
ANNALS OF

MATHEMATICS

anmaah

SECOND SERIES, VOL. 170, NO. 1

July, 2009

The rationality of Stark-Heegner points
over genus fields of real quadratic fields

By Massimo Bertolini and Henri Darmon





Annals of Mathematics, 170 (2009), 343–369

The rationality of Stark-Heegner points over
genus fields of real quadratic fields

By MASSIMO BERTOLINI and HENRI DARMON

Abstract

We study the algebraicity of Stark-Heegner points on a modular elliptic curve
E. These objects are p-adic points on E given by the values of certain p-adic
integrals, but they are conjecturally defined over ring class fields of a real quadratic
field K. The present article gives some evidence for this algebraicity conjecture
by showing that linear combinations of Stark-Heegner points weighted by certain
genus characters of K are defined over the predicted quadratic extensions of K.
The non-vanishing of these combinations is also related to the appropriate twisted
Hasse-Weil L-series of E over K, in the spirit of the Gross-Zagier formula for
classical Heegner points.
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Introduction

Let E be an elliptic curve over Q of conductor N , and let f be the normalised
cusp form of weight 2 on �0.N / attached to E. Suppose that there is an odd prime
pjjN of multiplicative reduction for E, and let K be a real quadratic field satisfying
the following modified Heegner hypothesis:

1. The prime p is inert in K;

2. All the primes dividing M WDN=p are split in K.

Fix an embedding of K and its p-adic completion Kp into Cp WD
b
Qp, and let

Hp D Cp �Qp denote the p-adic upper half plane. Note that since p is inert in K,
the set Hp \K is non-empty.

The first section of this paper briefly recalls the main construction of [Dar01],
which associates to the cusp form f and to any � 2 Hp \K a so-called Stark-
Heegner point P� 2E.Kp/. Conjecture 5.9 of [Dar01] predicts that some integral
multiple of this point is defined over a ring class field of K depending on � , and
gives an explicit description, analogous to the Shimura reciprocity law, for the
action of Gal.Kab=K/ on the collection of Stark-Heegner points attached to K.

The main result of the present article (Theorem 1) gives some evidence for
Conjecture 5.9 of [Dar01] by showing that certain integral linear combinations
of Stark-Heegner points are global points on E defined over the expected abelian
extension of K. The non-vanishing of these points is also related to the first
derivative at s D 1 of the Hasse-Weil L-series of E=K in the spirit of the Gross-
Zagier formula, lending support for Conjecture 5.15 of [Dar01].

Before stating Theorem 1 precisely, some further notation is required. Let
M2.ZŒ1=p�/ denote the ring of 2 � 2 matrices with entries in ZŒ1=p�, and let
R�M2.ZŒ1=p�/ denote the subring of matrices which are upper-triangular modulo
M . The order associated to � 2Hp \K is defined to be

O� D

��
a b

c d

�
2R such that a� C b D c�2C d�

�
�K;

where the inclusion on the right sends the matrix
�
a b

c d

�
to the element c�Cd . Via

this inclusion, O� is identified with a ZŒ1=p�-order of K. Let D be the discriminant
of a (not necessarily maximal) order of K, and let OD denote the ZŒ1=p�-order of
K of that discriminant. Set

HD
p D

˚
� 2Hp \K such that O� D OD

	
:

The group

(1) � WD
˚

 2R� such that det.
/D 1
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acts on Hp by Möbius transformations, and preserves HD
p for any D.

Let GD WD PicC.OD/ denote the Picard group of oriented OD-modules, or
equivalently, the group of SL2.Z/-equivalence classes of primitive integral binary
quadratic forms of discriminant D equipped with the group law given by Gaussian
composition. Class field theory defines an isomorphism

rec WGD�!Gal.HD=K/;

where HD is the so-called narrow ring class field attached to OD . The fact that p
is inert in K implies that the prime ideal pOK splits completely in HD=K. Choose
a prime of HD above p. This choice determines an extension to HD of the chosen
embedding K�!Cp.

The quotient �nHD
p is equipped with a natural action of GD whose definition

is recalled in Section 1.4, and which is written .g; �/ 7! �g , for g 2 GD and
� 2 �nHD

p .
Conjecture 5.9 of [Dar01] predicts that some fixed multiple of P� is a global

point in E.HD/, so that P� belongs to E.HD/˝Q, and

(2) P�g D rec.g/�1.P� / for all g 2GD:

(Note that this compatibility does not depend on the choice of embedding of HD
into Cp that was made.)

Suppose now that D is the discriminant of K. A genus character of K is a
quadratic unramified character of Gal. NK=K/. Such a genus character � cuts out
a biquadratic (or quadratic, in the special case where � is the trivial character)
extension of Q, denoted H�:

H� DQ.
p
D1;

p
D2/; where D DD1D2:

Let �1, �2, and �K be the Dirichlet characters associated to the quadratic fields
Q.
p
D1/, Q.

p
D2/, and K respectively. Note that �1�2 D �K . The genus char-

acters are in bijection with the factorisations of D into a product of two relatively
prime fundamental discriminants, or, equivalently, with the unordered pairs of
primitive quadratic Dirichlet characters .�1; �2/ of coprime conductors satisfying
�1�2 D �K . (The trivial character � corresponds to the factorisation D D 1 �D.)
Let E.H�/� denote the submodule of the Mordell-Weil group E.H�/ on which
Gal.HD=K/ acts via the character �.

Define the point

P� D
X
g2GD

�.g/P�g 2E.Kp/:
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Equation (2) implies that an integral multiple of P� belongs to E.H�/�, and
Conjecture 5.15 of [Dar01] predicts that this point is of infinite order if and only if
L0.E=K; �; 1/¤ 0.

Let q 2 pZp be the Tate period attached to E, and write

ˆTate WK
�
p =q

Z
�!E.Kp/

for the Tate uniformisation (which is defined since p is inert in K and E therefore
acquires split multiplicative reduction over Kp). Let logq WK

�
p �!Kp denote the

branch of the p-adic logarithm satisfying logq.q/D 0, and define a homomorphism

logE WE.Kp/�!Kp

by the rule
logE .P / WD logq.ˆ

�1
Tate.P //:

For each mjN with gcd.m;N=m/D 1, let wm denote the sign of the Fricke
involution at m acting on f . Note that the modified Heegner hypothesis implies
that �K.�M/ D 1, and therefore �1.�M/ D �2.�M/. The main result of this
article is

THEOREM 1. Let � be the genus character attached to the pair of Dirichlet
characters �1 and �2. Suppose that E has at least two primes of multiplicative
reduction, and that �1.�M/D�wM .

1. There is a global point P� 2E.H�/� and t 2Q� such that

(3) logE .P�/D t logE .P�/:

2. The point P� is of infinite order if and only if L0.E=K; �; 1/¤ 0.

Remark 2. Theorem 1 shows that P� coincides with the image of a global
point in E.Kp/˝Q. This implies that a suitable integral multiple of P� belongs
to the natural image of E.H�/� in E.Kp/.

By way of providing a context for the proof of Theorem 1, we note the analogy
between the approach that it follows and Kronecker’s “solution to Pell’s equation”
in terms of special values of the Dedekind eta-function. (See Chapter IX of [Wei76]
for a historical account, and Chapter II.1 of [Sie80] for a more detailed treatment.)
In the classical setting considered by Kronecker, the fundamental discriminant
D is taken to be negative, and corresponds to an imaginary quadratic subfield K
of C. The p-adic upper half plane is replaced by its archimedean counterpart H,
and HD is given the obvious meaning (with M D 1). This set is preserved under
the action of SL2.Z/ by Möbius transformations, and the quotient SL2.Z/nHD is
equipped with a natural action of the class group GD of K. A quadratic character
� of GD—assumed to be non-trivial, although the trivial character requires no
special consideration in the setting of Stark-Heegner points—corresponds to a pair
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of Dirichlet characters �1 and �2 which are even and odd respectively, cutting out
quadratic extensions K1 and K2 of Q. Let �1 > 1 be the fundamental unit of the
real quadratic field K1, denote by hj (for j D 1; 2) the class number of Kj , and
write w2 for the number of roots of unity in K2. After setting

��.�/ WD jDj�1=4
p
2yj�.�/j2;

Kronecker shows (cf. Theorem 6 of Chapter II.1 of [Sie80]) that for any � 2HD ,

(4)
X
�2GD

�.�/ log ��.�� /D�
2h1h2

w2
log.�1/:

This expresses a solution to the Pell equation x2 �D1y2 D 1 in terms of the
function �� evaluated at suitable quadratic imaginary arguments. Kronecker’s proof
is obtained by combining the following three ingredients:

1. The Kronecker limit formula, which expresses the left-hand side of (4) in terms
of the L-series �.K; �; s/D

P
a �.a/N.a/

�s , where the sum is taken over all
the ideals a of K:

(5) �

X
�2GD

�.�/ log ��.�� /D
d

ds
�.K; �; s/jsD0:

2. A factorisation of �.K; �; s/ as a product of the Dirichlet L-series attached to
�1 and �2:

(6) �.K; �; s/D L.�1; s/L.�2; s/:

3. Dirichlet’s class number formula which asserts that

(7) L0.�1; 0/D h1 log.�1/; L.�2; 0/D
2h2

w2
:

Kronecker’s identity (4) is a direct consequence of (5), (6) and (7). It can also
be understood in the framework of the theory of complex multiplication, which
relates the individual quantities ��.�� / to elliptic units defined over HD . Kro-
necker’s approach is noteworthy in that it makes no use of the theory of complex
multiplication. This represents an advantage in the setting of Stark-Heegner points
attached to real quadratic fields, where no analogue of the theory of complex
multiplication is known, and where the algebraicity of the individual quantities P�
remains conjectural.

The proof of Theorem 1 is explained in Section 4. At this stage we limit
ourselves to some general remarks on the counterparts to steps 1, 2, and 3 above in
our approach.

1. The role of Kronecker’s limit formula is played by Theorem 4.1, which relates
the Stark-Heegner point P� to the leading term of a Hida p-adic L-function
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Lp.f1=K; �; k/ attached to the datum of a Hida family ff1g interpolating f
in weight two. The relation that emerges between periods of Hida families and
Stark-Heegner points represents a new insight that was suggested by combining
the calculations in [Das04] and [DD06] with the main result of [BD98]. It is
hoped that Theorem 4.1 may be of some independent interest beyond its role
in the proof of Theorem 1.

2. The Hida L-function Lp.f1=K; �; k/ interpolates the central critical values
L.fk=K; �; k=2/ of the weight k specialisations of f1. This interpolation
property is a direct consequence of a formula of Popa [Pop06] expressing these
values in terms of certain “geodesic cycle integrals” attached to f and K, à la
Shintani. This interpolation property is the key to expressing Lp.f =K; �; k/
as a product of two Mazur-Kitagawa p-adic L-functions Lp.f1; �j ; k; s/
attached to ff1g and the Dirichlet characters �1 and �2, restricted to the
central critical line s D k=2.

3. One is finally reduced to expressing the leading term in a neighbourhood of
k D 2 of Lp.f1; �j ; k; k=2/ in terms of rational quantities and logarithms of
global points. This last ingredient is supplied by Theorem 5.4 of [BD07], whose
precise formulation is recalled in Section 4, and whose proof relies on a p-adic
analytic construction of (classical) Heegner points coming from Shimura curve
parametrisations, via the Cerednik-Drinfeld theory of p-adic uniformisation
of these curves. It is this reliance on parametrisations by Shimura curves over
Q which forces the assumption in Theorem 1 that E has at least two primes
of multiplicative reduction.

Acknowledgements. The authors would like to thank the anonymous referee
for detailed comments and suggestions which led to significant improvements in the
exposition. The second author also acknowledges Samit Dasgupta for a stimulating
collaboration [DD06] which led to some key insights which are used in the present
work.

1. A review of Stark-Heegner points

This section reviews the definition of Stark-Heegner points given in [Dar01],
presenting it in a way that is adapted to the subsequent proof of Theorem 1.

1.1. Modular symbols. Let g 2Sk.�0.N // be a normalised cusp form of even
weight k � 2 on �0.N /, and let Kg denote the finite extension of Q generated by
its Fourier coefficients an.g/ (n� 1). We view Kg as a subfield both of C and Cp ,
by fixing complex and p-adic embeddings of Kg .

Let F be a field, and let Pk.F / denote the space of homogeneous polynomials
in two variables of degree k� 2 with coefficients in F . It is equipped with a right
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action of GL2.Q/ given by the rule

(8) .P j
/.x; y/ WD P.axC by; cxC dy/; for 
 D
�
a b

c d

�
:

Let Vk.F / denote the F -linear dual of Pk.F /.
A modular symbol with values in an abelian group G is a function

I W P1.Q/�P1.Q/�!G; denoted .r; s/ 7! I fr! sg;

satisfying

I fr! sgC I fs! tg D I fr! tg; for all r; s; t 2 P1.Q/:

The group GL2.Q/ acts on the space of Vk.C/-valued modular symbols by
the rule

.I j
/fr! sg.P / WD I f
r! 
sg.P j
�1/:

The periods of the form g are encoded in such a modular symbol, denoted QIg and
defined by

QIgfr! sg.P / WD 2�i

Z s

r

g.z/P.z; 1/dz:

This symbol is invariant under �0.N /.

The matrix c D
�
1 0

0 �1

�
normalises �0.N / and hence induces an involution

on the space MS.Vk.C//�0.N/ of �0.N /-invariant, Vk.C/-valued modular symbols.
Let QICg and QI�g denote the plus and minus eigencomponents of QIg for this involution.

PROPOSITION 1.1. There exist complex periods �Cg and ��g with the property
that the modular symbols

ICg WD .�
C
g /
�1 QICg ; I�g WD .�

�
g /
�1 QI�g

belong to MS.Vk.Kg///. These periods can be chosen to satisfy

(9) �Cg�
�
g D hg; gi;

where hg; gi is the Petersson scalar product of g with itself.

Proof. The proof is explained, for example, in Section 1.1 of [KZ84]. (See in
particular the first corollary and the third theorem in that section.) �

Remark 1.2. Note that the periods �˙g are only well-defined up to multiplica-
tion by a non-zero scalar in K�g . This ambiguity seems unavoidable, because no
obvious choice of �˙g imposes itself naturally, even though the product �Cg�

�
g is

uniquely defined by (9).
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Choose a “sign at infinity” w1 2 fC1;�1g, and set

�g WD

�
�Cg if w1 DC1I
��g if w1 D�1I

Ig WD

�
ICg if w1 DC1I
I�g if w1 D�1:

Note that the modular symbol Ig can be viewed as an element of MS.Vk.Cp//
thanks to the chosen embedding of Kg into Cp.

1.2. Double integrals. In the case where f is a modular form of weight 2
on �0.N / with rational Fourier coefficients, the modular symbol If WD If .1/ is
Q-valued, and can even be rescaled so that it takes values in Z. Assume that this
has been done from now on.

A measure on P1.Qp/ is an element of the continuous Qp-linear dual of the
space of continuous Qp-valued functions on P1.Qp/, equipped with the topology
of uniform convergence. Given a measure �, and a compact open subset U of
P1.Qp/, set �.U / WD �.�U /, where �U denotes the characteristic function of U .
The function U 7! �.U / is a bounded, finitely additive Qp-valued function on
the set of compact open subsets of P1.Qp/. Conversely, any such function gives
rise to a Qp-valued measure on P1.Qp/. The measure � is said to be integral, or
Z-valued, if �.U / belongs to Z for all compact open U � P1.Qp/.

Recall the group � of equation (1) in the introduction. Fix a subset P of P1.Q/

on which � acts transitively by Möbius transformations.
The following elementary proposition is key to the definition of Stark-Heegner

points attached to real quadratic fields.

PROPOSITION 1.3. There exists a unique system of Z-valued measures on
P1.Qp/, indexed by r; s 2 P and denoted �f fr ! sg, satisfying the following
properties.

1. For all r; s 2 P,

�f fr! sg.P1.Qp//D 0; �f fr! sg.Zp/D If fr! sg:

2. For all 
 2 � , and all compact open U � P1.Qp/,

�f f
r! 
sg.
U /D �f fr! sg.U /:

Proof. The proof of this proposition is identical to that of Proposition 2.6
of [DD06], which considered the case where the newform f is replaced by the
logarithmic derivative of a modular unit, a weight two Eisenstein series. The main
property of this Eisenstein series that is used is the fact that it is fixed by the Hecke
operator U 2p . Since this is also true of f , the proof of Proposition 2.6 can be adapted
to the setting at hand with essentially no modifications. �



THE RATIONALITY OF STARK-HEEGNER POINTS 351

Remark 1.4. We have chosen to consider modular symbols defined on P�P,
largely for convenience: for example, this will guarantee the uniqueness of the
“indefinite integral” of Proposition 1.5.

The measures �f can be used to define a “double multiplicative integral”
attached to �1; �2 2Hp and r; s 2 P as in equation (71) of [Dar01], by setting

(10) �

Z �2

�1

Z s

r

!f WD �

Z
P1.Qp/

�
t � �2

t � �1

�
d�f fr! sg.t/:

The “multiplicative integral” notation appearing on the right indicates that a limit
of Riemann products is being taken, rather than a limit of Riemann sums, i.e., that
the integration is relative to the multiplicative structure on C�p . Such a definition
is made possible by the fact that for each r; s 2 P, the measure �f fr ! sg is
Z-valued, and that the integrand is a continuous K�p -valued function on P1.Qp/

relative to the natural topology on K�p . (For a more detailed discussion of this
multiplicative integral, and its basic properties, see the discussion following Lemma
1.10 in [Dar01].)

Recall the Tate period q 2 pZp attached to E=Qp , and the branch logq of the
p-adic logarithm sending q to 0. Define

(11)
Z �2

�1

Z s

r

!f WD logq

�
�

Z �2

�1

Z s

r

!f

�
:

Note that the definition of this “additive integral” differs somewhat from the defini-
tion given in [Dar01], where the Iwasawa branch of the p-adic logarithm satisfying
log.p/D 0 is used. (Cf. equation (73) of [Dar01].)

1.3. Indefinite integrals. The following result justifies the choice of branch of
p-adic logarithm that was made in (11).

PROPOSITION 1.5. There is a unique function from Hp�P�P to Cp , denoted

.�; r; s/ 7!

Z �Z s

r

!f ;

satisfying

1. For all 
 2 � , Z 
�Z 
s


r

!f D

Z �Z s

r

!f :

2. For all �1; �2 2H,Z �2
Z s

r

!f �

Z �1
Z s

r

!f D

Z �2

�1

Z s

r

!f :
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3. For all r; s; t 2 P,Z �Z t

r

!f C

Z �Z s

t

!f D

Z �Z s

r

!f :

Proof. The proof of this proposition is explained in Section 3.1 of [Dar01],
where it is reduced to the exceptional zero conjecture of Mazur, Tate and Teitelbaum
proved by Greenberg and Stevens. (In the notation of Section 3.1 of [Dar01], and
in particular of equation (162),Z �Z s

r

!f D logq.�f;�fr! sg/:/

A more direct proof, albeit one whose main idea can still be traced to the calculations
of Greenberg and Stevens, can be obtained by specialising the approach described
in [BDI] to weight 2 modular forms. �

The function which is characterised indirectly in Proposition 1.5 is called
the indefinite integral attached to f . The articles [DG02] and [DP06] explain
how Proposition 1.5 can be used to produce efficient algorithms for the numerical
evaluation of the indefinite integral. Section 2.3 gives a direct formula for it in
terms of the periods of the Hida family interpolating f , which is better adapted to
the general calculations of this paper.

Remark 1.6. It is the existence of the indefinite integral that relies crucially on
the branch of p-adic logarithm chosen in (11). Its uniqueness then follows when
we note that the difference

ıfr! sg WD

Z �Z s

r

!
.1/

f
�

Z �Z s

r

!
.2/

f

of any two functions satisfying properties 1, 2 and 3 of Proposition 1.5 is independent
of the choice of � , and hence defines a �-invariant Cp-valued modular symbol
on P � P. Since � acts transitively on P, such a symbol is determined by the
homomorphism 'ı W ��!Cp defined by choosing a base point r 2 P and setting
'ı.
/ D ıfr ! 
rg. But this homomorphism is necessarily trivial, since � has
finite abelianisation and Cp is torsion-free.

Remark 1.7. Proposition 1.5 can be refined (cf. Theorem 5.2 of [BDG04],
or Theorem 3.3 of [Das05]) to yield the existence of a lattice Q � C�p which is
commensurable with qZ, and an “indefinite multiplicative integral”

�

Z �Z s

r

!f 2 C�p =Q

satisfying the obvious multiplicative analogues of the properties listed in Proposition
1.5. (Cf. equations (163)–(165) of [Dar01].) Roughly speaking, the latticeQ appears
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as the obstruction to splitting a two-cocycle in H 2.�;C�p / constructed in terms of
the double multiplicative integral. Note that logq.Q/D 0, and that we can writeZ �Z s

r

!f D logq

�
�

Z �Z s

r

!f

�
:

1.4. Stark-Heegner points. Given � 2Hp \K, let 
� D
�
a b

c d

�
denote the

unique generator for the stabiliser of � in � satisfying

(12) c� C d > 1:

(In this inequality, we have made use of the fixed real embedding of K.) Associate
to � a multiplicative and additive period by choosing any base point r 2 P and
setting

(13) J�� WD �

Z �Z 
�r

r

!f 2K
�
p =Q; J� WD logq.J

�
� /D

Z �Z 
�r

r

!f :

Since ˆTate.Q/ is contained in E.Kp/tors, the image of J�� under ˆTate is well-
defined in E.Kp/˝Q, and is called the Stark-Heegner point attached to � and f :

(14) P� WDˆTate.J
�
� /I hence logE .P� /D J� :

Let D be the discriminant of K. The modified Heegner hypothesis imposed on
K in the first paragraph of the introduction implies the existence of an element
ı 2 Z=MZ satisfying

ı2 �D .mod M/:

Fix such a ı once and for all. Let FD denote the set of primitive binary quadratic
forms Ax2CBxyCCy2 of discriminant D satisfying

M jA; B � ı .mod M/:

The set FD is preserved under the natural action of �0.M/ defined by (8). Recall
the class group GD of SL2.Z/-equivalence classes of primitive binary quadratic
forms of discriminant D. The natural map

�0.M/nFD�!GD

obtained by sending the class of the quadratic form Q to its corresponding SL2.Z/-
equivalence class is readily seen to be a bijection, and hence �0.M/nFD is endowed
with the stucture of a principal homogeneous space under GD . If Q.x; y/ belongs
to �0.M/nFD , and � to GD , write Q� for the image of Q by � . Let HD denote
the narrow Hilbert class field of K, whose Galois group is identified with GD , and
let

rec WGD�!Gal.HD=K/
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denote the isomorphism arising from the reciprocity law of global class field theory.
Given QD Ax2CBxyCCy2 2 �0.M/nFD , let

(15) �Q WD
�BC

p
D

2A

be a fixed root of the quadratic polynomial Q.x; 1/. Note that �Q belongs (via the
fixed p-adic embedding of K) to HD

p , and that its image in �nHD
p is well-defined.

Given � 2 GD , write �� 2 HD
p for the root of any quadratic form in the �0.M/-

equivalence class of Q� . This definition gives a precise meaning to the conjectural
equation (2) of the introduction.

Since the definition of Stark-Heegner points is purely p-adic analytic, little can
be said about the action of Gal.HD=K/ on these points independently of assertion
(2) in the introduction. However, something unconditional can be asserted about
the action of the Frobenius element at p, denoted �p 2 Gal.HD=Q/. Since the
prime p is inert in K, the element �p, which is only defined up to conjugation,
corresponds to a reflection in the generalised dihedral group Gal.HD=Q/. This
reflection corresponds to the involution in Gal.Kp=Qp/ after fixing an embedding
HD�!Kp, i.e., a prime of HD above p. Proposition 5.10 of [Dar01] asserts the
existence of an element �� in GD satisfying

(16) �p.J� /D�wMJ��� ; �p.P� /D wNP��� :

Note the sign difference in the two equations, which arises from the fact that �p
does not commute with ˆTate in general, but rather satisfies

�pˆTate�p D apˆTate D�wpˆTate:

The element �� is denoted by � in Proposition 5.10 of [Dar01], but we have denoted
it here by �� to emphasize its dependence on � . Indeed, replacing � by �˛, for
some ˛ 2GD , one can see that

(17) ��˛ D ��˛
�2:

This identity is a consequence of the fact that �p does not commute with the elements
of GD , but rather satisfies

�p� D �
�1�p; for all � 2GD:

Equation (17) shows that the image of �� in GD=G2D is independent of � 2 �nHD
p .

Denote this element by � , in keeping with the notation of Proposition 5.10 of
[Dar01].

It will be necessary to have a precise description of � . To do this, we give
a formula for �.�/, as � runs over the characters of GD=G2D . These characters
are precisely the genus characters attached to the discriminant D, and correspond
to pairs .�1; �2/ of primitive quadratic Dirichlet characters of coprime conductor
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satisfying �1�2 D �K . (Cf. the discussion in the introduction preceding the
statement of Theorem 1.) The unordered pair .�1; �2/ is characterised by the
properties

�.frob�/D �.frob N�/D �1.`/D �2.`/;(18)

�.frob1/D �1.�1/D �2.�1/;

for any rational prime ` which splits completely as a product `D� N� of prime ideals
of K of norm `. (Here, frob1 denotes the conjugacy class of complex conjugation
in GD .)

PROPOSITION 1.8. For any genus character � attached to the discriminant D,
corresponding to the pair .�1; �2/ of quadratic Dirichlet characters,

�.�/D �1.�M/:

Proof. We will show that the element � corresponds to the class in GD=G2D
of the element1�e11 � � ��

et
t 2 PicC.O/; where

1. 1 stands for the class of a principal ideal generated by an element x 2 K
of negative norm for which ordp.x/ is even, and corresponds to complex
conjugation in GD=G2D;

2. M D `
e1
1 � � � `

et
t is the factorisation of M into a product of distinct prime

powers, and �j is some ideal of K above j̀ .

To see this, we first recall the description of the action of GD on �nHD
p given

in Section 2.4 of [DD06]. If � belongs to HD
p , one may choose a representative

element (denoted � again by abuse of notation) in its �-orbit in such a way that both
ƒ1Dh�; 1i andƒ2DhM�; 1i are fractional ideals of O with � > N� and ordp.�� N�/
even. The ratio � D ƒ1=ƒ2 is a cyclic integral O-ideal of norm M . Using the
bijection � described in Section 2.4 of [DD06], the element WM . N�/D�1=.M N�/
corresponds to the pair of fractional ideals

ƒ01 D h�x;Mx N�i; ƒ02 D h�Mx;Mx N�i:

Now a direct calculation shows that

.ƒ01; ƒ
0
2/D c� .ƒ1; ƒ2/;

where
cD .x/ N�. Nƒ1=ƒ1/:

The fractional ideal . Nƒ1=ƒ1/D ƒ1 Nƒ1
ƒ21

represents the trivial element in GD=G2D . It

follows that � is represented by the class of .x/ N� in GD=G2D , as was to be shown.
Proposition 1.8 now follows from (18). �
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2. Hida theory

The definition of Stark-Heegner points given in Section 1.4 is ill-suited for
theoretical calculations, because of the indirect nature of the definition of the
indefinite integral of Proposition 1.5. The present chapter gives a useful definition
of the indefinite integral and of Stark-Heegner points in terms of periods attached
to Hida families.

2.1. Hida families. Let

Qƒ WD ZpŒŒZ
�
p ��; ƒD ZpŒŒ.1CpZp/

���

denote the usual Iwasawa algebras, and let

XD hom.Z�p ;Z
�
p /' Z=.p� 1/Z�Zp

be the space of continuous p-adic characters of Z�p , equipped with its natural
topology. Elements of X can also be viewed in a natural way as continuous algebra
homomorphisms from Qƒ to Zp . The space X contains Z as a dense subset by sending
k 2 Z to the character �k.x/ WD xk�2. Note the shift by two in our convention,
which means that k D 2 corresponds to the augmentation map on Qƒ.

Following the discussion in Section 1.2 of [BD07], we associate to f a so-
called Hida family

f1 WD

1X
nD1

an.k/q
n:

This is a formal q-expansion with coefficients in the ring A.U / of p-adic analytic
functions on U , where U is an appropriate neighbourhood of 2 2 X. Assume
for simplicity that U is contained in the residue disc of 2 modulo p � 1, and let
Z�2 denote the set of integers which are � 2. The formal q-expansion f1 is
characterised by the following properties:

1. If k belongs to U \Z�2, the q-expansion

fk WD

1X
nD1

an.k/q
n

is a normalised eigenform of weight k on �0.N /. For this reason it is referred
to as the weight k specialisation of f1.

2. f2 D f .

Note in particular that the field Kfk generated by the Fourier coefficients of the
normalised eigenform fk is a finite extension of Q. For each k 2 U \ Z�2, we
fix the Shimura periods �C

k
WD �C

fk
and ��

k
WD ��

fk
as in Proposition 1.1. This

choice of periods allows us to talk about the Vk.Cp/-valued modular symbols IC
fk
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and I�
fk

associated to each fk . The modular symbol Ifk will be taken to be IC
fk

or
I�
fk

depending on the choice of w1 that was made.

2.2. Periods attached to Hida families. Let L� WD Z2p denote the standard
Zp-lattice in Q2

p , and let L0� denote its set of primitive vectors, i.e., the vectors in L�
which are not divisible by p. Let D denote the space of compactly supported Qp-
valued measures on W WDQ2

p �f0g, and let D� denote the subspace of measures
that are supported on L0�. The action of the group Z�p on W and L0� given by
�.x; y/ D .�x; �y/ gives rise to Qƒ and ƒ module structures on D and D�. The
module D is also equipped with a right Qƒ-linear action of GL2.Qp/ defined by the
rule

(19)
Z

W
Fd.�j
/D

Z
W
.F j
�1/d�;

where GL2.Qp/ operates on the continuous functions on W by the rule extending
(8):

(20) .F j
/.x; y/ WD F.axC by; cxC dy/; for 
 D
�
a b

c d

�
:

Denote by �0.pZp/ the group of matrices in GL2.Zp/ which are upper trian-
gular modulo p. Our interest in the space D� lies in the fact that it is equipped, for
all k 2 Z�2, with a �0.pZp/-equivariant homomorphism

�k W D��!Vk

defined by

�k.�/.P / WD

Z
Zp�Z�p

P.x; y/d�.x; y/:

(Note that �k does not respect the full action of GL2.Zp/, because the domain
of integration that appears in its definition is only preserved by �0.pZp/.) The
homomorphism �k gives rise to a homomorphism, denoted by the same letter by
abuse of notation:

�k WMS�0.M/.D�/�!MS�0.N/.Vk.Cp//:

The space MS�0.M/.D�/ is equipped with a natural action of the Hecke
operators, and of the operator Up in particular. Let MSord

�0.M/
.D�/ denote the

ordinary subspace of MS�0.M/.D�/.
Proposition (6.1) of [GS93] asserts that this module is free and of finite rank

over ƒ.
The Iwasawa algebra ƒ is identified in the usual way with a subring of the ring

of analytic functions on X. Let ƒ� denote the larger ring of Cp-valued functions
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on X which can be represented by a convergent power series expansion in some
neighbourhood of 2 2 X, and set

D
�
� WD D�˝ƒƒ

�; MSord
�0.M/.D�/

�
WDMSord

�0.M/.D�/˝ƒƒ
�:

Similar notations are adopted, with the obvious meanings, when D� is replaced by
D. If �D �1�1C� � �C�t�t , with �i 2ƒ� and �i 2D, is any element of D�, then
there exists a neighbourhood U� of 2 2 X on which all the �j are defined. Call
such a region a neighbourhood of regularity for �. Given k 2 Z, a function F on
W is said to be homogeneous of degree k if F.�x; �y/D �kF.x; y/ for all � 2 Zp .
Observe that for any k 2 U� \ Z�2, and any homogeneous function F.x; y/ of
degree k� 2, one can integrate F against � on any compact open region X �W

by the rule Z
X

Fd� WD �1.k/

Z
X

Fd�1C � � �C�t .k/

Z
X

Fd�t :

The following result of Greenberg and Stevens plays a key role in the constructions
of this section.

THEOREM 2.1. There exists a D
�
�-valued modular symbol��2MSord

�0.M/
.D�/

�

such that

1. �2.��/D If ;

2. For all k 2 U�� \Z�2, there exists a scalar �.k/ 2 Cp such that

�k.��/D �.k/Ifk :

Proof. This is Theorem 1.5 of [BD07], which follows from Theorem (5.13) of
[GS93] and whose proof is explained in Section 6 of that paper. See also [BDI]
where extensions of this result to modular forms that are not necessarily ordinary
are discussed. �

Remark 2.2. Note that the scalar �.k/ depends on the choice of complex period
used to define Ifk . Since no attempt was made to choose these complex periods
“coherently” as k varies (and in fact, the authors ignore whether such a choice
can meaningfully be made a priori), the function k 7! �.k/ cannot be expected to
extend to a continuous function on U�� .

Since R� acts transitively on the set of Zp-lattices in Q2
p, and the stabiliser

of L� for this action is precisely �0.M/, we may define a collection of D�-valued
modular symbols �L indexed by the Zp-lattices in Q2

p as in Proposition 1.8 of
[BD07], by imposing the rules:

�L� D ��;

Z

X

.F j
�1/d�
Lf
r! 
sg D

Z
X

Fd�Lfr! sg;
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for all 
 2 � , for all lattices L�Q2
p, and all compact open regions X �W.

Let
U WD U�� D U�L

denote a region of regularity for the measures �L. The measures �Lfr ! sg are
supported on the compact subsets L0 of W, and they satisfy the following property:

LEMMA 2.3. Suppose that L2 � L1 is a sublattice of index p in L1. For all
k 2 U \Z�2, for all homogeneous polynomials P.x; y/ of degree k � 2, and for
all r; s 2 P, Z

L01\L
0
2

Pd�L2fr! sg D ap.k/

Z
L01\L

0
2

Pd�L1fr! sg:

Proof. See Lemma 1.10 of [BD07]. �
The basic property of the measures ��fr! sg given in Theorem 2.1 can be

re-written as

(21)
Z

Zp�Z�p

P.x; y/d��fr! sg.x; y/D �.k/Ifkfr! sg.P /;

for all P 2 Pk.Q/, and for all r; s 2 P. It will be useful to understand the value of
the integral appearing on the left in (21), when the region of integration is taken to
be the full L0� D .Z

2
p/
0 instead of the subset Zp �Z�p .

To write down such a formula, we first remark that for each integer k > 2, the
form fk is old at p, and there is a unique normalised eigenform f

]

k
of weight k on

�0.M/ satisfying

fk.z/D f
]

k
.z/�pk�1ap.k/

�1f
]

k
.pz/:

(By convention, we set f ]2 WD 0.) Let I
f
]

k

be the modular symbol attached to f ]
k

via the choice of complex period �k . This modular symbol satisfies the relation

Ifkfr! sg.P /D I
f
]

k

fr! sg.P /�pk�2ap.k/
�1I

f
]

k

fr=p! s=pg.P.x; y=p//:

PROPOSITION 2.4. For all k 2 U \ Z�2, for all P 2 Pk.Cp/ and for all
r; s 2 P,Z

.Z2p/0
P.x; y/d��fr! sg.x; y/D �.k/.1� ap.k/

�2pk�2/I
f
]

k

fr! sg.P /:

Proof. This proposition is inspired from Lemma 4.17 of [DD06] which treats
the case of the Hida family of Eisenstein series. The proof given here follows the
argument of [DD06] closely. (The essential, comparatively minor difference is that
one has �.k/D ap.k/2 D 1 in the context of Lemma 4.17 of [DD06].) Let L� and
L1 denote the lattices

L� D Z2p; L1 D Zp˚pZp:
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Note that

(22) .L0�\L
0
1/D Z�p �pZp;

�
L0�\

1

p
L01

�
D Zp �Z�p :

Let � 2R� be any matrix of determinant p satisfying

(23) �.L�/D L1; �.L1/D pL�I then �.Z�p �pZp/D p.Zp �Z�p /:

Observe that L0� can be written as a disjoint union of the two regions appearing in
(22). Hence we may writeZ

.Z2p/0
P.x; y/d��fr! sg.x; y/D J1CJ2;

where

J1 D

Z
Zp�Z�p

Pd�f fr! sg D �.k/Ifkfr! sg.P /;

J2 D

Z
Z�p�pZp

Pd�f fr! sg

D

Z
p.Zp�Z�p /

.P j��1/d�L1f� r! �sg

D pk�2
Z

Zp�Z�p

.P j��1/d� 1
p
L1
f� r! �sg

D ap.k/
�1pk�2

Z
Zp�Z�p

.P j��1/d�L�f� r! �sg

D ap.k/
�1pk�2�.k/Ifkf� r! �sg.P j��1/;

and the penultimate equality follows from Lemma 2.3. To evaluate the contributions
J1 and J2 in terms of the form f

]

k
, note that, for any choice of � satisfying (23),

fk.z/D f
]

k
.z/�pk�1ap.k/

�1.f
]

k
j�/.z/:

A direct calculation, using a change of variables, then shows that

I
.f
]

k
j�/
fr! sg.P /D p�1I

f
]

k

f� r! �sg.P j��1/:

Hence

J1 D �.k/
�
I
f
]

k

fr! sg.P /�pk�1ap.k/
�1I

.f
]

k
j�/
fr! sg.P /

�
D �.k/

�
I
f
]

k

fr! sg.P /�pk�2ap.k/
�1I

f
]

k

f� r! �sg.P j��1/
�
;
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while

J2 D �.k/ap.k/
�1pk�2

�
I
f
]

k

f� r! �sg.P j��1/

�pk�2ap.k/
�1I

f
]

k

f�2r! �2sg.P j��2/
�
:

Note that �2 D p
 , for some 
 2 �0.N /. Since I
f
�

k

is �0.N /-invariant, it follows
that

I
f
]

k

f�2r! �2sg.P j��2/D p�kC2I
f
]

k

fr! sg.P /;

and therefore

J1CJ2 D �.k/.1� ap.k/
�2pk�2/I

f
]

k

fr! sg.P /:

The proposition follows. �

2.3. Indefinite integrals revisited. Recall the indefinite integral defined in
Section 1.3. The relevance of Hida families to Stark-Heegner points can be explained
by the fact that the system of distribution-valued modular symbols �Lfr ! sg

introduced in Section 2.2 can be used to give a direct formula for this indefinite
integral.

We content ourselves with doing this when � belongs to Hp \Kp , and hence
is defined over a quadratic unramified extension of Qp. In that case, the function

.x; y/ 7! x� �y

identifies Q2
p with Kp. Let L� be the Zp-lattice in Q2

p defined by

L� D f.x; y/ such that x� �y belongs to OK ˝Zpg:

The following theorem is a direct generalisation of Proposition 4.7 of [DD06].

THEOREM 2.5. For all � 2Hp \Kp, and for all r; s 2 P,Z �Z s

r

!f D

Z
L0�

log.x� �y/d�L� fr! sg.x; y/;

where log WK�p �!Kp is any branch of the p-adic logarithm.

Proof. Note that the expression .x � �y/ belongs to .OK ˝ Zp/
� for any

.x; y/ 2 L0� , and hence the integrand on the right is independent of the branch
of the p-adic logarithm that was chosen to define it. To prove Theorem 2.5, it
suffices to check that the three defining properties of the indefinite integral listed in
Proposition 1.5 are satisfied by the expression appearing on the right in Theorem
2.5. The invariance under � stated as property 1 is a consequence of Proposition
4.6 of [BDI]. As for property 2, it follows from Proposition 4.7 of [BDI], which
holds for any branch of the p-adic logarithm, including logq for which the extra
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term appearing in Proposition 4.7 of [BDI] vanishes. Finally, property 3 is a direct
consequence of the definitions. �

COROLLARY 2.6. The Stark-Heegner point P� associated to

Q 2 �0.M/nFD

satisfies

logE P� D J� D
Z
.Z2p/0

log.x� �y/d��fr! 
�rg.x; y/:

Proof. This follows from (14) and Theorem 2.5, after we note that L� D Z2p

when � D �Q and Q is an element of FD . �

3. p-adic L-functions

3.1. The Mazur-Kitagawa p-adic L-function. Let � W .Z=mZ/��!f˙1g be
a primitive quadratic Dirichlet character of conductor m with �.�1/Dw1, and let

�.�/ WD

mX
aD1

�.a/e2�ia=m

denote the Gauss sum attached to �. For each k 2 U \Z�2, and 1 � j � k � 1
with j odd, the expression

(24) L�.fk; �; j / WD
.j � 1/Š�.�/

.�2�i/j�1�k
L.fk; �; j /

belongs to Kfk ; it is called the algebraic part of the special value L.fk; �; j /.
Recall that the period �k that appears in the definition of L�.fk; �; j / was chosen
at the end of Section 2.1 and depends on the sign w1 that was fixed in that section,
and therefore on the parity of �.

One defines L�.f ]
k
; �; j / similarly, by replacing fk by f ]

k
in the definition

above. Note that

(25) L�.fk; �; j /D .1��.p/ap.k/
�1pk�1�j /L�.f

]

k
; �; j /:

The measures ��fr ! sg can be used to define the Mazur-Kitagawa two-
variable p-adic L-function of .k; s/ 2 U �X by the rule:

Lp.f1; �; k; s/D

mX
aD1

�.pa/

Z
Z�p�Z�p

�
x�

pa

m
y
�s�1

yk�s�1d��

n
1!

pa

m

o
:

This function satisfies the following interpolation property with respect to special
values of the classical L-functions L�.fk; �; j /.
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THEOREM 3.1. Suppose that k 2 U \Z�2, and that 1 � j � k � 1 satisfies
�.�1/D .�1/j�1w1. Then

Lp.f1; �; k; j /D �.k/.1��.p/ap.k/
�1pj�1/L�.fk; �; j /:

Proof. See Theorem 1.12 of [BD07]. �
It will be useful to have a formula expressing Lp.f1; �; k; j / in terms of the

special value L�.f ]
k
; �; j /. Theorem 3.1 and equation (25) imply that

Lp.f1; �; k; j /

D �.k/.1��.p/ap.k/
�1pj�1/.1��.p/ap.k/

�1pk�1�j /L�.f
]

k
; �; j /:

In particular, specialising at j D k=2 one obtains

COROLLARY 3.2. Suppose that � satisfies �.�1/D .�1/k=2�1w1: Then for
all k 2 U \Z�2,

Lp.f1; �; k; k=2/D �.k/.1��.p/ap.k/
�1p

k
2
�1/2L�.f

]

k
; �; k=2/:

Note that the Euler factor appearing in this last expression is a perfect square.

3.2. p-adic L-functions attached to real quadratic fields. Given QD Ax2C
Bxy C Cy2 in FD , let � D �Q and N� be the roots of the quadratic polynomial
Q.x; 1/, ordered as in (15). These belong to K, and can be viewed as elements of
Cp via the chosen embedding of K into Cp.

The quadratic form Q has a stabiliser in �0.M/ of rank one, generated by the
element 
� 2�0.M/ normalised as in (12). Let �D c�Cd denote the corresponding
fundamental unit of K. By analogy with the definition of the Mazur-Kitagawa
p-adic L-function, it is tempting to associate to f1 and Q a “two-variable p-adic
L-function” by the rule

Lp.f1;Q; k; s/ WD A
k
2
�1

Z
.Z2p/0

.x� �y/s�1.x� N�y/k�s�1d��fr! 
�rg.x; y/:

Note that this expression depends on the choice of base point r in a crucial way:
replacing r by r 0 2 P has the effect of modifying Lp.f1;Q; k; s/ by the term

A
k
2
�1.1� �k�2s/

Z
.Z2p/0

.x� �y/s�1.x� N�y/k�s�1d��fr! r 0g.x; y/:

It follows that the restriction of Lp.f1;Q; k; s/ to the central critical line sD k=2
is independent of the choice of r . This motivates the following definitions.

Definition 3.3. Let r 2 P be any base point. The partial square root p-adic
L-function attached to f1 and Q is the function of k 2 U defined by

Lp.f1;Q; k/ WD

Z
.Z2p/0

Q.x; y/
k�2
2 d��fr! 
�rg.x; y/:
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Let � be a fixed genus character of GD . This character is said to be even
(resp. odd) if it cuts out a totally real, resp. imaginary, quadratic extension of K. If
� is even (resp. odd), then the associated Dirichlet characters �1 and �2 are both
even (resp. odd). Recall the sign at infinity w1 chosen in defining the modular
symbols Ifk and in choosing the Shimura period �k .

Definition 3.4. Let � be a genus character. Assume that w1 D 1 if � is even,
and that w1 D�1 if � is odd.

1. The square root p-adic L- function attached to f1 and � is the function of
k 2 U defined by

Lp.f1=K; �; k/ WD
X
�2GD

�.�/Lp.f1;Q
� ; k/:

2. The p-adic L-function attached to f1 and � is the function of k 2 U defined
by

Lp.f1=K; �; k/ WD Lp.f1=K; �; k/
2:

We now prove the interpolation property for Lp.f1=K; �; k/ which justifies
its designation as a p-adic L-function.

THEOREM 3.5. For all k 2 U \Z�2,

Lp.f1=K; �; k/D �.k/
2.1� ap.k/

�2pk�2/2D
k�2
2 L�.f

]

k
=K; �; k=2/;

where

(26) L�.f
]

k
=K; �; k=2/D

.k
2
� 1/Š2

p
D

.2�i/k�2�2
k

L.f
]

k
=K; �; k=2/:

Proof. By definition,

Lp.f1=K;Q; k/D

Z
.Z2p/0

Q.x; y/
k�2
2 d��fr! 
Qrg.x; y/

D �.k/.1� ap.k/
�2pk�2/I

f
]

k

fr! 
Qrg.Q
k�2
2 /;

where the last equality follows from Proposition 2.4. Hence

(27) Lp.f1=K; �; k/

D �.k/2.1� ap.k/
�2pk�2/2

� X
�2GD

�.�/I
f
]

k

fr! 
Q� rg
�
.Q� /

k�2
2

��2
D �.k/2.1� ap.k/

�2pk�2/2.2�i/2��2k L�;

where

L� D

� X
�2GD

�.�/

Z 
Qz0

z0

f
]

k
.z/Q� .z; 1/

k�2
2 dz

�2
:
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The crucial ingredient in the proof of Theorem 3.5 is Theorem 6.3.1 of [Pop06],
which asserts that

(28) L� DD
k�1
2 .2�/�k

�
k� 2

2

�
Š2L.f

]

k
=K; �; k=2/:

It follows readily from (27) and (28) that

Lp.f1=K; �; k/D �.k/
2.1� ap.k/

�2pk�2/2D
k�2
2 L�.f

]

k
=K; �; k=2/;

as was to be shown. �

3.3. A factorisation formula. We come to the following factorisation relating
the Mazur-Kitagawa p-adic L-functions (more precisely, their restrictions to the
central critical line) with the p-adic L-functions attached to the real quadratic field
K in the previous section.

THEOREM 3.6. For all k 2 U ,

Lp.f1=K; �; k/DD
k�2
2 Lp.f1; �1; k; k=2/Lp.f1; �2; k; k=2/:

Proof. By comparing the Euler product expansions on both sides (and noting
that IndGQ

GK
.�/D �1˚�2) we see that

(29) L.f
]

k
=K; �; k=2/D L.f

]

k
; �1; k=2/L.f

]

k
; �2; k=2/:

Gauss’s classical calculation of quadratic Gauss sums, in the case of fundamental
discriminants, shows that

(30) �.�i /D
p
Di ; i D 1; 2:

Combining (29) and (30) with definitions (24) and (26), we see that

L�.f
]

k
=K; �; k=2/D L�.f

]

k
; �1; k=2/L

�.f
]

k
; �2; k=2/:

Also, because p is inert in K, the Dirichlet characters �1 and �2 satisfy �1.p/D
��2.p/, and hence the product of the Euler factors at p appearing in Corollary 3.2
with � replaced by �1 and �2 is equal to the Euler factor appearing in Theorem
3.5. Hence Theorem 3.5 and Corollary 3.2 imply that for all k 2 U \Z�2,

(31) Lp.f1=K; �; k/DD
k�2
2 Lp.f1; �1; k; k=2/Lp.f1; �2; k; k=2/:

Since U \Z�2 is dense in U , and the two sides of (31) are continuous on U , they
necessarily agree on this region. �
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4. Proof of the main result

We begin by noting the following connection between the Stark-Heegner point
P� and the leading term of the p-adic L-function that was introduced in Section 3.2.
This relation can be viewed as a somewhat exotic p-adic variant of the Gross-Zagier
formula since it relates Stark-Heegner points to derivatives of p-adic L-series. It
is even more closely related in the spirit of the main theorem of [BD98] and its
extension to Hida families stated in Theorem 4.9 of [BD07].

Recall first from Definition 3.3 that, for all Q 2 FD ,

Lp.f1=K;Q; 2/D

Z
.Z2p/0

d��fr! 
�rg.x; y/D �f fr! 
�rg.P1.Qp//D 0:

It follows that Lp.f1=K; �; 2/D 0 for all characters � of GD .

THEOREM 4.1. For all genus characters � of GD ,

d

dk
Lp.f1=K; �; k/kD2 D

1

2
.1��1.�M/wM / logE .P�/:

Proof. By definition for each Q 2 �0.M/nFD with associated roots � and N� ,

d

dk
Lp.f1;Q; k/kD2 D

1

2

Z
.Z2p/0

.log.x� �y/C log.x� N�y// d��fr! 
�rg

D
1

2
.J� C �pJ� /

D
1

2
.J� �wMJ��� /;

where the last equality is a consequence of equation (16). It follows from Proposition
1.8 that

d

dk
Lp.f1=K; �; k/kD2 D

1

2
.1��1.�M/wM /

� X
�2GD

�.�/J��

�
;

as was to be proved. �

COROLLARY 4.2. For all genus characters � of GD ,

d2

dk2
Lp.f1=K; �; k/kD2 D

�
2 log2E .P�/ if �1.�M/D�wM

0 if �1.�M/D wM :

We are now ready to prove Theorem 1 of the introduction.

THEOREM 4.3. Let � be the genus character attached to the pair of Dirichlet
characters �1 and �2. Suppose that E has at least two primes of multiplicative
reduction, and that �1.�M/D�wM .
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1. There is a point P� 2E.H�/� and t 2Q� such that

logE .P�/D t logE .P�/:

2. The point P� is of infinite order if and only if L0.E=K; �; 1/¤ 0.

Proof. The proof proceeds in three stages, which are parallel to Kronecker’s
“solution to Pell’s equation” described in the last paragraph of his introduction.

1. Corollary 4.2 expresses the logarithm of the Stark-Heegner point P� in
terms of special values of L-series:

(32) log2E .P�/D
1

2

d2

dk2
Lp.f1=K; �; k/kD2:

2. Theorem 3.6 asserts that

(33) Lp.f1=K; �; k/DD
k�2
2 Lp.f1; �1; k; k=2/Lp.f1; �2; k; k=2/:

Hence we are now reduced to understanding the leading terms of the Mazur-
Kitagawa p-adic L-functions attached to �1 and �2 in a neighbourhood of k D 2.

3. Let
sign.E; �j / WD �wN�j .�N/

denote the sign in the functional equation for the complex L-series L.E; �j ; s/.
Since �1.�N/�2.�N/D�K.�N/D�1, it follows that sign.E;�1/ and sign.E;�2/
are opposite. Order �1 and �2 in such a way that

(34) sign.E; �1/D�1; sign.E; �2/D 1:

Then �1.�N/D wN , and the running hypothesis that �1.�M/D�wM implies
that

(35) �1.p/D�wp D ap:

Therefore the Mazur-Kitagawa p-adicL-functionLp.f; �1; k; s/ has an exceptional
zero at .k; s/D .2; 1/. Conditions (34) and (35) imply that we are in the situation
where Theorem 5.4 of [BD07] can be applied to Lp.f; �1; k; k=2/. Hence, this
p-adic analytic function vanishes to order � 2 at k D 2, and there is a global point
P�1 2E.Q.

p
D1// and a rational number `1 2Q� satisfying three properties:

A.

(36)
d2

dk2
Lp.f1; �1; k; k=2/kD2 D `1 log2.P�1/:

B. The point P�1 is of infinite order if and only if L0.E; �1; 1/¤ 0.

C. The rational number `1 satisfies

(37) `1 � L
�.f;  ; 1/ .mod .Q�/2/;
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for any primitive quadratic Dirichlet character  for which L.f; ; 1/¤ 0 and such
that

 .`/D �1.`/ for `jM;  .p/D��1.p/:

On the other hand, the quantity

(38) Lp.f1; �2; 2; 1/D 2L
�.E; �2; 1/DW 2`2

is a rational number, which is non-zero if and only if L.E; �2; 1/ does not vanish.
Note that in this case `1`2 is a rational square by (37). Choose t 2Q� such that

t2 D

�
`1`2 if `2 ¤ 0;
1 otherwise,

and let

P� WD
�

P�1 if L0.E=K; �; 1/D L0.E; �1; 1/L.E; �2; 1/¤ 0;
0 otherwise,

Equations (32), (33), (36) and (38) imply Theorem 4.3, after possibly adjusting the
sign of t . �

Remark 4.4. The condition �1.�M/ D �wM imposed in Theorem 4.3 is
needed both in the first and third steps of the argument. When �1.�M/DwM , the
signs in the functional equations for both Lp.fk; �1; s/ and Lp.fk; �2; s/ are �1.

1. In the case of Lp.fk; �1; s/, this arises from the fact that the sign in the
classical functional equation for L.fk; �1; s/ is �1, while Lp.fk; �1; s/ does
not have an exceptional zero, because �1.p/D wp D�ap.

2. For Lp.f1; �2; k; s/, the classical L-function L.fk; �2; s/ vanishes to even
order, but its p-adic counterpart has an exceptional zero and therefore vanishes
to odd order at the central critical point. (This latter situation is precisely
the one that was studied by Greenberg and Stevens in [GS93], where the
vanishing of Lp.f1; �2; k; s/ on the central critical line was used to prove
the “exceptional zero conjecture” of Mazur, Tate and Teitelbaum.)

Thus, in the setting where �1.�M/D wM , equation (33) implies that the p-adic
L-function Lp.f1=K; �; k/ vanishes identically. Hence no arithmetic information
is to be extracted from this function, and a proof of Theorem 1 would seem to
require a different approach. (An eventual extension of equation (36) to the setting
of Hilbert modular forms attached to the real quadratic field K seems a promising
avenue.)

Remark 4.5. In the case where � is not quadratic, the crucial factorisation (33)
ceases to be available. This reflects the presence of a serious obstacle, and the ideas
explored in his paper appear to shed no light on the algebraicity of the individual
Stark-Heegner points P� when GD is not of exponent 2. Indeed, the reader will
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have noted that no “genuinely new” Stark-Heegner points are produced in this
article. Rather, it is shown that where the classical theory of Heegner points and the
theory of Stark-Heegner points intersect—namely, genus fields—the Stark-Heegner
points can be expressed in terms of Heegner points. To go beyond genus characters,
one would probably need to develop a theory of “real multiplication” yielding an
independent construction of Stark-Heegner points and an “explicit class field theory”
for real quadratic fields.
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