
ANNALS OF

MATHEMATICS

anmaah

SECOND SERIES, VOL. 170, NO. 1

July, 2009

Local rigidity of affine actions of higher
rank groups and lattices

By David Fisher and Gregory Margulis





Annals of Mathematics, 170 (2009), 67–122

Local rigidity of affine actions of higher rank
groups and lattices

By DAVID FISHER and GREGORY MARGULIS

Abstract

Let J be a semisimple Lie group with all simple factors of real rank at least two.
Let � < J be a lattice. We prove a very general local rigidity result about actions of
J or � . This shows that almost all so-called “standard actions” are locally rigid. As
a special case, we see that any action of � by toral automorphisms is locally rigid.
More generally, given a manifold M on which � acts isometrically and a torus Tn

on which it acts by automorphisms, we show that the diagonal action on Tn�M is
locally rigid.

This paper is the culmination of a series of papers and depends heavily on our
work in two recent articles. The reader willing to accept the main results of those
papers as “black boxes” should be able to read the present paper without referring
to them.

1. Introduction

Throughout this paper J is a (connected) semisimple Lie group with no
compact factors and all simple factors of real rank at least two, and � < J is a
lattice. The purpose of this paper is to prove the following:

THEOREM 1.1. Let � be a quasi-affine action of J or � on a compact manifold
X . Then the action is C1;1 and C 3;0 locally rigid. Furthermore, there exists
an integer k0, such that the action is C k;k�n locally rigid for all k > k0, where
nD 1

2
dimX C 3.

First author partially supported by NSF grant DMS-0226121 and DMS-0643546. Second author
partially supported by NSF grants DMS-0244406 and DMS-0801195. The authors would also like to
thank the FIM at ETHZ for hospitality and support.
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Remarks on regularity. The number k0 Dmax.k1; n/ where k1 is determined
by properties of certain foliations associated to the dynamics of �.gi /, for a specific
finite set of choices of g1; : : : ; gk in J or � . If k is even, we can let nD 1

2
dimXC2

instead.1

We now proceed to define the terms in the theorem. We say H is a connected
real algebraic group if it is the connected component of the real points H.R/0 of
an algebraic group defined over R.

Definition 1.2. a) Let H be a connected real algebraic group, ƒ < H a
cocompact lattice. Assume a topological group G acts continuously on H=ƒ. We
say that the G action on H=ƒ is affine if every element of G acts via an affine
diffeomorphism.

b) More generally, let M be a compact manifold. Assume a group G acts
affinely on H=ƒ. Choose a Riemannian metric on M and a cocycle over the G
action � WG�H=ƒ! Isom.M/. We call the skew product action of G on H=ƒ�M
defined by d �.x;m/D .d �x; �.d; x/�m/ a quasi-affine action.

We always write X D H=ƒ�M: Recall that an affine diffeomorphism d of
H=ƒ is one covered by a diffeomorphism Qd of H where Qd DAıTh where A is an
automorphism of H such that A.ƒ/Dƒ and Th is left translation by h2H . The
full group of affine diffeomorphisms ofH=ƒ is a finite dimensional Lie group which
we write as Aff.H=ƒ/. The definition of acting affinely given above is equivalent
to saying the action is given by a homomorphism � WG!Aff.H=ƒ/. See [FM03,
�6.1] for a description of Aff.H=ƒ/ and a classification of affine actions of J or �
as above. Note also that the case of quasi-affine actions as defined here includes
products of affine actions with trivial actions. Another class of examples give the
following:

COROLLARY 1.3. Let J be as above and � < J a lattice. Then any action of
� by automorphisms of Tm is C1;1 and C 3;0 locally rigid. Furthermore there
exists a positive integer k0�3, depending on the action, such that the action is
C k;k�

1
2
m�3 locally rigid for all k�min.1

2
mC 3; k0/.

We now formally define local rigidity in this context.

Definition 1.4. Given a topological group G and a continuous C1 action,
� WG�X!X , by diffeomorphisms on a manifold X , we say that the action is C k;r

locally rigid, where r�k, if any continuous action �0 by C k diffeomorphisms, that
is sufficiently C k close to � is conjugate to � by a small C r diffeomorphism. We say

1While this paper was under review, we learned that results in [RT05] combined with certain
results from [FM05] allow us to achieve remarkably less loss of regularity, yielding C k;k�3 local
rigidity in place of C k;k�n local rigidity. We explain this briefly at the end of the paper.
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that a continuous action � is C1;1 locally rigid if any continuous C1 action which
is sufficiently C1 close to � is conjugate to � by a small C1 diffeomorphism.

The special case of C k;k local rigidity says exactly that the homomorphism
� W G!Diffk.X/ is locally rigid. In other words that any homomorphism close
to � is conjugate to � by a small element of Diffk.X/. Since the C1 topology
is defined as the inverse limit of the C k topologies, two C1 diffeomorphisms
are C1 close if they are C k close for some large k. Our proof shows explicitly
that a C1 perturbation �0 of � which is C k close to � is conjugate to � by a C1

diffeomorphism which is C k�n close to the identity where n is as in Theorem
1.1. The topology we take on Hom.G;Diffk.X// to define close above is the
compact-open topology.

Gromov in [Gro88] and Zimmer in [Zim87] suggested that one might be
able to “essentially classify” all volume-preserving smooth actions of higher rank
semisimple groups and their lattices on compact manifolds. This would be, in a
sense, a “nonlinear” analogue of the second author’s superrigidity theorems, since
one of the consequences of the superrigidity theorems is a classification of all finite
dimensional linear representations of higher rank lattices (modulo issues concerning
finite image representations). In [Zim87], Zimmer also proposed the study of
local rigidity of known actions of higher rank lattices on compact manifolds, as a
“nonlinear” analogue of the classical local rigidity theorems of Calabi-Vesentini,
Selberg and Weil. These show that any cocompact lattice � in any simple Lie group
J is locally rigid, as long as J is not locally isomorphic to SL2.R/ [CV60], [Sel],
[Wei62]. That is, any embedding of � in J close to the defining one i W �!J is
simply a conjugate of i by a small element of J . Since J acts transitively on J=� ,
our theorem can be taken to be a generalization of Weil’s result in the case when J
is a higher rank simple group. A perturbation � 0 of � in J defines a perturbation
of the original J action on J=� since J=� and J=� 0 are diffeomorphic. The
conjugacy between these actions can easily be seen to give a conjugacy between �
and � 0.

Many results have been proven concerning local rigidity of affine actions of
higher rank lattices and Lie groups, particularly when the action is assumed to
satisfy some strong hyperbolicity condition. The first results of this kind are due
to Hurder [Hur92]. He proved that the standard action on Tn of any finite index
subgroup in SLn.Z/ is deformation rigid for n�3. (This involves assuming a path
of nearby actions and obtaining a path of conjugacies.) The same actions were
shown to be locally rigid in [KL91] and [KLZ96]. Many other results along these
lines were obtained by many authors; we refer to the introduction of [MQ01] for
a more detailed discussion. Here we mention that all standard Anosov actions on
tori and nilmanifolds were proven to be locally rigid in [KS97] and all so-called
weakly hyperbolic actions were proven to be locally rigid in [MQ01].
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For isometric actions, there are also results. In [Ben00], Benveniste shows
that any isometric action of any cocompact lattice in a group J as above is C1;1

locally rigid. The interested reader should refer to the introduction to [FM05] for a
discussion of earlier, weaker results by Zimmer concerning (certain) perturbations
of isometric actions of groups with property (T). In our previous paper [FM05], we
have proven:

THEOREM 1.5. Let G be a locally compact, compactly generated group with
property (T). Let .X; g/ be a compact Riemannian manifold, and let � be an action
of G on X by isometries. Then the action C1;1 is locally rigid and is C k;k��

locally rigid for any k�2 and any � > 0.

We remark that Theorem 1.5 holds for a much broader class of groups than
Theorem 1.1.

The proof of Theorem 1.1 uses a foliated generalization of Theorem 1.5 also
proven in [FM05]. This result is recalled below in Section 4 where it is applied in
the course of our proof.

For actions which are neither weakly hyperbolic nor isometric for all previous
results, due to Nitica and Torok, concern affine actions which are products of
Anosov actions and trivial actions [NT95], [NT01], [Tör03]. For example, take the
standard action of SLn.Z/ on Tn and let � denote the action obtained on Tn�S1

by taking 
.t; s/ D .
 t; s/. Then Nitica and Torok show that, given k > 0, any
C1 action �0 that is sufficiently C 2 close to � is conjugate to � by a C 0 small,
C k diffeomorphism. (This result does not imply C1 local rigidity because the
size of the perturbation must be made smaller to obtain more derivatives in the
conjugacy.) Their full result is more general, allowing one to replace the standard
action of SLn.Z/ on Tn by any so-called TNS action of a higher rank lattice on
a torus. They also prove some more general results for deformation rigidity, but
always for products of TNS and trivial actions.

We briefly note two of the more major differences between the cases considered
by Nitica and Torok and the general case considered here. First, in the general
case, the central foliation for the group action is not necessarily by compact leaves.
Secondly, in the general case, the action along the central foliation is isometric but
not necessarily trivial. (For a definition of the central foliation, see � 2.1 below.)

We note here that nonlocally rigid volume-preserving actions of higher rank
semisimple groups and their lattices on compact manifolds have been constructed,
first in [KL96] and later and more generally in [Ben96]. Those in [Ben96] are even
shown to have smooth volume-preserving deformations. See also [Fis08] for a
more general construction and another proof that the deformations are nontrivial. A
weaker result is shown in [KL96].
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2. Affine actions, perturbations and quotients

This section primarily recalls results from [FM03]. Let QJ be the universal
cover of J and Q� the pre-image of � under the covering map QJ!J . Any action of
J or � can be viewed as an action of QJ or Q� respectively, and so we may assume,
without loss of generality, that J is simply connected.

2.1. Describing affine actions. In this section we recall from [FM03] another
description of the actions we are considering. This description provides an extremely
simple description of the derivative cocycle for the action which allows a simple
description of the dynamical foliations for elements of the acting group, as well as
of the central foliation of the entire group.

Throughout this sectionH will be a connected real algebraic group andƒ<H
will be a cocompact lattice. We now recall three technical results from [FM03].

THEOREM 2.1. Let � be an affine action of J on H=ƒ. Then the action � is
given by �.j /Œh�D Œ�0.j /h� where �0 W J!H is a continuous homomorphism.

This is a special case of [FM03, Th. 6.4]. As indicated there, the result holds
with the weaker assumption that J has no compact simple factors.

The analogous result for � actions is more complicated and can require that
we view H=ƒ as a homogeneous space for a different Lie group. The following
is a rearrangement of [FM03, Prop. 6.3]. Given a Lie group L, we denote its
automorphism group by Aut.L/. Since Aut.L/ is a closed subgroup of GL.dim.L//
it is a Lie group.

PROPOSITION 2.2. Given a real algebraic group H there is a connected cover
p WH 0!H and a realization of H 0 as a connected real algebraic group, such that

(1) the connected component Aut.H 0/0 of Aut.H 0/ has the structure of a con-
nected real algebraic group,

(2) Aut.H 0/0 < Aut.H 0/ is a finite index subgroup,

(3) Aut.H 0/0 acts rationally on H 0.

The key point is to choose the algebraic structure on H 0 so that the connected
component of the center of H 0 is contained in the unipotent radical. It follow that
Aut.H 0/0ËH 0 is a connected real algebraic group.

Let ƒ0 be p�1.ƒ/. It follows from the construction given in [FM03] that,
possibly after passing to a finite index subgroup � 0 in � , any affine action � of �
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on H=ƒ remains affine when we view H=ƒ as H 0=ƒ0. For the remainder of this
paper, we assume that we have replaced our group H with a group H 0 as described
in Proposition 2.2.

Before giving the analogous description of affine � actions, we need to recall
a consequence of the superrigidity theorems [Mar77], [Mar91], where these are
only stated for J algebraic. But the extension to J as assumed here is sketched
in [Fis02, Th. 7.12]; see [FM03] for detailed proofs. We will use the notation
introduced here in the statements below. If J is as above and � < J is a lattice,
and L is an algebraic group, we call a homomorphism � W �!L superrigid if it
almost extends to a homomorphism of J . This means that there is a continuous
homomorphism �E W J!L and a homomorphism �K W �!L with bounded
image such that �.
/ D �E .
/�K.
/ and �E .�/ commutes with �K.�/. The
superrigidity theorems imply that any continuous homomorphism of � into an
algebraic group is superrigid. This can be deduced easily from Lemma VII.5.1 and
Theorems VII.5.15 and VII.6.16 of [Mar91].

THEOREM 2.3. Let � be an affine action of � on H=ƒ. Then there are a finite
index subgroup � 0<� and a homomorphism �0 W� 0!Aff.H/DAut.H/ËH such
that �.
/Œh� D Œ�0.
/h�. Furthermore, we can assume that �0.� 0/ is contained
in Aut.H/0ËH and that �0.
/ D �E0 .
/�

K
0 .
/ where �E0 W J!Aff.H/ is a

homomorphism and �K0 W �
0!Aff.H/ is a homomorphism with bounded image,

and the images of �E0 and �K0 commute.

This is a rephrasing of [FM03, Th. 6.5]. The final conclusion concerning
the fact that �0 is the product of a the restriction of a homomorphism of J and
a homomorphism with bounded image follows from the superrigidity theorems
discussed above.

We can now describe the central foliation for a quasi-affine action � of either J
or � . We will denote the central foliation F. If � is a J action, andM is trivial, then
the central foliation is just the orbit foliation for the left action of Z DZH .�0.J //
onH=ƒ. IfM is nontrivial, we have a projectionH=ƒ�M!H=ƒ and the central
foliation is given by the pre-images in H=ƒ�M of Z orbits in H=ƒ.

Let � 0 be the subgroup of finite index given by Theorem 2.3 and further assume
that � 0 is normal. Let A be the connected component of Aut.H/, and let LDAËH .
Note that L is an algebraic group. In this case, we let Z DZL.�E0 .�

0//\H . If
M is trivial, the central foliation for the action, which we denote F, is then defined
to be the foliation given by orbits of Z on H=ƒ. If M is nontrivial, we have a
projection H=ƒ�M!H=ƒ and the central foliation is given by the pre-images in
H=ƒ�M of Z orbits in H=ƒ.

We will refer to the tangent space of the central foliation F as the central
distribution for the group action.
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We now want to define a Riemannian metric on H=ƒ�M so that the � action
is isometric along leaves of F. Since M is assumed in Definition 1.2 to be a
Riemannian manifold with Riemannian metric gM , and � is defined to be isometric
along M fibers, it suffices to define a Riemannian metric on H=ƒ for which the
affine action on H=ƒ is isometric along Z orbits. Let h be the Lie algebra of
H . An inner product on h defines a right invariant Riemannian metric on H and
therefore a Riemannian metric on H=ƒ. For the case of J actions, we have that the
derivative action on H=ƒ is given by D�.j /.Œh�; v/D .Œ�0.j /h;AdH .�0.j //v/
for j 2J . Since AdH ı�0jz is the trivial representation of J , it is clear that any
inner product on h defines a Riemannian metric with the desired property. Let m

be an Ad.�0.J //jh invariant complement to z. For simplicity in arguments below,
we choose a metric on h such that m is orthogonal to z.

For � actions, we need to be slightly more careful. Let l be the Lie algebra of
L, which contains h as an ideal. We denote by Adh the restriction of the adjoint
action of L on l to h. Recall that �K.� 0/ < C where C <L is compact and take an
Adh.C / invariant metric on h. This then defines a Riemannian metric on H=ƒ�M
for which �.� 0/ is isometric along the central foliation defined above.

We perform one further modification to the metric to guarantee that the action
of all of � , and not just � 0, is isometric along the central foliation. Since the
image of �0 of � 0 is semisimple, we can choose an Adh.�0.�

0// invariant subspace
m < h orthogonal to z such that h D z˚m, and we can choose an inner product
on h for which z is orthogonal to m. There are corresponding subbundles of
T .H=ƒ/ which we can write as H=ƒ�m and H=ƒ�z. Note that because these
bundles are � 0 invariant and � 0 can be chosen to be normal in � , they are also �
invariant. Given a vector space V , denote by S2

C
.V / the cone of positive definite

symmetric two tensors on V . The Riemannian metric on H=ƒ is a section gh

of H=ƒ�S2
C
.h/ which lies in the subbundle given by H=ƒ�S2

C
.z/˚S2

C
.m/ or

equivalently as the sum in H=ƒ�S2
C
.h/ of a section of gz 2H=ƒ�S

2
C
.z/ and a

section of gm 2H=ƒ�S
2
C
.m/. Since gz is � 0 invariant, and � 0 < � is a finite

index, we can average gz over coset representatives for �=� 0 to obtain a � invariant
section g0z in H=ƒ�S2

C
.z/. Replacing gh by g0z˚gm we have a Riemannian metric

on H=ƒ such that the entire � action is isometric along the central foliation.

2.2. Semiconjugacy. Let H;ƒ;� and J be as in the preceding subsection, let
GDJ or � and let � be a quasi-affine action ofG onH=ƒ�M . Then by Theorems
2.1 and 2.3 there is a finite index subgroup G0 < G such that �jG0 is defined by
a continuous homomorphism � W G0!Aut.H/ËH . It follows that the G0 action
lifts to H�M . As explained in [FM03], following the statement of Theorem 6:7,
for any small enough C 0 perturbation �0 of �, the G0 action defined by �0 also
lifts to H�M . (We note that this is trivially true for actions of connected groups.)



74 DAVID FISHER and GREGORY MARGULIS

By the discussion in Section 2.1 there is a unique subgroup Z in H which is the
maximal subgroup of H such that the derivative of � on Z cosets is an isometry
for an appropriate choice of metric on H=ƒ. The description given there shows
that the lift of �.G0/ to H�M descends to an action N� of G0 on ZnH . We denote
by p the natural projection H�M!ZnH .

THEOREM 2.4. Let H=ƒ�M;�;G0; Z and N� be as in the preceding para-
graph. Given any action �0 sufficiently C 1 close to �, there is a continuous G0�ƒ
equivariant map f W .H�M;�0/!.ZnH; N�/, and f is C 0 close to p. Furthermore
if �0!� in the C 1 topology then f!p in the C 0 topology.

This is [FM03, Th. 1:8]. We note that f!p in the C 0 topology means that
d.f .x/; p.x//!0 uniformly on H�M . There is some ambiguity in this, since
there is no ƒ invariant metric on ZnH , but it is true that d.f .x/; p.x//!0 in the
metric on ZnH which makes p a Riemannian submersion. For the remainder of
this subsection, we assume that G0 DG.

The map f defines a partition QF0 of H�M into sets of the form f �1.x/

where x is in ZnH . Since f is ƒ equivariant, this partition defines a partition F0

of H=ƒ�M . We will show that, as a consequence of Theorem 2.4 there is a ƒ
equivariant map � WH�M!H�M mapping F0 to F and intertwining the actions
of G on F and F0, but first we need some definitions.

If P is a partition of a topological space X and � is an action of a group D on
X , then we say � preserves P, if for any set V 2P, the set �.d/V is in P for any
d in D.

Given two actions � and �0 of a group D on a topological space X and two
partitions P and P0 of the space X where � preserves P and �0 preserves P0, we
call a map � WX!X a partition semi-conjugacy from .X; �;P/ to .X; �0P0/ if for
any subset V 2P we have

(1) �.V / is an element of the partition P0 and,

(2) �.�.d/V /D �0.d/�.V / for any d in D.

If � is a homeomorphism, we call � a partition conjugacy between .X; �;P/ and
.X; �0P0/. Similarly one can refer to actions as being partition (semi-)conjugate.

To be consistent with the vocabulary of [HPS77], when we are given two
actions � and �0 of a group D on a topological space X where � (resp. �0) preserves
a foliation F of X (resp. a foliation F0 of X), a partition (semi-)conjugacy from
.X; �;F/ to .X; �0;F0/ will be called a leaf (semi-)conjugacy. Similarly, when we
do not want to make explicit reference to the (semi-)conjugacy, we will say that
two actions are leaf (semi-)conjugate.

We now construct a map Q� W H�M!H�M using f and p. The space
H�M is a smooth locally trivial fiber bundle over ZnH with fiber Z�M ; so given
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x 2ZnH , we can find a neighborhood U of x such that p�1.U / is diffeomorphic
to U�Z�M . We can therefore introduce coordinates on p�1.U / of the form .x; y/

where x is in U and y 2Z�M . In these coordinates, p.x; y/D x. We can further
write y D .z;m/ where z 2Z and m2M .

Moreover, if we let m be the G invariant complement of z in h, then the
tangent space toH�M at any point .x; z;m/ can be written as T .H�M/.x;z;m/D

m˚ z˚TMm. We can further choose the local product structure on p�1.U / such
that .U; y/D expy W whereW is the product of a fixed small ball in m with a small
ball in TMm. By shrinking W and therefore U slightly, we obtain a trivialization
of p�1.U / that extends to a trivialization of p�1.U 0/ for U 0 an open set strictly
containing U .

By choosing �0 close enough to �, we can arrange for f to be arbitrarily C 0

close to p, uniformly on H�M . This implies that given any compact set K in
H�M , by restricting to sufficiently small C 1 perturbations �0 of �, we can make the
Hausdorff distance between f �1.x/\K and p�1.x/\K as small as desired for ev-
ery x in f .K/\p.K/. Since f and p areƒ equivariant and theƒ action onH�M
is cocompact, for small enough perturbations we have f �1.x/�p�1.U /. Then for
a point .x; y/, we let Q�.x; y/D .U; y/\p�1.f .x; y//. Therefore Q�.f �1.x//D
p�1.x/ for any x 2ZnH . Since Q� is ƒ equivariant by construction, we have a
map � WH=ƒ�M!H=ƒ�M and have established the following:

COROLLARY 2.5. Let �0 be an action of G on H=ƒ�M sufficiently C 1 close
to �. Then there is a C 0 small map � W H=ƒ�M!H=ƒ�M with the following
properties.

(1) If �0!� in the C 1 topology then �! Id in the C 0 topology.

(2) �.F0/D F.

(3) the map � is a partition semi-conjugacy from

.H=ƒ�M;�;F0/ to.H=ƒ�M;�;F/:

Remarks.

(1) One can deduce Corollary 2.5 directly from the proof of Theorem 2.4.

(2) The argument there proves more. It shows that the set of maps f�ı�0.g/jg 2Gg
defines a G action on H=ƒ�M that is C 0 close to �.

(3) Remark (2) can be deduced easily from [FM03, Th. 6.7], but to avoid intro-
ducing additional notation and definitions, we do not do this here.

(4) The conclusion of Remark (2) will follow once we show, in Section 3.3, that
� is a C 0 small homeomorphism.
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3. Hyperbolic dynamics and stability modulo central directions

In this section, we show that the map � WH=ƒ�M!H=ƒ�M defined in the
last subsection is a homeomorphism. Since �.F0/ D F, this implies that F0 is a
foliation. We further show that F0 is a foliation by C r leaves where r depends only
on the C 1 size of the perturbation. The map � is then easily seen to be C r along
leaves of F. For technical reasons involving the last steps of our proof, once we
have shown that � is a homeomorphism, we prefer to work with � D ��1.

We now briefly outline the argument of the section. Some of the terminology
used here is defined below in Section 3.1. First in Section 3.1 we recall some
definitions concerning partially hyperbolic diffeomorphisms and a theorem of
Hirsch, Pugh and Shub. In Section 3.2, we prove some basic facts concerning the
dynamics of the affine actions of G that we are considering and produce a finite
subset ˆ of G such that the intersections of the central foliations of �.g/ for g in ˆ
is the central foliation for G defined above in Section 2.1. In Section 3.3, we show
that the map � WH=ƒ�M!H=ƒ�M defined in Section 2.2 is a homeomorphism
and we let � D ��1. It then follows that F0 D �.F/ is �0 invariant foliation. Finally
in Section 3.4, we show that any leaf L of F0 is the transverse intersection of central
leaves Wc

�0.g/
for the diffeomorphisms �0.g/ where g is in ˆ. Since the theorem

of Hirsch, Pugh and Shub implies that each foliation Wc
�0.g/

is by C r leaves, it
follows that F0 is a foliation by C r leaves, where r depends only on the C 1 size of
the perturbation �0.

3.1. Hyperbolic dynamics and foliations. The use of the word foliation varies
with context. Here a foliation by C k leaves will be a continuous foliation whose
leaves are C k injectively immersed submanifolds that vary continuously in the C k

topology in the transverse direction. To specify transverse regularity we will say
that a foliation is transversely C r . A foliation by C k leaves which is transversely
C k is called simply a C k foliation. Note our language does not agree with that
in the reference [HPS77] where our foliation by C k leaves is a C k unbranched
lamination and sometimes a C k injective leaf immersion. Given a foliation F, we
denote the leaf through a point x by F.x/.

Given a foliation by C 1 leaves, F, of a manifold X , a diffeomorphism f is
said to be r-normally hyperbolic to the foliation F if there exists a continuous f
invariant splitting TX DEu

f
˚T F˚Es

f
such that for every x 2X ,

(1) kDfxjEu
f

�1k�1 > kDfxjFk
r and,

(2) kDfxjEs
f
k< kDfxjF

�1k�r .

For any invariant subbundle V of TX and any fixed Riemannian metric on X , the
norm above is the operator norm of DfxjVx . See [HPS77, Chap. 1] for a more
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detailed discussion of normal hyperbolicity. There, r-normally hyperbolic is also
called “immediately, relatively r-normally hyperbolic.” Also the definition given
there is slightly different, and applies also to noninvertible f . That the definitions
are equivalent for f invertible is the content of the remark following Definition 1
in the introduction to [HPS77].

We note that f being r-normally hyperbolic to F is equivalent to the existence
of constants a; b > 1 with a > br and a continuous f invariant splitting TX D
Eu
f
˚T F˚Es

f
such that

(1) kDf n.vu/k�ankvuk for all vu 2Eu
f

,
(2) kDf n.vs/k�a�nkvsk for all vs 2Es

f
and

(3) b�nkv0k< kDf n.v0/k�bnkv0k for all v0 2T F and all integers n.

The definition of r-normally hyperbolic is motivated by the theory of partially
hyperbolic diffeomorphisms. Given an automorphism f of a vector bundle E!X
and constants a > b � 1, we say f is .a; b/-partially hyperbolic or simply partially
hyperbolic if there is a metric on E and a constant and C�1 a continuous f
invariant nontrivial splitting E DEu

f
˚Ec

f
˚Es

f
such that:

(1) kf n.vu/k�Cankvuk for all vu 2Eu
f

,
(2) kf n.vs/k�C�1a�nkvsk for all vs 2Es

f
and

(3) C�1b�nkv0k< kf n.v0/k � Cbnkv0k for all v0 2Ec
f

and all integers n.

A C 1 diffeomorphism f of a manifold X is .a; b/-partially hyperbolic if the deriv-
ative action Df is .a; b/-partially hyperbolic on TX . For any partially hyperbolic
diffeomorphism, there always exists an adapted metric for which C D 1. Note that
Ec
f

is called the central distribution of f , Eu
f

is called the unstable distribution of f
and Es

f
the stable distribution of f . We will also refer to the sums Ecu

f
DEu

f
˚Ec

f

and Ecs
f
DEs

f
˚Ec

f
as the weak unstable and weak stable distributions, respectively.

Integrability of various distributions for partially hyperbolic dynamical systems
is the subject of much research. The stable and unstable distributions are always
tangent to invariant foliations which we call the stable and unstable foliations and
denote by Ws

f
and Wu

f
. If the central distribution is tangent to an f invariant

foliation, we call that foliation a central foliation and denote it by Wc
f

. If there is a
unique foliation tangent to the central distribution we call the central distribution
uniquely integrable. For smooth distributions unique integrability is a consequence
of integrability, but the central distribution is usually not smooth. For general
partially hyperbolic diffeomorphisms, unique integrability of central foliations is
difficult to establish. If the central distribution of an .a; b/-partially hyperbolic
diffeomorphism f is tangent to an invariant foliation Wc

f
, then f is r-normally

hyperbolic to Wc
f

for any r such that a > br .
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Given C k partially hyperbolic diffeomorphism f which is l-normally hyper-
bolic to a central foliation, for k; l�1, it follows from [HPS77, Th. 6.8] that there
are foliations tangent to the weak (un)stable distribution, which we call the weak
(un)stable foliation and denote by Wcu

f
and Wcs

f
.

In Section 3.4, we need to use the work of Hirsch-Pugh-Shub on perturbations
of partially hyperbolic actions of Z. We state a special case of some of their results
from [HPS77].

THEOREM 3.1. Let f be an .a; b/-partially hyperbolic C k diffeomorphism of
a compact manifold M which is k-normally hyperbolic to a C k central foliation
Wc
f

. Then for any ı > 0, if f 0 is a C k diffeomorphism of M which is sufficiently
C 1 close to f we have the following:
(1) f 0 is .a0; b0/-partially hyperbolic, where ja�a0j< ı and jb� b0j< ı, and the

splitting TM DEu
f 0
˚Ec

f 0
˚Es

f 0
for f 0 is C 0 close to the splitting for f ;

(2) There exist f 0 invariant foliations by C k leaves Wcs
f 0

tangent toEc
f 0
˚Es

f 0
;Wcu

f 0

tangent toEc
f 0
˚Eu

f 0
;Ws

f 0
tangent toEs

f 0
;Wu

f 0
tangent toEu

f 0
and Wc

f 0
tangent

to Ec
f 0

, and each foliation is close in the natural topology on foliations by C k

leaves to the corresponding foliation for f .

Statement (1) is standard. Statement (2) follows from [HPS77, Th. 6.1, state-
ment f]; see also Theorem 6:8 of that book for more details. (The exact results in
[HPS77] are more general.)

3.2. Dynamics of affine actions. For the remainder of this section the group G
is either a connected, simply connected, semisimple Lie group, J , with all simple
factors of real rank at least two or a lattice � < J . We fix a manifold M , a real
algebraic group H , and a cocompact lattice ƒ<H and fix a quasi-affine action �
of G on H=ƒ�M . We recall from Section 2.1 that there is a finite index subgroup
G0 <G such that � is defined by a homomorphism � WG0!< Aut.H/ËH where
� D �E�K , where �E is a continuous homomorphism of J , the homomorphism
�K has bounded image, and the images of �E and �K commute. For the remainder
of this section, we assume that G0 D G. As above we let L be the product of
the Zariski closure of �.G0/ and H and let Z D ZL.�E .J //\H and z be the
Lie algebra of Z. (Note that when G D J , L is always just H .) According
to the discussion in Section 2.1, we can fix a Riemannian metric on H=ƒ�M
such that �.g/ is an isometry of the metric restricted to the tangent space of F.
Given g 2G there is a natural choice of �.g/ invariant sub-bundles of T .H=ƒ/
with respect to which �.g/ is partially hyperbolic whenever Ad.�.g//jh has an
eigenvalue off the unit circle. We first describe the case of affine actions. Writing
coordinates on T .H=ƒ/ŠH=ƒ�h as .Œh�; v/ with Œh� in H=ƒ and v 2 h, we have
D�.g/D .�.g/.Œh�/;Adh.�.g//v/. We let fs

�.g/
(resp. fu

�.g/
) be the subspace of h for



LOCAL RIGIDITY OF AFFINE ACTIONS 79

which Ad.�.g// has all eigenvalues of modulus less than one (resp. all eigenvalues
of modulus greater than one) and fc

�.g/
be the subspace of h where Adf.�.g//

has all eigenvalues of modulus one. We can then define sub-bundles of T .H=ƒ/
as Es

�.g/
D H=ƒ�fs

.�.g//
; Eu

�.g/
D H=ƒ�fu

.�.g//
and Ec

�.g/
D H=ƒ�fc

.�.g//
. It

is straightforward to verify that �.g/ is partially hyperbolic with respect to this
splitting whenever this splitting is nontrivial. For the remainder of this paper,
whenever we refer to �.g/ as a partially hyperbolic diffeomorphism, we mean
partially hyperbolic with respect to this choice of splitting. We collect here some
basic consequences for the dynamics of the action �.

PROPOSITION 3.2. For any affine action � of G on H=ƒ and any g 2G there
are Lie subgroups F s

�.g/
; F u
�.g/

and F c
�.g/

in H such that the foliations Ws
�.g/

,
Wu
�.g/

and Wc
�.g/

consist of orbits of the corresponding group acting on the left on
H=ƒ. Furthermore
(1) the groups F s

�.g/
and F u

�.g/
are nilpotent,

(2) Z < F c
�.g/

and Z \F s
�.g/
DZ \F u

�.g/
D 1,

(3) for every point in H=ƒ the orbit maps for F s
�.g/

and F u
�.g/

are injective
immersions.

Proof. That F s
�.g/

; F u
�.g/

and F c
�.g/

are subgroups, as well as claims 1 and 2
are consequences of the fact fs

�.g/
; fu
�.g/

and fc
�.g/

are Lie subalgebras of h. This is
true since if v and w are eigenvectors of AdL ı�0jh.g/ with eigenvalues � and �,
then Œv; w� is an eigenvector with eigenvalue ��.

We prove (3) for Ws
�.g/

; the proof is identical for Wu
�.g/

. Assume (3) is false,
then there is an element of f 2ƒ\ h�1F s

�.g/
h. Since f is in ƒ, f is an element

of �1.H=ƒ/, which we can represent by a curve Nf lying entirely in h�1F s
�.g/

h.
Since �.g/ is a contraction on F s

�.g/
and therefore h�1F s

�.g/
h, for some large n,

the curve �n.g/ Nf is small and therefore contractible, a contradiction, since �n.g/
is a diffeomorphism and Nf is not contractible in H=ƒ. �

We now discuss the case of a quasi-affine action �. We denote by O� the affine
action of G from which � is defined. We can define a splitting of T .H=ƒ�M/

as Es
�.g/
DH=ƒ�fs

. O�.g//
;H=ƒ�Eu

O�.g/
D fu

. O�.g//
and Ec

O�.g/
DH=ƒ�fc

. O�.g//
�TM .

Again it is easy to see that �.g/ is partially hyperbolic with respect to this splitting
whenever this splitting is nontrivial. These sub-bundles are tangent to foliations
where Ws

�.g/
consists of F s

O�.g/
orbits, Wu

�.g/
consists of F u

O�.g/
orbits, and Wc

�.g/

consists of products of F c
O�.g/

orbits with M . It follows that all dynamical foliations
for any quasi-affine action are smooth.

We define E0� .G/ to be the distribution H=ƒ�z�TM which is tangent to the
foliation F. We state a lemma here which says that there are finitely many elements
in the acting group the sum of whose (un)stable directions is the complement of
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E0� .G/ and that, therefore, the intersection of their central distributions is exactly
E0� .G/.

LEMMA 3.3. There exits a finite set ˆ of elements in G such that

T .H=ƒ�M/DH=ƒ�
� X
g 2ˆ

Es�.g/
�
� z�TM:

Proof. The derivative of � on T .H=ƒ�M/ leaves invariant TM and h. We let
Ad be the adjoint representation ofL. It follows from the description of affine actions
in Section 2.1, that z is invariant under Ad jh.�.G//, that there is an Ad jh.�.G//
invariant complement m to z and that Ad jm.�.g// is Ad jm.�E .g/�K.g// where
the J representation �E does not contain the trivial representation.

Recall from [FM03, �3.8] that for any element g of GLn.R/, there is a unique
decomposition of g D us D su where u is unipotent and s is semisimple. Further,
we have a unique decomposition s D cp D pc where all eigenvalues of p are
positive and all eigenvalues of c have modulus one. We refer to p as the polar part
of g and denote it by pol.g/. As remarked there, one can define the polar part of an
element for elements of any real algebraic group and this definition is independent
of the realization of the group as an algebraic group.

By [FM03, Lemma 3:21] there is a finite collection ‰ of elements in G0 whose
polar parts are Zariski dense in J . Combined with the fact that the representation
Ad ı�E jm of J does not contain invariant vectors, this implies that m\

T
fc
�.g/
D 0.

Letting ˆD‰\‰�1 completes the proof. �

As above, we let N� be the action on ZnH defined by lifting � to an action on
H�M and looking at the action on the leaves of the central foliation there.

To describe some further properties of the dynamics, we recall the local
product structure on H�M as a bundle over ZnH from Section 2.2. Recall that
the sub-bundleH�M�m of T .H�M/ is a G invariant complement toH�z�TM .
Letting exp be the exponential map for our fixed metric on H�M and letting
Bm.0; "/ be the ball of radius " in m, by choosing " small enough, we can guarantee
that expx.Bm.0; "// defines a family of manifolds transverse to the fibers of p.
Furthermore if we write Wx D expx.Bm.0; "// then, for small enough ", we have a
local product structure on H�M given by

p�1.Wx/ŠBm.0; "/�p
�1.x/ŠBm.0; "/�.Z�M/:

We define a Riemannian metric onZnH so that the map p WH�M!ZnH is a Rie-
mannian submersion. The next lemma says that for any small enough perturbation
�0 of �, points on the same transversal to p�1.x/ can be moved apart.
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LEMMA 3.4. There exists c > 0 depending only on � such that for x in
H�M and y; z 2Wx , there are g 2ˆ and a nonnegative integer n such that
d.�0.g/nz; �0.g/ny/ > c.

Proof. As this is a special case of a fairly standard fact from (partially)
hyperbolic dynamics, we merely sketch the proof. It suffices to consider points
y 2Wx with d.x; y/ < c, since otherwise the lemma is true for any g 2ˆ and
nD 0. We assume c is small enough that B.x; c/ is a convex, normal neighborhood
of x. Therefore the geodesic between z and y is entirely contained in B.x; c/ and
we can pull the geodesic back to the Tx.H=ƒ�M/ where it can be approximated
to first order by a segment on a straight line which we denote by Vz;y .

Since Wx is transverse to F, by Lemma 3.3, we can choose g 2ˆ such that the
angle between Vz;y and Wcs

�0.g/
.x/ is bounded away from zero for all sufficiently

small �0. The dynamics of �0.g/ then force the angle between D�0.g/nVz;y and
Wcs
�0.g/

.�0.g/nx/ to be uniformly bounded away from zero. This implies that
kD�0.g/nVz;yk grows at an exponential rate controlled by the uniform lower bound
on the angle, on the constants a; b for which �.g/ is .a; b/-partially hyperbolic and
the C 1 size of the perturbation �0. When c is small enough, the first order behavior
of d.�0.g/nz; �0.g/ny/ is given by kD�0.g/nVz;yk, so that, possibly after shrinking
c again, we can assume when kD�0.g/nVz;yk> 2c that d.�0.g/nx; �0.g/ny/ > c.

�

COROLLARY 3.5. There is a constant c depending only on � such that for any
x; y 2H�M with p.x/¤ p.y/ and any �0 sufficiently C 1 close to �, there exist
g 2ˆ and a nonnegative integer n such that

d.p.�.g/n.x//; p.�.g/n.y/// > c:

Proof. Since we are only concerned with the distance between projections
under p, to prove the corollary, it suffices to consider y 2Wx . This case is immediate
from Lemma 3.4. �

3.3. Fiber structure. Throughout this subsection, we keep the notation and
assumptions of Section 3.2. Here, we show that the map � is a homeomorphism.
As an immediate consequence, F0 is a foliation and � is a leaf conjugacy between
.H=ƒ�M;�0;F0/ and .H=ƒ�M;�;F/.

THEOREM 3.6. The map � WH=ƒ�M!H=ƒ�M defined in Section 2.2 is a
homeomorphism.

Recall that our assumptions, stated in Section 3.2, imply that the G action
on H=ƒ�M defined by � lifts to H�M . As remarked in Section 2.2, if � lifts to
H�M then all small enough perturbations of � also lift to H�M .
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Proof. We show that � is a homeomorphism by showing it is a homeomorphism
on each fiber f �1.x/.

We first show � jf �1.x/ is injective by a dynamical argument. Assume � jf �1.x/
is not injective, then there are two distinct points, w; z 2f �1.x/ such that �.z/D
�.w/. This forces p.z/¤p.w/ since otherwise z D w. Since, w; z 2Wx by def-
inition, it follows from Lemma 3.3 that for some g 2G the distance between
d.p.�0.g/.z//; p.�0.g/w// is greater than some constant c depending only on �.
Since f can be made arbitrarily C 0 close to p by restriction to small enough C 1

perturbations �0 of �, we know that d.f .�0.g/z/, f .�0.g/w/� c
2

so that f .�0.g/z/
and f .�0.g/w/ are distinct. By equivariance of f we have N�.g/f .z/¤ N�.g/f .w/
which implies that f .z/¤ f .w/, a contradiction.

We now show that � jf �1.x/ is surjective. Let �U 0 be composition of the
restriction of � to p�1.U / composed with projection on the second coordinate. We
can then look at the set Vy D �U 0�1.y/. Given .x; y/2p�1.U /, we show that the
map f W Vy!U is onto. This has the desired implication, since if � jf �1.x/ is not
surjective then there exists y such that �U 0�1.y/\f �1.x/ is empty and therefore
x…f .Vy/. Since f is C 0 close to p, the map  0U is C 0 close to projection on the
second coordinate. Therefore, after identifying Vy with a subset of .U 0; y/ by a
vertical projection, f W Vy!U 0 is C 0 close to the identity map. Our result now
follows from the following general topological lemma.

LEMMA 3.7. Let B be the ball or radius r about zero in a Euclidean space
E. Let F be any continuous map from B into E such that d.F.x/; x/ < " for all
x 2B . Then F.B/ contains the ball of radius r � 2" about 0.

Proof. This generalizes the key point in the proof of the Browder fixed point
theorem: we assume the map is not surjective and use this to construct a deformation
retract from a closed ball onto its boundary. Let B 0 be the ball of radius r � 2"
and x a point in B 0. Assume x…F.B/. Let B" D B.x; 2"/ and look at F.B"/�B .
Let Sk�1 be the boundary of B.x; 2"/ Define a map from B" to Sk�1 by taking
y 2B" to F.y/ and then projecting to Sk�1 along the ray from x to F.y/. This
gives a continuous map NF from Bk to Sk�1 which, when restricted to Sk�1 is C 0

close to the identity. The map NF is C 0 close to the identity on Sk�1 and so is of
degree one and homotopic to the identity. Therefore we can define a map from
Bk to Sk�1 which is the identity on Sk�1 as follows. Take Bk and embed it in a
larger closed ball Bk1 . Let Sk�1 denote the boundary of Bk and Sk�11 denote the
boundary of Bk1 . Our map is defined by first taking NF to get a map from Bk1 to
Bk1 nInt.Bk/ and then composing with the deformation retract from Bk1 nInt.Bk/
to Sk�11 described by the homotopy from NF to the identity. This then gives a new
map NF 0 which is a deformation retract from Bk1 to Sk�11 . This is impossible since
�k�1.S

k�1/D Z and �k�1.B/D 0. Therefore x 2F.B/. �
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3.4. The leaves of F0 are smooth. This subsection is essentially a proof that F0

is a foliation by C k leaves, as defined at the beginning of Section 3.1. The degree
of smoothness will depend on the C 1 size of the perturbation �0 or, more precisely,
on the largest r such that �0.g/ is r-normally hyperbolic for all g 2ˆ where ˆ
is as in Lemma 3.3. For technical reasons both here and in later sections, we let
 D ��1 and work with  rather than � .

THEOREM 3.8. Given k, there is a neighborhood U of � in the space

Hom.G;Diff1.H=ƒ�M//

such that for any �0 2U that is a C k action the homeomorphism

 WH=ƒ�M!H=ƒ�M

defined above has the following properties.

(1) The central foliation F of H=ƒ�M for the action � is mapped by  to a
foliation F0 of H=ƒ�M that is central for the action �0.

(2) The leaves of F0 are C k and  is C k along leaves with k-jet depending
continuously on H=ƒ�M .

(3) The homeomorphism  is a leaf conjugacy between .H=ƒ�M;F; �/ and
.H=ƒ�M;F0; �0/.

(4) The map  is C 0 close to the identity and also C k small along leaves.

The main point is the improvement in the regularity of leaves of F0, and all
other conclusions follow quickly from this one. The key fact is:

LEMMA 3.9. If  is as defined above and �.g/ is partially hyperbolic, then
 .Wc

�.g/
/DWc

�0.g/
;  .Wcu

�.g/
/DWcu

�0.g/
and  .Wcs

�.g/
/DWcs

�0.g/
.

Proof. The proof proceeds in two steps. First we show that any leaf V0 of
Wcs
�0.g/

(resp. Wcu
�0.g/

) is a union of leaves of F0. Second, we show that for any leaf
V0 of Wcs

�0.g/
(resp. of Wcu

�0.g/
)there is a leaf V of Wcs

�.g/
(resp. of Wcu

�.g/
) such that

V0� .V/. Interchanging the roles of �0 and � in the argument proves the reverse
inclusion, forcing  .V/DV0. Since any leaf of Wc

�.g/
is a transverse intersection

of leaves of Wcu
�.g/

and Wcs
�.g/

and [HPS77, Th. 6.8] implies that any leaf of Wc
�0.g/

is a transverse intersection of leaves of Wcu
�0.g/

and Wcs
�0.g/

, this immediately implies
that for any V0 of Wc

�0.g/
, there is a leaf V of Wc

�.g/
such that V0 D  .V/. To

prove all of these statements, we will use the construction of leaves of Wcs
�0.g/

(resp.
Wcu
�0.g/

) from [HPS77], which we recall in the following paragraph.
Following [HPS77, �6], we pick a smooth local transversal � to the tangent

bundle Ec
�.g/

to the foliation Wc
�.g/

. As noted there, this can be chosen to be
a smooth approximation to Es

�.g/
˚Eu

�.g/
. Since in our setting, Es

�.g/
˚Eu

�.g/
is

smooth, we let � D Es
�.g/
˚Eu

�.g/
. We denote by V the manifold which is the
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disjoint union of all leaves of Wc
�.g/

. Note that V does not have a countable base
and may not be separable, see [HPS77, Exs. 2 and 20, p. 68] and following for
related discussion. Let i W V!H=ƒ�M be the inclusion and pull � back to a
bundle i��. Note that there is a metric on � and therefore i�� defined by our choice
of Riemannian metric on H=ƒ�M and let i��.l/ be the bundle of discs of radius
l . Then as described in [HPS77], there are numbers r > 0 and "0 > 0 such that
exp ıi� W i��."0/!H=ƒ�M is a diffeomorphism when restricted to i��jB.x;r/
where x 2V andB.x; r/ is a ball of radius r in a leaf of Wc

�.g/
. (In [HPS77], the sets

B.x; r/ are replaced by plaques of a plaquation of V . In our context, i.e. when the
action of �.g/ is isometric along V , it is easy to see that one can find a plaquation by
small enough balls.) Now for any " < "0, we can pull back the action of �.g/ (resp.
�0.g/) on H=ƒ�M to a (partially defined or overflowing) i��.g/ (resp. i��0.g/)
action on i��."/. See [HPS77, pp. 94–95] for details. As in [HPS77], we define a
submanifold QWcs

�0.g/
of i��."/ by QWcs

�0.g/
D\n�0i

��0.g/n.i��."//. By [HPS77, p.

107] this is a C k submanifold of i��."/ such that exp ıi�. QWcs
�0.g/

/ is the foliation

Wcs
�0.g/

. Replacing �0.g/ by �0.g�1/, gives QWcu
�0.g/
D \n�0i

��0.g/n.i�."// a C k

submanifold such that exp ıi�. QWcu
�0.g/

/ is the foliation Wcu
�0.g/

. As in [HPS77,

Th. 6.8] the intersection QWcu
�0.g/
\ QWcs

�0.g/
is transverse and the image of a section

��0.g/ W V!i
��."/ such that exp ıi�ı��0.g/.V/ is a leaf of Wc

�0.g/
.

Note that there is a foliation i�F (resp. i�F0) of i��."/ defined on each com-
ponent of V by pulling back F\ exp.�."/jV/ where V2Wc

�.g/
. Note that we

consider the leaves of these foliations to be connected components of pre-images of
leaves rather than entire pre-images of leaves. This foliation is preserved by i��.g/
(respectively i��0.g/) for any g in G.

Since  is a C 0 small homeomorphism, for any leaf V2Wc
�.g/

and any x 2V,
we have

 .exp.�.
"

2
/jBV.x;

r
2
///� exp.�."/jBV.x;r//

and so we can pull back  to a map i� W i��. "
2
/!i��."/.

We now have the following diagram of Z actions:

.i��. "
2
/; i��.g//

i� 

��

exp ıi�
// .H=ƒ�M;�.g//

 

��
.i�.�/."/; i��0.g//

exp ıi�
// .H=ƒ�M;�0.g//

where the horizontal arrows are equivariant and the vertical arrows are leaf conju-
gacies.

We first show that each leaf of Wcs
�0.g/

is a union of leaves of F0. Given a leaf
U of F, we can find a leaf L of Wc

�.g/
such that U�L. Note that for the leaf L of
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Wc
�.g/

, we have that QWcs
�.g/
\ i��."/jL D .exp ıi�/�1.V/\ i��."/jL where V is

the unique leaf of Wcs
�.g/

containing L. Furthermore, from the definition of QWcs
�.g/

it then follows that

.i�ıexp/�1.U/\ i��."/jL� i��.g/n.i��.
"

2
//

for all n < 0. Since i� is a leaf conjugacy, possibly after shrinking ", we have

i� ..i�ıexp/�1.U/\ i��."/jL� i��0.g/n.i��."//

for all n. This implies that

i� ..i�ıexp/�1.U/\ i��."/jL/D .i�ı exp/�1. .U//\ i��."/jL

is contained in QWcs
�0.g/
\ i��."/jL. This then implies that  .U/ is contained in

Wcs
�0.g/

as desired.

Now the fact that i� is a leaf conjugacy, the definition of QWcs
�0.g/

and QWcs
�.g/

and the fact that each leaf of Wcs
�0.g/

(resp. Wcs
�.g/

) is a union of leaves of F0 (resp. F)

implies that i� . QWcs
�.g/

/� QWcs
�0.g/

. This implies that for any V2Wcs
� .g/ there is

V0 2Wcs
�0.g/ such that  .V/�V0. Interchanging the roles of � and �0 and replacing

 by  �1, the same argument proves that for any V0 2Wcs
�0.g/ there is V00 2Wcs

� .g/

such that  �1.V0/�V00. These two facts then imply that for any V2Wcs
� .g/ there

is V0 2Wcs
�0.g/ such that  .V/D V0.

A similar argument using g�1 in place of g implies that for any V2Wcu
�.g/

there is V0 2Wcu
�0.g/

such that  .V/D V0. As remarked above, it then follows that
for any leaf V of Wc

�.g/
we have  .V/D V0 where V0 is a leaf of Wc

�0.g/
. �

Remark. The proof of Lemma 3.9 does not depend on all of our assumptions
and the statement could be made more axiomatic. All we require is that  is a leaf
conjugacy and that any leaf of Wc

�.g/
is a union of leaves of F for any g 2ˆ.

We recall two definitions and a lemma from [MQ01, pp. 145–146]:

Definition 3.10. (1) Let N be a smooth Riemannian manifold and N1, N2
two immersed C k manifolds. We say that N1 and N2 intersect s-transversely
if N1\N2 is a manifold N 0of dimension

dim.TN1.x/\TN2.x//

for any x 2N1\N2.

(2) Let N be a smooth Riemannian manifold and N1; : : :; Nl a collection of
C k immersed submanifolds. We say that the family N1; : : :; Nl intersects
s-transversely if \j�1iD1Ni intersects s-transversely with Nj for j D 2; :::l .
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Definition 3.11. Let N be a smooth manifold and N1; : : :; Nl a collection
of C k manifolds. We call a collection N 01; : : :; N

0
l

of C k submanifolds of N a
topologically trivial "-perturbation of N1; : : :; Nl if there is a homeomorphism
h WN!N such that

(1) N 0i D h.Ni /

(2) d.h.x/; x/ < " for all x 2N , and

(3) for any x 2N and any i , let Bi .x/ (resp. B 0i .h.x//) be the unit balls in the
tangent space TNi .x/ (resp. TN 0i .h.x//). Then Bi .xi / and B 0i .h.x// are
within an " neighborhood of each other in TN .

Remark. On [MQ01, p. 145], the same notion is called an "-perturbation.
We choose to modify the terminology, since the original terminology is somewhat
deceptive.

LEMMA 3.12. Let N be a compact manifold and N1; : : :; Nl be C k submani-
folds intersecting s-transversely, then

(1) \liD1Ni is a C k submanifold, and

(2) there exists " > 0 depending only on N , such that if N 01; : : :; N
0
l

is any topo-
logically trivial "-perturbation N 01; : : :; N

0
l

of N1; : : :; Nl , then N 01; : : :; N
0
l

intersect s-transversely.

Point (1) for l D 2 is Lemma 5.5(1) of [MQ01], where C k replaces the word
smooth. The proof is the same. As noted on page 146 of [MQ01], the case l > 2
follows by induction. Similarly part (2) follows from [MQ01, Lemma 5.5(2)] and
induction. The proof of [MQ01, Lemma 5.5(2)] implicitly uses that if N1; N2
are C k submanifolds of N and N 01; N

0
2 are a topologically trivial "-perturbation

of N1; N2 then dim.TN 01.x/\TN
0
2.x// D dim.N 01\N

0
2/ for every x in N . A

priori dim.TN 01.x/\TN
0
2.x// could drop, but it is in fact bounded below by

dim.N 01\N
0
2/. This can be deduced from standard facts about transversality by

an argument similar to the proof of [MQ01, Lemma 5.5(1)]. This is not noted
explicitly in [MQ01].

Since we will need to know not just that the leaves of F0 are C k submanifolds
but that F0 is a foliation by C k leaves, we require a slight strengthening of Lemma
3.12, also remarked on [MQ01, p. 146]. Let F1; : : :;Fl be foliations by C k leaves
of a compact manifold N . We say that the Fi intersect s-transversely, if for each
x 2N , leaves Fi .x/ intersect s-transversely and the dimension of the intersections
\
j
iD1Fi .x/ is independent of x for any j from 2 to l . We say that a collection of

foliations F01; : : : ;F
0
l

of N is an "-perturbation of F1; : : : ;Fl if:

(1) There exists a homeomorphism h WN!N with h.Fi /D F0i for i from 1 to l
and d.h.x/; x/ < " for every x 2N ;
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(2) For any x 2N and any i , let Bi .x/ (resp. B 0i .h.x//) be the unit balls in the
tangent space T Fi .x/ (resp. T F0i .h.x//). ThenBi .xi / andB 0i .h.x// are within
an " neighborhood of each other in TN .

As remarked in [MQ01], a slight modification of the proof of Lemma 3.12
shows that:

(1) If F1; : : :;Fl are s-transverse foliations by C k leaves, then the foliation defined
by intersections of leaves of F1; : : :;Fl is a foliation by C k leaves.

(2) If N is compact, there exists " > 0 such that any topologicially trivial "-
perturbation of F1; : : :;Fl is s-transverse.

LEMMA 3.13. Given k, if �0 is a sufficiently C 1 small, C k perturbation of �,
the leaves of the foliation F0 are the s-transverse intersections of leaves of Wc

�0.g/

for g 2ˆ. Therefore F0 is a foliation by C k leaves. Furthermore, the foliation F0 is
close to F in the natural topology on foliations by C k leaves.

Proof. We fix a neighborhood U of � in Hom.D;Diff1.M// such that

(1) for g 2ˆ, �.g0/ is close enough to �.g/ to satisfy the hypotheses of Theorem
3.1,

(2) the map  D ��1 constructed in Section 2.2 satisfies d. .x/; x/ < " (or
equivalently d.�.x/; x/ < ") for " as in Lemma 3.12.

Let L0 be an arbitrary leaf of F0 and let LD �1.L0/. Note that the leaf L of F

is the s-transverse intersection of leaves Vc
�.g/

of Wc
�.g/

for g 2ˆ. By Lemma 3.9,
for every g 2ˆ, we know that  .Vc

�.g/
/ is a leaf Vc

�0.g/
of Wc

�0.g/
and therefore

by Theorem 3.1 a C k submanifold of H=ƒ�M which is C k close to some leaf
of Wc

�.g/
. Since  is a homeomorphism and can be made arbitrarily small by

choosing �0 close enough to �, Lemma 3.12.2/ implies that  .Vc
�.g/

/ D Vc
�0.g/

intersects s-transversely in a C k manifold. Since

\d 2ˆ .V
c
�.g//D  .\d 2ˆVc�.g//D  .L/D L0

it follows that every leaf L0 of F0 is a C k submanifold of H=ƒ�M . The remarks
following Lemma 3.12 then imply that F0 is a foliation by C k leaves. �

Proof of Theorem 3.8. The homeomorphism  �1D � is constructed in Section
2.2 and shown to be a homeomorphism in Theorem 3.6. Since  �1 is given by
projecting from leaves of F0 to leaves of F via a smooth transversal, and leaves of
F0 are C k by Lemma 3.13, the map  is C k and C k small along fibers.

The remaining conclusions follow from Corollary 2.5 and Theorem 3.6. �

We will eventually need one additional fact concerning  which is now
straightforward. To state this fact about  , we need to define some additional
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dynamical foliations. Let E0�0.G/ be the distribution tangent to F0. Given g 2ˆ, we
take the distributions E0� .G/˚E

s
�.g/

and E0�0.G/˚E
s
�0.g/

. Recall that F is tangent
to E0� .G/. For the � action there is a smooth foliation tangent to E0� .G/˚E

s
�.g/

,
which we denote by F˚Ws

�.g/
. To see this, one notes that the group Z normalizes

the group F s
�.g/

and so the product ZF s
�.g/

is a subgroup of H . For the case of
affine actions, the foliation F˚Ws

�.g/
is just the orbit foliation for the left action of

ZF s
�.g/

onH=ƒ. For quasi-affine actions, we recall that there is a natural projection
H=ƒ�M!M and the foliation F˚Ws

�.g/
is given by pre-images in H=ƒ�M of

the ZF s
�.g/

orbits in H=ƒ. We note that the lift of any leaf of F˚Ws
�.g/

to H�M
is of the form p�1.V/ where V is a leaf of Ws

N�.g/
.

PROPOSITION 3.14. For any g2ˆ, there is a �0 invariant foliation F0˚Ws
�0.g/

of H=ƒ�M tangent to E0�0.G/˚E
s
�0.g/

such that  .F˚Ws
�.g/

/D F0˚Ws
�0.g/

.

Proof. We can define the foliation F0˚Ws
�0.g/

to be  .F˚Ws
�.g/

/. A leaf V

of the foliation F˚Ws
�.g/

is given by sets of points sharply forward asymptotic
to a leaf L of F. Here, as in [HPS77], x is sharply forward asymptotic to L

if d.�n.g/x; �n.L// goes to zero at least as fast as exp.��n/ for some � > 0

depending on the dynamics. Since  is a leaf conjugacy it follows that a leaf V0

of F0˚Ws
�0.g/

is given by sets of points sharply forward asymptotic to a leaf L0 of
F0. By [HPS77, Th. 6.8 (e) and (f)], the leaves of Ws

�0.g/
are exactly sets of points

sharply forward asymptotic to the orbit of a point on a leaf of Wc
�0.g/

. Therefore,
a leaf V0 of F0˚Ws

�0.g/
is the union of all leaves of Ws

�0.g/
through a leaf L0 of

F0. This immediately implies that F0˚Ws
�0.g/

is tangent to E0�0.G/˚E
s
�0.g/

and
completes the proof. �

4. Property T and conjugacy

In this section, we modify the leaf conjugacy obtained at the end of the last
section to obtain a semiconjugacy. The a priori regularity of this semiconjugacy
will be somewhat bad. In Section 5 we show it is a homeomorphism, in Section 6
we show it is differentiable along many foliations and in Section 7 we show it is
differentiable and even C1 when �0 is C1. The key ingredient in the arguments
of this section is [FM05, Th. 2:16], so we begin by recalling some notation and
definitions from subsection 2:3 of that paper. For most of this section G will be a
compactly generated topological group, though for our applications, G will be J or
� as above.

Throughout this section X will be a second countable, compact, Hausdorff
manifold and F will be a foliation of X by C k leaves. For background on foliated
spaces, their tangent bundles, and transverse invariant measures, the reader is
referred to [CC00] or [MS88].
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We let Diffk.X;F/ be the set of homeomorphisms of X which preserve F and
restrict to C k diffeomorphisms on each leaf with derivatives depending continuously
on x in X . For 1�k�1, there is a natural C k topology on Diffk.X;F/. The
definition of this topology is straightforward and is recalled in [FM05, �2:3].

We now define a special class of perturbations of actions.

Definition 4.1. Let G be a compactly generated, topological group and � an
action of G on X defined by a homomorphism from G to Diff1.X;F/. Let �0 be
another action of G on X defined by a homomorphism from G to Diffk.X;F/. Let
U be a (small) neighborhood of the identity in Diffk.X;F/ and K be a compact
generating set for G. We call �0 a .U; C k/-foliated perturbation of � if:

(1) for every leaf L of F and every g 2G, we have �.g/LD �0.g/L and,

(2) �0.g/�.g/�1 is in U for every g in K.

We fix a continuous, leafwise smooth Riemannian metric gF on T F, the tangent
bundle to the foliation, and note that gF defines a volume form and corresponding
measure on each leaf L of F, both of which we denote by �F. (Metrics gF exist
by a standard partition of unity argument.) Let G be a group and � an action of
G on X defined by a homomorphism from G to Diffk.X;F/. We say the action is
leafwise isometric if gF is invariant under the action. When G D Z and ZD hf i,
we will call f a leafwise isometry.

For the remainder of this section, we will assume that the foliation has a
transverse invariant measure �. By integrating the transverse invariant measure �
against the Riemannian measure on the leaves of F, we obtain a measure � on X
which is finite when X is compact. In this case, we normalize gF so that �.X/D 1.
We will write .X;F; gF; �/ for our space equipped with the above data, sometime
leaving one or more of F; gF and � implicit. We will refer to the subgroup of
Diffk.X;F/ which preserves � as Diffk� .X;F/. Note that if � is an action of G on
X defined by a homomorphism into Diffk� .X;F/ and � is leafwise isometric, then �
preserves �. Furthermore if � is an action of � on X defined by a homomorphism
into Diffk� .X;F/ and �0 is a .U; C k/-leafwise perturbation of �, then it follows
easily from the definition that �0 is defined by a homomorphism into Diffk� .X;F/
since the induced map on transversals is the same.

Before stating one of the main results of [FM05], we will need a coarse
quantitative measure of the C k size of the C k map. We denote by BF.x; r/ the
ball in Lx about x of radius r . For a sufficiently small value of r > 0, we can
canonically identify each BF.x; 2r/ with the ball of radius 2r in Euclidean space
via the exponential map from T Fx to Lx . We first consider the case when k is an
integer, where we can give a pointwise measure of size. Recall that a C k self map
of a manifold Z acts on k-jets of C k functions on Z. Any metric on TZ defines a
pointwise norm on each fiber of the bundle of J k.Z/ of k-jets of functions on Z.
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For any C k diffeomorphism f we can define kj k.f /.z/k as the operator norm of
the map induced by f from J k.Z/z to J k.Z/f .z/. For a more detailed discussion
on jets and an explicit construction of the norm on J k.Z/z , see [FM05, �4]. We say
that a map f has C k size less than ı on a set U if kj k.f /.z/k< ı for all z in U .
If k is not an integer, we say that f has C k size less than ı on U if f has C k

0

size
less than ı on U where k0 is the greatest integer less than k and j k

0

.f / satisfies a
(local) Hölder estimate on U . See [FM05, �4] for a more detailed discussion of
Hölder estimates.

Remark. This notion of C k size is not very sharp. The size of the identity
map will be 1, as will be the size of any isometry of the metric. We only use this
notion of size to control estimates on a map at points where the map is known to
be “fairly large” and where we only want bounds to show it is “not too large”.

For the following theorem, we assume that the holonomy groupoid of .X;F/
is Hausdorff. This is a standard technical assumption that allows us to define certain
function spaces on “pairs of points on the same leaf of .X;F/”. See [FM05, �6:1],
[CC00] and [MS88] for further discussion. All the foliations considered in this
paper for the proof of Theorem 1.1 are covered by fiber bundles, and in that case
the holonomy groupoid is Hausdorff. We now recall [FM05, Th. 2:16].

THEOREM 4.2. Let G be a locally compact, �-compact group with property
(T). Let � be a continuous leafwise isometric action of G on X defined by a
homomorphism from G to Diff1� .X;F/. Then for any k�3; � > 0 and any & > 0
there exists a neighborhood U of the identity in Diffk.X;F/ such that for any
continuous .U; C k/-foliated perturbation �0 of � there exists a measurable map
� WX!X such that:

(1) �ı�.g/D �0.g/ı� for all g 2G,

(2) � maps each leaf of F into itself.

(3) There is a subset S �X with �.S/D 1�& and � �S has full measure inX , and
a constant r 2RC, depending only on X;F and gF, such that, for every x 2S ,
the map � WBF.x; r/!Lx is C k�1��-close to the identity; more precisely, with
our chosen identification of BF.x; 2r/ with the ball of radius 2r in Euclidean
space, � � Id W BF.x; r/!BF.x; 2r/ has C k�1�� norm less than & for every
x 2S .

(4) There exists 0 < t < 1 depending only on G and K such that the set of x 2X
where the C k�1�� size of � on BF.x; r/ is not less than .1 C &/lC1 has
measure less than t l& .

Furthermore, for any l�k, if �0 is a C 2l�kC1 action, then by choosing U small
enough, we can choose � to be C l on BF.x; r/ for almost every x in X . In
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particular, if �0 is C1 then for any l�k, by choosing U small enough, we can
choose � to be C l on BF.x; r/ for almost every x in X .

Remarks.

(1) Since �0 is a foliated perturbation of �, the transverse measure � is �0 invariant.
This is because �0 defines the same action on transversals as �.

(2) The map � constructed in the theorem is not even C 0 close to the identity on
X . However, the proof of the theorem shows that for every 1�q<1, possibly
after changing U depending on q, we have

R
X .d.x; �.x//

qd��& .

We now proceed to show how Theorem 4.2 can be applied in the proof of
Theorem 1.1. As before, we fix a semisimple Lie group J with all simple factors
of real rank at least two and a lattice � in J and let G be one of J and � . We
also fix an algebraic group H , a cocompact lattice ƒ < H , a compact manifold
M and a quasi-affine action � of G on H=ƒ�M . Once again, we assume that �
lifts to H�M . We fix the foliation F of H=ƒ�M by central leaves for �.G/ as
in Section 2.1. We further assume that the G action defined by � lifts to an action
on H�M . We note that there is a transverse invariant measure � to F defined by
lifting to H�M and identifying local transversals with their projections to ZnH .

PROPOSITION 4.3. When U � Hom.G;Diffk� .H=ƒ�M;F// is a neighbor-
hood of �, there is a neighborhood V of � in Hom.G;Diff1.H=ƒ�M// such that
if �0 2V is a C k action and  is the homeomorphism from Theorem 3.8, then
 �1ı�ı is in U . Furthermore, given m�k, by assuming �0 is Cm and possibly
after shrinking V , we can also guarantee that  �1ı�ı is in

Hom.G;Diffm� .H=ƒ�M;F//:

Proof. This is immediate from the definitions and Theorem 3.8. �

THEOREM 4.4. For every k�3; � > 0 and & > 0, there is a neighborhood V of
� in Hom.G;Diffk.H=ƒ�M// such that if �0 2V then there exists a measurable
map ' WH=ƒ�M!H=ƒ�M such that:

(1) 'ı�.g/D �0.g/ı' for all g 2G.

(2) ' maps each leaf of F into a leaf of F0.

(3) '.F˚Ws
�.g/

/DF˚Ws
�0.g/

on a set of full measure inH=ƒ�M for any g 2G.

(4) There is a subset S �X with �.S/ D 1 � & and � �S is of full measure in
H=ƒ�M , and a constant r 2RC, depending only on X;F and gF, such that,
for every x 2S , the map ' W BF.x; r/!F.x/ is C k�1��-close to the identity;
more precisely, with our chosen identification of BF.x; 2r/ with the ball of
radius 2r in Euclidean space, '�Id WBF.x; r/!BF.x; 2r/ has C k�1�� norm
less than & for every x 2S .
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(5) There exists 0 < t < 1 depending only on � and K such that the set of x 2X
where the C k�1�� size of ' on BF.x; r/ is not less than .1 C &/lC1 has
measure less than t l& and,

Furthermore, for any l�k, if �0 is a C 2l�kC1 action, then by choosing U
small enough, we can choose ' to be C l on BF.x; r/ for almost every x in X . In
particular, if �0 is C1 then for any l�k, by choosing U small enough, we can
choose � to be C l on BF.x; r/ for almost every x in X .

Remark. Conclusion (4) combined with equivariance of ' and the fact that the
central foliation is the quotient of the fibers of a bundle, imply that for almost every
x, the map ' is C k�1�� along F.x/ and that the derivative D' W T F.x/!T F.x/

is an isomorphism at all points of F.x/.

Proof. By Proposition 4.3, we can apply Theorem 4.2 to the actions � and
 �1ı�0ı . This produces a map � satisfying the conclusions of Theorem 4.2. We
let ' D  ı� which satisfies (1) and (2) by construction. Since  is uniformly C k

small when restricted to any leaf of F, the estimates in (4) and (5) follow from
the estimates in Theorem 4.2 (3) and (4). Point (3) follows from Proposition 3.14,
the fact that � maps almost every leaf of F to itself, and the fact that leaves of
F˚Ws

�.g/
are unions of leaves of F. �

The majority of the remainder of this paper is devoted to a proof that the map
' constructed above is a small diffeomorphism with regularity depending on the
regularity of �0. This suffices to prove Theorem 1.1 in the case when the � action
lifts to H�M . An additional argument in Section 5.3 completes the proof. With
this in mind, we fix:

4.1. Notation for the remainder of this paper. As above J will be a semisimple
Lie group with all simple factors of real rank at least two and � < J will be a
lattice. We will fix G to be one of J and � and also fix a quasi-affine action �
of G on H=ƒ�M . Until Section 5.3, we will assume that the G action � lifts to
H�M . In Section 5.3, we explain how to remove this assumption. In addition,
we will fix an integer k, and �0 will always denote a perturbation of � which is
sufficiently C k small so as to be able to apply Theorem 4.4, and ' will be the
resulting semi-conjugacy. We allow the possibility that �0 is C l for some l>k,
including l D1, so as to be able to prove the C1 case of Theorem 1.1. We also
fix the maps  and � from Theorems 3.8 and 4.2, the projection p WH�M!ZnH
and the map f WH�M!ZnH from Theorem 2.4.

5. Continuity along dynamical foliations

In this section, we show that ' is a homeomorphism by showing that it is a
homeomorphism when restricted to certain dynamical foliations. To do this we
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show that for any g 2ˆ, ' maps contracting leaves for the action �.g/ onH=ƒ�M
to contracting leaves for �0.g/ and deduce from this that ' is a homeomorphism
along those foliations. Throughout this section, all notation is as fixed at the end of
Section 4 or as in Section 3.1. Once we have shown that ' is a homeomorphism,
we show, in Section 5.3, how to remove the assumption that the action � lifts to a
G action on H�M .

5.1. Equivariance of contracting foliations. We use the equivariance of ' to
show that:

PROPOSITION 5.1. For every g 2ˆ and almost every x 2X , the map ' de-
fined in Theorem 4.4 maps a set of full measure in the leaf Ws

�.g/
.x/ into the leaf

Ws
�0.g/

.'.x//.

The proof of this proposition takes up the rest of this subsection. If ' were
continuous as well as equivariant, this would follow easily from standard dynamical
arguments. We begin by introducing some terminology and notation. Fix a finite
set ˆ of elements in G as in Lemma 3.3 for the remainder of this section. We
introduce a function which measures the extent to which ' does not take stable
leaves to stable leaves for a fixed element g 2ˆ. We define this function on a
H=ƒ�M�F s

�.g/
, where F s

�.g/
<H is as in Proposition 3.2. We denote the identity

in F s
�.g/

by eF . We note that �.g/ induces a contracting automorphism of F s
�.g/

which we denote by %.g/. The diffeomorphism .�.g/; %.g// of H=ƒ�M�F s
�.g/

will be written Q�.g/. The projection � WH=ƒ�M�F s
�.g/
!H=ƒ�M is equivariant

for the Z action generated by Q�.g/ on H=ƒ�M�F s
�.g/

and the Z action generated
by �.g/ on H=ƒ�M . First note that if we take the leaf of F0˚Ws

�0.g/
through a

point x in X , this is foliated by stable leaves, each of which intersects the leaf of F0

through x in exactly one point. Given a point y on the leaf of F0˚Ws
�0.g/

through
x we will look at its projection to the leaf F0.x/ through x defined by this unique
intersection point, call this point pF0.y/. We denote the restriction of the fixed
Riemannian metric on H=ƒ�M to the foliation F by gF. Note that the bounds on
the derivatives of ' along F from Theorem 4.4(4) and (5) imply that for almost
every x in H=ƒ�M , there is a small ball BF.x; ".x// such that � is a C k�1��

diffeomorphism when restricted to BF.x; ".x//, where � depends only on the size
of the perturbation. For x in S as defined in Theorem 4.4 point (4), the number " is
very close to the number r specified in that theorem. For general x, the number "
depends on the bound from (5) of Theorem 4.4. Regardless, whenever pF0.'.f x//

is in '.BF.x; ".x// we define:

ı.x; f /D dF0..'jBF.x;".x///
�1.pF0.'.f x///; x/;

and let ı.x; f /D1 otherwise. While the fact that ".x/ is not �.g/ invariant prevents
us from concluding that ı.x; f / is �.g/ invariant, we do have the following weaker
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condition on ı.f; x/. Since ' and � areG equivariant, �.g/ is isometric along F and
pF0 is �.g/ equivariant, it follows that if ı.x; f / <1 and ı.�.g/x; %.g/f / <1,
then ı.x; f / D ı.�.g/x; %.g/f /. It is clear that ı.x; eF / D 0 for almost every
x 2H=ƒ�M .

We recall some basic facts concerning density points. For more discussion of
the density points, including a proof of the density point theorem, see e.g. [Mar91,
IV.1]. First, we need to specify a b-metric on H=ƒ�M�F s

�.g/
. Recall that given

a number b > 1, a b-metric on a topological space Y is a map d W Y�Y!R�0

satisfying the usual axioms of a metric, except that the triangle inequality is replaced
by d.x; y/ � b.d.x; z/C d.z; y//. Our b-metric will be the sum of the metric
induced by our choice of Riemannian metric along H=ƒ�M with a metric on the
fiber analogous to the one introduced in the proof of [Mar91, Cor. IV.1.6]. Given a
ball B in F s

�.g/
, we define a left invariant 2-distance function on Es

�.g/
, by letting:

nB.f1; f2/Dmaxfn2Zj.f1
�1f2/2 %.g/

n.B/g;

dB.f1; f2/D 2
�nB.f1;f2/:

This is a left invariant 2-distance function by the proof of [Mar91, Cor. IV.1.6].
Given dB and the distance dH=ƒ�M induced by adapted metric on H=ƒ�M , we
define a 2-distance function on H=ƒ�M�Es

�.g/
by letting

d..x1; f1/; .x2; f2//D dH=ƒ�M .x1; x2/C dB.f1; f2/:

Whenever discussing density points in H=ƒ�M�F s
�.g/

(resp. F s
�.g/

or H=ƒ�M )
we mean density points with respect to balls in the metric d (resp. dB or dX ). For
dB ; dX and d , we will denote by Bd .x; "/ (resp. BdB .x; "/ or Bdbase.x; "/) the d
ball about x of radius ".

Given a topological space Y , a b-distance function d on Y , a measure � on
Y , and a measurable set C �Y , we call a point y 2Y a density point of C if

lim
"!0

�.C \Bd .x; "//

�.Bd .x; "//
D 1:

Note that this conclusion is most reasonable in the case where � is a regular
Borel measure which is d -finite dimensional in the sense of [Mar91, IV.1]. The
generalization of the classical density point theorem as stated in [Mar91, Th. IV.1.5]
says that if Y; d are as above and if � is d -finite dimensional, then the subset of C
consisting of density points of C is of full measure in C . We do not give a more
detailed discussion here, since we will use the density point theorem only through
the following consequence, which is a special case of [Mar91, Cor. IV.1.6].

PROPOSITION 5.2. Let F be a locally compact, compactly generated topo-
logical group, % W F!F a contracting automorphism of F and C �V a (Haar)
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measurable subset. Then if eF is a density point of C , the sequence of sets

f%.g/�n.C /gn2N

converges in measure to F .

Proof. In the proof of Corollary IV.1.6 of [Mar91], it is shown that the sets
f%.g/�n.f �1C/gn2N converge in measure to F whenever f is a density point of
C . This implies the desired conclusion. �

Let Vˇ be the set of points in H=ƒ�M�F s
�.d/

such that ı.x; f /�ˇ and let
Uˇ be the set of points x in H=ƒ�M such that ".x/ < ˇ. We now show that for
any ˇ > 0, the set Vˇ is of full measure in Uˇ�F s�.d/. Note that by the conclusions
of Theorem 4.4, the set Uˇ!H=ƒ�M in measure as ˇ!0. The proof of the
lemma below is complicated by the fact that we need to work with points x that
are density points both in H=ƒ�M and along the leaf of Ws

�.g/
.x/.

LEMMA 5.3. For every ˇ > 0, the set Vˇ is a set of full measure in Uˇ�F s�.g/.

Proof. We fix ˇ and Uˇ and a constant � > 0. Then by Theorem 4.4(5) there
are a number C1 and a set U1�Uˇ with �.U1/�.1 � �/�.Uˇ / where for any
x 2U1, 'jU1 is differentiable and kD�.x/jFk�C1.

By Luzin’s theorem, we can choose a set U2�H=ƒ�M with �.U2/�1� �
and a continuous map � W H=ƒ�M!H=ƒ�M such that ' D � on U2. Let
U3 D U1\U2\Uˇ and note that �.U3/�.1� 2�/�.Uˇ /.

Define the map … W H=ƒ�M�F s
�.g/
!H=ƒ�M by ….x; f / D f x. Now,

Q' D 'ı… and Q� D �ı…. As a result, Q' D Q� on …�1.U2/.
The manifold H=ƒ�M�F s

�.g/
is equipped with a product measure ���

where � is Haar measure on F s
�.g/

. Note that there is no difficulty in applying
Fubini’s theorem to this product measure. For all f 2F s

�.g/
we have

….H=ƒ�M;f /DH=ƒ�M;

and ….�; f /��D � and therefore �.….�; f /�1Ui /D �.Ui /.
By Fubini’s theorem and the density point theorem, the set U4 of points which

are density points for U3\ .x�F s�.g// are of full � measure in U3\ .x�F s�.g// for
almost all x 2H=ƒ�M . Applying Fubini’s theorem again implies that

U4\ .H=ƒ�M�ff g/

is of full � measure in U3\ .H=ƒ�M�ff g/ for almost every f such that .x; f /
lies in …�1.U3/ for some x 2H=ƒ�M . By changing basepoint by translating
by f , we can assume that U5 D U4\ .H=ƒ�M�feF g/ is of full measure in
U3\ .H=ƒ�M�feF g/ and that �.U5/�.1� 2�/�.Uˇ /.

Let NR.x/ D fi j�.g/�ix 2U5g. The set NR.x/ is infinite for almost every
x 2U5 by the Poincaré Recurrence Theorem. Given f 2F s

�.g/
let NR.x; f / D
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NR.x/\fj j%.g/
�jf 2 .U3\ .f�.g/

�j .x/g�F s
�.g/

/g. Then for � almost every
f 2F s

�.g/
, Proposition 5.2 implies that NR.x; f / is infinite for almost every x in

U5.
For x 2U5; f 2F s�.g/, y D f x and n2NR.x; f /, it follows that

d.'.�.g/�nx/; '.�.g/�ny//D d.�.�.g/�nx/; �.�.g/�ny//

since the definition of NR.x; f / implies that �.g/�nx and �.g/�ny are in U2.
The definition of U1, the fact that �.g/�n.x/ is in U1 and compactness of

H=ƒ�M imply that there exists a constant C depending only on the geometry of
H=ƒ�M such that

dF..'jBF.x;".x///
�1pF0.'.y//; x/

D dF..'jBF.x;".x///
�1.pF0.'.�.g/

�ny///; �.g/�nx/

� CC1d.'.�.g/
�nx/; '.�.g/�ny/D CC1d.�.�.g/

�nx/; �.�.g/�ny//

whenever x 2U5 and n2NR.x; y/. Since � is uniformly continuous and we have
d.�.g/�nx; �.g/�ny/!0 as n!1, by choosing n2NR.x; f / large enough, we
can guarantee that

CC1d.�.�.g/
�nx/; �.�.g/�ny// < �:

Since the choice of � is free, this proves the lemma. �

Proof of Propostion 5.1. . Take the sequence V 1
n

. Then V D
T1
nD1 V 1

n
is a

set of full measure in H=ƒ�M�F s
�.g/

and is also a set of full measure in almost
every fiber. By definition of Vˇ , for any x 2Uˇ such that V is of full measure in
the F s

�.g/
fiber over x, ' takes a set of points of full measure in Ws

�.g/
.x/ to points

in Ws
�0.g/

.'.x//. �

5.2. ' is a homeomorphism. In our setting, ' D �ı is not a priori a homeo-
morphism since � is not even a priori continuous. However, we will show that ' is
agrees almost everywhere with a homeomorphism when restricted to the leaves of
any of the foliations Ws

�.g/
for g 2ˆ. We will then use this fact to prove that ' is

in fact a homeomorphism. We begin with some definitions. Recall that if X is a
Riemannian manifold with a foliation F, there is a natural volume on the leaves of
F defined by the restriction of the Riemannian metric to T F. We will call a map
of a noncompact space uniformly small if it is uniformly close to the identity on
all compact sets. Similarly, we say that two homeomorphisms h; g are uniformly
close if hg�1 is uniformly small and we say that a sequence of homeomorphisms
hn on a noncompact converge uniformly to a homeomorphism h if the map hnh�1

is uniformly small.
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Definition 5.4. Given a Riemannian manifold X equipped with a foliation F

by smooth manifolds and a map h WX!X , we say that f is:

(1) essentially continuous along F if for almost every x 2X the restriction of h to
F.x/ agrees almost everywhere with a continuous map,

(2) essentially a homeomorphism along F if for almost every x 2X the restriction
of h to F.x/ agrees almost everywhere with a uniformly small homeomorphism
and,

(3) essentially uniformly continuous along F if it is essentially a homeomorphism
along F and for every sequence xn!x with h.xn/!h.x/, the maps hjF.xn/
agree almost everywhere with maps which converge uniformly to a homeo-
morphism Nh W F.x/!F.h.x//.

The first step in proving continuity of ' is proving:

PROPOSITION 5.5. For any g 2ˆ the map ' is essentially uniformly continu-
ous along Ws

�.g/
.

Before proving the proposition, we require a lemma that follows immediately
from the definition of  . Recall that  is continuous and is covered by a map Q 
such that:

.H�M;�/

p

��

Q 

// .H�M;�0/

fwwppppppppppp

.ZnH; N�/

where all maps are right ƒ equivariant and p and f are left G equivariant. As an
immediate consequence of this and the fact that f and p are uniformly C 0 close
and ƒ equivariant we have:

LEMMA 5.6. Let V0 be a leaf of Ws
�0.g/

and QV0 the lift of V0 to H�M . Then

f W QV0!f . QV0/ is a homeomorphism onto a leaf of Ws
N�.g/

. Furthermore if V is a

leaf of Ws
�.g/

with lift QV to H�M , and

(1) QV is close to QV0 and,

(2) f . QV0/D p. QV/

then f W QV0!f . QV0/ is uniformly close to p W QV!p. QV/.

Since � preserves the foliation of H=ƒ�M which is covered by fibers of p,
we have that ' commutes locally with the projections f and p, i.e. that for any
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U �H=ƒ�M , we have
U

p

��

'
// '.U /

f{{www
ww

ww
ww

p.U /

where the arrows p and f are defined by viewing U and '.U / as subsets of H�M .
With this in mind we can now proceed to prove Proposition 5.5.

Proof of Proposition 5.5. By Proposition 5.1, for almost every x, we have that

'.Ws
�.g/.x//�Ws

�0.g/.'.x//:

By the commutative diagram above, for almost every x there is a neighborhood
U of x such that f .'.Ws

�.g/
.x/\U// D p.Ws

�.g/
.'.x//\'.U // and therefore

'.Ws
�.g/

.x/\U/ D Ws
�0.g/

.'.x//\'.U /. Furthermore, since by Lemma 5.6
f jWs

�0.g/
.'.x//\U projects Ws

�0.g/
.'.x//\U homeomorphically onto

f .Ws
�0.g/.'.x//\'.U //;

we can write 'j QWs
�.g/

.x/ as

pj.Ws
�.g/

.x/\'.U //ıf jWs
�0.g/

.'.x//\'.U /
�1

which is clearly a homeomorphism. The fact that f j.Ws
�0.g/

.'.x//\'.U // is C 0 close

to pjWs
�.g/

.x/
�1\U by Lemma 5.6 implies that ' is essentially a homeomorphism

along Ws
�.g/

.
That ' is essentially uniformly continuous along Ws

�.g/
follows from the fact

that f and p are C 0 and uniformly C 0 close on all ofH�M , are homeomorphisms
when restricted to leaves of Ws

�.g/
and Ws

�0.g/
respectively and the fact that the

foliations Ws
�.g/

and Ws
�0.g/

are continuous. �

At this point we want to conclude that since ' is essentially a homeomorphism
and essentially uniformly continuous along foliations whose tangent spaces span
T .H=ƒ�M/ at each point, ' is a homeomorphism. However it is unclear that
' should agree with a single well-defined global homeomorphism. Our proof of
this uses the fact that the foliations involved are smooth, or at least absolutely
continuous, in order to use Fubini’s theorem repeatedly. We first give two general
lemmas from which we will deduce continuity of '. To avoid technicalities con-
cerning integrability, we will prefer to work with 1 dimensional foliations. For our
application we need only the second statement in the following lemma, but we state
and prove the first statement since it makes the ideas involved clearer.

LEMMA 5.7. (1) Let X be an n dimensional compact Riemannian manifold
and V1; V2; : : :Vn smooth nowhere vanishing vector fields such that TXx D
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iD1 Vi .x/ for every x 2X . Let Fi be the foliation tangent to Vi , and let

h W X!Y be a measurable map which is essentially uniformly continuous
along each Fi . Then h is a homeomorphism.

(2) Let X be as above, let V1: : :Vk be nowhere vanishing vector fields, and let
Fc be a smooth foliation of X by manifolds of dimension n � k such that
TXx D

Lk
iD1 Vi .x/˚T Fc.x/. Let h W X!Y be a measurable map that is

essentially uniformly continuous along each Fi . Further assume that we can
cover X by foliation charts Ui for Fc such that h is a small homeomorphism
along most leaves of Fc in Ui . Then h is a homeomorphism.

Remark. An examination of the proof indicates that we could make slightly
more general assumptions on the vector fields Vi provided we choose a collection
of vector fields which span the tangent space of X at every point and such that the
foliations Fi are absolutely continuous. We only state and prove the version needed
for our applications to avoid unnecessary technicalities.

Proof. We first prove (1) and then explain how to modify the proof to prove
(2). We work in a chart U that is a foliation chart for each Fi and can in fact assume
that U D Rn and that the foliation Fi is given by lines parallel to the line li where
xj D 0 for j¤i . We denote the line parallel to li passing through the point y by
Qli .y/. Let Wj D l1�l2� : : :�lj and let QWj be a j plane parallel to Wj specified by
coordinates .xjC1; : : : ; xn/. We prove by induction that h agrees almost everywhere
with a homeomorphism Qhj .xj C 1; : : : ; xn/ along almost every j plane QWj . By
assumption h agrees almost everywhere with a small homeomorphism along almost
every line parallel to l1. Assume h agrees almost everywhere with a continuous
function Qhj along almost every j plane QWj parallel to Wj . Then by Fubini, for
almost every such j plane QWj , we have that for almost every y 2 QWj , the map h
agrees almost everywhere on QljC1.y/ with a small homeomorphism Qhy . We define
a map hjC1.xjC2; : : : ; xn/ on QWjC1 by letting hj D Qhy where that map agrees
almost everywhere with h. This map extends continuously to a homeomorphism
on QWjC1 since h is essentially uniformly continuous and therefore the maps Qhy are
uniformly continuous. The map hn is a small homeomorphism that agrees almost
everywhere on U with h. That hn is independent of the chart chosen follows easily
from the definitions.

For (2) we use induction to prove a slightly weaker statement which still
suffices. We re-index our vector fields as VkC1; : : :; Vn and re-index the resulting
foliations similarly. We work in a foliation chart U for Fc and Fi such that Fc

is given by planes QWk of the form Rk�.xkC1; : : :; xn/ and for kC 1�i�n, each
foliation Fi is given by lines li as above. To begin our induction, we use the fact that
h agrees with a small homeomorphism along most of the planes QWk . The induction
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follows as before, with the change that at each step we only assume that h agrees
almost everywhere with a homeomorphism on most planes QWj and QWjC1. �

We now need a lemma to show that in the setting of our applications we can
apply Lemma 5.7.

LEMMA 5.8. Let X be a compact Riemannian manifold, F a smooth foliation
of X and V a nowhere vanishing smooth vector field on X such that V.x/2T Fx
for every x 2X . Let FV be the foliation tangent to V . If h W X!Y is essentially
uniformly continuous along F, then h is essentially uniformly continuous along FV .

Proof. It suffices to work in a chart U which is a foliation chart for both F and
FV . We can choose coordinates on such a chart so that U D Rn, and the foliation
F is given by Rk�y where y 2Rn�1 and the foliation FV is given by R�z where
z 2Rn�1. We are assuming that h agrees with a homeomorphism Qh of Rk�y for
almost every y, and by Fubini’s theorem this implies that Qh and h agree almost
everywhere on R�z for almost every z. �

We are now prepared to prove continuity of '.

THEOREM 5.9. The map ' constructed in the proof of Theorem 4.4 agrees
almost everywhere with a C 0 small homeomorphism.

Proof. We will apply Lemma 5.7 to '. In doing so, we let Fc be F. It follows
from Theorem 4.4(4) that by restricting to small enough perturbations, we can
cover H=ƒ�M by foliation charts where ' is C k�1�� small on most leaves of
F for some ��1, and therefore that F satisfies the hypotheses on Fc in Lemma
5.7. We choose elements Vi 2 h such that each Vi 2 fs

�.g/
for some g 2ˆ and such

that ˚Vi ˚ zD h. Then each Vi defines a smooth nonvanishing vector field QVi on
H=ƒ�M , and T .H=ƒ�M/x D˚Vi .x/˚ T F. By Lemma 5.8 and Proposition
5.5, we have that ' is essentially uniformly continuous along the foliation Fi tangent
to Vi for each i . Therefore, we can apply Lemma 5.7 to ' which implies that ' is
a small homeomorphism. �

5.3. Additional arguments in the case of discrete groups. In the case of �
actions, we have been assuming that the unperturbed � action lifts to the cover
H�M . As remarked above, this is always true on a finite index subgroup � 0 of �
which depends only on �. We have constructed a continuous C 0 small conjugacy
for the � 0 actions with additional regularity along F and we now explain how to
replace this with a C 0 small conjugacy for the � actions with the same additional
regularity along F. The passage to � 0 is required in the proof of Theorem 4.2. In
that proof, when we conjugate the �0 action by  we only know that the � 0 action
defined by  �1ı�0ı preserves F and therefore is in a small neighborhood of � in
Hom.� 0;Diffk� .H=ƒ�M;F/. Neither of these facts is clear for the full � action.
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In fact it suffices to show that  �1ı�0ı .�/ preserves F, since closeness to � in
Hom.�;Diffk� .H=ƒ�M;F/ then follows from the definition of  . Therefore the
remainder of this subsection is dedicated to a proof that  �1ı�0ı .�/ preserves
F. Without loss of generality, we may assume � 0 is normal in � .

Given two (closed) subsets A;B of a metric space .X; d/, we let dS .A;B/D
infa2A;b 2B d.a; b/.

Definition 5.10. Let a group D act on a manifold X preserving a foliation F.
We call the action c-leafwise expansive if there exists a constant c, such that L and
L0 are distinct leaves of F and there is f 2F such that dS .�.g/L; �.g/.L0// > c.

Note that many foliations, e.g. any foliation with a dense leaf, do not admit
leafwise expansive actions. We will be applying Definition 5.10 to the lift of � to
H�M , which is c-leafwise expansive by Corollary 3.5.

LEMMA 5.11. Let c > 0 and � be a c-leafwise expansive action of a group D
on a foliated metric space .X; d;F/. Let h be a homeomorphism of X such that:

(1) d.h.x/; x/ < c for all x 2X ,

(2) h.�.g/L/ D �.g/.h.L// for any leaf L of F and any d 2D, i.e. h and �
commute as actions on leafs of F,

then h.L/D L for every leaf L of F.

Proof. Assume h.L/¤L. Then there is a point x 2L with h.x/…L. By our
assumptions, there exists g 2D such that dS .�.g/.Fh.x//; �.g/Fx/ > c. But then
dS .h.�.g/.Fx//; .�.g/.Fx/// > c which contradicts (1) above. �

We define a subgroup Homeo.H=ƒ�M;F/ of Homeo.H=ƒ�M/ which con-
sists of all homeomorphisms which map each leaf of F to itself.

PROPOSITION 5.12. Given a quasi-affine action � of � 0 on H=ƒ�M which
lifts to H�M , any small enough homeomorphism in the centralizer of �.� 0/ in
Homeo.H=ƒ�M/ is an element of Homeo.H=ƒ�M;F/.

Proof. If f is a small homeomorphism commuting with �.� 0/, there is a
unique lift Qf of f to H�M such that Qf is small as a homeomorphism of H�M .
Since Qf is small, for any small enough 
 2� 0 we have that Œ Qf ; Q�.
/� is a small
homeomorphism of H�M covering the identity on H=ƒ�M and so Qf and Q�.
/
commute. Since � 0 is finitely generated this implies that Qf commutes with � 0 on
H�M . Let QF be the lift to H�M of the foliation F. Since Corollary 3.5 implies
that the Q�0.�/ action on H�M is leafwise expansive, Lemma 5.11 implies that
Qf maps each leaf of QF to itself. This then implies that f maps each leaf of F to

itself. �
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We need one more purely algebraic lemma. For simplicity, we will write �00.
/
for '�1ı�0.
/ı' and state the lemma only in the form needed for our applications.
The lemma is true for any pair of homomorphisms from a group D to a group H
which agree on a normal subgroup in D.

LEMMA 5.13. If 
0 is in � , then the diffeomorphism �.
0/ı�
00.
0/

�1 com-
mutes with �.
/ for all 
 2� 0.

Proof. For any g 2� 0 and 
…� , we have 
0

0�1 2� 0 which implies that
�00.
0

0

�1/D �.
0

0
�1/. Expanding gives:

�00.
0/�.
/�
00.
0

�1/D �.
0/�.
/�.
0
�1/

which can be rearranged as�
�.
0/

�1�00.
0/
�
�.
/D �.
/

�
�.
0

�1/�00.
0/
�

proving the lemma. �
We choose a set of coset representatives 
1; : : : ; 
j for �=� 0 and assume

that �0 is close enough to � so that �.
i /�00.
i /�1 is sufficiently C 0 small so that
Lemma 5.13 and Proposition 5.12 imply that �.
i /�00.
i /�1 is close to the identity
in Homeo.H=ƒ�M;F/. This implies that �00.
i /LD�.
i /L or that �0.
/ı'.L/D
'ı�.gi /.L/ for all 
 2� .

We know that ' D �ı where  is the homeomorphism constructed in
Theorem 3.8. This implies that � is also a homeomorphism, which, by construction
is in Homeo.H=ƒ�M;F/. Combined with the conclusion of the last paragraph,
this implies that �0.
/ı .L/D  ı�.
i /.L/ for all 
 2� . This suffices to allow us
to apply Theorem 4.2 to the entire � action in the proof of Theorem 4.4, rather than
just to the � 0 action. This constructs a map � such that ' D �ı is � equivariant
and � satisfies all the conclusions stated in Theorem 4.4.

Remarks. (1) We can now re-apply the arguments of subsections 5.1 and 5.2
to show that ' is a C 0 small homeomorphism.

(2) It is not clear that the ' constructed from the � 0 action is actually equivariant
for � . In applying Theorem 4.2 to the � action, we may be finding a different
conjugacy.

(3) Due to the arguments of this subsection, for the remainder of this paper, we
no longer assume that � lifts to an action of G on H�M .

6. Smoothness along dynamical foliations

In this section, we adapt the method of Katok-Spatzier to show that ' is differ-
entiable along certain special expanding and contracting foliations by constructing
transitive C k group actions along those foliations. All notation are as in the previous
section.
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6.1. Some other important dynamical foliations. In this subsection we define
some additional important foliations related to the group actions � and �0. These
foliations are the ones to which we will apply the method of Katok-Spatzier, building
transitive smooth actions of Lie groups, along the leaves, that are intertwined by '.
First we define the relevant foliations in the unperturbed setting. The exposition
here is similar to the exposition in section 5.1 of [MQ01].

Recall that G D J or � . Let S be a maximal R split torus in J and T be a
maximal torus containing S . The foliations defined here depend on the choice of T
and in the case of � actions, we will make restrictions on that choice below.

Recall from Definition 1.2 that � is a skew product action on H=ƒ�M . More
precisely, the action on H=ƒ�M is defined by an action on H=ƒ and a cocycle
� WG�H=ƒ!K over that action where K < Isom.M/. Recall from Theorems 2.1
and 2.3 that, possibly after passing to a subgroup of finite index when G D � , the
action onH=ƒ is defined by a homomorphism � WG!LwhereLDAut.H/0ËH is
an algebraic group. Note thatH is normal inL, so that h is invariant under AdL. We
have an invariant splitting of the tangent bundle T .H=ƒ�M/D .H=ƒ�h/�TM

and all elements of G are isometries along TM . The derivative cocycle leaves
h and TM invariant, and, again after passing to a subgroup of finite index, if
G D � the restriction to h is given by the representation � D AdL jhı�0 of G
on h. From now on when describing the action and the derivative cocycle, we
assume that if the acting group is � we have passed to a finite index subgroup
for which this description holds. We recall that �0 D �E0 �

K
0 where �E0 is (the

restriction of) a representation of J , �K0 has bounded image, and the images of �K0
and �E0 commute. Therefore we can write � D �E�K where �E is (the restriction
of) a representation of J , �K has bounded image and the images of �K and �E

commute.
For g 2T \G, define the Lyapunov exponents of �.g/ as the logs of the abso-

lute values of the eigenvalues of �.g/. We obtain homomorphisms � W T \G!R

which extend to homomorphisms � W T!R. The � are exactly the absolute values
of the weights of the representation �E for the torus T , and we will refer to them
as generalized weights. There is a decomposition of h into generalized weight
spaces E�, h D

L
�E�. Corresponding to this there is a decomposition of the

tangent bundle to H=ƒ�M into invariant subbundles for the derivative action,
T .H=ƒ�M/ D

�
.H=ƒ�.

L
�E�/

�
�TM . We call H=ƒ�M�E� a Lyapunov

distribution for the G \T action defined by �.
The set � of all generalized weights for .�; T / can be decomposed into

disjoint subsets Œ�� such that �0 2 Œ�� if and only if �0 D t� for some positive real
number t . We fix a set N��� of representatives for the subsets Œ��. If � D 0

identically, we call H=ƒ�M�E0;T the central distribution for the action G \T .
It is integrable, and we denote by W0;T the corresponding foliation. It is clear that
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\ TE0;T DE0 defines an integrable distribution and thatH=ƒ�E0˚TM DEc�.G/.
Other Lyapunov distributions may or may not be integrable, but H=ƒ�M�EŒ�� DL
�2 Œ��H=ƒ�M�E� is always integrable. We denote the integral foliation on

H=ƒ�M by WŒ��, suppressing the dependence on � and T in the notation.
We now describe the choice of T for the case G D � . The reader should

note that if we choose T so that T \� D e, then all of h is in E0. To obtain a
more useful set of Lyapunov distributions, we need the following theorem which
we derive from results of Prasad and Rapinchuk from [PR01]. Without loss of
generality, we assume that � is the direct product of a finite number of irreducible
lattices �i . We write J D

Q
I Ji where �i < Ji is irreducible, and for any maximal

torus T < J , we can write T D
Q
I Ti where Ti < Ji is a maximal torus.

THEOREM 6.1. Let J and � be as above. Then there is a maximal torus T in
J such that:

(1) T contains a maximal R-split torus S .

(2) †D � \T is cocompact in T .

(3) For any Ti there is no proper algebraic torus T 0i < Ti such that T 0i \� is a
lattice in T 0i .

Furthermore if � W J!GLn.R/ is any linear representation of J and � 2† projects
to an infinite order element in each �i , then �.�/ is not a root of unity for any
nontrivial weight � of �.

Proof. It suffices to prove the theorem for �i < Ji . The first two assertions
follow from [PR01, Th. 1] and the assertion immediately preceding the proof of
that theorem. The third assertion is an immediate consequence of two facts. First
�i is arithmetic, and therefore �i < G.k/ for some field k. Combined with [PR01,
Prop. 1(ii))] this implies that any infinite order element of �i generates a Zariski
dense subgroup of Ti . The last statement follows from [PR01, Prop. 1(iii)] and the
fact that � necessarily agrees with a homomorphism of �i on subgroup of finite
index and so must be defined over a finite extension of k. �

From now on we assume that we have picked T satisfying the conclusion of
Theorem 6.1. We do not use all the properties of T here, but will need them in
Section 6.4.

The following lemma is analogous to [MQ01, Lemma 5.2].

LEMMA 6.2. Fix a maximal torus T as above. Let E.T / be the sum of EŒ��
for all nontrivial weights � for .�; T /. Then there exists a finite subset ‰�G such
that:

T .H=ƒ�M/D TM�
�X

g 2‰
D�.g/.H=ƒ�E.T //

�
�E0:
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Proof. It suffices to prove that

T .H=ƒ/D
�X

g 2‰
D�.g/.H=ƒ�E.T //

�
˚E0/:

We know that the derivative of � is given by linear representation � WG!Ad.L/.
The structure of � implies that hD hE˚hK where �E (resp. �K) is trivial on hK

(resp. hE ). From the definitions, it suffices to see that

hE D
X
g 2‰

D�.g/.H=ƒ�E.T //:

The inclusion of the right-hand in the left-hand side is clear. If the left-hand side
contains a subspace V not contained in the right-hand side, then we have that V is
in the zero weight space for �E jG\T with respect to our choice of maximal torus
T for J . For G D J , this is only possible if the representation of �E jV is trivial,
contradicting our assumptions. For G D � , the contradiction follows since we have
chosen a T as in Theorem 6.1. �

Fix a nontrivial generalized weight �0 for .�E ; T /. Then there exists g0 in
T \D such that �0.g0/ < 0. It follows that for all �0 2 Œ�0�, �0.g0/ < 0. For every
g 2T \G with �0.g/ < 0, note that

L
�.g/<0E� is the stable distribution Es

�.a/
.

This distribution is tangent to the foliation Ws
�.a/

. It is clear that Es
�.a/

contains
EŒ�0�. We call an element of T regular if for all nontrivial weights � for .�E ; T /,
�.a/¤0. Combined with the usual descending chain arguments, this yields the
following lemma.

LEMMA 6.3. Let �0 be a nontrivial weight for .�E ; T /. Then

EŒ�0� D
\
Es�.a/

where the intersection is taken over all regular a with �0.a/ < 0. Furthermore,
there exist regular elements a1; : : :aq 2T \G with �0.ai / < 0 such that we can
take the intersection just over Es

�.ai /
.

We now define a finite collection of foliations and distributions which we
will use below. Fix a maximal torus T and a set N��� as above. Also fix a
collection of elements a1; : : : ; aq 2T as in Lemma 6.3. Given g 2G let Eg

Œ��
D

�.g/EŒ��;W
g

Œ��
D �.g/WŒ��; E

g;s

�.ai /
D �.g/Es

�.ai /
and Wg;s

�.ai /
D �.g/Ws

�.ai /
. We

can also define Eg;s
�0.ai /

D �0.g/Es
�0.ai /

and Wg;s

�0.ai /
D �0.g/Ws

�0.ai /
. We will show

that ' is smooth along each Wg

Œ��
for g 2‰ and �2 N�. To do this, we first need to

identify the image of Wg

Œ��
under '.

PROPOSITION 6.4. For everym>0, if �0 is sufficiently C 1 close to �, for every
x the intersection QWg

Œ��
D
T

Wg;s

�0.ai /
is a C k submanifold tangent to the distribution

QEŒ�0� D
T
QE
s;g
ai . Furthermore, '.Wg

Œ��
.x//D QWg

Œ��
.'.x// for every x 2X .
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Proof. It suffices to consider the case where g is the identity, since other
cases follow by translation. We will show that the intersection is s-transverse and
then apply Lemma 3.12(1). Since dimension of intersection of the distributions
Es
�0.ai /

can only be smaller than for the corresponding intersection of Es
�.ai /

, it
suffices to show that dimensions of the intersections of the foliations do not decrease.
This is immediate from the fact that f projects Ws

�0.ai /
homeomorphically onto

Ws
N�.ai /

by Lemma 5.6 and p projects Ws
�.ai /

homeomorphically onto Ws
N�.ai /

by
definition. So dimensions of all intersections of foliations are equal in the perturbed
and unperturbed cases and therefore the intersection

T
Wg;s

�0.ai /
is s-transverse.

The final claim follows from the fact that '.Wg;s

�.ai /
.x// D Wg;s

�0.ai /
.'.x//

which is true for each ai for almost every x by Proposition 5.1, and therefore also
true for all x by Theorem 5.9 and Proposition 5.5. It is also possible to prove that
'.Wg;s

�.ai /
.x//DWg;s

�0.ai /
.'.x// for all x directly by a dynamical argument. �

The rest of this section describes a variant of the method of Katok- Spatzier
which we use to show smoothness of ' along the foliations Wg

Œ��
for g 2‰ and

�2 N�. The outline here is close to that of [KS97] or [MQ01] , but there are two
additional difficulties. First, we need to have estimates on the C k size of various
maps in both the normal form theory of Guysinsky-Katok [GK98], [Guy02] and
in the work of Montgomery-Zippin [MZ55]. In both cases, these estimates follow
from examination of the existing proofs, as is explained below. Secondly, we will
need to show that ergodic components consist of entire leaves of Wg

Œ��
for a more

general class of actions than those considered in [MQ01].
The precise statement we prove is:

THEOREM 6.5. We use the notation introduced before. Let n be the dimension
of Wg

Œ��
. Let � WDn�Dm�n!X be a smooth foliation chart for Wg

Œ��
. Then there

is a number k1 depending only on � such that for all k�k1 and all �0 sufficiently
C k close to �:

(1) The map ' WWŒ��.x/! QWŒ��.x/ is a C k injective immersion.

(2) the map Q WDm�n!Embk.Dn; X/ given by �ı�.�; y/ is continuous and C 0

close to the map Q0 induced by the identity on H=ƒ�M .

Furthermore if �0 is C l for some l�k then:

(1) The map ' WWŒ��.x/! QWŒ��.x/ is a C l injective immersion

(2) The map Q WDm�n!Embl.Dn; X/ given by �ı�.�; y/ is continuous.

6.2. Theory of nonstationary normal forms. Before giving the construction of
the groups acting transitively on foliations, we outline the theory of nonstationary
normal forms that will be used to show smoothness of the group actions on the
leaves for the perturbed action. The theorems we use are due to Guysinsky and
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Katok and the references are [Guy02], [GK98]. Some of our definitions are slightly
different from theirs.

Consider a continuous extension F of a homeomorphism f of a compact
connected metric space X to a vector bundle V over X which is smooth along
the fibers and preserves the zero section. Let F D DF0 where the derivative
is taken at the zero section in the fiber direction. Fix a continuous family of
Riemannian metrics on the fiber of V . Consider the induced operator F� on the
Banach space of continuous sections of V endowed with the uniform norm, given
by F�v.x/ D F.v.f �1.x///. For i D 1; : : :l , let �i D Œ�i ; �i � be a finite set of
disjoint intervals on the negative half line with �iC1 > �i . Assume that V splits
as a sum of subbundles V D V1˚ : : :˚Vk such that the spectrum of F� on the
space of sections of Vi is contained in the annulus with inner radius exp.�i / and
outer radius exp.�i /. If �l < 0, then the map F is a contraction with respect to the
continuous family of Riemannian metrics chosen above.

Remark. When F is a contraction it also makes sense to consider F which is
only defined in a neighborhood of the zero section in V . Theorem 6.6 below holds
in this generality, and with some care a version of Theorem 6.7 can be stated in
this context as well.

We say that F has narrow band spectrum if �i C�l < �i for all i D 1; : : :; l .
We call two extensions C k conjugate if there exists a continuous family of

C k diffeomorphisms of the fibers V.x/, preserving the origin which transforms
one extension into the other. The following two theorems on normal forms and
centralizers are from [Guy02], [GK98]. We remark that to avoid unnecessary
definitions we did not state the theorems in their full generality, but these are
sufficient for our applications.

THEOREM 6.6. Let f be a homeomorphism of a metric space X and suppose
that F is a C l extension of f which is a contraction, that the linear extension
DF0 has narrow band spectrum determined by the vectors �D .�1; : : :; �l/ and
� D .�1; : : :; �l/, and that F is C k close to DF0 in a neighborhood of the zero
section. There exists a constant k1 D k1.�; �/ such that if k�k1 there exist

(1) a finite dimensional Lie group G�;� which is a subset of all polynomial maps
from Rm to Rm of degree less than or equal to d for some d <1,

(2) an extension QF such that for every x 2X , the map

QFjV.x/ W V.x/!V.f .x//

is an element of G�;�;

(3) a C l conjugacy H between QF and F which is C k small.
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THEOREM 6.7. Suppose g is a homeomorphism of the space X commuting
with f and G is an extension of g by C l diffeomorphisms of the fibers commuting
with the extensions F and that F satisfies all of the hypotheses of Theorem 6.6 and
k�k1. Then H conjugates G to a map of the same form, i.e. one where:

QGjV.x/ W V.x/!V.f .x//

is a polynomial of degree at most d and is in fact in the group G�;� from Theorem
6.6.

Proof. The only statement which is not justified explicitly in the proofs of
[GK98], [Guy02] is the bound on the size ofH . Recall thatH is constructed in two
steps. First one constructs a conjugacy between F and an extension F0 of f such
that F0 is C k tangent to QF at the zero section. In this step one proceeds by solving
an iterative equation for the conjugacy, see [Guy02, Proof of Th. 1, Step 1, p. 851].
It is clear from the formula that if F and DF0 are close, then this conjugacy is
small and F0 is also C k close to DF0. (We note that in [GK98], this step is broken
into two steps, first finding the Taylor series of the conjugacy at the zero section,
and then proving that one can find a conjugacy with this Taylor series.) In the
second step, one constructs an action NF on a set of local changes of coordinates,
and applies a contraction mapping argument to find the conjugacy H between F0

and QF. If F0 DDF0 it is clear from the construction that this contraction NF has as
a unique fixed point the identity map, and that if F0 is C k close to DF0 then this
unique fixed point of NF will be C k close to the identity. �

Remark. The number k1 is explicitly computable in terms of the spectrum of
the contraction F; see [Guy02], [GK98] for details. The computation yields that
Theorem 6.6 and 6.7 are true for

k1�j
�1�2 : : : �l�1

�2�3 : : : �l
j:

For some special choices of �i it is possible to achieve much lower values of k1.

6.3. Smoothness along contracting foliations. In this subsection we retain
the number k1 as in the last subsection and note that ' is the map constructed in
Theorem 4.4, which we know to be a C 0 small homeomorphism and a conjugacy
between the unperturbed and perturbed actions. We first show that to prove Theorem
6.5, it suffices to verify the following lemma.

LEMMA 6.8. For k�k1 there is a connected Lie group � and, for each
x 2H�M , there is an open set U0�H�M which contains x and is the union of
leaves of WŒ��, such that:
S1. There is a locally free C1 action d W ��U0!U0 such that ıWŒ��.y/ D

WŒ��.y/ and � acts transitively on WŒ��.y/ for all y 2U0.
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S2. The set '.U0/D U00 is the union of leaves of QWŒ�� and there is a locally free
C 0 action d 0 W��U00!U00 such that ı QWŒ��.z/D QWŒ��.z/ for all z 2U00.

S3. For all ı 2�, the map d 0.ı/ W U00!U00 is C l when restricted to every leaf
of QWŒ��, and all partial derivatives along the leaf are globally continuous.
Furthermore, the k-jet of d 0.ı/ along leaves of QWŒ�� tends to the k-jet of d.ı/
along WŒ�� as �0!�.

S4. ' is a � equivariant map from U0 to U00.

We temporarily defer the proof of Lemma 6.8 and first show how it implies
Theorem 6.5. We state a variant of the results of Bochner and Montgomery which
we will use in the proof.

THEOREM 6.9 (Bochner and Montgomery). Let � be a continuous action of
a Lie group Q on a manifold N1�N2 such that the action is trivial in the second
factor. If for each q 2Q,and n2 2N2, the map �.q/ WN1�n2!N1�n2 is C l with
all derivatives continuous in N1�N2, then the map � W Q�N1�fn2g!N1�fn2g
is C l for each n2 in N2 and depends continuously on n2 in the C l topology.
Furthermore if � and �0 are two such actions which are C 0 close, such that �.q/
and �0.q/ are C k close as maps of N1 for all g 2Q, then the actions � and �0 are
C k close as actions on N1�fn2g for any n2 2N2.

Proof. All statements follow from the proof of the results of Bochner and
Montgomery given in [MZ55, Chap. V, ��1 and 2]. The possibility of adding the
N2 factor along which the action is trivial is already noted in [MQ01, Proof of
Lemma 5:12]. That the actions are actually C k close follows from the explicit
formulas for derivatives of � along Q given in [MZ55, V.2.1]. �

Proof of Theorem 6.5 from Lemma 6.8. Possibly after shrinking U0, we can
assume that U0 is a product of a leaf QVŒ�� and a small transverse neighborhood V0.
(We will in fact construct the � action on such a neighborhood.) The hypotheses
S1�S4 imply that the map ' intertwines two actions d and d of the group � such
that orbits of d.�/ (resp. orbits of d 0.�/) are leaves of WŒ�� (resp. QWŒ��) and such
that, for each ı 2� and v 2'.V0/, the map ı0.d/ W QWŒ���fvg! QWŒ���fvg is C k

with all derivatives depending continuously on v. Combined with Theorem 6.9,
this implies d 0 W�� QWŒ���fvg! QWŒ���fvg is a C l action depending continuously
on v 2'.V0/, which suffices to prove Theorem 6.5(1). Since S3 and Theorem 6.9
also imply that d and d 0 are close as actions which are C k along orbits with all
derivatives transversely continuous and that d 0 tends to d in the natural topology
on such actions as �0!�, Theorem 6.5.2/ follows as well. �

The remainder of this section is devoted to a proof of Lemma 6.8. We begin
by constructing the group � and its actions on U0 and U00. Recall that we have
identified the tangent bundle to H=ƒ�M with H=ƒ�h�TM . We note that EŒ�� is
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a nilpotent Lie subalgebra of h. Let FŒ�� denote the corresponding Lie subgroup of
H . The smooth foliation ofH�M by left cosets for FŒ�� is tangent toH�M�EŒ��
and the projection of this foliation to H=ƒ�M is exactly WŒ��.

Fix x 2H�M and an orthogonal complement E?
Œ��

to EŒ�� in TXx . Note that
we can pick E?

Œ��
to be a direct sum of a subspace of E?h � h and TM . Let O

be a small open disc in E?h . Let U1 D expx.O/�H . For any point x 2H�M
we let x D .x1; x2/ be coordinates for the product structure and choose a small
open neighborhood U2 of x2 in M . Then U0 D FŒ��U1�U2 is an open subset in
H�M containing x. If O is small enough then each leaf of WŒ�� contained in
U0 has a unique expression as .FŒ��ux1; x02/ where u2U1 and x02 2U2. We then
let �D FŒ�� and let � act on U0 via .ı; f0ux/!.f0ı�1ux/: This clearly defines
a � action on U0 which is C1, free and transitive along the leaves of WŒ�� and
establishes S1.

We need to understand the derivative of the � action. Note that

T .H=ƒ�M/jU0 D FŒ��U1�h�TM jU2 :

Also note that the � action is trivial on the second factor. The facts that we identify
the tangent space to H with right invariant vectors and that d.ı/ acts on the right
on FŒ�� orbits, imply the following:

LEMMA 6.10. For all f02FŒ��; u2U1; v2h; m2M , and w2TMm we have
Dd.ı/.f0u; v;m;w/D .f0ı

�1u; v;m;w/.

The following lemma records the fact that leaves of WŒ�� are injectively
immersed in H=ƒ�M and remain injectively when lifted to H�M and projected
to ZnH .

LEMMA 6.11. The projection of FŒ��x to H=ƒ�M , H=ƒ or ZnH is an
injective immersion.

Proof. This is immediate from the fact that FŒ�� < F s�.ai / and that the leaves
of Ws

�.ai /
are injectively immersed in H=ƒ�M , H=ƒ or ZnH by Proposition

3.2. �

We choose a lift Q' of ' to a map from H�M to H�M and let U 00 D Q'.U0/.
Let � act on U00 by letting d 0.ı/.x/ D �.d.ı/.��1.x/// for every x 2U00 and
every ı 2�. The properties S2 and S4 are immediate from this definition.

We now show how to realize the action � differently, in a way that will allow
us to use Theorem 6.7 to prove S3.

We first explain why it suffices to consider the case of � actions. In the case
when � is a J action, we fix a lattice � < J . As a consequence of Theorem 6.1
and Zariski density of � in J we can choose the elements ‰ from Lemma 6.2 and
the elements a1; : : :; aq in Lemma 6.3 to be in � even when � is a J action. For
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the remainder of this section, we can therefore restrict our attention to the case of
G D � .

Let T be a torus as given by Theorem 6.1 and restrict � and �0 to † ac-
tions. We then form the induced T actions �in and �in

0 on .T�H=ƒ�M/=†.
The map ' can be extended to an equivariant map which we denote 'in from
XinD ..T�H=ƒ�M/=†; �in/ toXin

0
D ..T�H=ƒ�M/=†; �in

0/. Let t be the Lie
algebra of T and identify T ..T�H=ƒ�M/=†/ with ..T�H�TM/=ƒ/=†�h�t.
There is a �in.T / invariant smooth foliation ofXin given by VŒ��Œt; x�D Œt;WŒ��.x/�

tangent to a �in.T / invariant distribution VŒ�� which is EŒ�� viewed as a subbundle
of T .T�H=ƒ�M/=†/. Furthermore there are analogously defined foliations and
distributions QVŒ�� and QV on Xin

0 and  in maps every leaf VŒ��Œt; x� to the leaf
QVŒ��.'in.t; x//.

As in [KS97] and [MQ01], we will verify S3 by verifying it for these induced
actions. It is clear that the actions of� onU0 andU00 defined above can be extended
to neighborhoods in the universal cover of Xin and Xin

0 simply by taking the trivial
action on the first factor. It is also clear that individual leaves of VŒ�� and QVŒ�� are
still injectively immersed in Xin and Xin

0.

LEMMA 6.12. Let ct be any nontrivial one-parameter R-split subgroup in
S that is in the kernel of � and which has noncompact image when projected to
any simple quotient of J . To prove S3 it is sufficient to prove that any leaf of the
foliation VŒ�� is contained in the support of an ergodic component of ct acting on
Xin.

Proof. We proceed by giving a different description of the group � act-
ing on Xin. Since ct is in the kernel of �, it follows that the maps �.ct / W
VŒ��.x/!VŒ��.ct .x// are isometries with respect to the metric on the leaves.
Since every ergodic component consists of entire leaves of VŒ��, for any point
y 2VŒ��.x/ there exists a sequence ti such that limi!1 �.cti /x D y. By passing
to a subsequence, we may assume that �.ct / W VŒ��.x/!VŒ��.�.cti /x/ converges
to an isometry Qı W VŒ��.x/!VŒ��.x/ which takes x to y. The group �x generated
by such limits is clearly transitive on VŒ��.x/. Note also that the tangent map
D�.cti /.x; v/D .�.cti /x; v/ and so the tangent map Dı.x; v/D .ıx; v/. Since �
and �x both act by isometries with trivial derivative on VŒ��.x/ it is clear that they
are equal. (For further discussion of this construction see [MQ01] or [KS97].)

We note that, by equivariance,

d 0.ı/x D lim
i!1

'inı�in.cti /ı'in
�1.x/D lim

i!1
�0in.cti /x:

Therefore, d 0.ı/D limti!1 �
0
in.cti /. We let s 2T be an element with �.s/<0,

so the natural extension of �0.s/ to the tangent bundle of QVŒ�� is a contraction with
narrow band spectrum which is close to its linear part. This follows because this
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contraction is close to the one defined by �.s/ which is linear. By Theorem 6.6 as
long as k�k1 there is a number d depending only on the dynamics of �.ti /, and
continuous, C k small along fibers, conjugacy H between �0.s/ and a polynomial
of order less than d . Furthermore, since �0.ct / commutes with �0.s/, by Theorem
6.7 the conjugacy H conjugates each �0.ct / to a polynomial map of order less
than d . Since d 0.ı/ D limti!1 �

0
in.cti /, it follows that in the coordinates along

a fiber given by H , the map d 0.ı/ is given by a polynomial of order less than d .
Identifying leaves with fibers we see that d 0.ı/ is C k along each leaf, that the k-jet
of the d 0.ı/ depends continuously on the leaf, and that the k-jet is close to the
one for d.ı/, since it is given by composing a map close to d.ı/ with a change in
coordinates which is C k small.

We also see that if � is C l for some l�k, then d 0.ı/ is C l since it is a uniform
limit of maps C l conjugate to polynomials. �

6.4. Ergodic components and dynamical foliations. We retain all notation
from the previous subsection. To prove Theorem 6.5 it now suffices to prove the
following:

PROPOSITION 6.13. Let T be the torus described in the last section and r in
T a regular element for the representation � . For any one-parameter subgroup ct
of S which is in the kernel of � and which projects to a noncompact subgroup of
each simple factor of J , the ergodic components of �in.gt / consist of entire leaves
of Ws

�in.r/
and therefore of entire leaves of VŒ��.

We first note an alternate description of �in. Throughout this subsection, we
assume that we have passed to a finite index torsion-free subgroup of � . We
will also need to pass to further finite index subgroups of � , but will abuse no-
tation by retaining the notation � for each of these successive subgroups. We
recall some facts from [FM03]. First by [FM03, Th. 6.5], the homomorphism
� W �!Aut.H/ËH defining the action � on a subgroup of finite index is a product
of two homomorphisms �A W�!Aut.H/ and �H W�!H whose images commute.
It follows from the proof of [FM03, Th. 6.5] that after changing the algebraic
structure on H as in Proposition 2.2 and passing to a further subgroup of finite
index, that �.�/ is actually contained in Aut.U / where U is the unipotent radical
of H . Fixing a Levi complement L for U in H and letting LDZM where Z is a
central torus andM is semisimple, the superrigidity theorems imply that (again after
passing to a subgroup of finite index) �A.�/ <M . After passing to another finite
index subgroup, the restriction of �A to †D � \T extends to a homomorphism
�TA W T!Aut.U / and the restriction of �H to † extends to a homomorphism
�TH W T!M . These homomorphisms are not quite canonical, but suffice for our
purposes. It is clear that the images of these homomorphisms commute and so we
can define a homomorphism �T .t/D �AT �

H
T .t/.
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We can now give a simple description of a finite cover of the induced action.
In the description in the last paragraph, we passed to a finite index subgroup of
� , which also causes us to pass to a finite index subgroup †0 < †. The map
.t; h/!.t; �T .t/h/ descends to a map from .T�H=ƒ/=†0 to .TËH/=.†0Ëƒ/
where the semidirect product is defined by �AT and �AT .†/ normalizes ƒ by defini-
tion. This map conjugates the induced action to an action defined by �T .t0/Œt; h�D
Œt0t; �

T
H .t0/h�. We summarize this discussion with the following proposition.

PROPOSITION 6.14. (1) If � is an affine action, then there is a finite index
subgroup †0 such that the lift of the action �in to .T�H=ƒ/=†0 is smoothly
conjugate to a left translation action �T of T on .TËH/=.†0Ëƒ/ as described
above.

(2) If � is a quasi-affine action, then there is a finite index subgroup †0 in †
and a left translation action �T of T on .TËH/=.†0Ëƒ/ as above and
a cocycle � W T�.TËH/=.†Ëƒ/! Isom.M/, such that the lift of �in to
.T�H=ƒ�M/=†0 is smoothly conjugate to the skew product action over
�T defined by �.

We begin by showing that, even for quasi-affine actions, it suffices to consider
the action on .TËH/=.†0Ëƒ/.

LEMMA 6.15. For any one-parameter subgroup gt of T , and any regular
element r in T , if the ergodic components of the left translation action gt on
.TËH/=.†0Ëƒ/ consist of entire leaves of Ws

�T .r/
then the ergodic components of

�in.gt / consist of entire leaves of Ws
�T .r/

.

Proof. This follows two facts. The first is one of the main results of Zimmer’s
thesis [Zim76]. This says that if K is a compact group and K acts on a standard
probability measure space .Y; �/, and � is an action of locally compact group G
by measure-preserving transformations on a standard measure space .X; �/ and
� WG�X!K is a cocycle, then the ergodic components of the skew-product action
of G on .X�Y;���/ are of the form E�L�y where E is an ergodic component
of X , y is a point in Y and L is a subgroup of K such that �, restricted to E, is
cohomologous to a cocycle taking values in L.

The second fact describes dynamical foliations for skew product extensions.
Again, letK be a compact group. LetX be a smooth compact manifold and Y be an
associated bundle to a principal K bundle over X . Assume G is a locally compact
group and that � WG�X!X and Q� WG�Y!Y are two actions which commute with
the bundle projection � W Y!X . Then the G action on Y is measurably isomorphic
to a skew product extension as described in the previous paragraph and for any
g 2G which is partially hyperbolic and normally hyperbolic to a central foliation
on both X and Y , the map � is a diffeomorphism from each leaf of Ws

Q�.g/
onto
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a leaf of Ws
�.g/

. This follows from the dynamical characterization of Ws
�.g/

in
[HPS77, Th. 6.8e]

To prove the lemma, we apply these facts twice, first to the gt action on
.T�H=ƒ�M/=†0 covering the �in.gt / action on .T�H=ƒ�M/=† and second
to the action �in on .TËH/=.†0Ëƒ/�M which is a skew product action over the
action N�in on .TËH/=.†0Ëƒ/. �

We are now reduced to identifying ergodic components for left translation
actions on homogeneous spaces. To do this, we will use work of Brezin and Moore
[BM81]. Following that paper, we note that for any Lie group L, any finite volume
homogeneous space L=� has two special quotients, a maximal toral quotient and a
maximal semisimple quotient. An affine quotient of the space L=� is one of the
form P=�.�/ where � W L!P is a surjective homomorphism. The maximal toral
quotient is the maximal affine quotient of L=� which is a torus and the maximal
semisimple quotient is the maximal affine quotient of L=� where P is semisimple.
Given a one-parameter subgroup lt in L, we can project lt to either the torus or
to M and this defines a quotient of the left translation flow of lt on L=�. Let
�1.lt / be the quotient action on the maximal toral quotient and let �2.lt / be the
quotient action on the maximal semisimple quotient. The following is a restatement
of [BM81, Th. 6.1].

THEOREM 6.16. Let lt be a one-parameter subgroup of L acting by left
translation on a finite volume homogeneous space L=� for a Lie group L. Then
the action of lt is ergodic if and only if both �1.lt / and �2.lt / are ergodic.

To prove Proposition 6.13, we require an additional lemma which is an imme-
diate consequence of Theorem 6.1(3).

LEMMA 6.17. Let ct be a one-parameter subgroup of T which is in the kernel
of � and projects to a noncompact subgroup in each Ji . Then the action of ct on
T=†0 is ergodic.

Proof. This is immediate since an ergodic component of the action is necessarily
of the form

Q
I T
0
i =.†

0\T 0i / where T 0i < Ti is a subtorus and †0\T 0i is a lattice
in T 0i . This forces T 0i to be the Zariski closure of a subgroup of †0 and therefore to
be algebraic. Theorem 6.1(3) then implies that T 0i D Ti . �

Proof of Proposition 6.13. By Proposition 6.14 and Lemma 6.15 we are reduced
to showing that ergodic components of the ct action on .TËH/=.†0Ëƒ/ consist of
entire leaves of Ws

�L.r/
. We do this by explicitly identifying ergodic components,

or rather explicitly identifying ergodic components modulo finite extensions.
Note that arguments as in Lemma 6.15 show that there is no loss of generality

in passing to finite covers, so for simplicity we pass to a finite cover of H such that:
(1) ƒ is torsion free.
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(2) The Levi complement of L is the direct product of Z and M .
(3) M is the direct product of its simple factors and ƒ does not intersect the center

of M .
(4) Z is a direct product of copies of S1 and copies of R�.

Let �M be restriction to M of the map from L to Aut.U / defining the semi-
direct product structure of H as LËU . Let MU be the kernel of �M and let
MU
K be the maximal normal connected compact subgroup of MU . Note that our

assumptions imply that MU
K is normal in H and that H DH�MU

K where H 0 is
isomorphic to H=MU

K .
We write M 0 as M 00�C where C is the maximal connected normal compact

subgroup of M 0. It follows from the proof of [Aus63, Ths. 1 and 2] that in H ,

(1) ƒ\MU
K �U DƒU is a lattice in MU

K �U and projects to a lattice in U ,

(2) the projection of ƒ to M 00 is a lattice in M 00.

Since �H is a homomorphism of � the superrigidity theorems imply that there
are a homomorphism �EH W J!H and a homomorphism �KH W�!H with bounded
image such that the images commute and �H .
/D �EH .
/�

K
H .
/. Note that, after

passing to a further finite index subgroup, �H necessarily takes values in M 0 and
�EH necessarily takes values in M 00. Using that Aut.U / is an algebraic group, we
can also write �A as a product of �EA W J!Aut.U / and �KA W �!Aut.U /. We
write M 0 as a direct product M1M2 where M1 is the minimal product of simple
factors of M 0 such that �EH takes values in M1 and the projection of ƒ to M1 is a
lattice. This implies that M1 is a direct product of semisimple groups M i

1 where
the projection of ƒ to M1 is commensurable to a product of irreducible lattices
ƒiM1 <M

i
1 and such that the projection of �TH .ct / is noncompact in each M i

1 . This
implies that the left translation action of ct on M1=ƒM1 defined by �TH is ergodic.
Since �EH 0 has nontrivial image in each M i

1 , it follows that each M i
1 has real rank

at least 2 and so there is a compact connected normal subgroup MK
1 <M 0 such

that .M1�M
K
1 /\ƒ D ƒM1 at least after we replace ƒ by a subgroup of finite

index. We write M 01 for M1�M
k
1 . It is also easy to see that the product T �M1 is a

subgroup of L and that T �M1\ .†
0Ëƒ/D†0�ƒM1 .

We now construct a subgroup of U . The fact that ƒU projects to a lattice
in U defines a rational structure on U and u. We let �1 be the composition of
�EH with the restriction of AdT�H to u and let uH be the minimal Lie subalgebra
containing all nontrivial root subspaces of �1 and invariant under �TH .T /. We let
�2 be the composition of �EA with the representation of Aut.U / on u and let uA be
the minimal Lie algebra containing all nontrivial root subspaces of �2 and invariant
under �TA . Finally we let u0 be the minimal rational Lie subalgebra of u containing
both uA and uH and invariant under T �M1. Let U0 < U be the Lie subgroup with
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Lie algebra u0. We let K0 be the closure of the projection of ƒU to MU
K and form

the semidirect product N D .T�K0�M 01/ËU0. By construction it is clear that:

(1) N \ƒDƒN is a lattice in N .

(2) For any regular elements r in T , the space Es
�in.r/ is a subspace of n.

(3) The maximal semisimple quotient of N=ƒN is M1=ƒM1 .

(4) The maximal toral quotient of N=ƒN is T=†0.

Together with Lemma 6.17 and the definition of M1 this implies that any ergodic
component of the action of ct on .TËH/=.†0Ëƒ/ contains a translate of N=ƒN
in .TËH/=.†0Ëƒ0/ which suffices to prove the proposition. �

7. Final arguments

7.1. Elliptic operators and global regularity. In this section, we prove that
' is a diffeomorphism. Here �;G and H=ƒ�M are as in the remarks at the end
of Section 4. The number k0 is the smallest number that allows us to apply the
techniques of Section 6.2 to show that ' is a diffeomorphism along foliations of the
type Wg

Œ��
. In keeping with the statement of Theorem 1.1 we let nD dim.H=ƒ�M/

2
C3.

We now prove:

THEOREM 7.1. There is a neighborhood V of � in Hom.G;Diffk.X// such
that if �0 2V , the map ' constructed above is a C k�n small C k�n diffeomorphism
which is conjugacy between � and �0. Furthermore

(1) '! Id as �0!� and,

(2) given l�k, we can choose V so that if �0 is C1 and �0 2V , then, the map ' is
C l .

Remark. The proof below uses only standard facts concerning elliptic operators
and is straightforward. The result stated also follows from the main theorem in
[KS94], but as that article relies on much deeper and harder results concerning
hypo-elliptic operators, we give the proof below.

Proof. We choose a finite cover of H=ƒ�M by open sets Um such that:

(1) Each Um is contained in a neighborhood Wm which is coordinate chart on
H=ƒ�M .

(2) For each Um we have '.Um/�Wm.

(3) Each Um is a foliation chart for F and Wg

Œ��
for all g 2ˆ and � in N† as defined

in Section 6.1.

(4) Each Um is of the form U1m�U2m where U1m is an open set in H=ƒ and
U2m is an open set in M .
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For convenience, we denote F by F0 and fix an order on the Wg

Œ��
and relabel

them F1; : : :;Fq . We choose a basis Xij of h where X0j for 1�j� dim.Z/ is a
basis for z and Xij is a basis for Fi with 1�i�q. For U2j we choose an explicit
identification with an open ball in Rn and choose a basis of constant vector fields
X0j where dim.Z/C 1�j� dim.Z/C dim.M/.

Identifying each Wm with a subset of Rn, we can write 'mD 'jUm D IdChm
where hm W Um!Rn is C 0 small.

For any � > 0 and any l 0 > k, by choosing V small enough, and applying
Theorem 6.5 and Theorem 4.4, we have that each hm is

(1) C k along each leaf of Fl for 1�l�q with suppUm X
n
lj
.hm/<� for any 0�n�k

and any 1�j� dim.Fl/,

(2) C k�2 along almost every leaf of F with
R
Um
kXn0j .hm/.x/k

2d� < � for any
0�n�k� 2 and any 0� j � dim.Z/C dim.M/.

(3) If �0 is C1 then hm is C l
0

along F0 and C1 along each Fi for 1�i�q.

We construct an elliptic operator as follows. Let c be the least even integer
less than or equal to k� 2, then the operator

�D

qX
iD1

dim.Fi /X
jD1

Xcij

is elliptic with smooth coefficients on each Ul . Standard estimates, see e.g. [Zim90,
�6.3], imply that:

kuk2;k�2 < C.k�.u/k2Ckuk2/

for any u in the Sobolev space W 2;k�2.Ul/, where W 2;k�2.Ul/ is the Sobolev
space of functions with k weak derivatives in L2, k�k2;k�2 is the Sobolev norm
and k�k2 is the L2 norm. (For k�2 odd, the standard inequality involves the k�k2;1
for both terms on the right-hand side, but we will not need this.)

We want to apply this estimate to hm, but hm is not a priori in W 2;k�2.Um/.
We let U "m be the set of points x in Um such that B.x; "/�Um. To complete the
argument, we use mollifiers J" such that

(1) XijJ" D J"Xij for Xij above and,

(2) J"u is defined on U "m and J" maps L1;loc.Um/ to C1.U "m/.

(3) J" is uniformly bounded on W 2;k�2.Um/�L
1
loc
.Um/.

(4) J" converges uniformly to the identity on L1;loc as "!0.

We briefly describe the operators J" which are convolution operators for a family
of functions f". We write the function f" D f1"f2" where fi" is a function on
Uim for i D 1; 2. The function f1" is a standard mollifier and we define J1"
by standard convolution. Also, we define f2 by taking a standard mollifier on



118 DAVID FISHER and GREGORY MARGULIS

a small neighborhood of zero in h and pulling back to H via the inverse of the
exponential map. We identify U1m with a small neighborhood in H and define
J2".u/ D

R
H f2".h/u.xh;m/d�. The fact that we act on the right on x in the

formula is necessary to guarantee condition (1) above. We then let J" D J1"J2". It
is easy to see that J1" and J2" commute, and that J" satisfies (1)–(4) above.

Letting "n D 1
n

, we have that

k.J"n �J"nC1/hmk2;k�2 < C.k.J"n �J"nC1/�.hm/k2Ck.J"n �J"nC1/hmk2/:

The right-hand side converges to zero, which implies that fJ"nhmgn is a Cauchy
sequence in W 2;k�2.Ui /. Since fJ"nhmgn converges in L1;loc to hm, this implies
that hm 2W 2;k�2 and

khmk2;k�2 < C.k�.hm/k2Ckhmk2/

which by the properties (1) and (2) of hm described above, imply that khmk2;k�2 <
C� for a constant C not depending on �0. By the Sobolev embedding theorems,
this implies that hm is C k�n small where n is dim.H=ƒ�M/

2
.

This then implies that ' is C k�n close to the identity, which implies that '
is a diffeomorphism, since there is a neighborhood of the identity in the space of
C k�n maps which consists of diffeomorphisms.

To show that hm is C l when �0 is C1 follows a similar outline. We choose
V such that hm is C1 along each Fj for 1�j�q and C l

0

along F0 where l 0 �
l C dim.X/

2
C 3 is even. The same argument with c D l 0 in the construction of the

elliptic operator shows that hm is in W 2;l 0 and therefore is C l . Note that since we
do not have a good bound on the W 2;l 0 norm of ' along F in Theorem 4.4 or of
the C l

0

norm of ' along Wg

Œ��
in Theorem 6.5, we do not obtain a bound on the C l

size of '. �

7.2. Smooth perturbations, smooth conjugacy, and iterations. We keep all
the notation from the previous subsection. For notational convenience in the proof
of the C1 case of Theorem 1.1, it is convenient to fix right invariant metrics dl
on the connected components of Diffl.X/ with the additional property that if '
is in the connected component of Diff1.X/, then dl.'; Id/�dlC1.'; Id/. To fix
dl , it suffices to define inner products <;>l on Vectl.X/ which satisfy < V; V >l
� < V; V >lC1 for V 2 Vect1.X/. As remarked in [FM05, �6], after fixing a
Riemannian metric g on X , it is straightforward to introduce such metrics using
the methods of [FM05, �4].

Once we have fixed the family of metrics dl and fix a generating set K for G,
it is possible to rephrase parts of Theorem 7.1 more quantitatively as follows:

COROLLARY 7.2. In the setting of Theorem 7.1, given k�k0 and l�k, for
every " > 0 there exists ı > 0 such that if �0 is an action of G on H=ƒ�M with
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dk.�
0.g/�.g/�1; Id/ < ı for all g 2K then there exists a C l conjugacy ' between

� and �0 such that dk�n.'; Id/ < �.

Remark. The algorithm presented below for proving smoothness is essentially
contained in the proof of the C1;1 case of [FM05, Th. 1.1].

Proof of C1;1 local rigidity in Theorem 1.1. . If �0 is a C1 perturbation of
�, then there exists some k > 1, such that �0 is C k close to � and we can assume
that k�k0. We fix a sequence of positive integers k D l0 < l1 < l2 < � � �< li < : : :
with liC1� li >nC3 for each i . We construct a sequence of C1 diffeomorphisms
�i such that the sequence f�nı: : :ı�1gn2N converges in the C1 topology to a
conjugacy between � and �0.

We let �i D �iı: : :ı�1 and �i D �iı�0ı.�i /�1 and construct �i inductively
such that

(1) �i is sufficiently C li�n�3 close to � to apply Corollary 7.2 to �i and � with
l D liC1 and � D 1

2iC2
,

(2) dli�n�3.�i ; Id/ <
1
2i

and,

(3) dli�n�3.�i .
/ı�.
/
�1; Id/ < 1

2i
for every 
 2K.

To construct �iC1, we assume that �i is close enough to � in the C li topology
to apply Corollary 7.2 with l D liC1 and " D 1

2iC1
. Then we have a C liC1�n�3

diffeomorphism  iC1 with  iC1ı�iı iC1�1 D � and

dliC1�n�3. iC1; Id/ <
1

2iC2
:

Using standard approximation theorems, we can choose a C1 diffeomorphism
�iC1 with dliC1�n�3.�iC1; Id/ <

1
2iC1

and �i D �iC1ı�iı�iC1�1 close enough
to � in the C liC1�n�3 topology to apply Corollary 7.2 with l D liC2 and "D 1

2iC3

and so that (3) above is satisfied.
To start the induction it suffices that �0 is sufficiently C k close to � to apply

Theorem 7.1.2/ with l D l1 and � D 1
2

.
It remains to show that the sequence f�nı: : :ı�1gn2N converges in the C1

topology to a conjugacy between � and �0. Combining condition .2/ with the
fact that dli .�i ; Id/�dj .�i ; Id/ for all j�li , and the fact that dli is right invariant
implies that dli�n�3.�j ; Id/D dli�n�3.�

j ; �j�1/� 1
2j

for all j�i . This implies
that f�j g is a Cauchy sequence in Diffli�n�3.X/ for all i , so that f�j g converges in
Diff1.X/. Similarly, condition (3) implies �i converges to � in the C1 topology.

�

Remark added in proof, January 10, 2009. As noted in the footnote on page
68, the results of Rauch and Taylor from [RT05] allow us to avoid almost all loss
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of regularity at this step in the argument. The main point is that we can work in
Sobolev spaces of type W p;k�2 for a large value of p rather than for p D 2. The
results of Rauch and Taylor show that if the map hm is in W p;k�2 and W p;k�2

small along each of F0; : : : ;Fq then it is in W p;k�2 and W p;k�2 small on Wm.

The standard Sobolev embedding theorems then imply that hm is C k�2�
dim.M/
p , so

that, in particular, C k�3 for large enough p.
Since hm is C k and uniformly C k small along each Fi for 1 � i � q, it is

clearly in W p;k and W p;k small along these foliations. To see that by choosing �0

close enough to � we can also force hm small in W p;k�2 along F0 is immediate
from the proof of Theorem 4.2 in [FM05]. It can also be deduced from the statement
of Theorem 4.2 and Remark .2/ following that theorem.
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