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Abstract

The Deligne groupoid is a functor from nilpotent differential graded Lie algebras
concentrated in positive degrees to groupoids; in the special case of Lie algebras
over a field of characteristic zero, it gives the associated simply connected Lie group.
We generalize the Deligne groupoid to a functor 
 from L1-algebras concentrated
in degree > �n to n-groupoids. (We actually construct the nerve of the n-groupoid,
which is an enriched Kan complex.) The construction of gamma is quite explicit (it
is based on Dupont’s proof of the de Rham theorem) and yields higher dimensional
analogues of holonomy and of the Campbell-Hausdorff formula.

In the case of abelian L1 algebras (i.e., chain complexes), the functor 
 is the
Dold-Kan simplicial set.

1. Introduction

Let A be a differential graded (dg) commutative algebra over a field K of
characteristic 0. Let �� be the simplicial dg commutative algebra over K whose
n-simplices are the algebraic differential forms on the n-simplex �n. Sullivan
[Sul77, � 8] introduced a functor

A 7! Spec�.A/D dAlg.A;��/

from dg commutative algebras to simplicial sets; here, dAlg.A;B/ is the set of
morphisms of dg algebras from A to B . (Sullivan uses the notation hAi for this func-
tor.) This functor generalizes the spectrum, in the sense that if A is a commutative
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272 EZRA GETZLER

algebra, Spec�.A/ is the discrete simplicial set

Spec.A/D Alg.A;K/;

where Alg.A;B/ is the set of morphisms of algebras from A to B .
If E is a flat vector bundle on a manifold M , the complex of differential forms

.��.M;E/; d/ is a dg module for the dg Lie algebra ��.M;End.E//; denote the
action by �. To a one-form ˛ 2�1.M;End.E// is associated a covariant derivative

r D d C �.˛/ W��.M;E/!��C1.M;E/:

The equation
r
2
D �

�
d˛C 1

2
Œ˛; ˛�

�
shows that r is a differential if and only if ˛ satisfies the Maurer-Cartan equation

d˛C 1
2
Œ˛; ˛�D 0:

This example, and others such as the deformation theory of complex manifolds of
Kodaira and Spencer, motivates the introduction of the Maurer-Cartan set of a dg
Lie algebra g [NR66]:

MC.g/D f˛ 2 g1 j ı˛C 1
2
Œ˛; ˛�D 0g:

There is a close relationship between the Maurer-Cartan set and Sullivan’s
functor Spec�.A/, which we now explain. The complex of Chevalley-Eilenberg
cochains C �.g/ of a dg Lie algebra g is a dg commutative algebra whose underlying
graded commutative algebra is the graded symmetric algebra S.gŒ1�_/; here, gŒ1�

is the shifted cochain complex .gŒ1�/i D giC1, and gŒ1�_ is its dual.
If g is a dg Lie algebra and � is a dg commutative algebra, the tensor product

complex g˝� carries a natural structure of a dg Lie algebra, with bracket

Œx˝ a; y˝ b�D .�1/jajjyjŒx; y� ab:

PROPOSITION 1.1. Let g be a dg Lie algebra whose underlying cochain com-
plex is bounded below and finite-dimensional in each degree. Then there is a natural
identification between the n-simplices of Spec�.C

�.g// and the Maurer-Cartan
elements of g˝�n.

Proof. Under the stated hypotheses on g, there is a natural identification

MC.g˝�/Š dAlg.C �.g/;�/

for any dg commutative algebra �. Indeed, there is an inclusion

dAlg.C �.g/;�/� Alg.C �.g/;�/D Alg.S.gŒ1�_/;�/Š .g˝�/1:
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It is easily seen that a morphism in Alg.C �.g/;�/ is compatible with the differen-
tials on C �.g/ and � if and only if the corresponding element of .g˝�/1 satisfies
the Maurer-Cartan equation. �

Motivated by this proposition, we introduce for any dg Lie algebra the simpli-
cial set

MC�.g/DMC.g˝��/:

According to rational homotopy theory, the functor g 7! MC�.g/ induces a cor-
respondence between the homotopy theories of nilpotent dg Lie algebras over Q

concentrated in degrees .�1; 0� and nilpotent rational topological spaces. The
simplicial set MC�.g/ has been studied in great detail by Hinich [Hin97]; he calls
it the nerve of g and denotes it by †.g/.

However, the simplicial set MC�.g/ is not the subject of this paper. Suppose
that g is a nilpotent Lie algebra, and let G be the simply-connected Lie group
associated to g. The nerve N�G of G is substantially smaller than MC�.g/, but
they are homotopy equivalent. In this paper, we construct a natural homotopy
equivalence

(1-1) N�G ,!MC�.g/;

as a special case of a construction applicable to any nilpotent dg Lie algebra.
To motivate the construction of the embedding (1-1), we may start by compar-

ing the sets of 1-simplices of N�G and of MC�.g/. The Maurer-Cartan equation
on g˝ �1 is tautologically satisfied, since g˝ �1 vanishes in degree 2; thus
MC1.g/Š gŒt �dt . Let ˛ 2�1.G; g/ be the unique left-invariant one-form whose
value ˛.e/ W TeG ! g at the identity element e 2 G is the natural identification
between the tangent space TeG of G at e and its Lie algebra g. Consider the path
space

P�G D f� 2Mor.A1; G/ j �.0/D eg

of algebraic morphisms from the affine line A1 to G. There is an isomorphism
between P�G and the set MC1.g/, induced by associating to a path � W A1! G

the one-form ��˛.
There is a foliation of P�G, whose leaves are the fibres of the evaluation

map � 7! �.1/, and whose leaf space is G. Under the isomorphism between P�G
and MC1.g/, this foliation is simple to characterize: the tangent space to the leaf
containing ˛ 2MC1.g/ is the image under the covariant derivative

r W g˝�01! g˝�11 Š T˛ MC1.g/

of the subspace

fx 2 g˝�01 j x.0/D x.1/D 0g:
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The exponential map exp W g!G is a bijection for nilpotent Lie algebras; equiva-
lently, each leaf of this foliation of MC1.g/ contains a unique constant one-form.
The embedding N1G ,!MC1.g/ is the inclusion of the constant one-forms into
MC1.g/.

What is a correct analogue in higher dimensions for the condition that a one-
form on �1 is constant? Dupont’s explicit proof of the de Rham theorem [Dup76],
[Dup78] relies on a chain homotopy s� W ��� ! ���1� . This homotopy induces
maps sn W g˝�1n! g˝�0n, and we impose the gauge condition sn˛ D 0, which
when n D 1 is the condition that ˛ is constant. The main theorem of this paper
shows that the simplicial set

(1-2) 
�.g/D f˛ 2MC�.g/ j s�˛ D 0g

is isomorphic to the nerve N�G.
The key to the proof of this isomorphism is the verification that 
�.g/ is a Kan

complex, that is, that it satisfies the extension condition in all dimensions. In fact,
we give explicit formulas for the required extensions, which yield in particular a
new approach to the Campbell-Hausdorff formula.

The definition of 
�.g/ works mutatis mutandi for nilpotent dg Lie algebras;
we argue that 
�.g/ is a good generalization to the differential graded setting of the
Lie group associated to a nilpotent Lie algebra. For example, when g is a nilpotent
dg Lie algebra concentrated in degrees Œ0;1/, the simplicial set 
�.g/ is isomorphic
to the nerve of the Deligne groupoid C.g/.

Recall the definition of this groupoid (cf. [GM88]). Let G be the nilpotent Lie
group associated to the nilpotent Lie algebra g0 � g. This Lie group acts on MC.g/

by the formula

(1-3) eX �˛ D ˛�

1X
nD0

ad.X/n.ı˛X/
.nC 1/Š

:

The Deligne groupoid C.g/ of g is the groupoid associated to this group action.
There is a natural identification between �0.MC�.g// and �0.C.g//DMC.g/=G.
Following Kodaira and Spencer, we see that this groupoid may be used to study
the formal deformation theory of such geometric structures as complex structures
on a manifold, holomorphic structures on a complex vector bundle over a complex
manifold, and flat connections on a real vector bundle.

In all of these cases, the dg Lie algebra g controlling the deformation the-
ory is concentrated in degrees Œ0;1/, and the associated formal moduli space is
�0.MC�.g//. On the other hand, in the deformation theory of Poisson structures on
a manifold, the associated dg Lie algebra, known as the Schouten Lie algebra, is
concentrated in degrees Œ�1;1/. Thus, the theory of the Deligne groupoid does not
apply, and in fact the formal deformation theory is modeled by a 2-groupoid. (This



LIE THEORY FOR NILPOTENT L1-ALGEBRAS 275

2-groupoid was constructed by Deligne [Del94], and, independently, by Getzler
[Get02, � 2].) The functor 
�.g/ allows the construction of a candidate Deligne
`-groupoid, if the nilpotent dg Lie algebra g is concentrated in degrees .�`;1/. We
present the theory of `-groupoids in Section 2, following Duskin [Dus79], [Dus01]
closely.

It seemed most natural in writing this paper to work from the outset with a
generalization of dg Lie algebras called L1-algebras. We recall the definition of
L1-algebras in Section 4; these are similar to dg Lie algebras, except that they
have a graded antisymmetric bracket Œx1; : : : ; xk�, of degree 2� k, for each k. In
the setting of L1-algebras, the definition of a Maurer-Cartan element becomes

ı˛C

1X
kD2

1

kŠ
Œ˛; : : : ; ˛„ ƒ‚ …
k times

�D 0:

Given a nilpotentL1-algebra g, we define a simplicial set 
�.g/, whose n-simplices
are Maurer-Cartan elements ˛ 2 g˝�n such that sn˛ D 0. We prove that 
�.g/ is
a Kan complex, and that the inclusion 
�.g/ ,!MC�.g/ is a homotopy equivalence,
by a method similar to that of [Kur62, � 2].

The Dold-Kan functor K�.V / [Dol58], [Kan58] is a functor from positively
graded chain complexes (or equivalently, negatively graded cochain complexes) to
simplicial abelian groups. The set of n-simplices of Kn.V / is the abelian group

(1-4) Kn.V /D Chain.C�.�
n/; V /

of morphisms of chain complexes from the complex C�.�n/ of normalized simpli-
cial chains on the simplicial set �n to V . Eilenberg-Mac Lane spaces are obtained
when the chain complex is concentrated in a single degree [EML53].

The functor 
�.g/ is a nonabelian analogue of the Dold-Kan functor K�.V /:
if g is an abelian dg Lie algebra and concentrated in degrees .�1; 1�, there is a
natural isomorphism between 
�.g/ and K�.gŒ1�/, since (1-4) has the equivalent
form

Kn.V /DZ
0.C �.�n/˝V; d C ı/;

where C �.�n/ is the complex of normalized simplicial cochains on the simplicial
set �n.

The functor 
� has many good features: it carries surjective morphisms of
nilpotent L1-algebras to fibrations of simplicial sets, and carries a large class of
weak equivalences of L1-algebras to homotopy equivalences. And of course, it
yields generalizations of the Deligne groupoid, and of the Deligne 2-groupoid, for
L1-algebras. It shares with MC� an additional property: there is an action of the
symmetric group SnC1 on the set of n-simplices 
n.g/ making 
� into a functor
from L1-algebras to symmetric sets, in the sense of [FL91]. In order to simplify
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the discussion, we have not emphasized this point, but this perhaps indicates that
the correct setting for `-groupoids is the category of symmetric sets.

2. Kan complexes and `-groupoids

Kan complexes are a natural nonabelian analogue of chain complexes: just as
the homology groups of chain complexes are defined by imposing an equivalence
relation on a subset of the chains, the homotopy groups of Kan complexes are
defined by imposing an equivalence relation on a subset of the simplices.

Recall the definition of the category of simplicial sets. Let � be the category
of finite non-empty totally ordered sets. This category � has a skeleton whose
objects are the ordinals Œn�D .0 < 1 < � � � < n/; this skeleton is generated by the
face maps dk W Œn� 1�! Œn� for 0� k � n, which are the injective maps

dk.i/D

�
i if i < k;
i C 1 if i � k;

and the degeneracy maps sk W Œn�! Œn�1� for 0�k�n�1, which are the surjective
maps

sk.i/D

�
i if i � k;
i � 1 if i > k:

A simplicial set X� is a contravariant functor from � to the category of sets.
This amounts to a sequence of sets Xn DX.Œn�/ indexed by the natural numbers
n 2 f0; 1; 2; : : : g, and maps

ık DX.dk/ WXn!Xn�1 for 0� k � n;

�k DX.sk/ WXn�1!Xn for 0� k � n;

satisfying certain relations. (See [May92] for more details.) A degenerate simplex
is one of the form �ix; a nondegenerate simplex is one that is not degenerate.
Simplicial sets form a category; we denote by sSet.X�; Y�/ the set of morphisms
between two simplicial sets X� and Y�.

The geometric n-simplex �n is the convex hull of the unit vectors ek in RnC1:

�n
D f.t0; : : : ; tn/ 2 Œ0; 1�

nC1
j t0C � � �C tn D 1g:

Its
�
nC1
kC1

�
faces of dimension k are the convex hulls of the nonempty subsets of

fe0; : : : ; eng of cardinality kC 1.
The n-simplex �n is the representable simplicial set �n D�. � ; Œn�/. Thus,

the nondegenerate simplices of�n correspond to the faces of the geometric simplex
�n. By the Yoneda lemma, sSet.�n; X�/ is naturally isomorphic to Xn.

Let �Œk� denote the full subcategory of � whose objects are the simplices
fŒi � j i � kg, and let skk be the restriction of a simplicial set from �op to �Œk�op.



LIE THEORY FOR NILPOTENT L1-ALGEBRAS 277

The functor skk has a right adjoint coskk , called the k-coskeleton, and we have

coskk.skk.X//n D sSet.skk.�
n/; X�/:

For 0� i � n, letƒni ��
n be the union of the faces dkŒ�n�1���n for k¤ i .

An n-horn in X� is a simplicial map from ƒni to X�, or equivalently, a sequence of
elements

.x0; : : : ; xi�1; � ; xiC1; : : : ; xn/ 2 .Xn�1/
n

such that @jxk D @k�1xj for 0� j < k � n.

Definition 2.1. A map f WX�! Y� of simplicial sets is a fibration if the maps

�ni WXn! sSet.ƒni ; X�/�sSet.ƒn
i
;Y�/ Yn

defined by

�ni .x/D .@0x; : : : ; @i�1x; � ; @iC1x; : : : ; @nx/�f .x/

are surjective for all n > 0 and 0� i � n. A simplicial set X� is a Kan complex if
the map from X� to the terminal object �0 is a fibration.

A Kan complex is minimal if the face map @i WXn!Xn�1 factors through
�ni for all n > 0 and 0� i � n.

A groupoid is a small category with invertible morphisms. Denote the sets of
objects and morphisms of a groupoid G by G0 and G1, the source and target maps
by s WG1!G0 and t WG0!G1, and the identity map by e WG0!G1. The nerve
N�G of a groupoid G is the simplicial set whose 0-simplices are the objects G0 of
G, and whose n-simplices for n > 0 are the composable chains of n morphisms in
G:

NnG D fŒg1; : : : ; gn� 2 .G1/
n
j sgi D tgiC1g:

The face and degeneracy maps are defined using the product and the identity of the
groupoid:

@kŒg1; : : : ; gn�D

8<:
Œg2; : : : ; gn� if k D 0;
Œg1; : : : ; gkgkC1; : : : ; gn� if 0 < k < n;
Œg1; : : : ; gn�1� if k D n;

�kŒg1; : : : ; gn�1�D

8<:
Œetg1; g1; : : : ; gn�1� if k D 0;
Œg1; : : : ; gk�1; etgk; gk; : : : ; gn�1� if 0 < k < n;
Œg1; : : : ; gn�1; esgn�1� if k D n:

The following characterization of the nerves of groupoids was discovered by
Grothendieck; we sketch the proof.

PROPOSITION 2.2. A simplicial set X� is the nerve of a groupoid if and only if
the maps �ni WXn! sSet.ƒni ; X�/ are bijective for all n > 1.
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Proof. The nerve of a groupoid is a Kan complex; in fact, it is a very special
kind of Kan complex for which the maps �2i are not just surjective, but bijective.
The unique filler of the horn . � ; g; h/ is the 2-simplex Œh; h�1g�, the unique filler of
the horn .g; � ; h/ is the 2-simplex Œh; g�, and the unique filler of the horn .g; h; � /
is the 2-simplex Œhg�1; g�. Thus, the uniqueness of fillers in dimension 2 exactly
captures the associativity of the groupoid and the existence of inverses.

The nerve of a groupoid is determined by its 2-skeleton, in the sense that

(2-5) N�G Š cosk2.sk2.N�G//:

It follows from (2-5) and the bijectivity of the maps �2i that the maps �ni are bijective
for all n > 1.

Conversely, given a Kan complex X� such that �ni is bijective for n>1, we can
construct a groupoidG such thatX�ŠN�G: GiDXi for iD0; 1, sD@1 WG1!G0,
t D @0 WG1!G0, and e D �0 WG0!G1.

Denote by hx0; : : : ; xk�1; � ; xkC1; : : : ; xni the unique n-simplex that fills the
horn

.x0; : : : ; xi�1; � ; xiC1; : : : ; xn/ 2 sSet.ƒni ; X/:

Given a pair of morphisms g1; g22G1 such that sg1D tg2, define their composition
by the formula

g1g2 D @1hg2; � ; g1i:

Given three morphisms g1; g2; g3 2 G1 such that sg1 D tg2 and sg2 D tg3, the
3-simplex x D Œg1; g2; g3� 2X3 satisfies

g1.g2g3/D @1@2x D @1@1x D .g1g2/g3I

hence composition in G1 is associative. Here is a picture of the 3-simplex x:
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The inverse of a morphism g 2G1 is defined by the formulas

g�1 D @0h � ; etg; gi D @2hg; esg; � i:

To see that these two expressions are equal, call them respectively g�` and g��,
and use associativity:

g�` D g�`.gg��/D .g�`g/g�� D g��:

It follows easily that .g�1/�1 D g, that g�1g D esg and gg�1 D etg, and that
sg�1 D tg and tg�1 D sg.

It is clear that

and that

shD @1@2hg; � ; hi D @1@1hg; � ; hi D s.gh/

tg D @0@0hg; � ; hi D @0@1hg; � ; hi D t .gh/:

We also see that
g D @1�1Œg�D @1Œg; esg�D g.esg/

D @1�0Œg�D @1Œetg; g�D .etg/g:

Thus, G is a groupoid. Since sk2.X�/ Š sk2.N�G/, we conclude by (2-5) that
X� ŠN�G. �

Duskin has defined a sequence of functors …` from the category of Kan
complexes to itself, which give a functorial realization of the Postnikov tower. (See
[Dus79] and [Gle82], and for a more extended discussion, [Bek04].) Let �` be
the equivalence relation of homotopy relative to the boundary on the set X` of
`-simplices. Then sk`.X�/=�` is a well-defined `-truncated simplicial set, and
there is a map of truncated simplicial sets

sk`.X�/! sk`.X�/=�`;

and by adjunction, a map of simplicial sets

X�! cosk`.sk`.X�/=�`/:

Define …`.X�/ to be the image of this map. Then the functor …` is an idempotent
monad on the category of Kan complexes. If x0 2X0, we have

�i .X�; x0/D

�
�i .…`.X�/; x0/ if i � `;
0 if i > `:

Thus …`.X�/ is a realization of the Postnikov `-section of the simplicial set X�.
For example, …0.X�/ is the discrete simplicial set �0.X�/, and …1.X�/ is the
nerve of the fundamental groupoid of X�. It is interesting to compare …`.X�/ to
other realizations of the Postnikov tower, such as cosk`C1.sk`C1.X�//: it is a more
economic realization of this homotopy type, and has a more geometric character.
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We now recall Duskin’s notion of higher groupoid: he calls these `-dimensional
hypergroupoids, but we simply call them weak `-groupoids.

Definition 2.3. A Kan complex X� is a weak `-groupoid if …`.X�/ D X�
or, equivalently, if the maps �ni are bijective for n > `; it is a weak `-group if in
addition it is reduced (has a single 0-simplex).

The 0-simplices of an `-groupoid are interpreted as its objects and the 1-
simplices as its morphisms. The composition gh of a pair of 1-morphisms with
@1g D @0h equals @1z, where z 2X2 is a filler of the horn

.g; � ; h/ 2 sSet.ƒ21; X�/:

If ` > 1, this composition is not canonical — it depends on the choice of the filler
z 2 X2 — but it is associative up to a homotopy, by the existence of fillers in
dimension 3.

A weak 0-groupoid is a discrete set, while a weak 1-groupoid is the nerve of a
groupoid, by Proposition 2.2. Duskin [Dus01] identifies weak 2-groupoids with
the nerves of bigroupoids. A bigroupoid G is a bicategory whose 2-morphisms
are invertible and whose 1-morphisms are equivalences; the nerve N�G of G is
a simplicial set whose 0-simplices are the objects of G, whose 1-simplices are
the morphism of G, and whose 2-simplices x are the 2-morphisms with source
@2x ı @0x and target @1x.

The singular complex of a topological space is the simplicial set

Sn.X/DMap.�n; X/:

To see that this is a Kan complex, we observe that there is a continuous retraction
from �n D j�nj to jƒni j. The fundamental `-groupoid of a topological space X is
the weak `-groupoid …`.S�.X//. For `D 0, this equals �0.X/, while for `D 1, it
is the nerve of the fundamental groupoid of X .

Often, weak `-groupoids come with explicit choices for fillers of horns: tenta-
tively, we refer to such weak `-groupoids as `-groupoids. (Often, this term is used
for what we call strict `-groupoids, but the latter are of little interest for ` > 2.)
We may axiomatize `-groupoids by a weakened form of the axioms for simplicial
T -complexes, studied by Dakin [Dak83] and Ashley [Ash88].

Definition 2.4. An `-groupoid is a simplicial set X� together with a set of thin
elements Tn �Xn for each n > 0, satisfying the following conditions:

(i) every degenerate simplex is thin;

(ii) every horn has a unique thin filler;

(iii) every n-simplex is thin if n > `.
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If g is an `-groupoid and n > `, we denote by hx0; : : : ; xi�1; � ; xiC1; : : : ; xni
the unique thin filler of the horn

.x0; : : : ; xi�1; � ; xiC1; : : : ; xn/ 2 sSet.ƒni ; X�/:

Definition 2.5. An1-groupoid is a simplicial set X� together with a set of
thin elements Tn �Xn for each n > 0, satisfying the following conditions:

(i) every degenerate simplex is thin;

(ii) every horn has a unique thin filler.

It is clear that every `-groupoid is a weak `-groupoid and that every 1-
groupoid is a Kan complex. Not every weak `-groupoid underlies an `-groupoid.
However, if X� is a weak `-groupoid, then any minimal simplicial subcomplex
Z� of X� underlies an `-groupoid; it suffices to take the set of thin n-simplices
Tn �Zn to be a section of the map �n0 WZn! sSet.ƒn0; Z�/, taking care to select
the (necessarily unique) degenerate simplex in each fiber of �n0 when there is one.

Note also that while the nerve of a bigroupoid is a weak 2-groupoid in our
sense, it is not in general a 2-groupoid unless the identity and inverse 1-morphisms
are strict.

The Dold-Kan simplicial set K�.V / is an `-groupoid if and only if Vi vanishes
for i > `; it is minimal if and only if V has vanishing differential. In Section 5, we
will find analogues of these observations for L1-algebras.

3. The simplicial de Rham theorem

Let �n be the free graded commutative algebra over K with generators ti of
degree 0 and dti of degree 1, and relations Tn D 0 and dTn D 0, where Tn D
t0C � � �C tn� 1:

�n D KŒt0; : : : ; tn; dt0; : : : ; dtn�=.Tn; dTn/:

There is a unique differential on �n such that d.ti /D dti and d.dti /D 0.
The dg commutative algebras �n are the components of a simplicial dg

commutative algebra ��: the simplicial map f W Œk�! Œn� acts by the formula

f �ti D
X

f .j /Di

tj for 0� i � n:

Using the simplicial dg commutative algebra ��, we can define the dg commutative
algebra of piecewise polynomial differential forms �.X�/ on a simplicial set X�
[Sul77], [BG76], [Dup76], [Dup78].

Definition 3.1. The complex of differential forms �.X�/ on a simplicial set
X� is the space �.X�/D sSet.X�; ��/ of simplicial maps from X� to ��.
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When KD R is the field of real numbers, �.X�/ may be identified with the
complex of differential forms on the realization jX�j that are polynomial on each
geometric simplex of jX�j.

The following lemma may be found in [BG76]; we learned this short proof
from a referee.

LEMMA 3.2. For each k � 0, the simplicial abelian group �k� is contractible.

Proof. The homotopy groups of the simplicial set �k� equal the homology
groups of the complex C� D�k� with differential

@D

nX
iD0

.�1/i@i W Cn! Cn�1:

Thus, to prove the lemma, it suffices to construct a contracting chain homotopy for
the complex C�.

For 0� i � n, let �i W�nC1!�n be the affine map

�i .t0; : : : ; tnC1/D .t0; : : : ; ti�1; ti C tnC1; tiC1; : : : ; tn/:

Define a chain homotopy � W Cn ! CnC1 by �! D .�1/nC1
Pn
iD0 ti �

�
i !. For

! 2�kn, we see that

@i�! D

�
��@i! if 0� i � n;
.�1/nC1! if i D nC 1:

It follows that .@�C �@/! D !. �
Given a sequence .i0; : : : ; ik/ of elements of the set f0; : : : ; ng, let

Ii0:::ik W�n! K

be the integral over the k-chain on the n-simplex spanned by the sequence of
vertices .ei0 ; : : : ; eik /; this is defined by the explicit formula

Ii0:::ik
�
t
a1
i1
� � � t

ak
ik
dti1 � � � dtik

�
D

a1Š � � � akŠ

.a1C � � �C akC k/Š
:

Specializing K to the field of real numbers, this becomes the usual Riemann integral.
The space Cn of elementary forms is spanned by the differential forms

!i0:::ik D kŠ

kX
jD0

.�1/j tij dti0 � � �
bdt ij � � � dtik :

(The coefficient kŠ normalizes the form so that Ii0:::ik .!i0:::ik /D 1.) The spaces
Cn are closed under the action of the exterior differential, that is,

d!i0:::ik D

nX
iD0

!i i0:::ik ;
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and assemble to a simplicial subcomplex of ��. The complex Cn is isomorphic to
the complex of simplicial chains on �n, and this isomorphism is compatible with
the simplicial structure. Whitney [Whi57] constructs an explicit projection Pn from
�n to Cn:

(3-6) Pn! D

nX
kD0

X
i0<���<ik

!i0:::ik Ii0:::ik .!/:

The projections Pn assemble to form a morphism of simplicial cochain complexes
P� W��! C�. If X� is a simplicial set, the complex of elementary forms

C.X�/D sSet.X�; C�/��.X�/

on X� is naturally isomorphic to the complex of normalized simplicial cochains.

Definition 3.3. A contraction is a simplicial endomorphism s� W�
�
� !���1�

such that

(3-7) id�P� D ds�C s�d:

If X� is a simplicial complex, a contraction s� induces a chain homotopy
s W��.X�/!���1.X�/ between the complex of differential forms on X� and the
complex C.X�/ of simplicial cochains. In other words, a contraction is an explicit
form of the de Rham theorem.

Next, we derive some simple properties of a contraction which we will need
later. If a and b are operators on a chain complex homogeneous of degree k and `
respectively, we denote by Œa; b� the graded commutator

Œa; b�D ab� .�1/k`ba:

In particular, of a is homogeneous of odd degree, then 1
2
Œa; a�D a2.

LEMMA 3.4. Let s� be a contraction. Then

(i) P� s� D 0 and

(ii) s�P� D Œd; .s�/2�.

Proof. To show that P� s� D 0, we must check that Ii0:::ik ı sn D 0 for each
sequence .i0 : : : ik/. By the compatibility of s� with simplicial maps, this follows
from the formula

I0:::k ı sk D 0;

which is clear, since sk! is a differential form on �k of degree less than k.
The second part of the lemma is a simple calculation. �

Dupont [Dup76], [Dup78] found an explicit contraction: we now recall his
formula. Given 0 � i � n, define the dilation map 'i W Œ0; 1���n!�n by the
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formula
'i .u; t/D utC .1�u/ei :

Let �� W ��.Œ0; 1� � �n/ ! ���1.�n/ be integration along the fibers of the
projection � W Œ0; 1� ��n ! �n. Define the operator hin W �

�
n ! ���1n by the

formula

(3-8) hin! D ��'
�
i !;

Let "in W �n ! K be evaluation at the vertex ei . Stokes’s theorem implies the
Poincaré lemma, that hin is a chain homotopy between the identity and "in:

(3-9) dhinC h
i
nd D idn� "in:

The flow 'i .u/ is generated by the vector field Ei D
Pn
jD0.tj � ıij /@j . Let

�i be the contraction �.Ei /: we have

(3-10) �j'i .u/D 'i .u/.u�j C .1�u/�i /

and also

(3-11) �i!i0:::ik D k

kX
pD0

.�1/p�1 ıi ip !i0:::b{p :::ik :
The formula (3-8) for hin may be written more explicitly as

hin D

Z 1

0

u�1'i .u/�i du:

LEMMA 3.5. hihj C hjhi D 0.

Proof. Let 'ij W Œ0; 1�� Œ0; 1���n!�n be the map

'ij .u; v; t/D uvtkC .1�u/ei Cu.1� v/ej :

Then we have hihj! D ��'�ij!. We have 'j i .u; v/ D 'ij . Qv; Qu/, where Qu and Qv
are determined implicitly by the equations

.1�u/v D 1� Qu and 1� v D .1� Qv/ Qu:

Since this change of variables is a diffeomorphism of the interior of the square
Œ0; 1�� Œ0; 1�, the lemma follows. �

LEMMA 3.6. Ii0:::ik .!/D .�1/
k "
ik
n h

ik�1
n : : : h

i0
n !.

Proof. For k D 0, this holds by definition. We argue by induction on k. We
may assume that ! has positive degree and hence that !D d� is exact. By Stokes’s
theorem,

Ii0:::ik .d�/D

kX
jD0

.�1/j�1I
i0:::b{j :::ik .�/:
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On the other hand, by (3-9), we have

"ikn h
ik�1
n � � � hi0n d� D

k�1X
jD0

.�1/j "ikn h
ik�1
n � � � Œd; h

ij
n � � � � h

i0
n �

D

k�1X
jD0

.�1/j "ikn h
ik�1
n � � �bhijn � � � hi0n �C .�1/k"ikn "ik�1n hik�2n � � � hi0n �:

But "ikn "
ik�1
n D "

ik�1
n . �

THEOREM 3.7 (Dupont). The operators

(3-12) sn D

n�1X
kD0

X
i0<���<ik

!i0:::ikh
ik
n � � � h

i0
n for n� 0

form a contraction.

Proof. It is straightforward to check that s� is simplicial. In the proof of (3-7),
we abbreviate hin to hi . In the definition of sn, we may take the upper limit of the
sum over k to be n. We now have

(3-13) Œd; sn�D

n�1X
kD0

X
i0<���<ik

X
i…fi0;:::;ikg

!i i0:::ikh
ik � � � hi0

C

nX
kD0

kX
jD0

.�1/j
X

i0<���<ik

!i0:::ikh
ik � � � Œd; hij � � � � hi0 :

By (3-9), we have

nX
kD0

kX
jD0

.�1/j
X

i0<���<ik

!i0:::ikh
ik � � � Œd; hij � � � � hi0

D idC
nX
kD1

kX
jD0

.�1/j
X

i0<���<ik

!i0:::ikh
ik � � �bhij � � � hi0

�

nX
kD0

.�1/k
X

i0<���<ik

!i0:::ik"
ikhik�1 � � � hi0 :

The first term on the right side equals the identity operator, the second cancels the
first sum of (3-13), while by Lemma 3.6, the third sum equals Pn. �

We will need special class of contractions, which we call gauges.

Definition 3.8. A gauge is a contraction such that .s�/2 D 0.
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In fact, Dupont’s operator s� is a gauge. But by a trick of Lambe and Stasheff
[LS87], any contraction gives rise to a gauge.

PROPOSITION 3.9. If s� is a contraction, then the operator

Qs� D s�ds� .id�P�/

is a gauge. If s� is a gauge, then Qs� D s�.

Proof. Let Ns� be the contraction Ns� D s�.id�P�/. By construction, we have
Ns�P� D 0; hence by Lemma 3.4, Œd; .Ns�/2�D 0. Then Qs� D Ns�d Ns� is a contraction:

Œd; Qs��D Œd; Ns�d Ns��D Œd; Ns��d Ns�C Ns�dŒd; Ns��

D .id�P�/d Ns�C Ns�d.id�P�/

D d.id�P�/Ns�C Ns�.id�P�/d D Œd; Ns��D id�P�:

Since d.Ns�/2d D .Ns�/2d 2 D 0, the operator Qs� is a gauge:

.Qs�/
2
D .Ns�d Ns�/.Ns�d Ns�/D Ns�d.Ns�/

2d Ns� D 0:

If s� happens to be a gauge, then s�P� D 0 by Lemma 3.4. It follows that

Qs�� s� D s�.ds�.id�P�/� id/

D s�.ds�� id/

D�s�.s�d CP�/D�.s�/
2d C s�P� D 0: �

We now turn to the proof that Dupont’s operator s� is a gauge. Denote by ".˛/
the operation of multiplication by a differential form ˛ on �n.

LEMMA 3.10. If i … fi0; : : : ; ikg, then

".!i0:::ik /h
i
D .�1/khi

�
".!i0:::ik /C ".!i0:::iki /h

i
�
:

Proof. We have

.�1/khi".!i0:::ik /D .�1/
k

Z 1

0

w�1'i .w/�i ".!i0:::ik /dw

D ".!i0:::ik /

Z 1

0

wk'i .w/�i dw:

On the other hand, by (3-11),

.�1/khi".!i0:::iki /h
i
D .�1/k

Z 1

0

Z 1

0

.uv/�1'i .u/�i ".!i0:::iki /'i .v/�i dvdu

D .kC 1/

Z 1

0

Z 1

0

.uv/�1'i .u/".!i0:::ik /'i .v/�i dvdu

D .kC 1/".!i0:::ik /

Z 1

0

Z 1

0

ukv�1'i .uv/�i dvdu:



LIE THEORY FOR NILPOTENT L1-ALGEBRAS 287

Changing variables from u to w D uv, we see thatZ 1

0

Z 1

0

ukv�1'i .uv/ dvduD

Z 1

0

�Z 1

w

v�k�2 dv

�
wk'i .w/ dw

D .kC 1/�1
Z 1

0

.w�1�wk/'i .w/ dw;

establishing the lemma. �
THEOREM 3.11. The operator s� is a gauge.

Proof. By induction on k, the above lemma shows that

hik � � � hi0s D

n�1X
`D0

.�1/k`C`
X

j0<���<j`
fi0;:::;ikg

T
fj0;:::;j`gD∅

!j0:::j`h
ik � � � hi0hj` � � � hj0 :

It follows that s2 is equal to

(3-14)
1X

k;`D0

.�1/k`C`
X

i0<���<ik I j0<���<j`

fi0;:::;ikg
T
fj0;:::;j`gD∅

!i0:::ik!j0:::j`h
ik � � � hi0hj` � � � hj0 :

We have

!i0:::ik!j0:::j`h
ik � � � hi0hj` � � � hj0

D .�1/k`C.kC1/.`C1/!j0:::j`!i0:::ikh
j` � � � hj0hik � � � hi0 :

The expression (3-14) changes sign on exchange of .i0; : : : ; ik/ and .j0; : : : ; j`/,
and thus vanishes. �

4. The Maurer-Cartan set of an L1-algebra

L1-algebras are a generalization of dg Lie algebras in which the Jacobi rule
is only satisfied up to a hierarchy of higher homotopies. In this section, we start
by recalling the definition of L1-algebras. Following [Sul77] and [Hin97], we
represent the homotopy type of an L1-algebra g by the simplicial set MC�.g/D

MC.g˝��/. We prove that this is a Kan complex, and that under certain additional
hypotheses, it is a homotopy invariant of the L1-algebra g.

An operation Œx1; : : : ; xk� on a graded vector space g is called graded antisym-
metric if

Œx1; : : : ; xi ; xiC1; : : : ; xk�C .�1/
jxi jjxiC1jŒx1; : : : ; xiC1; xi ; : : : ; xk�D 0

for all 1 � i � k � 1. Equivalently, Œx1; : : : ; xk� is a linear map from
Vk g to g,

where
Vk g is the k-th exterior power of the graded vector space g, that is, the k-th

symmetric power of s�1g.
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Definition 4.1. An L1-algebra is a graded vector space g with a sequence
Œx1; : : : ; xk� for k > 0 of graded antisymmetric operations of degree 2 � k, or
equivalently, homogeneous linear maps

Vk g! g of degree 2, such that for each
n > 0, the n-Jacobi rule holds:
nX
kD1

.�1/k
X

i1<���<ik I j1<���<jn�k
fi1;:::;ikg

S
fj1;:::;jn�kgDf1;:::;ng

.�1/" ŒŒxi1 ; : : : ; xik �; xj1 ; : : : ; xjn�k �D 0:

Here, the sign .�1/" equals the product of the sign .�1/� associated to the permu-
tation

� D

�
1 : : : k kC 1 : : : n

i1 : : : ik j1 : : : jn�k

�
with the sign associated by the Koszul sign convention to the action of � on the
elements .x1; : : : ; xn/ of g.

In terms of the graded symmetric operations

`k.y1; : : : ; yk/D .�1/
Pk
iD1.k�iC1/jyi j s�1Œsy1; : : : ; syk�

of degree 1 on the graded vector space s�1g, the Jacobi rule simplifies to
nX
kD1

X
i1<���<ik I j1<���<jn�k

fi1;:::;ikg
S
fj1;:::;jn�kgDf1;:::;ng

.�1/Q" ffyi1 ; : : : ; yikg; yj1 ; : : : ; yjn�kg D 0;

where .�1/Q" is the sign associated by the Koszul sign convention to the action
of � on the elements .y1; : : : ; yn/ of s�1g. This is a small modification of the
conventions of Lada and Markl [LM95]: their operations lk are related to ours by a
sign

lk.x1; : : : ; xk/D .�1/
.kC12 / Œx1; : : : ; xk�:

The operation x 7! Œx�makes the graded vector space g into a cochain complex,
by the 1-Jacobi rule ŒŒx��D0. Because of the special role played by the operation Œx�,
we denote it by ı. An L1-algebra with Œx1; : : : ; xk�D 0 for k > 2 is the same thing
as a dg Lie algebra. A quasi-isomorphism of L1-algebras is a quasi-isomorphism
of the underlying cochain complexes.

The lower central filtration on an L1-algebra g is the canonical decreasing
filtration defined inductively by F 1gD g and, for i > 1,

F igD
X

i1C���CikDi

ŒF i1g; : : : ; F ikg�:

Definition 4.2. An L1-algebra g is nilpotent if the lower central series termi-
nates, that is, if F igD 0 for i � 0.
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If g is a nilpotent L1-algebra, the curvature

F.˛/D ı˛C

1X
`D2

1

`Š
Œ˛^`� 2 g2

is defined and polynomial in ˛. If g is a dg Lie algebra, the curvature equals

F.˛/D ı˛C 1
2
Œ˛; ˛�I

this expression is familiar from the theory of connections on principal bundles.

Definition 4.3. The Maurer-Cartan set MC.g/ of a nilpotent L1-algebra g is
the set of those ˛ 2 g1 satisfying the Maurer-Cartan equation

(4-15) F.˛/D 0:

An L1-algebra is abelian if the bracket Œx1; : : : ; xk� vanishes for k > 1. In this
case, the Maurer-Cartan set is the set of 1-cocycles Z1.g/ of g.

Let g be a nilpotent L1-algebra. For any element ˛ 2 g1, the formula

Œx1; : : : ; xk�˛ D

1X
`D0

1

`Š
Œ˛^`; x1; : : : ; xk�

defines a new sequence of brackets on g, where Œ˛^`; x1; : : : ; xk� is an abbreviation
for Œ˛; : : : ; ˛; x1; : : : ; xk�, in which ˛ occurs l times.

PROPOSITION 4.4. If ˛ 2MC.g/, then the brackets Œx1; : : : ; xk�˛ make g into
an L1-algebra.

Proof. Applying the .mCn/-Jacobi relation to the sequence

.˛^m; x1; : : : ; xn/

and summing overm, we obtain the n-Jacobi relation for the brackets Œx1; : : : ; xk�˛ .
�

LEMMA 4.5. The curvature satisfies the Bianchi identity

(4-16) ıF.˛/C

1X
`D1

1

`Š
Œ˛^`;F.˛/�D 0:

Proof. The n-Jacobi relation for .˛^n/ shows that
nX
`D0

1

`Š.n�`/Š
Œ˛^`; Œ˛^.n�`/��D 0:

Summing over n > 0, we obtain the lemma. �
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If g is an L1-algebra and � is a dg commutative algebra, then the tensor
product g˝� is an L1-algebra, with brackets

Œx˝ a�D Œx�˝ aC .�1/jxjx˝ da;

Œx1˝ a1; : : : ; xk˝ ak�D .�1/
P
i<j jxi jjaj jŒx1; : : : ; xk�˝ a1 � � � ak for k ¤ 1:

The functor MC.g/ extends to a covariant functor MC.g; �/DMC.g˝�/ from
dg commutative algebras to sets, that is, a presheaf on the category of dg affine
schemes over K. If X� is a simplicial set, we have

MC.g; �.X�//Š sSet.X�;MC�.g//:

If g is a nilpotent L1-algebra, let MC�.g/ be the simplicial set MC�.g/ D

MC.g; ��/: In other words, the n-simplices of MC�.g/ are differential forms ˛ on
the n-simplex �n, of the form ˛D

Pn
iD0 ˛i ; where ˛i 2 g1�i˝�i .�n/, such that

(4-17) .d C ı/˛C

1X
`D2

1

`Š
Œ˛^`�D 0:

Before developing the properties of this functor, we recall how it emerges naturally
from Sullivan’s approach [Sul77] to rational homotopy theory.

If g is an L1-algebra that is finite-dimensional in each degree and bounded
below, we may associate to it the dg commutative algebra C �.g/ of cochains. The
underlying graded commutative algebra of C �.g/ is

V
g_ D S.gŒ1�_/, the free

graded commutative algebra on the graded vector space gŒ1�_ that equals .g1�i /_

in degree i . The differential ı of C �.g/ is determined by its restriction to the space
of generators gŒ1�_ � C �.g/, on which it equals the sum over k of the adjoints of
the operations `k . The resulting graded derivation satisfies the equation ı2 D 0 if
and only if g is an L1-algebra.

As explained in Section 1, the simplicial set Spec�.A/D dAlg.A; ��/ may be
viewed as an analogue in homotopical algebra of the spectrum of a commutative
algebra. Applied to C �.g/, we obtain a simplicial set Spec�.C

�.g//, which has a
natural identification with the simplicial set MC�.g/.

The homotopy groups of a nilpotent L1-algebra g are defined as �i .g/ D
�i .MC�.g//: In particular, the set of components �0.g/ of g is the quotient of
MC.g/ by the nilpotent group associated to the nilpotent Lie algebra g0. This plays
a prominent role in deformation theory: it is the moduli set of deformations of g.

In order to establish that MC�.g/ is a Kan complex, we use the Poincaré lemma.
Let 0� i � n. By (3-9), we see that

idn D "inC .d C ı/h
i
nC h

i
n.d C ı/:
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If ˛ 2MCn.g/, we see that

˛ D "in˛C .d C ı/h
i
n˛C h

i
n.d C ı/˛

D "in˛CR
i
n˛�

1X
`D2

1

`Š
hinŒ˛

^`�;

where Rin D .d C ı/h
i
n. Introduce the space mcn.g/D f.d C ı/˛ j ˛ 2 .g˝�/

0g:

LEMMA 4.6. Let g be a nilpotent L1-algebra. The map ˛ 7! ."in˛;R
i
n˛/

induces an isomorphism between MCn.g/ and MC.g/�mcn.g/.

Proof. Given �2MC.g/ and � 2mcn.g/, let ˛0D�C�, and define differential
forms .˛k/k>0 inductively by the formula

(4-18) ˛kC1 D ˛0�

1X
`D2

1

`Š
hinŒ˛

^`
k �:

Then for all k, we have "in˛k D � and Rin˛k D �. The sequence is eventually
constant, since by induction, we see that

˛kC1�˛k D

1X
`D2

1

`Š

X̀
jD1

hin
�
˛
^j�1

k�1
; ˛k�1�˛k; ˛

^`�j

k

�
2 F kC1g˝�n:

The limit ˛ D limk!1 ˛k satisfies

˛ D ˛0�

1X
`D2

1

`Š
hinŒ˛

^`�:

Applying the operator d C ı, we see that

.d C ı/˛ D ı��

1X
`D2

1

`Š
.d C ı/hinŒ˛

^`�

and hence that

F.˛/D ı�C

1X
`D2

1

`Š
Œ˛^`��

1X
`D2

1

`Š
.d C ı/hinŒ˛

^`�

D F.�/C

1X
`D2

1

`Š
hin.d C ı/Œ˛

^`�D F.�/C hin.d C ı/F.˛/:

The Bianchi identity (4-16) implies that

F.˛/D F.�/�

1X
`D1

1

`Š
hinŒ˛

^`;F.˛/�D

1X
`D1

1

`Š
hinŒ˛

^`;F.˛/�:
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The nilpotence of g implies that F.˛/D 0; it follows that ˛ is an element of MCn.g/

with "in˛ D � and Rin˛ D �.
If ˛ and ˇ are a pair of elements of MCn.g/ such that "in˛ D "

i
nˇ and Rin˛ D

Rinˇ, then

˛�ˇ D�

1X
`D2

1

`Š

X̀
jD1

hin
�
˛^j�1; ˛�ˇ; ˇ^`�j

�
:

This shows, by induction, that ˛�ˇ 2F ig for all i > 0 and hence, by the nilpotence
of g, that ˛ D ˇ. �

The following result applies when g is a dg Lie algebra.

PROPOSITION 4.7 [Hin97]. If f W g! h is a surjective morphism of nilpotent
L1-algebras, the induced morphism MC�.f / WMC�.g/!MC�.h/ is a fibration of
simplicial sets.

Proof. Let 0� i � n. Given a horn ˇ 2 sSet.ƒni ;MC�.g// and an n-simplex

 2MCn.h/ such that @j 
 D f .@jˇ/ for j ¤ i , we wish to construct an element
˛ 2 f �1.
/�MCn.g/ such that @j˛ D @jˇ for j ¤ i .

Since f W g˝�� ! h˝�� is a Kan fibration, there exists an extension
� 2 g˝�n of ˇ of total degree 1 such that f .�/D ˛. Let ˛ be the unique element
of MCn.g/ such that "in˛D "

i
n� and Rin˛DR

i
n�. If j ¤ i , we have "in@j˛D "

i
n@jˇ

and Rin@j˛ D Rin@jˇ and hence, by Lemma 4.6, @j˛ D @jˇ. Thus, ˛ fills the
horn ˇ. Also f ."in˛/ D f ."

i
n�/ D "

i
n
 and f .Rin˛/ D f .R

i
n�/ D R

i
n
 ; hence

f .˛/D 
 . �

The category of nilpotent L1-algebras concentrated in degrees .�1; 0� is
a variant of Quillen’s model [Qui69] for rational homotopy of nilpotent spaces.
By the following theorem, the functor MC�.g/ carries quasi-isomorphisms of such
L1-algebras to homotopy equivalences of simplicial sets.

THEOREM 4.8. If g and h are both L1-algebras concentrated in degrees
.�1; 0� and if f W g! h is a quasi-isomorphism, then

MC�.f / WMC�.g/!MC�.h/

is a homotopy equivalence.

Proof. Filter g by L1-algebras F j g, where

.F 2j g/i D

8<:
0 if i C j > 0;
Z�j .g/ if i C j D 0;
gi if i C j < 0;

.F 2jC1g/i D

8<:
0 if i C j > 0;
B�j .g/ if i C j D 0;
gi if i C j < 0;
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and similarly for h. If j > k, there is a morphism of fibrations of simplicial sets

MC�.F
j g/ //

��

MC�.F
kg/ //

��

MC�.F
kg=F j g/

��
MC�.F

jh/ // MC�.F
kh/ // MC�.F

kh=F jh/:

We have

MC�.F
2j g=F 2jC1g/ŠMC�.H

�j .g//ŠMC�.H
�j .h//ŠMC�.F

2jh=F 2jC1h/:

The simplicial sets

MC�.F
2jC1g=F 2jC2g/Š B�j .g/˝�

jC1
� and

MC�.F
2jC1h=F 2jC2h/Š B�j .h/˝�

jC1
�

are contractible by Lemma 3.2. The proposition follows. �

Let m be a nilpotent commutative ring; that is, m`C1D 0 for some `. If g is an
L1-algebra, then g˝m is nilpotent; this is the setting of formal deformation theory.
In this context too, the functor MC�.g;m/DMC�.g˝m/ takes quasi-isomorphisms
of L1-algebras to homotopy equivalences of simplicial sets.

PROPOSITION 4.9. If f W g! h is a quasi-isomorphism of L1-algebras and
m is a nilpotent commutative ring, then

MC�.f;m/ WMC�.g;m/!MC�.h;m/

is a homotopy equivalence.

Proof. We argue by induction on the nilpotence length ` of m. There is a
morphism of fibrations of simplicial sets

MC�.g;m2/ //

��

MC�.g;m/ //

��

MC�.g˝m=m2/

��
MC�.h;m2/ // MC�.h;m/ // MC�.h˝m=m2/:

The abelian L1-algebras g˝m=m2 and h˝m=m2 are quasi-isomorphic; hence
the morphism MC�.g˝m=m2/! MC�.h˝m=m2/ is a homotopy equivalence.
The result follows by induction on `. �

5. The functor 
�.g/

In this section, we study the functor 
�.g/; we prove that it is homotopy
equivalent to MC�.g/ and show that it specializes to the Deligne groupoid when g
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is concentrated in degrees Œ0;1/. Fix a gauge s�, for example Dupont’s operator
(3-12).

The simplicial set 
�.g/ associated to a nilpotent L1-algebra is the simplicial
subset of MC�.g/ consisting of those Maurer-Cartan forms annihilated by s�:

(5-19) 
�.g/D f˛ 2MC�.g/ j s�˛ D 0g:

For any simplicial set X�, the set of simplicial maps sSet.X�; 
�.g// equals the set
of Maurer-Cartan elements ˛ 2MC.g; X�/ such that s�˛ D 0. This is reminiscent
of gauge conditions, such as the Coulomb gauge, in gauge theory.

PROPOSITION 5.1. If g is abelian, then there is a natural isomorphism 
�.g/Š
K�.gŒ1�/.

Proof. If ˛ 2 
n.g/, then .d C ı/˛ D sn˛ D 0. Hence by (3-7),

˛ D Pn˛C sn.d C ı/˛C .d C ı/sn˛ D Pn˛:

Thus 
n.g/ � Kn.gŒ1�/. Conversely, if ˛ 2 Kn.gŒ1�/, then Pn˛ D ˛, and hence
sn˛ D 0. Thus Kn.gŒ1�/� 
n.g/. �

We show that 
�.g/ is an1-groupoid and, in particular, a Kan complex: the
heart of the proof is an iteration, similar to the iteration (4-18), that solves the
Maurer-Cartan equation on the n-simplex �n in the gauge sn˛ D 0.

Definition 5.2. An n-simplex ˛ 2 
n.g/ is thin if I0:::n.˛/D 0.

LEMMA 5.3. If g is a nilpotent L1-algebra, the map ˛ 7! ."in˛; PnR
i
n˛/

induces an isomorphism between 
n.g/ and MC.g/�PnŒmcn.g/�.

Proof. Let 0� i � n. By (3-7), we see that

idn D PnC .d C ı/snC sn.d C ı/

D "inC .d C ı/.Pnh
i
nC sn/C .Pnh

i
nC sn/.d C ı/:

It follows that if ˛ 2 
n.g/,

(5-20) ˛ D "in˛CPnR
i
n˛�

1X
`D2

1

`Š
.Pnh

i
nC sn/Œ˛

^`�:

Given � 2MC.g/ and � 2 PnŒmcn.g/�, let ˛0 D �C �, and define differential
forms .˛k/k>0 inductively by the formula

˛k D ˛0�

1X
`D2

1

`Š
.Pnh

i
nC sn/Œ˛

^`
k�1�:
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Then for all k, we have sn˛k D 0, "in˛k D � and PnRin˛k D �. The sequence
.˛k/ is eventually constant since, by induction, we see that

˛k �˛k�1 D

1X
`D2

1

`Š

X̀
jD1

.Pnh
i
nC sn/

�
˛
^j�1

k�2
; ˛k�2�˛k�1; ˛

^`�j

k�1

�
2 F kg˝�n:

The limit ˛ D limk!1 ˛k satisfies

˛ D ˛0�

1X
`D2

1

`Š
.PhinC sn/Œ˛

^`�:

By the same argument as in the proof of Lemma 4.6, it follows that

F.˛/D F.�/�

1X
`D1

1

`Š
.PhinC sn/Œ˛

^`;F.˛/�

D

1X
`D1

1

`Š
.PhinC sn/Œ˛

^`;F.˛/�:

The nilpotence of g implies that F.˛/D 0; it follows that ˛ is an element of 
n.g/
with "in˛ D � and PRin˛ D �.

If ˛ and ˇ are a pair of elements of 
n.g/ such that "in˛D "
i
nˇ and PnRin˛D

PnR
i
nˇ, then

˛�ˇ D�

1X
`D2

1

`Š

X̀
jD1

.Pnh
i
nC sn/

�
˛^j�1; ˛�ˇ; ˇ^`�j

�
:

This shows, by induction, that ˛�ˇ 2F ig for all i >0, and hence, by the nilpotence
of g, that ˛ D ˇ. �

THEOREM 5.4. If g is a nilpotent L1-algebra, 
�.g/ is an1-groupoid. If g is
concentrated in degrees .�`;1/, respectively .�`; 0�, then 
�.g/ is an `-groupoid,
respectively an `-group.

Proof. Let ˇ 2 sSet.ƒni ; 
�.g// be a horn in 
�.g/. The differential form

˛0 D "
i
nˇC .d C ı/

n�1X
kD1

X
i1<���<ik
i…fi1;:::;ikg

!i1:::ik ˝ Ii i1:::ik .ˇ/ 2MC.g/�PnŒmcn.g/�

satisfies I0:::n.˛0/D 0. The solution ˛ 2 
n.g/ of the equation

˛ D ˛0�

1X
`D2

1

`Š
.Pnh

i
nC sn/Œ˛

^`�
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constructed in Lemma 5.3 is thin and �ni .˛/D ˇ. Thus 
�.g/ is an1-groupoid.
If g1�n D 0, it is clear that every n-simplex ˛ 2 
n.g/ is thin, while if g1 D 0,

then 
�.g/ is reduced. �

Given � 2MC.g/ and xi1:::ik 2 g1�k for 1� i1 < � � �< ik � n, let

˛�n .xi1:::ik / 2 
n.g/

be the solution of (5-20) with "0n˛
�
n .xi1:::ik /D � and

R0n˛
�
n .xi1:::ik /D

nX
kD1

X
1�i1<���<ik�n

!i1:::ik ˝ xi1:::ik :

Definition 5.5. The n-th generalized Campbell-Hausdorff series associated to
the gauge s� is the function of�2MC.g/ and xi1:::ik 2g1�k for 1� i1< � � �<ik�n
given by the formula

��n .xi1:::ik /D I1:::n.˛
�
n .xi1:::ik // 2 g2�n:

If g is concentrated in degrees .�1; 0�, then the Maurer-Cartan element �
equals 0 and may be omitted from the notation for ˛n.xi1:::ik / and �n.xi1:::ik /.

Since ˛�2 .x1; x2; x12/ is a flat connection 1-form on the 2-simplex, its mon-
odromy around the boundary must be trivial. (The 2-simplex is simply connected.)
In terms of the generalized Campbell-Hausdorff series ��2 .x1; x2; x12/, this gives
the equation ex1 D e�

�
2 .x1;x2;x12/ex2 in the Lie group associated to the nilpotent

Lie algebra g0. Thus, the simplicial set 
�.g/ (indeed, its 2-skeleton) determines
�
�
2 .x1; x2; x12/ as a function of x1, x2 and x12. In the Dupont gauge, modulo

terms involving more than two brackets, it equals

�
�
2 .x1; x2; x12/D x1� x2C

1
2
Œx1; x2��C

1
2
Œx12��

C
1
12
Œx1C x2; Œx1; x2����C

1
6
ŒŒx1C x2��; x1; x2��

C
1
6
ŒŒx1C x2��; x12���

1
12
Œx1C x2; Œx12����C � � � :

Definition 5.6. A nilpotent L1-algebra g is minimal if the following two
conditions hold:

(i) g is concentrated in degrees .�1; 0� and

(ii) the differential ı of g vanishes.

An L1-algebra g is minimal if and only if the dg commutative algebra C �.g/
is minimal in the sense of [Sul77]. The following result was suggested to the author
by P. Ševera.

PROPOSITION 5.7. If L is minimal, 
�.L/ is a minimal Kan complex.
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Proof. If L is minimal, F
�
˛ C !0:::n ˝ x

�
is independent of x 2 L1�n. It

follows that

˛n.xi1:::ik /D ˛n.xi1:::ik /k<nC!0:::n˝ x1:::n

and hence that �n.xi1:::ik / D �n.xi1:::ik /k<n. This shows that @0˛n.xi1:::ik / is
independent of x1:::n. The same holds with @i replacing @0, by action of the
symmetric group Sn on the n-simplices of 
�.L/. �

If g is a dg Lie algebra, the thin 2-simplices define a composition on the
1-simplices of 
�.g/ which is strictly associative; this parallels a recent result of
Paoli [Pao07].

PROPOSITION 5.8. If g is a dg Lie algebra, the composition ��2 .x1; x2/ W
g0˝ g0! g0 is associative.

Proof. It suffices to show that ��3 .x1; x2; x3; xij D 0/D 0; in other words, if
three faces of a thin 3-simplex are thin, then the fourth is. The iteration leading to
the solution ˛ of (5-20) with initial conditions

˛0 D �C .d C ı/.t1x1C t2x2C t3x3/

lies in the space g0˝�13˚ g1˝�03; hence I123.˛/D 0 2 g�1. �

In particular, if g is a dg Lie algebra concentrated in degrees .�2;1/, then

�.g/ is the nerve of a strict 2-groupoid, that is, a groupoid enriched in groupoids;
in this way, we see that 
�.g/ generalizes the Deligne 2-groupoid [Del94], [Get02].

Although it is not hard to derive explicit formulas for the generalized Campbell-
Hausdorff series up to any order, we do not know any closed formulas for them
except when nD 1, in which case it is independent of the gauge. We now derive a
closed formula for ��1 .x/, which resembles Cayley’s famous formula for the series
solution of the ordinary differential equation x0.t/D f .x.t//.

To each rooted tree, associate the word obtained by associating to a vertex
with i branches the operation Œx; a1; : : : ; ai ��. Multiply the resulting word by the
number of total orders on the vertices of the tree such that each vertex precedes its
parent. Let ek�.x/ be the sum of these terms over all rooted trees with k vertices.
For example, e1�.x/D Œx��, e2�.x/D Œx; Œx����, and

e3�.x/D Œx; Œx; Œx������C Œx; Œx��; Œx����:

The coefficient of a tree T in ek�.x/ equals the number of monotone orderings of
its vertices, that is, total orderings such that each vertex is greater than its parent.
The pictures below show the trees contributing to ek�.X/ for k < 5.
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e1(X) = s e2(X) = ss e3(X) = ss
s

+ s�� sAAs

e4(X) =

ss
ss + s�� sAA

ss + 3 ss�� sAA
s

+ s�� s@@ss

e5(X) =

ss
ss
s

+

s�� sAA
ss
s

+ 3

ss�� sAA
ss + s�� s@@ss

s

+ 4

ss
s�� sAAs + 3 sss�� sAA

s
+ 6 ss�� s@@ss + sQ

QQs���s�� sAA
s

1

PROPOSITION 5.9. The 1-simplex ˛�1 .x/ 2 
1.g/ that is determined by � 2
MC.g/ and x 2 g0 is given by the formula

˛
�
1 .x/D ��

1X
kD1

tk

kŠ
ek�.x/C x dt:

Proof. To show that ˛�1 .x/ 2 
1.g/, we must show that it satisfies the Maurer-
Cartan equation. Let ˛.t/ D � �

P1
kD1.t

k=kŠ/ek�.x/: It must be shown that
˛0.t/C

P1
nD0.1=nŠ/Œ˛.t/

^n; x�D 0 or, in other words, that

ekC1� .x/D

1X
nD0

.�1/n

nŠ

X
k1C���CknDk

kŠ

k1Š � � � knŠ
Œek1� .x/; : : : ; e

kn
� .x/; x�˛

D

1X
nD0

1

nŠ

X
k1C���CknDk

kŠ

k1Š � � � knŠ
Œx; ek1� .x/; : : : ; e

kn
� .x/�˛:

This is easily proved by induction on k. �



LIE THEORY FOR NILPOTENT L1-ALGEBRAS 299

Proposition 5.9 implies a formula for the generalized Campbell-Hausdorff
series �˛1 .x/:

�
�
1 .x/D ��

1X
kD1

1

kŠ
ek�.x/:

If g is a dg Lie algebra, only trees with vertices of valence 0 or 1 contribute to
ek˛.x/, and we recover the formula (1-3) figuring in the definition of the Deligne
groupoid for dg Lie algebras.

There is a relative version of Theorem 5.4, analogous to Proposition 4.7:

THEOREM 5.10. If f W g ! h is a surjective morphism of nilpotent L1-
algebras, the induced morphism 
�.f / W 
�.g/! 
�.h/ is a fibration of simplicial
sets.

Proof. Let 0 � i � n. Given a horn ˇ 2 sSet.ƒni ; 
�.g// and an n-simplex

 2 
n.h/ such that f .@jˇ/D @j 
 for j ¤ i , our task is to construct an element
˛ 2 f �1.
/� 
n.g/ such that @j˛ D @jˇ if j ¤ i .

Choose a solution x 2 g1�n of the equation f .x/D I0:::n.
/ 2 h1�n. Let ˛
be the unique element of 
n.g/ such that "in˛ D "

i
nˇ and

PnR
i
n˛ D .d C ı/

� n�1X
kD1

X
i1<���<ik
i…fi1;:::;ikg

!i1:::ik ˝ Ii i1:::ik .ˇ/C .�1/
i !

0:::b{:::n˝ x�:
If j ¤ i , we have "in@j˛ D "in@jˇ and PnRin@j˛ D PnR

i
n@jˇ and hence, by

Lemma 5.3, @j˛ D @jˇ; thus, ˛ fills the horn ˇ. Also f ."in˛/D f ."
i
nˇ/D "

i
n


and f .PnRin˛/D PnR
i
n
 ; hence f .˛/D 
 . �

COROLLARY 5.11. If g is a nilpotent L1-algebra, the inclusion of simplicial
sets 
�.g/ ,! MC�.g/ is a homotopy equivalence; in other words, �0.
�.g// Š
�0.g/, and for all 0-simplices ˛0 2MC0.g/DMC.g/,

�i .
�.g/; ˛0/Š �i .g; ˛0/ for i > 0:

Proof. This is proved by induction on the nilpotence length ` of g. When g is
abelian, MC�.g/ and 
�.g/ are simplicial abelian groups, and their quotient is the
simplicial abelian group

MCn.g/=
n.g/Š .d C ı/sn.g˝�n/
1:

This simplicial abelian group is a retract of the contractible simplicial abelian group
g˝�� and hence is itself contractible.
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Let F ig be the lower central series of g. Given i > 0, we have a morphism of
principal fibrations of simplicial sets given by


�.F
iC1g/ //

��


�.F
ig/ //

��


�.F
ig=F iC1g/

��
MC�.F

iC1g/ // MC�.F
ig/ // MC�.F

ig=F iC1g/:

Since F ig=F iC1g is abelian, we see that 
�.F ig=F iC1g/'MC�.F
ig=F iC1g/.

The result follows by induction on `. �

When g is a nilpotent Lie algebra, the isomorphism

�0.
�.g//Š �0.MC�.g//

is equivalent to the surjectivity of the exponential map. The above corollary may
be viewed as a generalization of this fact.
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