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Abstract

For the Jacobian of a curve, the Riemann singularity theorem gives a geometric
interpretation of the singularities of the theta divisor in terms of special linear
series on the curve. This paper proves an analogous theorem for Prym varieties.
Applications of this theorem to cubic threefolds and Prym varieties of dimension
five are also considered.

Introduction

A principally polarized abelian variety (ppav) can be studied through the
geometry of its theta divisor. While in general this geometry is not well understood,
one can simplify the problem by focusing on ppavs related to curves. This paper
will consider such varieties defined over the complex numbers. Among the most
studied examples are Jacobians: the Jacobian of a smooth curve C of genus g is the
g-dimensional ppav JC DH 0.C; !C /

�=H1.C;Z/. The polarization is given by a
theta divisor ‚, whose geometry is closely related to the curve C . The Abel-Jacobi
theorem allows us to identify JC with Picg�1.C /, the space of isomorphism classes
of line bundles over C of degree g � 1, and it is often convenient to make this
identification when studying ‚. A fundamental result is Riemann’s singularity
theorem, which states that multx ‚ D h0.C;Lx/, where Lx is a line bundle of
degree g� 1 in the isomorphism class associated to x.

There is a close connection between the singular points of the theta divisor
and the canonical image of C : the tangent cone to a general singular point of ‚
contains the canonical image of C , and a theorem of Green [Gre84] implies that
for a smooth curve C of genus g � 4, with no g12; g

1
3 or g25 , the canonical image

of C is cut out by the tangent cones to double points of ‚. In general, a theorem
due to Torelli states that the Jacobian .JC;‚/ uniquely determines the curve C .
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Another commonly studied ppav is the Prym variety of a connected étale
double cover of a smooth curve. The study of these varieties goes back to Riemann,
and the geometry of the Prym theta divisor is in many ways parallel to that of the
Jacobian theta divisor. Recall that associated to � W zC ! C , a connected étale
double cover of a smooth curve C of genus g, is an involution � W zC ! zC , which in-
duces an involution on H 0. zC ;! zC/

� and H1. zC ;Z/. Denoting by .H 0. zC ;! zC/
�/�

and H1. zC ;Z/� the negative eigenspaces of the involution, the Prym variety P
associated to such a cover is the .g�1/-dimensional abelian subvariety of J zC
defined as P D .H 0. zC ;! zC/

�/�=H1. zC ;Z/
�. As in the case of Jacobians, it is

convenient when studying Pryms to identify J zC with Pic2g�2. zC/. In this case, P
can be described set theoretically as

P D fL 2 Pic2g�2. zC/ j Norm.L/D !C ; h0.L/� 0.mod 2/g:

There is a principal polarization on P given by a theta divisor „; as a set, „ D
fL 2 P j h0.L/ � 2g. In this paper, we will prove an analogue of the Riemann
singularity theorem in the case of Pryms; that is, we will relate the multiplicity of a
point x 2 Sing„ to the dimension of special linear systems on zC and C .

The study of this question goes back to Mumford, who proved in [Mum74]
that if x 2„, then multx „� h0.Lx/=2, and that if in addition h0.Lx/D 2, then
x 2 Sing„ if and only if Lx D ��.M/˝O zC.B/, where M is a line bundle on C
such that h0.M/D 2 and B is an effective divisor on zC . The proof of the second
statement is based on Kempf’s generalization of the Riemann singularity theorem
[Kem73]. Smith and Varley used a similar method to prove the following theorem
extending Mumford’s assertions:

THEOREM 1 (Smith and Varley [SV04]). Let � W zC ! C be a connected étale
double cover of a smooth curve C of genus g, and let .P;„/ be the associated
Prym variety. If x 2„ corresponds to a line bundle L 2 Pic2g�2. zC/, and Cx z‚ is
the tangent cone to z‚ at x, then the following are equivalent:

(a) TxP � Cx z‚;

(b) multx „> h0.L/=2;

(c) LD ��M ˝O zC.B/, h0.C;M/ > h0. zC ;L/=2, B � 0, and B \ ��B D∅.

Furthermore, if (c) holds, then M and O zC.B/ are unique up to isomorphism, and
h0. zC ;O zC.B//D 1.

In this paper, we will complete the analogue of the Riemann singularity theorem
by determining the exact multiplicity of singular points of this type:

THEOREM 2. In the above notation, let x be a singular point of „ that
corresponds to a line bundle L 2 Pic2g�2. zC/ such that LD ��M ˝O zC.B/, with
h0.C;M/ > h0. zC ;L/=2, B � 0, and B \ ��B D∅. Then multx „D h0.M/.
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To prove the theorem, we will consider a deformation of the line bundle L,
and then relate multx „ to the obstruction to lifting sections of L to sections of the
deformation. In the course of proving the theorem, we will give a short proof of
Smith and Varley’s theorem.

More generally [LB92, p. 371], a ppav such that Z is an abelian subvariety of
JC with ‚\Z D e �„. Necessarily, e is the exponent of Z in JC . Every ppav of
dimension g is a Prym-Tjurin variety of exponent 3g�1.g� 1/Š, and it is possible
that there are situations, other than the exponent 2 case examined in this paper,
where these techniques can be used to compute the multiplicity of a singular point
of „.

For a ppav .A;‚/, suppose Singk ‚D fx 2 Sing‚ jmultx ‚� kg. A result
of Kollár [Kol95] shows if dim.A/D d , then dim.Singk ‚/� d �k. Generalizing
a result of Smith and Varley [SV96], Ein and Lazarsfeld [EL97] showed that
dim.Singk ‚/D d � k only if .A;‚/ splits as a k-fold product. In particular, for
an irreducible ppav of dimension d and a point x 2‚, multx ‚� d � 1. For the
Jacobian of a smooth curve of genus g, applying the Riemann singularity theorem
and Martens’s theorem [Mar67], one can see that these bounds are not optimal; in
fact dim.Singk ‚/� g� 2kC 1, with equality holding only if C is hyperelliptic.
This implies in particular that multx ‚� .gC 1/=2.

For a Prym variety associated to a connected étale double cover of a smooth
curve C of genus g, and x 2 Sing„, the bounds given above yield that multx „�
g�2D dim.P /�1. Although in [Mum74] Mumford used a strengthened version of
Martens’s theorem to prove statements about the dimension of the singular locus of
the Prym theta divisor, no bound could be given on the multiplicity of these points
without the results of Theorem 2. The implications of Theorem 2 for the singular
locus of the Prym theta divisor are described in Corollary 5.1.2. In particular, it
is shown that for an irreducible Prym variety .P;„/ and a point x 2„, we have
multx „� .dim.P /C 1/=2.

The rich connection between singularities of the Jacobian theta divisor and
the canonical image of the curve is reflected in the Prym case by the connection
between singularities of the Prym theta divisor and the Prym canonical image of the
base curve C . A result of Tjurin [Tju75, Lemma 2.3, translation p. 963] generalized
by Smith and Varley in [SV01, Prop. 5.1] shows that the Prym canonical image of
C is contained in the tangent cone to „ at x for all singular double points x such
that TxP ª Cx z‚. In addition, there are many such points for curves of high genus.
Analogous to Green’s theorem for Jacobians [Gre84], a primary open question for
Prym varieties is to determine when the quadric tangent cones to„ cut out the Prym
canonical image of C . In [Deb89], Debarre showed that this is true for general
curves of genus no less than 8. In other words, the Prym map P W Rg ! Ag�1,
taking a connected étale double cover of a smooth curve to its associated Prym
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variety, is generically injective. Friedman and Smith have shown in [FS82] that
the Prym map is generically injective for g � 7. On the other hand, unlike the
case of Jacobians, there are examples in every dimension of Pryms arising from
nonisomorphic double covers [SV02, page 237], and the question remains: Exactly
which Pryms arise from a unique double cover of curves?

Towards understanding this question, we will consider the intersection of the k-
secant variety of the Prym canonical image of C , that is the variety of k-dimensional
secants (see Section 6.2), with the tangent cone to„ at singular points. In particular,
if zC is not hyperelliptic, ‰ is the Prym canonical morphism of C , and Cx„ is
the projective tangent cone to „ at x, then we will show the following: suppose
x 2 Sing„ corresponds to the line bundle L 2 Pic2g�2. zC/ and h0.L/D 2n, then
the .n�1/-secant variety to‰.C/ is not contained in Cx„, while the .n�2/-secant
variety is contained in Cx„. As a consequence, ‰.C/ � Cx„ if and only if
h0.L/� 4. Thus, if one hopes to recover the curve C as the base locus of quadric
tangent cones to „, one must exclude the tangent cones at points with h0.L/D 2.
This was suspected to be true since Smith and Varley [SV02] observed that if .P;„/
is the Jacobian of a nonhyperelliptic curve and x is a generic double point such that
h0.L/D 2, then ‰.C/ª Cx„; see Remark 6.2.6.

Prym varieties also arise in the study of conic bundles, and in particular, in
the study of cubic threefolds. Mumford stated in [Mum74] that the intermediate
Jacobian of a smooth cubic threefold in P4 is isomorphic to the Prym variety of
a connected étale double cover of a smooth plane quintic. Using this description
of the intermediate Jacobian, he stated the following theorem: if X is a smooth
cubic threefold in P4 with intermediate Jacobian .JX;‚/, then Sing‚ D fxg,
multx ‚ D 3, and Cx‚ Š X . It follows from this that JX determines X up to
isomorphism and X is irrational; both statements were first proved by Clemens and
Griffiths in [CG72].

In [CMF05], a converse to Mumford’s theorem was proved: if .A;‚/ is a
ppav of dimension 5, Sing‚D fxg and multx „D 3, then .A;‚/ is isomorphic to
the intermediate Jacobian of a smooth cubic threefold. If one removes the condition
that Sing‚ D fxg and requires instead the weaker condition that exactly one of
the singular points of ‚ has multiplicity 3, then it was shown that the only other
possibility is that .A;‚/ is isomorphic to JC or JC �JC 0 for some hyperelliptic
curves C and C 0 (i.e., curves having a line bundle L such that deg.L/Dh0.L/D 2).
One would like to have a complete description of all ppavs of dimension five whose
theta divisor has a triple point. The following theorem is a consequence of Theorem
2:

THEOREM 3. Let .P;„/ be a 5-dimensional Prym variety; let x 2 Sing„. If
multx „D 3, then .P;„/ is a hyperelliptic Jacobian, the product of two hyperellip-
tic Jacobians, or the intermediate Jacobian of a smooth cubic threefold.
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The proof relies on a theorem of Mumford’s [Mum74] about Prym varieties of
hyperelliptic curves and on a theorem due to Beauville [Bea77b] (see also Donagi
and Smith [DS81]) about Prym varieties of plane quintics.

The Prym map P WR6!A5 has dense image, and so to extend Theorem 3 to
all ppavs of dimension five, it remains only to check the statement on the boundary
of the image. Beauville has shown in [Bea77a] that the ppavs on the boundary
correspond to Prym varieties of admissible double covers of stable curves of genus
6. It is reasonable to expect that Theorem 2 can be extended to this case, at least
for curves of low genus. Consequently, one should be able to describe all ppavs of
dimension five whose theta divisors have triple points. This is work in progress.

The outline of the paper is as follows. Section 1 focuses on how to calculate
the multiplicity of points of Sing„. Section 2 concerns some general results that
will be useful for computations in later sections. Section 3 gives a short proof
of Smith and Varley’s theorem. In Section 4 we prove Theorem 2, and Section 5
proves some immediate consequences, including Theorem 3. Section 6 establishes
the connection between the computations made in Sections Section 4 and Section
5 and the Prym canonical image of the base curve. In particular, we examine the
secant variety to the Prym canonical curve. We also give a brief description of the
equation defining the tangent cone to „ at certain singular points.

1. Theta divisors

In this section we state the key results from [CMF05], which we will need in
what follows. The proofs of these facts will be omitted except in the cases where
certain generalizations are needed.

1.1. Preliminaries on theta divisors. Let S be a scheme, C be a smooth,
connected, complete curve, and L be a line bundle over C � S whose relative
degree is g � 1. Then a result of Grothendieck [Gro61, 6,7] as formulated by
Mumford in [Mum70, Th., p. 46] or [Har77, Lemma III.12.3] gives, locally on S ,
a complex of locally free OS -modules of the same rank, given by d W C0! C1;
its cohomology is R0�2�L in dimension zero and R1�2�L in dimension one. If
.det d/ is not a zero divisor, then .det d/ is an effective Cartier divisor that is
independent of the choice of the complex C�, and hence defines a global effective
divisor ‚S on S , which satisfies the following:

THEOREM 1.1.1. In the above notation, ‚S is an effective nonzero Cartier
divisor on S with the properties that

(a) the support of ‚S is equal to the set of s 2 S such that h0.C ILs/¤ 0;

(b) if S D Picg�1.C / and L is a Poincaré line bundle, then ‚S is the usual theta
divisor;
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(c) the construction is functorial, that is, if f W S 0 ! S is a morphism and
L0 D .Id�f /�L, then ‚S 0 D f �‚S ;

(d) if S is smooth and dim S D 1, then ‚S D
P
s2S `..R

1�2�L/s/ � s, where
.R1�2�L/s refers to the stalk at s.

Proof. Parts (a)–(c) are standard. A reference for the proof of (d) is Friedman
and Morgan [FM94, Prop. 3.9, p. 384]. �

Let us now restrict to the case that S is a smooth curve with s0 2 S . Let
t be a local coordinate for S centered at s0 that only vanishes there, and set
Sk D Spec CŒt �=tkC1. For each k, there is a map Sk ! S , so that if we set
Ck D C �Sk , then there are induced maps Ck ! C �S . For example, C0 D C ,
and C0 ! C � S is the inclusion of the fiber over s0. Finally, let Lk be the
restriction of L to Ck . It follows that L0 D L is the restriction of L to C � fs0g,
and Lk D L=tkC1L.

LEMMA 1.1.2 [CMF05, 1.5]. For all k,

`.H 0.Ck;Lk//� `.H
0.CkC1;LkC1//:

Furthermore, there is an N 2 Z such that for all k � N , `.H 0.Ck;Lk// is
independent of k and

`.H 0.Ck;Lk//D `..R
1�2�L/s0/Dmults0 ‚S :

We can be more explicit about the value of N . There is an exact sequence

(1.1.3) 0! tLk �! Lk �! L! 0;

where tLk ŠLk�1, and the obvious surjection Lk!Lk�1 induces a commutative
diagram

(1.1.4)

0 // H 0.Lk�1/
//

��

H 0.Lk/
//

��

H 0.L/
@k // H 1.Lk�1/ � � �

0 // H 0.Lk�2/
// H 0.Lk�1/

// H 0.L/
@k�1 // H 1.Lk�2/ � � � :

LEMMA 1.1.5 [CMF05, 1.6]. Suppose in the above notation that @NC1 is
injective for someN . Then the natural inclusion tk�NLk �Lk induces an equality
H 0.tk�NLk/ D H

0.LN / for all k � N . In particular for all k � N , we have
`.H 0.Lk//D `.H

0.LN //.

One would like to have a way of computing `.H 0.Lk//. Define Wk to be the
image of the map H 0.Lk/!H 0.L/ induced by the exact sequence (1.1.3), and
let dk D dim.Wk/. We will say that a section s 2H 0.L/ lifts to order k if s 2Wk .
It is clear from the commutativity of the diagram (1.1.4) that WkC1 �Wk for all k
and hence dkC1 � dk .
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LEMMA 1.1.6. In the notation above, `.H 0.Lk//D
Pk
iD0 di .

Proof. This follows by induction on k using the exact sequence

0!H 0.Li / �!H 0.LiC1/ �!H 0.L/
@iC1 // H 1.Li / �! � � � :

Indeed, `.H 0.LiC1//D `.H
0.Li //C diC1. �

1.2. Obstructions to lifting. For an appropriate affine cover fUig of C , we
may assume that L has transition functions �ij and that the transition functions
for L are of the form �ij .t/D �ij .1C

P1
kD1 ˛

.k/

ij t
k/. By definition, these satisfy

the condition �ik.t/D �ij .t/�jk.t/, and it follows that the cochain � D ˛.1/

ij is a
cocycle in H 1.OC /. Likewise set

�ij IN .t/D �ij
�
1C

PN
kD1 ˛

.k/

ij t
k
�
:

Assume that s 2H 0.L/ and that sN�1 is a lifting of s to a section of LN�1. Then
using the trivialization over the open cover fUig we have

si IN�1 D

N�1X
kD0

�
.k/

i tk for some functions � .k/

i 2 OC .Ui /;

with si IN�1D�ij IN�1.t/sj IN�1 on .Ui\Uj /�Spec CŒt �=.tN /. The section sN�1
lifts to a section sN if and only if there exists a � .N /

i 2 OC .Ui / such that, if we set
si IN D

PN
kD0 �

.k/

i tk then si IN D �ij IN .t/sj IN on .Ui \Uj /� Spec CŒt �=.tNC1/.
Since si IN�1 is already a section of LN�1, this is equivalent to the condition

�
.N /

i D �ij�
.N /

j C

N�1X
kD0

�ij˛
.N�k/

ij �
.k/

j :

Let N .sN�1/ be the 1-cochain defined by
PN�1
kD0 �ij˛

.N�k/

ij � .k/

j , i.e., the
obstruction to lifting sN�1 to order N . I claim N .sN�1/ is a 1-cocyle in H 1.L/.
Indeed, let @ı

k
denote the map H 0.Lk�1/! H 1.L/ induced from the exact se-

quence

(1.2.1) 0! L �! Lk �! Lk�1! 0:

A computation in the Čech complex will then show this:

LEMMA 1.2.2. Suppose sN�1 2H 0.LN�1/. Then

N .sN�1/D @
ı
N�1.sN�1/ 2H

1.L/;

and thus sN�1 lifts to a section sN 2 H 0.LN / if and only if N .sN�1/ D 0 in
H 1.L/.



170 SEBASTIAN CASALAINA-MARTIN

Computing these obstructions is the central step in the proofs of the main
theorems. In these proofs, we will be restricting our attention to a particular class
of deformations described in the next section, and in that case we will write down
explicit formulas for the first and second order obstructions. We will also outline
a particular technique for determining their class in H 1.L/. The basic idea is
illustrated by the following lemmas regarding first order lifts.

LEMMA 1.2.3. Let � 2 H 1.OC / D Ext1.L;L/ be the extension class cor-
responding to L1. Then 1.s/ D s [ � 2 H 1.L/, where the cup product is
H 0.L/˝H 1.OC /!H 1.L/.

LEMMA 1.2.4. LetD be an effective divisor on C , and let @ be the coboundary
map H 0.OD.D//!H 1.OC / induced by the short exact sequence

0! OC �! OC .D/ �! OD.D/! 0:

Suppose that � 2 H 1.OC / is of the form @.t/ for some t 2 H 0.OD.D//. Then
s[� D @L.s � t /, where s � t is the section of L.D/jD given by taking the cup product
of s and t , and @L is the coboundary homomorphism arising from

0! L �! L.D/ �! L.D/˝OD! 0:

Now consider the following useful observation. Let p be a point of C , and
fix once and for all a local coordinate z at p. More precisely, let fUig be an open
cover of C , and assume that p 2 U0, that p … Ui for i ¤ 0, and that z 2 OC .U0/ is
a coordinate centered at p. A calculation then shows this:

LEMMA 1.2.5. For a 2 C, let � 2 H 1.OC / be the image of a=z under the
coboundary map induced by the short exact sequence

0! OC �! OC .p/ �! OC .p/jp! 0:

Let s 2H 0.L/ be a section such that s.p/D 0. Then s[ � D 0 in H 1.L/, and in
fact, defining the 1-cocycle � and the 0-cochain � .1/ by

�ij D

�
a=z if i D 0;
0 if i ¤ 0;

and �
.1/

i D

�
as=z if i D 0;
0 if i ¤ 0;

we have s [ � D ı� .1/, where ı is the Čech coboundary map. In other words, if
L1 is the first order deformation of L with transition functions �ij .1C �ij t /, then
si C �

.1/

i t is a lifting of s to first order.

1.3. The line bundles L˙pIa. For the rest of the paper, we will focus on a
particular class of deformations. For a fixed point p 2 C , consider the line bundles
��1OC .p/˝OC�C .��/ and ��1OC .�p/˝OC�C .�/ overC�C , where��C�C
is the diagonal. We fix the coordinate z centered at p as before, and let t be the
coordinate z, viewed as a coordinate on an affine open subset of the second copy
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of C . Let S � C be a small disk, and let u W S ! C be the inverse to t . On
C �S , define the line bundles ƒ˙p D .1�u/

�.��1OC .˙p/˝OC�C .��//. From
the definition, it is clear thatƒ�p D .ƒ

C
p /
�1. These line bundles induce holomorphic

maps f W S! JC , and if w 2 S , then .ƒ˙p /w D OC .˙p�u.w//. Using the open
cover of C as in Lemma 1.2.5, it follows that the transition functions for ƒCp are
equal to 1 if neither i nor j is zero, and (for small t ),

�0j .t/D
z

z�t
D

1X
kD0

�
tk

zk

�
:

Similarly, the transition functions for ƒ�p are equal to 1 if neither i nor j is zero,
and (for small t ),

�0j .t/D
z�t

z
D 1�

t

z
:

For L 2 Picd . zC/, define L˙p D ƒ˙p ˝ �
�
1L, a line bundle over C � S . If

the transition functions for L are given by �ij , then it follows that the transition
functions for LCp are equal to �ij if neither i nor j is zero, and (for small t ),

�0j .t/D �0j �
�
z

z�t

�
D �0j �

1X
kD0

�
tk

zk

�
:

Similarly, the transition functions for L�p are equal to �ij if neither i nor j is zero,
and (for small t ),

�0j .t/D �0j �
�
z�t

z

�
D �0j �

�
1�

t

z

�
:

For making computations, it will be useful to rescale t . For a 2 C, define a
local deformation LCpIa by setting the transition functions equal to �ij if neither i
nor j is zero, and (for small t ),

�0j .t/D �0j �
�

z

z�at

�
D �0j �

1X
kD0

�
ak

zk
tk
�
:

In short, we are considering a second small disk S 0 in C, a map S 0! S given by
w 7! aw, and setting LCpIaDLCp jC�S 0 . There is then an induced holomorphic map
fa W S

0! JC for each a, and if w 2 S 0, then .LCpIa/w D L˝OC .p�u.aw//.
Similarly, define a local deformation L�pIa by setting the transition functions

equal to �ij if neither i nor j is zero, and (for small t ),

�0j .t/D �0j �
�
z�at

z

�
D �0j �

�
1�

a

z
t
�
:

If w 2 S 0, then .L�pIa/w D L˝OC .�pCu.aw//.



172 SEBASTIAN CASALAINA-MARTIN

A section s 2H 0.L/ lifts to first order as a section of .LCpIa/1 if and only if
there exists a � .1/ satisfying

�
.1/

i ��ij�
.1/

j D �ij˛
.1/

ij sj D

�
0 for i ¤ 0;
as0=z for i D 0;

and a section .sC � .1/t / 2H 0..LCpIa/1/ lifts to second order if and only if there
exists a � .2/ satisfying

�
.2/

i ��ij�
.2/

j D �ij˛
.2/

ij sj C�ij˛
.1/

ij �
.1/

j D

�
0 for i ¤ 0;
a2s0=z

2C�ija�
.1/

j =z for i D 0:

Here the i D 0 case can be rewritten as

a2s0=z
2
C�ija�

.1/

j =z D a2s0=z
2
C .a�

.1/

0 =z� a2s0=z
2/D a�

.1/

0 =z:

Likewise, a section s 2H 0.L/ lifts to first order as a section of .L�pIa/1 if and only
if there exists a � .1/ satisfying

�
.1/

i ��ij�
.1/

j D �ij˛
.1/

ij sj D

�
0 for i ¤ 0;
�as0=z for i D 0;

and a section .sC � .1/t / 2H 0..L�pIa/1/ lifts to second order if and only if there
exists a � .2/ satisfying

�
.2/

i ��ij�
.2/

j D�ij˛
.2/

ij sjC�ij˛
.1/

ij �
.1/

j D

8<:
0 for i ¤ 0;
�ij .�a=z/�

.1/

j

D�a� .1/

0 =z� a2s0=z
2 for i D 0:

A straightforward calculation in the Čech complex will prove the following
two lemmas:

LEMMA 1.3.1. Let @L;p be the coboundary map

@L;p WH
0.L.p/˝Op/!H 1.L/

induced from the exact sequence 0! L �! L.p/ �! L.p/˝ Op ! 0, and let
A1.s/ 2H

0.L.p/˝Op/ be defined as

A1.s/D

�
�as0=z for LCpIa;

as0=z for L�pIa:

Then 1.s/D @L;p.A1.s//.

COROLLARY 1.3.2. If s 2H 0.L.�p//, then 1.s/D 0.

Remark 1.3.3. This is a weaker statement than was proved in Lemma 1.2.5,
where an explicit first order lifting of s was given.
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LEMMA 1.3.4. Let @L;2p be the coboundary map

@L;2p WH
0.L.2p/˝O2p/!H 1.L/

induced from the exact sequence 0!L�!L.2p/�!L.2p/˝O2p! 0, and let
A2.sC �

.1/t / 2H 0.L.2p/˝O2p/ be defined as

A2.sC �
.1/
t /D

�
�a� .1/

0 =z for LCpIa;

a� .1/

0 =zC a2s0=z
2 for L�pIa:

Then 2.sC � .1/t /D @L;2p.A2.sC �
.1/t //.

COROLLARY 1.3.5. If s 2H 0.L.�2p//, then there exists a first order lift of s,
say sC � .1/t , such that 2.sC � .1/t /D 0.

Proof. Let s 2H 0.L.�2p//. Then since s 2H 0.L.�p//, let sC� .1/t be the
standard lift of s, as given in Lemma 1.2.5. Recall that we set

�
.1/

i D

�
as=z if i D 0;
0 if i ¤ 0:

Since s vanishes to order 2 at p, we see that A2.sC � .1//D 0, and hence s lifts to
second order. �

For our computations, we will want to consider a more general class of defor-
mations modeled on the L˙pIa. Define �i � C �C k as

�i D f.x0; : : : ; xk/ 2 C �C
k
j x0 D xig;

and for a particular choice of points p1; : : : ; pk , let D D
Pk
iD1 pi . On C �C k ,

consider the line bundle ��1OC .D/˝ OC�Ck .�
P
�i /. Let ui be a map from a

disk S �C to a neighborhood of the point pi , and let u W S!C k be the map given
by w 7! .u1.w/; : : : ; uk.w//. Then set

ƒCD D .1�u/
�.��1OC .D/˝OC�Ck .�

P
�i //:

For L 2 Picd .C /, let LCD Dƒ
C

D˝�
�
1L. This has fiber over a point w 2 S equal

to L˝ OC ..p1 � u1.w//˝ � � � ˝ OC ..pk � uk.w//. As before ƒCD induces a
holomorphic map S! JC , and it is also clear that LCD D �

�
1L˝ƒ

C
p1
˝� � �˝ƒCpk

.
We can similarly define L�D , and by rescaling the local coordinate, construct the
line bundle

LD ��1L˝ƒ
C
p1Ia1

˝ � � �˝ƒCpk1
Iak1
˝ƒ�pk1C1Iak1C1

˝ � � �˝ƒ�pk Iak
:

The fiber of L over a point w 2 S is given by

Lw D L˝OC .p1�u1.a1w//˝ � � �˝OC .�pkCuk.akw//:
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Remark 1.3.6. The calculations in Lemmas 1.3.1 and 1.3.4 are local, in the
sense that the obstructions for L are sums of the local contributions calculated in
those lemmas.

1.4. The Prym case. For the rest of the paper, we will be considering the
following situation: C will be a smooth curve of genus g, � W zC ! C will be a
connected étale double cover, � will be the associated involution on zC , �2 Pic0.C /
will be the associated semiperiod, and P � J zC will be the Prym variety. If z‚
is the canonical theta divisor of J zC , then Mumford [Mum74] has shown that
z‚\P D 2 �„, where „ is the class of a principal polarization on P . Recall, if we
identify JC with Pic2g�2. zC/, then as a set P can be described as

P D fL 2 Pic2g�2. zC/ j Norm.L/D !C ; h0.L/� 0 .mod 2/g:

It follows that „D fL 2 P j h0.L/� 2g.
The following straightforward lemma is fundamental for what follows.

LEMMA 1.4.1. Let H be a hypersurface, not necessarily reduced, defined
in an open neighborhood of 0 in Cn and containing 0. Let S be a disk in C

containing 0, and let f W S ! Cn be a holomorphic map with f .0/ D 0. Then
mult0H �mult0 f �H , and equality holds if and only if f�.T0S/ is not contained
in the tangent cone to H at 0.

As an application, suppose S is a smooth curve with s0 2 S and L is a line
bundle over zC � S of relative degree 2g � 2. Let f W S ! J zC be the induced
morphism, and let L 2 Pic2g�2. zC/ be the line bundle associated to the point
x D f .s0/ 2 J zC .

LEMMA 1.4.2 [CMF05, 1.4]. If f .S/� P , then

1
2
h0.L/�multx „� 1

2
degs0 ‚S D

1
2
`..R1�2�L/s0/:

Moreover, there exists a choice of S and a line bundle L as above such that
multx „D 1

2
`..R1�2�L/s0/.

Recall that for t a local coordinate on S centered at s0 and only vanishing
there, zCkD zC �Spec CŒt �=.tkC1/, Wk is the image of the mapH 0.Lk/!H 0.L/

induced by the exact sequence (1.1.3), and dk D dim.Wk/.

PROPOSITION 1.4.3. In the notation above, we have these facts:

(a) `..R1�2�L/s0/ � `.H
0.Lk// D

Pk
iD0 di for every k, and if dN D 0, then

equality holds for all k �N .

(b) if f .S/�P and LD ��.M/˝O zC.B/, with h0.M/ > h0.L/=2, B � 0, and
B \ ��B D∅, then d1 � 2h0.M/� h0.L/.
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(c) If x 2 „ and L D ��.M/˝ O zC.B/, with h0.M/ > h0.L/=2, B � 0, and
B \ ��B D ∅, then multx „ � h0.M/. Furthermore, multx „ D h0.M/ if
and only if there exists a choice of S and a line bundle L as above such that
f .S/� P , d1 D 2h0.M/� h0.L/, and d2 D 0.

Proof. (a) is a restatement of the lemmas in Section 1.1, and the proof of (b)
is contained in the proof of [CMF05, Th. 2.3].

(c) It follows from part (a) and Lemma 1.4.2 that for any deformation f WS!P

with f .s0/D x,
multx „� 1

2
mults0 ‚S D

1
2

P
k�0 dk :

Furthermore, there exist deformations for which equality holds, so that

multx „ D inf
f WS!P
f.s0/Dx

f
1
2

P
k�0 dkg:

By definition d0 D h0.L/, and by (b) we know that d1 � 2h0.M/� h0.L/ for all
such deformations. Since dk � dkC1 � 0 for all k, it follows that

multx „D inff1
2

P
k�0 dkg �

1
2
.h0.L/C 2h0.M/� h0.L//D h0.M/;

and the inequality becomes an equality if and only if there is a deformation such
that d1 D 2h0.M/� h0.L/ and d2 D 0. �

Let fUigi2I be an open affine cover for zC , where pi 2 Uj for i 2 f1; : : : ; ng
if and only if i D j , and �.pi / 2 Uj if and only if j D i C n. For 1� i � n we
will define the index �.i/ D i C n. On each open set Ui define zi to be a local
coordinate, which is centered at pi for i 2 f1; : : : ; ng and is centered at �.pi / for
i 2 f�.1/; : : : ; �.n/g. We also choose local coordinates so that ��zi D z�.i/.

Let q1; : : : ; qn be general points of C , let ��1.qi / D fpi ; �.pi /g, and let
D D

Pn
iD1.pi C �.pi //. Let aD .a1; : : : ; an/ 2 Cn.

Definition 1.4.4. Let S � C be a disk containing the origin, and let L 2
Pic2g�2. zC/ be the line bundle associated to a point x 2P . With D and a as above,
define the deformation of L associated to D and a, denoted by LDIa D L, to be
the line bundle over zC �S given by

LD ��1L˝ƒ
C
p1Ia1

˝ � � �˝ƒCpnIan
˝ƒ��.p1/Ia1

˝ � � �˝ƒ��.pn/Ian
:

The fiber over a point w 2 S is given by

Lw D L˝O zC.p1�u1.a1w/� �.p1/C �.u1.a1w///˝ � � �

˝O zC .pn�un.anw/� �.pn/C �.un.anw/// :

LEMMA 1.4.5. Given LD;a, let f W S ! J zC be the associated morphism.
Then f is holomorphic, and f .S/� P .
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Proof. We have seen in the previous section that f is holomorphic. Let s0 2 S
be such that f .s0/D x. Then f .S/�P , since Norm..LDIa/s/D!C for all s 2 S ,
and .LDIa/s0 D L 2 P . Indeed, Norm�1.!C / has two connected components
distinguished by the parity of h0. Since f .S/ includes a point in the Prym variety,
namely L, f .S/ is contained in P . �

We will now reinterpret Lemmas 1.3.1 and 1.3.4 in the case of a deformation
LDIa. To begin, we fix a trivialization of L and L1 at the points p1, �.p1/,
. . . , pn, �.pn/. We then choose a fixed basis for H 0.L.D/ ˝ OD/ given by
f1=z1; 1=z�.1/; : : : ; 1=zn; 1=z�.n/g, and a basis for H 0.L.2D/˝ O2D/ given by
f1=z21 ; 1=z1; 1=z

2
�.1/; 1=z�.1/; : : : ; 1=z2n; 1=zn; 1=z

2
�.n/; 1=z�.n/g. With respect to

these bases and trivializations, the lemmas can then be restated as follows:

LEMMA 1.4.6. Let @L;D be the coboundary map

@L;D WH
0.L.D/˝OD/!H 1.L/

induced from the exact sequence 0! L �! L.D/ �! L.D/˝OD! 0, and let
A1.s/ 2H

0.L.D/˝OD/ be defined as

A1.s/D .�a1s.p1/; a1s.�.p1//; : : : ;�ans.pn/; ans.�.pn//:

Then s 2 H 0.L/ lifts to first order as a section of LDIa if and only if s 2
ker.@L;D ıA1/.

COROLLARY 1.4.7. H 0.L.�D// � ker.A1/, and if ai ¤ 0 for all i , then
H 0.L.�D//D ker.A1/.

LEMMA 1.4.8. Let @L;2D be the coboundary map

@L;2D WH
0.L.2D/˝O2D/ �!H 1.L/

induced from the exact sequence 0! L �! L.2D/ �! L.2D/˝O2D! 0, and
let A2.sC � .1/t / 2H 0.L.2D/˝O2D/ be defined as

A2.sC �
.1/
t /D

�
0;�a1�

.1/
.p1/; a

2
1s.�.p1//; a1�

.1/
.�.p1//C a

2
1

ds

dz
.�.p1//; : : :

�
:

Then sC � .1/t 2H 0.L1/ lifts to second order if and only if s 2 ker.@L;2D ıA2/.

COROLLARY 1.4.9. H 0.L.�2D//�W2.

Proof. The section s 2W2 if and only if there is a first order lift sC� .1/t such
that @L;2D ıA2.sC � .1/t /D 0. Using the standard lift of s given in Lemma 1.2.5,
and using the same analysis as in Corollary 1.3.5, one can easily show that if
s 2H 0.L.�2D//, then A2.sC � .1/t /D 0. �
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2. Linear systems and linear algebra

Here we collect some general results that will be useful for computations in
subsequent sections.

2.1. Linear systems on a double cover. Given a line bundle L on zC , and a
point q 2 C , we will want to know when the points of ��1.q/ impose independent
conditions on the linear system jLj.

LEMMA 2.1.1. Suppose that LD��M˝O zC.B/, whereM is a line bundle on
C such that h0. zC ;L/>h0.C;M/>0, and suppose B � 0 is an effective divisor on
zC such that B \ ��B D∅. If p 2 zC is a general point, then h0.L.�p� �.p///D
h0.L/� 2.

Proof. Let b 2H 0.O zC.B// with .b/0 D B . Let v 2H 0.L/���H 0.M/ � b.
We can consider .v=b/ as a rational section of ��M , and I claim that .v=b/ is not
� -invariant. Indeed, if it were, then it could not have poles along B since it has none
along �.B/, and so .v=b/ would be a regular section; i.e. v=b 2H 0.��M/C D

��H 0.M/. This would be a contradiction, as we would then have v2��H 0.M/�b.
It follows that .v=b/.p/¤ .v=b/.�.p// for a general point p 2 zC . Now let

s 2��H 0.M/ be a nonzero section, and choose �2C so that v.p/��s.p/b.p/ is
equal to zero. It is immediate to check that v.�.p//��s.�.p//b.�.p//¤ 0. This
completes the proof, since h0.L.�p//D h0.L/� 1 for a general p, and we have
found a section v��sb 2H 0.L.�p// that does not vanish at �.p/. �

COROLLARY 2.1.2. Suppose that L D ��M ˝ O zC.B/, where M is a line
bundle on C such that h0. zC ;L/� h0.C;M/ > 0, and B � 0 is an effective divisor
on zC such that B \ ��B D∅. Let b 2H 0.B/ be a section vanishing on B . Then
H 0.L/D��H 0.M/ �b if and only if h0.L.�p��.p///D h0.L/�1 for a general
point p 2 zC .

Proof. Let p be any point of zC , and let q D �.p/. If H 0.L/D ��H 0.M/ �b,
then it follows that H 0.L.�p � �.p/// D ��H 0.M.�q// � b. Consequently,
h0.L.�p � �.p///D h0.L/� 1. Conversely, if h0.L.�p � �.p///D h0.L/� 1
for a general point p, then Lemma 2.1.1 implies that h0.L/D h0.M/. �

For the duration of the paper we will use the following notation. Given a
collection p1; �.p1/; : : : ; pk; �.pk/ of distinct points of zC , we will set Dk DPk
iD1.pi C �.pi //.

COROLLARY 2.1.3. Suppose that L D ��M ˝ O zC.B/, where M is a line
bundle on C such that h0. zC ;L/� h0.C;M/ > 0, and B � 0 is an effective divisor
on zC such that B \ ��B D ∅. Let h0.M/ D n1, h0.L/ � h0.M/ D n2, and
p1; �.p1/; : : : ; pk; �.pk/ be 2k points of zC , where p1; : : : ; pk are general.

(a) Suppose h0.M/ > h0.L/=2 and k � n2. Then h0.L.�Dk//D h0.L/� 2k.
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(b) Suppose h0.M/ > h0.L/=2 and n2 � k � n1. Then h0.L.�Dk//D h0.L/�
n2� k. Furthermore, in this case

H 0.L.�Dk//D �
�H 0.M.�

Pk
iD1 qi // � b;

where qi D �.pi / and b 2H 0.O zC.B// vanishes on B .

(c) Suppose h0.M/ > h0.L/=2, n2 � k � n1, and 1� k1 � k. Then

H 0.L.�Dk �Dk1
//DH 0

�
L
�
�Dk �

k1X
iD1

pi

��

DH 0

�
L
�
�Dk �

k1X
iD1

�.pi /
��
;

h0.L.�Dk �Dk1
//Dmax.h0.L/�n2� k� k1; 0/

Furthermore, in this case

H 0.L.�Dk �Dk1
//D ��H 0.M.�

Pk
iD1 qi �

Pk1

jD1 qj // � b:

(d) Suppose h0.M/� h0.L/=2 and k � n1. Then h0.L.�Dk//D h0.L/� 2k.

Proof. (a) In the case h0.L/ D h0.M/, there is nothing to prove since k �
n2 D 0. So assume that h0.L/ > h0.M/. We will now use induction on k. For
k D 1, we are done by Lemma 2.1.1. So assume we have proved (a) for all k �m,
where m is some integer less than n2. Let qi D �.pi /, L0 D L.�Dm/, and
M 0 DM.�

Pm
iD1 qi /. Then

L0 D ��M 0˝O zC.B/ and h0.L0/D h0.L/� 2m

by induction, and h0.M 0/ D h0.M/ �m since the points qi are general. Now
h0.L0/ D h0.L/ � 2m > h0.M/ � m D h0.M 0/ > 0, since m < n2 < h0.M/

and h0.L/ � h0.M/ D n2 > m. It follows that L0 and M 0 satisfy the condi-
tion of the lemma, and hence for general points pmC1 and �.pmC1/ we have
h0.L.�DmC1//D h

0.L/� 2m� 2.
(b) In the case k D n2, we have seen that h0.L.�Dn2

// D h0.L/� 2n2 D

n1�n2 D h
0.M.�

Pn2

iD1 qi //. Hence the natural inclusion

��H 0.M.�
Pn2

iD1 qi /// � b �H
0.L.�Dn2

//

is an equality. For k > n2 we use induction and the previous corollary.
(c) By part (b), H 0.L.�Dk// D �

�H 0.M.�
Pk
iD1 qi // � b. Thus the van-

ishing locus of a section of H 0.L.�Dk// is invariant away from the support of B .
It follows that

H 0.L.�Dk �p1� �.p1///DH
0.L.�Dk �p1//

DH 0.L.�Dk � �.p1///D �
�H 0.M.�

Pk
iD1 qi � q1// � b;
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since the points qi are general. We also have that

h0.M.�
Pk
iD1 qi � q1//Dmax.h0.M.�

Pk
iD1 qi //� 1; 0/;

since if q1 is a base point of H 0.M.�
Pk
iD1 qi //, then it is a ramification point of

the map associated to jM j. (The ramification locus is finite, and the qi are general,
so we can assume q1 is not a base point of H 0.M.�

Pk
iD1 qi //.) One can then

proceed by induction on k1.
(d) An induction argument similar to that in part (a) will prove this. �

LEMMA 2.1.4. Suppose h0.L/D 2n > 0, and that h0.L.�Dn// > 0 for every
choice of distinct points p1; �.p1/; : : : ; pn; �.pn/ of zC . Then LD ��M ˝O zC.B/,
where M is a line bundle on C such that h0.C;M/ > h0. zC ;L/=2, B � 0 is an
effective divisor on zC such that B \ ��B D∅, and h0. zC ;B/D 1.

Proof. For every s 2 H 0.L/, the divisor .s/0 can be decomposed into an
invariant part, say N D ��N 0, and the residual part, say B , which by definition
must have the property B\ ��B D∅. Hence, setting M D OC .N

0/ we can always
write LD ��M ˝O zC.B/, with h0.L/� h0.M/ > 0, B \ ��B D∅, and B � 0.

We first prove the lemma in the case that there do not exist 2 points p and
�.p/ such that h0.L.�p� �.p///D h0.L/� 2. Then Corollary 2.1.2 implies that
h0.M/D h0.L/. Since B is effective, h0.B/� 1, and the inequality

dimjM j D dimjLj � dimj��M jC dimjBj � dimjM jC dimjBj

implies h0.B/D 1. Hence LD ��M ˝O zC.B/, h0.L/D h0.M/, B \ ��B D∅,
and h0.B/D 1.

We will now prove the lemma by induction on h0.L/. The case h0.L/D 2
is a consequence of the case above. So suppose we have proved the result for
all line bundles L0 for which h0.L0/ � 2n � 2, and then consider a line bun-
dle L with h0.L/ D 2n > 2. By the case above, we may assume there are
points p and �.p/ that impose independent conditions on H 0.L/. Let L0 D
L.�p � �.p//, so that h0.L0/ D 2n � 2. There do not exist 2n � 2 distinct
points p1; �.p1/; : : : ; pn�1; �.pn�1/ on zC imposing independent conditions on
H 0.L0/: otherwise, after possibly replacing p1; �.p1/; : : : ; pn�1; �.pn�1/ with
a more general choice of points, p; �.p/; p1; �.p1/; : : : ; pn�1; �.pn�1/ would
be distinct points imposing independent conditions on H 0.L/, contradicting our
assumptions.

Thus, by induction, L0 D ��M 0˝O zC.B/, with

h0.M 0/ > n� 1; B \ ��B D∅; B � 0; h0.B/D 1:

Setting q D �.p/, it follows that L D ��.M 0.q// ˝ O zC.B/. If we let M D
M 0.q/, then h0.M/ � h0.M 0/ � n. In the case h0.M/ D n, we would arrive at
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a contradiction, since Corollary 2.1.3(c) with k D n1 D n would imply that there
were 2n distinct points p1; �.p1/; : : : ; pn; �.pn/ imposing independent conditions
on H 0.L/. Thus, h0.M/ > n. �

LEMMA 2.1.5 (Smith and Varley [SV04]). Suppose L D ��M ˝ O zC.B/,
where M is a line bundle on C such that h0.C;M/ > h0. zC ;L/=2 > 0, and B � 0
is an effective divisor on zC such that B\��BD∅. ThenM and O zC.B/ are unique
up to isomorphism.

Proof. Suppose M 0 and B 0 satisfy the respective properties of M and B .
Then ��H 0.M/ � b and ��H 0.M 0/ � b0 are both linear subspaces of H 0.L/, and
dim.��H 0.M/�b/Cdim.��H 0.M 0/�b0/�h0.L/C2. Hence they have nontrivial
intersection.

Let s 2��H 0.M/ and s0 2��H 0.M 0/ be sections such that s �bD s0 �b0. Then
.s/0C .b/0 D .s

0/0C .b
0/0. The invariant parts of these divisors must agree, and

so we see .s/0 D .s0/0 and .b/0 D .b0/0. Thus M Š OC ..s/0/Š OC ..s
0/0/ŠM

0,
and O zC.B/Š O zC.B

0/.

Remark 2.1.6. Suppose L can be written in the form ��M ˝O zC.B/, where
M is a line bundle on C such that h0.C;M/ > h0. zC ;L/=2 > 0, and B � 0
is an effective divisor on zC such that B \ ��B D ∅. Then the proof of Corol-
lary 2.1.3 actually shows that if k is the maximum number such that there exist
points p1; �.p1/; : : : ; pk; �.pk/ imposing 2k conditions onH 0.L/, then h0.M/D

h0.L/� k.

2.2. Subspaces of complementary dimension. In computations made in sub-
sequent sections we will have to examine the intersection of linear subspaces of
a given vector space. Specifically, we will be given a vector space V D Cd , two
fixed subspaces V1 and V2 such that dim.V1/C dim.V2/D d , and a family F of
linear subspaces of V parametrized by a second copy of Cd and defined as follows:
for aD .a1; : : : ; ad / 2 Cd

Fa D fv 2 V j there exists a v1 2 V1
such that �i .v/D ai�i .v1/ for i D 1; : : : ; dg;

where �i is projection onto the i-th factor. Our goal will be to determine whether
or not there exists an a 2 Cd such that Fa \V2 D 0.

To begin, let dim.V1/D d1 and dim.V2/D d2. Define a coordinate m-plane
to be the linear subspace of V defined by the vanishing of d�m of the �i . We will
now prove the following proposition.

PROPOSITION 2.2.1. If V2 intersects each coordinate d1-plane trivially, then
there is a Zariski open subset U � Cd such that Fa \V2 D 0 for all a 2 U .
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Proof. Let V1 and V2 have respective bases

f.v111; : : : ; v
1
1d /; : : : ; .v

1
d11
; : : : ; v1d1d

/g; f.v211; : : : ; v
2
1d /; : : : ; .v

2
d21
; : : : ; v2d2d

/g:

A basis for Fa is then given by f.a1v111; : : : ; adv
1
1d
/; : : : ; .a1v

1
d11
; : : : ; adv

1
d1d

/g.
Let M be the matrix

M D

0BBBBBBBBB@

a1v
1
11 : : : adv

1
1d

:::
:::

a1v
1
d11

: : : adv
1
d1d

v211 : : : v2
1d

:::
:::

v2
d21

: : : v2
d2d

1CCCCCCCCCA
:

It follows that Fa \ V2 D 0 if and only if det.M/ ¤ 0. We now appeal to the
following lemma, where we will use the notation M.m; n/ for the space of m�n
matrices over C.

LEMMA 2.2.2. Let d 0 <d 2N. Let A 2M.d 0; d / and B 2M.d �d 0; d / have
columns Ai and Bi , respectively, and let C be the matrix

C D

�
A1 : : : Ad
B1 : : : Bd

�
:

Then

det.C /D
P

i1<���<id 0

.�1/�Ci1C���Cid 0 det.Ai1 � � �Aid 0 / det.Bk1
� � �Bkd�d 0

/;

where fi1; : : : ; id 0g[fk1; : : : ; kd�d 0g D f1; : : : ; dg, k1 < � � �< kd�d 0 , and � is an
integer satisfying �C d 0.d 0C 1/=2� 0 .mod 2/.

Proof. Let D WM.d; d/! C be given by the above formula. D.I/D 1, D is
alternating, and D is multilinear in the columns. Thus D D det. �

If we let V ij D .v
i
1j ; : : : ; v

i
dij
/T , then as an immediate consequence of the

lemma

det.M/D
P

i1<���<id1

.�1/�C†ij ai1 : : : aid1
det.V 1i1 � � �V

1
id1
/ det.V 2k1

� � �V 2kd2

/:

The monomials in the ai that appear in the formula above are distinct. Also,
since the dimension of V1 is d1, there must be some choice of i1 < � � �< id1

such that det.V 1i1 � � �V
1
id1
/¤ 0. I claim that for any choice of k1 < � � �< kd2

,
det.V 2k1

: : : V 2kd2

/¤ 0. It follows that the determinant of M is not identically zero
as a polynomial in the ai , and thus we can take U D fdet.M/¤ 0g.

We now proceed to prove the claim.
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LEMMA 2.2.3. Suppose ƒD f�ij g 2M.d 0; d / has rank d 0, and let H be the
d 0 dimensional linear subspace of Cd spanned by the rows of ƒ. Suppose further
that one of the following equivalent conditions hold:

(a) the intersection of H with any coordinate .d�d 0/-plane is trivial;

(b) a linear combination of the rows of ƒ with d 0 or more entries equal to zero is
identically zero;

(c) if
Pd 0

iD1 ˛i�ij D 0 for some ˛1; : : : ; ˛d 0 2 C and for all j 2 S � f1; : : : ; dg
with jS j D d 0, then ˛i D 0 for all i .

Then every choice of d 0 columns of ƒ is linearly independent.

Proof. If there exist d 0 columns of ƒ that are dependent, then there would
be a dependence among the rows of those columns. This would imply that some
nontrivial linear combination of the rows of ƒ had at least d 0 entries that were zero,
which contradicts our assumption on ƒ. �

Clearly applying this lemma to the space V2 finishes the proof of the claim
and hence of Proposition 2.2.1. �

Due to Lemma 2.2.3, there is a useful restatement of the proposition.

COROLLARY 2.2.4. In the notation above, suppose V2 satisfies the condition
that if v2 2 V2 and �i .v2/D 0 for i 2 I � f1; : : : ; dg with jI j D d2, then v2 D 0.
Then there exists a Zariski open set U 2 Cd such that Fa \V2 D 0 for all a 2 U .

3. Proof of Theorem 1

3.1. The preliminary lemma.

LEMMA 3.1.1 [CMF05, Lemma 2.1]. Suppose that x is a singular point of
„, corresponding to a line bundle L 2 Pic2g�2. zC/, and there exist 2n points
p1; �.p1/; : : : ; pn; �.pn/ of zC imposing independent conditions on H 0.L/; i.e. if
D D

Pn
iD1.pi C �.pi //, then h0. zC ;L.�D//D 0. Then multx „D h0. zC ;L/=2.

Proof. With D as above, let LDI.1;:::;1/ be the deformation of L defined in
Definition 1.4.4. By Riemann-Roch, h0.L.D//D h0.! zC ˝L�1.�D//C 2n. The
fact that L 2 P implies that ! zC ˝L�1 Š ��L, and since D is �-invariant, there
is an isomorphism H 0.L.�D// Š H 0.��L.�D// given by s 7! ��s. Hence,
h0.L.D//D 2n.

According to Lemma 1.4.6, there is a long exact sequence

0! H 0.L/ // H 0.L.D//
E // H 0.L.D/˝OD/

@LID // H 1.L/ � � �

and a map A1 WH 0.L/!H 0.L.D/˝OD/ such that W1D ker.@LID ıA1/. Recall
that A1.s/D .�s.p1/; s.�.p1//; : : : ;�s.pn/; s.�.pn///. As observed in Corollary
1.4.7, it follows from this formula that ker.A1/DH 0.L.�D//D 0.
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On the other hand, since h0.L/D h0.L.D//, it follows that ker.@LID/D 0.
Hence W1 D ker.@LID ıA1/D 0, and so dk D 0 for all k � 1. By Lemma 1.4.2
and Proposition 1.4.3(a),

h0.L/=2�multx „� `..R1��L/s0/=2D d0=2D h
0.L/=2:

Thus multx „D h0.L/=2. �

3.2. Proof of Theorem 1. We first prove (a) if and only if (b). By the Riemann
singularity theorem, multx z‚ D h0.L/. Since z‚ \ P D 2 � „, it is clear that
multx „D .multx z‚/=2 if and only if TxP ª Cx z‚.

We next prove that (b) implies (c). Suppose multx „ > h0.L/=2. Then by
Lemma 3.1.1, every choice of 2n points p1; �.p1/; : : : ; pn; �.pn/ of zC do not
impose independent conditions on H 0.L/. That is, if D D

Pn
iD1.pi C �.pi //,

then h0. zC ;L.�D// > 0. Then (c) follows from Lemma 2.1.4.
Next we show (c) implies (a). So suppose (c) holds. Then by Proposition

1.4.3(c), we have multx „� h0.M/ > h0.L/=2.
To prove the last statement suppose again that (c) holds. Then M and O zC.B/

are unique up to isomorphism by Lemma 2.1.5, and h0.O zC.B//D 1 by Lemma
2.1.4. �

4. Proof of Theorem 2

The basic aim of the proof is to find a deformation of L lying in the Prym
variety for which d1 D 2h0.C;M/� h0. zC ;L/ and d2 D 0. One then concludes
using Proposition 1.4.3(c). The computations needed to prove the theorem are quite
lengthy, and consequently the proof will be broken down into five parts as follows.

In Section 4.1 we will fix the class of deformations to be used in the proof, and
establish some preliminary results on linear systems associated to L. In Section
4.2 we will give a description of the space of sections of L lifting to first order — a
necessary computation for the subsequent sections. In Section 4.3 we will consider
sections lifting to second order, and we will show that a section lifting to second
order must vanish along a chosen divisor D. In Section 4.4, we will show that any
section lifting to second order that vanishes along D must be the zero section, and
after this we will complete the proof of Theorem 2.

4.1. Preliminaries. We will use the following notation. Let

h0. zC ;L/D 2n; h0.C;M/D n1; h0. zC ;L/� h0.C;M/D n2:

With regard to Proposition 1.4.3, we note that n1 � n2 D 2h0.M/� h0.L/. Let
b 2 H 0.O zC.B// be a section such that .b/0 D B . Let D0 D

Pn
iD1 qi , where

the qi are general points of C , and let ��D0 D D D
Pn
iD1.pi C �.pi //, where

��1.qi /D fpi ; �.pi /g. With this notation fixed, let L be a family of deformations
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of L parametrized by Cn, whose fiber La over a point a 2 Cn is the deformation
LDIa.

Recall that we are setting zCk D zC �Spec CŒt �=.tkC1/ and denoting by Lk the
restriction of L to zCk . We will denote by Wi .a/ the image of the map H 0.LaIi /!

H 0.L/ induced from the exact sequence

0! LaIi�1 �! LaIi �! L! 0;

and by di .a/ the dimension of this space. In other words, for a given a, Wi .a/ is
the space of sections lifting to order i .

Using Lemma 2.1.1 and its corollaries we can compute the dimensions of
some pertinent linear systems. We note that for a line bundle L 2 Pic2g�2. zC/
corresponding to a point x 2 P , and for a divisor E on zC , the Riemann-Roch
theorem takes the form

h0.L.E//� h0.L.���E//D deg.E/;

since ! zC˝L�1Š ��L, and the map �� WH 0.��L.�E//!H 0.L.���E// is an
isomorphism.

LEMMA 4.1.1. In the notation above

(a) h0.L/D 2n;

(b) h0.L.�D//D n1�n, and H 0.L.�D//D ��H 0.M.�D0// � b;

(c) h0.L.D//D n1Cn;

(d) h0.M.�2D0//D h0.L.�2D//D h0.L.�D�
Pn
iD1 pi //D 0;

(e) h0.L.2D//D 4n;

(f) h0.L.2D�
Pn
iD1 pi //D 3n;

(g) h0.L.DC
Pn1�n
iD1 �.pi ///D h

0.L.D//, so that the natural inclusion induces
an isomorphism H 0.L.D//ŠH 0.L.DC

Pn1�n
iD1 �.pi ///;

(h) h0.L.�
Pn
iD1 �.pi ///D n;

(i) h0.L.
Pn
iD1 pi // D h

0.L/, so that the natural inclusion induces an isomor-
phism H 0.L/ŠH 0.L.

Pn
iD1 pi //;

(j) h0.L.�
Pn
iD1 �.pi /�

Pn2

iD1 pi /D h
0.L.�D//, so that the natural inclusion

induces an isomorphism H 0.L.�D//ŠH 0.L.�
Pn
iD1 �.pi /�

Pn2

iD1 pi //.

Proof. Part (b) follows from Corollary 2.1.3(b) with kDn. For part (c), observe
by Riemann-Roch that h0.L.D// � h0.L.�D// D 2n. Therefore h0.L.D// D
n1�nC 2nD n1Cn. Part (d) follows from Corollary 2.1.3(c) with k D k1 D n.
Part (e) follows from (d) by Riemann-Roch. For part (f), use Corollary 2.1.3(c)
with k D k1 D n to get H 0.L.�D �

Pn
iD1 pi // D 0. Part (f) then follows by
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Riemann-Roch. For (g), Corollary 2.1.3(c) with k D n and k1 D n1 � n gives
H 0.L.�D�

Pn1�n
iD1 pi //D 0. Then by Riemann-Roch,

h0.L.DC
Pn1�n
iD1 �.pi ///D 2nC .n1�n/D nCn1 D h

0.L.D//:

For (h), observe that points �.p1/; : : : ; �.pn/ are general. Then (i) follows from
(h) by Riemann-Roch. For (j), apply Corollary 2.1.3(b) with k D n2 to get
H 0.L.�

Pn2

iD1.pi C �.pi ////D �
�H 0.M.�

Pn2

iD1 qi // �b, which has dimension
2n�2n2. The same argument as in Corollary 2.1.3(c) will show that the remaining
points impose n�n2 conditions. Hence

h0.L.�
Pn
iD1 �.pi /�

Pn2

iD1 pi //D 2n� 2n2� .n�n2/

D n�n2 D n1�nD h
0.L.�D//: �

4.2. Sections lifting to first order. We are now ready to study the sections of
L that lift to first order. We would like to find some Zariski open subset �1 � Cn

such that d1.a/D n1�n2 for all a 2�1. In addition, in order to make the second
order computations easier, we will want to understand the relationship between
W1.a/ and H 0.L.�D//.

PROPOSITION 4.2.1. Let �1 D
Tn
iD1fai ¤ 0g � Cn. Then for all a 2�1

(a) H 0.L.�D//�W1.a/;

(b) d1.a/D n1�n2;

(c) H 0.L.�
Pn
iD1 �.pi ///\W1.a/DH

0.L.�D//.

Proof. By Lemma 1.4.6, there is a long exact sequence

0! H 0.L/ // H 0.L.D//
E1 // H 0.L.D/˝OD/

@LID // H 1.L/ � � �

and a map A1 W H 0.L/! H 0.L.D/˝ OD/ such that W1.a/ D ker.@LID ıA1/.
Recall that

A1.s/D .�a1s.p1/; a1s.�.p1//; : : : ;�ans.pn/; ans.�.pn///:

Thus ker.A1/DH 0.L.�D// on �1, proving (a). To prove (b), consider that

(4.2.2)

n1�n2 � dim.W1.a//

D dim.im.A1/\ ker.@L;D//C dim.ker.A1//

� dim.ker.@L;D//C dim.ker.A1//

D .h0.L.D//� h0.L//C h0.L.�D//D n1�n2:

Finally, to prove (c), consider a section s 2H 0.L.�
Pn
iD1 �.pi ///\W1.a/.

That s 2 W1.a/ is equivalent to A1.s/ 2 im.E1/, and it is clear that if s lies in
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H 0.L.�
Pn
iD1 �.pi ///, then A1.s/ lies in E1.H 0.L.D�

Pn
iD1 �.pi ////. But

H 0.L.D�
Pn
iD1 �.pi ///DH

0.L.
Pn
iD1 pi //;

and we have seen in Lemma 4.1.1(i) that H 0.L.
Pn
iD1 pi //DH

0.L/. Therefore
A1.s/ 2E1.H

0.L//D 0, and it follows that s 2H 0.L.�D//. �

Remark 4.2.3. Because the inequalities in (4.2.2) are actually all equalities,
ker.@L;D/� im.A1/. In fact, ker.@L;D/D A1.W1.a//, so

ker.@L;D/D f.�a1s.p1/; a1s.�.p1//; : : : ;�ans.pn/; ans.�.pn/// j s 2W1.a/g:

This will be important in later computations where we will exploit the fact that
ker.@L;D/ does not depend on the ai , whereas W1.a/ does.

4.3. Second order lifts: a necessary condition. We are now in a position to
consider W2, the space of sections lifting to second order. Our eventual goal will
be to show W2 D 0. We begin with the following proposition.

PROPOSITION 4.3.1. There is a nonempty Zariski open subset �2 ��1 such
that W2.a/�H 0.L.�D// for all a 2�2. Therefore

W2.a/�H
0.L.�D//�W1.a/:

Proof. By Lemma 1.4.8, there is a long exact sequence

0!H 0.L/ // H 0.L.2D//
E2 // H 0.L.2D/˝O2D/

@LI2D // H 1.L/ � � �

and a map A2 WH 0.L1/!H 0.L.2D/˝O2D/ such that

im.H 0.L2/!H 0.L1//D ker.@LI2D ıA2/:

In other words, a section s 2H 0.L/ lifts to second order if and only if there exists
some first order lift sC � .1/t 2H 0.L1/ such that A2.sC � .1/t / 2 im.E2/. Recall
that

A2.sC�
.1/
t /D

�
0;�a1�

.1/
.p1/; a

2
1s.�.p1//; a1�

.1/
.�.p1//Ca

2
1
ds

dz
.�.p1//; : : :

�
and, for ' 2H 0.L.2D//,

E2.'/D
�
'.p1/;

d'

dz
.p1/; '.�.p1//;

d'

dz
.�.p1//; : : :

�
;

so that if a section s lifts to second order, then there must be some section ' in
H 0.L.2D// such that '.pi /D 0 and '.�.pi //D a2i s.�.pi // for all i .

Now let us examine this condition. Let F be the family of linear subspaces
of Cn defined by Fa D f.a21s.�.p1//; : : : ; a

2
ns.�.pn/// 2 Cn j s 2 W1g, and let

V2 D f.'.�.p1//; : : : ; '.�.pn/// 2 Cn j ' 2H 0.L.2D�
Pn
iDi pi //g. If a section

s lifts to second order, then .a21s.�.p1//; : : : ; a
2
ns.�.pn/// 2 Fa \V2.
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I claim there is a nonempty Zariski open set �2 ��1 such that Fa \V2 D 0
for all a 2�2. It follows that if a section lifts to second order, it must vanish at
�.pi / for all i . Since H 0.L.�

Pn
iD1 �.pi ///\W1.a/DH

0.L.�D//, this means
that a section lifting to second order must be in H 0.L.�D//, which completes the
proof of the proposition. �

Now we must address the unproved claim.

LEMMA 4.3.2. There is a nonempty Zariski open set �2 � �1 such that if
a 2�2, then Fa \V2 D 0.

Proof. This will be an application of Proposition 2.2.1. We begin by introducing
some notation: with respect to the basis we have been using for H 0.L.D/˝OD/,
let pr2 W H

0.L.D/ ˝ OD/ ! Cn be the projection onto the even factors. Let
V1 D pr2.ker.@L;D//.

CLAIM 4.3.3. In the above notation, dim.Fa/ D n � n2 for a 2 �1. Also,
Fa D f.a1v1; : : : ; anvn/ 2 Cn j .v1; : : : ; vn/ 2 V1g.

Proof. Since H 0.L.�
Pn
iD1 �.pi ///\W1.a/DH

0.L.�D//, it follows that
Fa Š W1.a/=H

0.L.�D//. Hence dim.Fa/ D .n1 � n2/ � .n1 � n/ D n � n2.
The second statement is a direct consequence of Remark 4.2.3, which implies that
V1 D pr2.ker.@L;D//D f.a1s.�.p1//; : : : ; ans.�.pn/// j s 2W1.a/g. �

CLAIM 4.3.4. In the above notation, dim.V2/ D n2. Furthermore, if v D
.v1; : : : ; vn/ 2 V2 and vi D 0 for i 2 I � f1; : : : ; ng with jI j D n2, then v D 0.

Proof. First, V2 ŠH 0.L.2D�
Pn
iD1 pi //=H

0.L.D//. By Lemma 4.1.1(c)
and (f),

h0.L.2D�
Pn
iD1 pi //� h

0.L.D//D 3n� .nCn1/D 2n�n1 D n2;

and hence dim.V2/D n2. By Lemma 4.1.1(g),

H 0.L.2D�
Pn
iD1 pi�

P
i2I �.pi ///DH

0.L.DC
P
i2Ic �.pi ///DH

0.L.D//;

since jI cj D n� n2 D n1 � n. Hence if v D .'.�.p1//; : : : ; '.�.pn/// 2 V2 and
'.�.pi //D 0 for i 2 I , then v D 0. �

The proof of the lemma is now just an application of Proposition 2.2.1. To see
this, set V D Cn. Then dimV1C dimV2 D dimV , and Fa D f.a1v1; : : : ; anvn/ 2
Cn j .v1; : : : ; vn/2V1g, so that V , V1, V2, and F are as in Section 2.2. Furthermore,
Claim 4.3.4 shows that V2 satisfies the conditions of Corollary 2.2.4. Hence there
exists a nonempty Zariski open subset�2��1 such that if a2�2, thenFa\V2D0.

�
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4.4. Second order lifts: a sufficient condition. Now that we have shown
that W2.a/ � H 0.L.�D// � W1.a/, we can focus our attention on sections
in H 0.L.�D//. This is a great advantage, as we know the exact form of the
first order lifts of such sections. In order to take full advantage of this infor-
mation, we prove the following lemma, which addresses an important special
case. First, let us define the following notation. Let fe�1 ; : : : ; e

�
4ng be the ba-

sis dual to the basis we have been using for H 0.L.2D/ ˝ O2D/. Let H D
fv 2 H 0.L.2D/˝ O2D/ j e

�
iC4j .v/ D 0 for i D 1; 3; 4 and 0 � j � n� 1g; i.e.,

H D f.0;�; 0; 0; : : : ; 0;�; 0; 0/ 2H 0.L.2D/˝O2D/g.

LEMMA 4.4.1. Suppose that s C � .1/t 2 im.H 0.L2/! H 0.L1// and that
A2.sC �

.1/t / 2H . Then A2.sC � .1/t /D 0.

Proof. If sC� .1/t lifts to second order, then A2.sC� .1/t /DE2.'/ for some
' 2H 0.L.2D//. Due to the form of H , we can see that

' 2H 0.L.2D�D�
Pn
iD1 �.pi ///DH

0.L.
Pn
iD1 pi //:

By Lemma 4.1.1(i), H 0.L.
Pn
iD1 pi // D H 0.L/, so that ' 2 H 0.L/ and thus

E2.'/D 0. Therefore A2.sC � .1/t /D 0. �

With this we will prove the next proposition.

PROPOSITION 4.4.2. There is a Zariski open subset �3 � �2 such that
W2.a/D 0 for all a 2�3.

Proof. Let s 2W2.a/. By Proposition 4.3.1, s 2H 0.L.�D//. Let sC � .1/t

be the standard lifting given in Lemma 1.2.5, and recall that on an open set Ui � zC
in our cover,

�
.1/

i D

8<:
ais=z if pi 2 Ui ;
�ais=z if �.pi / 2 Ui ;
0 otherwise:

A general lifting of s will be given by sC.� .1/
C'/t for some ' 2H 0.L/. Observe

that

(4.4.3) A2.sC.�
.1/
C'/t/D .0;�a21.s=z/.p1/�a1'.p1/; 0; a1'.�.p1//; : : : /;

since .s=z/.�.pi //D .ds=dz/.�.pi // when s.�.pi //D 0.
I claim there is a  2 W1 such that  .�.pi // D '.�.pi // for all i . Indeed

if A2.s C .� .1/
C '/t/ 2 im.E2/, then it must be in E2.H 0.L.D///, because

s 2H 0.L.�D//. Consider the diagram

H 0.L.2D//
E2 // H 0.L.2D/=L/S S

H 0.L.D//
E1 // H 0.L.D/=L/;
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where the inclusion on the right, in our chosen bases, is given by

.x1; x�.1/; : : : ; xn; x�.n// 7! .0; x1; 0; x�.1/; : : : ; 0; xn; 0; x�.n//:

It follows that A2.sC � .1/t / 2H 0.L.D/=L/�H 0.L.2D/=L/, so that

.�a21.s=z/.p1/� a1'.p1/; a1'.�.p1//; : : : / 2E1.H
0.L.D///:

Recall from Remark 4.2.3 that im.E1/D A1.W1/, so that there must be a  2W1
such that

A1. /D .�a1 .p1/; a1 .�.p1//; : : : /

D .�a21.s=z/.p1/� a1'.p1/; a1'.�.p1//; : : : /:

Hence  .�.pi //D '.�.pi // for all i , establishing the claim.
Since  lifts to first order,  t lifts to second order, so sC .� .1/

C '/t � t

also lifts to second order. But then A2.s C .� .1/
C '/t �  t/ 2 H , so that the

above lemma implies sC .� .1/
C'/t � t 2 ker.A2/. Setting �D  �', we have

A2.sC .�
.1/
C �/t/D 0. In other words, using (4.4.3), if s lifts to second order,

then there is a section � 2H 0.L/ such that �.�.pi //D 0 and �.pi /D ai .s=z/.pi /
for all i .

Now let us examine this condition. Let F be the family of linear subspaces of
Cn defined by

Fa D f.a1.s=z/.p1/; : : : ; an.s=z/.pn// 2 Cn j s 2H 0.L.�D//g;

and let V2 D f.�.p1/; : : : ; �.pn// 2 Cn j � 2H 0.L.�
Pn
iD1 �.pi ///g. If a section

s lifts to second order, then .a1.s=z/.p1/; : : : ; an.s=z/.pn// 2 Fa \V2.
I claim there is a nonempty Zariski open subset �3 � �2 such that for all

a 2�3, Fa\V2D 0. It follows that if a section lifts to second order, it must vanish
to second order at pi for all i , so that s 2 H 0.L.�D �

Pn
iD1 pi //: By Lemma

4.1.1(d), H 0.L.�D�
Pn
iD1 pi //D 0, and hence s D 0. �

Now we must address the unproved claim.

LEMMA 4.4.4. There is a nonempty Zariski open subset �3 ��2 such that if
a 2�3, then Fa \V2 D 0.

Proof. This will be an application of Proposition 2.2.1. To begin, let

V1 D f..s=z/.p1/; : : : ; .s=z/.pn// 2 Cn j s 2H 0.L.�D//g;

so that V1 D F.1;:::;1/. It is clear that

V1 ŠH
0.L.�D//=H 0.L.�D�

Pn
iD1 pi //DH

0.L.�D//;

since H 0.L.�D�
Pn
iD1 pi //D 0.

CLAIM 4.4.5. In the above notation, dim.Fa/D n1�nD n�n2 for a 2�1.
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Proof. On �1, Fa Š V1 Š H 0.L.�D//. Thus, dim.Fa/ D h0.L.�D// D
n1�n. �

CLAIM 4.4.6. In the above notation, dim.V2/ D n2. Furthermore, if v D
.v1; : : : ; vn/ 2 V2 and vi D 0 for i 2 I � f1; : : : ; ng with jI j D n2, then v D 0.

Proof. V2 Š H 0.L.�
Pn
iD1 �.pi //=H

0.L.�D//. By Lemma 4.1.1(h) and
(b), h0.L.�

Pn
iD1 �.pi /// D n and h0.L.�D// D n1 � n, so that dim.V2/ D

n� .n1�n/D 2n�n1 D n2. By Lemma 4.1.1(j),

H 0.L.�
Pn
iD1 �.pi /�

P
i2I pi //DH

0.L.�D//:

Hence if v D .'.p1/; : : : ; '.pn// 2 V2 and '.pi /D 0 for i 2 I , then v D 0. �
The proof of the lemma concludes just as the proof of Lemma 4.3.2. In its

final paragraph on page 187, simply replace Claim 4.3.4 with Claim 4.4.6. �
Proof of Theorem 2. Let a2�3, and consider the deformation LDIa. It follows

from Proposition 4.2.1 that d1 D n1 � n2 D 2h0.M/� h0.L/. Then Proposition
4.4.2 implies that W2 D 0 and hence that d2 D 0. Finally, by Proposition 1.4.3(c),
multx „D h0.M/. �

5. Consequences of Theorem 2

5.1. Upper bounds on multiplicity of singularities. For a ppav .A;‚/, let
Singk ‚ D fx 2 Sing‚ j multx ‚ � kg. A result of Kollár [Kol95] shows that
if dim.A/ D d , then dim.Singk ‚/ � d � k. Generalizing a result of Smith and
Varley [SV96], Ein and Lazarsfeld [EL97] showed that dim.Singk ‚/ D d � k
only if .A;‚/ splits as a k-fold product. Thus multx „ � g � 2 D dim.P /� 1
for an irreducible Prym variety associated to a connected étale double cover of a
smooth curve C of genus g and x 2 Sing„. Using Theorem 2, we will improve
these estimates for Prym varieties. To begin, we will prove the following lemma on
double covers of hyperelliptic curves:

LEMMA 5.1.1 [CMF05, Lemma 3.5]. Let � W zC ! C be a connected étale
double cover of a smooth curve C . If zC is hyperelliptic, then C is hyperelliptic.
Furthermore, if zG is the line bundle corresponding to the g12 on zC , and G is the
line bundle corresponding to the g12 on C , then Norm. zG/ŠG and ��G Š zG˝2.

Proof. Suppose p1Cp2 and p3Cp4 are general in j zGj. Since Norm preserves
linear equivalence, �.p1/C �.p2/ � �.p3/C �.p4/. Thus C is hyperelliptic,
and Norm. zG/ Š G since there is a unique g12 on C . Now let f W zC ! P1 be
the morphism corresponding to the g12 on zC . Then f ı � is also a finite degree
2 morphism of zC to P1, and since there is a unique g12 on zC , this implies that
�.p1/C �.p2/� p1Cp2. Thus

��G Š ��Norm. zG/Š O zC.p1Cp2C �.p1/C �.p2//Š zG
˝2: �
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Recall the definition of the Clifford index:

Cliff.C /Dminfdeg.D/� 2 dimjDj W h0.D/� 2; h1.D/� 2g:

If x 2 Sing„, then

h0.L/� deg.L/=2�Cliff. zC/=2C 1;

h0.M/� deg.M/=2�Cliff.C /=2C 1:

LettingW r
d
.C / denote the variety of line bundles L on C such that deg.L/D d and

h0.L/ > r , Martens’s theorem [Mar67] states that if 2� d � g�1 and 0 < 2r � d ,
then dim.W r

d
.C //� d �2r , with equality holding only if C is hyperelliptic. Since

Cliff.C /� d � 2r , these inequalities yield essentially the same information.

COROLLARY 5.1.2. If x 2 Sing„, then multx „ � .gC 1/=2. If P is irre-
ducible, then multx „ � g=2D .dim.P /C 1/=2. More precisely, suppose g � 5,
and let Z be an irreducible component of Singk „. For x 2 Z, let Lx be the
corresponding line bundle.

(a) Suppose for a general x 2Z, multx „D h0.Lx/=2, i.e., TxP ª Cx z‚. Then
k � g=2�Cliff. zC/=4, and dim.Z/� 2g� 4k. If dim.Z/D 2g� 4k, then C
is hyperelliptic.

(b) Suppose for a general x 2Z, multx „> h0.Lx/=2, i.e., TxP � Cx z‚. Then
k� .gC1/=2�Cliff.C /=2, and dim.Z/�g�2kC1. If dim.Z/Dg�2kC1,
then C is hyperelliptic. If we suppose moreover that C is not hyperelliptic, and
dim.Z/ > 0, then dim.Z/� g� 2k� 1, and if dim.Z/D g� 2k� 1, then C
is either trigonal, bielliptic, or a smooth plane quintic.

Proof. The first statement of the corollary follows immediately from (a) and
(b). The statement for irreducible Prym varieties then follows from Mumford’s
result [Mum74] that if C is hyperelliptic, then the Prym variety associated to the
double cover is a hyperelliptic Jacobian or the product of two such Jacobians.

(a) We have that multx „D h0.L/=2. Since deg.L/D 2g�2D g. zC/�1, by
Riemann-Roch, h1.L/D h0.L/� 2. Thus by Clifford’s theorem

multx „� .2g� 2/=4�Cliff. zC/=4C 1=2D g=2�Cliff. zC/=4:

In addition, we must have that Z �W 2k�1
2g�2 .

zC/, and so it follows immediately from
Martens’s theorem that dim.Z/ � 2g � 2� 2.2k � 1/ D 2g � 4k, with equality
holding only if zC , and hence C , is hyperelliptic.

(b) Now suppose TxP � Cx z‚, so that

LD ��M ˝O zC.B/; h0.C;M/ > h0. zC ;L/=2; B � 0; B \ ��B D∅;

and multx „D h0.C;M/. Since M is special, Clifford’s theorem implies

h0.C;M/� deg.M/=2�Cliff.C /=2C 1� .gC 1/=2�Cliff.C /=2:
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Applying Martens’s theorem, we see that

dim.Z/� .g� 1/� 2.k� 1/D g� 2kC 1;

with equality holding only if C is hyperelliptic. If we suppose that dim.Z/>0, then
we can assume that deg.M/ < g� 1, since there are only a finite number of theta
characteristics. If we assume further that C is not hyperelliptic, then it follows from
Mumford’s refinement [Mum74] of Martens’s theorem that dim.Z/� g� 2k� 1,
with equality holding only if C is either trigonal, bielliptic, or a smooth plane
quintic. �

Remark 5.1.3. The statements regarding the dimension of Singk „ in the
corollary above were pointed out by the referee. It should also be noted that in
[Mum74], Mumford studied a skew symmetric bilinear pairing

ˇ WH 0.L/^H 0.L/!H 0.!C ˝ �/

and showed by a dimension count that if g � 5 and dim.Sing„/� g� 5, then ˇ
has a two dimensional isotropic subspace V �H 0.L/. Such an isotropic subspace
gives rise to an isomorphism LŠ ��M ˝O zC .B/, where h0.M/� 2, B � 0, and
B \ ��B D∅. As in the proof of (b) above, Mumford concluded that if C is not
hyperelliptic, then dim.Sing„/� g�5. Generalizing Mumford’s work, Smith and
Varley [SV04] have shown that there exists an isotropic subspace of dimension k
for ˇ if and only if there exists such a decomposition of L with h0.M/� k. Thus
it seems possible that through further analysis of the pairing ˇ, one may be able to
improve the bound on dim.Singk „/.

Remark 5.1.4. The referee has raised the question of whether Ein and Lazars-
feld’s bound on the dimension of Singk ‚ for irreducible ppavs is sharp. That is,
do there exist irreducible ppavs with dim.Singk ‚/D d �k�1? As an example, it
would be interesting to know if there exist irreducible ppavs of dimension five with
a point of order four on their theta divisor. It appears that the techniques of this
paper may extend to Prym varieties associated to double covers of stable curves,
and hence in the case of an irreducible ppav of dimension less than or equal to five,
it may be possible to answer this question and give a sharp bound on dim.Singk ‚/.
This is work in progress.

Remark 5.1.5. For the Jacobian of a curve, Martens’s theorem implies that
codim.Singk ‚/ D 2k � 1 only if the curve is hyperelliptic. It is a result of
Beauville [Bea77a] that if .A;‚/ is an irreducible generalized Prym variety and
dim.Sing„/ � g � 4 D dim.A/� 3, then .A;‚/ is a hyperelliptic Jacobian; see
Mumford [Mum74]. Thus at least in dimension less than or equal to five, any
irreducible ppav whose theta divisor has double points in codimension three is
a hyperelliptic Jacobian. In regards to these results, and Corollary 5.1.2(b), the
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referee has asked to what extent k-fold points in codimension 2k � 1 characterize
hyperelliptic Jacobians among all irreducible ppavs. Despite the examples cited, in
general for k > 2 it appears there may be other components in this locus, since at
least in dimension five, the theta divisor of the intermediate Jacobian of a smooth
cubic threefold has a triple point, but such a ppav is not a Jacobian; see Clemens
and Griffiths [CG72].

Recall that given distinct points p1; �.p1/; : : : ; pk; �.pk/ of zC , we define
Dk D

Pk
iD1.pi C �.pi //. Due to Remark 2.1.6, we have the following upper

bound on the multiplicity of a point on the Prym theta divisor:

COROLLARY 5.1.6. Suppose x 2 Sing„ corresponds to the line bundle L 2
Pic2g�2. zC/. If there exist 2k distinct points p1; �.p1/; : : : ; pk; �.pk/ of zC such
that h0.L.�Dk//D h0.L/� 2k, then

multx „� h0.L/� k;

with equality holding if and only if k is the largest number with this property.

5.2. Prym varieties of dimension five. A Prym variety of dimension five is
associated to a double cover of a genus six curve. For a point x 2 Sing„, Corollary
5.1.2 implies that multx „� 3; in this section we will examine exactly which Prym
varieties of dimension five have singular theta divisors with triple points. Theorem
3 is a direct consequence of the following theorem.

THEOREM 5.2.1. Suppose dimP D 5. If Sing3„ ¤ ∅, then one of the
following must hold:

(a) C is a plane quintic and h0.OP2.1/jC ˝ �/ D 1. In this case Sing3„ D
Sing„ D fxg consists of a unique point corresponding to the line bundle
��.OP2.1/jC /. Moreover,XDCx„ is a smooth cubic threefold, and .P;„/Š
.JX;‚/.

(b) C is hyperelliptic, and either

(a) zC is hyperelliptic and .P;„/Š JC 0 for some hyperelliptic curve C 0, in
which case dim.Sing„/D 2 and Sing3„Dfxg consists of a unique point
corresponding to the line bundle 5g12 on zC ; or

(b) zC is not hyperelliptic and .P;„/ Š JC 0 � JC 00 for some hyperelliptic
curves C 0 and C 00, in which case dim.Sing„/D 3, and dim.Sing3„/D 1.

Proof. (a) Suppose C is not hyperelliptic and L is a line bundle corresponding
to a singular point x of multiplicity 3. Since deg.L/D 10, by Clifford’s theorem,
h0.L/ � 6, with equality holding only if zC , and hence C , is hyperelliptic. By
Theorems 1 and 2, if h0.L/D2, then multx „�2. Thus we may assume h0.L/D4,
and by Theorem 1, LD��M˝O zC.B/, with h0.M/� 3, B � 0 and B\��BD∅.
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By Clifford’s theorem applied to M , either C is hyperelliptic, or deg.M/ D 5,
h0.M/ D 3, and L D ��M . We must have that jM j is base point free, or else
there would be a g24 on C . Thus jM j defines a morphism to P2, which is birational
since M has prime degree, and is an embedding since the genus of a smooth
plane quintic is 6. Hence, M Š OP2.1/jC , and h0.OP2.1/jC ˝ �/ D 1, since
h0.L/D h0.M/Ch0.M ˝�/. A plane quintic has a unique g25 [ACGH85, p. 209],
and so L can be the only triple point on „.

Given a smooth plane quintic such that h0.OP2.1/jC ˝ �/D 1, an elementary
argument (see Beauville [Bea82]) will show that „ has a unique singular point.
Finally, Beauville [Bea77b] (see also Donagi and Smith [DS81] as well as [CMF05])
has shown that X D Cx„ is a smooth cubic threefold, and .P;„/Š .JX;‚/ as
principally polarized abelian varieties.

(b) part (a). If zC is hyperelliptic, then the proof of Mumford’s theorem [Mum74,
p. 344] implies that .P;„/Š .JC 0; ‚0/, for some hyperelliptic curve C 0 of genus 5.
Hence, dim.Sing‚0/D 2 and Sing3‚

0 D fxg, where x corresponds to the unique
2g12 on C 0. On the other hand, h0. zC ; 5g12/D 6, and ��.5g12/D 5g

1
2 D !C , so that

5g12 corresponds to a triple point on „.
(b) part (b). If zC is not hyperelliptic, then the proof of Mumford’s theorem

implies that .P;„/Š .JC 0�JC 00; JC 0�‚00C‚0�JC 00/ for some hyperelliptic
curves C 0 and C 00. The possible genera for C 0 and C 00 are 1 and 4, or 2 and 3,
respectively.

In the former case, Sing„D .‚0�‚00/[ .JC 0�Sing‚00/, and it follows that
dim.Sing„/D dim.‚00/D 3. Sing3„D‚

0�Sing2‚
00, and Sing2‚

00Dfg12Cpg,
which has dimension one, so dim.Sing3„/D 1.

In the latter case, Sing„ D .‚0 �‚00/ [ .JC 0 � Sing‚00/, and it follows
that dim.Sing„/D dim.‚0/C dim.‚00/D 3. Sing3„D‚

0 �Sing2‚
00, and thus

dim.Sing3„/D dim.‚0/C dim.Sing2‚
00/D 1. �

Remark 5.2.2. The proof above includes a simplification suggested by the ref-
eree, who also observed that this theorem is deducible from the results of Friedman
and the author in [CMF05]. To be precise, the proof of Theorem 5.2.1 only uses the
special case of Theorem 2 that h0.L/D 2. This special case follows from [CMF05,
Th. 2.5, p. 306].

Remark 5.2.3. Some of the statements in part (b) can be proved without using
the fact that the Prym of a hyperelliptic curve is a hyperelliptic Jacobian. Namely,
one can show that if zC is hyperelliptic, then there is a unique triple point of „,
and if zC is not hyperelliptic, then dim.Sing3„/ � 1. Indeed, as observed in the
proof above, if zC is hyperelliptic, then there is a unique g510 on zC , namely 5g12 .
Furthermore, ��5g12 D 5g12 D !C , so that in fact 5g12 2 Sing3„. I claim that
there are no triple points with h0.L/D 4. In fact, since h0.M/D 3, we must have
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M �2g12 . But then ��M �4 Qg12 , so that h0.��M/�5>4Dh0.L/, a contradiction.
On the other hand, if C is hyperelliptic, then h0.L/ D 4. Since h0.M/ D 3,
M � 2g12 . LetM 0D 2g12 , so that LD��M 0˝O zC.B

0/, where now we only require
that B 0>0 and deg.B 0/D 2. It follows that ��LD����g12˝��B

0D 4g12˝��B
0,

so that if ��L D !C , then B 0 must lie above the g12 on C . Since the g12 has
dimension one, and there are four choices of B 0 above each pair of points in the
g12 , the dimension of triple points can be at most one.

6. The Prym canonical map

Let ‰� W C ! Pg�2 be the Prym canonical map, the map induced by the
linear system j!C ˝ �j. One can easily check that j!C ˝ �j has a base point if
and only if zC is hyperelliptic, and consequently in this section we will restrict our
attention to the case that zC is not hyperelliptic. Under this assumption, we will
establish a connection between the tangent cone to a singular point of „ and the
Prym canonical image of C . Our eventual goal will be to determine whether a
k-dimensional secant variety to C is contained in the tangent cone to a singular
point of „.

6.1. Preliminaries on Prym images. Let q 2 C ; set D D pC �.p/D ��.q/.
Consider the exact sequence

0! O zC �! O zC.D/ �! OD! 0;

and let @D be the boundary map of the associated long exact sequence. Since zC is
not hyperelliptic, h0.O zC/D h0.O zC.pC �.p///D 1, and hence @D is injective.

LEMMA 6.1.1. ‰�.q/D f@D.�a; a/ j a 2 Cg 2 P.H 1.OC /
�/.

Proof. Serre duality gives an isomorphism H 1.O zC/! .H 0.! zC//
� given by

˛ 7! .! 7!
P
p02 zC

Resp0.˛!//. From this description, it is easy to see that this
isomorphism induces an isomorphism H 1.O zC/

� ! .H 0.! zC/
�/� and hence an

isomorphism P.H 1.O zC/
�/ ! P..H 0.! zC/

�/�/. The map C ! P.H 1.O zC/
�/

given by q 7! h�i D f@D.�a; a/ j a 2 Cg is well defined since @D is injective.
Composing with the duality map gives a map  W C ! P.H 0.! zC/

�/�/, which by
definition is given by q 7! h! 7!

P
p02 zC

Resp0.�!/i.
Letting � D @��.q/.�a; a/, a computation in the Čech complex shows that

in the open cover we have been using, � is equal to a=z on U0i , to �a=z on
U�.0/j , and to 0 otherwise. Hence

P
p02 zC

Resp0.�!/ D 2a!.p/. It follows that
 .q/D h! 7! !.p/i, which is the definition of ‰�. �

Now consider a point x 2 Sing„ that corresponds to the line bundle L 2
Pic2g�2. zC/, and consider the deformation LD;a for some a 2C. As before, let the
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transition functions of L1 be denoted by �ij .t/D�ij .1C˛.1/

ij t /, and let f WS!P

be the associated morphism. Then

f� W Ts0S ! TxP DH
1.O zC/

�

has image equal to the linear span of ˛.1/
2H 1.O zC/

�. From our computation of
˛.1/ in Section 1 and the description of @D.�a; a/ given in the proof above, we
have the following:

LEMMA 6.1.2. In the above notation,

f�.Ts0S/D h˛
.1/
i D h@D.�a; a/i D‰�.q/ 2 P.H 1.OC /

�/:

More generally, we can ask for the relation between the Prym canonical map
and a deformation LDIa, where D has higher degree. Let q1; : : : qk 2 C , and set
D D ��.

Pk
iD1 qi /. Let L be a family of line bundles over C , parametrized by Ck ,

such that La is a line bundle associated to LD;a, and consider the induced family
of maps fa W Sa ! P . For all a, let s0 2 Sa be such that fa.s0/ D x. Finally,
let h‰�.q1/; : : : ; ‰�.qk/i � Pg�2 be the span of the points ‰�.q1/; : : : ; ‰�.qk/.
Extending the proofs of the first two lemmas by linearity, we immediately have the
following:

LEMMA 6.1.3. In the above notation,

h‰�.q1/; : : : ; ‰�.qk/i D f@D.�a1; a1; : : : ;�ak; ak/ j a 2 Ckg � P.H 1.O zC/
�/;

and for each a 2 Ck ,

.fa/�.Ts0Sa/D h˛
.1/

a i D h@D.�a1; a1; : : : ;�ak; ak/i 2 P.H 1.OC /
�/:

As a consequence, we have the following proposition:

PROPOSITION 6.1.4. Suppose ‰�.q1/; : : : ; ‰�.qk/ are all contained in a
unique .k�1/-plane. Then @D induces a linear inclusion @D W Pk�1 ! Pg�1.
Moreover, if multx „D �, then @D gives a bijection of sets

fa 2 Pk�1 j .mults0 ‚Sa
/=2 > �g $ h‰�.q1/; : : : ; ‰�.qk/i \Cx„:

Proof. mults0 ‚Sa
=2 > � if and only if hf�.Ts0Sa/i 2 Cx„, that is, if and

only if h@D.�a1; a1; : : : ;�ak; ak/i 2 Cx„. �

Due to Proposition 1.4.3, we can restate Proposition 6.1.4 as follows:

COROLLARY 6.1.5. With the same hypothesis as the proposition,

(a) if multx „D h0.L/=2, then there is a bijection of sets

fa 2 Pk�1 j d1.a/ > 0g $ h‰�.q1/; : : : ; ‰�.qk/i \Cx„I
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(b) if multx „> h0.L/=2 and thus LD ��M ˝O zC.B/ with h0.M/ > h0.L/=2,
B � 0, and B \ ��B D∅, then there is a bijection of sets

fa 2 Pk�1 j d1.a/ > 2h
0.M/� h0.L/ or d2.a/ > 0g

$ h‰�.q1/; : : : ; ‰�.qk/i \Cx„:

We have the following elementary consequence.

COROLLARY 6.1.6. With the same hypothesis as the proposition, if

deg.D/D 2k � 2g� 2 and h0.L.�2D//¤ 0;

then Cx„ contains a .k�1/-dimensional hyperplane.

Remark 6.1.7. In the above analysis in the case that both d1>0 and d2>0, we
did not show that f .S/ª z‚, since we did not rule out the possibility that sections
lift to arbitrary order. Nevertheless, in the case that sections lift to arbitrary order,
and hence f .S/� z‚, it is clear that f�.Ts0S/� Cx z‚, and hence the conclusions
of the corollaries hold in these cases as well.

We will now do a computation to prove the following proposition. This will
illustrate the basic technique to be used in the next section.

PROPOSITION 6.1.8. Suppose that x is a singular point of „, corresponding to
a line bundle L 2 Pic2g�2. zC/, such that multx „D h0.L/D 2. For a point q 2 C ,
let ��1.q/D fp; �.p/g. Then ‰�.q/ 2 Cx„ if and only if h0.L.��.p///¤ 1 or
h0.L.�2p� �.p///¤ 0.

Remark 6.1.9. Since the condition ‰�.q/ 2 Cx„ is independent of the choice
of p versus �.p/, one can conclude from the proposition that for any point p 2 C ,
h0.L.��.p///D 1 and h0.L.�2p��.p///D 0 if and only if h0.L.�p//D 1 and
h0.L.�p� 2�.p///D 0.

Proof. By Theorem 1, LD ��M ˝O zC.B/, with h0.C;M/D h0. zC ;L/D 2,
B � 0, and B \ ��B D ∅. Let D D ��.q/, consider the deformation LDI1,
and let f W S ! P be the associated morphism with f .s0/D x. By Proposition
1.4.3(b), all sections lift to first order, and I claim that if h0.L.��.p/// ¤ 1 or
h0.L.�p� �.p/�p//¤ 0, then a nontrivial section must lift to second order, so
that by Corollary 6.1.5(b), ‰.q/ 2 Cx„.

Indeed, assume h0.L.��.p///¤ 1. Then either h0.L.�p � �.p///D 2, in
which case h0.L.�2D//¤ 0 and a section lifts to second order due to Corollary
1.4.9, or h0.L.�p � �.p/// D 1. In this case, consider a nonzero section s in
H 0.L.�p� �.p///. Let sC � .1/t be the standard lifting of s, so that the general
lifting of s will be of the form s C .� .1/

C '/t for some ' 2 H 0.L/. Then
A2.s C .�

.1/
C '/t/ D .0;�.s=z/.p/� '.p/; 0; '.�.p///. Now considering the

fact that h0.L.��.p/// D 2 and h0.L.�p � �.p/// D 1, it follows that the map
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H 0.L.��.p///!C given by  7! .p/ is surjective, so that there is a section ' 2
H 0.L/ such that '.�.p//D0 and '.p/D�.s=z/.p/. ThusA2.sC.� .1/

C'/t/D0,
and so s lifts to second order.

On the other hand, suppose h0.L.�p � �.p/� p// is nonzero, and let s 2
H 0.L.�p � �.p/ � p// be a nonzero section. Then s lifts to first order since
s 2H 0.L.�D//, and consequently we set sC � .1/t to be the standard first order
lift. A2.sC� .1/t /D .0;�.s=z/.p/; 0; 0/, and since s 2H 0.L.�p� �.p/�p// it
follows that A2.sC � .1/t /D 0.

Conversely, suppose h0.L.�2p� �.p///D 0 and h0.L.��.p///D 1. In this
case I claim that only the trivial section lifts to second order, and hence, by Corollary
6.1.5(b), ‰�.q/ … Cx„. In fact, this follows from the proof of Theorem 2; the key
observation is that the proof of the theorem depends only on the numerology of
Lemma 4.1.1 and not on the assumption that the chosen points were general. Thus
we must check that the conditions

h0.L.�2p� �.p///D 0 and h0.L.��.p///D 1

are sufficient to establish the results of Lemma 4.1.1. Using Riemann-Roch, we
need only check (b), (d), (f), (g), (h), and (j):

(b) h0.L.�D//D 1; 1� h0.M.�q//� h0.L.�D//� h0.L.��.p///D 1.

(d) h0.M.�2q//D h0.L.�2D//� h0.L.�2p� �.p///D 0.

(f) h0.L.DC �.p///D 3; this follows from Riemann-Roch.

(g) This is the same as (f) in this case.

(h) h0.L.��.p///D 1 is given.

(j) This is vacuous. �

6.2. Secant varieties. We now direct our attention to secant varieties of the
Prym canonical image. For 0� k � r , the k-secant variety of a curve � embedded
in Pr is defined to be the closure of the union of the linear subspaces in Pr spanned
by a .kC1/-tuple of distinct points of �; that is, the 0-secant variety is � , and the
1-secant variety is the usual secant variety.

THEOREM 6.2.1. Suppose that x is a singular point of „ corresponding to a
line bundle L 2 Pic2g�2. zC/ such that h0.L/D 2n.

(a) The .n�1/-secant variety of ‰�.C / is not contained in Cx„. More precisely,
if q1; : : : ; qn are general points of C , then

h‰�.q1/; : : : ; ‰�.qn/iª Cx„:

(b) The .n�2/-secant variety of ‰�.C / is contained in Cx„. Hence the k-secant
variety of ‰�.C / is contained in Cx„ for all 0� k � n� 2.
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Proof. (a) Let q1; : : : ; qn be n general points of C , let D0 D
Pn
iD1 qi , and let

D D ��D0. For a 2 Cn, consider the deformation LDIa, and let f W S ! P be
the associated morphism, with f .s0/D x. In the case multx „D n, the proof of
Theorem 1 implies that for a general a 2 Cn, .mults0 ‚S /=2 D multx „. In the
case multx „ > n, the proof of Theorem 2 implies the same result. Proposition
6.1.4 then implies that h‰�.q1/; : : : ; ‰�.qn/iª Cx„.

(b) In the case multx „D n, for general points q1; : : : ; qn�1 2 C , let D0 DPn�1
iD1 qi , let D D ��D0, and consider the deformation LDIa. For all a 2 Cn�1,

d1.a/�h
0.L.�D//>0, and hence by Corollary 6.1.5(a), the .n�2/-secant variety

of ‰.C/ is contained in Cx„.
In the case multx „> n, if

LD ��M ˝O zC.B/; h0.C;M/ > h0. zC ;L/=2; B � 0; B \ ��B D∅;

let n1 D h0.M/ and n2 D h0.L/� h0.M/. For general points q1; : : : ; qn�1 2 C ,
let D0 D

Pn�1
iD1 qi , D D �

�D0, and consider the deformation LDIa. We will find
that for general a 2 Cn�1, there is a nontrivial section that lifts to second order
and hence, by Corollary 6.1.5(b), the .n�2/-secant variety of ‰.C/ is contained
in Cx„.

Let a 2C be such that ai ¤ 0 for all i . Let s 2H 0.L.�D//, and let sC� .1/t

be the standard lift of s, as in Lemma 1.2.5. Then the general lift of s will be of the
form sC .� .1/

C'/t for some ' 2H 0.L/. We have seen that

A2.sC .�
.1/
C'/t/D .0;�a21.s=z/.p1/� a1'.p1/; 0; a1'.�.p1//; : : : /:

I claim that there is some s 2H 0.L.�D// and some ' 2H 0.L/ such that
A2.s C .�

.1/
C '/t/ D 0. From the equation above, this is equivalent to the

claim that there exists some s 2 H 0.L.�D// and some ' 2 H 0.L/ such that
'.pi /D ai .s=z/.pi / and '.�.pi //D 0 for 1� i � n� 1. Let

V1 D f.a1.s=z/.p1/; : : : ; an�1.s=z/.pn�1// 2 Cn�1 j s 2H 0.L.�D//g;

V2 D f.'.p1/; : : : ; '.pn�1// 2 Cn�1 j ' 2H 0.L.�
Pn�1
iD1 pi //g:

To prove our claim, we need only show that dim.V1/C dim.V2/ > n� 1. Now

dim.V1/D h0.L.�D//� h0.L.�D�
Pn�1
iD1 pi //;

dim.V2/D h0.L.�
Pn�1
iD1 �.pi ///� h

0.L.�D//:

Hence dim.V1/ C dim.V2/ D h0.L.�
Pn�1
iD1 �.pi /// � h

0.L.�D �
Pn�1
iD1 pi //.

Since the points pi are general, we have that

h0.L.�
Pn�1
iD1 �.pi ///D 2n� .n� 1/D nC 1:

Furthermore, it follows from Corollary 2.1.3 that h0.L.�D�
Pn�1
iD1 pi //Dmax.0;

n1�nC1� .n�1//Dmax.0; n1�2nC2/� 2, with equality holding if and only
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if n1 D 2n. Thus dim.V1/C dim.V2/ � nC 1� 2; with equality holding if and
only if n1D 2n. Therefore, we have established the claim in the case n1¤ 2n, and
it follows that in this case there is a nontrivial section that lifts to second order.

On the other hand, the case n1 D 2n is much easier. Indeed,

h0.L.�2D//D 2n� .n� 1/� .n� 1/D 2¤ 0;

and thus, as observed in the corollary to Lemma 1.4.8, a nontrivial section must lift
to second order. �

Remark 6.2.2. This theorem generalizes [SV01, Prop. 5.1], which does not
address the issue of the secant variety and which makes the additional assump-
tion that either multx „D .1=2/h0.L/ or L is base point free and .1=2/h0.L/ �
multx „ � h0.L/� 1. Also, as a consequence of Theorem 6.2.1, we see that we
could not have proved Theorem 2 using a divisor D of degree less than h0.L/.

Remark 6.2.3. Using similar techniques, one can easily prove the Riemann
singularity theorem for Jacobians, as well as the fact that for a Jacobian .JC;‚/ and
a point x 2 Sing‚ corresponding to a line bundle L 2 Picg�1.C / with h0.L/D n,
the k-secant variety of the canonical image of the curve is contained in Cx‚ if and
only if k � n� 2. See [CMF05, Th. 1.9] and [ACGH85, Th. 1.6, p. 232].

COROLLARY 6.2.4. ‰�.C /� Cx„ if and only if h0.Lx/� 4.

COROLLARY 6.2.5 (Tjurin [Tju75], Smith and Varley [SV01]). If multx „D 2,
then one of the following must hold:

(a) h0.L/D 4, and L can not be written in the form LD ��.M/˝O zC.B/ where
h0.M/ > 2, B > 0 and B \ ��B D ∅. In this case, ‰�.C / � Cx„; as a
result, Cx„ is nondegenerate, and rank.Cx„/ � 3. In addition, the secant
variety of ‰�.C / is not contained in Cx„.

(b) h0.L/ D 2, and L D ��.M/ ˝ O zC.B/ where h0.M/ D 2, B � 0, and
B \ ��B D∅. In this case ‰�.C /ª Cx„.

Remark 6.2.6. The fact in (a) that ‰�.C /� Cx„ was first shown by Tjurin
[Tju75, Lem. 2.3, p. 963]. The fact in (a) that the secant variety of ‰�.C / is
not contained in Cx„ and fact in (b) that ‰�.C / ª Cx„ are consequences of
Proposition 6.1.4, and were not previously known in general. In the special case
that .P;„/ is the Jacobian of a nonhyperelliptic curve, Smith and Varley have
observed that at a generic exceptional double point ‰�.C /ª Cx„ [SV02, p. 241,
l. 8]. Their argument in the case that the curve has no g12 , g13 , or a g25 is that
the Prym canonical curve is contained in every stable quadric, while by Green’s
theorem [Gre84] the base locus of the quadrics is a canonically embedded curve.
This cannot also be a Prym canonically embedded curve, and therefore not all of
the exceptional quadrics contain ‰�.C /.
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6.3. Equations for tangent cones. Kempf’s theorem from [Kem73] gives an
equation defining the tangent cone to z‚ at a point x as a subscheme ofH 0. zC ;! zC/D

TxJ zC . In the case TxP ª Cx z‚, this equation restricts to H 0. zC ;! zC/
� D TxP to

give the square of an equation defining the tangent cone to „ at x as a subscheme
of H 0. zC ;! zC/

�.
The aim of this section will be to give another description of the equation

for Cx„ in the case TxP ª Cx z‚, and to give a description of the equation of the
tangent cone in the case that TxP � Cx z‚ and h0.L/D h0.M/. In the former case,
we will need only to look at first order liftings. In the latter case, we will need to
look at second order liftings, but we will have the advantage of knowing that the
space of sections lifting to first order is fixed. The analysis that follows will apply
to any situation where this is true.

Given g � 1 points q1; : : : ; qg�1 of C , which are linearly independent as
points of ‰.C/, let D D

Pg�1
iD1 �

�1.qi /, and consider the deformation LDIa. Let
E1 W H

0.L.D//! H 0.L.D/˝ OD/ be the map induced from the short exact
sequence, and similarly, let E2 WH 0.L.2D//!H 0.L.2D/˝O2D/. Let ME1

and
ME2

be the matrices whose rows span the respective images of these maps. Define
B1 WH

0.L/!H 0.L.D/˝OD/ to be A1. By definition, a section s 2H 0.L/ lifts
to first order if and only if @LID ıB1.s/D 0 2H 1.L/.

We will now define a map B2 WH 0.L/!H 0.L.2D/˝O2D/ that will have
the property that there is a one-to-one correspondence between sections of L that
lift to second order and sections of L in the kernel of @LI2D ıB2. To do this, choose
a basis fs1; : : : ; sd1

g for W1 and a set of sections fsd1C1; : : : ; s2ng whose images
form a basis for H 0.L/=W1. Let fs1C � .1/

1 t; : : : ; sd1
C � .1/

d1
tg �H 0.L1/ be a set

of liftings of the basis for W1, and define the map B2 byP2n
iD1 ˛isi 7! A2.

Pd1

iD1 ˛i .si C �
.1/

i t /C
P2n
jDd1C1 j̨ sj t /;

where the ˛i 2 C. One can easily check that there is a one-to-one correspondence
between sections of L that lift to second order and sections of L in the kernel of
@LI2D ıB2.

Let MB1
and MB2

be matrices whose rows span the respective images of these
maps. Define matrices

M1 D

�
ME1

MB1

�
and M2 D

�
ME2

MB2

�
:

THEOREM 6.3.1. Suppose that x 2 Sing„ corresponds to the line bundle
L 2 Pic2g�2. zC/.

(a) If multx „D h0.L/=2, then det.M1/ is a homogeneous polynomial of degree
h0.L/, which defines Cx„ as a subset of H 0. zC ;! zC/

�.
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(b) If multx „D h0.L/, and LD ��M ˝O zC.B/ where h0.M/D h0.L/, B � 0
and B \ ��B D ∅, then det.M2/ is a homogeneous polynomial of degree
2 � h0.L/, which defines Cx„ as a subset of H 0. zC ;! zC/

�.

Proof. (a) Let L be a family of deformations parametrized by a 2 Cg�1, with
fiber La D LDIa. By Riemann-Roch,

h0.L.D//D h0.! zC ˝L
�1.�D//C deg.D/:

But deg..! zC ˝ L�1.�D/// D �g � 1, and so h0.L.D// D 2g � 2. Letting
fs1; : : : ; sng be a basis for H 0.L/, we can take

.MB1
/i I2j�1 D�aj si .pj / and .MB1

/i I2j D aj si .�.pj //

for 1 � i � n and 1 � j � g � 1. Letting fr1; : : : ; r2g�2�ng be a basis for
H 0.L.D//=H 0.L/, then we can take

.ME1
/i I2j�1 D ri .pj / and .ME1

/i I2j D ri .�.pj //

for 1 � i � 2g� 2� n and 1 � j � g� 1. With this notation, nontrivial sections
lift to first order if and only if det.M1/D 0. From the form of the matrix M1, it is
clear that the determinant is a homogeneous polynomial of degree h0.L/ in the ai .
Now (a) now follows from Corollary 6.1.5(a).

(b) Let L be a family of deformations parametrized by a 2 Cg�1, with fiber
La D LDIa. In this case we have seen that all sections lift to first order in all
directions, and it is easy to check that if si C �i Ij is a lift of si in the direction of
the j -th basis vector of Cg�1, then si C

P
j aj�i Ij is a lift of si in the direction of

a. Using the basis described in the definition of B2, we get that

.MB2
/i I4j�3 D 0; .MB2

/i I4j�2 D�aj
P
k ak�i Ik.pj /;

.MB2
/i I4j�1 D a

2
j si .�.pj //;

and .MB2
/i I4j D aj

P
kak�i Ik.�.pj //C a

2
j .dsi=dz/.�.pj //. Again, ME2

is in-
dependent of the ai , and so we see that det.M2/ is a homogeneous polynomial
of degree 2h0.L/ in the ai . Nontrivial sections lift to second order if and only if
det.M2/D 0, and so (b) now follows from Corollary 6.1.5(b). �

Remark 6.3.2. This analysis will go through in any case where the space of
sections lifting to first order is fixed. In the case that it is not fixed, the dependence
of the entries of MB2

on the ai is more difficult to ascertain.

Remark 6.3.3. Theorem 1 implies that TxP ª Cx z‚ in case (b), in which case
Kempf’s theorem gives an equation for the tangent cone as a scheme.

COROLLARY 6.3.4 (Quadric tangent cones). Suppose x 2 Sing„ corresponds
to the line bundle L 2 Pic2g�2. zC/. If multx „D 2, then one of the following must
hold:
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(a) h0.L/D4. Then det.M1/Dq.a1; : : : ; ag/
2 for some irreducible homogeneous

quadratic polynomial q 2 CŒa1; : : : ; ag �. Hence, q D
p

det.M1/ defines Cx„
as a subscheme of Pg�1.

(b) h0.L/ D 2. In this case, det.M2/ D q2 or `1`
3
2, where q and `1, `2 are

homogeneous polynomials of degree two and one respectively. Hence, either
q D

p
det.M2/ or `1`2 defines Cx„ as a subscheme of Pg�1.

Proof. We have seen in Corollary 6.2.5 that in case (a) the tangent cone is
nondegenerate. �

Remark 6.3.5. Smith and Varley in [SV02] have used Kempf’s theorem to
analyze the rank of quadric tangent cones in case (a). It is reasonable to expect
that the description of the tangent cone given in the corollary above will yield new
information. This is work in progress.
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