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Abstract

A graph property is monotone if it is closed under removal of vertices and
edges. In this paper we consider the following algorithmic problem, called the
edge-deletion problem; given a monotone property P and a graph G, compute the
smallest number of edge deletions that are needed in order to turn G into a graph
satisfying P. We denote this quantity by E 0P.G/. The first result of this paper states
that the edge-deletion problem can be efficiently approximated for any monotone
property.

� For any fixed " > 0 and any monotone property P, there is a deterministic
algorithm which, given a graph G D .V;E/ of size n, approximates E 0P.G/ in
linear time O.jV jC jEj/ to within an additive error of "n2.

Given the above, a natural question is for which monotone properties one can
obtain better additive approximations of E 0P. Our second main result essentially
resolves this problem by giving a precise characterization of the monotone graph
properties for which such approximations exist.

(1) If there is a bipartite graph that does not satisfy P, then there is a ı > 0 for
which it is possible to approximate E 0P to within an additive error of n2�ı in
polynomial time.

(2) On the other hand, if all bipartite graphs satisfy P, then for any ı > 0 it is
NP-hard to approximate E 0P to within an additive error of n2�ı .
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While the proof of (1) is relatively simple, the proof of (2) requires several
new ideas and involves tools from Extremal Graph Theory together with spectral
techniques. Interestingly, prior to this work it was not even known that computing
E 0P precisely for the properties in (2) is NP-hard. We thus answer (in a strong form)
a question of Yannakakis, who asked in 1981 if it is possible to find a large and
natural family of graph properties for which computing E 0P is NP-hard.

1. Introduction

1.1. Definitions, background and motivation. The topic of this paper is graph
modification problems, namely problems of the type: “given a graph G, find the
smallest number of modifications that are needed in order to turn G into a graph
satisfying property P”. The main two types of such problems are the following, in
node modification problems, one tries to find the smallest set of vertices, whose
removal turns G into a graph satisfying P, while in edge modification problems,
one tries to find the smallest number of edge deletions/additions that turn G into
a graph satisfying P. In this paper we will focus on edge-modification problems.
Before continuing with the introduction we need to introduce some notation.

For a graph property P, let Pn denote the set of graphs on n vertices which
satisfy P. Given two graphs on n vertices, G and G0, we denote by �.G;G0/ the
edit distance between G and G0, namely the smallest number of edge additions
and/or deletions that are needed in order to turn G into G0. For a given property P,
we want to denote how far a graph G is from satisfying P. For notational reasons it
will be more convenient to normalize this measure so that it is always in the interval
Œ0; 1� (actually Œ0; 1

2
�). We thus define

Definition 1.1 (EP.G/). For a graph property P and a graph G on n vertices,
let

EP.G/D min
G02Pn

�.G;G0/

n2
:

In words, EP.G/ is the minimum edit distance of G to a graph satisfying P after
normalizing it by a factor of n2.

Graph modification problems are well studied computational problems. In
1979, Garey and Johnson [28] mentioned 18 types of vertex and edge modification
problems. Graph modification problems were extensively studied as these problems
have applications in several fields, including molecular biology and numerical
algebra. In these applications a graph is used to model experimental data, where
edge modifications correspond to correcting errors in the data: Adding an edge
means correcting a false negative, while deleting an edge means correcting a false
positive. Computing EP.G/ for appropriately defined properties P has important
applications in physical mapping of DNA (see [17], [29] and [31]). Computing
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EP.G/ for other properties arises when optimizing the running time of performing
Gaussian elimination on a sparse symmetric positive-definite matrix (see [42]).
Other modification problems arise as subroutines for heuristic algorithms for com-
puting the largest clique in a graph (see [46]). Some edge modification problems
also arise naturally in optimization of circuit design [19]. We briefly mention that
there are also many results about vertex modification problems, notably those of
Lewis and Yannakakis [38], who proved that for any nontrivial hereditary property
P, it is NP-hard to compute the smallest number of vertex deletions that turn a
graph into one satisfying P. (A graph property is hereditary if it is closed under
removal of vertices.)

A graph property is said to be monotone if it is closed under removal of both
vertices and edges. Examples of well-studied monotone properties are k-colorability,
and the property of being H -free for some fixed graph H . (A graph is H -free
if it contains no copy of H as a not necessarily induced subgraph.) Note, that
when trying to turn a graph into one satisfying a monotone property we will only
use edge deletions. Therefore, in these cases the problem is sometimes called an
edge-deletion problem. Our main results, presented in the following subsections,
give a nearly complete answer to the hardness of additive approximations of the
edge-deletion problem for monotone properties.

1.2. An algorithm for any monotone property. Our first main result in this
paper states that for any graph property P that belongs to the large, natural and
well studied family of monotone graph properties, it is possible to derive efficient
approximations of EP.

THEOREM 1.1. For any fixed " > 0 and any monotone property P there is a
deterministic algorithm that given a graph G on n vertices computes in time O.n2/
a real E satisfying jE �EP.G/j � ".

Note, that the running time of our algorithm is of type f ."/n2, and can in fact
be improved to linear in the size of the input by first counting the number of edges,
taking E D 0 in case the graph has less than "n2 edges. We note that Theorem 1.1
was not known for many monotone properties. In particular, such an approximation
algorithm was not even known for the property of being triangle-free and more
generally for the property of being H -free for any non-bipartite H .

Theorem 1.1 is obtained via a novel structural graph-theoretic technique. One
of the applications of this technique (roughly) yields that every graph G, can
be approximated by a small weighted graph W , in such a way that EP.G/ is
approximately the optimal solution of a certain related problem (explained precisely
in �3) that we solve on W . The main use of the new structural-technique in
this paper is in proving Lemmas 3.4 and 3.5 that lie at the core of the proof of
Theorem 1.1. This new technique, which may very well have other algorithmic
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and graph-theoretic applications, applies a result of Alon, Fischer, Krivelevich
and Szegedy [4] which is a strengthening of Szemerédi’s Regularity Lemma [44].
We then use an efficient algorithmic version of the regularity lemma, which also
implies an efficient algorithmic version of the result of [4], in order to transform
the existential structural result into the algorithm stated in Theorem 1.1.

We further use our structural result in order to prove the following concen-
tration-type result regarding the edit distance of subgraphs of a graph.

THEOREM 1.2. For every " and any monotone property P there is a d D
d.";P/ with the following property: Let G be any graph and suppose we randomly
pick a subset D, of d vertices from V.G/. Denote by G0 the graph induced by G on
D. Then,

ProbŒ jEP.G
0/�EP.G/j> "� < " :

An immediate implication of the above theorem is the following,

COROLLARY 1.2. For every " > 0 and any monotone property P there is
a randomized algorithm that given a graph G computes in time O.1/ a real E
satisfying jE �EP.G/j � " with probability at least 1� ".

We stress that there are some computational subtleties regrading the implemen-
tation of the algorithmic results discussed above. Roughly speaking, one should
define how the property P is “given” to the algorithm and also whether " is a fixed
constant or part of the input. These issues are discussed in Section 5.

It is natural to ask if the above results can be extended to the larger family of
hereditary properties, namely, properties closed under removal of vertices, but not
necessarily under removal of edges. Many natural properties such as being Perfect,
Chordal and Interval are hereditary nonmonotone properties. By combining the
ideas we used in order to prove Theorem 1.1 along with the main ideas of [5] it can
be shown that Theorem 1.1 (as well as Theorem 1.2 and Corollary 1.2) also hold
for any hereditary graph property.

1.3. On the possibility of better approximations. Theorem 1.1 implies that it
is possible to efficiently approximate the distance of an n vertex graph from any
monotone graph property P, to within an error of "n2 for any " > 0. A natural
question one can ask is for which monotone properties it is possible to improve the
additive error to n2�ı for some fixed ı > 0. In the terminology of Definition 1.1,
this means to approximate EP to within an additive error of n�ı for some ı > 0.
Our second main result in this paper is a precise characterization of the monotone
graph properties for which such a ı > 0 exists.1

THEOREM 1.3. Let P be a monotone graph property. Then,

1We assume henceforth that P is not satisfied by all graphs.
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1. If there is a bipartite graph that does not satisfy P, then there is a fixed ı > 0
for which it is possible to approximate EP to within an additive error of n�ı

in polynomial time.

2. On the other hand, if all bipartite graphs satisfy P, then for any fixed ı > 0 it
is NP-hard to approximate EP to within an additive error of n�ı .

While the first part of the above theorem follows easily from the known results
about the Turán numbers of bipartite graphs (see, e.g., [45]), the proof of the second
item involves various combinatorial tools. These include Szemerédi’s Regularity
Lemma, and a new result in Extremal Graph Theory, which is stated in Theorem
6.1 (see �6) that extends the main result of [15] and [14]. We also use the basic
approach of [2], which applies spectral techniques to obtain an NP-hardness result
by embedding a blow-up of a sparse instance to a problem, in an appropriate dense
pseudo-random graph. Theorem 6.1 and the proof technique of Theorem 1.3 may
be useful for other applications in graph theory and in proving hardness results.
As in the case of Theorem 1.1, the second part of Theorem 1.3 was not known for
many specific monotone properties. For example, prior to this paper it was not even
known that it is NP-hard to precisely compute EP, where P is the property of being
triangle-free. More generally, such a result was not known for the property of being
H -free for any non-bipartite H .

1.4. Related work. Our main results form a natural continuation and extension
of several research paths that have been extensively studied. Below we survey some
of them.

1.4.1. Approximations of graph-modification problems. As previously men-
tioned, many practical optimization problems in various research areas can be posed
as the problem of computing the edit-distance of a certain graph from satisfying
a certain property. Cai [16] has shown that for any hereditary property, which is
expressible by a finite number of forbidden induced subgraphs, the problem of
computing the edit distance is fixed-parameter tractable. Khot and Raman [33]
proved that for some hereditary properties P, finding in a given graphG, a subgraph
that satisfies P is fixed-parameter tractable, while for other properties finding such
a subgraph is hard in an appropriate sense (see [33]).

Note that Theorem 1.1 implies that if the edit distance (in our case, number of
edge removals) of a graph from a property is �.n2/, then it can be approximated
to within any multiplicative constant 1C ".

1.4.2. Hardness of edge-modification problems. Natanzon, Shamir and Sharan
[39] proved that for various hereditary properties, such as being Perfect and Com-
parable, computing EP is NP-hard and sometimes even NP-hard to approximate to
within some constant. Yannakakis [47] has shown that for several graph properties
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such as outerplanar, transitively orientable, and line-invertible, computing EP is NP-
hard. Asano [13] and Asano and Hirata [12] have shown that properties expressible
in terms of certain families of forbidden minors or topological minors are NP-hard.

The NP-completeness proofs obtained by Yannakakis in [47], were ad hoc
arguments that applied only to specific properties. Yannakakis posed in [47] as an
open problem, the possibility of proving a general NP-hardness result for computing
EP that would apply to a general family of graph properties. Theorem 1.3 achieves
such a result even for the seemingly easier problem of approximating EP.

1.4.3. Approximation schemes for “dense” instances. Fernandez de la Vega [18]
and Arora, Karger and Karpinski [11] showed that many of the classical NP-
complete problems such as MAX-CUT and MAX-3-CNF have a PTAS when the
instance is dense, namely if the graph has �.n2/ edges or the 3-CNF formula
has �.n3/ clauses. Approximations for dense instances of Quadratic Assignment
Problems, as well as for additional problems, were obtained by Arora, Frieze and
Kaplan [10]. Frieze and Kannan [26] obtained approximations schemes for several
dense graph theoretic problems via certain matrix approximations. Alon, Fernandez
de la Vega, Kannan and Karpinski [3] obtained results analogous to ours for any
dense Constraint-Satisfaction Problem via certain sampling techniques. It should
be noted that all the above approximation schemes are obtained in a way similar
to ours, that is, by first proving an additive approximation, and then arguing that
in case the optimal solution is large (that is, �.n2/ in case of graphs, or �.n3/ in
case of 3-CNF), the small additive error translates into a small multiplicative error.

All the above approximation results apply to the family of so-called Constraint-
Satisfaction Problems. In some sense, these problems can express graph properties
for which one imposes restrictions on pairs of vertices, such as k-colorability. These
techniques thus fall short of applying to properties as simple as Triangle-freeness,
where the restriction is on triples of vertices. The techniques we develop in order to
obtain Theorem 1.1 enable us to handle restrictions that apply to arbitrarily large
sets of vertices.

We briefly mention that EP is related to packing problems of graphs. In [32]
and [48] it was shown that by using linear programming one can approximate the
packing number of a graph. In Section 9 we explain why this technique does not
allow one to approximate EP.

1.4.4. Algorithmic applications of Szemerédi’s Regularity Lemma. The au-
thors of [1] gave a polynomial-time algorithmic version of Szemerédi’s Regularity
Lemma. They used it to prove that Theorem 1.1 holds for the k-colorability property.
The running time of their algorithm was improved by Kohayakawa, Rödl and Thoma
[34]. Frieze and Kannan [25] further used the algorithmic version of the regularity
lemma, to obtain approximation schemes for additional graph problems.
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Theorem 1.1 is obtained via the algorithmic version of a strengthening of the
standard regularity lemma, which was proved in [4], and it seems that these results
cannot be obtained using the standard regularity lemma.

1.4.5. Tolerant Property Testing. In standard Property Testing (see [23] and
[41]) one wants to distinguish between the graphs G that satisfy a certain graph
property P, or equivalently those G for which EP.G/D 0, from those that satisfy
EP.G/ > ". The main goal in designing property-testers is to reduce their query-
complexity, namely, minimize the number of queries of the form “are i and j
connected in the input graphs?”.

Parnas, Ron and Rubinfeld [40] introduced the notion of Tolerant Property-
Testing, where one wants to distinguish between the graphsG that satisfyEP.G/<ı

from those that satisfyEP.G/>", where 0� ı<"�1 are some constants. Recently,
there have been several results in this line of work. Specifically, Fischer and Newman
[24] have recently shown that if a graph property is testable with the number of
queries depending on " only, then it is also tolerantly testable for any 0� ı < "� 1
and with query complexity depending on j"� ıj. Combination of this with the
main result of [6] implies that any monotone property is tolerantly testable for any
0 � ı < " � 1, with query complexity depending on j"� ıj. Note, that Corollary
1.2 implicitly states the same. In fact, the algorithm implied by Corollary 1.2 is the
”natural” one, where one picks a random subset of vertices S , and approximates
EP.G/ by computing EP on the graph induced by S . The algorithm of [24] is far
more complicated. Furthermore, due to the nature of our algorithm if the input
graph satisfies a monotone property P, namely if EP.G/D 0, we will always detect
that this is the case. The algorithm of [24] may declare that EP.G/ > 0 even if
EP.G/D 0.

1.5. Organization. The proofs of the main results of this paper, Theorems 1.1
and 1.3, are independent of each other. Sections 2, 3, 4 and 5 contain the proofs
relevant to Theorem 1.1 and Sections 6, 7 and 8 contain the proofs relevant to
Theorem 1.3.

In Section 2 we introduce the basic notions of regularity and state the regularity
lemmas used for proving Theorem 1.1 and some of their standard consequences. In
Section 3 we give a high level description of the main ideas behind our algorithms.
We also state the main structural graph theoretic lemmas, Lemmas 3.4 and 3.5 that
lie at the core of these algorithms. The proofs of these lemmas appear in Section
4. In Section 5 we give the proof of Theorems 1.1 and 1.2 as well as a discussion
about some subtleties regarding the implementation of these algorithms.

Section 6 contains a high-level description of the proof of Theorem 1.3 as well
as a description of the main tools applied in this proof. In Section 7 we prove a
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new Extremal Graph-Theoretic result that lies at the core of the proof of Theorem
1.3. In Section 8 we give the detailed proof of Theorem 1.3.

The final Section 9 contains some concluding remarks and open problems.
Throughout the paper, whenever we refer, for example, to a function f3:1, we mean
the function f defined in Lemma/Claim/Theorem 3.1.

2. Regularity lemmas and their algorithmic versions

In this section we discuss the basic notions of regularity, some of the basic
applications of regular partitions and state the regularity lemmas used in the proof of
Theorems 1.1 and 1.2. See [35] for a comprehensive survey on the regularity lemma.
We start with some basic definitions. For every two nonempty disjoint vertex sets
A and B of a graph G, we define e.A;B/ to be the number of edges of G between
A and B . The edge density of the pair is defined by d.A;B/D e.A;B/=jAjjBj.

Definition 2.1 (
-regular pair). A pair .A;B/ is 
-regular, if for any two
subsets A0 �A and B 0 �B , satisfying jA0j � 
 jAj and jB 0j � 
 jBj, the inequality
jd.A0; B 0/� d.A;B/j � 
 holds.

Throughout the paper we will make an extensive use of the notion of graph
homomorphism which we turn to formally define.

Definition 2.2 (Homomorphism). A homomorphism from a graph F to a graph
K, is a mapping ' WV.F / 7!V.K/ that maps edges to edges; namely .v; u/2E.F /
implies .'.v/; '.u// 2E.K/.

In what follows, F 7!K denotes the fact that there is a homomorphism from
F to K. We will also say that a graph H is homomorphic to K if H 7!K. Note,
that a graph H is homomorphic to a complete graph of size k if and only if H is
k-colorable.

Let F be a graph on f vertices and K a graph on k vertices, and suppose
F 7!K. Let G be a graph obtained by taking a copy of K, replacing every vertex
with a sufficiently large independent set, and every edge with a random bipartite
graph of edge density d . It is easy to show that with high probability, G contains a
copy of F (in fact, many). The following lemma shows that in order to infer that G
contains a copy of F , it is enough to replace every edge with a ”regular enough”
pair. Intuitively, the larger f and k are, and the sparser the regular pairs are, the
more regular we need each pair to be, because we need the graph to be ”closer” to
a random graph. This is formulated in the lemma below. Several versions of this
lemma were previously proved in papers using the regularity lemma (see [35]).

LEMMA 2.3. For every real 0 < � < 1, and integers k; f � 1 there exist

 D 
2:3.�; k; f /, and N D N2:3.�; k; f / with the following property. Let F
be any graph on f vertices, and let U1; : : : ; Uk be k pairwise disjoint sets of
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vertices in a graph G, where jU1j D : : :D jUkj �N . Suppose there is a mapping
' W V.F / 7! f1; : : : ; kg such that the following holds: If .i; j / is an edge of F then
.U'.i/; U'.j // is 
 -regular with density at least �. Then U1; : : : ; Uk span a copy of
F .

Comment 2.4. Observe that the function 
2:3.�; k; f /may and will be assumed
to be monotone nonincreasing in k and f and monotone nondecreasing in �.
Therefore, it will be convenient to assume that 
2:3.�; k; f / � �2. Similarly,
we will assume that N2:3.�; k; f / is monotone nondecreasing in k and f . Also,
for ease of future definitions (in particular those given in (2)) set 
2:3.�; k; 0/D
N2:3.�; k; 0/D 1 for any k � 1 and 0 < � < 1.

A partition A D fVi j 1 � i � kg of the vertex set of a graph is called an
equipartition if jVi j and jVj j differ by no more than 1 for all 1 � i < j � k (so
in particular each Vi has one of two possible sizes). The order of an equipartition
denotes the number of partition classes (k above). A refinement of an equipartition
A is an equipartition of the form BD fVi;j j 1� i � k; 1� j � lg such that Vi;j
is a subset of Vi for every 1� i � k and 1� j � l .

Definition 2.5 (
 -regular equipartition). An equipartition BDfVi j 1� i �kg

of the vertex set of a graph is called 
-regular if all but at most 

�
k
2

�
of the pairs

.Vi ; Vi 0/ are 
 -regular.

The regularity lemma of Szemerédi can be formulated as follows.

LEMMA 2.6 ([44]). For everym and 
 >0 there exists T DT2:6.m; 
/ with the
following property: If G is a graph with n� T vertices, and A is an equipartition
of the vertex set of G of order at most m, then there exists a refinement B of A of
order k, where m� k � T and B is 
 -regular.

T2:6.m; 
/ may be and is assumed to be monotone nondecreasing in m and
monotone nonincreasing in 
 . Szemerédi’s original proof of Lemma 2.6 was
only existential as it supplied no efficient algorithm for obtaining the required
equipartition. Alon et al. [1] were the first to obtain a polynomial-time algorithm for
finding the equipartition, whose existence is guaranteed by Lemma 2.6. The running
time of this algorithm was improved by Kohayakawa et al. [34] who obtained the
following result.

LEMMA 2.7 ([34]). For every fixed m and 
 there is an O.n2/ time algorithm
that given an equipartition A finds equipartition B as in Lemma 2.6.

Our main tool in the proof of Theorem 1.1 is Lemma 2.9 below, proved in
[4]. This lemma can be considered a strengthening of Lemma 2.6, as it guarantees
the existence of an equipartition and a refinement of this equipartition that poses
stronger properties compared to those of the standard 
 -regular equipartition. This
stronger notion is defined below.
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Definition 2.8 (E-regular equipartition). For a function E.r/ W N 7! .0; 1/, a
pair of equipartitions AD fVi j 1 � i � kg and its refinement BD fVi;j j 1 � i

� k; 1� j � lg, where Vi;j � Vi for all i; j , are said to be E-regular if

1. For all 1 � i < i 0 � k, for all 1 � j; j 0 � l but at most E.k/l2 of them, the
pair .Vi;j ; Vi 0;j 0/ is E.k/-regular.

2. All 1� i < i 0� k but at most E.0/
�
k
2

�
of them are such that for all 1� j; j 0� l

but at most E.0/l2 of them jd.Vi ; Vi 0/� d.Vi;j ; Vi 0;j 0/j< E.0/ holds.

It will be very important for what follows to observe that in Definition 2.8
we may use an arbitrary function rather than a fixed 
 as in Definition 2.5 (such
functions will be denoted by E throughout the paper). The following is one of the
main results of [4].

LEMMA 2.9 ([4]). For any integer m and function E.r/ W N 7! .0; 1/ there
is S D S2:9.m;E/ such that any graph on at least S vertices has an E-regular
equipartition A, B where jAj D k �m and jBj D kl � S .

In order to make the presentation self-contained we briefly review the proof of
Lemma 2.9. Fix anym and function E and put �DE.0/. PartitionG intom arbitrary
subsets of equal size and denote this equipartition by A0. Put M Dm. Iterate the
following task: Apply Lemma 2.6 on Ai�1 with mD jAi�1j and 
 D E.M/=M 2

and let Ai be the refinement of Ai�1 returned by Lemma 2.6. If Ai�1 and Ai

form an E-regular equipartition, stop; otherwise set M D jAi�1j and reiterate. It
is shown in [4] that after at most 100=�4 iterations, for some 1� i � 100=�4 the
partitions Ai�1 and Ai form an E-regular equipartition. Moreover, detecting an i
for which this holds is very easy, that is, can be done in time O.n2/ (see the proof
in [4]). Note, that one can thus set the integer S2:9.m;E/ to be the order of Ai . In
particular, the following is an immediate implication of the above discussion.

PROPOSITION 2.10. If m is bounded by a function of " only, then for any E

the integer S D S2:9.m;E/ can be (upper) bounded by a function of " only.

The " in the above proposition will be the " from the task of approximating
EP within an error of " in Theorem 1.1. Also, in our application of Lemma 2.9 the
function E will (implicitly) depend on ". For example, it will be convenient to set
E.0/D ". However, it follows from the definition of S2:9.m;E/ given above that
even in this case it is possible to (upper) bound S2:9.m;E/ by a function of " only.

In order to design our algorithm we will need to obtain the equipartitions A

and B appearing in the statement of Lemma 2.9. However, note that by the overview
of the proof of Lemma 2.9 given above, in order to obtain this partition one can use
Lemma 2.7 as an efficient algorithm for obtaining the regular partitions. Moreover,
by Proposition 2.10, whenever we apply either E or Lemma 2.7 we are guaranteed
that m (which in the above overview was M ) is upper bounded by some function
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of " and 
 is lower bounded by some function of ". This means that each of the at
most 100=�4 applications of Proposition 2.10 takes O.n2/ time. We thus get the
following:

PROPOSITION 2.11. If m is bounded by a function of " only, then for any E

there is anO.n2/ algorithm for obtaining the equipartitions A and B of Lemma 2.9.

3. Overview of the proof of Theorem 1.1

We start with a convenient way of handling a monotone graph property.

Definition 3.1 (Forbidden subgraphs). For a monotone graph property P,
define F D FP to be the set of graphs which are minimal with respect to not
satisfying property P. In other words, a graph F belongs to F if it does not satisfy
P, but any graph obtained from F by removing an edge or a vertex, satisfies P.

As an example of a family of forbidden subgraphs, consider P which is the
property of being 2-colorable. Then FP is the set of all odd-cycles. Clearly, a graph
satisfies P if and only if it contains no member of FP as a (not necessarily induced)
subgraph. We say that a graph is F-free if it contains no (not necessarily induced)
subgraph F 2 F. Clearly, for any family F, being F-free is a monotone property.
Thus, the monotone properties are precisely the graph properties that are equivalent
to being F-free for some family F. In order to simplify the notation, it will be
simpler to talk about properties of type F-free rather than monotone properties. To
avoid confusion we will henceforth denote by EF.G/ the value of EP.G/, where
FD FP as above.

The main idea we apply in order to obtain the algorithmic results of this paper
is quite simple; given a graph G, a family of forbidden subgraphs F and " > 0
we use Lemma 2.9 with appropriately defined parameters in order to construct in
O.n2/ time a weighted complete graph W , of size depending on " but independent
of the size of G, such that a solution of a certain “related” problem on W gives a
good approximation of EF.G/. As W will be of size independent of the size of G,
we may and will use an exhaustive search in order to solve the “related” problem
on W . In what follows we give further details on how to define W and the “related”
problem that we solve on W .

We start with the simplest case, where the property is that of being triangle-free,
namely F D fK3g. Let W be some weighted complete graph on k vertices and
let 0 � w.i; j / � 1 denote the weight of the edge connecting i and j in W . Let
EF.W / be the natural extension of the definition of EF.G/ to weighted graphs;
namely, instead of just counting how many edges should be removed in order to turn
G into an F-free graph, we ask for the edge set of minimum weight with the above
property. Let G be a k-partite graph on n vertices with partition classes V1; : : : ; Vk
of equal size n=k. Suppose for every i < j we have d.Vi ; Vj /D w.i; j / (recall
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that d.Vi ; Vj / denotes the edge density between Vi and Vj ). In some sense, W can
be considered a weighted approximation of G, but for our investigation a more
important question is whether W can be used in order to estimate EF.G/. In other
words, is it true that EF.G/�EF.W /?

It is easy to see that EF.G/�EF.W /. Indeed, given a set of edges S , whose
removal turns W into a triangle-free graph, we simply remove all edges connecting
Vi and Vj for every .i; j / 2 S . The main question is whether the other direction is
also true. Namely, is it true that if it is possible to remove ˛n2 from G and thus
make it triangle free, then is it possible to remove from W a set of edges of total
weight approximately ˛k2 and thus make it triangle-free? If true this will mean
that by computing EF.W / we also approximately compute EF.G/. Unfortunately,
this assertion is false in general, as the minimal number of edge modifications that
are enough to make G triangle-free, may involve removing some and not all the
edges connecting a pair .Vi ; Vj /, and in W we can remove only edges and not parts
of them. It thus seems natural to ask what kind of restrictions should we impose
on G (or more precisely on the pairs .Vi ; Vj /) such that the above situation will
be impossible; namely, that the optimal way to turn G into a triangle free graph
will involve removing either none or all the edges connecting a pair .Vi ; Vj / (up to
some small error). This will clearly imply that we also have EF.G/�EF.W /.

One natural restriction is that the pairs .Vi ; Vj / would be random bipartite
graphs. While this restriction indeed works it is of no use for our investigation
as we are trying to design an algorithm that can handle arbitrary graphs and not
necessarily random graphs. One is thus tempted to replace a random bipartite graph
with 
 -regular pairs for some small enough 
 . Unfortunately, we did not manage to
prove that there is a small enough 
 > 0 ensuring that even if all pairs .Vi ; Vj / are

 -regular then EF.G/�EF.W /. In order to circumvent this difficulty we use the
stronger notion of E-regularity defined in Section 2. As it turns out, if one uses an
appropriately defined function E, then if all pairs .Vi ; Vj / are E.k/-regular, one can
infer that EF.G/�EF.W /. This result is (essentially) formulated in Lemma 3.4.

In the above discussion we considered the case FDfK3g. So suppose now that
F is an arbitrary (possibly infinite) family of graphs. Suppose we use a weighted
complete graph W on k vertices as above in order to approximate some k-partite
graph. The question that naturally arises at this stage is what problem should we try
to solve on W in order to get an approximation of EF.G/. It is easy to see that G
may be very far from being F-free, while at the same time W can be F-free, simply
because F does not contain graphs of size at most k. As an example, consider the
case, where the property is that of containing no copy of the complete bipartite
graph with two vertices in each side, denoted K2;2. Now, if G is the complete
bipartite graph Kn=2;n=2 then it is very far from being K2;2-free. However, in this
case W is just an edge that spans no copy of K2;2.
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It thus seems that we must solve a different problem on W . To formulate this
problem we need the following definitions.

Definition 3.2 (F-homomorphism-free). For a family of graphs F, a graph W
is called F-homomorphism-free if F 67!W for any F 2 F.

We now define a measure analogous to EF but with respect to making a graph
F-homomorphism-free. Note that we focus on weighted graphs.

Definition 3.3 (HF.W /). For a family of graphs F and a weighted complete
graph W on k vertices, let H0F.W / denote the minimum total weight of a set of
edges, whose removal fromW turns it into an F-homomorphism-free graph. Define,
HF.W /DH0F.W /=k

2.

Note, that in Definition 3.2 the graph W is an unweighted not necessarily
complete graph. Also, observe that when FDfK3g then we have HF.W /DEF.W /.
As it turns out, the “right” problem to solve on W is to compute HF.W /. This is
formulated in the following key lemma, whose proof appears in Section 4:

LEMMA 3.4 (The Key Lemma). For every family of graphs F, there are
functions N3:4.k; "/ and 
3:4.k; "/ with the following property:2 Let W be any
weighted complete graph on k vertices and let G be any k-partite graph with
partition classes V1; : : : ; Vk of equal size such that

1. jV1j D : : :D jVkj �N3:4.k; "/.

2. All pairs .Vi ; Vj / are 
3:4.k; "/-regular.

3. For every 1� i < j � k we have d.Vi ; Vj /D w.i; j /.

Then, EF.G/�HF.W /� " :

It is easy to argue as we did above and prove that EF.G/�HF.W / in Lemma
3.4 (see the proof of Lemma 3.5), however we will not need this (trivial) direction.
It is important to note that while Lemma 3.4 is very strong as it allows us to
approximate EF.G/ via computing HF.W / (recall that W is intended to be very
small compared to G) its main weakness is that it requires the regularity between
each of the pairs to be a function of k, which denotes the number of partition
classes, rather than depending solely on the family of graphs F. We note that even
if FD fK3g as discussed above, we can only prove Lemma 3.4 with a regularity
measure that depends on k. This supplies some explanation as to why Lemma 2.6
(the standard regularity lemma) is not sufficient for our purposes; note that the input
to Lemma 2.6 is some fixed 
 > 0 and the output is a 
 -regular equipartition with
the number of partition classes depending on 
 (the function T2:6.m; 
/). Thus,
even if all pairs are 
-regular, this 
 may be very large when we consider the

2The functions N3:4.k; "/ and 
3:4.k; "/ will also (implicitly) depend on F.
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number of partition classes returned by Lemma 2.6 and the regularity measure
which Lemma 3.4 requires. Hence, the standard regularity lemma cannot help us
in applying Lemma 3.4. In order to overcome this problem we use the notion of
E-regular partitions and the stronger regularity lemma given in Lemma 2.9, which,
when appropriately used, allows us to apply Lemma 3.4 in order to obtain Lemma
3.5 below, from which Theorem 1.1 follows quite easily. The proof of this lemma
appears in Section 4.

LEMMA 3.5. For any "> 0 and family of graphs F there are functionsN3:5.r/
and E3:5.r/ satisfying the following:3 Suppose a graph G has an E3:5-regular
equipartition AD fVi j 1� i � kg, BD fVi;j j 1� i � k; 1� j � lg, where

1. k � 1=".

2. jVi;j j �N3:5.k/ for every 1� i � k and 1� j � l .

Let W be a weighted complete graph on k vertices with w.i; j /D d.Vi ; Vj /. Then,

jEF.G/�HF.W /j � " :

Using the algorithmic version of Lemma 2.9, which is given in Proposition
2.11, we can rephrase the above lemma in a more algorithmic way, which is more
or less the algorithm of Theorem 1.1: Given a graph G we use the O.n2/ time
algorithm of Proposition 2.11 in order to obtain the equipartition described in the
statement of Lemma 3.5. We then construct the graph W as in Lemma 3.5, and
finally use exhaustive search in order to precisely compute HF.W /. By Lemma
3.5, this gives a good approximation of EF.G/. The proof of Theorem 1.1 appears
in Section 5.

4. Proofs of Lemmas 3.4 and 3.5

In this section we apply our new structural technique in order to prove Lemmas
3.4 and 3.5. Regretfully, it is hard to state precisely what the ingredients of this
technique are. Roughly speaking, it uses the notion of E-regularity in order to
partition the edges of a graph into a bounded number of edge sets, which have
regular-partitions that are almost identical4 and more importantly, the regularity-
measure of each of the bipartite graphs in each of the edge sets can be a function of
the number of clusters.

We start this section with some definitions that will be very useful for the
proof of Lemma 3.4.

3The functions N3:5.r/ and E3:5.r/ will also (implicitly) depend on " and F.
4Two regular partitions V1; : : : ; Vk and U1; : : : ; Uk are identical if d.Vi ; Vj /D d.Ui ; Uj /.
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Definition 4.1. For any (possibly infinite) family of graphs F, and any integer
r let Fr be the following set of graphs: A graph R belongs to Fr if it has at most
r vertices and there is at least one F 2 F such that F 7!R.

Definition 4.2. For any family of graphs F and integer r for which Fr¤∅,
define

(1) ‰F.r/D max
R2Fr

min
fF 2FWF 7!Rg

jV.F /j:

Define ‰F.r/D 0 if Fr D∅. Therefore, ‰F.r/ is monotone nondecreasing in r .
Practicing definitions, note that if F is the family of odd cycles, then Fk is

precisely the family of non-bipartite graphs of size at most k. Also, in this case
‰F.k/D k when k is odd, and ‰F.k/D k� 1 when k is even. The ”right” way to
think of the function ‰F is the following: Let R be a graph of size at most k and
suppose we are guaranteed that there is a graph F 0 2 F such that F 0 7! R (thus
R 2 Fk). Then by this information only and without having to know the structure
of R itself, the definition of ‰F implies that there is a graph F 2 F of size at most
‰F.k/, such that F 7!R.

The function ‰F has a critical role in the proof of Lemma 3.4. While proving
this lemma we will use Lemma 2.3 in order to derive that some k sets of vertices,
which are regular enough, span some graph F 2 F. Roughly speaking, the main
difficulty will be that we will not know the size of F , and as a consequence will
not know the regularity measure between these sets that is sufficient for applying
Lemma 2.3 on these k sets (this quantity is 
2:3.�; k; jV.F /j/). However, we will
know that there is some F 0 2F which is spanned by these sets. The function ‰F.r/

will thus be very useful as it supplies an upper bound for the size of the smallest
F 2 F which is spanned by these sets. See Proposition 4.4, where ‰F.r/ has a
crucial role.

Proof of Lemma 3.4. Given " and k let

(2) T D T .k; "/D T2:6.k; 
2:3."=2; k;‰F.k///:

We prove the lemma with 
3:4.k; "/ and N3:4.k; "/ satisfying


3:4.k; "/Dmin."=2; 1=T /;(3)

N3:4.k; "/D T �N2:3."=2; k;‰F.k//:(4)

Suppose G is a graph on n vertices, in which case each set Vi is of size n
k

. We
may thus show that one must remove at least HF.W / �n

2� "n2 edges from G in
order to make it F-free. To this end, it is enough to show that if there is a graph G0

that is obtained from G by removing less than HF.W / �n
2� "n2 edges and spans

no F 2 F then it is possible to remove from W a set of edges of total weight less
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than HF.W / � k
2 and obtain a graph W 0 that is F-homomorphism-free. This will

obviously be a contradiction.
Assume such a G0 exists and apply Lemma 2.6 on it with


 D 
2:3

�
1

2
"; k;‰F.k/

�
and mD k (we use mD k as G is already partitioned into k subsets V1; : : : ; Vk).
For the rest of the proof we denote by Vi;1; : : : ; Vi;l the partition of Vi that Lemma
2.6 returns. Recall that as jV1j D : : :D jVkj and Lemma 2.6 partitions a graph into
subsets of equal size, then all the sets Vi are partitioned into the same number l of
subsets. Note also that by Lemma 2.6 and the definition of T in (2) we have l < T .
Observe, that T is in fact an upper bound for the total number of partition classes
Vi;j .

By Lemma 2.6 (recall that we may assume that 
2:3.12"; k;‰F.k// �
1
2
" by

relying on Comment 2.4), we are guaranteed that out of the lk sets Vi;j at most
"
2

�
lk
2

�
pairs are not 
2:3.12"; k;‰F.k//-regular. We define a graph G00, which is

obtained from G0 by removing all the edges connecting pairs .Vi;i 0 ; Vj;j 0/ that
are not 
2:3.12"; k;‰F.k//-regular, and all edges connecting pairs .Vi;i 0 ; Vj;j 0/ for
which their edge density in G0 is smaller than 1

2
".

PROPOSITION 4.3. There are k sets V1;t1 ; : : : ; Vk;tk such that the graphs
induced by G and G00 on these k sets differ by less than HF.W / �

n2

l2
�
"n2

2l2
edges.

Proof. We first claim that G00 is obtained from G0 by removing fewer than "
2
n2

edges. To see this note that the number of edges connecting a pair .Vi;i 0 ; Vj;j 0/ is
at most .n=kl/2. As there are at most "

2

�
lk
2

�
pairs that are not 
2:3.12"; k;‰F.k//-

regular, we remove at most "
4
n2 edges due to such pairs. Finally, as due to pairs,

whose edge density is at most 1
2
", we remove at most

�
kl
2

�
"
2
.n=kl/2 � "

4
n2 edges,

the total number of edges removed is at most "
2
n2, as needed.

As we assume that G0 is obtained from G by removing less than HF.W / �

n2� "n2 edges, we get from the previous paragraph that G00 is obtained from G by
removing fewer than HF.W / � n

2 �
"
2
n2 edges. Suppose for every 1 � i � k we

randomly and uniformly pick one of the sets Vi;1; : : : ; Vi;l . The probability that
an edge, which belongs to G and not to G00, is spanned by these k sets is l�2. As
G and G00 differ by fewer than HF.W / �n

2�
"
2
n2 edges, we get that the expected

number of such edges is less than HF.W / �
n2

l2
�
"n2

2l2
and therefore there must be a

choice of k sets that span fewer than this number of such edges.

We are now ready to arrive at a contradiction by showing that if it is possible
to remove fewer than HF.W / � n

2 � "n2 edges from G and thus turn it into an
F-free graph G0, then we can remove from W a set of edges of total weight less
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than HF.W / � k
2 and thus turn it into an F-homomorphism-free graph W 0. Let

V1;i1 ; : : : ; Vk;ik be the k sets satisfying the condition of Proposition 4.3 and obtain
from W a graph W 0 by removing from W edge .i; j / if and only if the density of
.Vi;ti ; Vj;tj / in G00 is 0.

PROPOSITION 4.4. W 0 is F-homomorphism-free.

Proof. Assume F 0 7!W 0 for some F 0 2 F. As W 0 is a graph of size k this
means (recall Definition 4.2) that there is F 2 F of size at most ‰F.k/ such that
F 7!W 0. Let ' be a homomorphism from F to W 0. By definition of ', for any
.u; v/ 2 E.F / we have .'.u/; '.v// is an edge of W 0. Recall that by definition
of G00 either the density of a pair .Vi;i 0 ; Vj;j 0/ in G00 is zero, or this density is at
least 1

2
" and the pair is 
2:3.12"; k;‰F.k//-regular. By definition of W 0, this means

that for every .u; v/ 2E.F / the pair .V'.u/;t'.u/
; V'.v/;t'.v/

/ has density at least "
2

in G00 and is 
2:3.12"; k;‰F.k//-regular. By item 1 of Lemma 3.4 we have for all
1� i � k that jVi j �N3:4.k; "/. By our choice in (4) and the fact that l � T , the
sets Vi;ti must therefore be of size at least

jN3:4.k; "/j=l � jN3:4.k; "/j=T DN2:3

�
1

2
"; k;‰F.k/

�
:

Hence, the sets V1;t1 ; : : : ; Vk;tk satisfy all the necessary requirements needed in
order to apply Lemma 2.3 to deduce that they span a copy of F in G00 (recall, that
we have already argued that jV.F /j �‰F.k/). This, however, is impossible, as we
assumed that G0 was already F-free and G00 is a subgraph of G0.

PROPOSITION 4.5. For any i <j the edge densities of .Vi ; Vj / and .Vi;ti ; Vj;tj /
satisfy in G

jd.Vi ; Vj /� d.Vi;ti ; Vj;tj /j �
1

2
":

Proof. Recall that 1=l > 1=T and by (3) we have 1=T > 
3:4.k; "/. We infer
that jVi;ti j D jVi j=l � 
3:4.k; "/jVi j. By item 2 of Lemma 3.4, each pair .Vi ; Vj /
is 
3:4.k; "/-regular in G. Hence, by definition of a regular pair, we must have
jd.Vi ; Vj /� d.Vi;ti ; Vj;tj /j � 
3:4.k; "/�

1
2
".

PROPOSITION 4.6. W 0 is obtained from W by removal of a set of edges of
weight less than HF.W / � k

2.

Proof. Let S be the set of edges removed from W and denote by w.S/ the
total weight of edges in S . Let e.Vi;ti ; Vj;tj / denote the number of edges connecting
the pair .Vi;ti ; Vj;tj / in G. We claim that the following series of inequalities, which
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imply that w.S/ <HF.W / � k
2, hold:

HF.W / �
n2

l2
�
"n2

2l2
>

X
.i;j /2S

e.Vi;ti ; Vj;tj /�
X

.i;j /2S

�
w.i; j /�

"

2

� n2

l2k2

�

X
.i;j /2S

w.i; j /
n2

l2k2
�
"n2

2l2
D w.S/

n2

l2k2
�
"n2

2l2
:

Indeed, recall that by the definition of W 0, we have .i; j / 2 S if and only
if the density of the pair .Vi;i 0 ; Vj;j 0/ in G00 is 0, which means that all the edges
connecting this pair were removed in G00. As by Proposition 4.3 the total difference
between G and G00 is less than HF.W / �

n2

l2
�
"n2

2l2
, we infer that the first (strict)

inequality is valid. The second inequality follows from Proposition 4.5 together
with the fact that by the condition of the lemma we have d.Vi ; Vj /D w.i; j /. The
third inequality is due to the fact that W has k vertices and thus jS j � k2.

The sought-after contradiction now follows immediately from Propositions
4.4 and 4.6. This completes the proof of the lemma.

We continue with the proof of Lemma 3.5.

Proof of Lemma 3.5. We prove the lemma with:

(5) E3:5.r/D

�
1
16
"2; r D 0

min
�
1
8
"r�2; 1

8
"2; 
3:4.r;

1
8
"/
�
; r � 1

and

N3:5.r/DN3:4

�
r;
1

8
"

�
;

starting by showing that EF.G/�HF.W /C". Suppose G is a graph on n vertices,
in which case the number of edges connecting Vi and Vj is w.i; j / � n

2

k2 . We first
remove all the edges within the sets V1; : : : ; Vk . As k � 1=" the total number of
edges removed in this step is at most k

�
n=k
2

�
� "n2.

Let S be the set of minimal weight whose removal turns W into an F-
homomorphism-free graph W 0. We claim that if for every .i; j / 2 S we remove all
the edges connecting Vi and Vj the resulting graph G0 spans no copy of a graph
F 2 F. Suppose to the contrary that G0 spans a copy of F 2 F, and consider the
mapping ' W V.F / 7! f1; : : : ; kg that maps every vertex of F that belongs to Vj
to j . As we have removed all the edges within the sets V1; : : : ; Vk and all edges
between Vi and Vj for any .i; j / 2 S we get that ' is a homomorphism from F to
W 0 contradicting our choice of S . Finally, note that the number of edges removed
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in the second step is X
.i;j /2S

w.i; j / �
n2

k2
D n2 �HF.W / :

Combined with the first step, the total number of edges removed is at most n2 �
HF.W /C "n

2, as needed.
For the rest of the proof we focus on proving HF.W /�EF.G/C". Let A and

B be the two equipartitions from the statement of the lemma. Suppose for every
1� i � k we randomly, uniformly and independently pick a set Vi;ti out of the sets
Vi;1; : : : ; Vi;l . Let P denote the event that (i) all the pairs .Vi;ti ; Vi 0;ti0 / are E.k/-
regular, (ii) all but at most 1

2
"
�
k
2

�
of the pairs .Vi;ti ; Vi 0;ti0 / satisfy jd.Vi;ti ; Vi 0;ti0 /�

d.Vi ; Vi 0/j � E.0/. We need the following observations:

PROPOSITION 4.7. P holds with probability at least 1� 1
2
".

Proof. Fix any i < i 0. By definition of E3:5 we have E.k/� 1
8
"k�2; thus by

item 1 of Definition 2.8, the probability that .Vi;ti ; Vi 0;ti0 / is not E.k/-regular is
at most 1

8
"k�2. By the union bound, the probability that one of the pairs is not

E.k/-regular is at most
�
k
2

�
1
8
"k�2 � 1

4
".

Item 2 of Definition 2.8 can be rephrased as stating that there are at most
E.0/

�
k
2

�
D

1
16
"2
�
k
2

�
choices of i < i 0 for which the probability that jd.Vi;ti ; Vi 0;ti0 /�

d.Vi ; Vi 0/j> E.0/D 1
16
"2 is larger than E.0/D 1

16
"2. Thus, the expected number

of i < i 0 for which jd.Vi;ti ; Vi 0;ti0 /� d.Vi ; Vi 0/j > E.0/ is at most 1
16
"2
�
k
2

�
� 1C�

k
2

�
�
1
16
"2 � 1

8
"2
�
k
2

�
. By Markov’s inequality, the probability that more than 1

2
"
�
k
2

�
of i < i 0 violate the above inequality is at most "

4
.

As properties (i) and (ii) of event P each hold with probability at least 1� 1
4
",

we get that P holds with probability at least 1� 1
2
".

PROPOSITION 4.8. Assume event P holds and denote by G0 the subgraph of
G that is spanned by the sets V1;t1 ; : : : ; Vk;tk . Then, EF.G

0/�HF.W /�
1
2
".

Proof. LetW 0 be a weighted complete graph on k vertices satisfyingw.i; i 0/D
d.Vi;ti ; Vi 0;ti0 /. Event P leads to the assumption that all the pairs .Vi;ti ; Vi 0;ti0 /

are E.k/-regular. As E.k/ � 
3:4.k;
1
8
"/ and assuming that jVi;j j � N3:5.k/ D

N3:4.k;
1
8
"/ we may deduce from Lemma 3.4 that

(6) EF.G
0/�HF.W

0/�
"

8
:

Now, event P also leads to the assumption that all but at most "
2

�
k
2

�
of the pairs

i < i 0 are such that jd.Vi ; Vi 0/� d.Vi;ti ; Vi 0;ti0 /j � E.0/ < "
8

. This means that the
sum of edge weights of W 0 differs from the sum of edge weights of W by at most
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"
2

�
k
2

�
due to pairs that violate the above inequality and by at most

�
k
2

�
"
8

due to the
other pairs. This means that the sum of edge weights of W 0 differs from that of W
by at most "

4
k2C "

16
k2 � 3"

8
k2. This clearly implies that

(7) HF.W
0/�HF.W /�

3"

8
:

The proof now follows by combination of (6) and (7).

Let R be an arbitrary set of edges whose removal from G turns it into an
F-free graph. Randomly and uniformly select a set Vi;ti from each of the sets
Vi;1; : : : ; Vi;l , and let R0 denote the set of edges of R that are spanned by these k
sets. We claim that the following upper and lower bounds on the expected size of
R0 hold:

1

l2
� jRj D EŒjR0j�� EŒjR0j j P � �ProbŒP ��

�
1�

"

2

�
� EŒjR0j j P �

�

�
1�

"

2

�
� .HF.W /�

"

2
/ � k2

n2

.kl/2
� .HF.W /� "/ �

n2

l2
:

Indeed, the equality is due to the fact than an edge ofR has probability precisely
1=l2 to be in R0. The second inequality is due to Proposition 4.7, the third is due
to Proposition 4.8 and the last is valid because HF.W /� 1. As we thus infer that
jRj �HF.W / � n

2 � "n2 for arbitrary R, we get that EF.G/ �HF.W /� ", thus
completing the proof.

5. Proofs of algorithmic results

The technical lemmas proved in the previous sections enabled us to infer
that certain E-regular partitions may be very useful for approximating EP. In this
section we apply Proposition 2.11 in order to efficiently obtain these partitions. We
first prove Theorem 1.1, while overlooking some subtle issues. We then discuss
them is detail.

Proof of Theorem 1.1. Fix any " > 0 and monotone graph property P.
Let F D FP be the family of forbidden subgraphs of P as in Definition 3.1. As
satisfying P is equivalent to being F-free, we focus on approximating EF.G/.
Let E3:5.r/ and N3:5.r/ be the appropriate function with respect to F and ". Put
S."/D S2:9.1=";E3:5/ and recall that by Proposition 2.10 the integer S can indeed
be upper bounded by a function of ".

If an input graph has fewer than S."/ �N3:5.S."// vertices we search exhaus-
tively in order to compute EF.G/ precisely. Assume then that G has more than
S."/ �N3:5.S."// vertices, and use Proposition 2.11 with m D 1=" and E3:5.r/

as above in order to compute the equipartition A D fVi j 1 � i � kg and its
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refinement BD fVi;j j 1� i � k; 1� j � lg satisfying the conditions of Lemma
2.9. As m is bounded by a function of " we get from Proposition 2.11 that this
step takes time O.n2/. Also, by Lemma 2.9 we have kl � S ; therefore, as G
has at least S."/ � N3:5.S."// vertices each of the sets Vi;j is of size at least
N3:5.S."// � N3:5.k/. Let W be a weighted complete graph of size k where
w.i; j / D d.Vi ; Vj /. Using exhaustive search, we can now precisely compute
the value of HF.W /. By Lemma 3.5 we may infer that jEF.G/�HF.W /j � ".

As mentioned in the introduction, one should specify how the property P is
given to the algorithm. For example, P may be an undecidable property, in which
case we cannot do anything. We thus focus on decidable graph properties. However,
even in this case we may face some unexpected problems. Note, that for a general
infinite family of graphs F it is not clear how to compute HF in finite time. Also,
returning to the overview of the proof of Lemma 2.9 given in Section 2, note that
we have implicitly assumed that one can compute the function E, as this is needed
in order to compute the parameters with which one applies Proposition 2.10. A
close inspection of the proofs of Lemmas 3.4 and 3.5 reveals that computing E

involves computing the function ‰F (see (2), (3) and (5)). One of the main results
of [7] asserts that, somewhat surprisingly, there is a family of graph properties
F, for which the property of being F-free is decidable (in fact, in co-NP) but at
the same time ‰F is not computable. Therefore, even if we confine ourselves to
decidable graph properties we still run into trouble.

Suppose first that " is not part of the input to the algorithm. As we have
discussed in Section 2, in this case all the applications of E3:5 are on inputs of size
depending on " only, thus the algorithm may “keep” the answers to these (finitely
many) applications of E3:5 as part of its description. Similarly, in this case we may
need to compute HF on graphs of size depending on " only;5 thus the algorithm
may “keep” the answers to these (finitely many) applications of HF as part of its
description. Observe, that we don’t need to keep the answer HF for all the (infinite)
range of edge weights. Rather, as we only need to approximate EF within an
additive error of ", it is enough to consider edge weights f0; "; 2"; 3"; : : : ; 1g.

If we want the algorithm to be able to accept " as part of the input, then we
must confine ourselves to properties for which ‰F is computable. However, as
for any reasonable graph property this function is computable, this is not a real
constraint. For example, as mentioned in Section 4, if P is the property of being
bipartite, then ‰F.k/ is either k or k� 1. Another natural family of properties for
which ‰F.k/ is computable is that of being H -free for a fixed graph H , as in this

5Recall that the size of the graph on which we compute HF is the number of partition classes of
the E-regular partition, and this number is at most S2:9.m;E/, which is bounded by a function of ".
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case ‰F.k/� jV.H/j. By the definition of the function E3:5 we get that if ‰F is
computable then so is E3:5. It is also not difficult to see that if ‰F is computable
then so is HF. Therefore, in case ‰F is computable, there is no problem with
accepting " as part of the input.

We now turn to the proof of Theorem 1.2. We note that the above difficulties
are also relevant for Corollary 1.2, which applies to Theorem 1.2, but we refrain
from discussing them again.

Proof of Theorem 1.2 (sketch). As in the previous proof, we focus on the
property of being F-free, where F is the family of forbidden subgraphs of P.
Suppose, as in the previous proof, that G is a large enough graph (in terms of ") as
otherwise we can take D to be the entire vertex set of G. Assume, we implicitly
apply Lemma 2.9 onG and let ADfVi j 1� i�kg, BDfVi;j j 1� i�k; 1�j � lg

be the equipartitions returned by the lemma. Let W be a weighted complete graph
on k vertices, where w.i; j /D d.Vi ; Vj /. By Lemma 3.5,

(8) jEF.G/�HF.W /j � " :

Let D be a random set of vertices and for 1� i � k let Ui denote the vertices
of D that belong to Vi , and for 1� i � k; 1� j � l let Ui;j denote the vertices of
D that belong to Vi;j . Recall that k and l are bounded by functions of ". Using
standard Chernoff bounds (see, e.g., [8]), it is easy to see that if we use a large
enough sample of vertices D (but only large enough in terms of "), then with high
probability (whp) we will have jd.Vi ; Vi 0/ � d.Ui ; Ui 0/j � " for any i < i 0 and
jd.Vi;j ; Vi 0;j 0/�d.Ui;j ; Ui 0;j 0/j � " for any i < i 0 and j ¤ j 0. Therefore, if W 0 is
a weighted complete graph on k vertices, where w.i; j /D d.Ui ; Uj / then

(9) jHF.W /�HF.W
0/j � " :

Furthermore, using Chernoff bounds again, one can show that whp all the pairs
.Ui ; Ui 0/ and .Ui;j ; Ui 0;j 0/ are as regular as .Vi ; Vi 0/ and .Vi;j ; Vi 0;j 0/ (up to ").
Therefore, the graph induced by D, denoted G0, will have equipartitions A0;B0

satisfying the requirements of Lemma 2.9. This means that

(10) jEF.G
0/�HF.W

0/j � " :

As (8), (9) and (10) all hold with high probability for any " > 0, we can thus make
sure that with probability at least 1� ", we will have jEF.G

0/�EF.G/j�". This
completes the proof.

6. Overview of the proof of Theorem 1.3

For the proof of Theorem 1.3 it will be convenient to denote by E 0P.G/ the
number of edge removals needed to make G satisfy P, in other words E 0P.G/D
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n2 �EP.G/. In particular, E 0H .G/ denotes the number of edge removals needed
to turn G into an H -free graph. We will also denote by E 0r.G/ the number of
edge removals needed to turn G into an r-partite graph (or equivalently r-colorable
graph). Note, that approximatingE 0P.G/within n2�ı is equivalent to approximating
EP.G/ within n�ı .

The main technical result we need in order to obtain Theorem 1.3 is an
extension of some classical results in Extremal Graph Theory. Recall, that Turán’s
Theorem (see [45]) states that the largest KrC1-free graph on n vertices (KrC1
= complete graph on r C 1 vertices) is precisely the largest r-partite graph on n
vertices. Another classical result is the Erdős-Stone-Simonovits Theorem (see [45]),
which states that for any graph H of chromatic number r C 1, the largest H -free
graph on n vertices has at most o.n2/ more edges than the largest r-partite graph on
n vertices. As any r-partite graph does not contain a copy of a graph of chromatic
number r C 1, the above results can thus be restated to say that when H DKrC1
we have E 0H .Kn/ D E

0
r.Kn/ and that for any H of chromatic number r C 1 we

have E 0r.Kn/� o.n
2/�E 0H .Kn/�E

0
r.Kn/.

The main extremal graph-theoretic tool used in order to obtain Theorem 1.3, is
the following result, which greatly extends one of the main results of [15]. Note, that
this result also extends Turán’s Theorem and the Erdős-Stone-Simonovits Theorem
as it states that E 0H .G/ and E 0r.G/ are very close not only when G is Kn but also
when G has a sufficiently large minimal degree.

THEOREM 6.1. Let H be a graph of chromatic number r C 1� 3.

(i) If there is an edge of H whose removal reduces its chromatic number, then
there is a constant � D �.H/ > 0 such that if G D .V;E/ is a graph on n
vertices of minimum degree at least .1��/n, then E 0H .G/DE

0
r.G/.

(ii) Otherwise, there are constants 
 D 
.H/ > 0 and �D �.H/ > 0 such that if
G D .V;E/ is a graph on n vertices of minimum degree at least .1��/n, then

E 0r.G/�O.n
2�
 /�E 0H .G/�E

0
r.G/:

The assertion of this theorem for the special case when H is a triangle is
proved in [15] and in a stronger form in [14]. We note that the n2�
 term in
the second item of the theorem cannot be avoided. Note, that the error term we
obtain in the second part of the theorem is better than the error term of the classical
Erdős-Stone-Simonovits Theorem. Such an improvement of the error term was
previously known (see, e.g., [21] and [43]) but only for the case when G is Kn and
not for G of sufficiently high minimal degree. The proof of Theorem 6.1 appears
in Section 7.

Our second tool in the proof of Theorem 1.3 is certain pseudo-random graphs.
An .n; d; �/-graph is a d -regular graph on n vertices all of whose eigenvalues,
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except the first one, are at most � in their absolute values. This notation was
introduced by the first author in the 80s, motivated by the fact that if � is much
smaller than d , then such graphs have strong pseudo-random properties. In particular
(see, e.g., [8, Ch. 9]), in this case the number of edges between any two sets of
vertices U and W of G is roughly its expected value, which is jU jjW jd=n (see
�8 for the precise statement). There are many known explicit constructions of
.n; d; �/-graphs that suffice for our purpose here. Specifically, we can use, for
example, the graph constructed by Delsarte and Goethals and by Turyn (see [37]).
In this graph the vertex set V.G/ consist of all elements of the two dimensional
vector space over GF.q/ (q is any prime power); so G has n D q2 vertices. To
define the edges of G we fix a set L of k lines through the origin. Two vertices x
and y of the graphG are adjacent if x�y is parallel to a line inL. It is easy to check
that this graph is d D k.q� 1/-regular. Moreover, because it is a strongly regular
graph, one can compute its eigenvalues precisely and show that besides the first
one they all are either �k or q�k. Therefore, by choosing k D .1��/q2=.q� 1/
we obtain an .n; d; �/-graph with d D .1��/n and ��

p
n (� will be chosen as

the constant from Theorem 6.1).
Given a graph F let Fb denote the b-blowup of F , that is, the graph obtained

from F by replacing every vertex v 2 V.F / with an independent set Iv, of size b,
and by replacing every edge .u; v/ 2E.F /; with a complete bipartite graph, whose
partition classes are the independent sets Iu and Iv . It is not difficult to show (see
Claim 8.2) that for any integer r , we have E 0r.Fb/D b

2E 0r.F /. The final piece of
notation we need is the Boolean Or, denoted by G1[G2 of two graphs G1 and G2
on the same set of vertices V . Its set of vertices is V , and its set of edges contains
all edges of G1 and all edges of G2.

Armed with these preparations, we can now outline the proof of Theorem 1.3.
Its first part is an easy application of Turán’s Theorem for bipartite graphs. The
proof of the second part is more interesting. Suppose all bipartite graphs satisfy P,
and let r C 1 . � 3/ be the minimum chromatic number of a graph that does not
satisfy this property. Fix a graph H of chromatic number rC1 that does not satisfy
P and let � be the constant of Theorem 6.1. Consider, first, the case r � 3. In this
case we show that any efficient algorithm that approximates E 0P.G/ up to n2�ı

will enable us to decide efficiently if a given input graph F D .V .F /; E.F // is
r-colorable. Indeed, given such an F on m vertices, let b Dmc where c is a large
constant, to be chosen appropriately. Let Fb be the b-blowup of F , and let F 0

be the vertex disjoint union of r copies of Fb . Let G0 be the .n; d; �/-graph with
d D .1��/n and � �

p
n, whose number of vertices n, is at least the number

of vertices of F 0, and not more than four times that, and identify the vertices of
F 0 with some of those of G0. Let G D G0 [F 0 be the Boolean Or of these two
graphs. If F is r-colorable, then so is its blowup Fb , and hence in this case F 0
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has a proper r-coloring in which all color classes have the same size. This can be
extended to a partition of the vertices of G to r nearly equal color classes, providing
an r-colorable subgraph of G (which satisfies P by our choice of r) that contains
all edges of F 0, and some edges of G0 not belonging to F 0. The pseudo-random
properties of G0 enable us to approximate this number well.

On the other hand, if F is not r-colorable, then any r-colorable subgraph of
G misses at least b2r edges of F 0, and, by the pseudo-random properties of G0

cannot contain too many edges of this graph not belonging to F 0. With the right
choice of c, this will ensure that if we can approximate the number of edges in a
maximum r-colorable subgraph of G up to an n2�ı -additive error, this will enable
us to know for sure whether F is r-colorable or not. However, by Theorem 6.1,
and as the minimum degree of our graph is at least .1��/n, the maximum size
of an H -free subgraph of G is very close to the maximum size of an r-colorable
subgraph of it, which is therefore also very close to the maximum number of edges
in a subgraph of G satisfying P. This implies that approximating well this last
quantity is NP-hard. The case r D 2 is similar, but here we have to use the fact that
the MAX-CUT problem is NP-hard. The full details appear in Section 8.

7. Proof of Theorem 6.1

Throughout this section we will assume that the number of vertices n in our
graph is sufficiently large. We first prove the first part of Theorem 6.1, which is an
extension of Turán’s theorem. To this end, we need a result proved for KrC1-free
graphs by Andrásfai, Erdős and Sós [9] and in a more general form by Erdős and
Simonovits [22].

THEOREM 7.1 ([9], [22]). Let H be a fixed graph with chromatic number
r C 1 � 3 which contains an edge e such that �.H � e/ D r . If G is an H -free
graph of order n with minimal degree ı.G/ > 3r�4

3r�1
n then G is r-colorable.

We will also need the following simple lemma.

LEMMA 7.1. Let r�2 be an integer and supposeG0 is an r-partite subgraph of
a graphG (which may be empty) such that there arem edges incident to the vertices
in V.G/nV.G0/. Then G has an r-partite subgraph of size at least e.G0/C r�1

r
m.

Proof. Let .A01; : : : ; A
0
r/ be the partition of G0. Consider an r-partite subgraph

� of G with parts .A1; : : : ; Ar/ such that A0i �Ai for every i , where we place each
vertex v 2 V.G/nV.G0/ in Ai randomly and independently with probability 1=r .
All edges of G0 are edges of � , and each edge incident to a vertex in V.G/nV.G0/
appears in � with probability r�1

r
. By linearity of expectation E

�
e.�/

�
D e.G0/C

r�1
r
m, and so some r-partite subgraph of G has at least this many edges.
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In particular, by taking G0 to be the empty graph we obtain that every G
contains an r-partite subgraph of size at least r�1

r
e.G/.

Proof of Theorem 6.1, part (i). We prove that E 0H .G/DE
0
r.G/ for all graphs

G on n vertices with minimum degree

ı.G/�

�
1�

3

4.r � 1/.3r � 1/

�
nC 1:

Let � be the largest (in terms of number of edges) r-partite subgraph of G and
let F be the largest H -free subgraph of G. To prove the first part of the theorem
one needs to show that e.F / D e.�/. As H is not r-colorable we trivially have
e.F / � e.�/. In the rest of the proof we establish that e.�/ � e.F /. First, note
that by Lemma 7.1 we have

e.�/ �
r � 1

r
e.G/

D
r � 1

r

��
1�

3

4.r � 1/.3r � 1/

�
nC 1

�
n=2

D
12r2� 16r C 1

8r.3r � 1/
n2C

r � 1

2r
n:

If F has a vertex of degree at most 3r�4
3r�1

n we delete it and continue. We construct a
sequence of graphs F D Fn; Fn�1; :::, where if Fk has a vertex of degree � 3r�4

3r�1
k

we delete that vertex to obtain Fk�1. Let F 0 be the final graph of this sequence
which has s vertices and minimal degree greater than 3r�4

3r�1
s. Since F 0 is H -free,

by Theorem 7.1, it is r-partite. Therefore,

r � 1

2r
s2 � e.F 0/� e.F /�

3r � 4

3r � 1

  
nC 1

2

!
�

 
sC 1

2

!!

� e.�/�
3r � 4

2.3r � 1/
.n2� s2/�

3r � 4

2.3r � 1/
n

�
12r2� 16r C 1

8r.3r � 1/
n2�

3r � 4

2.3r � 1/
.n2� s2/:

This implies that s2

2r.3r�1/
�

n2

8r.3r�1/
and so s � n=2.

Let X be the set of n� s vertices which we deleted, i.e., X D V.G/�V.F 0/.
By the minimal degree assumption there are at least

m� ı.G/jX j �

 
jX j

2

!
�
12r2� 16r C 1

4.r � 1/.3r � 1/
n.n� s/C .n� s/�

.n� s/2

2
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edges incident with vertices in X . Thus, by Lemma 7.1, the size of the largest
r-partite subgraph of G is at least

e.�/ � e.F 0/C
r � 1

r
m� e.F /�

3r � 4

3r � 1

  
nC 1

2

!
�

 
sC 1

2

!!
C
r � 1

r
m

D e.F /�
3r � 4

2.3r � 1/
.n2� s2/�

3r � 4

2.3r � 1/
.n� s/C

r � 1

r
m

� e.F /�
3r � 4

2.3r � 1/
.n2� s2/

C
r � 1

r

�
12r2� 16r C 1

4.r � 1/.3r � 1/
n.n� s/�

.n� s/2

2

�
D e.F /C

.n� s/.2s�n/

4r.3r � 1/
� e.F /:

This implies that e.�/� e.F / and completes the proof.

We turn to the proof of Theorem 6.1 part (ii). To this end, we first prove the
main technical result of this section, Theorem 7.2 below, which is a version of
Theorem 7.1 that applies to arbitrary graphsH . We then apply this theorem in order
to prove Theorem 6.1 part (ii). The reader may want to note that this application of
Theorem 7.2 is similar to the way we applied Theorem 7.1 in order to prove the
first part of Theorem 6.1.

THEOREM 7.2. Let H be a fixed graph on h vertices with chromatic number
r C 1� 3 and let G be an H -free graph of order n with minimum degree ı.G/��
r�1
r
�

1
3hr2

�
n. Then one can delete at most O

�
n2�.rC1/=h

�
edges to make G

r-colorable.

Proof. First we need the following weaker bound on E 0r.G/.

CLAIM 7.2. G can be made r-partite by deleting o.n2/ edges.

Proof. We use the Regularity Lemma given in Lemma 2.6. For every constant
0 < � < 1

12hr2 let 
 D 
2:3.�; rC 1; h/ < �2 be sufficiently small to guarantee that
the assertion of Lemma 2.3 holds.6 Consider a 
 -regular partition .U1; U2; : : : Uk/
of G. Let G0 be a new graph on the vertices 1� i � k in which .i; j / is an edge
if and only if .Ui ; Uj / is a 
-regular pair with density at least �. Since G is an
H -free graph and H is homomorphic to KrC1 (as �.H/D r C 1), by Lemma 2.3,
G0 contains no clique of size rC1. Call a vertex of G0 good if there are at most �k
other vertices j such that the pair .Ui ; Uj / is not 
-regular; otherwise call it bad.
Since the number of nonregular pairs is at most 


�
k
2

�
� �2k2=2 we have that all but

6Recall that by Comment 2.4 we may assume that 
2:3.�; r C 1; h/ < �2.
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at most �k vertices are good. By definition, the degree of each good vertex in G0

is at least
�
r�1
r
�

1
3hr2

�
k� 2�k� 1, since deletion of the edges from nonregular

pairs and sparse pairs can decrease the degree by at most �k each and the deletion
of edges inside the sets Ui can decrease it by 1. By deleting all bad vertices we
obtain a KrC1-free graph on at most k vertices with minimal degree at least�

r � 1

r
�

1

3hr2

�
k� 3�k� 1�

�
r � 1

r
�

2

3hr2

�
k

�

�
r � 1

r
�

1

3r2

�
k >

3r � 4

3r � 1
k:

Therefore, by Theorem 7.1, this graph is r-partite. This implies that to make G r-
partite we can delete at most 
n2C�n2C.�n/�nCk�.n=k/2�3�n2Cn2=kDo.n2/
edges.

Consider a partition .V1; : : : ; Vr/ of the vertices of G into r parts which
maximizes the number of crossing edges between the parts. Then for every x 2 Vi
and j 6D i the number of neighbors of x in Vi is at most the number of its neighbors
in Vj , as otherwise, by shifting x to Vj we increase the number of crossing edges.
By Claim 7.2, we have that this partition satisfies

P
i e.Vi /D o.n

2/. Call a vertex
x of G typical if x 2 Vi and has at most n=.10hr2/ neighbors in Vi . Note that
there are at most o.n/ nontypical vertices in G and, in particular, every part Vi
contains a typical vertex. By definition, the degree of this vertex outside Vi is at
least

�
r�1
r
�

1
3hr2

�
n� n

10hr2 >
�
r�1
r
�

1
2hr2

�
n and at most n� jVi j. Therefore

jVi j � .
1
r
C

1
2hr2 /n. Also note that the number of neighbors in Vi of every typical

vertex x 2 Vj ; j 6D i is at least

dVi
.x/� d.x/� dVj

.x/� .r � 2/max
k
jVkj(11)

�

�
r � 1

r
�

1

3hr2

�
n�

n

10hr2
� .r � 2/

�
1

r
C

1

2hr2

�
n

>

�
1

r
�
r � 1

2hr2

�
n:

The next claim is an immediate corollary of the above observation.

CLAIM 7.3. Let U be a subset of Vj of size at least . 1
2r
�

1
4hr

/n and let
y1; : : : ; yk be an arbitrary set of k � r � 1 typical vertices outside Vj . Then, there
are at least n

2r.rC1/
vertices in U , which are adjacent to all vertices yi .

Proof. By definition, there are at most jVj j � dVj
.yi / nonneighbors of yi in

Vj and thus there are at most that many vertices in U not adjacent to yi . Delete
from U any vertex, which is not a neighbor of either y1; y2; : : : ; yk . The remaining
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set is adjacent to every vertex yi and has size at least

jU j �
X
i

�
jVj j � dVj

.yi /
�
:

Since by (11) the degree in Vj of every typical vertex yi 62 Vj is at least dVj
.yi /�

.1
r
�
r�1
2hr2 /n, the number of common neighbors of y1; : : : ; yk in U is at least

jU j �
X
i

�
jVj j � dVj

.yi /
�
� k

�
1

r
�
r � 1

2hr2

�
n� kjVj jC jU j

� k

�
1

r
�
r � 1

2hr2

�
n� k

�
1

r
C

1

2hr2

�
nCjU j

� jU j �
k

2hr
n�

�
1

2r
�

1

4hr

�
n�

k

2hr
n

�

�
1

2r
�
kC 1

2hr

�
n�

n

2r
�
n

2h
�

n

2r.r C 1/
:

Here we used that kC 1� r and h� r C 1.

CLAIM 7.4. For every nontypical vertex x 2 Vi there are at least nr

5h.3r2/r

r-cliques y1; : : : ; yr such that yj 2 Vj for all 1 � j � r and all vertices yj are
adjacent to x.

Proof. Without loss of generality let i D 1 and let x 2 V1 be a nontypical
vertex. Since for every j 6D 1 the number of neighbors of x in Vj is at least as large
as the number of its neighbors in V1 we have that

(12)

dVj
.x/�

dVj
.x/C dV1

.x/

2
�
1

2

��r � 1
r
�

1

3hr2

�
n� .r � 2/max

i
jVi j

�
�
1

2

��r � 1
r
�

1

3hr2

�
n� .r � 2/

�1
r
C

1

2hr2

�
n

�
�

�
1

2r
�

1

4hr

�
n:

To construct the r-cliques satisfying the assertion of the claim, first observe,
that since x is nontypical it has at least n=.10hr2/ neighbors in V1 and at least
n=.10hr2/�o.n/ > n=.15hr2/ of these neighbors are typical. Choose y1 to be an
arbitrary typical neighbor of x in V1 and continue. Suppose at step 1� k � r � 1
we already have a k-clique y1; : : : ; yk such that yi 2 Vi for all i and all vertices
yi are adjacent to x. Let UkC1 be the set of neighbors of x in VkC1. Then, by
(12) we have that jUkC1j D dVkC1

.x/� . 1
2r
�

1
4hr

/n and therefore by Claim 7.3
there are at least n

2r.rC1/
common neighbors of the vertices yi in UkC1. Moreover,

at least n
2r.rC1/

� o.n/ > n
3r2 of them are typical and we can choose ykC1 to

be any of them. Therefore at the end of the process we indeed obtained at least
n

15hr2 .
n
3r2 /

r�1 D
nr

5h.3r2/r
r-cliques with the desired property.
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CLAIM 7.5. Each Vi contains at most O.1/ nontypical vertices.

Proof. Suppose that the number of nontypical vertices in Vi is at least
5h2.3r2/r . Consider an auxiliary bipartite graph F with parts W1; W2, where
W1 is the set of some t D 5h2.3r2/r nontypical vertices in Vi , W2 is the family
of all nr r-element multi-sets of V.G/ such that x 2W1 is adjacent to multi-set
Y from W2 if and only if Y is an r-clique in G with exactly one vertex in every
Vj and all vertices of Y are adjacent to x. By the previous claim, F has at least
e.F /� t nr

5h.3r2/r
D hnr edges and therefore the average degree of a vertex in W2

is at least dav D e.F /=jW2j D e.F /=nr � h. By the convexity of the function
f .z/D

�
z
h

�
, we can find h vertices x1; : : : ; xh in W1 such that the number of their

common neighbors in W2 is at least

m�

P
Y2W2

�d.Y /
h

��
t
h

� � nr
�
dav

h

�
th
D�

�
nr
�
:

Thus we proved that G contains h vertices X D fx1; : : : ; xhg and a family of
r-cliques C of size mD�

�
nr
�

such that every clique in C is adjacent to all vertices
in X . Next we need the following well-known lemma which appears first implicitly
in Erdős [20] (see also, e.g., [27]). It states that if an r-uniform hypergraph on
n vertices has mD�

�
nr
�

edges, then it contains a complete r-partite r-uniform
hypergraph with parts of size h. By applying this statement to C, we conclude that
there are r disjoint set of vertices A1; : : : ; Ar each of size h such that every r-tuple
a1; : : : ; ar with ai 2 Ai forms a clique which is adjacent to all vertices in X . The
restriction of G to X;A1; : : : ; Ar forms a complete .rC1/-partite graph with parts
of size h each, which clearly contains H . This contradiction shows that there are
fewer than 5h2.3r2/r DO.1/ nontypical vertices in Vi and completes the proof of
the claim.

Having finished all the necessary preparations, we are now ready to complete
the proof of Theorem 7.2. Let h1�h2� : : :�hrC1 be the sizes of the color-classes
in an r C 1 coloring of H . Clearly h1 � h=.r C 1/. Without loss of generality,
suppose that V1 spans at least 2hn2�.rC1/=h edges. By the previous claim, only at
most O.n/ of these edges are incident to nontypical vertices. Therefore the set of
typical vertices in V1 spans at least hn2�.rC1/=h edges. Then, by the well known
result of Kövari, Sós and Turán [36] about Turán numbers of bipartite graphs, V1
contains a complete bipartite graph H1 DKh1;h2

all of whose vertices are typical.
If there are at least h3 typical vertices in V2 which are adjacent to all vertices of
H1 then we add them to H1 to form a complete 3-partite graph H2 with parts of
sizes h1; h2 and h3 and continue. We claim that if at step 1 � k � r � 1 there is
a kC 1-partite graph Hk �[kiD1Vi with parts of sizes h1; : : : ; hkC1 all of whose
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vertices are typical, then we can extend it to the complete kC2-partite graph HkC1
by adding hkC2 typical vertices from VkC1 which are adjacent to all vertices of
Hk . Indeed, recall that by (11) the number of neighbors in VkC1 of every typical
vertex x 2 Vi ; i 6D kC1 is at least dVkC1

.x/� .1
r
�
r�1
2hr2 /n. Let t � h be the order

of Hk . Then, as in Claim 7.3 the number of vertices in VkC1 which are adjacent to
all vertices of Hk is at least

jVkC1j � t

�
jVkC1j �

�
1

r
�
r � 1

2hr2

�
n

�
� t

�
1

r
�
r � 1

2hr2

�
n� .t � 1/

�
1

r
C

1

2hr2

�
n

D
n

r
�
t .r � 1/C t � 1

2hr2
�
n

r
�

t

2hr
n�

n

r
�
n

2r
D
n

2r

and thus at least n=.2r/�O.1/ > hkC2 of these vertices are typical. Continuing
the above process r �1 steps we obtain a complete .rC1/-partite graph, with parts
of sizes h1; : : : ; hrC1, which clearly contains H . This contradicts our assumption
that G is H -free and shows that every Vi spans at most O

�
n2�.rC1/=h

�
edges.

Therefore the number of edges we need to delete to make G r-partite is bounded
by
P
i e.Vi /�O

�
n2�.rC1/=h

�
. This completes the proof.

Proof of Theorem 6.1, part (ii). Let H be a fixed graph on h vertices with
chromatic number r C 1� 3. We show that the constants 
.H/ and �.H/ in the
assertion of the theorem can be chosen to be .r C 1/=h and 1=.4hr2/ respectively.
Let G be an H -free graph of order n with minimal degree ı.G/� .1� 1

4hr2 /n and
let � be the largest r-partite subgraph of G and F be a largest H -free subgraph of
G. To prove the second item of the theorem it is enough to show that e.�/� e.F /�
e.�/CO.n2�.rC1/=h/. As H is not r-colorable we trivially have e.�/� e.F /. In
the rest of the proof we establish that e.F /� e.�/CO.n2�.rC1/=h/. By Lemma
7.1 we have that

e.�/�
r � 1

r
e.G/D

r � 1

r

�
1�

1

4hr2

�
n2=2D

�
r � 1

2r
�
r � 1

8hr3

�
n2:

If F has a vertex of degree at most . r�1
r
�

1
3hr2 /n we delete it and continue. We

construct a sequence of graphs F DFn; Fn�1; :::, where if Fk has a vertex of degree
� . r�1

r
�

1
3hr2 /k we delete that vertex to obtain Fk�1. Let F 0 be the final graph of

this sequence which has s vertices and minimal degree greater than . r�1
r
�

1
3hr2 /s

and let � 0 be the largest r-partite subgraph of F 0. Since F 0 is H -free, Theorem 7.2
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implies e.F 0/� e.� 0/CO.n2�.rC1/=h/. Therefore we have that

r � 1

2r
s2C o.n2/� e.F 0/� e.F /�

�
r � 1

r
�

1

3hr2

�  
nC 1

2

!
�

 
sC 1

2

!!

� e.�/�

�
r � 1

2r
�

1

6hr2

�
.n2� s2/�O.n/

�

�
r � 1

2r
�
r � 1

8hr3

�
n2�

�
r � 1

2r
�

1

6hr2

�
.n2� s2/� o.n2/:

This implies that

s2

6hr2
�

�
1

6hr2
�
r � 1

8hr3

�
n2� o.n2/ >

�
1

6hr2
�

1

8hr2

�
n2 D

n2

24hr2

and so s � n=2.
Let X be the set of n� s vertices which we deleted, i.e., X D V.G/�V.F 0/.

By the minimal degree assumption there are at least

m� ı.G/jX j �

 
jX j

2

!
�

�
1�

1

4hr2

�
n.n� s/�

.n� s/2

2

D .n� s/

��1
2
�

1

4hr2

�
nC

s

2

�
edges incident with vertices in X . Thus, by Lemma 7.1, the size of the largest
r-partite subgraph of G is at least

e.�/� e.� 0/C
r � 1

r
m� e.F 0/�O

�
n2�.rC1/=h

�
C
r � 1

r
m

� e.F /�

�
r � 1

r
�

1

3hr2

�  
nC 1

2

!
�

 
sC 1

2

!!

C
r � 1

r
m�O

�
n2�.rC1/=h

�
� e.F /�

�
r � 1

2r
�

1

6hr2

�
.n2� s2/C

r � 1

r
m�O

�
n2�.rC1/=h

�
� e.F /�

�
r � 1

2r
�

1

6hr2

�
.n2� s2/

C .n� s/

��r � 1
2r
�
r � 1

4hr3

�
nC

.r � 1/s

2r

�
�O

�
n2�

rC1
h

�
D e.F /C

.n� s/.2s� r�3
r
n/

12hr2
�O

�
n2�.rC1/=h

�
� e.F /�O

�
n2�.rC1/=h

�
:
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8. Proof of Theorem 1.3

We start with the proof of the first part of Theorem 1.3. If there is a bipartite
graphH that does not satisfy P, then, by the known results about the Turán numbers
of bipartite graphs proved in [36], there exists a positive ı > 0 such that for any
large n, any graph with n vertices and at least n2�ı edges contains a copy of H .
Thus, given a graph G on n vertices, one must delete all its edges besides, possibly,
n2�ı of them, to obtain a subgraph satisfying P. Certainly, as the edgeless graph
satisfies P, this provides the required approximation in this case.

The proof of the second part is more complicated, and requires all the prepara-
tions made in the previous section. Suppose all bipartite graphs satisfy P, and let
r C 1� 3 be the minimum chromatic number of a graph that does not satisfy this
property. Fix a graph H of chromatic number r C 1 that does not satisfy P. We
will show that any efficient algorithm that approximates E 0P.G/ up to n2�ı will
enable us to decide efficiently how many edges we need to delete from a given input
graph F D .V .F /; E.F // to make it r-partite. For r � 3 this problem contains the
r-colorability problem, and for r D 2 it is the MAX-CUT problem and therefore it
is NP-hard for every r � 2.

Given a graph F on m vertices such that we need to delete ` edges to make
it r-partite, let b Dmc where c is a large constant, to be chosen later. Let Fb be
the b-blowup of F , and let F 0 be the vertex disjoint union of r copies of Fb . Let
� D �.H/ be the constant from Theorem 6.1 and let G0 be the .n; d; �/-graph
with d D .1��/n and � �

p
n, described in Section 6. As the integer q in the

construction discussed in Section 6 can be a prime power, we can always choose the
number of vertices of G0, which is q2, to be at least the number of vertices of F 0,
and not more than 4 times of that. In particular, we have nD‚.rmb/D‚

�
mcC1

�
.

Identify the vertices of F 0 with some of those of G0. Let G D G0 [ F 0 be the
Boolean Or of these two graphs.

Suppose, that instead of adding to F 0 a pseudo-random graph G0, we would
put any nonedge of F 0 in G with probability 1��. It is easy to see that in this
case the expected number of edges, which would be spanned by a set of a vertices
that span t edges in F 0, would be .1��/

�
a
2

�
C�t . The following claim establishes

that this is approximately what we find when we add to F 0 a pseudo-random graph.
We then use this claim to show that we can also estimate E 0r.G/ as a function of
`DE 0r.F /.

CLAIM 8.1. Let A be a subset of the vertices of G of size a which contains
precisely t edges of F 0. Then the number of edges of G in A satisfies

.1��/
a2

2
C�t �O

�
m2n3=2

�
� eG.A/� .1��/

a2

2
C�t CO

�
m2n3=2

�
:
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Proof. By construction, the edges of the subgraph of F 0 induced on the
set A form an edge-disjoint union of complete bipartite graphs we denote by
�i D .Ui ; Wi /; 1� i � k. Thus

P
i jUi jWi j D t and the fact that F 0 is a blowup of

r disjoint copies of F , which altogether have rm vertices and at most r
�
m
2

�
edges,

implies that k � r
�
m
2

�
< rm2. The number of edges of G spanned on A is the

number of edges of G0 inside A, minus the number of edges of G0 spanned by the
pairs .Ui ; Wi /, plus the number of edges of F 0 inside A. To estimate this quantity,
we need the well-known fact (see, e.g, Chapter 9 of [8]), that the number of edges
between two subsets X; Y of an .n; d; �/-graph G0 satisfiesˇ̌̌̌

e.X; Y /�
jX jjY jd

n

ˇ̌̌̌
� �

p
jX jjY j

and the fact that in such a graph
ˇ̌
e.X/� d jX j2

2n

ˇ̌
� �jX j. Therefore we obtain that

eG.A/D eG0.A/�

kX
iD1

eG0.Ui ; Wi /C t D eG0.A/C

kX
iD1

�
jUi jWi j � eG0.Ui ; Wi /

�

�
d jAj2

2n
��jAjC

kX
iD1

�
jUi jWi j �

d

n
jUi jWi j ��

p
jUi jWi j

�

�
d jAj2

2n
��nC

kX
iD1

�
�jUi jWi j ��n

�
D .1��/

a2

2
C�

kX
iD1

jUi jWi j � .kC 1/�n

D .1��/
a2

2
C�t �O

�
m2n3=2

�
:

The upper bound eG.A/� .1��/a
2

2
C�tCO

�
m2n3=2

�
can be obtained similarly.

Recall that the b-blowup Fb of a graph F , defined in Section 6, is the graph
obtained from F by replacing every vertex v 2 V.F / with an independent set Iv,
of size b, and by replacing every edge .u; v/ 2 E.F /; with a complete bipartite
graph, whose partition classes are the independent sets Iu and Iv.

CLAIM 8.2. For any graph F and any integer b, we have E 0r.Fb/D b
2E 0r.F /.

Proof. We start by showing that E 0r.Fb/ � b
2E 0r.F /. Suppose S is a set of

E 0r.F / edges whose removal turns F into an r-colorable graph F 0. Suppose we
remove from Fb all the edges connecting Iu and Iv for any .u; v/ 2 S . Note, that
we thus remove b2E 0r.F / edges from Fb . We claim that the resulting graph F 0

b
is
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r-colorable. Indeed, let c W V.F / 7! f1; : : : ; rg be an r-coloring of F 0 and note that
by definition of F 0

b
, if we color all the vertices of Iv with the color c.v/, we get a

legal r-coloring of F 0. Therefore E 0r.Fb/� b
2E 0r.F /.

To see that E 0r.Fb/� b
2E 0r.F /, let S be a set of edges whose removal turns

Fb into an r-colorable graph, and suppose for every v 2 V.F / we randomly pick
a single vertex from each of the sets Iv. For every edge of S , the probability that
we picked both of its endpoints is b�2, therefore the expected number of edges
spanned by these vertices is jS j=b2. As the removal of the edges of S makes Fb
r-colorable, this in particular applies to all of its subgraphs. Note, that for any
choice of a single vertex from each of the independent sets Iv , the graph they span
is isomorphic to F . Thus, any such choice spans at least E 0r.F / of the edges of S .
It thus must be the case that jS j=b2 �E 0r.Fb/, and the proof is complete.

CLAIM 8.3. The graph G satisfies

(13)
ˇ̌̌̌
E 0r.G/�

�
.1��/

n2

2r
C�r`b2

�ˇ̌̌̌
�O.m2n3/:

Proof. Fix a partition of F into r parts which misses exactly ` edges and
consider r disjoint copies of F . By taking appropriately different parts in every
copy of F we can partition this new graph into r equal parts such that exactly r`
edges are noncrossing. Since F 0 is a b-blowup of r disjoint copies of F , this gives
a partition of F 0 into equal parts which misses r`b2 edges. We can extend this to a
partition of G into r nearly equal sets V.G/D V1[ : : :[Vr which misses exactly
r`b2 edges of F 0. Let ti be the number of edges of F 0 inside Vi , then

P
i ti D r`b

2.
This, together with Claim 8.1, implies that it is enough to delete at most

rX
iD1

eG.Vi / �

rX
iD1

�
.1��/

jVi j
2

2
C�ti CO

�
m2n3=2

��

� .1��/r
.n=r C 1/2

2
C�

rX
iD1

ti CO
�
m2n3=2

�
D .1��/

n2

2r
C�r`b2CO

�
m2n3=2

�
:

edges to make G r-partite and hence to satisfy property P.
On the other hand, by Claim 8.2, any partition of F 0, which is b-blowup of r

disjoint copies of F , into r parts misses at least r`b2 edges. Therefore for every
partition of the vertices ofG into r sets there are at least r`b2 edges of F 0 which are
noncrossing. Let V1[ : : :[Vr be a partition of V.G/ that maximizes the number
of crossing edges and let again ti be the number of edges of F 0 inside Vi (note
that in this case the sets Vi are not necessarily of the same size). Using Claim 8.1,
together with the fact that

P
i ti � r`b

2, and the Cauchy-Schwartz inequality, we
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conclude that
rX
iD1

eG.Vi / �

rX
iD1

�
.1��/

jVi j
2

2
C�ti �O

�
m2n3=2

��

�
1��

2
r

�P
i jVi j

r

�2
C�r`b2�O

�
m2n3=2

�
D .1��/

n2

2r
C�r`b2�O

�
m2n3=2

�
:

This completes the proof of the claim.

We are now ready to complete the proof of Theorem 1.3. Choose the constant
c to be sufficiently large so that 2=.c C 1/ < min.ı; 
; 1=4/. Recall, that as we
chose b Dmc and nD‚.mcC1/, we have

(14) n2�ı D o.b2/; n2�
 D o.b2/; m2n3=2 D o.b2/:

Also, as G has minimum degree .1��/n we get from Theorem 6.1, that

(15) E 0H .G/�E
0
r.G/�O.n

2�
 /:

As H does not satisfy P we clearly have E 0P.G/�E
0
H .G/. Combining this with

(13), (14) and (15) we get

E 0P.G/�E
0
H .G/�E

0
r.G/�O.n

2�
 /

� .1��/
n2

2r
C�r`b2�O

�
m2n3=2

�
�O

�
n2�


�
� .1��/

n2

2r
C�r`b2� o

�
b2
�
:

Furthermore, by our choice of r , we get that any r-colorable graph satisfies P,
hence we infer from (13) and (14) that

E 0P.G/�E
0
r.G/� .1��/

n2

2r
C�r`b2CO

�
m2n3=2

�
� .1��/

n2

2r
C�r`b2C o

�
b2
�
:

We thus conclude that jE 0P.G/� ..1��/
n2

2r
C�r`b2/j � o.b2/. Therefore, if

one can approximate E 0P.G/ in time polynomial in n (and hence also in m) within
an additive error of n2�ı D o.b2/ then one thus efficiently computes an integer
L, which is within an additive error of o.b2/ from .1��/n2=.2r/C�r`b2. But
as in this case ` is precisely the nearest integer to .L� .1� �/n2=.2r//=�rb2,
this implies that we can precisely compute the number of edge removals, needed
in order to turn the input graph F into an r-partite graph. This implies that the
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problem of approximating E 0P.G/ within n2�ı is NP-hard, and completes the proof
of Theorem 1.3.

9. Concluding remarks and open problems

�We have shown that for any monotone graph property P and any " > 0 one can
approximate efficiently the minimum number of edges that have to be deleted from
an n-vertex input graph to get a graph that satisfies P, up to an additive error of
"n2. Moreover, for any dense monotone property, that is, a property for which
there are graphs on n vertices with �.n2/ edges that satisfy it, it is NP-hard to
approximate this minimum up to an additive error of n2�ı . It will be interesting to
obtain similar sharp results for the case of sparse monotone properties. In some of
these cases (like the property of containing no cycle, or the property of containing
no vertex of degree at least 2) the above minimum can be computed precisely in
polynomial time, and in some other cases, a few of which are treated in [13], [12],
[47], a precise computation is known to be hard. Obtaining sharp estimates for the
best approximation achievable efficiently seems difficult.

� As we have mentioned in Section 1, a special case of Theorem 1.3 implies that
for any non-bipartite H , computing the smallest number of edge removals that are
needed to make a graph H -free is NP-hard. This is clearly not the case for some
bipartite graphs such as a single edge or any star. It will be interesting to classify
the bipartite graphs for which this problem is NP-hard.

� It seems interesting to decide if one can obtain a result analogous to Theorem 1.3
for the family of hereditary properties.

� A weaker version of Theorem 1.1 can be derived by combining the results of [6]
and [24]. However, this only enables one to approximate EP.G/ within an additive
error " in time nf ."/, while the running time of our algorithm is of type f ."/n2.

� Recall that E 0F.G/ denotes the smallest number of edge deletions that are needed
in order to make G F-free. For a family of graphs F, let �F.G/ denote the F-
packing number of G, which is the size of the largest family of edge-disjoint copies
of members of F, which is spanned by G. Let ��F.G/ denote the natural linear
programming relaxation of �F.G/. Haxell and Rödl [32] and Yuster [48] have
shown that �F.G/ � �

�
F.G/ � �F.G/C "n

2 for any F and any " > 0, implying
that for any finite F , �F.G/ can be approximated within any additive error of "n2

by solving the linear program for computing ��F.G/. One may wonder whether
it is possible to obtain Theorem 1.1 by solving the natural linear programming
relaxation of E 0F.G/, which we denote by E�F.G/. Regretfully, this is not the case.
Linear programming duality implies that E�F.G/ D �

�
F.G/ and by the results of
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[32] and [48] we thus have

(16) �F.G/�E
�
F.G/� �F.G/C "n

2 :

Consider now any F, which does not contain the single edge graph and note that
we trivially have �F.Kn/�

1
2

�
n
2

�
�
1
4
n2 (we denote by Kn the n-vertex complete

graph). If F contains a bipartite graph then by the theorem of Kövari, Sós and Turán
(see �6) we have E 0F.Kn/ >

�
n
2

�
�n2�ı � .1

2
�o.1//n2. If on the other hand all the

graphs in F are of chromatic number r � 3 then clearly they all must contain at least�
r
2

�
edges, and therefore we must have �F.Kn/�

�
n
2

�
=
�
r
2

�
�

n2

r.r�1/
. On the other

hand, by the theorem of Erdős-Stone-Simonovits (see �6)E 0F.Kn/>
n2

2.r�1/
�o.n2/.

In any case, we have that �F.Kn/C ın
2 �E 0F.Kn/ for some fixed ı D ı.F/ > 0.

Combined with (16) we get that for any F not containing the single edge graph,
E�F.Kn/C ın

2 < E 0F.Kn/. Thus, the (trivial) case in which F contains a single
edge is the only one for which computing E�F.G/ is guaranteed to approximate
E 0F.G/ within "n2 for any " > 0. In fact, in this degenerate case we actually have
E�F.G/DE

0
F.G/.
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