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Abstract

For a smooth manifold M we define the Teichmüller space T.M/ of all Rie-
mannian metrics on M and the Teichmüller space T�.M/ of �-pinched negatively
curved metrics on M , where 0 � � � 1. We prove that if M is hyperbolic, the
natural inclusion T�.M/ ,! T.M/ is, in general, not homotopically trivial. In
particular, T�.M/ is, in general, not contractible.

Introduction

Let M be a closed smooth manifold. We denote by MET.M/ the space of all
smooth Riemannian metrics on M with the smooth topology. Note that the space
MET.M/ is contractible. We also denote by Diff.M/ the group of all smooth
self-diffeomorphisms of M . Diff.M/ acts on MET.M/ by pulling back metrics:
�gD .��1/�gD ��g for g 2MET.M/ and � 2Diff.M/, that is, �g is the metric
such that � W .M; g/! .M; �g/ is an isometry.

Let RC be the set of positive real numbers, which we consider as a group
with multiplication. Denote by D.M/ the group RC � Diff.M/. The group
D.M/ acts on MET.M/ by scaling and pulling back metrics, that is, .�; �/g D
�.��1/�g D ���g for g 2 MET.M/ and .�; �/ 2 D.M/. The quotient space
M.M/ D MET.M/=D.M/ is called the moduli space of metrics on M . It is
sometimes said that a geometric property is a property that is invariant by isometries,
that is, by an action of Diff.M/. Hence if two Riemannian metrics represent the
same element in M.M/, then they posses the same geometric properties. Clearly,
the study of the moduli space of metrics is of fundamental importance not just in
geometry but in other areas of mathematics too. See, for instance, [Bes87, Ch. 4].
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It is also interesting to consider subspaces of M.M/ that represent some
geometric property. One obvious choice is to consider metrics with constant
curvature. For instance, letMg be an orientable two-dimensional manifold of genus
g > 1. Consider the moduli space of all hyperbolic metrics on Mg , that is, the
subspace of M.Mg/ formed by elements that are represented by Riemannian metrics
of constant sectional curvature equal to �1. The moduli space of all hyperbolic
metrics is the quotient of another well-known space, the Teichmüller space of
Mg . This space is a subspace of the quotient of MET.Mg/ by the subgroup of
Diff.Mg/ formed by all smooth self-diffeomorphisms of Mg that are homotopic to
the identity; namely, it is the subspace represented by hyperbolic metrics. Then the
moduli space is the quotient of the Teichmüller space by the action of Out.�1.Mg//,
the group of outer automorphisms of the fundamental group of Mg .

We want to generalize the definition of the Teichmüller space to higher dimen-
sions. The obvious choice for a definition would be the quotient of the space of all
hyperbolic metrics by the action of the group of all smooth self-diffeomorphisms
that are homotopic to the identity. But Mostow’s rigidity theorem implies that, in
dimensions no less than 3, this space contains (at most) one point.

Let us go back to dimension two for a moment. Recall that uniformization
techniques (see [EE69], or, more recently, Hamilton’s Ricci flow [Ham88]) show
that every Riemannian metric on Mg for g > 1 can be canonically deformed to
a hyperbolic metric. Moreover, Hamilton’s Ricci flow [Ham88] shows that every
negatively curved metric on Mg for g > 1 can be canonically deformed (through
negatively curved metrics) to a hyperbolic metric. Hence the space of all hyperbolic
metrics on Mg is canonically a deformation retract of the space of all negatively
curved Riemannian metrics on Mg . This deformation commutes with the action of
Diff.Mg/ (this is true at least for the Ricci flow); therefore the Teichmüller space
of Mg is canonically a deformation retract of the space that is the quotient of all
negatively curved Riemannian metrics on Mg by the action of the group of all
smooth self-diffeomorphisms that are homotopic to the identity. Also, instead of
considering the space of all negatively curved metrics, we can consider the space of
all pinched negatively curved metrics, or for that matter, the space of all Riemannian
metrics. These are the concepts that we will generalize. Next we make definitions
and introduce notation.

As before, let M be a closed smooth manifold. We denote by Diff0.M/ the
subgroup of Diff.M/ of all smooth diffeomorphisms of M that are homotopic to
the identity 1M . Also, denote by D0.M/ the group RC �Diff0.M/. We call the
quotient space T.M/DMET.M/=D0.M/ the Teichmüller space of metrics on M .

Given 0� � �1, let MET�.M/ denote the space of all �-pinched negatively
curved Riemannian metrics on M , that is, MET�.M/ is the space of all negatively
curved Riemannian metrics g on M for which
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sup-secg
inf-secg

� 1C �;

where

sup-secg D supfjg-sectional curvature of Pxj; x 2M , Px a 2-plane in TxM g;

inf-secg D inf fjg-sectional curvature of Pxj; x 2M , Px a 2-plane in TxM g:

Therefore g2MET�.M/ if and only if there is a positive real number � such that �g
has all its sectional curvatures in the interval Œ�.1C �/;�1�. Note that a 0-pinched
metric is a metric of constant negative sectional curvature and an1-pinched metric
is just a negatively curved Riemannian metric.

The quotient space M�.M/DMET�.M/=D.M/ is called the moduli space
of �-pinched negatively curved metrics on M , and T�.M/DMET�.M/=D0.M/

is called the Teichmüller space of �-pinched negatively curved metrics on M . In
particular, T1.M/ is the Teichmüller space of all negatively curved metrics on M .
Note that the inclusions MET�.M/ ,! MET.M/ induce inclusions T�.M/ ,!

T.M/. Also note that, for ı � �, these inclusions factor as

MET�.M/ ,!METı.M/ ,!MET.M/ and T�.M/ ,! Tı.M/ ,! T.M/:

Remark 1. If Mg is an orientable two-dimensional manifold of genus g > 1,
then the original Teichmüller space of Mg is denoted (in our notation) by T0.Mg/,
and T0.Mg/ is homeomorphic to R6g�6; see [EL88]. Hence T0.Mg/ is con-
tractible. By the uniformization techniques mentioned above [EE69], [Ham88], it
follows that T�.Mg/, T1.Mg/, and T.Mg/ are all contractible. (This is also true
for nonorientable surfaces of Euler characteristic < 0.)

Remark 2. Let M be a closed hyperbolic manifold. If dimM � 3, Mostow’s
rigidity theorem implies that T0.M/ D � ; that is, T0.M/ contains exactly one
point. Therefore MET0.M/D D0.M/. It also follows (see Remark 1 above) that
T0.M/ is contractible when dimM � 2.

In two dimensions, Earle and Eells [EE69] proved that D0.M/ (and hence
MET0.M/) is contractible. The same was proved in three dimensions by Gabai
[Gab01]. This is certainly false in dimensions � 6, because �0.D0.M// is not
finitely generated when n� 11 (see [FJ89b, Cors. 16 and 10.28])and �0.D0.M//

is non-trivial when 6� n� 10 (see Theorem 1 and Corollary), and it is reasonable
to conjecture that D0.M/ is also not contractible for nD 5.

Remark 3. Let M be a hyperbolic manifold. Then the action of D0.M/ on
MET.M/ is free (see Lemma 1.1). Since MET.M/ is contractible and because
of Ebin’s slice theorem [Ebi70], we have that D0.M/!MET.M/!T.M/ is a
principal D0.M/-bundle and T.M/ is the classifying space BD0.M/ of D0.M/.

Therefore, if M is a closed hyperbolic manifold, then MET�.M/ interpolates
between MET0.M/ (which is homotopy equivalent to D0.M/) and MET.M/
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(which is contractible). Likewise T�.M/ interpolates between T.M/ (which is
equal to BD0.M/) and T0.M/ (which is contractible). Schematically, we have the
diagram

MET0.M/
� � //

��

MET�.M/
� � //

��

MET1.M/
� � //

��

MET.M/

��
T0.M/

� � // T�.M/
� � // T1.M/

� � // T.M/:

All vertical arrows represent quotient maps by the action of the group D0.M/.
The main result of this paper states that for a hyperbolic manifold the last two

horizontal arrows of the lower row of this diagram are not in general homotopic
to a constant map. In particular T� for 0 � � �1 is in general not contractible.
More specifically, we prove that under certain conditions on the dimension n of
the hyperbolic manifold M , the manifold M has a finite cover N (which depends
on �) such that �k.T�.N //! �k.T.N // is nonzero. In particular, T�.N / is not
contractible. The requirements on the dimension n are implied by one of the
following conditions: n is larger than some constant n0.4/, or n is larger than 5, but
in this last case we need that ‚nC1 ¤ 0, where ‚` denotes the group of homotopy
spheres of dimension `. Here is a more detailed statement of our main result:

THEOREM 1. For every integer k0 � 1, there is an integer n0 D n0.k0/ such
that the following holds. Given � > 0 and a closed real hyperbolic n-manifold M
with n� n0, there is a finite sheeted cover N of M such that, for every 1� k � k0
with nCk � 3 mod 4, the map �k.T�.N //! �k.T.N // induced by the inclusion
T�.N / ,! T.N / is nonzero. Consequently �k.T�.N //¤ 0. In particular, Tı.N /

is not contractible for every ı such that � � ı �1 (provided k0 � 4).

Here (and in the corollary below) we consider the given hyperbolic metric as
the basepoint for T.N / and T�.N /.

For k0 D 1, we will show that we can take n0.1/D 6, and that we can drop
the condition nC k � 2 mod 4. Hence we obtain the following corollary to (the
proof of) Theorem 1.

COROLLARY. LetM be a closed real hyperbolic manifold of dimension n� 6.
Assume that ‚nC1 ¤ 0. Then for every � > 0, there is a finite sheeted cover N of
M such that �1.T�.N //¤ 0. Therefore T�.N / is not contractible.

Recall that an n-dimensional � manifold is a manifold that embeds in R2nC2

with trivial normal bundle. Every real hyperbolic manifold has a finite sheeted
cover that is a � manifold; see [Sul79, p. 553]. We have the following addition to
the statements of Theorem 1 and its corollary.
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ADDENDUM. We can choose N DM in the statements of Theorem 1 and its
corollary, provided M is a �-manifold and the radius of injectivity of M at some
point is sufficiently large. (How large depends only on the dimension of M .)

We now make some comments on Theorem 1 and the diagram above.

Remark 4. Since MET.M/ is contractible, Theorem 1 implies that, for a
general hyperbolic manifold M , the map �k.MET�.M//! �k.T

�.M//, induced
by the second vertical arrow of the diagram, is not onto for some k.

Remark 5. By Remark 1, the lower row of the diagram above is homotopically
trivial in dimension 2. In dimension 3 one could ask the same: is the lower row
of the diagram above homotopically trivial in dimension 3? In view of a result of
Gabai [Gab01], this is equivalent to asking: Is T.M/1 contractible?

Remark 6. Let M be a hyperbolic manifold. Consider the upper row of the
diagram. It follows from a result of [Ye93] on the Ricci flow that, provided the
dimension of M is even, there is an �0 D �0.M/ > 0 such that for all � � �0 the
inclusion map MET�!MET1 is D0.M/-equivariantly homotopic to a retraction
MET�!MET0.M/�MET1. This has the following consequences. First, the
retraction above descends to a retraction T�.M/! T0.M/; hence the inclusion
map T�.M/! T1.M/ is homotopic to a constant map (provided � � �.M/),
and hence induces the zero homomorphism �k.T

�.M//! �k.T.M// for all k.
Second, the inclusion map MET0.M/ ! MET�.M/ induces monomorphisms
�k.D0.M//D �k.MET0.M//! �k.MET�.M//, provided � � �.M/. Theorem
1 then shows that in many cases �0.M/ <1.

Remark 7. We recall an open problem posed by K. Burns and A. Katok [BK85,
Quest. 7.1] about hyperbolic manifolds M . Is MET1.M/ path connected? More
generally, one could ask if MET1.M/ is contractible. Equivalently, is T1.M/!

T.M/DBD0.M/ a homotopy equivalence? Before Theorem 1, it was conceivable
that the opposite extreme in the interpolation between T0.M/ and T.M/ could be
true, that is, T1.M/ is always contractible, or equivalently �DT0.M/!T1.M/

is always a homotopy equivalence. See [FO06], [FO07] for recent results relevant
to these questions.

Remark 8. Let M be a hyperbolic manifold. Since Diff.M/=Diff0.M/ Š

Out.�1.M// we have M.M/ Š T.M/=Out.�1.M// or, in general, M�.M/ Š

T�.M/=Out.�1.M//. Note that Out.�1.M// is a finite group, provided that
dimM � 3. We do not know whether our results descend to the moduli spaces. See
[FO08] for recent results relevant to these questions.

Remark 9. Let M be a hyperbolic manifold. We can consider the quotients of
MET.M/ and MET�.M/ by Diff0.M/, the connected component of the identity
1M in Diff.M/, instead of by the larger group Diff0.M/. Since the quotient group
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Diff0.M/=Diff0.M/ is discrete, it can be easily checked from the proof of our
results that the statement of Theorem 1 also holds for the inclusion of the quotients:
MET�.M/=Diff0.M/!MET.M/=Diff0.M/, with the strengthened restriction
“2� k � k0” and proviso “(provided k0 � 5)”.

Theorem 1 follows from the more technical Theorems 2 and 3 below. To state
these results we need some notation. Write G � Diff0.Sn�1 � Œ1; 2�; @/ for the
group of all smooth isotopies ' of the .n� 1/-dimensional sphere Sn�1 that are
the identity near 1 and 2 and are homotopic to the identity by a homotopy that is
constant near 1 and 2. That is, ' WSn�1�Œ1; 2�!Sn�1�Œ1; 2�, and '.x; s/D .x; s/
for s near 1 and 2, and ' is homotopic to the identity by a homotopy H such that
Ht .x; s/ D .x; s/ for s near 1 and 2 and all t 2 Œ0; 1�. Note that G depends only
on the dimension .n� 1/ of the sphere. If we need to express this dependency
explicitly, we shall write Gn.

Let N be a real hyperbolic manifold of dimension n, and let B be a closed
geodesic ball of radius 2r centered at some point p 2 N (hence, the radius of
injectivity of N at p is larger that 2r). Identify B n fpg with Sn�1 � .0; 2r�,
where the lines t 7! .x; t/ are the speed-one geodesics emanating from p. Now,
every element in Diff0.Sn�1 � Œ1; 2�; @/ gives rise to an element in Diff0.N / by
identifying Sn�1�Œ1; 2�with Sn�1�Œr; 2r�. That is, we have a mapƒDƒ.N; p; r/ W
Diff0.Sn�1 � Œ1; 2�; @/! Diff0.N /, defined by

ƒ'.p/D

�
p if p … .Sn�1 � Œr; 2r�/�N;
.'t=r.x/; t/ if p D .x; t/ 2 .Sn�1 � Œr; 2r�/�N;

where ' 2 Diff0.Sn�1 � Œ1; 2�; @/ and '.x; s/ D .'s.x/; s/. We will denote the
restriction ƒjG by the same symbol ƒ.

Remark (a technical point). Rigorously, for ƒ to be well defined (that is,
for ƒ' to be smooth), we will assume every element in Diff0.Sn�1 � Œ1; 2�; @/
is the identity near Sn�1 � f1g and Sn�1 � f2g. This does not cause problems
since standard extension methods (along collars) show that the inclusion of the
space of all elements in Diff0.Sn�1 � Œ1; 2�; @/, with the properties above, into
Diff0.Sn�1 � Œ1; 2�; @/ is a homotopy equivalence.

Remark (another technical point). The map ƒ depends also on the identifica-
tion between B nfpg and Sn�1� .0; 2r� used above. This identification is uniquely
determined if an orthonormal basis B of TpM is specified. Hence we should write
ƒDƒ.N; p; r;B/. To alleviate the notation we still writeƒDƒ.N; p; r/ since the
choice of B is not essential. Note also that such a map ƒ can be defined whenever
the radius of injectivity of N at p is larger than 2r .

THEOREM 2. Given � > 0 and a compact subset K � G, there is a real
number r > 0 such that the following holds. Let .N; g0/ be a closed real hyperbolic
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manifold, and let p 2N with radius of injectivity at p larger than 3r . Then the map
K!MET�.N / given by � 7! .ƒ�/g0 is contractible; i.e. homotopic to a constant
map. Here ƒDƒ.N; p; r/.

THEOREM 3. For every integer k � 0, there is an integer n1 D n1.k/ and
elements ˛k;n 2 �k.Gn/ with n � n1 such that the following holds. If N is a
closed real hyperbolic n-manifold, with n � n1 and nC k � 2 mod 4, which is
a �-manifold, then ƒ#.˛k;n/ ¤ 0 2 �k.Diff0.N //. Here ƒ D ƒ.N; p; r/, where
p 2N is any point and 2r is less than the injectivity radius of N at p.

To prove the corollary we will need this addendum to Theorem 3:

ADDENDUM. For k D 0, we can choose n1 D n1.1/D 6 and we can drop the
condition nC k � 2 mod 4, provided ‚nC1 ¤ 0.

Note that, while Theorem 2 is a geometric result, Theorem 3 is purely topo-
logical: the point p and the number r are arbitrary, and the only restriction is that
2r is less than the injectivity radius of N at p.

In Section 1, we deduce Theorem 1 and its corollary from Theorems 2 and 3.
In Section 2, we prove Theorem 2, and in Section 3, we prove Theorem 3 together
with its addendum.

We are grateful for the referee’s useful comments and suggestions.

1. Proof of Theorem 1 and its corollary

Here we prove Theorem 1 and its corollary assuming Theorems 2 and 3. First
we give a lemma and some remarks.

Recall that Diff0.P / and D0.P / act on MET.P / for any closed smooth
manifold P .

LEMMA 1.1. If P is aspherical and the center of �1P is trivial, then the action
of Diff0.P / and D0.P / on MET.P / is free.

Proof. Let g 2MET.P /. The isotropy group H D f� 2 Diff0.P / W �g D gg
of the action of Diff0.P / at g is Iso0.M; g/, the group of all isometries of the
Riemannian manifold .M; g/ that are homotopic to the identity. Hence this isotropy
group H is compact. Let 
 WDiff.P /!Out.�1P / be the homomorphism induced
by � 7! ��. Borel, Conner and Raymond showed [CR77, p. 43] that under the
assumptions above, 
 restricted to compact subgroups is monic. But 
.H/ is trivial,
since every element in Diff0.P / is, by definition, homotopic to the identity. It
follows that H is trivial. Hence the action of Diff0.P / is free. Therefore the action
of D0.P / is also free. �
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The lemma implies that there is a fibration D0.P /!MET.P /!T.P /, and,
since MET.P / is contractible, we have

�k�1.Diff0.P //Š �k�1.D0.P //Š �k.T.P //:

We can give an explicit isomorphism between �k�1.Diff0.P // and �k.T.P //. Let
g0 be any metric on P . Let ˇ WSk�1!Diff0.P / be an element in �k�1.Diff0.P //.
Define ˇ0 W Sk�1!MET.P /, u 7! ˇ.u/g0: Since MET.P / is contractible, we
can extend ˇ0 to a map ˇ defined on the whole disc Dk . Then the isomorphism is
given by ˇ 7! pˇ, where p WMET.P /!T.P / is the quotient map that assigns to
each metric its D0.P / orbit.

Proof of Theorem 1, assuming Theorems 2 and 3. Let � > 0 and k0 > 0. Let
n0 D n0.k0/Dmaxfn1.k� 1/; 1� k � k0g, where n1.k� 1/ is as in Theorem 3.
Let n be such that n� n0. Define the compact subset K of G by

K D f˛k�1.u/ W u 2 Sk�1; 1� k � k0; nC .k� 1/� 2 mod 4g;

where the ˛k�1 D ˛.k�1/;n are explicit representatives of the elements given in
Theorem 3. Note that

K D
S
k image.˛k�1/; where 1� k � k0 and nC .k� 1/� 2 mod 4.

Let r be as in Theorem 2 for � and K as above.
Let M be a closed hyperbolic manifold of dimension n. By taking successive

finite sheeted covers, we find a finite sheeted cover N of M such that

� N is a � manifold (see [Sul79, p. 553]), and

� N has a point p with injectivity radius larger than 3r . (Recall that �1.M/ is
residually finite; see [Mag69].)

Let g0 be the hyperbolic metric of N pulled back from M . Write ƒ D
ƒ.N; p; r/. Define ˇk�1 D ƒ˛k�1 2 �k�1.Diff0.N //. By Theorem 3, all ˇk�1
are nonzero. Define also ˇ0

k�1
W Sk�1!MET�.N / by ˇ0

k�1
.u/D ˇk�1.u/g

0 for
u 2 Sk�1. By Theorem 2, we can extend each ˇ0 D ˇ0

k�1
to the whole disc Dk ,

obtaining maps ˇ W Dk!MET�.N /.
Recall that p W MET.P /! T.P / is the quotient map that assigns to each

metric its D0.P / orbit (see the comments following the proof of Lemma 1.1).
Since pˇ.Sk�1/ contains exactly one point (this point is p.g0/), we have that
pˇ determines an element in �k.T.N //. Also, since ˇk�1 ¤ 0, we have that
pˇ¤ 0 2 �k.T.N //. But image.ˇ/�MET�.N /; hence pˇ is in the image of the
map �k.T�.N //! �k.T.N // induced by the inclusion T�.M/ ,! T.M/. This
proves Theorem 1 assuming Theorems 2 and 3. �

The proof of the corollary is similar: just use the addendum to Theorem 3.
The proof of the addendum to Theorem 1 and its corollary is also similar.



TEICHMÜLLER SPACE OF PINCHED NEGATIVELY CURVED METRICS 53

2. Proof of Theorem 2

First we introduce some notation and give a lemma. We denote by G0 �

Diff0.Sn�1 � Œ1; 2�/ the group of all smooth isotopies ' of the .n � 1/-dimen-
sional sphere Sn�1 that are the identity near 1 and constant near 2. That is, if
' W Sn�1 � Œ1; 2�! Sn�1 � Œ1; 2� takes .x; s/ to .y; s/, then y does not depend on
s for s near 2, and '.x; s/D .x; s/ for s near 1. Note that G0 depends only on the
dimension n� 1 of the sphere. We have an inclusion G ,! G0.

LEMMA 2.1. G0 is contractible.

Proof. Recall that the space of all isotopies is homeomorphic to the space
of smooth paths of vector fields Vs for s 2 Œ1; 2� on the sphere (or any closed
manifold). This correspondence is given explicitly in the following way. An isotopy
' corresponds to the smooth path of vector fields Vs , where Vs.x/D .d=ds/'s.x/js .
Here '.x; s/D .'s.x/; s/. Conversely, given a smooth path of vector fields Vs for
s 2 Œ1; 2�, we can integrate it and obtain the flow 's of Vs . Then Vs corresponds
to the isotopy '.x; s/D .'s.x/; s/. But every vector field (or path of vector fields)
can be deformed to the zero vector field by homotheties: .�; V / 7! .1��/V for
� 2 Œ0; 1� is a homotopy of V to the zero vector field. Integrating this homotopy
(for each �) we obtain a homotopy from the identity idG0 to the constant map
G0! fidSn�1�Œ1;2�g � G0. �

Note that the homotopy given in the proof of the lemma fixes the identity
idSn�1�Œ1;2�. Note also that the homotopy does not necessarily leave G invariant.

Proof of Theorem 2. We first prove the theorem for the case in which K has
exactly one element. Fix � >0 and ' 2G. Let .N; g0/ be a real hyperbolic manifold,
and let p 2 N with injectivity radius (at p) larger than 3r . We will construct a
deformation of .ƒ'/g0D .ƒ'/�g0 to g0, through metrics in MET�.N /, assuming
that r is large enough. Here ƒDƒ.N; p; r/.

Denote by B � N the closed geodesic ball centered at p of radius 3r . As
before, we identify B n fpg with Sn�1 � .0; 3r�. In fact, this identification can
be done isometrically: B n fpg with metric g0 is isometric to Sn�1 � .0; 3r� with
metric sinh2.t/hCdt2, where h is the Riemannian metric on the sphere Sn�1 with
constant curvature equal to 1. In view of this identification, we write then

g0.x; t/D sinh2.t/h.x/C dt2:

Write � Dƒ'. Also write g1 D �g0. The metric g1 on B n fpg is given by

g1.x; t/D

�
g0.x; t/ if t … Œr; 2r�;
'�g

0.x; t/ if t 2 Œr; 2r�:

By the above Lemma 2.1 we have a path of isotopies '� 2 G0 for � 2 Œ0; 1�,
with '0D ' and '1D idSn�1�Œ1;2�. Write �� D '�2 for the final map of the isotopy
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'�, that is, '�.x; 2/D .��.x/; 2/. Then �0 D �1 D idSn�1 . Define

�� W Sn�1 � Œr; 2r�! Sn�1 � Œr; 2r�

by rescaling ' to the interval Œr; 2r�, that is, ��.x; t/D .'�
t=r
.x/; t/.

Let ı W Œ2; 3�! Œ0; 1� be smooth with ı.2/D 1, ı.3/D 0, and ı constant near
2 and 3. We now define a path of metrics g� on B n fpg D Sn�1 � .0; 3r�:

g�.x; t/D

8<:
g0.x; t/ if t 2 .0; r�;
.��/�g

0.x; t/ if t 2 Œr; 2r�;
sinh2.t/g

�
ı. t
r
/.��/�h.x/C .1� ı.

t
r
//h.x/g

�
C dt2 if t 2 Œ2r; 3r�:

Since ı and all isotopies we used are constant near the endpoints of their
intervals of definitions, it is straightforward to show that g� is a smooth metric on
B nfpg and that g� joins g1 to g0. Moreover, g�.x; t/D g0.x; t/ for t near 0 and
3. Hence we can extend g� to the whole manifold N by defining g�.q/D g0.q/
for q D p or q … B .

CLAIM 2.2. We have g� 2 MET�.N /, provided r is large enough, and the
necessary size of r depends only on '� and ı.

Proof. The metric g�.x; t/ is equal to g0.x; t/ for t 2 .0; r�; hence g�.x; t/
is hyperbolic for t 2 .0; r�. Also, g�.x; t/ is the push-forward (by ��) of the
hyperbolic metric g0 for t 2 Œr; 2r�; hence g�.x; t/ is hyperbolic for t 2 Œr; 2r�.
For t 2 Œ2r; 3r�, the metric g�.x; t/ is similar to the ones constructed in [FJ89a,
�3] or [Ont94, Th. 3.1]. It can be checked from those references that the sectional
curvatures of g� are � close to �1, provided r is large enough. How large we need
r to be depends only on the partial derivatives (up to order two) of '� and ı. This
proves the claim and Theorem 2 for the case in which the compact setK has exactly
one element. �

For the general case, just note that since K is compact, so is the set K D f'� W
' 2Kg, where '� denotes the canonical deformation of an element ' 2K to the
identity (given by Lemma 2.1 above). Then all partial derivatives (up to order two)
of all elements in K are bounded. Therefore there is a real number r for which the
argument used in the claim above works for all ' 2K. This proves Theorem 2. �

3. Proof of Theorem 3

In this section we will always assume that the manifold N is a closed real
hyperbolic manifold which is a �-manifold. To prove Theorem 3 we will first
reduce the problem to another problem.

3.1. First reduction. Recall that for any manifold L, Diff.L/ is the space
of all self-diffeomorphisms of L, with the smooth topology, and if @L¤∅, then
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Diff.L; @/ denotes the space of all self-diffeomorphisms of L that are the identity
on the boundary.

Let �Diff.Dn�1; @/ be the space of all (continuous) loops in Diff.Dn�1; @/
based at the identity 1Dn�1 . A loop t 7!ft for t 2 Œ0; 1� is smooth if the map .x; t/ 7!
ft .x/ is smooth. Classical approximation methods (for example, convolution) show
that the inclusion of the space of all smooth loops into�Diff.Dn�1; @/ is a homotopy
equivalence. Hence we will assume, when necessary, that loops are smooth. We
will also assume, if necessary that the loops are constant near 0 and 1. This does
not cause any problems either.

We define a map

˛ W�Diff.Dn�1; @/! Diff.Dn; @/

by the formula ˛.ft /.x; t/ D .ft .x/; t/ for .x; t/ 2 Dn�1 � Œ0; 1� D Dn. Here
t 7! ft denotes a loop in Diff.Dn�1/, and we are identifying Dn�1� Œ0; 1� with Dn.
(Certainly here we must assume that the loops are smooth. We also must have
smooth corners.)

Remark. This map ˛ and the standard constructions of it used here have ap-
peared (much earlier) in Gromoll’s fundamental work [Gro66] on positive curvature
questions.

Identify Dn�1 with, say, the northern hemisphere of the sphere Sn�1. Then we
have inclusions DnDDn�1�Œ1; 2� ,!Sn�1�Œ1; 2� ,!N . The composition induces
a map Diff.Dn; @/ ,!Diff0.N /, and this map factors through Diff0.Sn�1�Œ1; 2�; @/:

Diff.Dn; @/ � � // Diff0.Sn�1 � Œ1; 2�; @/
� � ƒ // Diff0.N / ;

and we denote this composition also by ƒ.

Remark. As in the remark before the statement of Theorem 3, we will assume
that the elements in Diff.Dn; @/DDiff.Dn�1�Œ0; 1�; @/ are constant near @.Dn�1�
Œ0; 1�/D Dn�1 � f0; 1g[Sn�2 � Œ0; 1�. We make this assumption so that the map
Diff.Dn; @/ ,! Diff0.Sn�1 � Œ1; 2�; @/ is well defined. Again, as before, this does
not cause problems since standard extension methods (along collars) show that the
inclusion of the space of all elements in Diff.Dn; @/ with the properties above into
Diff.Dn; @/ is a homotopy equivalence.

Now, we note a simple but important fact: an element in Diff.Dn; @/ is mapped
to G by the map Diff.Dn; @/! Diff0.Sn�1 � Œ1; 2�; @/ if and only if it is in the
image of ˛. Therefore we have reduced the proof of Theorem 3 to this:

THEOREM 30. Fix k � 0. For sufficiently large n with nC k � 2 mod 4, the
composition map

�k.�Diff.Dn�1; @//
˛# // �k.Diff.Dn; @//

ƒ# // �k.Diff0.N n//
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is nonzero. Also, if k D 0, n � 10 and ‚nC1 ¤ 0, the composition map is also
nonzero.

Here, as we mentioned at the beginning of this section, N n is any closed real
hyperbolic manifold of dimension n which is a �-manifold. Note that the last
statement of Theorem 30 corresponds to the addendum to Theorem 3. We now
further reduce the statement of Theorem 30 to another statement.

3.2. Second reduction. First we recall some definitions. For a compact smooth
manifold L, denote by eDiff.L/ the semisimplicial group whose l-simplices are
self-diffeomorphisms of �l �L that send faces � �L to themselves. Here �l is
the l-simplex, and � is any subsimplex of �l ; see [Wal70, �17A]. We can consider
Diff.L/ as contained in eDiff.L/ in two (homotopy equivalent) ways: as the set of
vertices of eDiff.L/ or as the semisimplicial subgroup whose i-simplices are self-
diffeomorphisms of �l �L that commute with the projection to �l . Also, define
eDiff.L; @/ as before, but with the extra requirement that the self-diffeomorphisms
of �l �L be the identity on �l � @L.

If we replace “diffeomorphism” above by “homeomorphism” or “simple homo-
topy equivalence”, then we obtain spaces eTop.L/ and eG.L/ (and also eTop.L; @/).
Here G.L/ is the H -space of all simple homotopy equivalences of L. Since a
self-homotopy equivalence does not have to be one-to-one, we have that G.L/ andeG.L/ are homotopy equivalent. We have fibrations (see [Wal70, �17A])

eDiff.L/! eG.L/! eG=eDiff.L/;

eTop=eDiff.L/! eG=eDiff.L/! eG=eTop.L/:

It is known that �i .eTop=eDiff.L//Š ŒL�Di ; @ ITop =O�, where Œ � ; � � denotes
“homotopy classes of maps”. Since Top =O is an infinite loop space, it defines a
(nonreduced) generalized cohomology theory such that

h�i .L/D ŒL�Di ; @ ITop =O�:

We now come back to the proof. The map ƒ WDiff.Dn; @/!Diff0.N / clearly
induces a semisimplicial map eDiff.Dn; @/!eDiff.N /.

LEMMA 3.3. �i .eDiff.Dn; @//! �i .eDiff.N // is a monomorphism for every i ,
provided n� 5.

(Recall that we are assuming that N is any closed real hyperbolic manifold of
dimension n that is also a �-manifold.)

Proof. We claim the following.

(i) �i .eDiff.Dn; @//Š �iC1.eG=eDiff.Dn; @//.

(ii) �i .eDiff.N //Š �iC1.eG=eDiff.N // when i � 1, and �1.eG=eDiff.N // naturally
injects into �0.eDiff.N // (when i D 0).
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(iii) �i .eTop=eDiff.Dn; @//Š �i .eG=eDiff.Dn; @//.

(iv) �i .eTop=eDiff.N //Š �i .eG=eDiff.N //, provided n� 5.

To prove (i) and (ii) use the first fibration above and just note that (a) every ho-
motopy equivalence on the disc Dn, modulo boundary, can be canonically deformed
(by Alexander’s trick) to the identity, and hence eG.Dn; @/ is contractible; (b) since
N is negatively curved, eG.N/ Š Out.�1.N //, which is a discrete set. To prove
(iii) and (iv), use the second fibration above and just note that (c) eG=eTop.Dn; @/ is
contractible because the canonical deformation mentioned above preserves home-
omorphisms and (d) eG=eTop.N / is contractible by Farrell-Jones rigidity results
[FJ91].

It follows from (i)–(iv) above that

�i .eDiff.Dn; @//Š �iC1.eTop=eDiff.Dn; @//

Š ŒDnCiC1; @ ITop =O�D Qh�.iC1/.Sn/;

�i .eDiff.N //Š �iC1.eTop=eDiff.N //

Š ŒN �DiC1; @ ITop =O�D h�.iC1/.N /;

provided n� 5 and i � 1.
We have then the commutative diagram

Qh�.iC1/.Sn/D ŒDnCiC1;@ITop =O� //

��

ŒN �DiC1;@ITop =O�D h�.iC1/.N /

��
�i .eDiff.Dn; @// // �i .eDiff.N //:

Here the vertical arrows are the canonical isomorphisms mentioned above, and,
when i D 0, the first vertical arrow is also an isomorphism while the second vertical
is still injective (by (ii) above). Now, since every diffeomorphism in the image of the
map Diff.Dn; @/!Diff.N / is the identity outside Dn�N , the image of an element
in ŒDnCiC1; @ ITop =O� by the map ŒDnCiC1; @ ITop =O�! ŒN�DiC1; @ ITop =O�
in the diagram above has the property that it is constant outside Dn �N . Hence
the map

ŒDnCiC1; @ ITop =O�! ŒN �DiC1; @ ITop =O�

is induced by the map

c � 1DiC1 WN �DiC1! Sn �DiC1;

where c W N ! N=closure .N nDn/D Dn=@D Sn is the collapsing map. There-
fore, at the cohomology level, the map h�.iC1/.Sn/! h�.iC1/.N / induced by
the degree-one collapsing map c composed with the canonical monomorphism
Qh�.iC1/.Sn/! h�.iC1/.Sn/ is the homomorphism of Lemma 3.3. The lemma
now follows from the following result:
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If N n is a closed stably parallelizable manifold and f WN ! Sn is a degree-
one map, then f � W h�.Sn/! h�.N / is a monomorphism for any representable
generalized cohomology theory h.

For the proof of this result, see [FJ89a, Cl. 2.4, p. 902]. (Replace Top =O in
the proof of that claim by the infinite loop space corresponding to h.) Also, the
referee points out that this result has long been known to be an easy corollary to
results of G. W. Whitehead [Whi62] and W. Browder [Bro72], since �-manifolds
are orientable for such theories h�. This completes the proof of the lemma. �

Note that �k.eDiff.Dn; @//Š ŒDnCkC1; @ ITop =O�Š‚nCkC1, the group of
homotopy spheres of dimension nC kC 1.

Consider now the commutative diagram

�k.�Diff.Dn�1; @//
˛# // �k.Diff.Dn; @//

ƒ# //

��

�k.Diff.N //

��
�k.eDiff.Dn; @// // �k.eDiff.N //

and, in particular, just the left part of this diagram:

(1) �k.�Diff.Dn�1; @//
˛# // �k.Diff.Dn; @// // �k.eDiff.Dn; @//:

From Lemma 3.3 above, we see that Theorem 30 is implied by the following
statement:

THEOREM 300. Fix k � 0. For sufficiently large n with nC k � 2 mod 4,
the composition map in diagram (1) above is nonzero. Also, if k D 0, n � 6 and
‚nC1 ¤ 0, the composition map is also nonzero.

Note we have succeeded in eliminating the manifold N from the problem.

3.4. Proof of Theorem 300. First we recall some definitions and introduce some
notation. For a manifold L, the space of smooth pseudoisotopies of L is denoted
by P.L/, that is, P.L/ consists of all self-diffeomorphisms of L� I that are the
identity on L�f0g[@L�I . Here I D Œ0; 1�. (The condition of the pseudoisotopies
being the identity on @L� I is useful but superfluous: the space of pseudoisotopies
of L that are the identity just on L� f0g can be identified with P.L/ by “bending
around corners”; see [Hat78].) Note that P.L/ is a group with the composition.
We have stabilization maps † WP.L/!P.L�I /. The direct limit of the sequence

P.L/! P.L� I /! P.L� I 2/! � � �

is called the space of stable pseudoisotopies of L, and it is denoted by P.L/. We
mention two important facts: First, P. � / is a homotopy functor. Therefore we
get, for example, that P.Dn/D P.�/, where � denotes a point. Second, the map
�k.P.L//! �k.P.L// is an isomorphism for k� dimL; see [Igu88].
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Let An�1 denote the subgroup of Diff.Dn�1; @/ consisting of all self-diffeo-
morphisms of .Dn�1; @/ that are pseudoisotopic to the identity. Hence we have a
surjective homomorphism � W P.Dn�1/!An�1, where we just take the “top” of a
pseudoisotopy f , that is, �.f /D f jDn�1�f1g. The kernel of this map is the space
of all pseudoisotopies that are the identity on @.Dn�1�I /, and we can identify this
space with Diff.Dn; @/. Consequently, we get the sequence

(2) Diff.Dn; @/
� // P.Dn�1/

� // An�1:

CLAIM 3.5. Sequence (2) is a Hurewicz fibration.

Proof. Let t 7! ft be a (smooth) path in An�1 beginning at f0 and ending
at f1. (Assume also that the path is constant near 0 and 1.) Let F0 be a lifting of
f0, so �.F0/D f0. To define a lifting t 7! Ft of the whole path, beginning at F0,
just take the concatenation of F0 with the map .x; t 0/ 7! .ft 0.x/; t

0/ for 0� t 0 � t .
This defines Ft on Dn�1 � Œ0; 1C t �; now rescale back to the interval [0,1]. �

CLAIM 3.6. The connecting map ˇ W�.An�1/! Diff.Dn; @/ of fibration (2)
is homotopic to ˛.

Proof. Let t 7! ft be a (smooth) path in An�1 beginning at f0 D 1Dn�1 and
ending at f1 D 1Dn�1 . Take F0 D 1Dn as the lifting of f0. Using the lifting given
in the proof of Claim 3.5, we see that the path t 7! ft maps, by the connecting
map, to F1, where F1 is such that F1.x; t/D .x; t/ for 0� t � 1=2 and F1.x; t/D
.f2t�1.x/; t/ for 1=2� t � 1. By squeezing the interval Œ0; 1=2� to 0, we see that
the connecting map ˇ is homotopic to ˛. �

Now, to prove Theorem 300 it is enough to prove the following:

THEOREM 3000. Fix k � 0. For sufficiently large n with nC k � 2 mod 4, the
composition map

�k.�An�1/
ˇ# // �k.Diff.Dn; @// // �k.eDiff.Dn; @//

is nonzero. Also, if k D 0, n � 10 and ‚nC1 ¤ 0, the composition map is also
nonzero.

Using the fibration Diff.Dn; @/ �! eDiff.Dn; @/ �! eDiff=Diff.Dn; @/ (see
[Wal70, �17A]) and fibration (2), we can embed the sequence in Theorem 3000 into
the larger diagram

(3) �k.�An�1/
ˇ# // �k.Diff.Dn; @//

��

// �k.P.D
n�1//

�k.eDiff.Dn; @//D‚nCkC1

��
�k.eDiff=Diff.Dn; @//;
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where the upper row and the central column are exact. Note that for n� k,
�k.P.D

n�1// Š �k.P.D
n�1// Š �k.P.�//, which does not depend on n; see

[Igu88]. To prove Theorem 3000, we have three cases, with increasing degrees of
difficulty: the case k D 0 (which corresponds to the addendum to Theorem 3), the
case k 6� 3 mod 4, and the case k � 3 mod 4.

First caseW k D 0, n � 6 and ‚nC1 ¤ 0. In this case, since n� 1� 5 we
have that �0.P.Dn�1//Š 0 by Cerf’s foundational work [Cer70]. Also, it follows
immediately from the definitions that �0.eDiff=Diff.Dn; @// Š 0. Since we are
assuming that ‚nC1 ¤ 0, we can (using diagram (3)) pull back a nonzero element
a¤ 0 2‚nC1 all the way back to �0.�An�1/. This proves Theorem 3000 for this
case. �

Second caseW k 6� 3 mod 4, n� k and nC k � 2 mod 4. We will use the
following facts:

(i) For k 6� 3 mod 4, �k.P.�// is a finite group. For k � 3 mod 4, we have
�k.P.�//Š Z˚(finite group/ (see [Dwy80], [FH78], [Wal78]). Denote by
ak the order of the torsion part of �k.P.�//.

(ii) Using Hatcher’s spectral sequence (see [Hat78, Props. 2.1 and 2.2]) we have,
for n� k, that the group �k.eDiff=Diff.Dn; @// has a filtration

0DG0 < � � �<Gk D �k.eDiff=Diff.Dn; @//

such that Gi=Gi�1 is a subquotient of Hk�i .Z2; �i�1P.�//. Since all the
homology groups Hk�i .Z2; �i�1P.�// are 2-torsion groups for i < k and
H0.Z2; �k�1P.�//Š �k�1P.�/=Z2 (the quotient by the action of Z2), we
see that the torsion part of �k.eDiff=Diff.Dn; @// has 2kak�1 for an exponent.

(iii) The group ‚4m�1 has a cyclic subgroup of order

22m�2.22m�1� 1/ � numeratorf4Bm=mg

(see [MS74, p. 285]). Note that this order increases exponentially with m.

The important observation here is that, for n� k, the group �k.P.Dn�1//
and an exponent of the torsion part of �k.eDiff=Diff.Dn; @// do not depend on n.

Remark 10. Here and in the next case (that is, in the proofs of the second
and third cases) item (ii) above can be replaced by the following fact that can be
deduced using [BL82] or [HJ82, Lem. 2.2]: the exponent of the odd order torsion
part of �k.eDiff=Diff.Dn; @//, when n� k, does not depend on n. (Indeed this
exponent is ak�1, where ak�1 is as in item (i).) To use this fact instead of item (ii),
just note that by item (iii), ‚4m�1 has elements of order 22m� 1, which is large
and odd.
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Remark 11. Antonelli, Burghelea and Kahn [ABK72] showed that the image
of �k.Diff.Dn; @//! �k.eDiff.Dn; @// is isomorphic to Gromoll’s group �nCkC1

kC1
;

see [Gro66]. Furthermore they obtained many strong nonvanishing results in
[ABK72] about these groups of Gromoll. Their results perhaps combined with
recent knowledge about ak (see [Rog02] and [Rog03]) should yield extremely
substantial quantitative improvements to Theorem 3 and hence also to Theorem 1.
We are very grateful to the referee for pointing out to us this direction for future
investigation.

We continue with the proof of the second case. Fix k with k 6� 3 mod 4. Now,
since we are assuming nCk� 2 mod 4, we have that nCkC1D 4m�1 for some
m. Hence, using diagram (3) and the three facts above, we get that, by choosing n
large, we can find a nonzero element x 2 �k.eDiff.Dn; @//D ‚nCkC1 D ‚4m�1
with large order that maps to 0 2 �k.eDiff=Diff.Dn; @//. Hence x is the image of
an element y 2 �k.Diff.Dn; @// with large order. Now, since we are assuming
k 6� 3 mod 4, by fact (i) above we have that �k.P.Dn�1//Š �k.P.�// is a finite
group of order ak . Then aky maps to 0 2 �k.P.Dn�1//; hence aky pulls back to
an element z in �k.�An�1/. Since we can take the order of x and y as large as
we want, we can choose x and y such that akx ¤ 0. Hence aky ¤ 0 and it follows
that z ¤ 0. This concludes the proof of Theorem 3000 in the second case. �

Third caseW k � 3 mod 4, n� k and nC k � 2 mod 4. The problem in this
case is that now the group �k.P.Dn�1//Š Z˚(finite group/; hence it is not finite,
and we cannot use the argument above because the element y can map to an infinite
order element.

To begin with, we embed diagram (3) in a larger diagram

(4)

�k.P.D
n�1//

†#
��

�k.P.D
n//

� //

�# ))SSSSSSSSSSSSSSS
�kC1.eDiff=Diff.Dn; @//

�

��
�k.�An�1/ // �k.Diff.Dn; @//

�# //

�

��

�k.P.D
n�1//

�k.eDiff.Dn; @//D‚nCkC1

��
�k.eDiff=Diff.Dn; @//:

We explain the new terms. The central column contains one more term than
the central column of (3) and, as before, it is a piece of the exact sequence of the
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homotopy groups of the fibration

Diff.Dn; @/ �!eDiff.Dn; @/ �!eDiff=Diff.Dn; @/:

The map †# is induced by the suspension map

† W P.Dn�1/! P.Dn�1 � I /D P.Dn/:

The diagonal arrow is induced the map � W P.Dn/ ! Diff.Dn/, which, as de-
fined before, consists of taking the “top” of the pseudoisotopy. An element f
in �kC1.eDiff=Diff.Dn; @//D �kC1.eDiff.Dn; @/;Diff.Dn; @// is represented by a
self-diffeomorphism of Dn �DkC1 which preserves the projection to DkC1 over
@DkC1 and is the identity when restricted to .@Dn �DkC1/[ .Dn � f0g �Dk/,
where DkC1 D I �Dk . Hence �.f / is represented by the restriction of the above
self-diffeomorphism to Dn � @DkC1. An element in �k.P.Dn// is represented by
a self-diffeomorphism of .Dn � I /�Dk which is the identity over

@..Dn � I /�Dk/ n .Dn � f1g �Dk/;

and preserves the projection to Dk . Identifying I �Dk with DkC1, we obtain a
map �k.P.Dn//! �kC1.eDiff=Diff.Dn; @//. This map is �. It is easy to verify
that �� D �#. Hence diagram (4) is commutative with the central row and central
column exact.

Recall that we are assuming that k � 3 mod 4, and that nC k � 2 mod 4. It
follows that n� 3 mod 4. In particular n is odd. Then, assuming also that n� k,
we have the following facts:

(a) †# is an isomorphism (see [Igu88]) and

�k.P.D
n//Š �k.P.D

n�1//Š �k.P.�//Š Z˚ .finite group/I

see [Dwy80], [FH78], [Wal78]. An element in this group can then be written
in the form j C t , where j 2 Z and t is in the torsion part of the group.

(b) �#�#†#.x/Dx˙x for x2�k.P.Dn�1//. Here the map x 7!x is an involution
on �k.P.Dn�1//; see [Hat78].

(c) �k.Diff.Dn; @//˝QŠQ and �#˝Q is an isomorphism; see [FH78, Th. 2.1].
Also �#˝Q is an isomorphism. (For this use also [FH78, Th. 2.1] and combine
it with the homotopy exact sequence induced by the fibration (2). One detail:
note that �i .An�1/ Š �i .Diff.Dn; @// for i > 0, because Diff0.Dn; @/ �
An�1 � Diff.Dn; @/, where Diff0.Dn; @/ is the connected component of the
identity in Diff.Dn; @/.)

Define y0 D �#†#.1/ 2 �k.Diff.Dn; @//. Then, by (a) and (c) above, y0
has infinite order, and, since diagram (4) is commutative, �.y0/ D 0. We have
�#.y0/ D �#�#†#.1/, and by (b), �#.y0/ D 1˙ N1. But an involution sends 1 to
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˙1C t , where t is a torsion element. Hence �#.y0/ is either of the form 2C t or t ,
and, since y0 has infinite order, (c) shows that �#.y0/D 2C t . Write y1 D aky0.
Then �#.y1/D 2ak . Note that y1 also has infinite order and �.y1/D 0. As in the
second case (that is, for k 6� 3 mod 4), we can find an element y0 2�k.Diff.Dn; @//
with that �.y0/¤ 0 and �#.y

0/D 2akj (here y0D 2aky, where y is as in the proof
of the second case). Now take y00 D y0 � jy1 and we see that �#.y

00/ D 0 and
�.y00/D �.y0/¤ 0, and we are done. This completes the proof of Theorem 3. �
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