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Abstract

This paper develops and implements a new algorithm for calculating wave trace
invariants of a bounded plane domain around a periodic billiard orbit. The algorithm
is based on a new expression for the localized wave trace as a special multiple
oscillatory integral over the boundary, and on a Feynman diagrammatic analysis
of the stationary phase expansion of the oscillatory integral. The algorithm is
particularly effective for Euclidean plane domains possessing a Z2 symmetry which
reverses the orientation of a bouncing ball orbit. It is also very effective for domains
with dihedral symmetries. For simply connected analytic Euclidean plane domains
in either symmetry class, we prove that the domain is determined within the class
by either its Dirichlet or Neumann spectrum. This improves and generalizes the
best prior inverse result that simply connected analytic plane domains with two
symmetries are spectrally determined within that class.
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1. Introduction

This paper is part of a series (cf. [Zel04b], [Zel04a]) devoted to the inverse
spectral problem for simply connected analytic Euclidean plane domains �. The
motivating problem is whether generic analytic Euclidean drumheads are determined
by their spectra. All known counterexamples to the question ‘can you hear the
shape of a drum?’ are plane domains with corners [GWW92], so it is possible,
according to current knowledge, that analytic drumheads are spectrally determined.
Our main results give the strongest evidence to date for this conjecture by proving
it for two classes of analytic drumheads: (i) those with an up/down symmetry, and
(ii) those with a dihedral symmetry. This improves and generalizes the best prior
results that simply connected analytic domains with the symmetries of an ellipse
and a bouncing ball orbit of prescribed length L are spectrally determined within
this class [Zel99], [Zel00], [ISZ02].

The proofs of the inverse results involve three new ingredients. The first is a
simple and precise expression (see Theorem 3.1) for the localized trace of the wave
group (or dually the resolvent), up to a given order of singularity, as a finite sum of
special oscillatory integrals over the boundary @� of the domain with transparent
dependence on the boundary defining function. Theorem 3.1 is a general result
combining the Balian-Bloch approach to the wave trace expansion of [Zel04b] with
a reduction to boundary integral operators explained in [Zel04a]. Presumably it
could be obtained by other methods, such as the monodromy operator method of
Iantchenko, Sjöstrand and Zworski [SZ02], [ISZ02]. Aside from this initial step,
this paper is self-contained.

The next ingredient is a stationary phase analysis of the special oscillatory
integrals in Theorem 3.1. To bring order into the profusion of terms in the wave
trace (or resolvent trace) expansion, we use a Feynman diagrammatic method to
enumerate the terms in the expansion. Diagrammatic analyses have been previously
used in [AG93] (see also [Bur95]) to compute the sub-principal wave invariant. A
novel aspect of the diagrammatic analysis in this paper is its focus on the diagrams
whose amplitudes involve the maximum number of derivatives of the boundary
in a given order of wave invariant. A key result, Theorem 4.2, is that only one
term, the principal term in Theorem 3.1, contributes such highest derivative terms.
That is, the stationary phase expansion of the principal term generates all terms
of the j -th order wave invariant (for all j ) which depend on the maximal number
2j � 2 of derivatives of the curvature of the boundary at the reflection points. In
the principal term, the ‘transparent dependence’ of the phase and amplitude on the
boundary is encapsulated in the simple properties of the phase and amplitude stated
in Theorem 4.2. Only these properties are used to make the key calculations of the
wave invariants stated in Theorem 5.1.
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This focus on highest derivative terms in each wave invariant turns out to be
crucial for the inverse spectral problem on domains with the symmetries studied in
this article. The third key ingredient is the analysis in Section 6 of these highest
order derivative terms for domains in our two symmetry classes. The main result
is that the other terms in the wave invariants are redundant, and further that the
domain can be determined from the wave invariants within these symmetry classes.
These results rely on the finite Fourier transform to diagonalize the Hessian matrix
of the length function, and on an analysis of Hessian power sums.

As this outline suggests, we take a direct approach to calculating wave trace
invariants and do not employ Birkhoff normal forms as in [Gui96], [Zel99], [Zel00],
[Zel98], [ISZ02]. We do this because the classical normal form of the first return
map does not contain sufficient information to determine domains with only one
symmetry. Therefore one would need to use the full quantum Birkhoff normal form.
But we found the calculations based on the Balian-Bloch approach simpler than
those involved in the full quantum Birkhoff normal form.

1.1. Statement of results. Let us now state the results more precisely. We
recall that the inverse spectral problem for plane domains is to determine a domain
� as much as possible from the spectrum of its Euclidean Laplacian ��B in � with
boundary conditions B:

(1)

(
��B'j .x/D �

2
j 'j .x/ with h'i ; 'j i D ıij for x 2�;

B'j .q/D 0 for q 2 @�:

The boundary conditions could be either Dirichlet B' D 'j@� or Neumann B' D
@�'j@�, where @� is the interior unit normal.

We briefly introduce some other notation and terminology, referring to Section
2 and to [KT91] and [PS92] for further background and definitions regarding
billiards. By Lsp.�/ we denote the length spectrum of �, that is, the set of lengths
of closed trajectories of its billiard flow. By a bouncing ball orbit 
 is meant a 2-link
periodic trajectory of the billiard flow. The orbit 
 is a curve in S�� which projects
to an ‘extremal diameter’ under the natural projection � W S��! �, that is, a
line segment in the interior of � that intersects @� orthogonally at both boundary
points. For simplicity of notation, we often refer to �.
/ itself as a bouncing ball
orbit and denote it as well by 
 . By rotating and translating � we may assume
that 
 is vertical, with endpoints at AD .0; L=2/ and B D .0;�L=2/. In a strip
T�.AB/ of width epsilon around 
 , we may locally express @�D @�C[ @�� as
the union of two graphs over the x-axis, namely

@�˙ D fy D f˙.x/ W x 2 .��; �/g:
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Our inverse results pertain to the following two classes of drumheads: (i) the
class D1;L of drumheads with one symmetry � and a bouncing ball orbit of length
2L which is reversed by � and (ii) the class Dm;L for m� 2 of drumheads with the
dihedral symmetry group Dm and an invariant m-link reflecting ray. Let us define
the classes more precisely and state the results.

1.1.1. Domains with one symmetry. The class D1;L consists of simply con-
nected real-analytic plane domains � with these properties:

(i) There is an isometric involution � of � which ‘reverses’ a nondegenerate
bouncing ball orbit 
 ! 
�1 of length L
 D 2L. Hence fC.x/D�f�.x/.

(ii) The lengths 2rL of all iterates 
r for r D 1; 2; 3; : : : have multiplicity one
in Lsp.�/, and in the elliptic case, the eigenvalues ei˛ of the linear Poincaré
map P
 are such that a D �2 cos˛=2 does not belong to the ‘bad set’ BD

faD 0;�1; 2;�2g.

(iii) The endpoints of 
 are not vertices of @�.

Let SpecB.�/ denote the spectrum of the Laplacian �� of the domain � with
boundary conditions B (Dirichlet or Neumann).

THEOREM 1.1. For Dirichlet (or Neumann) boundary conditions B , the map
SpecB W D1;L 7! RN

C
is one-to-one.

Next, let us clarify the assumptions and consider related problems on Z2-
symmetric domains:

(a) Under the up-down symmetry assumption, fC.x/ D �f�.x/ as seen in
Figure 2. Hence there is ‘only one’ analytic function f to determine. It is quite
a different problem if � preserves orientation of 
 (i.e. flips the domain left-right
rather than up-down), which amounts to saying that f˙ are even functions but does
not give a simple relation between them.
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Figure 1. @� as a pair of local graphs.
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Figure 2. A domain in D1;L.

(b) Condition (ii) on the multiplicity of 2L means that 
 is the only closed
billiard orbit of length 2rL. Since 
r D .
r/�1 for a bouncing ball orbit, the
multiplicity is one rather than two. The method we use to calculate the trace
combines the interior and exterior problems, and so one might think it necessary to
assume that no exterior closed billiard trajectory (in the complement �c of �) has
length 2L. However, it is known that there exists a purely interior wave trace (see
Section 1.2) and that the wave trace invariants at 
 are spectral invariants; we use
the interior/exterior combination only to simplify the calculation. Therefore, it is
not necessary to exclude exterior closed orbits of length L. When making stationary
phase calculations, we only consider the interior closed orbits.

(c) The linear Poincaré map P
 is defined in Section 2. In the elliptic case, its
eigenvalues fe˙i˛g are of modulus one, and we require that a D �2 cos˛=2 lies
outside the bad set B. In the hyperbolic case, its eigenvalues fe˙˛g are real and they
are never roots of unity in the nondegenerate case. These are generic conditions in
the class of analytic domains. We refer to the angles ˛ as Floquet angles. The set B

consists of angle parameters where certain functions fail to be independent as one
‘iterates’ the geodesic 
 . The role of this set will be described more precisely in
Section 1.2.3.

(d) Assumption (iii) is equivalent to f .3/
˙
.0/ 6D 0. The third derivatives f .3/

˙
.0/

of f˙ at the endpoints of the bouncing ball orbit appear as coefficients of certain
terms in the wave invariants, and we make the assumption to ensure that the corre-
sponding term does not vanish. Geometrically, f .3/

˙
.0/D 0 only if the endpoints of

the bouncing ball orbit are vertices of @�, that is, critical points of the curvature.
This is a technical condition which we believe can be removed by an extension of
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the argument, as will be discussed at the end of the proof. We do not give a complete
argument for the sake of brevity.

As a corollary, we of course have the main result of [Zel99], [Zel00], [ISZ02]
that a simply connected analytic domain with the symmetries of an ellipse and with
one axis of a prescribed length L is spectrally determined within this class.

COROLLARY 1.2. Let D2 be the class of analytic convex domains with central
symmetry, that is, the symmetries of an ellipse. Assume that frL
g are of multiplicity
one in Lsp.�/ up to time reversal (r D 1; 2; 3; : : : ). Then SpecB : D 7! RN

C
is one-

to-one.

We give a new proof at the start of Section 6 which is much simpler than the
one-symmetry case, and simpler than the proofs in [Zel99], [Zel00].

This inverse result is also true for nonconvex simply connected analytic do-
mains with the symmetries of the ellipse if we assume one axis has lengthL and is of
multiplicity one. We stated the result only for convex domains because, by a recent
result of M. Ghomi [Gho04], the shortest closed trajectory of a centrally-symmetric
convex domain is automatically a bouncing ball orbit; hence it is not necessary to
mark the length L of an invariant bouncing ball orbit.

Theorem 1.1 removes the (left/right) symmetry from the conditions on the
domains considered in [Zel99], [Zel00]. The situation for analytic plane domains is
now quite analogous to that for analytic surfaces of revolution [Zel98], where the
rotational symmetry implies that the profile curve is up/down symmetric but not
necessarily left/right symmetric.

Theorem 1.1 admits a generalization to the special piecewise analytic mirror
symmetric domains with corners that are formed by reflecting the graph of an
analytic function y D f .x/ around the x-axis; see Figure 3. More precisely,
let f .x/ be an analytic function on an interval Œ�a; a� (for some a) such that


....................................................................

........................................
....................................

.....................
......................

......................
...................
..............
..............
..............
..............
..............
.............
..............
...............
...............
...............
..............
..............
.............
............
............
............
...........
...........
...........
...........
..........
..........
..........
...

..........
..........
..........
..........
...........
...........
...........
............
............
............
.............
.............
..............
...............
...............
...............
..............
.............
..............
..............
..............
..............
..............
................
......................
......................

......................
.............................

........................................
........................................................

....................................................................................................................


← → x

y = f(x)

y = −f(x)

−a a

Figure 3. Z2 symmetric domain with corners.
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Figure 4. A D3-symmetric domain.

f .a/D f .�a/D 0 and such that f has no other zeros in Œ�a; a�. Then consider
the domain �f bounded by the union of the graphs y D˙f .x/.

Let F be the class of real analytic functions with the stated properties, and
consider those f for which precisely one critical value of f equals L=2. The
vertical line through .x;˙L=2/ is then a bouncing ball orbit. We further impose the
same generic conditions on �f as in Theorem 1.1. We denote the resulting class of
real analytic graphs by FL.

THEOREM 1.3. Up to translation (that is, choice of a), the Dirichlet (or
Neumann) spectrum of �f determines f within FL, that is, Spec W FL 7! RN

C
is

one-to-one.

The proof is identical to that of Theorem 1.1 once it is established that there
exists a wave trace expansion around the length t D 2L of the bouncing ball orbit
for domains in F with the same coefficients as in the smooth case. This fact follows
from work of A. Vasy [Vas05; Vas08] on the Poisson relation for manifolds with
corners. In other words, the presence of corners does not affect the wave trace
expansion at the bouncing ball orbit.

1.1.2. Dihedrally symmetric domains. The second class of domains is the class
Dm;L of dihedrally symmetric analytic drumheads �, that is, domains satisfying

(i) ��D� for all � 2Dm;

(ii) Dm leaves invariant at least one m-link periodic reflecting ray 
 of length 2L;
and

(iii) the lengths 2rL have multiplicity one in Lsp.�/.

We then have this:

THEOREM 1.4. For any m� 2, SpecB W Dm;L 7! RN
C

is one-to-one.
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We recall that Dm is the group generated by elements f�;R2�=mg, where
R2�=m is counterclockwise rotation through the angle 2�=m and where �2 D 1,
with the relations �R2�=n� D R�2�=n. Also, by an m-link periodic reflecting
ray we mean a periodic billiard trajectory with m points of transversal reflection
off @�. It is easy to see that such a ray exists if � is convex. In general, it is a
nontrivial additional assumption. With this proviso, Theorem 1.4 is a second kind
of generalization of the inverse spectral result of [Zel99], [Zel00] for the class D2;L
of ‘bi-axisymmetric domains’. That result obviously covers the classes D2n;L, but
the general case is new. For any prime p, the result for Dp;L is independent of any
other case where p does not divide n.

1.2. Overview. Let us give a brief overview of the proofs.
We denote by E�B .t; x; y/ D

P
j cos t�j'j .x/'j .y/ the kernel of the even

part of the wave group cos t .��B /
1=2, generated by the Laplacian ��B of (1) with

either Dirichlet Bu D uj@� or Neumann Bu D @�uj@� boundary conditions. Its
distribution trace is defined by

Tr 1�E�B .t/ WD
Z
�

E�B .t; x; x/dx D

1X
jD1

cos t�j :

When L
 is the length of a nondegenerate periodic reflecting ray 
 of the
generalized billiard flow, and when the only periodic orbits of length L
 are 
 and

�1 (the time reversal of 
), then Tr 1�E�B .t/ is a Lagrangian distribution in the
interval .L
 � �; L
 C �/ for sufficiently small �, and has the following expansion
in terms of homogeneous singularities. See [GM79, Th. 1 and p. 228] and also
[PS92, Th. 6.3.1].

THEOREM. Let 
 be a nondegenerate billiard trajectory whose length L
 is
isolated and of multiplicity one in Lsp.�/. Then for t near L
 , the trace of the even
part of the wave group has the singularity expansion

(2) Tr 1�E�B .t/� Re
�
a
 .t �L
 C i0/

�1
C a
0 log.t �L
 C i0/

C
P1
kD1 a
k.t �L
 C i0/

k log.t �L
 C i0/
�
;

where the coefficients a
k (the wave trace invariants) are calculated by the station-
ary phase method from a microlocal parametrix for E�B at 
 .

Here a
 is a sum of the contributions from 
 and 
�1, which are the same. In
general, the contribution at t D L
 is the sum over all periodic orbits of length L
 .
The sum to the right of Re is the trace of the wave group exp.i t.��B /

1=2/; the trace
of the even part E�B .t/ of the wave group equals the real part of that trace.

In [Zel04b, §3.1], this expansion was reformulated in terms of a regularized
trace of the interior resolvent

R�B .kC i�/D�.�
�
B C .kC i�/

2/�1 WH s.�/!H sC2.�/;
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with k 2 R and � > 0 and with boundary condition B . The Schwartz kernel or
Green’s kernelG�B .kCi�; x; y/2D0.���/ of the resolvent is the unique solution
of the boundary problem

�.��B C .kC i�/
2/G�B .kC i�; x; y/D ıy.x/ for x; y 2�;

BG�B .kC i�; x; y/D 0 for x 2 @�:

Let O�2C10 .L
��; L
C�/ be a cutoff that is equal to one on an interval .L
�
�=2; L
 C �=2/ and which contains no other lengths in Lsp.�/ in its support, and
define the smoothed (and localized) resolvent with a choice of boundary conditions
by

R�B�.kC i�/ WD

Z
R

�.k��/.�C i�/R�B .�C i�/d�:

The definition is chosen so that

(3) R�B�.kC i�/D

Z 1
0

O�.t/ei.kCi�/tE�B .t/dt:

Then the smoothed resolvent trace admits an asymptotic expansion of the form

(4) Tr 1�R�B�.kC i�/� DB;
 .kC i�/
P1
jD0B
;jk

�j as k!1;

where
� DB;
 .kC i�/ is the symplectic pre-factor

DB;
 .kC i�/D C0�B.
/
ei.kCi�/L
 ei.�=4/m
p
jdet.I�P
 /j

I

� P
 is the Poincaré map associated to 
 (see §2 for background);

� �B.
/ is the signed number of intersections of 
 with @� (the sign depends on
the boundary conditions;˙1 for each bounce for Neumann/Dirichlet boundary
conditions);

� m
 is the Maslov index of 
 ;

� C0 is a universal constant (containing, e.g., factors of 2�) which one need not
know for the proof of Theorem 1.1.

The resolvent trace (or Balian-Bloch) coefficients B
;j associated to the periodic
orbits 
 and 
�1 are easily related to the wave trace coefficients a
;k . We henceforth
work solely with the expansion (4), which we call the ‘Balian-Bloch expansion’ after
[BB72]. In fact, we actually analyze the closely related resolvent trace asymptotics
along logarithmic curves kC i� log k in the upper half plane. It is clear that the
Balian-Bloch coefficients B
;j are spectral invariants, and it is these invariants we
use in our inverse spectral results.

As outlined above, the inverse results have three main ingredients, which we
now detail as a guide to the paper and its connections to [Zel04a], [Zel04b].
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1.2.1. Reduction to boundary oscillatory integrals of the wave trace. The
first step (Theorem 3.1) is a reduction to the boundary of the wave trace. This
reduction was largely achieved in [Zel04b], [Zel04a] by means of a rigorous version
of the Balian-Bloch approach to the Poisson relation between spectrum and closed
billiard orbits [BB70], [BB72]. It expresses the wave trace localized at the length
of a periodic reflecting ray, up to a given order of singularity, as a finite sum of
oscillatory integrals I �;wM;�.kC i�/ over the boundary; see (12). It is related in spirit
to the monodromy operator approach of [SZ02], [ISZ02], [HZ].

1.2.2. Feynman diagram analysis and proof of Theorem 4.2. The second in-
gredient is a stationary phase analysis of the oscillatory integral expressions for the
wave invariants at transversally reflecting periodic orbits. The key role is played
by a (Feynman) diagrammatic analysis of the stationary phase expansions, which
has not previously been used in inverse spectral theory (see [AG93] for prior use in
calculating the sub-principal invariant). As reviewed in Section 5.1, the terms of the
stationary phase expansion correspond to labeled graphs � , and the coefficients of
the stationary phase expansion can be expressed as ‘Feynman amplitudes’ of the
graphs � . The Euler characteristic of � corresponds to the power k�j of k in the
wave trace expansion.

The inverse spectral problem involves a novel point of the diagrammatic analy-
sis: namely, to separate out the (labeled graphs) of Euler characteristic �j whose
amplitudes contain the maximum numbers .2j C 2; 2j � 1/ of derivatives of @�.
In Theorem 4.2 we prove that those terms in a given wave invariant containing the
maximal number of derivatives of @� only arise in the stationary phase expansion of
one principal term and its time reversal, whose amplitudes have special properties
stated in table in Theorem 4.2. The principal terms are defined in Definition 4.3.
Only the special properties of the phase and amplitude are used in the calculation of
the wave trace invariants.

The analysis leads to the explicit formulas for the top derivative parts of the
wave invariants at iterates of bouncing ball orbits in Theorem 5.1. For instance, in
the symmetric bouncing ball case there is only one important diagram for the even
derivatives f .2j /.0/ and two important diagrams for the odd derivatives f .2j�1/.0/.
Modulo terms involving no more than 2j � 2 derivatives, the wave trace (or, more
precisely, resolvent trace) invariants B
r ;j�1 (see (2)–(4)) take the form (see Corol-
lary 5.11)

(5) B
r ;j�1 � .4Lr/Ar.0/i
j�1

�
2.w.G

2j;0
1;j //.h

11
2r /

jf
.2j /.0/

C 4.w.G
2j�1;3;0
2;jC1 //.h112r /

j 1

2�2 cos˛=2
.f

.3/.0/f
.2j�1/.0//

C 4.w.bG2j�1;3;02;jC1 //.h112r /
j�2

X2r

qD1
.h
1q
2r /

3.f
.3/.0/f

.2j�1/.0//
�
:
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Here and throughout we use the following notations:
� the hpq2r are the matrix elements of the inverse of the Hessian H2r of the length

function L in Cartesian graph coordinates at 
r (see §2).

� Ar.0/ is an �-independent (nonzero) constant obtained from the amplitude of
the principal terms at the critical bouncing ball orbit.

� w.G
2j;0
1;j / etc. are certain nonzero combinatorial constants associated to Feyn-

man graphs G
2j;0
1;j etc. For a given graph G, w.G/ D 1=jAut.G/j, where

jAut.G/j is the order of the symmetry group of the graph; see the discussion
after (34).

The amplitude value Ar.0/ and the Wick constants may be evaluated explicitly.
However it is not necessary for the proof of Theorem 1.1 to do so, and it seems more
illuminating to specify the origins, rather than their values, of the various constants.
We note that the hij2r depend on, and only on, r and the eigenvalues of the Poincaré
map P
 (that is, on the Floquet angles) and on the length of 
 . We also note that

 D 
�1 when 
 is a bouncing-ball orbit (such an orbit is called reciprocal).

The analysis shows that the nonprincipal oscillatory integrals only give rise
to sub-maximal derivative terms in the wave invariants, completing the proof of
Theorem 4.2.

1.2.3. Inverse results. The third ingredient is the analysis of the top derivative
terms in the wave trace invariants in the symmetry classes above. The key point
is determine the .2j�1/-st and 2j -th Taylor coefficients of the curvature at each
reflection point from the .j�1/-st wave trace invariant for 
 and its iterates 
r .

We note that the previously known inverse result for analytic domains with
the symmetry of an ellipse drops out immediately from (5), since the odd Taylor
coefficients are zero. On the other hand, there is an obstruction to recovering the
Taylor coefficients of f when there is only one symmetry: namely, we must recover
two Taylor coefficients, f .2j /.0/ and f .2j�1/.0/, for each new value of j (the
degree of the singularity). This is the principal obstacle to overcome.

We overcome it in Section 6 as follows: The expression (5) for the Balian-Bloch
invariants of 
; 
2; : : : consists of two types of terms, in terms of their dependence
on the iterate r . They have a common factor of 2rL.h112r /

j�2Ar.0/. After factoring
it out we obtain one term

.h112r /
2
�
.w.G

2j;0
1;j //f

.2j /.0/C
.w.G

2j�1;3;0
2;jC1 //

2� 2 cos˛=2
f
.3/.0/f

.2j�1/.0/
�
;

which depends on the iterate r through the coefficient .h112r /
2, and another term

.w.bG2j�1;3;02;jC1 //
� 2rX
qD1

.h
1q
2r /

3f
.3/.0/f

.2j�1/.0/
�
;
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which depends on r through the cubic sums
P2r
qD1.h

1q
2r /

3 of inverse Hessian matrix
elements hpq2r . In order to ‘decouple’ the even and odd derivatives, it suffices to show
that the functions .h112r /

2 and
P2r
qD1.h

1q
2r /

3 are, at least for ‘most’ Floquet angles

˛, linearly independent as functions of r 2 Z, that is, that .h112r /
�2
P2r
qD1.h

1q
2r /

3 is
a nonconstant function of r . It is convenient to use the parameter aD�2 cos˛=2
and write the dependence as hij2r.a/.

We therefore define the ‘bad’ set of Floquet angles by

(6) BD
˚
a W the sequence f.h112r .a//

�2
P2r
qD1.h

1q
2r .a//

3; r D 1; 2; 3; : : : g

is constant in r
	
:

Using facts about the finite Fourier transform and circulant matrices, we compute
that B D f0; 1;˙2g. Since the proof is computational, we also present a simple
conceptual argument (see Proposition 6.7) that B is finite, although the proof only
gives the poor estimate 320 on its number of elements. For Floquet angles outside
of B, we can determine all Taylor coefficients f .j /

C
.0/ from the wave invariants and

hence the analytic domain.
We use a similar strategy in the dihedralDn-case in Section 7. Due to the extra

symmetries, the inverse results in the dihedral case require much less information
about the wave invariants than in the one symmetry case.

1.3. Related results. First, we have already mentioned the prior result that an-
alytic drumheads with up/down and left/right symmetries are spectrally determined
in that class [Zel99], [Zel00]. Previously, Colin de Verdière [CdV84] proved that
such domains are spectrally rigid. To our knowledge, the only other prior result
giving a ‘large’ class of spectrally domains is that of Marvizi and Melrose [MM82],
in which members of a spectrally determined two-parameter family of convex plane
domains are determined among generic convex domains by their spectra.

Second, in [Zel04a], we extend the inverse result to the exterior problem of
determining a Z2-symmetric configuration of analytic obstacles from its scattering
phase (or resonance poles). Our result may be stated as follows: Let � D R2 �

fO[ �x;LOg, where O is a convex analytic obstacle, where x 2 O, and where �x;L is
the mirror reflection across the orthogonal line segment of length L from x. Thus,
fO[ �x;L.O/g is a Z2-symmetric obstacle consisting of two components. Let ��
denote the Dirichlet Laplacian on �.

THEOREM 1.5 [Zel04a]. With the same genericity assumptions as in Theorem
1.1, the resonance poles of �� determine O within the class of Z2-symmetric
analytic obstacles.

1.4. Future directions. An obvious future direction is to study the wave invari-
ants without any symmetry assumptions. As will become clear from the calculations
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in this article (see Theorems 4.2 and 3.1), symmetries make ‘lower order derivative
data’ in wave invariants redundant and allow one to concentrate on those terms in a
given wave invariant having maximal numbers of derivatives. Lacking symmetries,
the lower order derivative data is no longer redundant, and one has to navigate a
complicated jungle of terms to determine which combinations are spectral invariants.
It is plausible that one cannot work with just one orbit but must combine information
from two bouncing ball orbits (they always exist in a convex plane domain). The
main problem is then to extract from the wave invariants of the iterates of each
bouncing ball orbit sufficient Taylor series data at the endpoints to determine the
domain. To do this, it seems necessary to analyze how Feynman amplitudes of
labeled diagrams behave as a function of the iterate r of the orbits. The graphs
themselves do not depend on r , so the dependence comes from the labeling.

2. Billiards and the length functional

We begin by establishing notation on plane billiards and length functions. After
recalling basic notions, we calculate the Hessian of the length functional at iterates
of a critical bouncing ball orbit in Cartesian coordinates adapted to the orbit.

We denote by � a simply connected analytic plane domain with boundary @�
of length 2� . The billiard flow ˆt of � is the broken geodesic of the Euclidean
metric on �. That is, for .x; �/ 2 T ��ı, the trajectory ˆt .x; �/ follows the
Euclidean straight line in the interior �ı of � and reflects from the boundary by
the specular reflection law of equal angles. By the billiard map ˇ of � we mean the
map on B�@� induced by ˆt : we add a multiple of the inward unit normal �q to
.q; �/ 2 B�.@�/ to obtain an inward pointing unit vector v at q. We then follow
the billiard trajectory ˆt .q; v/ until it hits the boundary, and then define ˇ.q; �/ to
be its tangential projection. We refer to [PS92], [KT91], [Zel04b] for details and
discussions of the billiard flow on domains in R2.

It is natural at first to parametrize @� by arclength by a map

q W T! @�� R2;

which starts at some point q0 2 @�. Here, TD Rn2�Z denotes the unit circle. By
an m-link periodic reflecting ray of �, we mean a periodic billiard trajectory 
 that
intersects @� transversally at m points q.'1/; : : : ; q.'m/, and reflects off @� at
each point according to the rule

(7)
q.'jC1/� q.'j /

jq.'jC1/� q.'j /j
� �q.'j / D

q.'j /� q.'j�1/

jq.'j /� q.'j�1/j
� �q.'j /:

Here �q.'/ is the inward unit normal to @� at q.'/. We refer to the segments q.'j /�
q.'j�1/ as the links of the trajectory. We denote the acute angle between the link
q.'jC1/� q.'j / and the inward unit normal �q.'j / by †.q.'jC1/�q.'j /; �q.'j //
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and that between q.'j /�q.'j�1/ and the inward unit normal at q.'j / by†.q.'j /�
q.'j�1/; �q.'j //, that is, we put

q.'jC1/� q.'j /

jq.'jC1/� q.'j /j
� �q.'j / D cos†.q.'jC1/� q.'j /; �q.'j //:

For simplicity we often do not distinguish between a billiard trajectory in S�� and
its projection to �.

We define the length functional on TM by

(8) L.'1; : : : ; 'M /D jq.'1/� q.'2/jC � � �

C jq.'M�1/� q.'M /jC jq.'M /� q.'1/j:

We often use cyclic index notation where q.'MC1/D q.'1/. It is clear that L is a
smooth function away from the ‘large diagonals’ �j;jC1 WD f'j D 'jC1g, where it
has jxj singularities. We have

@

@'j
jq.'j /� q.'j�1/j D � sin†.q.'j /� q.'j�1/; �q.'j //;

@

@'j
jq.'j /� q.'jC1/j D sin†.q.'jC1/� q.'j /; �q.'j //;

which implies

@

@'j
LD sin†.q.'jC1/� q.'j /; �q.'j //� sin†.q.'j /� q.'j�1/; �q.'j //:

Hence, the condition that @L=@'j D 0 is the same as (7) for the 2-link defined by
the triplet .q.'j�1/; q.'j /; q.'jC1//.

Let 
 denote a periodic reflecting ray of �. The linear Poincaré map P
 of 

is the derivative at 
.0/ of the first return map to a transversal to ˆt at 
.0/. By a
nondegenerate periodic reflecting ray 
 , we mean one whose linear Poincaré map
P
 has no eigenvalue equal to one; see [PS92], [KT91]. The following relates P

and the Hessian of the length functional in angular coordinates:

PROPOSITION 2.1 [KT91, Th. 3]. Let Ha
n denote the Hessian of L in angular

coordinates 'j at a critical point 
 , and let

bj D
@2jq.'jC1/� q.'j /j

@'j @'jC1
:

Then det.I �P
 /D� det.�Ha
n / � .b1 � � � bn/

�1.

This identity may be proved by expressing both sides in terms of bases of horizontal
and vertical Jacobi fields.

2.1. Cartesian coordinates around bouncing ball orbits. We now specialize to
the case where 
 is a bouncing ball orbit (that is, 2-link periodic reflecting ray). As
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in the introduction, we orient � so that the bouncing ball orbit is along the y-axis
with endpoints AD .0; L=2/ and B D .0;�L=2/, and parametrize @� near A by
y D fC.x/ and near B by y D f�.x/. We do not assume the domain is up-down
symmetric.

We denote by RA and RB the radius of curvature of � at the endpoints A and
B , respectively. When 
 is elliptic, the eigenvalues of P
 are of the form fe˙i˛g
for ˛ 2 R, while in the hyperbolic case they are of the form fe˙˛g for ˛ 2 R. They
are given by the same formulas in both elliptic and hyperbolic cases:

(9)
cos.˛=2/D

p
.1�L=RA/.1�L=RB/ (elliptic case);

cosh.˛=2/D
p
.1�L=RA/.1�L=RB/ (hyperbolic case):

We define the length functionals in Cartesian coordinates for the two possible
orientations of the r-th iterate of a bouncing ball orbit by

(10) L˙.x1; : : : ; x2r/D
2rX
jD1

�
.xjC1� xj /

2
C .fw˙.jC1/.xjC1/�fw˙.j /.xj //

2
�1=2

:

Here w˙ W Z2r ! f˙g, where wC.j / alternates sign starting with wC.1/ D C;
likewise w�.j / alternates sign starting with w�.1/D�. Also, we use cyclic index
notation where x2rC1 D x1.

We have

(11) @L˙
@xj
D
.xj�xjC1/C.fw˙.j /.xj /�fw˙.jC1/.xjC1//f

0
w˙.j /

.xj /�
.xj�xjC1/2C.fw˙.j /.xj /�fw˙.jC1/.xjC1//

2
�1=2

�
.xj�1�xj /C.fw˙.j�1/.xj�1/�fw˙.j /.xj //f

0
w˙.j /

.xj /�
.xj�xj�1/2C.fw˙.j /.xj /�fw˙.j�1/.xj�1//

2
�1=2 :

We will need formulas for the entries of the Hessian of LC at its critical point
.x1; : : : ; x2r/D 0 in Cartesian coordinates corresponding to the r-th repetition of a
bouncing ball orbit.

PROPOSITION 2.2. Suppose a D �2.1 C Lf 00
C
.0// D �2.1 � L=RA/ and

b D�2.1�Lf 00� .0//D�2.1�L=RB/. Then the Hessian H2r of LC at x D 0 in
Cartesian graph coordinates has the form

H2 D �
1

L

�
a 2

2 b

�
for r D 1. For r � 2, the matrix �LH2r has .a; b; a; b; : : :/ along its diagonal, ones
adjacent to the diagonal and in the upper right and lower left corners, and zeros
elsewhere.
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Proof. A routine calculation gives

@2LC
@x2j

.0/D 2.1=LCwC.j /f
00
wC.j /

.0// and @2LC
@xj @xjC1

.0/D �
1

L

for r � 2. When r D 1, the length functional is 2k.x1; fC.x1//� .x2; f�.x2//k.
For r � 2, there are two terms of LC contributing to each diagonal matrix element
and one to each off-diagonal element, accounting for the additional factor of 2 in
the diagonal terms. Also fwC.j /.0/�fwC.jC1/.0/D wC.j /L, f 00

C
.0/D�1=RA,

and f 00� .0/D 1=RB : �

The Hessian in Cartesian coordinates in Proposition 2.2 differs from that
in angular coordinates in [KT91] in that the off-diagonal entries differ in sign.
This is because the graph parametrization gives the opposite orientation to the
tangent TA@� compared to the angular parametrization and the same orientation
at TB@�. The angular Hessian Ha

2r is related to the Cartesian Hessian H2r by
Ha
2r D JH2rJ

t where J D diag.1;�1; 1;�1; : : : ; 1;�1/ is the change of basis
matrix. Clearly, the determinants of the two Hessians agree. Since bj D�1=L, we
obtain from Proposition 2.1 the following:

COROLLARY 2.3. As above, let H2r denote the Hessian of LC in Cartesian
coordinates at the r-th iterate 
r of a bouncing ball orbit 
 of length 2L. Then
det.I �P
r /D�L2r det.H2r/.

The determinant detH2r is a polynomial of degree 2r in cos˛=2 in the elliptic
case, and in cosh˛=2 in the hyperbolic case. In the following we restrict to the
elliptic case.

PROPOSITION 2.4. We have detH2r D�L�2r.2� 2 cos r˛/.

Proof. Let �r and ��1r be the eigenvalues of P
r , so that det.I � P
r / D
2� .�rC�

�1
r /. Now, if the eigenvalues of P
 are fe˙i˛g (in the elliptic case), then

those of P
r are fe˙ir˛g; hence det.I �P
r /D 2� 2 cos r˛. Similar arguments
work for the hyperbolic case. The formulas then follows from Corollary 2.3. �

We now consider the inverse Hessian HC DH
�1
2r , which will be important in

the calculation of wave invariants. We denote its matrix elements by hpq
C

. We also
denote by H� the matrix in which the roles of a and b are interchanged; it is the
inverse Hessian of L�.

PROPOSITION 2.5. The diagonal matrix elements hpp
C

are constant when the
parity of p is fixed, and we have

p is odd H)
�
h
pp
C
D h11
C
;

hpp� D h
11
� ;

p is even H)
�
h
pp
C
D h22
C
;

hpp� D h
22
� :

Also h11
C
D h22� and h22

C
D h11� .
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Proof. Indeed, let us introduce the cyclic shift operator on R2r given by
Pej D ejC1, where fej g is the standard basis, and where Pe2r D e1. We then
easily check that PHCP

�1 DH� and hence that PH�1
C
P�1 DH�1� . Since P is

unitary, this says

hpq� D hH
�1
� ep; eqi D hPH�1C P

�1ep; eqi D hH
�1
C P

�1ep; P
�1eqi D h

p�1;q�1
C

:

It follows that the matrix H˙ is invariant under even powers of the shift operator,
which shifts the indices j ! j C 2k for k D 1; : : : ; r . Hence, diagonal matrix
elements of like parity are equal. �

3. Resolvent trace invariants

We now formulate the key results (Theorems 4.2–4.2) expressing localized
wave traces as oscillatory integrals over the boundary with special phases and
amplitudes. We then tie these statements together with the statements in [Zel04b,
Th. 1.1(v)].

First, we state a general result, largely contained in [Zel04a], [Zel04b], which
expresses the localized resolvent trace as a finite sum of special oscillatory integrals.
For simplicity we only state it for the r-th iterate of a bouncing ball orbit.

THEOREM 3.1. Suppose that rL
 is the only length in the support of O�. Then
for each order k�R in the trace expansion of Corollary 3.4, we have

Tr 1�R�B�.kC i�/D
X
˙

X
M W

2r�M�RC2r

X
� Wj� j�R;

M�j� jD2r

I
�;w˙
M;� .k/CO.k�R/;

where � runs over all maps � W f1; : : : ;M g ! f0; 1g, and where I �;w˙M;� .k/ are
oscillatory integrals of the form

(12) I
�;w˙
M;� .k/D

Z
Œ��;��2r

e
ikLw

˙
.x1;:::;x2r / O�.Lw˙.x1; : : : ; x2r//

� a
�;w˙
M;� .k; x1; x2; : : : ; x2r/dx1 � � � dx2r :

Here, Lw˙ is given in (10) and a�;w˙M;� are certain semiclassical amplitudes (see
(23)). The asymptotics are negligible unless M � j� j D 2r , and then the order of
I
�;w˙
M;� .k/ equals �j� j.

It follows that only a finite number of terms I �;w˙M;� .k/ contribute to each order
in k in the expansion in Corollary 3.4:

COROLLARY 3.2. We haveX
˙

X
M W

2r�M�RC2r

I
�;w˙
M;� .k/� DB;
 .kC i�/

RX
jD0

B
 Ij k
�j
CO.k�R/;
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where the B
 Ij are the Balian-Bloch invariants of the union of the periodic orbits

 , and DB;
 .kC i�/ is the symplectic prefactor of (4).

3.1. Proof of Theorem 3.1. As mentioned above, the proof mostly is contained
in [Zel04a], [Zel04b]. For completeness, we sketch its key elements.

We follow the path originated by Balian and Bloch and followed in many
physics articles (see for example [BB70], [BB72], [AG93]). It starts from the exact
formula

R�B .kC i�/DR0.kC i�/� 2D`.kC i�/.I CN.kC i�//�1r�S`tr.kC i�/

(due to Fredholm and Neumann) for the resolvent with given boundary conditions.
Here, D`.kC i�/ and S`.kC i�/ are the double and single layer potentials, respec-
tively, Str.kC i�/ is the transpose, and N.kC i�/ is the boundary integral operator
on L2.@�/ induced by D`.kC i�/. Also, R0.kC i�/ is the free resolvent on R2,
and r� is the restriction to the boundary. The Schwartz kernel of the boundary
integral operator is given by plus (in the Dirichlet case) or minus (in the Neumann
case)

(13) N.kC i�/f .q/D 2

Z
@�

@

@�y
G0.kC i�; q; q

0/f .q0/ds.q0/;

where G0.�; x; y/ is the free Green’s function (resolvent kernel) on R2, where
ds.q/ is the arclength measure on @�, where � is the interior unit normal to �,
and where @� D � � r. The free Green’s kernel has an exact formula in terms of
Hankel functions (18), which gives a WKB approximation to N.kC i�/ away from
the diagonal. Its phase is the boundary distance function d�.q; q0/, indicating that
N.kC i�/ is the quantization of the billiard map.

As discussed extensively in [Zel04b], [Zel04a], [HZ04], N.k C i�/ is not
a classical Fourier integral operator, but is rather a nonstandard kind of hybrid
Fourier integral operator. Near the diagonal, it is a homogeneous pseudo-differential
operator of order �1 (in dimension two it is actually of order �2, as proved in
[Zel04b, Prop. 4.1]), while away from the diagonal it is a semiclassical Fourier
integral operator of order 0 which quantizes the billiard map. To separate out
these two Lagrangian submanifolds (which intersect along tangent vectors to the
boundary), we introduce a cutoff �.k1�ı jq � q0j/ to the diagonal, where ı > 1=2
and � 2 C10 .R/ is a cutoff to a neighborhood of 0. We then put

(14) N.kC i�/DN0.kC i�/CN1.kC i�/, where

N0.kC i�; q; q
0/D �.k1�ı jq� q0j/ N.kC i�; q; q0/;

N1.kC i�; q; q
0/D .1��.k1�ı jq� q0j//N.kC i�; q; q0/:
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As proved in [Zel04b], [Zel04a], [HZ04], N1..k C i�/; q; q0/ is a semiclassical
Fourier integral operator of order 0 with phase equal to the boundary distance
function d@�.q; q0/. The diagonal part N0 is of order �1 (in fact, of order �2
[Zel04b]) and therefore plays a secondary role.

We now relate the expansion (4) of the regularized resolvent trace to that
for log detN.kC i�/. This relation has already been proved in [EP97], [Car02],
[Zel04a] in somewhat different ways.

The clearest proof is to combine the interior boundary problem ��B with a
complementary exterior boundary problem��

c

B 0 , where�c is the complement of�.
Since we are only dealing here with Dirichlet or Neumann boundary conditions, we
do not define the term ‘complementary’ but only use the term to indicate the special
cases B D D and B 0 D N , or B D N and B 0 D D. We therefore introduce the
exterior Green’s kernel G�

c

B 0 .kC i�; x; y/ 2D0.�c ��c/ with boundary condition
B , namely the kernel of the exterior resolvent, that is, the unique solution of the
boundary problem

�.��
c

B 0 C .kC i�/
2/G�

c

B 0 .kC i�; x; y/D ıy.x/ for x; y 2�c ;

B 0G�
c

B 0 .kC i�; x; y/D 0 for x 2 @�c ;
@

@r
G�

c

B 0 .kC i�; x; y/� i.kC i�/G
�c

B 0 .kC i�; x; y/D o.1=r/ as r!1:

We now combine the interior and exterior operators with complementary
boundary conditions B and B 0 into the direct sum R�B .kC i�/˚R

�c

B 0 .kC i�/: For
simplicity, we only consider B DD and B 0 DN . For O� 2 C10 .R

C/, we put

R��B.kCi�/˚R
�c

�B 0.kCi�/D

Z
R

�.k��/.�Ci�/
�
R�B .�Ci�/˚R

�c

B 0 .�Ci�/
�
d�:

The purpose of combining the interior/exterior resolvents is revealed in the following
proposition, which equates the trace of the direct sum resolvent to the Fredholm
determinant of the boundary integral operator. It is proved in [Zel04a], and closely
related statements are proved in [EP97], [Car02]. The operator N is defined in (13)
in the Dirichlet case. In general it depends on the boundary conditions B and B 0.
We follow the notation of [Tay96] except that we multiply the N of [Tay96] by 1

2
to

simplify some notation.

PROPOSITION 3.3. For any � > 0, the operator .I CN.kC i�// has a well-
defined Fredholm determinant det.I CN.�C i�//, and we have

TrR2

�
R��D.kC i�/˚R

�c

�N .kC i�/�R0�.kC i�/
�

D

Z
R

�.k��/
d

d�
log det.I CN.�C i�//d�:
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Furthermore, for � > 0, log det.I C N.k C i�// is differentiable in k, and so
.I CN.kC i�//�1N 0.kC i�/ is of trace class. We also have

d

dk
log det.I CN.kC i�//D Tr@�.I CN.kC i�//

�1N 0.kC i�/:

This proposition reduces wave trace expansions to the boundary. Indeed, the
direct sum resolvent is related to the direct sum wave groups as in (3):

R��B.kC i�/˚R
�c

�B 0.kC i�/D

Z 1
0

O�.t/ei.kCi�/t
�
E�B .t/˚E

�c

B 0 .t/
�
dt:

The trace of the direct sum wave groupE�
c

B .t/˚E�B 0.t/ has a singularity expansion
as in (2) which sums over interior and exterior periodic orbits. As in (4), it may
be restated in terms of the direct sum resolvent: Let 
 be a nondegenerate interior
billiard trajectory whose length L
 is isolated and of multiplicity one in Lsp.�/.
Let O� 2C10 .L
 ��; L
C�/ be equal to one on .L
 ��=2; L
C�=2/ and have no
other lengths in its support. Then the interior trace TrR�B�.kC i�/ and the exterior
trace TrŒR�

c

B 0�.kC i�/�R0�.kC i�/� admit complete asymptotic expansions of
the form

(15)
TrŒR�

c

B 0�.kC i�/�R0�.kC i�/�� DB;
 .kC i�/
P1
jD0B
;jk

�j ;

TrR�B�.kC i�/� DB;
 .kC i�/
P1
jD0B
;jk

�j ;

whose coefficients B
 Ij are the Balian-Bloch resolvent trace invariants of periodic
(internal, respectively external) billiard orbits. We can therefore sum the two
expansions to produce one for the direct sum, as given in the corollary below. The
coefficients depend on the choice of boundary condition but we do not indicate this
in the notation.

COROLLARY 3.4. If L
 is the only length in the support of O�, thenZ
R

�.k��/
d

d�
log det.I CN.�C i�//d�

D

Z
R

�.k��/Tr@�.I CN.�C i�//
�1N 0.�C i�/d�

�

X

 WL
DL

DB;
 .kC i�/
P1
jD0B
;j k

�j ;

where as above B
 Ij are the Balian-Bloch invariants of the periodic orbits 
 of
length L
 of the interior and exterior problems in (15).

In proving the remainder estimate and the expansion in Proposition 3.6, we
further microlocalize the result to the (interior) orbit 
 . This will select out the
wave invariants of the desired interior orbit 
 . A periodic orbit of the billiard
flow corresponds to a periodic point of the billiard map ˇ. To microlocalize to
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this periodic orbit we introduce a semiclassical pseudodifferential cutoff operator
�0.'; k

�1D'/. In the case of a bouncing ball orbit, it has complete symbol �.'; �/
supported in V� WD f.'; �/ W j'j; j�j � �g.

PROPOSITION 3.5. Suppose that 
 is a bouncing ball orbit whose length L

is the only length in the support of O�. Let �0 be a cutoff operator to the endpoints of

 . Then

Tr � � .I CN.kC i�//�1 ıN 0.kC i�/

� Tr � � .I CN.kC i�//�1 ıN 0.kC i�/ ı�0.k/:

We will use the formula in Corollary 3.4, as modified in Proposition 3.5, to
calculate the B
 Ij modulo remainders which are inessential for the inverse spectral
problem. To do so, we now express the left side (for each order of singularity k�j )
as a finite sum of oscillatory integrals I �;wM;� (see (12)) plus a remainder which is of
lower order than k�j .

To define the oscillatory integrals I �;wM;� , we first expand .I CN.�C i�//�1 in
a finite geometric series plus remainder, given by

M0X
MD0

.�1/MN.�C i�/M C .�1/M0C1N.�C i�/M0C1.I CN.�C i�//�1;

and prove that, in calculating a given order of Balian-Bloch invariant B
;j , we may
neglect a sufficiently high remainder.

PROPOSITION 3.6. For each order k�J in the trace expansion of Corollary
3.4 there exists an M0.J / such that

(i)
M0X
MD0

.�1/M Tr
Z

R

�.k��/N.�C i�/MN 0.�C i�/d�

D DB;
 .kC i�/
PJ
jD0B
;j k

�j CO.k�J�1/,

(ii) Tr
Z

R

�.k��/N.�C i�/M0C1.ICN.�C i�//�1N 0.�C i�/d�DO.k�J�1/.

The same holds after composition with �0.k/.

The proof of this Proposition is one of the principal results in [Zel04b],
[Zel04a]. The result is stated in [Zel04b, in Th. 1.1(iii)], while the remainder
trace is estimated in [Zel04b, §8]. The version stated in Proposition 3.6 is proved in
[Zel04a, §5]. It is simpler than [Zel04b, Th. 1.1(iii)] because the interior integral
analyzed in [Zel04b, §7] is eliminated in the reduction to the boundary.

It simplifies the formula somewhat to integrate the derivative by parts onto O�,
since it eliminates the derivative in the special factor N 0.�C i�/.
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COROLLARY 3.7. For each order k�J in the trace expansion of Corollary 3.4,
there exists an M0.J / such that

(i)
M0X
MD0

.�1/M

MC1
Tr
Z

R

�0.k��/N.�C i�/MC1d�

D DB;
 .kC i�/
PJ
jD0B
;j k

�j CO.k�J�1/,

(ii) Tr
Z

R

�.k��/N.�Ci�/M0C1.ICN.�Ci�//�1N 0.�Ci�/d�DO.k�J�1/.

The same holds after composition with �0.k/.

The next step is to prove that the terms in Proposition 3.6(i) may be expressed
as oscillatory integrals (see (12)). This is not obvious, as mentioned above, since
the N operator is not a Fourier integral kernel. As indicated in (14), we handle this
problem by breaking up N as a sum N DN0CN1 of two terms, where N0 has the
singularity on the diagonal of a pseudodifferential operator of order �2 (cf. [Zel04b,
Prop. 4.1]), and where N1 is manifestly an oscillatory integral operator of order
0 with phase jq.'/� q.'0/j. As mentioned above, and as discussed in detail in
[Zel04a], [HZ04], the phase is a generating function of the billiard map, so the N1
term is a quantization of ˇ.

We thus write

(16) .N0CN1/
M
D

X
� Wf1;:::;M g!f0;1g

N�.1/ ıN�.2/ ı � � � ıN�.M/:

In [Zel04b, §6], we regularized the terms by proving a composition law for products
N0 ıN1; N1 ıN0. The main technical point is that the amplitudes of N0 and N1
belong to the symbol class Sp

ı
.T/, where T is the unit circle parameterizing @�,

consisting of symbols a.k; '/ that satisfy

(17) j.k�1D'/
˛a.k; '/j � C˛jkj

p�ıj˛j for jkj � 1:

This follows from the classical formula (see for example [Zel04b, §4] and [AG93,
(2.2)])

(18) N.kC i�; q.'1/; q.'2//D�
i

4
.kC i�/H

.1/
1 ..kC i�/jq.'1/� q.'2/j/

� cos†.q.'2/� q.'1/; �q.'2//;

for N in terms of Hankel functions and from the asymptotics of the Hankel
function H .1/

1 . We recall that the Hankel function of index � has the integral
representations [Tay96, Ch. 3.6]

H
.1/
� .z/D

�
2

�z

�1=2 ei.z���=2��=4/
�.�C1=2/

Z 1
0

e�ss�1=2
�
1�

s

2iz

���1=2
ds;
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from which it follows that H .1/
1 admits an asymptotic expansion as its argument

tends to infinity of the form

(19) H
.1/
1 .t/� eit�3�i=4t�1=2

1X
jD0

cj t
�j as t !1;

where c0 D
p
2=� . Moreover, the expansion can be differentiated term by term.

We set

a1.t/D
c0

�.3
2
/

Z 1
0

e�ss�1=2
�
1�

s

2it

�1=2
ds;

so that

(20) H
.1/
1 .t/� eit�3�i=4t�1=2a1.t/:

We note that a1 is a complex-valued semiclassical symbol of order 0 of z 2 RC in
the sense that .1��.k1�ız//a1..kC i�/z/ 2 S0ı .Rz/; see (17) We then have

(21) .kC i�/H
.1/
1 ..kC i�/z/D

�
kCi�

z

�1=2
ei.kCi�/za1..kC i�/z/:

Hence

N1.kC i�; q.'1/; q.'2//D .1��.k
1�ı.'1�'2///

�

�
kCi�

jq.'1/�q.'2/j

�1=2
a1.kC i�; q.'1/; q.'2//e

i.kCi�/jq.'1/�q.'2/j

with

a1.kC i�; q.'1/; q.'2// WD a1..kC i�/jq.'1/� q.'2/j/ cos#1;2 2 S0ı .T
2/;

where #1;2 D†q.'2/� q.'1/; �q.'2//:
The main conclusion is thatN0N1 andN1N0 are semiclassical Fourier integral

operators with the same phase as N1, but with an amplitude of one lower degree
in k. This allowed us to remove all of the factors of N0 from each of these terms
except for the term NM

0 . Each remaining term except for NM
0 is a Fourier integral

operator on Tm for some m�M , with phase given by the length functional (8) and
with amplitude in the symbol class Sp

ı
.Tm/ for some p, which consists of symbols

a.k; '1; : : : ; 'm/ that satisfy the analogue of (17), that is, j.k�1D'/˛a.k; '/j �
C˛jkj

p�ıj˛j for jkj � 1. Because each removal of N0 drops the order by one, the
term NM

1 is of the highest order in the sum. A later estimate on traces shows that
NM
0 does not contribute to the trace asymptotics (see [Zel04b, §9.0.7]).

We summarize the result as follows. Let us rewrite the terms of (16) as
N� WD N�.1/ ıN�.2/ ı � � � ıN�.M/ and set j� j D #��1.0/ D the number of N0
factors occurring in N� . In [Zel04b, Prop. 6.1], we show that the regularized
compositions are semiclassical Fourier integral kernels.
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PROPOSITION 3.8. (A) Suppose that N� is not of the form NM
0 . Then for any

integer R > 0, N� ı�0.kC i�/ may be expressed as the sum

N� D F� .k; '1; '2/CKR;

where F� is a semiclassical Fourier integral kernel of order �j� j associated to
ˇM�j� j of the form

F� .k; '1; '2/D e
i.kCi�/jq.'1/�q.'2/jA� .k; '1; '2/;

where A� .k; '1; '2/ is a semiclassical amplitude, and where the remainder KR is
a bounded smooth kernel which is uniformly of order k�R.

(B) NM
0 ı�0 �N0M ı�0, where N0M is a semiclassical pseudodifferential

operator of order �M . (For the notation �0, see Proposition 3.5.)

As a corollary of Proposition 3.8, we obtain the following preliminary form for
the trace as a sum of oscillatory integrals. It is a simplification of [Zel04b, Lem. 9.2]
in that we do not need any interior integrals.

COROLLARY 3.9. Tr �0N� ı�0 is an oscillatory integral of the form

I �M;�.k/D k
.M�j� jC3/=2

Z
R

Z
R

Z
TM�j�j

eikŒ.1��/tC�L� .q.'1/;:::;q.'M�j�j//�

� e�� logkL� .q.'1/;:::;q.'M�j�j//

��.q.'1/� q.'2/; '1/A
�
M .k�; '1; : : : ; 'M�j� j/

O�0.t/dt d�d'1 � � � d'M�j� j;

where �.q.'1/� q.'2/; '1/ is the value at the vector .q.'1/; q.'1/� q.'2// of a
cutoff � to a microlocal neighborhood in B�@� of the direction of the bouncing
ball orbit, where

L� .q.'1/; : : : ; q.'M�j� j//D jq.'1/� q.'2/jC � � �C jq.'M�j� j/� q.'1/j;

and where A�M .k; '1; : : : ; 'M�j� j/ 2 S
�j� j

ı
.

3.1.1. Completion of the proof of Theorem 3.1. To obtain our final form for
the oscillatory integrals, we make some further simplifications. For simplicity of
exposition, and because it is our main application, we specialize to a bouncing ball
orbit. In view of Propositions 3.3 and 3.6, it suffices to prove the following:

PROPOSITION 3.10. Suppose that rL
 is the only length in the support of O�.
Then for each order k�R in the trace expansion of Corollary 3.4,Z

R

�.k��/
d

d�
log det.ICN.�Ci�//d��

X
˙

X
M W

2r�M�RC2r

X
� Wj� j�R;

M�j� jD2r

I
�;w˙
M;� .k/

plus terms of order k�R, where the oscillatory integrals I �;w˙M;� .k/ are as in Theorem
3.1.
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Proof. The first observation is that the regularized integral I �M;�.k C i�/
of Corollary 3.9 has no critical points unless M � j� j D 2r (where rL
 is the
unique length in the support of O�). We will refer to these oscillatory integrals as
contributing. Since each T� has two pieces, each contributing integral can be written
as a sum of 22r terms I �;wM;�.kC i�/, corresponding to a choice of an element w of
f˙g2r WD fw W Z2r ! f˙gg. The length functional in Cartesian coordinates for a
given assignment w of signs is given by

(22) Lw.x1; : : : ; x2r/D

2rX
jD1

�
.xjC1�xj /

2
C.fw.jC1/.xjC1/�fw.j /.xj //

2
�1=2

:

Here, x2rC1 D x1.
We further observe that I �;wM;�.k C i�/ has no critical points unless w.j / al-

ternates between C and � as j increases. Otherwise, I �;wM;�.kC i�/ is negligible
as k!1. Thus, only two w count asymptotically; these we denote by w˙. The
corresponding length functionals are given in (11) and their Hessians are given in
Proposition 2.2.

In these remaining oscillatory integrals, we then eliminate the .t; �/ variables
in the integral displayed in Corollary 3.9 by stationary phase. The Hessian in
these variables is easily seen to be nondegenerate, and the Hessian operator equals
�.1=k/@=@t @=@�. The amplitude depends on t only in the factor O�0.t/. Since
O�0.t/ D t O�.t/ and since O� is assumed to be constant in some interval .rL
 �
�; rL
 C �/, t O�.t/ is locally linear, and therefore only the zeroth order and .�1/-st
order terms

L O�.L/A�M .k; x/C
k

ik
O�.L/

@A�M .k; x/

@k

in the stationary phase expansion are nonzero. In the second term, the k in the
denominator comes from the Hessian operator and the k in the numerator comes
from the �-derivative of the amplitude. After replacing the dt d� integral by this
stationary phase expansion, we arrive at the final form of the oscillatory integrals
(12) given in the theorem, with amplitude

(23) a
�;w˙
M .k; x/D Lw˙A

�
M .k; x/C

1

i

@A�M .k; x/

@k
.k; x/: �

4. Principal term of the Balian-Bloch trace

In this section, we state and begin the proof of a key result for the proof of
Theorems 1.1 and 1.4. It singles out a single oscillatory integral (the principal
term) from Theorem 3.1, which generates all terms of the wave trace (or Balian-
Bloch) expansion that contain a maximal number of derivatives of the boundary
defining function per power of k (that is, order of wave invariant). As mentioned in
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the introduction, the other terms will turn out to be redundant for domains in our
symmetry classes.

To clarify this notion of generating all the highest derivative terms, we define
it formally. Below, Js denotes the s-jet.

Definition 4.1. Let 
 be an m-link periodic reflecting ray, and let O� 2 C10 .R/
be a cutoff satisfying supp O�\ Lsp.�/ D frL
g for some fixed r 2 N. Given an
oscillatory integral I.k/, we write

Tr 1�R�B�.kC i�/� I.k/ mod O
�P

j k
�j .J2j�2�/

�
if Tr 1�R�B�.kC i�/� I.k/ has a complete asymptotic expansion of the form (4),
and if the coefficient of k�j depends on no more than 2j � 2 derivatives of the
curvature � at the reflection points.

For clarity, we state the next result only in the simplest case of a bouncing ball
orbit. The statement is similar for any nondegenerate m-link periodic reflecting ray.
The description of the properties of phase and amplitude are repeated from [Zel04a]
for the sake of self-completeness. For terminology concerning billiard trajectories,
we refer to Section 2.

THEOREM 4.2. Let 
 be a primitive nondegenerate 2-link periodic reflecting
ray, whose reflection points are points of nonzero curvature of @�, and let O� 2
C10 .R/ be a cutoff satisfying supp O�\Lsp.�/DfrL
g for some fixed r 2N. Orient
� so that 
 is the vertical segment fx D 0g\�, and so that @� is a union of two
graphs over Œ��; ��. Then in the sense of Definition 4.1, we have

Tr 1�R�B�.kC i�/�
X
˙

Z
Œ��;��2r

ei.kCi�/L˙.x1;:::;x2r / O�.L˙.x1; : : : ; x2r//

� a
pr
˙;r.k; x1; x2; : : : ; x2r/dx1 � � � dx2r ;

where the phase L˙.x1; : : : ; x2r/ is given in (10), and where the amplitude is given
by

a
pr
˙;r.k; x1; : : : ; x2r/D Lw˙A

pr
˙;r.k; x1; : : : ; x2r/C

1

i

@

@k
A
pr
˙;r.k; x1; : : : ; x2r/;

where

(24) A
pr
˙;r .k; x1; : : : ; x2r /D

2rY
pD1

�
a1.kC i�/

�
.xp � xpC1/

2C .fw˙.p/.xp/�fw˙.pC1/.xpC1//
2
�1=2�

.xp � xpC1/2C .fw˙.p/.xp/�fw˙.pC1/.xpC1//
2
�1=4

�

.xp � xpC1/f
0
w˙.p/

.xp/� .fw˙.p/.xp/�fw˙.pC1/.xpC1//�
.xp � xpC1/2C .fw˙.p/.xp/�fw˙.pC1/.xpC1//

2
�1=2 �

;

where a1 is the Hankel amplitude in (21). Here, as above, x2rC1 D x1.
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Theorem 4.2 is a crucial ingredient in the proof of Theorem 1.1. It gives
explicit formulas for the phase and amplitude of the principal oscillatory integrals
that determine the highest order jet of � in each wave invariant. The notations Aprr
and aprr refer to the amplitude of the principal terms of the 2r-th integral; these
amplitudes contain terms of all orders in k, and ‘principal’ here does not refer to
the principal symbol, that is, the leading order term in the semiclassical expansion.
The calculation of the highest derivative terms of the Balian-Bloch wave invariants
uses only some key properties of the phase and principal amplitude, which may be
derived directly from the formulas in Theorem 4.2. They are detailed in Section 4.1.

The proof of Theorem 4.2 requires two main steps:

(i) Identification of two main terms in Theorem 3.1, the principal terms, which
generate the highest derivative data, and proof that the amplitude and phase
have the stated form.

(ii) Proof that nonprincipal terms contribute only lower order derivative data.

We now define the principal terms. In Section 4.1, Lemma 4.5, we prove that
their phases and amplitudes have the stated form. We further describe the properties
of the phase and amplitude that will be used in the proof of Theorem 1.1, and tie the
statement of Theorem 4.2 together with the corresponding statement in [Zel04b].
The fact that nonprincipal terms do not contribute highest order derivative data to a
given Balian-Bloch invariant requires the analysis of the stationary phase expansions
in the next section and is given in Section 5.4.

Definition 4.3. Let 
 be a 2-link periodic orbit. The principal terms are the
completely regular terms I �0;w˙2r;� coming from N 2r

1 , that is, with M D 2r and with
�0.j / D 1 for all j . The two terms correspond to the two possible orientations
w˙.j / of the 2r-th iterate of the bouncing ball orbit.

In other words, the principal terms are simply those coming from the term

(25) Tr � �N 2r
1 .k/ ıN 01.k/ ı�.k/

in the expansion (16).
We observe that the two principal terms are in fact equal. This is not surprising,

since a bouncing ball orbit is reciprocal.

PROPOSITION 4.4. We have I �0;wC2r;� .k/D I
�0;w�
2r;� .k/.

Proof. We permute the variables xj according to the cyclic permutation

s D

�
1 2 � � � r � 1 r

2 3 � � � r 1

�
of their indices in the integral in (12). Since wC.s.j //D w�.j /, this takes L�!

LC and a0�! a0
C

in (24). Indeed, L˙ and a0
˙

are sums and products, respectively,
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of terms of the form F.xp � xpC1; fw˙.p/.xp/� fw˙.pC1/.xpC1//. Cyclically
shifting the index by one moves each term (respectively factor) to the next except
that it does change the index w˙.p/. Hence, it changes the sum (respectively
product) only by shifting wC to w� (and vice versa). �

Henceforth, we often omit I �0;w�2r;� .k/ and multiply I �0;wC2r;� .k/ by 2.

4.1. Key properties of the principal amplitude and phase. We first prove that
the phase and amplitude of the principal oscillatory integrals have the form stated
in Theorem 4.2, and establish a few consequences. After that, we assemble all of
the properties used in the proof of Theorem 1.1. In the following, we abbreviate
LC DLwC . We use the notation Dxp D @=@xp and use multi-index notation for its
powers.

LEMMA 4.5. The phase and principal amplitude of the principal oscillatory
integrals I �0;w˙2r;� have the following properties:

(i) In its dependence on the boundary defining functions f˙, the amplitude apr
C;r

has the form ˛r.k; x; f˙; f
0
˙
/.

(ii) As above, in its dependence on x,

a
pr
C;r.k; x1; : : : ; x2r/D LCA

pr
C;r.k; x1; : : : ; x2r/C

1

i

@

@k
A
pr
C;r.k; x1; : : : ; x2r/;

where Apr
C;r.k; x1; : : : ; x2r/D

Q2r
pD1Ap.xp; xpC1/.2r C 1� 1/.

(iii) At the critical point, the principal amplitude has the asymptotics

a
pr
C;r.k; 0/� .2rL/L

�rAr.0/CO.k
�1/;

where Ar.0/ depends only on r and not on �.

(iii.a)
a
pr
C;r.k; 0/e

i.kCi�/LC.0/Ci�=4 sgn Hess LC.0/p
det Hess LC

� .2rL/Ar.0/DB;
 .kC i�/

� .1CO.k�1//I see (4).

(iv) rapr
C;r.k; x1; : : : ; x2r/jxD0 D 0:

(v) D.2j�2/
xp LCjxD0�2wC.p/f

.2j�2/

wC.p/
.0/ mod R2r.J2j�2fC.0/;J2j�2f�.0//:

(v.a) D
.2j /
xp LCjxD0� 2wC.p/f

.2j /

wC.p/
.0/ mod R2r.J2j�2fC.0/;J2j�2f�.0//;

where� in general means equality modulo lower order derivatives of f .

Proof. The oscillatory integrals I �0;w˙2r;� have the form (12) with the phases L˙
(22), and by Proposition 4.4 it suffices to consider theC term.

Formula (ii) for the amplitude follows from the general description of the
amplitudes of all the oscillatory integrals I �;wM;� in the proof of Theorem 3.1; see (23).
The factors Apr

˙;r of the amplitudes of I �0;w˙2r;� are given in (24).
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The further properties of the phase and amplitude stated in Lemma 4.5 may be
read off directly from the formula in (24). Statements (i) and (ii) are visible from the
formula. At xD 0, the leading order term of the principal amplitude in k equals 2rL
(from the factor L) times L�r from the t�1=2 factor in the Hankel asymptotics (19)
and (20) times a coefficient Ar.0/ which depends on r but not on � and which is
due to additional factors in the asymptotics of the free Green’s function G0: namely,
a product of 2r factors of .2=�/1=2e3�i=4 from the principal term of the Hankel
amplitude a1 (loc. cit.), factors of �i=4 in the relation between the free Green’s
function G0 and the Hankel function (18), factors of 2 in the relation of N.kC i�/
and G0 (13). We do not need to know Ar.0/ or other universal factors explicitly,
since they multiply all terms in the expansion. Statement (iii.a) gives the principal
term in the stationary phase expansion at x D 0 and relates the Hessian determinant
and L�r to the Poincaré determinant as in Propositions 2.1 and 2.4; see also [AG93,
(3.17)]. Since the second term is of order k�1, it will not contribute to the highest
derivative term in a given wave invariant.

From the fact that x D 0 is a critical point of f˙ and .xj � xj�1/2, we get
(26)
rx

�
.xp � xpC1/

2
C .fw˙.p/.xp/�fw˙.pC1/.xpC1//

2
�1=2ˇ̌

xD0
D 0;

rx

�.xp � xpC1/f 0w˙.p/.xp/� .fw˙.p/.xp/�fw˙.pC1/.xpC1//�
.xp � xpC1/2C .fw˙.p/.xp/�fw˙.pC1/.xpC1//

2
�1=2

�ˇ̌̌̌
xD0

D 0;

which implies rxa
pr
C;r jxD0 DrxDka

pr
C;r jxD0 D 0.

Statement (v) on the phase holds because

(27) D.2j�1/
xp

LC
ˇ̌
xD0
�

X
˙

..xp�xp˙1/
2
C.fwC.p/.xp/�fwC.p˙1/.xp˙1//

2/�
1
2

� .fwC.p/.xp/� fwC.p˙1/.xp˙1//f
.2j�1/

wC.p/
.xp/

ˇ̌
xD0

modR2r.J2j�2f˙.0//;
and

(28) D
.2j /
xp

LC
ˇ̌
xD0
�

X
˙

..xp�xp˙1/
2
C.fwC.p/.xp/� fwC.p˙1/.xp˙1//

2/�
1
2

� .fwC.p/.xp/� fwC.p˙1/.xp˙1//f
.2j /

wC.p/
.xp/

ˇ̌
xD0

modR2r.J2j�1fC.0/;J2j�2f�.0//:

Crucially, the ˙ terms are equal. (Especially, they do not cancel!) This gives the
factor of 2 in (v) since fwC.p/.0/� fwC.p˙1/.0/D wC.p/L. �

Finally, in the proof of Lemma 5.6(ii) it is shown that the f .2j�1/.0/ term also
vanishes; hence the remainder depends only on the .2j � 2/-jet.

4.1.1. Further properties of the amplitude and phase. We continue the dis-
cussion of the amplitude by detailing the other special values of the phase and
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amplitude at the critical point that are used in Section 5 while proving Theorem 1.1.
Although the value of the discussion will only become clear in Section 5, it seems
best to give the details now.

(1) In the proof of Lemma 5.6(i), we use that

(29) D2j�2xp
a
pr
C;r jxD0 � 0 mod R2r.J2j�2f˙.0// for all p D 1; : : : ; 2r:

Indeed, by (24) one can only obtain the higher derivative f 2j�1
˙

.0/ by applying
all 2j�2 derivatives on the term f 0

w˙.p/
.xp/ in

.xp � xpC1/f
0
w˙.p/

.xp/� .fw˙.p/.xp/�fw˙.pC1/.xpC1//�
.xp � xpC1/2C .fw˙.p/.xp/�fw˙.pC1/.xpC1//

2
�1=2 :

But then the accompanying factors of x2p � x2pC1 vanish at the critical point.

(2) In the proof of Lemma 5.6(ii), we use that

(30) D
.2j�1/
xp

DxqL� 0 mod R2r.J2j�2f˙.0// forp D 1; : : : ; 2r and q ¤ p:

Indeed, in (27) and (28), D.2j�1/
xp L is displayed as a product of two factors.

Since q 6D p, the derivative Dxq must be applied to the factor

fwC.p/.xp/�fwC.pC1/.xpC1/�
.xp � xpC1/2.fwC.p/.xp/�fwC.pC1/.xpC1//

2
�1=2 ;

which vanishes at x D 0 for any q.

(3) In the same Lemma 5.6, we also use that the only nonvanishing third derivatives
of L at x D 0 are pure third derivatives in one variable D3xjL. Indeed, from
(11), we see that only mixed derivatives using two consecutive indices (say, xj
and xjC1) can be nonzero. However, we have

(31) D2xjDxjC1LjxD0 D 0DDxjD
2
xjC1

LjxD0:

Since the identities are similar, we only consider the first, which is equivalent
to

DxjDxjC1

.xj � xjC1/C .fw˙.j /.xj /�fw˙.jC1/.xjC1//f
0
w˙.j /

.xj /�
.xj � xjC1/2C .fw˙.j /.xj /�fw˙.jC1/.xjC1//

2
�1=2

ˇ̌̌̌
ˇ
xD0

D 0:

We write the fraction as F.xj ; xjC1/=G.xj ; xjC1/ and note that

DxjDxjC1.F=G/
ˇ̌
xD0
D ..DxjDxjC1F /=G/

ˇ̌
xD0

if F.0/DrG.0/D 0:

When F D .xj � xjC1/C .fw˙.j /.xj /� fw˙.jC1/.xjC1//f
0
w˙.j /

.xj /, we
also have DxjDxjC1F jxD0 D 0:



INVERSE SPECTRAL PROBLEM FOR Z2-SYMMETRIC DOMAINS 235

(4) Further, we use that D3xpLC.0/D 2wC.p/f
000
wC.p/

.0/ for all p. Indeed, as in
the calculation of the higher derivatives in Lemma 4.5, there are two terms,
and each (in the notation above) has the form .D2xpF.0//=G.0/. To obtain a
nonzero term, the two derivatives must fall on the factor f 0

w˙.p/
.xp/, and thus

we get

D
.3/
xp

LC.0/D
X
˙

..xp � xp˙1/
2
C .fwC.p/.xp/� fwC.p˙1/.xp˙1//

2/�1=2

� .fwC.p/.xp/� fwC.p˙1/.xp˙1//f
.3/
wC.p/

.xp/
ˇ̌
xD0

D 2wC.p/f
.3/
wC.p/

.0/:

Again, we observe that the xp˙1 terms agree and therefore add rather than
cancel.

4.2. Comparison with [Zel04b]. For completeness, we relate the statement
of Theorem 4.2 with the corresponding statement of [Zel04b, Th. 1.1(v)] and with
[Zel04a]:

[Zel04b, TH. 1.1(v)]. Let 
 be a primitive nondegenerate m-link periodic
reflecting ray of length L
 , and let O� 2 C10 .R/ be a cutoff satisfying supp O� \
Lsp.�/DfrL
g for some fixed r 2N. Then modulo an error termR2r.J2j�2�.aj //
depending only on the .2j �2/-jet of curvature � of @� at the m reflection points
aj of 
 , the wave invariant B
r ;j�1 C B
�r ;j�1 can be obtained by applying
stationary phase to the oscillatory integral

Tr � �Nmr
1 ı�.k/ ıS`.kC i�/tr ıD`.kC i�/:

In Theorems 3.1 and 4.2, we have followed [Zel04a] in combining the interior
and exterior problems. Taking the trace then eliminates the single and double
layer potentials S` and D`, respectively, in [Zel04b, Th. 1.1(v)], allowing for the
reduction of the trace to the boundary in (25).

5. Feynman diagrams in inverse spectral theory

In this section, we use the oscillatory integrals in Theorem 4.2 to obtain explicit
formulas for the highest derivative terms of the wave trace invariants at a bouncing
ball orbit in terms of the curvature function of the boundary. To our knowledge,
these are the first explicit formulas. In the next section it will be proved that lower
order derivative data is redundant for domains with our symmetries.

For simplicity we restrict to bouncing ball orbits. There are similar results
for general periodic reflecting rays (see Lemma 7.1 for the dihedral case). We
first state the result for domains without symmetries, and then specialize to mirror
symmetric domains in Corollary 5.11. We use the graph parametrization rather
than the curvature in the formulas. In the following, hpq

C
are the matrix elements
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of the inverse Hessian Hess.LC/�1 of the positively oriented length functional
LC D LwC of (11) and (22) in the principal terms.

THEOREM 5.1. Let � be a smooth domain with a bouncing ball orbit 
 of
length rL
 . Then there exist polynomials p2;r;j .�1; : : : ; �2jC1I �1; : : : ; �2jC1/,
which are homogeneous of degree �j under the dilation f ! �f , are invariant
under the substitutions �j () ��j and under f .x/ ! f .�x/, and have the
following properties: First,

B
r ;j Dp2;r;j .f
.2/
� .0/;f

.3/
� .0/;� � � ;f

.2jC2/
� .0/If

.2/
C .0/;f

.3/
C .0/;� � � ;f

.2jC2/

C
.0//:

Second, in the Balian-Bloch (resolvent trace) expansion of Corollary 3.4 and in
(15), the data f .2j /

˙
.0/; f

.2j�1/

˙
.0/ appear first in the k�jC1-st order term, and

then only in the expansion of the principal terms. Third, this coefficient has the form

B
r ;j�1 � 4rLA0.r/

�
2.w.G

2j;0
1;j //..h

11
C;2r/

jf
.2j /

C
.0/� .h22C;2r/

jf
.2j /

�;2r.0//

C 4

2rX
q;pD1

�
.w.G

2j�1;3;0
2;jC1 //.h

pp
C
/j�1h

qq
C;2rh

pq
C;2r

C .w.bG2j�1;3;02;jC1 //.h
pp
C;2r/

j�2.h
pq
C;2r/

3
�

�wC.p/wC.q/f
.2j�1/

wC.p/
.0/f

.3/
wC.q/

.0/

�
CR2r.J

2j�2fC.0/;J
2j�2f�.0//;

where the remainder R2r.J2j�2fC.0/;J2j�2f�.0// is a polynomial in the des-
ignated jet of f˙. Here, wC.p/D .�1/pC1 and, as in the introduction, w.G/D
1=jAut.G/j are combinatorial factors independent of � and r .

Where possible, we have simplified the sums using Proposition 2.5. The
top even derivative term is calculated in Lemma 5.5 and the top odd derivative is
calculated in Lemma 5.6.

The methods we use to make the calculations could be also used to evaluate
the oscillatory integrals in Theorem 3.1 and the wave invariants to all orders of
derivatives. This could be useful in the inverse spectral problem for general domains
without symmetry. However, we are content here to study the highest derivative
terms and apply the results to domains with symmetry.

We prove Theorem 5.1 by making a stationary phase analysis of the oscillatory
integrals in Theorem 3.1. As mentioned in the introduction, our strategy involves a
novel aspect of the stationary phase expansion, namely to separate out those terms
that, at each order in k, have the maximum number of derivatives of the boundary
defining function or equivalently of its curvature.

Since the formulas (33) and (34) are very complicated, we organize the cal-
culations by the diagrammatic method. Since Feynman diagrams have not been
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used before in inverse spectral theory, we digress to present the fundamentals of
the diagrammatic approach to the stationary phase expansion; clear expositions are
given in [Axe97], [Eti02]; see also [AG93].

5.1. Stationary phase diagrammatics. We consider a general oscillatory inte-
gral

Zk D

Z
Rn
a.x/eikS.x/dx;

where a 2 C10 .R
n/ and where S has a unique critical point in supp a at 0. We

write H for the Hessian of S at 0 and R3 for the third order remainder in its Taylor
expansion at x D 0:

S.x/D S.0/ChHx; xi=2CR3.x/:

The stationary phase expansion is

Zk D
�
2�

k

�n=2 ei� sgn.H/=4p
jdetH j

eikS.0/Zh`k ; where

Zh`k D
�
a.@=@J /eikR3.@=@J /

�ˇ̌̌
JD0

e�hJ;H
�1J i=.2ik/

D

1X
ID0

1X
VD0

�
a.@=@J /

�
ik

V Š
.R3.@=@J //

V
��ˇ̌̌

JD0

.�hJ;H�1J i=.2ik//I

I Š
:

The graphical analysis of the stationary phase expansion consists of the observation
that the last summand above can be written as

(32)
X

.G;`/2GV;I

I`.G/
jAut.G/j

;

whereGV;I is the class of labeled graphs .G; `/ with V closed vertices of valency no
less than 3 (each corresponding to the phase), with one open vertex (corresponding
to the amplitude), and with I edges. The function ` ‘labels’ each end of each edge
of G with an index j 2 f1; : : : ; ng.

Remark 5.2. The term ‘open vertex’ is equivalent to ‘marked’ or ‘external’
vertex in some texts, and is graphed here as an unshaded circle. A ‘closed’ vertex
is the same as an ‘unmarked’ or ‘internal’ vertex and is graphed as a shaded circle.
Also, it is nonstandard to include the labels ` in the notation for Feynman amplitudes;
we do so because in our problems certain labels are distinguished.

Above, jAut.G/j denotes the order of the automorphism group of G, and
I`.G/ denotes the ‘Feynman amplitude’ associated to the labeled graph .G; `/. By
definition, I`.G/ is obtained by the following rule: To each edge with end labels
m, n, one assigns a factor of .�1=.ik//hmn, where as above H�1 D .hmn/. To
each closed vertex one assigns a factor of ik@�S.0/=@xi1 � � � @xi� , where � is the
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valency of the vertex and i1 : : : ; i� are the index labels of the edges incident on the
vertex. To the open vertex, one assigns the factor @�a.0/=@xi1 : : : @xi� , where � is
its valence. Then I`.G/ is the product of all these factors. To the empty graph one
assigns the amplitude 1. In summing over .G; `/ with a fixed graph G, one sums the
product of all the factors as the indices run over f1; : : : ; ng.

We note that the power of k in a given term with V vertices and I edges equals
k�.G

0/, where �.G0/D V � I equals the Euler characteristic of the graph G0, which
is defined to be G minus the open vertex. We thus have

Zh`k D

1X
jD0

� X
.G;`/W�.G0/D�j

I`.G/
jAut.G/j

�
:

We note that there are only finitely many graphs for each � because the valency
condition forces I � 3=2V . Thus, V � 2j and I � 3j .

5.1.1. Stationary phase formula for I �;w˙M;� . Since Feynman diagrams and
amplitudes are unfamiliar in wave trace calculations, we digress to give some details
of the proof of (32) and to tie it together with the form of the stationary phase
expansion in standard texts in partial differential equations (see [Hör83]). This latter
form can also be used to corroborate the calculations below.

The stationary phase of [Hör83, Th. 7.7.5] reads

(33) Zk �
�
2�

k

�n=2 e i�4 sgnH eikS.0/p
jdetH j

1X
jD0

k�jPja.0/;

where

(34) Pja.0/D
X

���Dj

X
2��3�

i�j 2��

�Š�Š
hH�1D;Di�.aR

�
3 /
ˇ̌
xD0

:

In diagrammatic terms, the pair .�; �/ correspond to graphs with � D I edges
and �D V closed vertices and hence of Euler characteristic �� � D�j . We note
that the factor i�j is common to all graphs of Euler characteristic �j and in our
analysis we absorb it into the prefactor. To relate (34) to (32), we sketch the proof
of the latter, following the exposition in [Eti02] in the case where the amplitude is
� 1. We outline the procedure following the notes of Etingof [Eti02]. This special
case turns out to be the most important for the applications in this paper, since terms
with derivatives of the amplitude will not contribute to the highest order jets in the
wave invariants. The notes of Axelrod [Axe97] give a clear discussion (as above) of
the contribution of the amplitude to the Feynman amplitude.
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PROPOSITION 5.3. We have

2��

�Š�Š
hH�1D;Di�.R

�
3 /
ˇ̌
xD0
D

X
.G;`/2G�;�

I`.G/

jAut.G/j
:

Proof. We need to rewrite the left side as a sum over graphs in G�;� (the class
of graphs with � edges, and � closed vertices of valency � 3).

Let nD .n0; n1; : : : / be a sequence of nonnegative integers, of which all but
a finite number are zero, and let G.n/ denote the set of graphs with n0 0-valent
vertices, n1 1-valent vertices etc. We are only considering the case where the
amplitude equals one, so there are no external vertices.

We write

R3.x/D
X
m�3

Bm.x; : : : ; x/=mŠ;

where Bm D dmS.0/, as a sum of its homogeneous terms. Change variables
x !

p
kx, write exp.ikR3.x=

p
k/// D

Q
m exp.ikBm.x=

p
k/=mŠ/, and Taylor

expand each exponential to obtain

(35)

Zk D
X

n
Zn; with

Zn D

Z
Rn
eiH.y;y/=2

Y
m

1

.mŠ/nmnmŠ
..ik/�m=2C1Bm.y; � � � ; y//

nmdy:

The integral may be calculated by Wick’s formula. The diagrammatic interpretation
attaches to each factor iBm a ‘flower’ of valency m, that is, a closed vertex with m
outgoing edges. Thus, the index n prescribes a set of nm flowers of valency m. Let
T be the set of the ends of the outgoing edges of all of the flowers. For each pairing
� of the ends, one obtains a graph Gn;� .

Associated to each graph is its Feynman amplitude Fn;� . As described above,
one labels each end of each edge of the graph by indices in f1; : : : ; ng, assigns
a factor of �hmn=.ik/ to an edge with end labels m and n. To each flower
(closed vertex) of valency i with end labels .xn1 ; : : : ; xni /, one assigns a factor
of ik@iS.0/=@xn1 � � � @xni . One multiplies these expressions over all edges and
closed vertices and then sums over all labellings. One then has

Zn D
.2�/n=2
p

detH

Y
m

1

.mŠ/nmnmŠ
k�nm.m=2C1/

X
�

Fn;� :
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By comparison, in (34), one Taylor expands the full factor eR3 to obtain

eikR3.x=
p
k/
D

X
�

1

�Š

�
i
X
m

k�m=2C1Bm=mŠ
��

D

X
�

i�

�Š

X
nWjnjD�

…mk
�nm.m=2C1/

��
n

� B
nm
m

.mŠ/nm
:

Since
1

�Š

X
nWjnjD�

��
n

�Y
m

B
nm
m

.mŠ/nm
D

X
nWjnjD�

Y
m

B
nm
m

.mŠ/nm.nm/Š
;

it follows that
(36)

2��

�Š�Š
hH�1D;Di�.R

�
3 /
ˇ̌
xD0
D
2��

�Š
hH�1D;Di�

X
nWjnjD�

…m
B
nm
m

.mŠ/nm.nm/Š
:

For each fixed n, the term on the right side for this n is the �-th term in the
expansion of Zn when (as in the proof in [Hör83]) one applies the Plancherel
formula to the integral (35) for Zn and Taylor expands exp.iH�1.y; y/=2/: The
�-th term can be sifted out by replacing H ! �H and finding the term of order
��� on each side. Note that .�; �/ are determined by n: Indeed, �D

P
m nm, and

since each outgoing vertex is paired with exactly one other outgoing vertex to form
an edge, � D 1

2

P
mmnm: We write �.n/ and �.n/ for the these values. The ���

terms in the sum over n with jnj D � run over those n for which �.n/D �, and thus
we have

2�

�Š
hH�1D;Di�

X
nWjnjD�

Y
m

B
nm
m

.mŠ/nm.nm/Š
D

Y
m

1

.mŠ/nmnmŠ

X
nWjnjD�;
�.n/D�;�

Fn;� :

Finally, as explained in [Eti02],X
n;�

Fn;� D
X
G;`

Q
m.mŠ/

nmnmŠ

jAut.G/j
I`.G/:

The same identity holds if we restrict to pairings and graphs with � vertices and �
edges. Canceling common factors, we get

.2��/

�Š
hH�1D;Di�

X
nWjnjD�

Y
m

B
nm
m

.mŠ/nm.nm/Š
D

X
.G;`/2G.�;�/

I`.G/

jAut.G/j
:

Combining with (36) completes the proof. �

5.2. Maximal derivative terms. We now apply the diagrammatic stationary
phase method to the oscillatory integrals I �;w˙M;� from (12). Further, we consider
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the additional aspect of extracting from the stationary phase expansion the terms
that involve the highest number of derivatives of the boundary defining function f˙
in each power of k�1. Such terms with the maximal number of derivatives arise
only from special graphs and from special terms in the corresponding Feynman
amplitudes with special labellings of the vertices. This is a nonstandard feature of
diagrammatic analysis and indeed depends on the very special phase and amplitudes
in I �;w˙M;� . A further key issue is the dependence on the number of iterates M of the
bouncing ball orbit. For emphasis, we state our objective as follows:

Objective. Enumerate the diagrams of each Euler characteristic whose ampli-
tudes contain the maximum number of derivatives of @� among diagrams of the
same Euler characteristic. Determine which vertex labellings produce the maximum
number of derivatives. Then determine the corresponding ‘maximal derivative
Feynman amplitudes’, that is, the sums of monomials containing the highest number
of derivatives. We denote them by Imax.G/.

As we will see, only the principal oscillatory integrals of Definition 4.3 give
rise to terms in Imax.G/. We use the following notation for the class of labeled
graphs that give rise to two types of maximal derivative terms.

Notation. Ga;b;c�;� �G�;� are the (not necessarily unique) labeled graphs whose
Feynman amplitude contains terms of the form f .a/.0/f .b/.0/a.c/0 .0/.

In fact, we will show that c D 0 for all labeled graphs contributing to the highest
number of derivatives of f in a given order of wave invariant.

We denote by Jp the operation of extracting the terms with p derivatives.
That is, Jp applied to a monomial in derivatives of the phase is equal to the
monomial if it contains a factor with p derivatives of the phase and zero otherwise.
From Proposition 5.3, we can evaluate the combinatorial coefficients of Feynman
amplitudes with a specified number of derivatives.

COROLLARY 5.4. We have

Jp
2��

�Š�Š
H�
˙.R

�
3 /
ˇ̌
x0Dx1D���Dx2mD0

D

X
.G;`/2G.�;�/

JpIG;`

jAut.G/j
:

5.3. The principal terms. Our first step is to analyze the stationary phase
expansions of the principal terms I �0;w˙2r;� .k/ in the sense of Definition 4.3. By
Proposition 4.4 it suffices to consider wC. We show that the nonprincipal terms
only contribute lower order derivative data to the Balian-Bloch invariants B
;j . In
the next section, this data will be proved redundant in the case of the symmetric
domains of this article. As mentioned in the introduction, we only use the attributes
of the phase and amplitude described in Theorem 4.2. We now use this information
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to determine where the data f 2j
˙
.0/; f

.2j�1/

˙
.0/ first appears in the stationary phase

expansion for the oscillatory integrals.
The only critical point occurs where x D 0. We denote by H˙ the Hessian

operator in the variables .x1; : : : ; x2r/ at the critical point x D 0 of the phase L˙.
That is,

H˙ D hHess.L˙/�1D;Di; where D D .@=@x1; � � � ; @=@x2r/:

5.3.1. The principal termW The data f 2j
˙
.0/. We first claim that f .2j /

˙
.0/

appears first in the k�jC1 term in the stationary phase expansion of I �0;wC2r;� . This is

because any labeled graph .G; `/ for which I`.G/ contains the factor f .2j /
˙

.0/ either
must have a closed vertex of valency � 2j , or the open vertex must have valency
� 2j �1. The minimal absolute Euler characteristic j�.G0/j in the first case is j �1.
Since the Euler characteristic is calculated after the open vertex is removed, the
minimal absolute Euler characteristic in the second case is j (there must be at least
j edges). Hence such graphs do not have minimal absolute Euler characteristic.
More precisely:

LEMMA 5.5. In the stationary phase expansion of I �0;wC2r;� , the only labeled
graph .G; `/ with ��.G0/D j � 1 and with I`.G/ containing f .2j /

˙
.0/ is given as

follows.

� G
2j;0;0
1;j 2G1;j (that is, �D V D 1 and I D � D j /. There is a unique graph

in this class. It has no open vertex, one closed vertex, and j loops at the closed
vertex.

� The only labels producing the desired data are those p̀ that assign the same
index p to all endpoints of all labeled edges.

The J2j -th part of the Feynman amplitude is

Imax.G
2j;0
1;j /D 4rL.w.G

2j;0
1;j //A0.r/

�
.h11C /

jf
.2j /

C
.0/� .h11� /

jf
.2j /
� .0/

�
;

where we neglect terms with � 2j � 1 derivatives.

We are also interested in the f .2j�1/
˙

.0/ terms, but postpone the calculation of
the f .2j�1/

˙
.0/ terms arising from the diagram G

2j;0
1;j until Lemma 5.6(ii) (they turn

out to vanish).

Proof. By (34), the data f 2j
˙
.0/ only occurs in the term of (34) with � D 1

and � D j . To see this, we note that the Hessian operator H�
C

associated to LC has
the form

H�
C D

X
.i1;j1;:::;i� ;j�/

h
i1j1
C
� � � h

i�j�
C

@2�

@xi1@xj1 : : : @xi�@xj�
:

Any term .h
pp
C
D2xp /

j applied to R3 produces a f .2j /
˙

.0/ term.
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Figure 5. G
2j;0;0
1;j for �� D j � 1, V D 1, and I D j , with j

loops at one closed vertex. All labels are the same. The form of the
Feynman amplitude is .hpp

C
/jD

.2j /
xp LC � .h

pp
C
/jf .2j /.0/.

We can also argue nondiagrammatically that no �j � 2.j C 1/, that is, the
power k�jC1 is the greatest power of k in which f .2j /

˙
.0/ appears. Indeed, it

requires 3� derivatives to remove the zero of R�3 . That leaves 2��3�D 2j �2��
further derivatives to act on one of the terms D3R3, or 2j � 2 � � derivatives
to act on the amplitude. The only possible solutions of .�; �/ are .j � 1; 0/ and
.j; 1/. Referring to Theorem 4.2(i) and to (24), we see that the principal symbol
of the amplitude depends only on f

˙
and f 0

˙
, so there is no way to differentiate

the amplitude 2j � 2 times to produce the datum f
.2j /

˙
.0/. Hence, .�; �/D .j; 1/

and the only possibility of producing f .2j /
˙

.0/ is to throw all 2j derivatives on the
phase.

Now let us determine Imax
`p

.G/ for the labeled graphs .G; `/ above. The terms
with maximal number 2j of derivatives in the Feynman amplitude (apart from the
overall universal factor in (4)) are given for some nonzero constant C.G/ by

Imax
`p

.G/D C.G/.4rL/A0.r/

2rX
pD1

.h
pp
C
/jD2jxpLC.0/

D C.G/.4rL/A0.r/

2rX
pD1

.h
pp
C
/jwC.p/f

.2j /

wC.p/
.0/:

The factor .4rL/A0.r/ comes from the leading value of the amplitude (see Lemma
4.5). By Proposition 5.3, C.G/D 1=jAut.G/j D w.G/.

Indeed, to obtain f .2j /
˙

.0/, all labels at all endpoints of all edges must be the
same index; in other words, only the ‘diagonal terms’ of H

j
C

, i.e., those involving
only derivatives @=@xk in a single variable, can produce the factor f .2j /

˙
.0/. We

then use Lemma 4.5(v.a) to complete the evaluation. The part of the p-th term



244 STEVE ZELDITCH

.h
pp
C
/jD

2j
xpLC.0/ of the sum that involves f .2j /

wC.p/
.0/ equals

.h
pp
C
/j
ˇ̌
.fwC.p/.0/� fwC.pC1/.0//

ˇ̌�1
.fwC.p/.0/� fwC.pC1/.0//f

.2j /

wC.p/
.0/

D .h
pp
C
/jwC.p/f

.2j /

wC.p/
.0/;

by (27) and (28).
We then break up the sums over p of even/odd parity and use Proposition 2.5

to replace the odd parity Hessian elements by h11
C

and the even ones by h22
C

. Taking
into account that wC.p/D 1.�1/ if p is odd (even), we conclude that

B
r ;j�1 � 8rL.w.G
2j;0
1;j //A0.r/

�
.h11C /

jf
.2j /

C
.0/� .h11� /

jf
.2j /
� .0/

�
C � � � ;

where again � � � refers to terms with � 2j � 1 derivatives. We observe that, as
claimed, the result is invariant under the up-down symmetry fC () �f� and
under the left-right symmetry f˙.x/! f˙.�x/. �

Thus, we have obtained the even derivative terms in Theorem 5.1.

5.3.2. The principal termW The data f .2j�1/
˙

.0/. We now consider the trickier
odd-derivative data f .2j�1/

˙
.0/ in the stationary expansion of I �0;w˙2r;� . Its evaluation

requires the results of Theorem 4.2 regarding the amplitude (24).
We again claim that the Taylor coefficients f .2j�1/

˙
.0/ appear first in the term

of order k�jC1: Further, only five graphs can produce such a factor. Of these, only
two contribute a nonzero Feynman amplitude. These two graphs are illustrated
in Figures 6 and 7. In the following section, we will show that occurrences of
f
.2j�1/
˙

.0/ in the singular trace terms also occur only in higher order terms in k�1.
To prove this, we first enumerate those labeled graphs G in the stationary

phase expansion of I �0;w˙2r;� whose Feynman amplitude I`.G/ contains a factor of
f
.2j�1/

˙
.0/ in the term of order k�jC1, and we show that this data does not appear

in terms of lower order in k�1.
We recall that� means equality modulo R2r.J2j�2fC.0/;J2j�2f�.0//.

LEMMA 5.6. The stationary phase expansion of I �0;w˙2r;� has the following
diagrammatic structure.

(i) There are no labeled graphs G with ��0.G/ WD��.G0/ < j �1 for which I`.G/
contains the factor f .2j�1/

˙
.0/.

(ii) There are exactly two types of labeled diagrams .G; `/ with �.G0/D�j C 1
such that I`.G/ is nonzero and contains the factor f .2j�1/

˙
.0/. They are as

follows (see Figures 6 and 7).

� G
2j�1;3;0
2;jC1 �G2;jC1 with V D 2 and I D jC1: These have two closed vertices,
j � 1 loops at one closed vertex, 1 loop at the second closed vertex, one edge
between the closed vertices, and no open vertices. Their labels p̀;q are such
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that labels at the closed vertex with valency 2j � 1 must be the same index
p and all at the second closed vertex must be same index q. The form of the
Feynman amplitude is

.h
pp
C
/j�1h

qq
C
h
pq
C
D2j�1xp

LCD
3
xq

LC � .h
pp
C
/j�1h

qq
C
h
pq
C
f
.2j�1/

˙
.0/f

.3/
˙
.0/:

Thus, this graph contributes an Imax.G
2j�1;3;0
2;jC1 / equal to

8rLAr.0/.w.G
2j�1;3;0
2;jC1 //

�

2rP
p;qD1

.h
pp
C
/j�1h

qq
C
h
pq
C
wC.p/wC.q/f

.2j�1/

wC.p/
.0/f

.3/
wC.q/

.0/:

� OG
2j�1;3;0
2;jC1 � G2;jC1 with V D 2; I D j C 1: These have two closed vertices,
j � 2 loops at one closed vertex, three edges between the two closed vertices,
and no open vertices. Their labels p̀;q are such that all labels at the closed
vertex with valency 2j � 1 must be the same index p and all at the second
closed vertex must the be the same index q. The amplitude has the form

.h
pp
˙
/j�2.h

pq
˙
/3D2j�1xp

L˙D
3
xq

L˙ � .h
pp
˙
/j�2.h

pq
˙
/3f

.2j�1/

˙
.0/f

.3/
˙
.0/:

Thus, this graph contributes Imax. OG
2j�1;3;0
2;jC1 / equal to

8rLAr.0/.w. OG
2j�1;3;0
2;jC1 //

2rP
p;qD1

.h
pp
˙
/j�2.h

pq
˙
/3wC.p/wC.q/f

.2j�1/

wC.p/
.0/f

.3/
wC.q/

.0/:

� In addition, there are three other graphs whose Feynman amplitudes contain
factors of f .2j�1/

˙
.0/. But for our special phase and amplitude, the corre-

sponding amplitudes vanish.

Proof. It will be seen in the proof that only connected graphs can contribute
highest order derivative data (the amplitude for a disconnected graph is the product
of the amplitudes over its components). Connected labeled graphs .G; `/ with
��0 � j � 1 for which I`.G/ contains f .2j�1/

˙
.0/ as a factor must satisfy the

following constraints:

(a) G must contain a distinguished vertex (either open or closed). If it is closed
it must have valency � 2j � 1. If it is open, it must have valency 2j � 2. We
denote by ` the number of loops at this vertex and by e the number of nonloop
edges at this vertex.

(b) ��.G0/D I �V � j � 1.

(c) Every closed vertex has valency � 3; hence 2I � 3V .
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We distinguish two overall classes of graphs: those for which the distinguished
vertex is open and those for which it is closed. Statement (a) follows from the
attributes of the amplitude in Theorem 4.2: In the first case, 2j � 2 derivatives must
fall on the amplitude (i.e., the open vertex) to produce f .2j�1/

˙
.0/. In the second

case, 2j � 1 derivatives must fall on the phase (i.e., the closed vertex).
We first claim that V � 2 under constraints (a)–(c). When the distinguished

vertex is open, then V D 0 if ��0 D j � 1 (as noted above), and there are no
possible graphs with ��0 � j � 2. So assume the distinguished vertex is closed.
Let us consider the ‘distinguished flower’ �0 consisting just of this vertex and of
the edges incident on it. Denoting the number of loops in �0 by `, we must have
2`C e � 2j � 1 edges in �0 to produce f .2j�1/

˙
.0/. We then complete �0 to a

connected graph G with ��0 � j � 1. We may add one open vertex, V � 1 closed
vertices, and N new edges.

Suppose that there is no open vertex. We then have

2`C e � 2j � 1;(37a)

`C e�V CN D j � 1;(37b)

eC 2N � 3.V � 1/:(37c)

The last inequality follows from the facts that each new vertex has valency at least
three and that each of the r edges begins at the distinguished vertex. Solving for V
in (37b) and plugging into (37c), we obtain N � 3j � 3`� 2e. Plugging back into
(37b), we obtain V � 2j � 2`� eC 1� 2j C 1� .2j � 1/D 2, by (37a). Thus the
claim is proved.

Now suppose that G contains one open vertex and V closed vertices. Then
(37a) and (37b) remain the same since the �.G0/ is computed without counting the
open vertex. On the other hand, (37c) becomes eC 2N � 3.V � 1/C 1, since the
open vertex has valence at least one. This simply subtracts one from the previous
computation, giving V � 1. Thus, the distinguished vertex is the only closed vertex.

Now we bound N in the connected component of the distinguished constel-
lation. First suppose that V D 1. There is nothing to bound unless the graph
also contains one open vertex, in which case N counts the number of loops at the
open vertex. We claim that N D 0 in this case. Indeed, we have `C eCN D j .
Substituting in (37a), we obtain 2N C e � 1. The only solution is N D 0; e D 1.

Next we consider the case V D 2. As we have just seen, no open vertex occurs.
From (37a) + (37b) we obtain 2NCe� 3; hence the only solutions are eitherN D 1
and e D 1 or N D 0 and e D 3.

We tabulate these results as follows:



INVERSE SPECTRAL PROBLEM FOR Z2-SYMMETRIC DOMAINS 247

Graph parameters

V ` e N 0

0 j � 1 0 0 1

1 j 0 0 0

1 j � 1 1 0 1

2 j � 1 1 1 0

2 j � 2 3 0 0

We now determine the Feynman amplitudes for each of the associated graphs.
As we will see, the amplitudes vanish for the first three lines of the table, and do not
vanish for the last two. The nonvanishing diagrams are pictured in Figures 6 and 7.

(i) The only possible graph with V D 0 is G
0;2j�2
0;j�1 , that is, with I D j � 1 and

with j � 1 loops at the open vertex. Taking into account the structure of the
amplitude in Theorem 4.2, we see that, in order to produce f .2j�1/.0/, all
labels at the open vertex must be the same index p. The Feynman amplitude
vanishes since

Imax.G
0;2j�2
0;j�1 /D const

2rX
pD1

.hpp/j�1D2j�2xp
A� 0�f

.2j�1/

˙
.0/D 0:

Indeed, this is the case .�; �/ D .j � 1; 0/ of (34), which corresponds to
applying all derivatives D2j�2xp on the principal symbol a0 of the amplitude
for some p D 1; : : : ; 2r . Equation (29) proves that it vanishes.

(ii) Also vanishing is the amplitude of the graph G
2j;0
1;j � G1;j , with V D 1, I D j ,

and j loops at the closed vertex. This is the graph that produces f .2j /.0/, and
we now check that it does not produce an amplitude containing f .2j�1/.0/. To
produce f .2j�1/.0/, all but one label, p, must be the same, with only the last
label, q, different. The Feynman amplitude is then

Imax.G
2j;0
1;j /D const

2rX
p;qD1

.hpp/j�1hpqD
.2j�1/
xp

DxqL

� .hpp/j�1hpqf
.2j�1/

˙
.0/f 0˙.0/;

which vanishes by equation (30).

(iii) Next, a graph G
2j�1;1
1;j �G1;j with V D 1, I D j , and j �1 loops at the closed

vertex, and with one edge between the open and closed vertex. To produce
f .2j�1/.0/, all labels at the closed vertex must be the same index p. We again
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claim the Feynman amplitude

Imax.G
2j�1;1
1;j /D const

2rX
p;qD1

.hpp/j�1hpqD2j�1xp
LDqa

0
� 0�f

.2j�1/.0/

vanishes. Indeed, exactly one derivative is thrown on the amplitude. To check
this, we note this is the case .�; �/D .j; 1/ of (34) in which H

j
˙

is applied to
a0
C
R3. To produce the data f .2j�1/

˙
.0/, the operatorsD2j�1xp Dxq contribute by

applying D2j�1xp to R3 for p D 1; : : : ; 2r , and by applying the final derivative
Dxq to the amplitude. But ra0

C
.0/D 0 by (26).

(iv) Next is a graph G
2j�1;3;0
2;jC1 � G2;jC1 in which �� D j � 1, V D 2, and

I D j C 1. It has two closed vertices, j � 1 loops at one closed vertex, 1 loop
at the second closed vertex, one edge between the closed vertices, and open
vertex of valency 0. See Figure 6. All labels at the closed vertex with valency
2j � 1 must be the same index p, and all at the closed vertex must the be same
index q. Since there are no derivatives of the amplitude, we extract its principal
term and obtain that Imax.G0

2j�1;3;0
2;jC1 / is equal to

2rLAr.0/C.G
2j�1;3;0
2;jC1 /

2rP
p;qD1

.h
pp
C
/j�1h

qq
C
h
pq
C
D2j�1xp

LCD
3
xq

LC

� 8rLAr.0/C.G
2j�1;3;0
2;jC1 /

�

2rP
p;qD1

.h
pp
C
/j�1h

qq
C
h
pq
C
wC.p/wC.q/f

.2j�1/

wC.p/
.0/f

.3/
wC.q/

.0/:

The calculation of the coefficients is similar to that in (iii), except that now
we have two factors of the phase. The factor containing 2j � 1 derivatives
of L is evaluated in Lemma 4.5(iv) and (v), and the third derivative factor is
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Figure 6. G
2j�1;3;0
2;jC1 � G2;jC1 in which ��D j � 1, V D 2, and

I D j C 1.
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evaluated in Section 4.1.1(4). Again the combinatorial constant is evaluated in
Proposition 5.3.

(v) There is a second graph bG2j�1;3;02;jC1 � G2;jC1 with �� D j � 1, V D 2 and
I D j C 1. It has two closed vertices, with j � 2 loops at one closed vertex,
and three edges between the two closed vertices; the open vertex has valency 0.
See Figure 7. The labels p̀;q are such that all labels at the closed vertex with
valency 2j � 1 must be the same index p and all at the closed vertex must the
be same index q. Again, there are no derivatives on the amplitude, and we get
that Imax.bG2j�1;3;02;jC1 / is equal to

rLAr.0/C.bG2j�1;3;02;jC1 /
2rP

p;qD1

.h
pp
C
/j�2.h

pq
C
/3D2j�1xp

LCD
3
xq

LC

� 2rLAr.0/C.bG2j�1;3;02;jC1 /

�

2rP
p;qD1

.h
pp
C
/j�2.h

pq
C
/3wC.p/wC.q/f

.2j�1/

wC.p/
.0/f

.3/
wC.q/

.0/:

As noted above — see equation (31) — other (mixed) third derivatives of L

vanish on the critical set. The combinatorial constant is evaluated in Proposition
5.3.

We now combine the terms in (iv) and (v) and evaluate the coefficients to
obtain

2rLAr.0/.w.G
2j�1;3;0
2;jC1 //

�

2rX
q;pD1

�
.h
pp
C
/j�1h

qq
C
h
pq
C
C .w.bG2j�1;3;02;jC1 //.h

pp
C
/j�2.h

pq
C
/3
�

�wC.p/wC.q/f
.2j�1/

wC.p/
.0/f

.3/
wC.q/

.0/:
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Figure 7. bG2j�1;3;02;jC1 � G2;jC1 in which ��D j � 1, V D 2 and
I D j C 1.
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We obtain the expression stated in Theorem 5.1 by breaking up into indices of like
parity and using Proposition 2.5. �

We pause to review the sources of the various constants and to check that
sums over the several ˙ signs do not cancel. In particular, it is crucial that the
coefficient of Imax. OG

2j�1;3;0
2;jC1 / is nonzero, since it is this term that determines odd

Taylor coefficients and allows us to decouple even and odd derivative terms.

Remark 5.7. The constants and sums over˙ are of the following kinds:

� The factor of L in the amplitude produces 2rL.

� The following˙ signs arise (with some redundancy): 
˙, f˙, w˙ or equiva-
lently L˙, p even (odd), and the two terms of L that depend on a given index
xp; see (27) and (28). Proposition 4.4 shows that the two possible choices of
w˙ produce the same data. Since 
 D 
�1 there is no question of cancellation
between B
˙ .

� The odd derivative monomials with maximal derivatives of f have the form
f
.2j�1/

C
.0/f .3/

C
.0/,f .2j�1/

C
.0/f .3/� .0/,f .2j�1/� .0/f .3/

C
.0/,f .2j�1/� .0/f .3/� .0/.

By Theorem 5.1, the wave invariants are invariant under fC ! �f� and
f� ! �fC. Hence the only possible cancellation could occur between
f
.2j�1/

C
.0/f .3/

C
.0/ and f .2j�1/

C
.0/f .3/� .0/. However, no such cancellation

occurs, as noted after the calculation in (27) and (28), or in Theorem 5.1, where
it is noted that the monomials always occur in the form

wC.p/wC.q/f
.2j�1/

wC.p/
.0/f

.3/
wC.q/

.0/:

In fact, the ˙ sum in each factor D2jxpL, D2j�1xp L or D3xpL gives rise to a
factors of 4 in odd derivative terms, and a factor of 2 in even derivative terms.

5.4. Nonprincipal terms. To complete the proof of Theorems 4.2 and 5.1, it
suffices to show the nonprincipal oscillatory integrals I �;wM;� with M > 2r do not
contribute the data f .2j /

˙
.0/ and f .2j�1/

˙
.0/ to the coefficient of the k�jC1 term

(or to the k�m term for any m� j � 1).
We recall from Proposition 3.10 that I �;wM;� can only have a critical point if

M � 2r andM �j� j D 2r . In the nonprincipal terms whereM >2r , the oscillatory
integral I �;wM;� is obtained by regularizing the kernel of N� in Proposition 3.8, which
is an oscillatory integral with a singular phase and amplitude; see [Zel04b, §6].

The regularization produces the oscillatory described in Corollary 3.9. In
the case where M � j� j D 2r , it is an integral over T2r with the same phase as
in the principal terms but with an amplitude of order �j� j. The sum over M
in Proposition 3.6 and over � in (16) can thus be seen as the construction of an
oscillatory integral expression for the trace of Proposition 3.6, with an amplitude
obtained by regularizing the sum of singular oscillatory integrals.
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The stationary phase analysis of the sub-principal terms I �;wM;� is therefore
almost essentially the same as for the principal term. The only additional feature is
the following description of the amplitude:

LEMMA 5.8. The amplitude A� .k; '1; '2/ of N� in Proposition 3.8 is a semi-
classical amplitude of order �j� j. The term A�;n in its semiclassical expansionP1
nD0 k

�j� j�nA�;n.'1; '2/ depends on at most nC 2 derivatives of f . In particu-
lar, the value D˛'A�;nj'0 of its ˛-th derivative at the critical point depends at most
on nC 2Cj˛j derivatives of f at x D 0.

Proof. The algorithm for calculatingA� .k; '1; '2/ is given in [Zel04b, §6]; see
also [AG93]. We briefly review the algorithm in order to prove that the amplitude
has the stated properties.

The algorithm consists in successively removing factors of N0 from compo-
sitions of N0 and N1 in N� ; see Section 3. The first step consists in expressing
the compositions N0 ıN1 and N1 ıN0 as oscillatory integrals of one lower order
[Zel04b, Lem. 6.2]. From the explicit formula for the composition [Zel04b, (74)],
the new amplitude A.kC i�; '1; '2/ has the form

(38) A.kC i�; '1; '2/

D

Z
R

�.k; u; '1; '2/G.kC i�; u; '1; '2/jujH
.1/
1 ..kC i�/juj/eikaudu;

where � is a suitable cutoff, G is a semiclassical amplitude constructed from the
amplitude of N1 (see [Zel04b, (78) and (79)]. Also

aD sin†.q.'2/� q.'1/; �q.'2//:

The amplitudeG is constructed as follows: FromN0 one obtains a contribution
of H .1/

1 ..k�C i�/jq.'3/� q.'1/j/ cos†.q.'3/� q.'1/; �q.'3//, while from N1
one obtains a semiclassical amplitude. One changes variables by putting

u WD

�
jq.'3/� q.'1/j if '1 � '3;
�jq.'3/� q.'1/j if '1 � '3;

under which the amplitude of N1 is transformed to a smooth amplitude of the
same order in .'2; u/, while the factor of cos†.q.'3/� q.'1/; �q.'3// changes to
jujK.'1; u/, where K is smooth in u. A simple calculation shows that

K.'1; 0/D�
1
2
�.'1/:

The full amplitude G is a product of these two factors. One sees that it depends
analytically on f , f 0 and f 00, with f 00 coming from the cosine factor.

One then Taylor expands G in u and verifies that it produces a semiclassical
expansion of A.kC i�; '1; '2/. The du integrals can be explicitly evaluated using
the cosine transform of the Hankel function ([Zel04b, Prop. 4.7]; see also [AG93]).
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The jujdu in the cosine transform gives rise to a factor of k�2, and the factor of N0
carries a factor of k, so that the removal of N0 introduces a net factor of k�1. This
factor is responsible for the lowering of the order by one for each removal of N0.

The coefficient of k�1�n in the final amplitude thus derives from the n-th term
in the Taylor expansion of G.k; u; '/ in u and in particular depends on the same
number of derivatives of f . Since G is an analytic function of f , f 0 and f 00, it
follows that the k�1�n term depends at most on nC 2 derivatives of f .

The process then repeats as another factor of N0 is removed from the resulting
composition. The same argument shows that each elimination of N0 introduces
a new factor of k�1 that is unrelated to Taylor expansions of G. We now verify
that after r repetitions of the algorithm, the new amplitude is semiclassical and its
k�r�n term depends on only nC 2 derivatives of f .

We argue by induction, the case r D 1 having been checked above. After
r � 1 steps, we obtain an oscillatory integral operator with an amplitude Ar�1
satisfying the hypothesis and with the phase of N1. We then apply the algorithm
for the composition of N0 with this oscillatory integral operator. It has the form
of (38) except that now G DGr is constructed using Ar�1 and N0. The algorithm
is to multiply Ar�1 by the cosine factor above, to change variables to u, to Taylor
expand the cosine factor to one order to obtain jujK, and to define Gr DKAr�1J ,
where J is the Jacobian. The Taylor expansion producing K is responsible for the
initial increase in the number of derivatives of f to f 00. After that point, it is only
the Taylor expansion of Gr in u that produces further derivatives of f . Thus, the
number of derivatives of f in the term of order k�r�n is nC 2.

It follows that, after removing all j� j factors of N0, one obtains an amplitude
of order �j� j whose k�j� j�n term involves at most n derivatives of f 00. �

LEMMA 5.9. The nonprincipal terms do not contribute the data f 2j
˙
.0/ and

f
2j�1
˙

.0/ to the term of order k�1�j .

Proof. We consider the diagrammatic analysis of I �;wM;� along the same lines as
for the principal term. The only new aspect is the amplitude. Since it now has order
�j� j< 0, the terms where one differentiates the phase to the maximal degree now
have order k�jC1�j� j and thus do not occur in the k�1�j term.

The only remaining possibility is that the data could occur in terms where one
differentiates the amplitude to the maximal degree. By Lemma 5.8, the term of order
k�j� j�n contains at most nC 2 derivatives of f . To obtain a term of order �j C 1,
one needs j� jCn� j�1, and one can take only 2.j�1�j� j�n/ further derivatives
in the k�jC1 term. This produces a maximum of 2j � 2j� j � n derivatives of f .
The maximum occurs when nD 0, in which case there are � 2j � 2j� j � 2j � 2
derivatives of f . �

For emphasis, we determine the lowest order term in which such data do occur:



INVERSE SPECTRAL PROBLEM FOR Z2-SYMMETRIC DOMAINS 253

�..........
..........
.............

................................................................................................................................................................
............
..........
.........

.........

..........
...........
............

.................
...................................................................................................................................................................................................................
..............
...........
..........
..........
.....

..........

..........
..........
...........
............

................
.....................................................................................................................................................................................................................................................................................
................
............
...........
..........
..........
..........
.

..........

..........
..........
...........
...........
............

...............
......................

.................................................................................................................................................................................................................................................................................................................................
.................
..............
............
...........
..........
..........
..........
......

..........

..........

..........
..........
...........
............
............

...............
..................

.......................................
..............................................................................................................................................................................................................................................................................................................................................................

...................
...............
............
............
...........
..........
..........
..........
..........
..

.........

..........

..........
..........
..........
...........
............

............
...............

.................
........................

....................................................................................................................................................................................................................................................................................................................................................................................................................................
....................

...............
.............
............
...........
...........
..........
..........
..........
..........
......

..........

..........

..........
..........
..........
..........
...........
............

.............
..............

................
....................

..........................................
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................

....................
.................
..............
.............
............
...........
..........
..........
..........
..........
..........
..........
..

.................................
.................................
..............................................

� .........
..........
...........
.............

..................
.................................................................................................................................................................................................................
..............
...........
..........
..........
.....

..........

..........
..........
...........
...........
.............

...............
......................

................................................................................................................................................................................................................................................................................................................................
.................
..............
............
...........
..........
..........
..........
......

..........

.........

..........
..........
..........
...........
............

............
..............

.................
........................

.....................................................................................................................................................................................................................................................................................................................................................................................................................................
....................

...............
.............
............
...........
...........
..........
..........
..........
..........
......

..........

..........

..........
..........
..........
..........
..........
...........
............
............

..............
...............

..................
........................


......................

.................
...............
.............
............
...........
...........
..........
..........
..........
..........
..........
.........
..........

..........

..........

..........
..........
..........
..........
..........
...........
...........
............
............

.............
..............

..............
.................

....................
...........................


........................

...................
................
...............
.............
.............
............
............
...........
..........
..........
..........
..........
..........
..........
..........
........

.................................
................................
...............................................

�������.........
Figure 8. At left, G

0;2j�2
0;j�1 , graph (i) on page 247. To its right is

G
2j�1;1
1;j � G1;j , graph (ii) on page 247.

SUBLEMMA 5.10. In the stationary phase expansion of the nonprincipal term
I
�;w
M;� , the data f 2j

˙
.0/ and f 2j�1

˙
.0/ appear first in the k1�j�j� j term.

Proof. To determine the power of k�1 in which this data first appears, we need
to minimize j� j C � �� subject to the constraint that 2� � 3� � 2j � 3. This is
j� j plus the constrained minimum of � ��. The sole change to the principal case
is that the constraint is 2� � 3� � 2j � 3 in the top order term of the amplitude
rather than 2� � 3�� 2j � 2. Since the solutions must be nonnegative integers, it
is easy to check that again � � j �1 and that .�; �/D .0; j �1/; .1; j / achieve the
minimum of � ��D j � 1. If there are r drops in the symbol order, we need to
minimize j� jC r C � �� subject to the constraint that 2� � 3�� 2j � 3� r . The
minimizer produces the result stated in the sublemma. �

This completes the proof of Theorems 4.2 and 5.1.

5.5. AppendixW Noncontributing diagrams. In Figures 6 and 7, we displayed
the diagrams that contribute nonzero amplitudes to the leading order derivative terms.
For completeness, we also include diagrams that do not contribute because the
corresponding amplitudes vanish. Figure 8 on the next page is labeled consistently
with the discussion above. Figure 5 is also a ‘noncontributing diagram’ to the
leading order odd derivative term.

5.6. Balian-Bloch invariants at bouncing ball orbits of up-down symmetric do-
mains. We now simplify the expression in Theorem 5.1 in the case of Z2-symmetric
domains. The following result, stated in (5), is essentially a corollary of Theorem
5.1. It uses one simplification, which will be proved in Proposition 6.5.
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COROLLARY 5.11. Suppose that .�; 
/ is invariant under an isometric invo-
lution � , and that 
 is a periodic 2-link reflecting ray reversed by � . Then, modulo
the error term R2r.J

2j�2f .0//, B
r ;j�1 is given by equation (5).

Proof. Using that f� D �fC, we can cancel the signs in the formula of
Theorem 5.1 and add the top and bottom to obtain

B
r ;j�1 � 4rLA0.r/
�
.w.G

2j;0
1;j //

2rX
pD1

.hpp/jf
.2j /.0/

C 4

2rX
q;pD1

Œ.w.G
2j�1;3;0
2;jC1 //.hpp/j�1hpqhqq

C 4.w. OG
2j�1;3;0
2;jC1 //.hpp/j�2.hpq/3�

�
f
.3/.0/f

.2j�1/.0/:

Further, in this Z2-symmetric case, all of the coefficients hpp are clearly equal. The
sum

P2r
qD1 h

pq is independent of p and is evaluated in Proposition 6.5, leaving the
stated expression. �

6. Proof of Theorem 1.1

We now prove the inverse spectral result for simply connected analytic plane
domains with one special symmetry that reverses the endpoints of a bouncing ball
orbit. The method is to recover the Taylor coefficients of the boundary defining
function from the Balian-Bloch invariants at this orbit.

As simple warm-up for the proof, we give a new proof that centrally symmetric
convex analytic domains whose shortest orbit is the unique orbit of its length (up to
time-reversal) are spectrally determined within that class:

Proof of Corollary 1.2. Consider the wave invariants of the shortest orbit as
given in Theorem 5.1. They are spectral invariants since the shortest length is a
spectral invariant. By Ghomi’s theorem [Gho04], the shortest orbit is a bouncing
ball orbit. The orbit must be invariant under the two symmetries up to time-reversal
since its length is of multiplicity one. Hence, the two symmetries imply that
fC D �f� WD f and that f .2jC1/.0/ D 0 for all j . It follows that f .2j /.0/ are
spectral invariants for each j , and thus the domain is determined. �

The same proof shows that simply connected analytic domains with the symme-
try of an ellipse and with one axis of prescribed length L are spectrally determined
in that class.

6.1. Completion of the proof of Theorem 1.1. We now complete the proof of
Theorem 1.1. Thus, we assume that .�; 
/ is up-down symmetric, i.e., is invariant
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under an isometric involution � , and that 
 is a periodic 2-link reflecting ray that is
reversed by � .

There are two overall steps in the proof. First, and foremost, we study the
expressions in Corollary 5.11. The key point is that the Hessian of the length
function is a circulant matrix in the symmetric case, and that allows us to analyze
the Hessian sums that occur as coefficients in the Balian-Bloch wave invariants. In
particular, we decouple even and odd derivatives using the behavior of the Hessian
sums under iterates 
r . After that, a simple inductive argument shows that all Taylor
coefficients of fC may be determined from the Balian-Bloch invariants.

We now begin the analysis of the Hessian sums.

6.2. Circulant Hessian at Z2-symmetric bouncing ball orbits. In the case of
Z2-symmetric domains in the sense of Theorem 1.1, RA DRB WDR and

cos˛=2D 2.1�L=R/ (elliptic case),

cosh˛=2D 2.1�L=R/ .hyperbolic case/:

We put

(39)
aD�2 cos˛=2 (elliptic case),

aD�2 cosh˛=2 (hyperbolic case):

By (9) and Proposition 2.2, the Hessian of the length function in Cartesian graph
coordinates simplifies to the matrix H2r for which �LH2r has .a; a; : : :/ along
its diagonal, ones adjacent to the diagonal and in the upper right and lower left
corners, and zeros elsewhere. Then H2r is a symmetric circulant matrix (or simply
circulant) of the form

.�L/H2r D C.a; 1; 0; : : : ; 0; 1/;

where a circulant is a matrix of the form (see [Dav79])

C.c1; c2; : : : ; cn/D

0BB@
c1 c2 : : : cn
cn c1 : : : cn�1
: : : : : : : : : : : :

c2 c3 : : : c1

1CCA :
Circulants are diagonalized by the finite Fourier matrix F of rank n defined by

(40) F � D n�1=2

0BB@
1 1 : : : 1

1 w : : : wn�1

: : : : : : : : : : : :

1 wn�1 : : : w.n�1/.n�1/

1CCA ; where w D e2�i=n:
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Here, F � D .F /T D F is the adjoint of F . By [Dav79, Th. 3.2.2], we have
C D F �ƒF where ƒDƒC D diag.pC .1/; : : : ; pC .wn�1//, with pC .z/D c1C
c2zC � � �C cnz

n�1.

6.3. Diagonalizing H�12r . Now we apply the above to C DH2r .

PROPOSITION 6.1. We have

H�12r D�LF
�
�

diag
�
1

aC2
; : : : ;

1

aC2 cos.2r�1/�=r

��
F;

where a is defined in (39).

Proof. We use the notation pa;r.z/ for pC .z/ in the case where C is of the
form C.a; 1; 0; : : : ; 0; 1/. Thus,

(41) pC .z/ WD pa;r.z/ WD aC zC z
2r�1:

By (40) we have

H2r D �
1

L
F � diag.pa;r.1/; : : : ; pa;r.w2r�1//F; where w D ei�=r :

Since, for the same w,

(42) pa;r.w
k/ WD aCwkCw�k;

we have

H2r D �
1

L
F � diag.aC 2; : : : ; aC 2 cos.2r � 1/�=r/F;

and inverting gives the statement. �

6.4. Matrix elements of H�12r at a Z2-symmetric bouncing ball orbit. We will
need explicit formulas for the matrix elements hpq2r of H�12r . The diagonalization
of H�12r above gives one kind of formula. We also consider a second approach to
inverting H2r (due to [Ker69]) via finite difference equations. The two approaches
give quite different formulas for the inverse Hessian sums and have different ap-
plications in the inverse results. In several of the calculations in this section, we
assume for simplicity of exposition that 
 is elliptic; the hyperbolic case is easier
and all formulas analytically continue from the elliptic to the hyperbolic cases.

For our purposes it will suffice to know the formulas for the elements h1q2r . To
emphasize that the matrix elements depend on, and only on, .r; a/ we denote them
by hpq2r .a/. The first formula comes directly from the diagonalization above.

PROPOSITION 6.2. With the above notation, we have

h
1q
2r .a/D �

L

2r

2r�1X
kD0

w.q�1/k

pa;r.wk/
; where w D ei�=r

and the denominators are defined in (41) and (42).
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The second, finite difference, approach expresses the inverse Hessian matrix
elements hpq2r in terms of Chebyshev polynomials Tn and Un, of the first and second,
respectively, kind. They are defined by

Tn.cos �/D cosn� and Un.cos �/D sin.nC1/�
sin �

:

PROPOSITION 6.3 [Ker69, p. 190]. With the above notation,

.�L/�1h
pq
2r .a/D

1

2.1�T2r.�a=2//

�
U2r�qCp�1.�a=2/CUq�p�1.�a=2/

�
;

for 1� p � q � 2r .

We note that hpq D hqp, so this formula determines all of the matrix elements.
The special cases r D 1; 2 are already very helpful in the inverse problem. We

recall that

T1.x/D x; T2.x/D 2x
2
�1; T3.x/D 4x

3
�3x; T4.x/D 8x

4
�8x2C1I

U1.x/D 2x; U2.x/D 4x
2
�1; U3.x/D 8x

3
�4x; U4.x/D 16x

2
�12x2C1;

from which we calculate

(43) H�12 D �
L

a2�4

�
a �2

�2 a

�
and

(44) H�14 D �
L

a4�4a2

0BBBB@
a3� 2a �a2 2a �a2

�a2 a3� 2a �a2 2a

2a �a2 a3� 2a �a2

�a2 2a �a2 a3� 2a

1CCCCA :
In terms of Floquet angles, we have (in the elliptic case),

h
pq
2r D �

L

2Œ1�T2r.cos˛=2/�
�
U2r�qCp�1.� cos˛=2/CUq�p�1.� cos˛=2/

�
;

for 1� p � q � 2r/. Hence

.�L/�1h
pq
2r D

( .�1/p�q

2.1�cos r˛/

� sin.2r�qCp/˛=2
sin˛=2 C

sin.q�p/˛=2
sin˛=2

�
if 1� p � q � 2r;

.�1/p�q

2.1�cos r˛/

� sin.2r�pCq/˛=2
sin˛=2 C

sin.p�q/˛=2
sin˛=2

�
if 1� q � p � 2r:

The Fourier inversion formula for this is the expression in Proposition 6.2.

COROLLARY 6.4. We have

.�L/�1h112r D
U2r�1.�a=2/

2.1�T2r.�a=2//
D

sin r˛
2.1�cos r˛/ sin˛=2

D
1

2 sin˛=2
cot r˛=2:
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6.5. Linear sums. We now complete the proof of Corollary 5.11 by summing
the matrix elements in the first row ŒH�12r �1 D .h

11; : : : ; h1.2r// (or column) of the
inverse. As a check on the notation and assumptions, we calculate it in two different
ways:

PROPOSITION 6.5. Suppose that 
 is a Z2-symmetric bouncing ball orbit.
Then, for any p,

P2r
qD1 h

pq
2r D�L=aC 2D�L=2� 2 cos˛=2.

Proof. Because H�12r is a circulant matrix, the column sum is the same for all
columns. Hence we only need to consider the first column.

(i) By Proposition 6.2, we have
2rX
qD1

h
pq
2r D

2rX
qD1

h
1q
2r D �

L

2r

2rX
qD1

2r�1X
kD0

w.q�1/k

pa;r.wk/

D .�L/

2r�1X
kD0

ık0
pa;r.wk/

D
�L

pa;r.1/
D
�L

2Ca
D

�L

2�2 cos˛=2
:

(ii) Since
P2r
qD1 h

1q
2r D

P2r
qD1 h

pq
2r for any p D 1; : : : ; 2r , we can set p D 1

in the sum over q to obtain

1D

2rX
p;qD1

hpq0h
pq
D

� 2rX
pD1

hpq0
�� 2rX
qD1

hpq
�
:

It then follows from (9) and Proposition 2.2 that

.�L/�1
2rX
pD1

hpq0 D 2C aD 2� 2 cos˛=2: �

6.6. Decoupling Balian-Bloch invariants. Corollary 5.11 gives B
r ;j�1 in
terms of inverse Hessian matrix elements. To prove Theorem 1.1, it is essential to
show that we can separately determine the two terms

(a) .h112r .a//
2
�
2.w.G

2j;0
1;j //f

.2j /.0/C 4
.w.G

2j�1;3;0
2;jC1 //

2Ca
f
.3/.0/f

.2j�1/.0/
�

and

(b) 4.w. OG2j�1;3;02;jC1 //

2rX
qD1

.h
1q
2r .a//

3f
.3/.0/f

.2j�1/.0/.

To decouple the terms, we prove that they have behave independently under
iterates r of the bouncing ball orbit. We use a simple observation:

LEMMA 6.6. Let F3.r; a/ D
P2r
qD1.h

1q
2r .a//

3. If .h112r .a//
�2F3.r; a/ is non-

constant in r D 1; 2; 3; : : : , then terms (a) and (b) can both be determined from
their sum as r ranges over N.
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Proof. Put

AD 2.w.G
2j;0
1;j //f

.2j /.0/C 4
.w.G

2j�1;3;0
2;jC1 //

2C a
f
.3/.0/f

.2j�1/.0/;

B D 4.w. OG
2j�1;3;0
2;jC1 //f

.3/.0/f
.2j�1/.0/:

It is assumed that we know .h112r .a//
2ACF3.r; a/B for all r 2 N. To determine A

and B it is clearly sufficient that the matrix 
.h112r .a//

2 F3.r; a/

.h112s.a//
2 F3.s; a/

!

is invertible for some integers r 6D s. But this says precisely that

.h112r .a//
�2F3.r; a/ 6D .h

11
2s.a//

�2F3.s; a/

for some integers r 6D s. �

6.7. Cubic Hessian sums. We now prove that .h112r .a//
�2F3.r; a/ is indeed

nonconstant for all but finitely many a.

PROPOSITION 6.7. The ‘bad’ set B of (6) consists of f0;�1;˙2g.

Proof. We will give two different proofs of the finiteness of B. In both, we
consider the sets

Br;s D fa 2 R W .h112r .a//
�2F3.r; a/D .h

11
2s.a//

�2F3.s; a/g:

6.7.1. First proof of Proposition 6.7 W Dedekind sums. The first is based on
an explicit calculation of F3.r; a/ as a Dedekind sum. It is not very efficient in
bounding the cardinality of Br;s but gives a clear proof that this set is finite.

LEMMA 6.8. We have

F3.r; a/D
.�L/3

.2r/2

2r�1X
k1;k2D0

1�
aC2 cos k1�

r

��
aC2 cos k2�

r

��
aC2 cos .k1Ck2/�

r

� :
In the hyperbolic case, we obtain a similar result, with cos replaced by cosh.
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Proof. Using Proposition 6.2, we have (with w D e�i=r and� being congru-
ence modulo 2r),

�.2r/3
1

L3

2rX
qD1

.h
1q
2r .a//

3
D

2rX
qD1

�2r�1X
kD0

w.q�1/k

pa;r.wk/

�3
D

2rX
qD1

� 2r�1X
k1;k2;k3D0

w.q�1/.k1Ck2Ck3/

pa;r.wk1/pa;r.wk2/pa;r.wk3/

�
D 2r

X
0�ki�2r�1
k1Ck2Ck3�0

1

pa;r.wk1/pa;r.wk2/pa;r.wk3/

D 2r
X

0�ki�2r�1
k1Ck2Ck3�0

1

.aC2 cos k1�=r/.aC2 cos k2�=r/.aC2 cos k3�=r/

D 2r

2r�1X
k1;k2D0

1

.aC2 cos k1�=r/.aC2 cos k2�=r/.aC2 cos.k1Ck2/�=r/
: �

We now complete the proof of Proposition 6.7. By Corollary 6.4,

.h112r .a//
�2F3.r; a/D

�
Ur�1.�a=2/

2.1�Tr.�a=2//

��2
F3.r; a/;

a rational function, where as above, Tn and Un are the Chebyshev polynomials.
We now observe that for r ¤ s,�

Ur�1.�a=2/

2.1�Tr.�a=2//

��2
F3.r; a/ and

�
Us�1.�a=2/

2.1�Ts.�a=2//

��2
F3.s; a/

are independent rational functions. Indeed, the poles for given r are the values
aD�2 cos˛=2 where ˛ D 2�k=r for some k D 1; : : : ; 2r . Hence there can exist
only finitely many solutions of the equation�

Ur�1.�a=2/

2.1�Tr.�a=2//

��2
F3.r; a/D

�
Us�1.�a=2/

2.1�Ts.�a=2//

��2
F3.s; a/

for any r 6D s, that is, Br;s is finite. �

It is interesting to observe that the sums above are generalized Dedekind sum,
that is, the sum

P
�2Dr

I3.�; z/ of the function

I3.xI z/D
1

.zCcos x1/.zCcos x2/.zCcos.x1Cx2//

over the set D2r of the 2r-th roots of unity, �k=r mod 2�Z2 with k D .k1; k2/ 2
Œ0; 2r�1�� Œ0; 2r�1�, of the torus. The summand is a continuous periodic function
of .x1; x2/ 2 Œ0; 1�� Œ0; 1� for z … Œ�1; 1�. In fact, I3.x; z/ is also symmetric under



INVERSE SPECTRAL PROBLEM FOR Z2-SYMMETRIC DOMAINS 261

inversion and reflection across the diagonal, and the sum has additionally the form
of a multiple Dedekind sum

s2.1; 1I 2r/D
X

k1;k2 .mod2r/

f .k1; r/f .k2; r/f .k1C k2; r/;

with f .k; r/D 1

.zCcos 2�k=r/
;

of two variables in the sense of L. Carlitz [Car78].
We remark that under the nondegeneracy assumption that ˛=� …Q, cos˛=2 is

never a pole of F3.r; z/ for any r . In the hyperbolic case, it is obvious that cosh˛ is
never a pole of F3.r; z/.

6.7.2. Second proof W Explicit inversion of the Hessian. We now give a second
(and quite elementary) method of determining B by simply using the formulas for
H�12 and H�14 , seen in (43) and (44), respectively. This calculation is due to the
referee and to H. Hezari.

From the explicit formula for H�12 we have

2X
qD1

.h
1q
2 .a//

3
D

�
�L

a2�4

�3
.a3� 8/:

Further, h112 D�aL=.a
2� 4/. From the explicit formula for H�14 we have

4X
qD1

.h
1q
4 .a//

3
D

�
�L

a4�4a2

�3
.a9� 6a7� 2a6C 12a5/:

Further, h114 D .�L/a
3� 2a=.a4� 4a2/:

Thus, B1;2 is the set of solutions a of the equation

a3�8

.a2�4/3
.a2�4/2

a2
D
.a4�4a2/2

.a3�2a/2
a9�6a7�2a6C12a5

.a4�4a2/3
;

which is equivalent to .a3� 2a/2.a3� 8/D a9� 6a7� 2a6C 12a5. A little bit of
cancellation reduces the equation to degree 6. The distinct roots are f0;�1; 2;�2g.
�

6.8. Final step in the proof of Theorem 1.1 W Inductive determination of Taylor
coefficients. We now prove by induction on j that f 2j .0/ and f .2j�1/.0/ are wave
trace invariants and hence spectral invariants of the Laplacian among domains in
D1;L.

It is clear for j D 1 since 1�Lf .2/.0/D cos˛=2 (respectively cosh˛=2) and
˛ is a Balian-Bloch (wave trace) invariant at 
 ; see [Fri88]. In the case j D 2, the
Balian-Bloch invariants have the form (5). Using that ˛ is a Balian-Bloch invariant
and the decoupling argument of Lemma 6.6 and Proposition 6.7, .f .3/.0//2 is
a spectral invariant. By reflecting the domain across the bouncing ball axis if



262 STEVE ZELDITCH

necessary, we may assume with no loss of generality that f .3/.0/ > 0, and we
have then determined f .3/.0/ from the sequence of Balian-Bloch invariants. Using
again that ˛ is determined by the Balian-Bloch invariants, it follows that f .4/.0/ is
determined.

We now carry forward the argument by induction. As j ! j C 1, we may
assume that J2j�2f .0/ is known. The terms denoted R2rJ2j�2f .0/ in Theorem
5.1 are universal polynomials in the data J2j�2f .0/ and hence are also known.
Thus, it suffices to determine f .2j /.0/ and f .2j�1/.0/ from (5). By the decoupling
argument, we can determine .f .3/.0//.f .2j�1/.0//, hence .f .2j�1/.0//, as long as
.f .3/.0// 6D 0. But then we can determine f .2j /.0/. By induction, f is determined
and hence the domain.

This completes the proof of Theorem 1.1. �

Remark 6.9. From this argument it is only necessary that the coefficients w.G/
etc. are nonzero and universal. It is not necessary to know the precise values of the
coefficients of f .2j /.0/ and f .2j�1/.0/.

6.9. The case where f .3/.0/ D 0. If f .3/.0/ D 0, the inductive argument
clearly breaks down. There is a natural analogue of it as long as f .5/.0/ 6D 0. We
only sketch the analogue to make it seem plausible, but do not provide a complete
proof.

Instead of inductively determining f .2j /.0/ and f .2j�1/.0/, we inductively
determine f .2j /.0/ and f .2j�3/.0/ by a similar argument. Since f .3/.0/D 0, the
terms f .2j�1/.0/ have zero coefficients, and each new ‘odd’ term as j ! j C 1

now has the form
�Pr

qD1.h
pq/5

�
f .5/.0/f .2j�3/.0/. To carry out the analogue of

the previous argument, it suffices to show that h�12r
�Pr

qD1.h
pq/5

�
is a nonconstant

function of r . It should be plausible that this is the case, at least if we exclude a
finite number of values of the Floquet exponents.

There then arises an infinite sequence of further sub-cases where all odd
derivatives vanish up to some j0 C 1. To handle this case, we would need to
show that h�12r

�Pr
qD1.h

pq/2j0C1
�

is nonconstant for all j0. This should again be
plausible.

In the case where all odd derivatives vanish, the function fC is even and the
proof reduces to the previously established case of two symmetries.

7. Proof of Theorem 1.4

We now generalize the results from a bouncing ball orbit to iterates of a
primitive Dm-invariant m-link reflecting ray 
 . For short, we call 
 a Dm-ray.

7.1. Structure of coefficients at a Dm-ray.
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7.1.1. Dm-rays. In the dihedral case, we orient � so that the center of the
dihedral action is .0; 0/ and so that one vertex v0 of 
 lies on the y-axis. We again
define a small strip T�.
/, which intersects the boundary in n arcs. We label the one
through v0 by ˛. We then write ˛ as the graph y D f .x/ of a function defined on a
small interval around .0; 0/ on the horizontal axis. Since we are only considering
Dn-invariant rays, the domain is entirely determined by ˛ and f .

We first need to choose a convenient parametrization of @�\T�.
/— either
a polar parametrization or a Cartesian parametrization would do. For ease of
comparison to the bouncing ball case, we prefer the Cartesian one. Thus, we use
the parametrization x 2 .��; �/! .x; f .x// for the ˛ piece. We then use x !
R
j

2�=m
.x; f .x// for the rotate Rj

2�=m
˛. When considering 
r , we need variables

xjs for j D 1; : : : ; m and s D 1; : : : ; r , for which xjs! R
j

2�=m
.xjs; f .xjs//. We

have

R
�.p/

2�=m
.xp; f .xp//D .x

�.p/
p ; .f .xp//

�.p// WD

.cos.2p�=m/xpC sin.2p�=m/f .xp/;� sin.2p�=m/xpC cos.2p�=m/f .xp//:

We also put .�1; f 0.xp//�.p/ WDR
�.p/

2�=m
.�1; f 0.xp//.

We then define the length functional L� .y; x0; x1; : : : ; xmr/, equal toˇ̌
.x0; y/� .x1; f .x1//

�.1/
ˇ̌
C
ˇ̌
.x0; y/� .xrm; f .xrm//

�.rm/
ˇ̌

C
Pmr�1
pD1

ˇ̌
.xp; f .xp//

�.p/� .xpC1; f .xpC1//
�.pC1/

ˇ̌
:

We will need a formula for its Hessian in the case of a Dm-ray. By [KT91, Prop. 3],
the Hessian Hrm in x-y coordinates at the critical point .x1; : : : ; xrm/ correspond-
ing to 
r is given by the matrix of Proposition 2.2 with

s D
2L

R sin#
:

A key point in what follows (as in [Zel99], [Zel00]) is that the reflection
symmetry of ˛ and f implies that f .2j�1/.0/ D 0 for all j . This eliminates the
most serious obstacle to recovering f from the wave trace invariants at 
r , namely
the fact that, in the transition from the j -th Balian-Bloch invariant to the .jC1/-st,
two new derivatives of f appear.

As in the Z2-symmetric case, there are principal and nonprincipal terms. The
principal term in the Dm case, analogously to the bouncing ball case, equals
Tr � �Nmr

1 ıN 01.k/ ı�.k/ for r repetitions of the dihedrally symmetric orbit.
In analogy to Theorem 5.1 we prove this:

LEMMA 7.1. Let 
 be a Dm- ray, and let � be a smooth cutoff to t D rL
 as
above.
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� B
r ;j D pm;r;j .f
.2/.0/; f .3/.0/; � � � ; f .2jC2/.0// where p2;r;j .�1; : : : ; �2j /

is a polynomial. It is homogeneous of degree �j under the dilation f ! �f ,
is invariant under the substitution f .x/! f .�x/, and has degree j C 1 in
the Floquet data ei˛r .

� In the expansion of TrR�..k C i�// in [Zel04b, Th. 1.1], the data f .2j /.0/
appears first in the k�jC1-st order term, and then only in the k�jC1-st order
term in the stationary phase expansion of the principal term Tr � �Nmr

1 ı

N 01.k/ ı�.k/.

� This coefficient has the form

B
r ;j�1 Dmr.h
11/jf .2j /.0/CRmr.J

2j�2f .0//;

where the remainder Rmr.J2j�2f .0// is a polynomial in the designated jet
of f .

Proof of Lemma 7.1. We use the analogue of Theorem 3.1 for the case of the
dihedral ray. As in the case of a bouncing ball orbit, we have a finite number of
oscillatory integrals I �;wM� arising from the regularization of the trace. We express
the resulting oscillatory integrals in Cartesian coordinates. (Polar coordinates are
also convenient for this calculation.) We put x D .x0; y0/. Each oscillatory integral
I
�;w
M;� localizes at critical points, we may insert a cutoff to T�.
/. This gives mM

possible terms, corresponding to the possible choices of the arcs in the product
.@�\T�.
//

M . We put

fmM g WD f� W ZM ! f1; : : : ; mgg

and write

R
�.p/

2�=m
.xp; f .xp//D .x

�.p/
p ; .f .xp//

�.p//

WD

�
cos

2p�

m
xpC sin

2p�

m
f .xp/; � sin

2p�

m
xpC cos

2p�

m
f .xp/

�
:

We also put .�1; f 0.xp//�.p/ WDR
�.p/

2�=m
.�1; f 0.xp//.

The oscillatory integrals have the phase functions L� on .@�\T�.
//rm of
the form

L� .x1; : : : ; xmr/D

mr�1X
pD1

ˇ̌
.xp; f .xp//

�.p/
� .xpC1; f .xpC1//

�.pC1/
ˇ̌
:

Only 2m �’s (2, modulo cyclic permutations) give length functions having
critical points with critical value rL
 , namely, the ones �0 in which �0.n/ D
R.˙n2�=m/. Indeed, the only Snell polygon with this length is 
r by assumption,
and so .x�.1/1 ; : : : ; x�.rm/rm / must correspond to the vertices of 
˙r . Since the good
length functions represent isometric situations, it suffices to consider the case



INVERSE SPECTRAL PROBLEM FOR Z2-SYMMETRIC DOMAINS 265

�0.n/DR.n2�=m/. In this case, we denote the length function simply by L, and
to simplify the notation we drop the subscript in �0.

We now make a stationary phase analysis as in the bouncing ball case to obtain
the expressions in Theorem 5.1. As mentioned above, there are two principal terms:
The principal oscillatory integrals I �0;w˙rm;� are those in whichM D rm and in which
no factors of N0 occur, that is, �0.j / D 1 for all j D 1; : : : ; rm. Also, there are
now m components of the boundary at the reflection points, and w˙ cycles around
them for r iterates.

7.2. The principal terms. They have the phase

L� .x1; : : : ; xmr/

D

mr�1X
jD1

�
.x
�.jC1/
jC1 � x

�.j /
j /2C .f .xjC1/

�.jC1/
� .f .xj //

�.j //2
�1=2

and the amplitude

a0.k; x1; : : : ; xmr ; y/D
mY
pD1

a1

�
.kC i�/

�
.x
�.p�1/
p�1 � x�.p/p /2C .f .xp�1/

�.p�1/
�f .xp/

�.p//2
�1=2�

�

..x
�.p�1/
p�1 ; f .xp�1/

�.p�1//� .x
�.p/
p ; f .xp/

�.p/// � �
x
�.p/
p ;f .xp/�.p/�

.x
�.p�1/
p�1 � x

�.p/
p /2C .f .xp�1/�.p�1/�f .xp/�.p//2

�1=2 :

We observe that it has the form A.x; y; f; f 0/. The f 0 dependence will be particu-
larly important later on.

7.2.1. The principal termW The data f 2j .0/. As in the bouncing ball case, by
the same argument, the data f .2j /.0/ appears first in the term of order k�jC1, and
it appears linearly in the term a0HjR3: We now show that its coefficient is given
by the formula in Lemma 7.1. Due to symmetry, it suffices to consider any axis
and one endpoint of it. We observe that only the ‘diagonal terms’ of Hj , that is,
those involving only derivatives @=@xk in a single variable, can produce the factor
f .2j /.0/. Since f 0.0/D xjxD0 D 0 and since the angle between successive links
and the normal equals �=m, an examination of (24) shows that the coefficient of
f .2j /.0/ equals

rmX
pD1

.hpp/j
�
@

@xp

�2j
L� .yI x0; : : : ; xk; : : : xmr/D

� mrX
pD1

.hpp/j
�
f
.2j /.0/:

The data f .2j�1/.0/ vanishes due to the symmetry around each dihedral axis.
Finally, as in the bouncing ball case, and for the same reasons, nonprincipal

oscillatory integrals do not contribute to this data.
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This completes the proof of Lemma 7.1. �

Remark. It would also be natural to employ polar coordinates in the proof. In
that case, we align � so that one of the reflection axes is the positive x-axis, and
express @� parametrically in the form r D r.#/, where # is the angle to the x-axis.
Then r.�#/ D r.#/ and r.# C 2�j=m/ D r.#/. The goal then is to determine
r . To do so, we write out that q.#/D .r.#/ cos.#/; r.#/ sin.#// and compute as
above. We find that r .2j /.0/ arises first in the k�1Cj term with the same coefficient
as for f .2j /.0/ above. The rest of the proof proceeds as with Cartesian coordinates.

Dihedral domains: Completion of the proof of Theorem 1.4. We prove by
induction on j that f 2j .0/ is a Balian-Bloch invariant. It is clear for j D 1 since
1�Lf .2/.0/D cos.h/˛=2 and ˛ is a Balian-Bloch (wave trace) invariant at 
 . In
general, the eigenvalues of P
 are wave trace invariants [Fol76].

Assuming the result for n < j � 1, it follows that psub
r;n�1 is a spectral invariant.

It thus suffices to extract f 2j .0/ from p0r;j�1, that is, from

� 2rX
pD1

.hpp/j
�
f
.2j /.0/:

Thus, the only missing step is to show that if 
 is Dm-ray, then the hpp are
Balian-Bloch invariants of 
r . In other words, that s is a wave trace invariant. If
� and ��1 denote the eigenvalues of P
r , then we have �C ��1 D 2C detHmr .
Here we use that all bj equal 1. It follows that s is a function of � and hence that it
is a Balian-Bloch invariant. �
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