHVARTSMAN, Generalizations of Whitney’s extension theorem, Internat.
Math. Res. Notices 1994 no. 3 (1994), 129–139. MR 95c:58018 Zbl 0845.57022

[3] P. B. CALLAHAN and S. R. KOSARAJU, A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields, J. Assoc. Comput. Mach. 42
(1995), 67–90. MR 96i:68033 Zbl 0886.68078

[4] C. FEFFERMAN and B. KLARTAG, Fitting a Cm-smooth function to data, I, Ann. of Math. 169
(2009), 315–346.

[5] , Fitting a Cm-smooth function to data, II, Rev. Mat. Iberoamericana 25 (2009), 49–273.

[6] C. FEFFERMAN, A generalized sharp Whitney theorem for jets, Rev. Mat. Iberoamericana 21
(2005), 577–688. MR 2007a:58009 Zbl 1102.58004

[7] , Interpolation and extrapolation of smooth functions by linear operators, Rev. Mat.
Iberoamericana 21 (2005), 313–348. MR 2006h:58009 Zbl 1084.58003

[8] C. L. FEFFERMAN, A sharp form of Whitney’s extension theorem, Ann. of Math. 161 (2005),
509–577. MR 2006h:58008 Zbl 1102.58005

[9] S. HAR-PELED and M. MENDEL, Fast construction of nets in low-dimensional metrics and
their applications, SIAM J. Comput. 35 (2006), 1148–1184. MR 2007e:68071 Zbl 1100.68014

[10] B. MALGRANGE, Ideals of Differentiable Functions, Tata Institute of Fundamental Research
Studies in Mathematics 3, Tata Institute of Fundamental Research, Bombay, 1967. MR 35 #3446

[11] P. SHVARTSMAN, The Whitney extension problem and Lipschitz selections of set-valued
mappings in jet-spaces, Trans. Amer. Math. Soc. 360 (2008), 5529–5550. MR 2415084

[12] J. VON NEUMANN, First draft of a report on the EDVAC, IEEE Ann. Hist. Comput. 15 (1993),
27–75. MR 94j:01007 Zbl 0944.01510

(Received March 9, 2006)

E-mail address: cf@math.princeton.edu
PRINCETON UNIVERSITY, DEPARTMENT OF MATHEMATICS, PRINCETON, NJ 08544,
UNITED STATES




