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Abstract

We identify the two minimal co-volume lattices of the isometry group of hy-
perbolic 3-space that contain a finite spherical triangle group. These two groups
are arithmetic and are in fact the two minimal co-volume lattices. Our results here
represent the key step in establishing this fact, thereby solving a problem posed
by Siegel in 1945. As a consequence we obtain sharp bounds on the order of the
symmetry group of a hyperbolic 3-manifold in terms of its volume, analogous to
the Hurwitz 84g — 84 theorem of 1892.

The finite spherical subgroups of a Kleinian group give rise to the vertices of
the singular graph in the quotient orbifold. We identify the small values of the
discrete spectrum of hyperbolic distances between these vertices and show these
small values give rise to arithmetic lattices. Once vertices are sufficiently separated,
one obtains volume bounds by studying equivariant sets.

1. Introduction

In 1945, Siegel [Sie43] [Sie45] posed the problem of identifying the minimal
co-volume lattices of isometries of hyperbolic n-space, or more generally rank-
1 symmetric spaces. He solved the problem in two dimensions, identifying the
(2,3, 7)-triangle group as the unique lattice of minimal co-area. Siegel in fact
proved what has come to be known as the signature formula from which one may
deduce the complete spectrum of co-areas of lattices of the hyperbolic plane. Kazdan
and Margulis [KM68] showed that for each 7, the infimum of the co-volume of
lattices is positive, answering a question of Selberg.
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At the time of Siegel’s result, the theory of covering spaces was not well
developed, and he could only suggest a connection between minimal co-area lattices
and Hurwitz’s 84g — 84 theorem of 1892 [Hur92], which bounds the order of the
symmetry group of a Riemann surface in terms of its genus. This connection
was confirmed by Macbeath [Mac61]. Selberg’s lemma [Sel60] established the
existence of torsion-free subgroups of finite index in hyperbolic lattices, among
other things. As a consequence of the Mostow rigidity theorem [Mos68], the
84g — 84 theorem takes its expression in terms bounding the order of the symmetry
group of a hyperbolic manifold by its volume. The hyperbolic manifolds with
maximal symmetry groups are the quotients of the minimal co-volume lattice by its
torsion-free normal subgroups. These manifolds and the associated factor groups
are studied in [CMTO06].

This paper is part of a series that solves Siegel’s problem in three dimensions:
the unique minimal co-volume lattice of H3 is the orientation-preserving subgroup
of the Z, extension of the tetrahedral reflection group with Coxeter diagram 3—5—3.
(Note too that it follows that this latter group is uniquely minimal co-volume if we
give up the orientation-preserving hypothesis.)

In fact, the key case of Kleinian groups with finite spherical subgroups is dealt
with here, see Theorems 10.1, 10.2 and 10.3 where we obtain the sharp bounds in
the case of the icosahedral, octahedral and tetrahedral groups, respectively. The
case of Kleinian groups with simple elliptic elements of order at least 4 is dealt
with in [GM98]. The elliptic elements of a lattice are those of finite order, and
“simple” means that the orbit of their fixed-point set (axis) forms a disjoint family
of hyperbolic lines; any elliptic of order 7 or more is automatically simple. In the
torsion-free case for our purposes, only elementary co-volume bounds are needed.
However, it is worth pointing out that in that case remarkable new bounds have been
obtained by Agol and Dunfield (see [ASTO7] for a proof) utilizing Perelman’s work.
They give 0.67 as a lower bound on the co-volume of any hyperbolic manifold,
which is quite close to the conjectured sharp bound 0.9427 attained by the Weeks
manifold. In the non-uniform case (that is, for lattices that are not co-compact)
the sharp bound 0.0846 attained in PGL(2, 03) is due to Meyerhoff [Mey86]. The
only remaining problem, dealt with in the sequel [MMO08], is essentially to obtain
lower bounds on the co-volume of lattices with only simple elliptics of order 2
and 3. In fact, these lattices are expected to have much larger co-volume than the
lattices identified in this paper, yet only marginally larger bounds are currently
known. Further, the proof in that case is completely different from the largely
geometric approach given here. It is much more closely allied with the results of
Gabai, Meyerhoff and Thurston on the topological rigidity theorem [GMTO3], as it
involves a significant computational component.



MINIMAL CO-VOLUME HYPERBOLIC LATTICES, I 125

Before getting down to details, many involving quite complex calculations in
hyperbolic trigonometry, let us sketch the basic idea of the proof. Definitions of the
terms used appear below in the body of the paper.

We start with a Kleinian group I' containing a spherical triangle subgroup G
isomorphic to either the icosahedral, octahedral or tetrahedral group. This subgroup
G stabilizes a point P € H?3, and the axes of rotation of the elements in G are in
general position. Let Q be the closest translate of P under '\G ={f el : f €G}.
Then Q is stabilized by an isomorphic spherical triangle group whose axes are
also in general position. In [GM94], [GMMR97], we show that the spectrum of
distances between the axes of rotation of elements of finite order in a Kleinian group
is initially discrete; either the axes intersect or they are definite distances apart. Thus
either some of the axes emanating from P and Q meet (possibly coinciding), or they
are uniformly separated. Those that meet do so at specific angles, and these facts
together force P and Q to be a definite distance apart. The sharp bounds on these
distances in each case is given in Theorem 9.1. The proof of this result occupies the
main body of the paper. This theorem then provides us with a hyperbolic ball Bs of
a definite size about P which is disjoint from all of its translates under I' \ G, and
so the volume of the quotient H3/ " exceeds that of Bs/G. Because G is finite and
stabilizes Bg, we have Vol(Bs/G) = Vol(Bs)/|G|. What we must do is carefully
analyze the geometry of the situation described to ensure that By is sufficiently
large so that the volume of Bs/G exceeds that of a known example. Of course this
is not possible in general. For instance, the inequality

Vol(Bs/G) > Vol(H3/T)

cannot hold for the minimal co-volume lattice since the translates of Bs cannot fill
hyperbolic space. To proceed from here, we show that configurations of spherical
points (points stabilized by spherical subgroups) in a discrete group that give rise to
a small ball Bg imply arithmeticity of the group I'. This is possible since we have
shown [GMMR97] that two-generator discrete groups are arithmetic if they are
generated by elements of finite order whose axes are sufficiently close. Once we
have determined a group to be arithmetic, we may calculate the minimal co-volume
group in which it embeds [GMMRO97]. We therefore eliminate small configurations
using arithmetic criteria until By is sufficiently large. In this way, we not only
identify the minimal example but are also able to identify all sufficiently small
co-volume examples as arithmetic.

It is somewhat of a curiosity to note that the small co-volume examples we
identify are arithmetic Kleinian groups generated by two elements of finite order
with trace fields of small discriminant. This is somewhat analogous to the two
dimensional situation with arithmetic triangle groups.
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Remarks. In a very nice geometric paper, Derevnin and Mednykh [DM88]
found the minimal distances between icosahedral points in a Kleinian group. Un-
fortunately, their methods do not appear to carry over to the case of the other
spherical triangle groups, and for our applications we need to know a little more
about the spectrum of distances between icosahedral points. However their paper
certainly served as an inspiration for our work here. We would also like to thank
the referee for carefully reading the paper and making many valuable suggestions
and corrections.

2. Kleinian groups

A Kleinian group T is a discrete nonelementary subgroup of Isom™ (H?), the
group of orientation-preserving isometries of hyperbolic 3-space H3. In this setting,
nonelementary means that I' does not contain an abelian subgroup of finite index.
A lattice is a Kleinian group I" for which H3/ T has finite volume.

The discrete finite subgroups of isometries of H3 are classified; see for instance
[Bea83], [Mas88], [Rat94]. They are the spherical triangle groups and the cyclic
groups: the fetrahedral group Aa, the octahedral group S4, the icosahedral group
As and the cyclic and dihedral groups Z, and D,. Apart from the cyclic groups,
each such group stabilizes a unique point in H3.

The orbit space of a Kleinian group & = H3/T is a hyperbolic 3-orbifold (or
manifold if T is torsion-free). The orbifold 2 is a manifold away from the singular
locus that consists of the projection to 2 of the fixed points of elements of I'. The
singular locus is a trivalent graph whose vertices are the projection to 2 of points
in H3 stabilized by a finite spherical subgroup. Thus we define a spherical point of
a Kleinian group I to be a point xo € H3 stabilized by one of the spherical triangle
subgroups A4, S4 or As of I'. We refer to such a point as a tetrahedral, octahedral
or icosahedral point, respectively.

In this paper, we give sharp lower bounds for the hyperbolic distance between
spherical points in a Kleinian group. Our results here are summarized in Theorem
9.1. This theorem yields sharp lower bounds for edge lengths in the singular set of
a hyperbolic 3-fold. We then use these estimates to construct equivariant sets about
the orbit of a spherical point that project to the quotient in a simple way. From this
we obtain co-volume estimates. Let us discuss the extremals for a moment; see
[GMMRO97] for details.

e I'g is the arithmetic Kleinian group obtained as a Z-extension of the index-two
orientation-preserving subgroup of the group generated by reflection in the
faces of the 3—5—3-hyperbolic Coxeter tetrahedron. I'¢ is a two-generator
group, generated by elements g of order 2 and f of order 5. The invariant trace
field of this group is Q(y) of discriminant —275, where y is a complex root
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of z* + 523 4+ 722 4+ 3z 4 1. The associated quaternion algebra is unramified
at finite places. If f is chosen to be primitive (tr( f) = £2 cos(z/5)), then

the group is uniquely defined up to conjugacy if we choose representatives in
PSL(2,C) so that tr[ f, g] —2 = y.

e ['; is a two-generator arithmetic Kleinian group generated by elliptic elements
of order 2 and 3. The invariant trace field of this group is Q(y) of discriminant
—283, where y is a complex root of z# 4+ 523 4 222 + z + 1. The associated
quaternion algebra is unramified at finite places. The group is uniquely defined
up to conjugacy if we choose representatives in PSL(2, C) so that tr[ f, g] — 2
= )/.

THEOREM 2.1. Let I" be a Kleinian group with a tetrahedral, octahedral or
icosahedral subgroup. Then

Vol(H3/T) = Vol(H3/T9) = 0.03905 and T'=Ty, or
Vol(H3/T) = Vol(H3/T';) = 0.0408 and T'=T;, or
Vol(H3/T) > 0.042.

For completeness we also recall earlier results from [GMO5], [GM99] and
[GMO8].

THEOREM 2.2. Let I be a Kleinian group and suppose that I" has a torsion-
free subgroup of index < 4 or that I contains an element of order n > 4. Then

(2.3) Vol(H3/T) > 0.041 > Vol(H3/T}).

Together, Theorems 2.1 and 2.2 imply that the only missing case necessary for
determining the Kleinian group of minimal co-volume is the case that the Kleinian
group does not have a torsion-free subgroup of index 4 and all the torsion is of
order 2 and 3. This is the problem solved in [MMO0S].

3. Preliminaries

We denote the hyperbolic metric of H3 by p(x, y) and view hyperbolic 3-space
H?3 as the upper-half-space of R3:

|]'|]3 = {(Xl,X2,X3) < RS X3 > 0}.

Other than the identity, there are three types of orientation-preserving isometries
of H3:
e parabolic: f is conjugate to the translation z — z + 1;
e elliptic: f is conjugate to the rotation z — Az with |A| = 1; and

e [oxodromic: f is conjugate to the dilation z — Az with |A| # 1.
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Loxodromic and elliptic transformations have two fixed points on the Riemann
sphere C = 9H3. For such g, the axis is the closed hyperbolic line joining these
two fixed points. If g is elliptic, then every point on its axis is fixed by g. If g is
loxodromic, then the axis is only setwise fixed.

We next recall some simple but needed facts about the spherical triangle groups.
Their proof is by elementary calculations in spherical trigonometry.

LEMMA 3.1. Let t5 3 and 13 3 denote, respectively, the angles subtended at
the origin between the axes of order 2 and 3 and the axes of order 3 of a spherical
(2,3,3)-triangle group. Then

cos(t2,3) = 1//3 and cos(tz3) = 1/3.

LEMMA 3.2. Let 03 3, 02,4 and 03 4 denote the angles subtended at the origin
between the axes of order 2 and 3, the axes of order 2 and 4, and the axes of order
3 and 4, respectively, of a spherical (2,3,4)-triangle. Then

cos(02,3) = /2/3, cos(02,4) = 1/\/5, cos(03,4) = 1/\/§.

LEMMA 3.3. Let iz 3, iz 5 and i3 5 denote the angles subtended at the origin
between the axes of order 2 and 3, the axes of order 2 and 5, and the axes of order
3 and 5, respectively, of a spherical (2,3,5)-triangle. Then

cos(iz,3) = % cos(/5), cos(iz5) = %csc(n/S), cos(iz 5) = % cot(mr/5).

4. Geometric lemmas

We next establish three results which will be useful in what follows. In
particular we establish the important formula (4.3) below giving a relation between
the lengths and angles at which two hyperbolic segments meet a pair of hyperbolic
lines in H?3. It was pointed out to us that this formula could also be proved, with
some care, using the three-dimensional hyperbolic trigonometric formula for a
right-angled hexagon given by Fenchel, [Fen89, p. 82].

The second and third results below allow us to analyze the relation between
the geometric quantities that occur in the first lemma so as to identify extremal
configurations.

LEMMA 4.1. Suppose that Ay and A, are hyperbolic lines in H3 with disjoint
pairs of endpoints z1, wy and z,, W2, and suppose that y is a hyperbolic segment of
length £ with endpoints p1 € A1 and py € Aa. If y forms angles of Y1 and vy with
the half lines of A1 and A, from py to z1 and p; to z3, respectively, then

(4.2) sin(yq) sin(y) cosh(€ + i) — cos(yr1) cos(V2) =2 (21, 22, wa, wy) — 1,
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where ¢ is the dihedral angle formed by the hyperbolic planes determined by the
segment y and the above half lines of A1 and A» and

(z1 —w2) (w1 — 22)
(z1 = z2)(w1 —w2)

Proof. By performing a preliminary Mobius transformation, we may assume
that y lies in the j-axis (the set of points {(0, 0, x3) : x3 > 0}) and that z; = q,
w1 = —b, 7 = ce'? and wy, = —d €'?, where a,b,c,d are real and positive.
By relabeling, we may also assume that ab < cd. Then p; = (0,0, vab) and
p2 = (0,0, ved), a consequence of the fact that the foot of the altitude of a right
triangle divides the hypotenuse into segments, the product of whose lengths is the
square of the length of the altitude. Hence

e:logﬁ, sin(yn) = 2090 gy ) = 200l

is the cross ratio.

(z1, w1, w2, 22) =

c+d’
from which it follows that
_a—b __c—d

cos(yp) = PE and cos(yp) = Td

Next
_cde'®+(ac+bd)+abe™'?
(21,22, w2, w1) = (a+b)(ct+d)

and

61 (P is
2(Zl,w1,w2,22)—1:2Cde +(a—b)(c—d)+2abe

(a+b)(c+d)
_+2J_2J_1(J_ ,¢+«/_b_,¢)+ —b c—d
a+b c+d 2\ Jap Jed a+bc+d
= sin(y1)sin(yp)cosh(€ 4+ i) — cos(yr)cos(yr2). O

Remarks. If y* is another hyperbolic segment of length £* that forms angles
¥y and ¥ with the lines A1 and A, as above, then

sin(y1) sin(¥5) cosh(l 4 i) — cos(¥7) cos(¥5)
= sin(y1) sin(yr2) cosh(£ 4+ i¢) —cos(¥1) cos(y¥2),

where £* and ¢* are the corresponding length and dihedral angle for y*. In
particular, if ¥ = ¥ = /2, we obtain the formula

4.3) sin(yr1) sin(y2) cosh(£ +i¢) — cos(y1) cos(y¥2) = cosh(§ +i6),

where § is the distance between the lines A1 and A, and 8 is the dihedral angle
determined by the lines A1 and A5 and their common perpendicular. If § = 0, then
A1 and A5 determine a hyperbolic plane, ¢ is equal to zero, 6 is the angle at which
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A1 and A, meet in this plane, and (4.3) reduces to

__cos(¥rq) cos(rz) +cos(0)
ohO) = sz

the second cosine law of plane hyperbolic geometry; see [Bea83].

We call § + i 0 the complex distance between the lines A1 and A5.
The next two lemmas will allow us to derive estimates for £ in terms of § from
4.3).

LEMMA 4.4. Suppose that
4.5) s cosh(u +iv) —c = cosh(x +iy),
where 0 < x,u <00, 0 <y,v<m/2and0 <s,c < 1. Then
(Hv=y;
(2) sinh(x) <s sinh(u), whence x < u;
(3) u is increasing in x and increasing in v for fixed y, s and c;
(4) u is decreasing in s and decreasing in c for fixed x, y and v.

Proof. Let z = cosh(x +iy) and w = cosh(u + iv). Then

(4.6) |z4+1|—|z—1] = |cosh(x +iy) + 1| — |cosh(x +iy) — 1]
= 2|cosh?((x +iy)/2)| —2|sinh?®((x +iy)/2)|
=2cos(y)

and similarly
4.7) lw+ 1| —|w — 1] = 2cos(v).

Thus to establish conclusion (1), it suffices to show that

4.8) w1 —|w—1] =z +1]—|z -1
whenever
4.9) sw—c=z forRe(w)>0and0 <s,c <1.

We do this in two steps.
Suppose first that ¢ = 0, fix w # 0, and let

f@)=lsw+1|—|sw—1] for0<s<I.
Then
(4.10) f(s) =

4Re(sw) < 2Re(w)
[sw+1|+[sw—1] = |w|



MINIMAL CO-VOLUME HYPERBOLIC LATTICES, I 131

and
_ slw|> +Re(w) s|w|?> —Re(w)

/
fs) = lsw + 1] lsw—1|
B —s|w|? f(s) + Re(w)(Jsw + 1| + |sw —1|)
N [sw+ 1] |sw —1|
- —s|w|?>(2Re(w)/|w]) + 25 Re(w)|w| _
- [sw+1||sw—1|
by (4.10). Thus f(s) is non-decreasing in s and

lz+1l=lz=1=f) = fD)=|lw+1|-[w-1]

for 0 < s < 1. This together with (4.6) and (4.7) implies conclusion (1) for the case
where ¢ = 0.
Suppose next that 0 < ¢ <1, s =1 and

0

w = cosh(u +iv) =cosh(x +iy)+c=z+c¢ for Re(w) > 0.

Then
lw+1|—|w—1|>|z+1|—|z—1],

and we again obtain conclusion (1) from (4.6) and (4.7). Now the inequality in (1)
follows for z = sw — ¢ with 0 < ¢, s < 1 from the two cases considered above by
replacing w with sw: in the second case, |z 4+ 1| —|z—1| < |sw + 1| — |[sw — 1],
whereas the first case gives [sw + 1| —|sw—1| < |w + 1| —|w —1].

Next (4.5) gives the two equations

@11 s cosh(u) cos(v) = cosh(x) cos(y) + c,

' s sinh(u) sin(v) = sinh(x) sin(y).
Hence sinh(x) = s(sin(v)/ sin(y)) sinh(#) < s sinh(u) < sinh(u), and we get
conclusion (2).

Fix the variables y, s, c. Then (4.11) defines u as a function of x and v. We
differentiate each equation implicitly with respect to x and solve for du/dx to
obtain

du _ cosh(u) cosh(x) sin(v) sin(y) +sinh(u) sinh(x) cos(v) cos(y) -0

dx s(cosh?(u)—cos2(v))
for x > 0. Thus u is increasing in x.

Next, differentiating the equations in (4.11) implicitly with respect to v yields

du _ cosh(u) sinh(x) sin(v) cos(y)—sinh(u) cosh(x) cos(v) sin(y) _ D

dv  cosh(u) cosh(x) sin(v) sin(y)+sinh(u) sinh(x) cos(v) cos(y) N
Then

cosh(u) sinh(x) = sinh(x — u) + sinh(#) cosh(x) < sinh(u) cosh(x)



132 FREDERICK W. GEHRING and GAVEN J. MARTIN

since x —u < 0, and
sin(v) cos(y) = sin(v — y) + cos(v) sin(y) < cos(v) sin(y)

since v —y <0. Thus N <0 < D for v > 0, and u is increasing in v.

Similarly, if we fix the variables x, y and v and if we then differentiate the
second of the equations at (4.11), we find du/ds = — tanh(u)/s < 0. Finally, with
a bit of manipulation (4.11) yields

tanh(u)(cosh(x) cos(y) + ¢) = cot(v) sinh(x) sin(y)

so that the right side is constant and du/dc = — sinh(u) /(s cos(v)) < 0. Thus u is
decreasing in s and decreasing in c. O

LEMMA 4.12. Suppose that 0 < a < /2 is a constant and that

@13) s1 cosh(u +ivy) —cy = cosh(x; +iy1),
' sp cosh(u + ivp) —co = cosh(xz +iy2), vi+va=a,

where 0 < xj,u <oo, 0<y;,v; <m/2and0<s;,c; <1forj=1,2. Thenuis
increasing in x1 and in x; for fixed s1, 2, ¢1 and c».

Proof. We fix x, and let yj, y, vary with x;. Lemma 4.4 applied to the
equations in (4.13) implies that

4.14) v1 <y1, vVa=<y3 Xx1<UuU, x3<Uu.

Next, if we differentiate the real and imaginary parts of the equations in (4.13) with
respect to x1, we obtain

du g v _ g 01
Sl(“laxl 5lax1)_“ S
Oou o 0vrY ALY
wrs) Sl(,Blaxl +a18x1)—5 +)/13xl,
' g i _ o 2
SZ(“Zaxl +ﬁ28x1)_ x;’
u _ . 0vi)_, 0y2
SZ('BZ 8x1 28)61) RE 8x1 ’
where
o; = sinh(u) cos(v;), i = cosh(u) sin(v;),
@.16) j (u) cos(v;) Bj (u) sin(v;)

yj = sinh(x;) cos(y;), d; = cosh(x;) sin(y;).
The equations in (4.15) imply that du/dx; = N/ D, where
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4N = (282 — B2y2)(yi + 83) = N1 N2,

D/s1 = (e1y1 + P161) (0282 — fay2) + (e2y2 — f282) (161 — P1y1)
= D1 Dy + D3 Dy.

Then from (4.14) and (4.16) we see that
N1 = sin(vy 4 y2) sinh(u — xp) — sin(va — y2) sinh(u + x2) > 0,
N, = cosh(2x1) —cos(2y;1) > 0,

and
D1 = cosh(u + x1) cos(vy — y1) —cosh(u — x1) cos(vy + y1) > 0,
Dy = sinh(u — x) sin(vy 4 y2) — sinh(u + x3) sin(vy — y2) > 0,
D3 = cosh(u + x2) cos(va — y2) — cosh(u — x3) cos(va + y2) > 0,
D4 = sinh(u — x1) sin(vy + y1) — sinh(u + x1) sin(vy — y1) > 0.

Thus N >0, D >0 and u is increasing in x; with x5 fixed. Of course, by symmetry
we must also have u is increasing in x, with fixed x;. U

5. (p.q,r)-Kleinian groups

A (p, ¢, r)-Kleinian group is a Kleinian group generated by three rotations of
order p, g, r about the edges of a hyperbolic triangle. In [GMO05] we determined all
of these groups and found various geometric constraints associated with them, in
particular the vertex structure of the Kleinian group and the edge lengths possible
for the hyperbolic triangle.

The relevance of these results is as follows. Suppose that I' is a Kleinian group
and suppose that two spherical points P and Q in H? are stabilized by subgroups
I'p and I'g of T, respectively, where I'p N I'g # Id. Geometrically, this means
that P and Q both lie on some common elliptic axis of I'p and I'g. In this case
we will say that P and Q have a common axis. We shall abuse notation and refer
to an axis of P or Q when we mean the axis of an elliptic element in I'p or I'g,
respectively.

Now if there is an axis of P that meets an axis of Q other than the common axis,
then the three elliptic axes form a hyperbolic triangle and the corresponding elliptics
generate a (p, ¢, r)-Kleinian group. Hence the distance p(P, Q) is bounded below
by the corresponding possible edge-lengths of the associated hyperbolic triangle as
computed in [GMOS].

We record the various possibilities in the following theorem. In all instances,
with the notable exception of S4, we shall see that these distances are the sharp
bounds.



134 FREDERICK W. GEHRING and GAVEN J. MARTIN

The reader is encouraged to work out a few simple examples of (p, ¢, r')-groups.
The key idea in determining discreteness is to analyze an obviously associated group
generated by reflection in the sides of a hyperbolic tetrahedron naturally formed
from the vertex stabilizers. The difficult cases occur when the dihedral angles are
not submultiples of w. The following tables occur as [GMOS5, Tabs. 4-9, §10],
where, in some cases, we have gleaned just a little more information from the body
of that paper. The values in these and subsequent tables are approximate, with the
implied accuracy. The same applies for values reported in theorems and text.

THEOREM 5.1. Suppose that P and Q are spherical triangle points lying on
a common axis 1) of order n, and suppose that an axis of P meets an axis of Q,
possibly on the sphere at infinity, other than the axis 1. If P is isomorphic to Ag
and if Q is isomorphic to A4, S4 or As, then the distance p(P, Q) is either one of
the 5 entries in the appropriate table below and 1 has the corresponding order n,
or p(P, Q) exceeds the 4th tabulated value or the 5th tabulated value in case the
orders of the 4th and 5th entry are the same.

(A4, Asg) (Aa, S4) (A4, As)
n p(P,0Q) n p(P,Q) n p(P,Q)
3 0.69314 3 1.01481 3 1.22646
3 0.76914 3 1.31696 3 1.62669
3 0.92905 3 1.43364 2 1.76110
3 1.0050 2 1.43796 3 1.87988
2 1.06128 3 1.49279 3 1.98339

Table 5.1 Table 5.2 Table 5.3

If P is isomorphic to S4 or As and if Q is isomorphic to S4 or As, then the distance
p(P, Q) is either one of the first 7 entries in the appropriate table below and 1 has
the corresponding order n, or p(P, Q) exceeds the 6th tabulated value or the Tth
tabulated value in case the orders of the 6th and Tth entry are the same.

(S4.,S4) (S4, As) (As, As)
on p2.9) n p2.9) n .0
4 1.06128 3 1.22646 5 1.38257
4 1.12838 3 1.98339 5 1.61692
3,4 1.31696 3 2.13275 3 1.90285
4 1.38433 2 2.27311 5 2.04442
4 148710 3 2.34868 5 2.16787
3 1.56680 2 2.35576 5 2.22404
2 1.70004 2 2.83641 2 2.82643

Table 5.4 Table 5.5 Table 5.6
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Remarks. The last entry in each table is either the next possible distance or
the smallest distance possible on a common axis with the given order. Most of the
distances are achieved in the orientation-preserving subgroups of groups generated
by reflection in the faces of a hyperbolic tetrahedron. We shall use this data later,
basically only in the cases (A4, A4), (S4, S4), and (As, As), and then only the first
few distances. The additional data is presented for completeness and also, should
the reader desire, it can be used to improve volume bounds in other special cases.

6. Complex distances between elliptic axes

In previous studies of Kleinian groups we described various portions of the
parameter spaces for discrete groups generated by two elliptic transformations f
and g. These results will be central to what follows. See, for example, [GMMR97],
[GM96], [GM99], [Mar98]. The complex hyperbolic distance § + i 6 between the
axes of f and g is a natural parameter in this space. It satisfies the relation

Ayifg)
BB

Here the complex numbers B( f), B(g) and y(f, g) are the trace and commutator
parameters for f and g, and are given by

6.2) B(f)=tu(f)?—4, Bg) =tu(g)’—4. y(fg)=u(fgf g~ -2

where tr(4) denotes the trace of the matrix C € PSL(C) that represents the Mbius
transformation /. See [GM96]. In Figure 1, we illustrate the disk-covering technique

(6.1) sinh?(§ +i6) =

Figure 1. Possible values for the commutator parameter y( f, g)
when f has order 4 and g has order 2.
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used to identify all discrete groups generated by elliptics of order 2 and 4 whose axes
are sufficiently close. For other similar examples, see the diagrams in [GMMR97,
§11].

What we see in Figure 1 is part of a slice through the one-complex-dimensional
space of discrete groups generated by two elliptics of the given order; it is somewhat
akin to the Reilly slice for groups with two parabolic generators. The disks contain
no commutator parameters for Kleinian groups other than those identified. For
instance, a disk about 0 most often arises from application of a classical inequality
such as Jgrgensen’s inequality [J@r76]. It is from such coverings that the following
lists are generated. We will want to improve this particular case subsequently, and
from this the reader should get a clear idea of how such pictures are generated. Note
that the symmetry in Figure 1 is about the axis {x = —1}.

We will need the following result.

THEOREM 6.3. Let I' = (f, g) be a Kleinian group generated by elliptic
elements of orders p, and q and let § 4 i 6 be the complex distance between the axes
of f and g. Then for each pair (p, q), where p = 3,4 and g = 2, 3, 4, the complex
distance § 4+ i0 either appears in the corresponding table (on this page or the next)
or the distance § is greater than the last real entry in the table.

(p=3,9=2)

(p=3,9=3)

s+i6

§+id

0.19707 +1i 0.78539
0.21084 4 0.33189
0.23371 41 0.49318
0.24486 41 0.67233
0.24809 +i 0.40575
0.27407 +i 0.61657
0.27465 +1 0.78539
0.27702 +1i 0.56753
0.27884 +1 0.22832
0.28088

0.39415+1i 1.57079
0.42168 +1 0.66379
0.46742 +1 0.98637
0.48973 + i 1.34468
0.49619 +1i 0.81150
0.54814 +1i 1.23135
0.54930 +1i 1.57079
0.55404 +1i 1.13507
0.55769 +1i 0.45665
0.56177

Table 6.1

Table 6.2

The corresponding commutator values then follow from (6.1) and these are the
identified points of Figure 1. Most of the complex distances § + i 6 in the above
tables occur when the group ( f, g) is arithmetic. See the tables in [GMMR97, §8].

Notice that there is an elliptical region in Figure 1 bounded by the curve given
by setting § to be a fixed constant and letting 6 vary. This ellipse is symmetric
across the real line and also across the line {z € C : Re(z) = —1}. In general,
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for two-generator groups with one generator of order two, there will be such a
symmetry in the space of discrete groups. We will use this symmetry to reduce the
space we must describe. For instance, suppose I' = ( f, g) with g of order two and
f not parabolic. Let & be an elliptic of order two whose axis is perpendicular to
the axis of g and passes through the point of the axis of g closest to the axis of f.
Then gfg ' =hfh™'. So (f.hfh™') = (f.gfg™ ') is discrete, and since ( f, h)
contains this group with index 2, it is also discrete. Thus { f, k) is Kleinian. We may
compute, using (6.1), that

y(f.h) =B(f)—v(f &)

since the axes of f and g are at the same distance of the axes of f and /4, but the
angle has been changed by /2. This equation shows the space of discrete groups
with one generator of order two is symmetric about the point 8( f)/2. Of course
complex conjugation is another obvious symmetry in our situation.

The reader will get an idea of how these values are identified as we now seek
to improve bounds in the case of lattices generated by elements of order 2 and 4 in a
special case. Namely, for a later application we wish to extend this for all complex
distances § + i 6 with § < 0.57 and |0| < /8.

(p=4,9=2)

S§+if

0.41572 +1i 0.59803
0.42698 +i 0.44303
0.44068 +i 0.78539
0.50495 +1 0.67478
0.52254 +1 0.34470
0.52979 +1 0.24899
0.52979 +1i 0.53640
0.53063

0.53063 + i 0.45227
0.53063 +i 0.78539
0.53264

(p=4,9=3)

(p=49=4

stif

§+if

0.54930 +i 1.57079
0.61759

0.83147 41 1.19606
0.85397 +1i 0.88606
0.88137 +1i 1.57079
1.00991 +i 1.34957
1.04509 +i 0.68940
1.05959 +i 0.49798
1.05959 +i 1.07281
1.06128

1.06128 +i 0.90455
1.06128 +i 1.57079
1.06528

Table 6.3

Table 6.4

Table 6.5

The first step in proving this extension is to identify all commutator parameters
from the identity at (6.1) corresponding to axial distances less than 0.53264 from
Table 6.3 with p = 4 and ¢ = 2. As y = 2sinh?(8§ £ 6) in this case, these are
given in Table 6.6. There we have used the symmetries described above to report
only those y-values for which Re(y) > —1 and Im(y) > 0.
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p=4 q=2, y=tu[fg]-2
§+id y

0.415724+1i0.59803 —0.5 +1i0.8660
0.42698 417 0.44303  —0.12254-7 0.7448
0.44068 47 0.78539 —1 +1i

0.50495+4170.67478 —0.6588 47 1.1615
0.52254 +1 0.34470 0.2327 41 0.7925
0.52979410.53640 —0.228141i1.1151
0.52979 47 0.24899 0.4196 + i 0.6062

0.53063 0.6180
0.53063 +i0.78539 —1 +1i1.2720
0.53063 +1i 0.45227 i

Table 6.6

Next we have the following polynomial trace identities, some of which can be
found in [GM92], [GM94]. The remainder can be obtained from directly multiplying
out the matrix representatives as in [GM94] by machine.

LEMMA 6.4. Let [ and g be elliptic transformations of order 4 and 2, respec-
tively. Set y = y(f, g). Then

y(8N)*e. ) =pi(y) =y(=1+y+7>>

y(8f)’g. [) = p2(¥) =V’ 2+ ).

v(@/)’ @/ e H=—2-ps(») =2+ Q+y)A+y>+7>)°

y((€)ef ) @f)e. ) =pa) =yQ+y)A+2y +y> +2y° +vH>%
The following lemma from [GM92] is a specialized case of a much more

general result.

LEMMA 6.5. Let f and h generate a discrete group, and suppose that f is
elliptic of order 4. Then there are elliptics g1, g» of order 2 such that { f, g;) is
discrete and

y(f.g)=v(fh), y(f.g2)=B(f)—y(f.h)=-="2—y(f h).

The proof of this lemma consists in identifying two different Z, extensions of
the group (f. hf h™!) generated by two elements with the same trace. These two
extensions will be two-generator groups with one generator of order two, namely g
or g» whose axes will be perpendicular. Further, y( f, g;) will exhibit the symmetry
about —1 = B(f)/2, as discussed earlier. We deduce the following corollary.
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COROLLARY 6.6. Let y = y(f, g) be the commutator parameter for a discrete
group generated by elliptics of orders 4 and 2, respectively. Then p;(y) fori =
1,2, 3,4 is also the commutator parameter for such a discrete group.

In what follows, all calculations are carried out to 10 digits and typically we
report just the first four or five. We can now prove this:

THEOREM 6.7. Let § + 16 be the complex distance between the axes of elliptic
transformations [ and g of orders 4 and 2, respectively, in a discrete nonelementary
group. If § < 0.57 and |0| < 7/8, then § +i0 is one of the four values

0.5306, 0.52254 41 0.34470, 0.52979+41i0.24899, 0.56419 +i 0.39269.

Moreover, only in the second case does the complex distance § + i (/4 — 0) not
occur for a discrete group.

Proof. The last statement as well as the theorem follows for § < 0.532 from
our tables. In the y plane, the curves of constant distance § are ellipses and the
curves of constant angle 6 are hyperbolas. Table 6.6 identifies all the commutators
inside the upper-right quarter of the ellipse

€1 =1{z:]z4+2|+|z|] <2cosh(2x0.53264)}.
We want to identify all commutator values inside the ellipse
€ =1{z:|z+2|+|z| <2cosh(2x0.57)}

with the proviso that |#| < 7/8. These two ellipses and the hyperbola are identified
in Figure 2 along with the commutator values.
We now describe what the disks are in that figure.

%

Figure 2. Enlarged ellipse with hyperbola |6| < /8.
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We claim that for each disk B; and associated polynomial p; listed above at
Table 6.7 and given in Lemma 6.4, we have p; (B;) € €;. To see this, one verifies
the inequality | p; (z) + 2| + | p; ()| < 3.24628 = 2 cosh(2 x 0.53264) for z € 0B;,
a one dimensional calculus problem which is computationally quite simple. These
polynomials are open maps and thus the image of the disk is bounded by the image
of its boundary. If this boundary is in the ellipse, then so is the image disk.

According to Corollary 6.6, only the preimages of 0, —1, —2 (the commutator
values of the elementary discrete groups) together with the preimages of the com-
mutator values already listed in Table 6.6 (and their symmetric points) could be the
commutator values for discrete groups. Therefore we compute all the preimages of
these points and decide which of these are in €5 \ €1 with 0 < 6 < /8. Most are
not, but occasionally some such values occur. Let us examine the case of the disk
Bs. The image of B3 under the polynomial p, contains six points,

-1, =2, —1+i, —=1.5+i0.8660, —1.8775+i 0.7448, —1.3412 4 1.1615.

Each of these points has a symmetric image appearing in Table 6.6. For example,
—1.541i 0.8660 is the complex conjugate of —2—(—0.5+i 0.8660), and —1.3412+
i 1.1615 is conjugate to —2 — (—0.6588 + i 1.1615). The points —0.5 4 i 0.8660
and —0.6588 +i 1.1615 lie in that table. We must examine which of the preimages
in B3 of these six points lies in €,. For instance, of the four preimages of —1, only
zo = 0.419643 + i 0.606291 lies in the disk, and this is a point already identified
in Table 6.6 as lying in €. The point z’ = 0.643309 + i 0.583691 lies in B3 as the
preimage of a point symmetric to —0.6588 +i 1.1615. We see that |z + 2|+ |z/| =
3.57563 is slightly outside of €5, as are all other such points. Thus (€, \ €1) N B3
contains no additional y-values corresponding to discrete groups.

Similarly, none of the other disks except B¢ contains new y-values for Kleinian
groups either. The fourth value of Theorem 6.7, 0.56419 47 0.39269, occurs when
we consider the disk Bg. Here y = 0.2071067 4+ 0.97831, a root of the polynomial
p4. This y-value is actually that of an arithmetic lattice (according to the criteria of
[GMMR97]) whose co-volume is approximately 1.032.

disk polynomial
B, = B(0.6180,0.319) p1(2)
B, =B(0.7+1i 0.3,0.25) p1(2)
B; =B(0.5+1i 0.6,0.154) p2(2)
B4 = B(0.4 41 0.75,0.093) p2(2)

Bs = B(0.23278 +i 0.79255,0.162)  p3(z)
Be = B(0.20710 + i 0.97831,0.084)  pa4(z)

Table 6.7. Disk-covering.
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All that remains to be checked is that the union of the preimages of these disks
and their complex conjugates covers the region between the ellipses. This is again
another computationally straightforward calculation. O

The reader can find a direct application of this result below. It identifies the
three closest octahedral points on a common axis of order 4.

7. Spherical points on a common axis

In this section we shall identify the first few values of p(P, Q) when P and Q
are spherical points on a common axis. We deal with the cases where P and Q are
pairs of tetrahedral, octahedral and icosahedral points separately. The most difficult
case is where P and Q are tetrahedral points on a common axis of order 3. We
consider this case first and give the argument in some detail. The proofs in all the
other cases are quite similar and, in the interests of brevity, we leave it to the reader
to fill in some of the details.

Tetrahedral points on a common 3 axis. If P and Q are tetrahedral points on
a common elliptic axis 7 of order 3, then we can choose another elliptic axis o3
of order 3 from Q that comes as close as possible to P. The point Q lies in the
boundary of some fundamental region for the action of I'p on H> formed by all
hyperbolic rays from P passing through a (2, 3, 3) spherical triangle on a small
hyperbolic sphere about P. An initial segment of 3 lies in one such region whose
“edges” consist of the axis 7 and elliptic axes B, of order 2 and 3 of order 3 from
P. The angle between 8 and B3 at P is 12 3.

Suppose first that a3 meets B; for j = 2 or 3. Then the elliptics corresponding
to a3, B; and 1 generate a (p, g, r)-Kleinian group and the estimates of Table 5.1
imply that

(7.1) p(P,0)=0.6931 or p(P,Q)=>0.7691.

This is illustrated in Figure 3.

Figure 3. Tetrahedral points on common order 3 axis.
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Suppose next that 3 does not meet 8, or B3, and let ¢; be the dihedral angle
formed by the two hyperbolic planes containing n U a3 and n U B;. Then ¢ + ¢3
is the dihedral angle between the hyperbolic planes containing n U 8, and n U B3,
and hence ¢» 4 ¢p3 = /3. Next let §; +i6; be the complex distance between a3
and B, let y C n be the hyperbolic segment joining P and Q, and let £ = p(P, Q).
Then we obtain the two equations

cos(t2,3) cos(t3,3) 4+ cosh(d2 +i6-)
sin(72,3) sin(73,3)

cos(?3,3) cos(t3,3) + cosh(83 +i63)
sin(#3,3) sin(#3,3)

cosh({ +i¢y) =

l

(7.2)

cosh({ +i¢3) =

from (4.3), where, by Lemma 3.1,

1 . 2 1 . 8
cos(t2,3) = Vel sin(f2,3) = % cos(133) = 3. sin(f33) = \/T_

Either equation in (7.2) yields p(P, Q) = £ if we know the corresponding
complex distance 65 +i65 or 63 +i63. These two equations together also determine
£ if we know both real distances &, and 63. From each of the two complex equations
(7.2), we may eliminate the angle 6; to obtain the two real equations

(4 cosh({) cos(¢a)—1 )2 + (4 sinh(£) sin(¢2) )2 _27

cosh(d2) sinh(47)
8 cosh({) cos(¢p3)—1\2 , (8sinh(£) sin(¢h3)\> _
( cosh(83) : ) + ( sinh(83) : ) =81

In particular, £ = 0.72093 if §, = 0.28088 and 63 = 0.56177. Lemma 4.12 then
implies that

p(P, Q) >0.72093 if §, > 0.28088 and 83 > 0.56177.

The following tables give the values of £ for all possible complex distances
with 8, < 0.28088 or 83 < 0.56177. See Tables 6.1 and 6.2. Hence in order to
conclude that £ > 0.72093 in general, we need only show that for each entry with
£ < 0.72093 in Tables 7.1 and 7.2, the corresponding group generated by the three
elliptics whose axes contain the lines 7, a3 and one of B, or 83 is not discrete.
However, sometimes it happens that these three elliptics do generate a discrete
group. This will then give another example of tetrahedral points on a common axis
of order 3. These lead to the exceptional cases in Theorem 7.4 below. We shall give
examples of both types of occurrences.

For this suppose that f, g, g3 and & are respectively the elliptics of orders
3, 2, 3 and 3 with a3, B2, B3 and 7 as their axes (be aware this differs from the
notation used earlier). Then

v(f.g7) = B(f)B(gj)sinh*(&; +i 6;). y(fih)=-2. y(gj.h)=-2
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by (6.1), and the group ( f, g;, /1) is determined up to at most two conjugacy classes
by these numbers and the orders of f, g; and &. See [Cao94]. An important point
here is that it is possible that one conjugacy class corresponds to a discrete group
while the other does not. This was first observed by Cao in [Ca094] and we will see
further examples here.

For each complex distance §; + i ¢; in Tables 7.1 and 7.2 with £ < 0.72093,
we construct matrix groups corresponding to each conjugacy class. Cao gives the
requisite equations to solve, and also identifies the two conjugacy classes arising
from the various choices of square roots. We then can find in each of these groups
an element that, together with one of the elliptic generators, will not generate a
discrete subgroup, or we establish discreteness. First, the entry £ = 0.66217 in
Table 7.1 is easily eliminated as we know the group in question to be the 3—5—3
Coxeter group where tetrahedral vertex stabilizers do not occur on a common axis
of order 3.

Let us work through two further examples carefully.

Example. 63+ i 63 = 0.39415 4 1.57079 and £ = 0.44329.

Actually this case again corresponds to the 3—5—3 group, but we deal with it
in a more general fashion. Following [Ca094], we construct the matrix groups (with
entries reporting the first 3 decimal places)

Fo 5 i.866 o 5 —.583 (53740779 —.267+1i .180
“lises 5 ) "T85 )TN\ 26740396  462—i 779

o 5 i.866 o 5 —.583 _( A462+4i.779 267+i.180
T=\ises 5 ) "T\128a 5 )BT\ _2674i39 537-i.779 )

p=3,9=2 p=3,9=3
8y i 6y { 53 +i 03 {
0.19707 +i 0.78539 0.66217 0.39415+i 1.57079 0.44329
0.21084 4+ 0.33189 0.97406 0.42168 +i 0.66379 0.64244
0.23371 4+ 0.49318 0.90652 0.46742 +i 0.98637 0.59281
0.24486 +i 0.67233  0.79369 0.48973 +i 1.34468 0.56579
0.24809 + i 0.40575 0.95396 0.49619+i 0.81150 0.66763
0.27407 +i 0.61657 0.84965 0.54814 +i 1.23135 0.64266
0.27465 +i 0.78539 0.72227 0.54930+i 1.57079 0.61382
0.27702 4+ 0.56753  0.88220 0.55404 +i 1.13507  0.66209
0.27884 +i 0.22832 1.02137 0.55769 +i 0.45665 0.83001

Table 7.1 Table 7.2
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We then compute that in each case f, g; and & all have order 3, that

y(f.h) =—-2.6180 and y(f g)=y(gi h)=-2

and, using [Ca094] again, that we have identified distinct conjugacy classes. Notice
above that in fact hg; is elliptic of order two while kg5 is elliptic of order three.

Now we want to show both of these groups are not discrete. To do this, we
observe that

y(h, fg1) = —2.0354+i0.4921 and y(h.g»f) = —2.0354—i 0.4921

and that fg; (and hence g; 1) is elliptic of order 2 in both cases. The complex
distance between /# and fgy in the first case and 4 and g5 f in the second case is
then 0.1708 +i 0.9572 by (6.1); this, however, is not possible in a discrete group as
shown in Table 7.2.

Example. 63 +1i 03 =0.421686 + i 0.663791 and £ = 0.64244.
As above we construct the matrix groups

5 i.866
f_(i.866 5 )

5 =813 +1i 1.039) ( 492 41 813 —.094 4 .355)
9 1 =

b .094417.221 .507—1i .813

- ( 3494 447 5
and

W (5 349 447 ([ 816+i.769 —.587—i.125
27\ 813-i1.039 5 © 827\ 58747703 183—i.769 )

We again check in each case that f, g; and h; have order 3, that
(7.3)  y(f.hi) =-0.75183 +i 1.03398 and y(f, gi) =y(gi.hi)=-2

and that we have identified distinct conjugacy classes.

Next we check discreteness. First note f~!gy is elliptic of order 3 and that
y(h1, f~1g1) =—2.437—i 0.5247, which is not the commutator value for a discrete
group with a generator of order 3 as per Table 7.1. Thus ( f, 1, g1) is not a discrete
group, and we turn to consider the second group. Then, running through the first
few words in the group and calculating commutator values for the group ( f, /2, g2)
does not lead immediately to a contradiction to discreteness. We must therefore
consider the possibility this group is discrete.

We have already identified in [GMMRY97, Th. 8.2] the group generated by
elements ¥ and v of orders 3 and 2 with y(u, v) = —0.2118 +i 0.4013 as a discrete
arithmetic lattice. The subgroup of index at most two generated by u and vuv ™!
has y(u,vuv™1) = y(u, v)(y(u,v) + 3) = —0.7515 + 1.0339i. This number,
already identified at (7.3), determines the group uniquely up to conjugacy, and so



MINIMAL CO-VOLUME HYPERBOLIC LATTICES, I 145

we deduce I' = (f, &) is a discrete arithmetic lattice generated by two elements
of order 3. We consider the group (u, v), since it is easier to use our techniques
obtained from the polynomial trace identities in groups with one generator of order
2. We seek w € (u, v) of order 3 so that y(u, w) = —2 and y(v, w) = —3. Then
(u, w) is a tetrahedral point, and w meets the axis of v at right angles, so the group
(u, vuv~!, w) is the three-generator group we seek. The most likely place to look
for w is among the conjugates of u. Indeed, put y = vu~!(vu)3v and w = yuy 1.

With the choice of matrix representatives

( S i .866) ( 0 —.2638—1 .7657)
u= and v= ;

1.866 .5 4022 —11.1673 0
we compute
_ —0.8164—10.7698 —0.5877—1i 0.1256
- 0.5885 +170.7031 —0.1835+10.7698
and

y(u,v) =—-0.2118470.4013, yu,w)=-2, y(,w)=-3.

This shows us that there is a discrete group with tetrahedral points on a common
axis of order 3 at a distance 0.642446 and that this distance is uniquely obtained in
an arithmetic Kleinian group.

Fortunately, for all the other candidates coming from Tables 7.1 and 7.2 for
us to consider, it is not difficult to show that there are no more discrete groups by
using essentially the same words to generate a contradiction.

We thus obtain the following result.

Theorem 1.4. Suppose that P and Q are tetrahedral points in a Kleinian group
on a common axis of order 3. Then

(1) p(P, Q) = 0.6424 and the extremal is the arithmetic Kleinian group I'3 4 of
[GMMROI7], or

(2) p(P, Q) = 0.6931 and the extremal is the arithmetic orientation-preserving
subgroup of the tetrahedral reflection group I'>7 of [GMOS5], or

(3) p(P, Q) > 0.7209.

Tetrahedral points on a common 2 axis. We consider next the case where we
have two tetrahedral points on a common axis of order 2. The bound we obtain
is a consequence of results from the next section and the following surprising
phenomenon.

THEOREM 7.5. Suppose F and G are tetrahedral groups that stabilize the
points P, Q € H3, and suppose that the group that they generate, ' = (F, G), is
discrete. If P and Q lie on a common axis of an element of G N F of order 2, then
there are octahedral groups Op and O¢ such that
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(1) FCOpand G C Og,
(2) Op and Og have a common axis of order 4, and
(3) the group generated by Op and Og, (Op, Og), is discrete.

Proof. Let g denote the common element of F and G of order 2, and let &
be an elliptic element of order 4 with axis(k) = axis(g). Then (G, h) = Op and
(G,h) = Og are discrete groups isomorphic to the octahedral group. Since every
elliptic of order 3 in Op lies in G, it is clear that

(1.6) hGh'=h"'Gh=G, hFh '=h"'Fh=F, h>=geGNF.

These equations imply that the group (G, F, h) contains (G, F') with finite index
since one can slide all the /’s to one end using the above relations in the obvious
fashion. Since the latter group is discrete, so is the former. O

The following is an immediate consequence of the above result and our de-
scription of the distances between octahedral points on a common axis of order
4.

COROLLARY 7.7. Let P and Q be tetrahedral points of a Kleinian group on a
common axis of order 2. Then

(1) p(P, Q) =1.0595, or

2) p(P, Q) =1.0612, or

(3) p(P, Q) =1.12838, or

@) p(P,0Q)>1.14.

Each value is uniquely achieved in a two-generator arithmetic Kleinian group.

The extremals for the above result are described in Theorem 7.8. Arithmeticity
follows here from the arithmeticity of the extremals in the octahedral cases and our
observation that the extremals for the tetrahedral case have finite index in those of
the octahedral case.

Octahedral points on a common 4 axis. Suppose that P and Q are octahedral
points of a Kleinian group I" lying on a common axis of order 4. Since the axes of
distinct elliptic elements of order 4 meet at right angles at finite points, the common
axis of order 4 is actually a common perpendicular between two elliptic axes of
order 4, one from I'p and the other from I'g. Moreover, at each vertex there are a
pair of elliptic axes of order 4 orthogonal to this common perpendicular. Therefore
in such a group I' we must have complex distances between axes of order 4 of the
form § +i6 and § +i(w/2—6), 0 < /4. The only such entries in Table 6.5 are the
complex distances 1.05959+i7 0.49798 and 1.06128. Further, for any such pair there
will be an elliptic of order 2 at complex distance %(8 +i6) and %(8 +i(7/2-0)),
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either of which together with either elliptic of order 4 perpendicular to the common
order 4 axis generates a discrete group, usually containing the first group with
index 2. Thus the angle 6 between the elliptics of order 2 and 4 can be chosen
with 0 < 6 < /8, and correspondingly there is another angle at 7w /4 — 6. From
our improved disk-covering in Theorem 6.7, we immediately deduce the following
result.

THEOREM 7.8. Suppose that P and Q are octahedral points of a Kleinian
group on a common axis of order 4. Then

(1) p(P, Q) = 1.0595 and the extremal is an arithmetic group generated by
elliptics  and g of orders 2 and 3 with commutator parameter y(f,g) =
—0.5803 +i 0.6062, or

2) p(P, Q) = 1.0612 and the extremal is an arithmetic Z,-extension of the
orientation-preserving subgroup of the tetrahedral reflection group I'; in

[GMOS5], or

(3) p(P, Q) = 1.1283 and the extremal is an arithmetic Z,-extension of the
orientation-preserving subgroup of the tetrahedral reflection group 'y in

[GMO5], or
4 p(P,Q)>1.14.

Octahedral points on a common 3 axis. Suppose that P and Q are octahedral
points on a common axis 1 of order 3. We argue as in the case where P and Q were
tetrahedral points on a common axis of order 3. There is an elliptic axis a4 of order
4 from Q coming as close as possible to P. Choose B, of order 2 and B4 of order 4
from P as before. The angle between B, and B4 at P is /4.

If a4 meets some B, then we have formed a (p, ¢, r)-Kleinian group and the
estimates in Table 5.4 imply that

(790 p(P,0)=13169, p(P,0)=1.5668 or p(P.Q)> 1.7000.

If o4 does not meet some f;, let ¢; be the dihedral angle between the two
hyperbolic planes containing 7, o4 and 1, 8;. Then as before ¢ + ¢4 = /3 is the
dihedral angle between the hyperbolic planes containing 7, 8> and 1, 4. Next let
8; +16; be the complex distance between a4 and ;. Then

c0s(02,3) c0s(03,4) + cosh(82 +i62)
sin(02,3) sin(03,4)

c0s(03,4) cos(03,4) + cosh(d4 +i64)
sin(03,4) sin(03,4)

cosh( +i¢y) =

’

(7.10)
cosh({ +igs) =

’

by (4.3), where
cos(02,3) = sin(03,4) = ﬁ/ﬁ and sin(02,3) = co0s(03,4) = 1/\/5.
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These equations imply that £ = 1.60306 if 6, = 0.53264 and §4 = 1.06528.
Hence, by Lemma 4.12, £ > 1.60306 if §, > 0.53264 and §4 > 1.06528.

As before we use equations (7.10) to calculate £ for the complex distances
82 +1i 65 and 4 + i 64 given in Tables 6.3 and 6.4. We then examine the groups
(f.gj,h), where f, g;, h are the elliptics with o, B, n as their axes. It turns out that
the groups that correspond to complex distances § + i 8; with £ < 1.6004 are not
discrete.

We thus obtain the following result.

THEOREM 7.11. Suppose P and Q are octahedral points in a Kleinian group
on a common axis of order 3. Then

(1) p(P, Q) = 1.3169 and the extremal is the orientation-preserving subgroup of
the tetrahedral reflection group I'25 in [GMOS5], or

(2) p(P, Q) = 1.5668 and the extremal is the orientation-preserving subgroup of
the (3—4—4-3) tetrahedral reflection group ' in [GMOS5], or

(3) p(P, Q) > 1.6004.

Octahedral points on a common 2 axis. We argue again as above using elliptic
axes a4 of order 4 from Q and 3 and B4 of orders 3 and 4 from P. If a4 meets a
B;, then

(7.12) p(P, Q) = 1.7000

again by Table 5.4. Otherwise, let the dihedral angles ¢; be as defined earlier, and
let 6; 4 i 6; be the complex distance between o4 and ;. Then ¢3 + ¢4 = 7/2 and
we obtain the equations

cos(02,3) cos(02,4) + cosh(83 + i 03)

713 cosh({ +ig3) = sin(02,3) sin(02,4) ’
cosh(€ -+ i) = SO3(02:4) 08(02.4) + cOsh(d4 +i0a)
sin(02,4) sin(02,4) ;
where

c08(02,3) = V/2/+/3, sin(02.3) = 1/4/3,  cos(02.4) = sin(02,4) = 1/4/2.

Equations (7.13) imply that £ = 1.79021 if §3 = .61759 and §4 = 1.06528 and
hence that £ > 1.79021 if d3 > .61759 and d4 > 1.06528.

Once more we consider the possible complex distances between the axes o4
and B3, B4 in Tables 6.4 and 6.5 and eliminate those with £ < 1.79021 by means of
a discreteness criterion. This together with (7.12) establishes this result:

THEOREM 7.14. Suppose P and Q are octahedral points in a Kleinian group
on a common axis of order 2. Then
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(1) p(P, Q) = 1.7000 and the extremal is the orientation-preserving subgroup of
the (3—4—4-3) tetrahedral reflection group T's of [GMOS5], or

@) p(P, Q) > 1.7902.

Icosahedral points on a common 5 axis. Derevnin and Mednykh’s geometric
results [DM88], mentioned in the introduction, give the sharp results in all situations
here when there is a common axis of order 2, 3 or 5. However we must extend one
of their bounds slightly to find the next extremal in the case of a common axis of
order 5. The methods are entirely as above, and we choose axes o3 of order 3 and
B2, B3 of orders 2, 3. The dihedral angle sum is ¢» + ¢3 = 7/5, and proceeding as
before we obtain the two equations

cos(iz,s) cos(i3,s5) + cosh(d2 +i62)
sin(iz,5) sin(is,5)

cos(iz,5) cos(iz,5) + cosh(dz +i63)
sin(i3,5) sin(i3,5)

cosh({ +i¢y) =

’

cosh({ +i¢g3) =

’

where §; + i 0; is again the complex distance between a3 and ;. These equations
imply that £ > 1.97047 whenever d, > .28088 and d3 > .56177. For the last time
we run through the possible complex distances between o3 and f,, B3 in Tables
6.1 and 6.2 and eliminate all those with £ < 1.97047 using a discreteness criterion.
This, together with the lesser values of (p, ¢, r)-Kleinian groups in Table 5.6, yields
the following result.

THEOREM 7.15. Suppose P and Q are icosahedral points in a Kleinian group
on a common axis of order 5. Then

(1) p(P, Q) = 1.3825 and the extremal is an orientation-preserving subgroup of
the (3—5=23) tetrahedral reflection group I'1 of [GMOS, Tab. 9], or

(2) p(P, Q) = 1.6169 and the extremal is the orientation-preserving subgroup the
tetrahedral reflection group 'y of [GMOS5, Tab. 9], or

3) p(P, Q) > 1.9704.

8. Spherical points not on a common axis

We derive here bounds on the distance between spherical points not on a
common axis.

Tetrahedral points not on a common axis. In this section we shall identify the
smallest possible distance between tetrahedral points P and Q not on a common
axis. Let

£, =infr p(P, Q).
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where the infimum is over all Kleinian groups I' containing distinct tetrahedral
points P and Q not on a common axis. Examples show that £; < oo, and since the
space of discrete nonelementary groups is closed, we can choose a Kleinian group I
that contains tetrahedral points P and Q with p(P, Q) = £;. The bound £; > 1.059
will be enough for our purposes, and so we may assume that £; < 1.059 and see
where this leads us. Let s; = 1.059, and note that this is the minimal distance
between tetrahedral points on a common axis of order two; see Corollary 7.7. Let y
be the hyperbolic segment joining P and Q, set G = I'g and F' = I'p, and consider
small hyperbolic spheres ¥ r and ¥ about P and Q. Then X is stabilized by F
and X g by G. Since F tessellates X by (2, 3, 3) spherical triangles, y must pass
through one such triangle but, by assumption, not a vertex. Thus there is an elliptic
element of order 3 in F whose axis a3 comes as close as possible to Q and forms
the angle 0 < ¥p <t 3 with y. There is a similar elliptic element of order 3 in G
with axis B that forms an angle 0 < Yo <t 3 with y.

Notice that if ¥p or Yo were to equal 75 3, then P O would have to be the axis
of an elliptic of order 2 contrary to assumption. We shall use this observation to
improve our bounds on ¥ p and Yo a little. Let ¢ be the angle formed between y
and the axis o of the elliptic g of order 2 at P that comes closest to Q. See Figure 4.

Now Q and g(Q) are tetrahedral points. If they are on a common axis then by
Theorem 7.4 and Corollary 7.7, we may assume p(az, Q) > to = 0.7209/2, unless
we are in a configuration arrived at in one of the two extremals for tetrahedral points
on a common order 3 axis. Let us set aside these cases (where the extremal will
occur) for the moment. Then, using hyperbolic trigonometry on the right triangle
formed by P, Q and the point on «» nearest 0, we get

8.1 sin(¢) = sinh(#9)/ sinh(¢;), and so ¢ > 0.2946.

If Q and g(Q) are not on a common axis, then

(8.2) sin(¢) > sinh(€;/2)/ sinh({;) > sinh(s;/2)/ sinh(s;) = 0.4371.
Thus ¢ > 0.2865 in both cases.

*9(Q

Figure 4. Tetrahedral points with no common axis.
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Spherical trigonometry then shows that if y lies outside the angular disk
{¢ > 0.2865} about the right-angled vertex in the spherical (2,3,3) triangle it passes
through, then

(8.3) Yp <0.7714 = .

This value is achieved at the midpoint of the angular arc on the boundary of the
disk {¢ > 0.2865} and is maximal since o3 was chosen closest to Q, and therefore
the angle ¥ p between y and a3 is smaller than the angle between y and any other
elliptic of order 3 emanating from P, and in particular less than the angle to the
other vertex of the (2,3,3) triangle. Similarly ¥ ¢ < ¥ by symmetry.

Remark. At this point we have to make an observation we will use later in a
special case. If we know apriori that p(P, Q) > 0.815, then we find, following the
arguments we used to get (8.2) and (8.3), that ¢ > 0.333 and

(8.4) Vp, Yo <0.7442.

We also remark that clearly (8.2) continues to hold for £ < 1.0709, the bound we
shall obtain later.

Suppose now that a3 and § intersect at the point R. If R is not a finite point,
then o and S meet on the Riemann sphere at angle 0,

cos(Yp) coS(WQ) +1 _ cos(yo) cos(o) + 1
sin(yp) sin(y o) sin(vo) sin(v/o)

and hence p(P, Q) > 1.827175. If R is a finite point, then R is fixed by a spherical
triangle group H. Now G and H and also F and H are spherical triangle groups
on a common axis. Thus the distances p(P, R) and p(Q, R) are bounded below by
those bounds given in the previous section. The worst case where the distances are
smallest is easily seen to be when H = A4. The angle formed between the order
3 axes « and B at R is t3 3 or m —t3 3. Again we set aside the two extremal cases.
Thus £p g = p(P, R) and Lo g = p(Q, R) can be both assumed to exceed 0.7209.
We consider the two angles separately. If the angle of intersection of the two axes is
13,3, then we apply the second cosine law of plane hyperbolic trigonometry to get

cosh(;) = (cos(¥p) cos(Yg) + cos(13,3))/ (sin(Yp) sin(9))
= (cos(o) cos(vo) + 1/3)/(sin(yo) sin(Yo)) = 1.7851.

Otherwise the first cosine law yields

cosh(p(P, 0)) = =3.1777,

cosh({;) = cosh({p,g) cosh({g, gr) + sinh(£p g) sinh(£ g, g) cos(3,3)
> cosh?(fo) + sinh?(t9) /3 = 1.8542.

We deduce in either case that £; > s;.
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Suppose next that & and 8 do not meet. Then

(8.5) sin(yp) sin(y o) cosh(¢; +i¢) —cos(¥p) cos(¥ o) = cosh(d +i6)

by (4.3), where § 4 i 0 is the complex distance between « and 8 coming from Table
6.2. Next Lemma 4.4 implies that we get a lower bound for ¢; if we consider the
case where Y p = Yo = ¢ while keeping § 4 i 6 fixed (or one can see this directly
from the geometry). We check through the various possibilities for § + i 6 for small
values of §. This time we obtain £; > 1.3 except in the case of the 3—5—3 reflection
group, which we also set aside. Thus there is no need to prove certain groups are
not discrete, and we may assume that § > 0.561 by the tables of complex distances
in Section 6, specifically Table 6.2. Hence

sinh(§)

IO — 12158
sin® (o)

(8.6) sinh(¢) >
by Lemma 4.4, and we have proved that if P and Q are tetrahedral points of a
Kleinian group that do not lie on a common axis, then p(P, Q) > 1.026 unless
P and Q together generate a subgroup of either of the two extremal groups for
tetrahedral points on a common axis of order 3 or the 3—5—3 reflection group.

We now complete our analysis of the situation of tetrahedral points not on
a common axis by examining the cases we have left aside. In particular the two
reflection groups are eliminated simply by constructing the tessellation about any
one of the vertices and looking at the nearest points. Using a little geometry we find
in the 3—5—3 reflection group tetrahedral subgroups of the icosahedral points on
a common axis of order 5. This distance is 1.3825. While for the 3—3—6 group,
if we consider the closest tetrahedral points on a common axis, say P and Q,
and take the elliptic g of order 2 coming from Q as close as possible to P, this
distance is arcsinh(+/2 sinh(0.6931)/+/3) = 0.57936. Therefore p(P, g(P)) =
1.1587 is a distance between tetrahedral points not on a common axis. A little
further consideration of the tessellation about the vertices shows us that this is best
possible in this group. We are left with the extremal for tetrahedral points on a
common axis, an axis of order 3, and again we take the elliptic of order 2 with axis
n coming from P as close as possible to Q. The distance between Q and 7 is

p(Q, n) = arcsinh(sinh(p(P, Q)) sin(2,3))
= arcsinh(0.68736+/2/+/3) = 0.5353.

As before we get tetrahedral points not on a common axis at distance 1.0707.

THEOREM 8.7. If P and Q are tetrahedral points of a Kleinian group that do
not lie on a common axis, then p(P, Q) > 1.026.
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Remark. Again, if we know a priori that p(P, Q) > 0.815, so that
Vp, Yo <0.7442 and sinh({) > 1.2877,
we obtain the bound
(8.8) p(P, Q) > 1.0709,

which exceeds the value of 1.0707 attained in the extremal case above.

Octahedral points not on a common axis. Let

(8.9) Lo = infr p(P, Q),

where the infimum is over all Kleinian groups I' containing distinct octahedral
points P and Q not on a common axis. Examples show that £, < co, and hence
this infimum is attained for octahedral points P and @ in a Kleinian group I". We
shall show that

¢, > arccosh(cosh?(1.05959)) ~ 1.6140.

We may assume £, < 1.6140, and we note that this number is the minimal distance
between octahedral points on a common order 4 axis. Arguing as in the case for
tetrahedral points, we choose axes 81 and 2, both of order 4, which form angles
Yp and Yo satisfying 0 < ¥ p, Yo < 03 4 with the hyperbolic segment y joining
P and Q. Note that if ¥p or Yo were equal to 03,4, then P and Q would lie in
a common axis of order 3 contrary to our supposition. Let ¢ be the angle formed
by y and the axis o’ of the elliptic g of order 3 at P that comes closest to Q. Now
0, g(0Q) and g2(Q) are octahedral points. If a pair were to lie on a common
axis, then so would both other pairs, the axis being translated by g. If the order
of the common axis was either 3 or 4, we would obtain a hyperbolic triangle all
of whose sides are axes of the same order, either 3 or 4, and the sum of whose
interior angles would be three times the angle between pairs of elliptics of order
3 or of order 4 in an octahedral group and thus exceed 7z. Hence either there is
no common axis, or if there is a common axis, it has order 2. In either case we
would have from Theorem 7.14 that p(Q, g(Q)) > £,, since we have assumed that
£, < 1.6140 < 1.700, the last number here being the minimal distance between
octahedral points on a common 2 axis.

We consider the triangle with vertices Q, g(Q) and g2(Q). Each side length
is at least £,, and hence the distance to the center, the axis of g, is at least
arcsinh(sinh(£/2)/ sin(x/3)) by the hyperbolic law of sines. Thus the angle ¢
between the axis of g and y satisfies

sin(¢) > sinh(8)/ sinh(¢) = 2'sinh(£/2)/(~/3 sinh(£)) > 0.417295,

where § 416 is the complex distance between « and 8. Thus ¢ > 0.43046. Spherical
trigonometry, as in the tetrahedral case, shows that if y lies outside this angular
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disk about the axis of order 3 in the spherical triangle it passes through, then
Yp < 0.804786 = 9. Again ¥g < Yo holds by symmetry.

Suppose that & and B intersect at the point R. If R is not a finite point, then
one obtains good bounds as in the argument for tetrahedral points. If R is finite,
then these axes meet at angle /2 and R is stabilized by the group S4. Thus

cosh(f,) > cosh?(1.05959), whence £, > 1.614055.

This bound occurs in the extremal group for octahedral points on a common axis of
order 4.
Suppose next that & and 8 do not meet. Then

sin(yp) sin(y o) cosh(£; +1 ¢) —cos(y¥p) cos(Yg) = cosh(§ +i 0)

by (4.3). Next Lemma 4.4 implies that we get a lower bound for £, if we consider
the case where Yp = Vo = Yo while keeping d + i  fixed. Again we check
through the possible values of § 4 i 6 for small values of §. For all values except
0.881374 4+ i 1.5708 and 0.8314 + i 1.19606 we find that £, > 1.68. These two
cases are eliminated by directly examining the arithmetic Kleinian group generated
by the two elliptics of order 4 in question. Hence we may assume that § > 1.06 and
we obtain

sinh(£,) > sinh(8)/sin (o) = 2.44513 and £, > 1.6266.

THEOREM 8.10. If P and Q are octahedral points of a Kleinian group that
do not lie on a common axis, then p(P, Q) > 1.6140.

9. Summary

We summarize here the results of Sections 7 and 8 as well as recall the results
of Derevnin and Mednykh for the A5 case.

THEOREM 9.1. Let P and Q be spherical points of the same type in a Kleinian
group.

(1) P, Q tetrahedral points: If p(P, Q) < 1.026, then P and Q lie on a common
axis of order 3 and

p(P, Q) =0.64244, p(P,0)=0.6931 or p(P,Q)> 0.7209.

(2) P, Q octahedral points: If p(P, Q) < 1.6140, then P and Q lie on a common
axis of order 4 and

p(P, Q) = 1.0595, p(P, 0) = 1.0612,
p(P,0)=1.1283, or p(P,Q)> 1.14.
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(3) P, Q icosahedral points: If p(P, Q) < arccosh(2 + +/5) = 2.1225, then P
and Q lie on a common axis. If this axis has order 5, then

p(P, Q) =1.3825 p(P,Q)=16169, or p(P,Q)> 1.9704.

If this axis has order 3, then p(P, Q) > arccosh((5 + 3+/5)/4) = 1.7365. If
this axis has order 2, then p(P, Q) = arccosh(2 + +/3).

10. Volume estimates

We conclude by showing how the above estimates can be used to provide
co-volume bounds for hyperbolic 3-orbifolds. An interesting, and important point,
is that all our extremals are two generator arithmetic Kleinian groups.

We assume in what follows that G is a finite subgroup of a Kleinian group I'.
We will study how the nature of G affects the volume of H3/I". We begin with the
case where G is the icosahedral group since this is the easiest for us to deal with
and since it also provides the essential ideas that we shall have to refine in the other
two cases.

Suppose that G stabilizes the point P € H3. If f € T'\ G, then f(P)
is an icosahedral point, stabilized by fGf~!. From Theorem 9.1 we see that
o(P, f(P)) > 1.7365, unless I" contains the orientation-preserving subgroup of
the 3—5—3 reflection group or the orientation-preserving subgroup of the 4—3—5
reflection group, both of which are arithmetic. Hence we may assume p(P, f(P)) >
1.7365 =2r¢ forall f €e'\G. Let B= B(P,rp). Forsuch f wesee BN f(B)=2,
that is, the ball B is precisely invariant: it is stabilized precisely by G and every
other element moves it off itself. Therefore a fundamental set for the action of G on
B is moved off itself by every nontrivial element of I', and

Vol(H3/T) > Vol(B/G) = Vol(B)/60
= m(sinh(2rg) — 2rp) /60 = 0.0531
> Vol(H?/T'1) = 0.0408

since the hyperbolic volume of a ball of radius r is 7 (sinh(2r) — 2r)). In fact a
little more is true. The orbit of B under the action of I' gives a packing of H3
by congruent hyperbolic balls. There is an optimal density for a packing by such
balls, depending on the radius [B6r78]. This observation for improving volume
estimates was first used by Meyerhoff [Mey86]. The density function d(r) is strictly
increasing. For the radius rg, this constant is less than 0.81. Thus we may increase
the volume estimate Vol(B/G) = Vol(B)/|G| by this packing density to get the
lower bound 0.06555 on volume. Estimates for this density can be found in [Mar91].
We have proved the following result.
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THEOREM 10.1. If ' is a Kleinian group that contains a finite subgroup
isomorphic to the icosahedral group, then T is either a subgroup of the 3—5—3
reflection group or the 4—3—5 reflection group, or Vol(H3/T") > 0.06555.

In fact the next volume in this case is 0.093326 from a Z, extension of the 5—3—5
reflection group when icosahedral vertices are on a common axis of order 3. We
could have achieved this bound if we had been willing to extend the known spectrum
of distances for icosahedral points on a common axis of order 3 a little, from 1.7365
to 1.93, and identified all the attained values (and maximal groups) between.

We treat next the case of a Kleinian group containing octahedral points. We
obtain from Theorem 9.1 a precisely invariant ball of radius ro = 1.14/2 unless
one of the three exceptions occurs. This ball of radius r¢ together with the packing
density estimate is sufficient to give a co-volume bound of 0.0425 slightly exceeding
that of I'y. Thus we need only discuss what happens in the three exceptional
cases where we have octahedral points on a common axis of order 4 at distances
p(P, Q) =1.0595, p(P, Q) =1.0612 and p(P, Q) = 1.1283.

The first value 1.0595 corresponds to the arithmetic Kleinian group G4,7; see
[GMMRY7, Tab. 2]. In Table 7 of that paper we computed the minimal co-volume of
any arithmetic lattice in which this group embeds as 0.0661. The second exceptional
value p(P, Q) = 1.0612 has the order 4 axes at each vertex parallel or perpendicular
to the axes at the other vertex. Then two elliptic axes of order 2 meet at angle /5.
The group is actually a subgroup of the arithmetic 4—3—5 tetrahedral reflection
group. In any case, there is an icosahedral point that gives sufficient volume by
Theorem 10.1. The third exceptional value example p(P, Q) = 1.1283 again arises
in an arithmetic tetrahedral reflection group.

THEOREM 10.2. Suppose I' is a Kleinian group containing a finite subgroup
isomorphic to the octahedral group. Then

Vol(H3/T) > Vol(H3/T';) > Vol(H3/ Ty).

Finally we turn to the case that there is a tetrahedral subgroup in our Kleinian
group. We may assume that there are no icosahedral or octahedral subgroups, for
these have already been dealt with.

Let P be a tetrahedral point and Q its closest translate. If P and Q do not lie
on a common axis of order 3, then p(P, Q) > 1.026, and so the volume contribution
of the precisely invariant ball around P of this radius, together with the sphere
packing estimate, gives a volume contribution, as described above, greater than
0.06. In fact as soon as p(P, Q) > 0.9 we obtain a sufficient volume contribution
from the precisely invariant ball about P.

Therefore we suppose P and Q do lie on a common axis of order three. If
the distance between them is no more than 0.7209, then this distance is either
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o(P, Q) =0.64244 or p(P, Q) = 0.6931, by Theorem 9.1. We have also identified
the groups that uniquely achieve these values in Theorem 7.4 as arithmetic. In fact
the first distance occurs in the maximal arithmetic lattice I'; and the second distance
in an arithmetic tetrahedral reflection group. Again we may therefore leave aside
these cases so as to be able to assume p(P, Q) > 0.7209.

A precisely invariant ball about P of radius 0.7209/2 gives a volume contribu-
tion of at least 0.021. Thus, if Vol(H3/T") < 0.042, there cannot be more than one
conjugacy class of tetrahedral subgroup since each conjugacy class yields disjoint
balls. We may suppose that H3/ I is compact, the minimal co-volume noncompact
lattice having been identified in [Mey86].

Along the elliptic axis shared by P and Q are other tetrahedral points periodi-
cally spaced out. Let Q be the tetrahedral point on this axis closest to P but on the
other side from Q. The axis of I'p that comes closest to Q contains a tetrahedral
point Q" at distance p(P, Q) from P.

It is not hard to show that Q' and Q" do not share a common axis: If they did
share a common axis, by assumption it must be order 2 or 3. We would then obtain
a hyperbolic triangle with all edges of order 2 or 3, and the further supposition
that there are no octahedral or icosahedral points severely constrains the angles
at these vertices. So much in fact that Lemma 3.1 implies the interior angle sum
would exceed 7. This is not possible. Since Q' and Q” may not share an axis,

o(0', 0") > 1.026.
Then, using hyperbolic trigonometry on the PQ’ Q" triangle, we get

cosh(p(Q’. 0"))
= cosh(p(P, Q")) cosh(p(P, Q")) —sinh(p(P, Q")) sinh(p(P, Q")) cos(t3,3)
= cosh(p(P, Q")) cosh(p(P, Q)) —sinh(p(P, Q")) sinh(p(P, 0))/3.

If p(P, Q) < 0.815, then this formula gives p(P, Q') > 0.8437. If
0.815 < p(P, Q) <0.85,

then we know from (8.8) that p(Q’, Q") > 1.0709 so that p(P, Q) > 0.87. Hence
in all cases p(P, Q') is larger than 0.843. Further, note that any tetrahedral point R
with p(P, R) < 1.026 must share an axis with P.

We already know bounds on how close the tetrahedral points on the axes of
order 2 can be. Then consideration of the vertices around P and their orbit under the
stabilizer I'p and the possible involution interchanging P and Q identifies a partial
fundamental domain obtained as the convex hull of the tetrahedral and dihedral
vertices. The volume of this region is sufficient for our purposes. Unfortunately,
this volume is exceedingly difficult to estimate. We prefer a rather simpler approach
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Figure 5. A precisely invariant ball.

by again considering precisely invariant balls, this time not centered on a vertex.
See Figure 5.

Let £ be the line passing through the tetrahedral point P making the angle
/4 with the elliptics of order 2 and the angle 03 4 with the order 3 elements. Thus
£ would be an axis of an elliptic of order 2 should our tetrahedral point in fact
be an octahedral point. Let zg be a point on £ at distance 0.28102 from P. Let
B = B(z9p,0.2). Then B is actually tangent to an elliptic axis of order 2, while
p(zo0, B) > 0.2304 for any axis B of an elliptic of order 3. This implies the orbit of
B around any elliptic of order 3 consists of 3 disjoint balls. Thus if g € I'p and
g(B) N B # @, then g is the identity.

We now go about proving that B is precisely invariant. So suppose that
geI'\T'p with g(B)N B # &. Then

p(g(P), P) < p(P,zo) + p(z0, g(z0)) + p(g(z0), g(P))
=2x0.28+2x0.2=0.96 < 1.02.

Thus the tetrahedral points P and g(P) lie on a common axis, and of course g(z¢)
must be a distance 0.28 from the tetrahedral point g(P). Note that p(z¢, g(z¢)) <
0.4. Thus the image of P must be a tetrahedral point at distance at most 0.68 from
zo. One easily calculates that the distance from zg to the orbit of Q' under I'p,
given p(P, Q') > 0.843, is at least 0.726, since

arccosh (cosh(0.281) cosh(0.843) — sinh(0.281) sinh(0.843) cos(03,4))

is equal to 0.7268. Thus g(P) lies in the orbit of Q under I'p, all other tetrahedral
points being too far away. Indeed, if p(P, Q) > 0.8, we calculate as above that the
distance to the orbit of Q exceeds 0.68. Then g(P) = P, and so as above g € I'p.
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2(20)

0

P v Q
Figure 6. Distance from zg to g(zo).

So we are now supposing p(P, Q) < 0.8 and g(P) = Q, the closest pair of
tetrahedral points. In particular, we have already eliminated the case that p(P, Q) =
p(P, Q). Of course g(B) sits in the same relative position to Q as B does to P.

Consider the figure with edges zg P, PQ, Qg(zo) and zog(zg), as shown in
Figure 6. We want to use this figure to bound p(zg, g(z¢)) from below. Keeping
the angles at P and Q fixed, we decrease this distance if we rotate one edge, say
Qg(zo), until the figure is planar. Let w be the bisector of PQ, let r = p(P, Q),
let a = p(zo, w) and let § = Z(Zow, wP). We calculate

cosh(a) = cosh(0.28) cosh(r/2) — sinh(0.28) sinh(r/2) cos(03,4),
sin(f) = sinh(0.28) sin(03,4)/ sinh(a),
sinh(p(z¢, g(z0))/2) = sinh(a) cos(h).
From this we deduce that p(zg, g(z0)) > 0.4 if r > 0.7209. In particular we conclude
that g(B) cannot meet B.
Hence the ball B is precisely invariant, and its stabilizer is the identity. Thus
we find Vol(H3/T) > 0.0422 after we apply the packing density estimate. We

define a maximal finite subgroup of a Kleinian group I' to be a finite subgroup not
contained in a larger finite subgroup.

THEOREM 10.3. Let I be a Kleinian group containing a maximal finite sub-
group isomorphic to the tetrahedral group. Then we have

Vol(H3/T) > Vol(H3/T'}) = 0.0408.
This estimate is sharp and uniquely achieved in I'y.

Remark. This remark concerns arithmeticity and how we have used this in our
co-volume estimates. The reader should be well aware that we have from time to
time used our knowledge of the minimal co-volume arithmetic lattice, as identified
by Chinburg and Friedman [CF86], to eliminate various small configurations. In
fact in each case we have identified the commutator parameter of the arithmetic
group in question. From this single complex number, all the relevant arithmetic data
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such as trace fields and quaternion algebras can be obtained [GMMR97], given the
order of the two generators. In fact the commutator determines the group uniquely
up to conjugacy in this situation. From this arithmetic data we may easily identify
the minimal co-volume in the commensurability class using a formula of Borel
[Bor81]. Thus our results do not really depend in any significant way on the results
of [CF86].
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