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Abstract

Let X be a compact Riemann surface of genus gX � 1. In 1984, G. Faltings
introduced a new invariant ıFal.X/ associated to X . In this paper we give explicit
bounds for ıFal.X/ in terms of fundamental differential geometric invariants arising
from X , when gX > 1. As an application, we are able to give bounds for Faltings’s
delta function for the family of modular curves X0.N / in terms of the genus only.
In combination with work of A. Abbes, P. Michel and E. Ullmo, this leads to an
asymptotic formula for the Faltings height of the Jacobian J0.N / associated to
X0.N /.

1. Introduction

1.1. In the foundational paper [Fal84], G. Faltings proved fundamental re-
sults in the development of Arakelov theory for arithmetic surfaces based on
S. S. Arakelov’s original work on this subject. The article [Fal84] was the origin
for various developments in arithmetic geometry such as the creation of higher
dimensional Arakelov theory by C. Soulé and H. Gillet, or more refined work on
arithmetic surfaces by A. Abbes, P. Michel, and E. Ullmo, or P. Vojta’s work on the
Mordell conjecture. The ideas from Faltings’s original article continue to be used,
and further understanding of the ideas developed in [Fal84] often leads to advances
in arithmetic algebraic geometry.

Let us now explain our main object of study, namely Faltings’s delta function.
To do this, let X be a compact Riemann surface of positive genus gX , let �1X be
the holomorphic cotangent bundle, and let !1; : : : ; !gX be an orthonormal basis
of holomorphic 1-forms on X with respect to the Petersson inner product. The
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canonical metric on X is then defined by means of the .1; 1/-form

�can D
1

gX
�
i

2

gXX
jD1

!j ^!j :

We note that if gX > 1, the Riemann surface X also carries a hyperbolic metric,
which is compatible with the complex structure of X and has negative curvature
equal to minus one; we denote the corresponding .1; 1/-form by �hyp.

Using the normalized Green’s function gcan.x; y/ for x; y 2X associated to
the canonical .1; 1/-form �can in the sense of Arakelov, one can inductively define a
hermitian metric on any line bundle L on X , whose curvature form is proportional
to �can. In particular, if this construction is applied to the line bundle �1X , the
corresponding hermitian metric is such that the isomorphism induced by the residue
map from the fiber of �1X .x/ at x to C (equipped with the standard hermitian
metric) becomes an isometry for all x 2X . By means of the hermitian metric thus
defined on any line bundle L, Faltings constructs in [Fal84] a hermitian metric
k � k1 on the determinant line bundle �.L/ associated to the cohomology of the line
bundle L.

Now, there is another way to metrize the determinant line bundle �.L/. For
this one considers the degree gX � 1 part PicgX�1.X/ of the Picard variety of X
together with the line bundle O.‚/ associated to the theta divisor ‚. By means of
Riemann’s theta function, the line bundle O.‚/ can be metrized in a canonical way.
By restricting to the case where the degree of L equals gX �1, and noting that L is
of the form OX .E �P1� � � ��Pr/ with a fixed divisor E on X and suitable points
P1; : : : ; Pr onX , we obtain a natural morphism fromXr to PicgX�1.X/ by sending
.P1; : : : ; Pr/ to the class of OX .E�P1�� � ��Pr/. By pulling back O.‚/ toXr via
this map, extending it to Y DXr �X and restricting to the fiber X of the projection
from Y to Xr , we obtain a line bundle, which turns out to be isomorphic to �.L/.
In this way the hermitian metric given by Riemann’s theta function on O.‚/ induces
a second hermitian metric k�k2 on �.L/. A straightforward calculation shows that
the curvature forms of the two metrics thus obtained coincide. Therefore, they
agree up to a multiplicative constant, which depends solely on (the isomorphism
class of) X . This constant defines Faltings’s delta function ıFal.X/; for a precise
definition, we refer to [Fal84, p. 402].

In [Fal84, p. 403], it is asked to determine the asymptotic behavior of ıFal.Xt /

for a family of compact Riemann surfaces Xt that approach the Deligne-Mumford
boundary of the moduli space of stable algebraic curves of a fixed positive genus
gX . This problem was solved in [J90] by first expressing Faltings’s delta function
in terms of Riemann’s theta function, thus obtaining asymptotic expansions for all
quantities involved in the expression. In the present article, we will address among
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other things the following, related problem, namely that of estimating ıFal.X/ for
varying X covering a fixed base Riemann surface X0 in terms of fundamental
geometric invariants of X as well as additional intrinsic quantities coming from X0.

1.2. In their work, A. Abbes, P. Michel and E. Ullmo investigated the case of the
modular curve X0.N / (with N squarefree and 6 −N ) associated to the congruence
subgroup �0.N / more closely. Using an arithmetic analogue of Noether’s formula,
which was also obtained in [Fal84], it was shown in [AU97] and [MU98] that the
Faltings height hFal.J0.N // for the Jacobian J0.N / of X0.N / has an asymptotic
expression, involving Faltings’s delta function as the archimedean contribution,
given by

(1) 12 � hFal.J0.N //D 4gX0.N / log.N /C ıFal.X0.N //C o.gX0.N / log.N //I

here the genus gX0.N / of X0.N / (N squarefree, 6 −N ) is given by (see [Shi71])

1C 1
12
�N

Y
pjN

�
1C 1

p

�
�
1
2
� d.N /� 1

4

Y
pjN

�
1C

�
�4
p

��
�
1
3

Y
pjN

�
1C

�
�3
p

��
;

where d.N / denotes the number of divisors ofN . In the subsequent work [Ull00], E.
Ullmo established another formula for hFal.J0.N // involving a suitable discriminant
ıT of the Hecke algebra T of J0.N /, the matrix MN of all possible Petersson inner
products of a certain basis of eigenforms of weight 2 for �0.N /, and a suitable
natural number ˛, namely

(2) hFal.J0.N //D
1
2

logjıTj �
1
2

logjdet.MN /j � log.˛/:

By estimating congruences for modular forms, as well as estimating det.MN / and
˛, Ullmo derives the bounds

(3)

gX0.N / log.N /C o.gX0.N / log.N //� logjıTj

� 2gX0.N / log.N /C o.gX0.N / log.N //

for logjıTj, from which he then derives the bounds

(4) �BgX0.N / � hFal.J0.N //�
1
2
gX0.N / log.N /C o.gX0.N / log.N //

for hFal.J0.N //, with an absolute constant B > 0; we note that the lower bound
here is due to unpublished work of J.-B. Bost. This estimate in turn allows him to
bound ıFal.X0.N // as

(5) �4gX0.N / log.N /C o.gX0.N / log.N //� ıFal.X0.N //

� 2gX0.N / log.N /C o.gX0.N / log.N //:

1.3. The main purpose of this note is to give bounds for ıFal.X/ for arbitrary
compact Riemann surfaces of genus gX > 1 in terms of fundamental geometric
invariants of X . As a first main result, Theorem 4.5 gives a bound for ıFal.X/ for



4 JAY JORGENSON and JÜRG KRAMER

any compact Riemann surface of genus gX > 1 in terms of the smallest nonzero
eigenvalue, the length of the shortest geodesic, the number of eigenvalues in the
interval Œ0; 1=4/, the number of closed, primitive geodesics of length in the interval
.0; 5/, the supremum over x 2X of the ratio �can=�hyp, and the implied constant
in the error term of the prime geodesic theorem for X . Applying this result to the
situation where X is a finite cover of a fixed Riemann surface X0 of genus gX0 > 1,
we obtain as a second main result (see Corollary 4.6) the estimate

ıFal.X/DOX0.gX .1C 1=�X;1//;

where �X;1 denotes the smallest nonzero eigenvalue on X . We now want to apply
our main results to the modular curves X0.N / with N being such that gX0.N / > 1,
and to derive a bound for ıFal.X0.N // simply in terms of the genus gX0.N /. To do
this, we unfortunately cannot apply Corollary 4.6 directly, but rather have to step
back to Theorem 4.5, and have to bound all the fundamental geometric quantities
in terms of gX0.N /. This can be done by exploiting the arithmetic nature of the
situation, e.g., by recalling estimates on the smallest nonzero eigenvalue on X0.N /
given by R. Brooks in [Bro99]. In Theorem 5.6, we end up with the estimate

ıFal.X0.N //DO.gX0.N //;

thereby improving the bound (5). Plugging this bound into (1) yields

hFal.J0.N //D
1
3
gX0.N / log.N /C o.gX0.N/ log.N //;

thereby improving (4). Using (2) together with our bound for hFal.J0.N // and E.
Ullmo’s lower bound for logjdet.MN /j, we find the lower bound

logjıTj �
5
3
gX0.N / log.N /C o.gX0.N/ log.N //;

thereby improving the lower bound in (3).

1.4. The paper is organized as follows. In Section 2, we recall and summarize
all the notations, definitions and results to be used later. In particular, we recall
the definitions for the hyperbolic and the canonical metric on a compact Riemann
surface X of genus gX > 1, as well as the definitions of the corresponding Green’s
functions, giving rise to the so-called residual metrics on �1X . Next, we define
Faltings’s delta function ıFal.X/ by means of the regularized determinant associated
to the Laplacian with respect to the Arakelov metric on �1X (which is nothing but
the residual metric associated to the canonical metric). This result was obtained
in [Sou89] as a by-product of the analytic part of the arithmetic Riemann-Roch
theorem for arithmetic surfaces. By means of Polyakov’s formula, we are able to
express Faltings’s delta function in terms of the regularized determinant associated
to the Laplacian with respect to the hyperbolic metric and a local integral involving
the conformal factor relating the two metrics under consideration. We end Section 2
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by recalling the heat kernel, heat trace, and Selberg’s zeta function associated to X ,
as well as the formula relating the first derivative of Selberg’s zeta function to the
regularized determinant associated to the hyperbolic Laplacian, which was proved
in [Sar87].

In Section 3, we weave together the relations collected in Section 2. As the
main result of Section 3, we obtain a representation of ıFal.X/ in terms of the genus,
the first derivative of Selberg’s zeta function for X at s D 1, and a triple integral
over X involving the hyperbolic heat trace of X .

In Section 4, the formula obtained in Section 3 allows us to estimate ıFal.X/

by suitably extending the techniques developed in [JK01] in order to give bounds
for the constant term of the logarithmic derivative of Selberg’s zeta function at
s D 1. In this way, we arrive at our main estimate for ıFal.X/, given in Theorem
4.5, in terms of the above mentioned fundamental geometric invariants.

In Section 5, we then specialize to the case of the modular curves X0.N /. The
main focus here is to estimate all the fundamental geometric quantities occurring
in Theorem 4.5 in terms of the genus gX0.N / of X0.N / only. The problem one
encounters is that the family of modular curvesX0.N / that admit hyperbolic metrics
do not form a single tower, so then the geometric invariants that appear in Theorem
4.5 cannot be readily bounded. Since X0.N / is an isometric cover of X0.N 0/
whenever N 0 jN , the hyperbolic modular curves are sufficiently interrelated, in
what one could view as a “net” rather than a single “tower”, so that one is able to
develop uniform bounds for the geometric invariants in Theorem 4.5 in order to
bound Faltings’s delta function for all modular curves. This leads to the main result
stated in Theorem 5.6.

Finally in Section 6, we briefly discuss the arithmetic implications arising from
Theorem 5.6 by estimating both the Faltings height hFal.J0.N // of the Jacobian
J0.N / of X0.N / and the discriminant ıT of the Hecke algebra T of J0.N /.

2. Notations and preliminaries

2.1. Hyperbolic and canonical metrics. Let � be a Fuchsian subgroup of
the first kind of PSL2.R/ acting by fractional linear transformations on the upper
half-plane H D fz 2 C j Im.z/ > 0g. We let X be the quotient space � nH and
denote by gX the genus of X . Unless otherwise stated, we assume that gX > 1 and
that � has no elliptic and, apart from the identity, no parabolic elements, i.e., X is
smooth and compact. We identify X locally with its universal cover H; we make
this identification explicit by denoting the image of x 2X in H by z.x/.

In the sequel � denotes a (smooth) metric onX , i.e., � is a positive .1; 1/-form
on X . We write vol�.X/ for the volume of X with respect to �. In particular,
we let �D �hyp denote the hyperbolic metric on X , which is compatible with the
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complex structure of X and has constant negative curvature equal to minus one.
Locally, we have

�hyp.x/D
i

2
�

dz.x/^d Nz.x/
Im.z.x//2

:

We write volhyp.X/ for the hyperbolic volume of X ; we recall that volhyp.X/ is
given by 4�.gX�1/. The scaled hyperbolic metric �D�shyp is simply the rescaled
hyperbolic metric �hyp= volhyp.X/, which measures the volume of X to be one.

Let Sk.�/ denote the C-vector space of cusp forms of weight k with respect
to � equipped with the Petersson inner product

hf; gi D
i

2

Z
X

f .z.x// g.z.x// Im.z.x//k � dz.x/^d Nz.x/
Im.z.x//2

for f; g 2 Sk.�/:

By choosing an orthonormal basis ff1; :::; fgX g of S2.�/ with respect to the Pe-
tersson inner product, the canonical metric �D �can of X is given by

�can.x/D
1

gX
�
i

2

gXX
jD1

jfj .z.x//j
2dz.x/^ d Nz.x/:

We note that the canonical metric measures the volume of X to be one. In order to
be able to compare the hyperbolic and the canonical metrics, we define

dsup;X D sup
x2X

ˇ̌̌
�can.x/

�shyp.x/

ˇ̌̌
:

We note that [JK04] obtained optimal bounds for dsup;X through covers.

2.2. Green’s functions and residual metrics. We denote the Green’s function
associated to the metric � by g�. It is a function on X �X characterized by the
two properties

dxdcxg�.x; y/C ıy.x/D
�.x/

vol�.X/
and

Z
X

g�.x; y/�.x/D 0:

If �D �hyp, �D �shyp, or �D �can, we set

g� D ghyp; g� D gshyp; or g� D gcan;

respectively. Note that ghyp D gshyp. By means of the function G� D exp.g�/,
we can now define a metric k � k�;res on the canonical line bundle �1X of X in the
following way. For x 2X and z.x/ as above, we set

kdz.x/k2�;res D lim
y!x

�
G�.x; y/ � jz.x/� z.y/j

2
�
:

We call the metric

�res.x/D
i

2
�

dz.x/^ d Nz.x/
kdz.x/k2�;res
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the residual metric associated to �. If �D �hyp, �D �shyp, or �D �can, we set

k � k�;res D k � khyp;res; k � k�;res D k�kshyp;res; k � k�;res D k � kcan;res;

�res D �hyp;res; �res D �shyp;res; �res D �can;res;

respectively. Since ghyp D gshyp, we have �hyp;res D �shyp;res. We recall that the
Arakelov metric �Ar is defined as the residual metric associated to the canonical
metric �can; the corresponding metric on �1X is denoted by k � kAr. So that we can
compare the metrics �hyp and �Ar, we define the C1-function �Ar on X by the
equation

(6) �Ar D e
�Ar�hyp:

2.3. Faltings’s delta function and determinants. We denote the Laplacian on
X associated to the metric � by ��. We write �hyp for the hyperbolic Laplacian
on X ; identifying x 2X with z.x/D �C i� in a fundamental domain for � in H,
we have

(7) �hyp D��
2
�
@2

@�2
C
@2

@�2

�
:

We let f�X;ng1nD0 denote an orthonormal basis of eigenfunctions of �hyp on X with
eigenvalues

0D �X;0 < �X;1 � �X;2 � : : : ;

i.e.,
�hyp�X;n D �X;n�X;n for nD 0; 1; 2; : : : :

We denote the number of eigenvalues of �hyp lying in the interval Œa; b/ by N Œa;b/

ev;X .
To �� we have associated the spectral zeta function ��.s/, which gives rise

to the regularized determinant det�.��/. We set the notation

D�.X/D log
�

det�.��/
vol�.X/

�
:

If �D �hyp or �D �Ar, we set D� DDhyp or D� DDAr, respectively. With the
first Chern form relations

c1.�1X ; k � khyp/D .2gX � 2/�shyp.x/; c1.�1X ; k � kAr/D .2gX � 2/�can.x/;

an immediate application of Polyakov’s formula (see [JL96, p. 78]) shows the
relation

(8) DAr.X/DDhyp.X/C
gX � 1

6

Z
X

�Ar.x/.�can.x/C�shyp.x//:

Faltings’s delta function ıFal.X/ is introduced in [Fal84], where also some of its
basic properties are given. In [J90], Faltings’s delta function is expressed in terms
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of Riemann’s theta function, and its asymptotic behavior is investigated. As a by-
product of the analytic part of the arithmetic Riemann-Roch theorem for arithmetic
surfaces, it is shown in [Sou89] that

(9) ıFal.X/D�6DAr.X/C a.gX /;

where

(10) a.gX /D�2gX log.�/C 4gX log.2/C .gX � 1/.�24�0Q.�1/C 1/:

For the sequel, we only have to recall that a.gX /DO.gX /.

2.4. Heat kernels and heat traces. Let H.�/ denote a complete set of repre-
sentatives of inconjugate, primitive, hyperbolic elements in � . Denote by `
 the
hyperbolic length of the closed geodesic determined by 
 2H.�/ on X ; it is well
known that the equality jtr.
/j D 2 cosh.`
=2/ holds. We denote the number of
elements 
 in H.�/ whose geodesic representatives have length in the interval
.0; b/ by N .0;b/

geo;X .
The heat kernel KH.t I z; w/ on H (t 2 R>0; z; w 2 H) is given by

KH.t I z; w/DKH.t I �/D

p
2e�t=4

.4�t/3=2

Z 1
�

re�r
2=4tp

cosh.r/�cosh.�/
dr;

where � D dH.z; w/ denotes the hyperbolic distance between z and w. The heat
kernelKhyp.t I x; y/ associated toX for t 2R>0 and x; y2X is defined by averaging
over the elements of � , that is,

Khyp.t I x; y/D
X

2�

KH.t I z.x/; 
z.y//;

and the hyperbolic heat kernel HKhyp.t I x; y/ associated to the same X is defined
by averaging over the elements of � different from the identity, that is,

HKhyp.t I x; y/D
X

2�

¤id

KH.t I z.x/; 
z.y//:

We note that Khyp.t I x; y/ satisfies the equations�
@

@t
C�hyp;x

�
Khyp.t I x; y/D 0 for y 2X;

lim
t!0

Z
X

Khyp.t I x; y/f .y/�hyp.y/D f .x/ for x 2X
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for all C1-functions f on X . In terms of the eigenfunctions f�X;ng1nD0 and
eigenvalues f�X;ng1nD0 of �hyp, we have

Khyp.t I x; y/D

1X
nD0

�X;n.x/�X;n.y/e
��X;nt :

If xD y, we write HKhyp.t I x/ instead of HKhyp.t I x; x/. The hyperbolic heat trace
HTrKhyp.t/ (t 2 R>0) is now given by

HTrKhyp.t/D

Z
X

HKhyp.t I x/�hyp.x/:

Introducing the function

(11) f .u; t/D
e�t=4

.4�t/1=2

1X
nD1

log.u/
un=2�u�n=2

e�.n log.u//2=4t ;

and setting HTrK
 .t/D f .e`
 ; t /, we recall the identity

HTrKhyp.t/D
X


2H.�/

HTrK
 .t/;

which is one application of the Selberg trace formula; see [Hej76]. For any ı > 0,
we now define

(12) HTrKhyp;ı.t/D HTrKhyp.t/�
X


2H.�/
`
<ı

HTrK
 .t/:

We note that the hyperbolic Green’s function ghyp.x; y/ for x; y 2 X and x ¤ y
relates to the heat kernel as

(13) ghyp.x; y/D 4�

Z 1
0

�
Khyp.t I x; y/�

1

volhyp.X/

�
dt:

In particular for the Green’s function gH.z; w/ on H for z; w 2 H and z ¤ w, we
recall the formulas

gH.z; w/D� log
�ˇ̌̌
z�w

z� Nw

ˇ̌̌2�
D 4�

Z 1
0

KH.t I z; w/dt:

2.5. Prime geodesic theorem. Consider the function

�X .u/D #f
 2H.�/ j e`
 < ug;

which is defined for u 2 R>1; it is just the number of inconjugate, primitive,
hyperbolic elements of � such that the corresponding geodesics have length less
than log.u/. For any eigenvalue �X;j with j D 0; 1; 2; : : : and in the range 0 �
�X;j <1=4, we put sX;j D 1=2C

p
1=4��X;j : Note that 1=2< sX;j � 1. In terms
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of the integral logarithm

li.usX;j /D
Z u

sX;j

2

d�
log.�/

;

the prime geodesic theorem states

(14)
ˇ̌̌
�X .u/�

X
0��X;j<1=4

li.usX;j /
ˇ̌̌
� C �u3=4.log.u//�1=2

for u > 2 with an implied constant C > 0 depending solely on X ; see [Hub59],
[Hub61a], [Hub61b], [Cha84, p. 297], or [Hej83, p. 474]. Then, we define the
Huber constant CHub;X to be the infimum of all constants C >0 such that (14) holds.
With this definition the main result of [JK02a] implies the following: Assume that
X is a finite cover of a fixed Riemann surface X0 of genus gX0 > 1. Then

(15) CHub;X � deg.X=X0/ �CHub;X0 ;

where deg.X=X0/ denotes the degree of X over X0. This choice for the error term
in the prime geodesic theorem suffices for our purposes, since we are working with
general compact Riemann surfaces. Improvements on the error term in certain cases
are contained in [Cai02], [Iwa84], and [LRS95]. For the purpose of this article,
these results will not be used.

We note that using the function �X .u/, the truncated hyperbolic heat trace
(12) can be rewritten as

(16) HTrKhyp;ı.t/D

Z 1
eı

f .u; t/d�X .u/:

2.6. Selberg’s zeta function. For s 2 C, Re.s/ > 1, the Selberg zeta function
ZX .s/ associated to X is defined via the Euler product expansion

ZX .s/D
Y


2H.�/

Z
 .s/; where Z
 .s/D
1Y
nD0

�
1� e�.sCn/`


�
are the local factors. The Selberg zeta function ZX .s/ is known to have a mero-
morphic continuation to all of C and satisfies a functional equation. From [Sar87,
p. 115], we recall the relation

(17) Dhyp.X/D log
�

Z0X .1/

volhyp.X/

�
C b.gX /;

where

(18) b.gX /D .gX � 1/.4�
0
Q.�1/� 1=2C log.2�//:
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As in [JK01], we define the quantity

cX D lim
s!1

�
Z0X
ZX

.s/�
1

s� 1

�
:

From [JK01, Lem. 4.2], we recall the formula

(19) cX D 1C

Z 1
0

.HTrKhyp.t/� 1/dt D
Z 1
0

.HTrKhyp.t/� 1C e
�t /dt:

Identity (19) is obtained by means of the McKean formula

Z0X
ZX

.s/D .2s� 1/

Z 1
0

HTrKhyp.t/e
�s.s�1/t dt;

which, in view of the asymptotic lims!1ZX .s/D 1, integrates to

(20) log.ZX .s//D�
Z 1
0

HTrKhyp.t/e
�s.s�1/t dt

t
:

Analogously, we find the local versions

(21)

Z0


Z

.s/D .2s� 1/

Z 1
0

HTrK
 .t/e�s.s�1/t dt;

log.Z
 .s//D�
Z 1
0

HTrK
 .t/e�s.s�1/t
dt
t
:

Observing the identity

(22) log.w/D
Z 1
0

.e�t � e�wt /
dt
t

for w > 0 and taking w D s.s� 1/ (with s 2 R>1), we can combine (22) with the
integrated version (20) of the McKean formula to get

(23) � log.Z0X .1//D
Z 1
0

.HTrKhyp.t/� 1C e
�t /

dt
t
:

Subtracting (22) from (23) yields the more general formula

(24) � log.Z0X .1//� log.w/D
Z 1
0

.HTrKhyp.t/� 1C e
�wt /

dt
t
;

which holds for w > 0. Using (12) and the second formula in (21) with s D 1, we
end up with the formula

(25)
X


2H.�/
`
<ı

log.Z
 .1//

� log.Z0X .1//� log.w/D
Z 1
0

.HTrKhyp;ı.t/� 1C e
�wt /

dt
t
:
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3. Expressing Faltings’s delta via hyperbolic geometry

In this section, we obtain an expression that evaluates Faltings’s delta function
ıFal.X/ in terms of spectral theoretic information of X coming from hyperbolic
geometry. Our method of proof is as follows. First, we use results from [Sar87]
and [Sou89] together with the Polyakov formula (8) to express ıFal.X/ in terms of
hyperbolic information and the conformal factor �Ar (see (6)) relating the Arakelov
metric �Ar to the hyperbolic metric �hyp on X . We then derive and exploit explicit
relations between the canonical and hyperbolic Green’s functions in order to explic-
itly evaluate the term involving �Ar. We begin with the following lemma, which
collects results stated above.

LEMMA 3.1. For any X with genus gX > 1, let

c.gX /D a.gX /� 6b.gX /C 6 log.volhyp.X//;

where a.gX / and b.gX / are given by (10) and (18), respectively. With the above
notations, we then have the formula

ıFal.X/D�6 log.Z0X .1//� .gX � 1/
Z
X

�Ar.x/.�shyp.x/C�can.x//C c.gX /:

Proof. Combining formulas (9), (8), and (17), we obtain

ıFal.X/D�6DAr.X/C a.gX /

D�6Dhyp.X/� .gX � 1/

Z
X

�Ar.x/.�shyp.x/C�can.x//C a.gX /

D�6 log
� Z0X .1/

volhyp.X/

�
� .gX � 1/

Z
X

�Ar.x/.�shyp.x/C�can.x//

C a.gX /� 6b.gX /

D�6 log.Z0X .1//� .gX � 1/
Z
X

�Ar.x/.�shyp.x/C�can.x//

C a.gX /� 6b.gX /C 6 log.volhyp.X//:

This completes the proof of the lemma. �

Remark 3.2. For the sake of completeness, let us make explicit the value of
c.gX /; a straightforward calculation yields

c.gX /D a.gX /� 6b.gX /C 6 log.volhyp.X//

D 2gX .�24�
0
Q.�1/� 4 log.�/� log.2/C 2/C 6 log.volhyp.X//

C .48�0Q.�1/C 6 log.2�/� 4/:

LEMMA 3.3. Let �1 and �2 be any two positive .1; 1/-forms on X with
associated Green’s functions g1.x; y/ and g2.x; y/, respectively, and assume that
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X �1.x/D

R
X �2.x/D 1: Then we have the relation

(26) g1.x; y/�g2.x; y/DZ
X

g1.x; �/�2.�/C

Z
X

g1.y; �/�2.�/�

Z
X

Z
X

g1.�; �/�2.�/�2.�/:

Proof. Let FL.x; y/ and FR.x; y/ denote the left and right sides of (26). Using
the characterizing properties of the Green’s functions, one can show directly that,
for fixed y 2X , we have

dxdcxFL.x; y/D dxdcxFR.x; y/D �1.x/��2.x/;

and Z
X

FL.x; y/�2.x/D

Z
X

FR.x; y/�2.x/D

Z
X

g1.y; �/�2.�/:

Consequently FL.x; y/D FR.x; y/, again for fixed y. However, it is obvious that
FL and FR are symmetric in x and y. This proves the lemma. �

Remark 3.4. Equation (26) from Lemma 3.3 provides the key identity for the
subsequent investigations. Note that a less explicit variant of it can be found in the
literature, e.g., [Lan88, Prop. 1.3].

LEMMA 3.5. Let �1 and �2 be as in Lemma 3.3. Let �1;res and �2;res be the
residual metrics associated to �1 and �2, respectively. Then we haveZ

X

log
�
�2;res.x/

�1;res.x/

�
.�1.x/C�2.x//D 0:

Proof. Using the definitions of Green’s functions and residual metrics given in
Section 2.2, we get

log
�
�2;res.x/

�1;res.x/

�
D log

�
lim
y!x

G1.x; y/

G2.x; y/

�
:

Using Lemma 3.3, this implies

log
�
�2;res.x/

�1;res.x/

�
D lim
y!x

.g1.x; y/�g2.x; y//

D 2

Z
X

g1.x; �/�2.�/�

Z
X

Z
X

g1.�; �/�2.�/�2.�/:

The result then follows, sinceZ
X

�
2

Z
X

g1.x; �/�2.�/�

Z
X

Z
X

g1.�; �/�2.�/�2.�/
�
.�1.x/C�2.x//D 0: �
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LEMMA 3.6. For any X , we have

(27) log
�
�can;res.x/

�shyp;res.x/

�
D

�Ar.x/C 4�

Z 1
0

�
HKhyp.t I x/�

1

volhyp.X/

�
dt C log.4/:

Proof. The left side of the claimed formula can be expressed as

log
�
�can;res.x/=�shyp;res.x/

�
D log

�
�Ar.x/=�hyp;res.x/

�
D log.e�Ar.x/�hyp.x/=�hyp;res.x//D �Ar.x/C log.�hyp.x/=�hyp;res.x//:

We now evaluate �hyp.x/=�hyp;res.x/ in terms of the heat kernel on X . Working
with relation (13), we have

ghyp.x; y/D 4�

Z 1
0

� X

2� W
¤id

KH.t I z.x/; 
z.y//�
1

volhyp.X/

�
dt

� log
�ˇ̌̌z.x/� z.y/
z.x/� Nz.y/

ˇ̌̌2�
D 4�

Z 1
0

�
HKhyp.t I x; y/�

1

volhyp.X/

�
dt � log

�ˇ̌̌z.x/� z.y/
z.x/� Nz.y/

ˇ̌̌2�
;

from which we derive

lim
y!x

.ghyp.x; y/C logjz.x/� z.y/j2/

D 4�

Z 1
0

�
HKhyp.t I x/�

1

volhyp.X/

�
dt C log.4 Im.z.x//2/:

This implies

log.�hyp.x/=�hyp;res.x//D log.kdz.x/k2hyp;res= Im.z.x//2/

D lim
y!x

.ghyp.x; y/C logjz.x/� z.y/j2/� log.Im.z.x//2/

D 4�

Z 1
0

�
HKhyp.t I x/�

1

volhyp.X/

�
dt C log.4/:

Combining these calculations, we conclude that

log
� �can;res.x/

�shyp;res.x/

�
D �Ar.x/C 4�

Z 1
0

�
HKhyp.t I x/�

1

volhyp.X/

�
dt C log.4/;

which proves the lemma. �

PROPOSITION 3.7. For any X with genus gX > 1, let

F.t I x/D HKhyp.t I x/� 1=volhyp.X/:
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Then, we have the formulaZ
X

�Ar.x/.�shyp.x/C�can.x//

D�
2�

gX

Z
X

Z 1
0

Z 1
0

F.t1I x/�hypF.t2I x/dt1dt2 �hyp.x/�
2.cX�1/

gX�1
� 2 log.4/:

Proof. Choosing �1 D �shyp and �2 D �can in Lemma 3.5 showsZ
X

log
� �can;res.x/

�shyp;res.x/

�
.�shyp.x/C�can.x//D 0:

Multiplying (27) by .�shypC�can/ and integrating over X , we arrive at the relationZ
X

�Ar.x/.�shyp.x/C�can.x//

D�4�

Z
X

Z 1
0

�
HKhyp.t I x/�

1

volhyp.X/

�
dt .�shyp.x/C�can.x//� 2 log.4/:

Interchanging the integration, recalling the formula for the hyperbolic volume of X
in terms of gX , and using (19) gives

4�

Z
X

Z 1
0

�
HKhyp.t I x/�

1

volhyp.X/

�
dt �shyp.x/

D
4�

volhyp.X/

Z 1
0

.HTrKhyp.t/� 1/dt D
cX�1

gX�1
;

which leads to the relation

(28)
Z
X

�Ar.x/.�shyp.x/C�can.x//D

� 4�

Z
X

Z 1
0

�
HKhyp.t I x/�

1

volhyp.X/

�
dt �can.x/�

cX�1

gX�1
� 2 log.4/:

In order to rewrite the latter integral, we recall the following formula from [JK06b],
which gives an explicit relation between the canonical and the scaled hyperbolic
metric form, namely,

(29) �can.x/D �shyp.x/C
1

2gX

�Z 1
0

�hypKhyp.t I x/dt
�
�hyp.x/ I

for the reader’s convenience, we add the proof of (29) in Appendix I. Observing that
�hypKhyp.t I x/D�hypHKhyp.t I x/, we obtain by means of (29) and the preceding
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calculations that

(30) 4�

Z
X

Z 1
0

�
HKhyp.t I x/�

1

volhyp.X/

�
dt �can.x/

D
cX � 1

gX � 1
C
2�

gX

Z
X

Z 1
0

Z 1
0

�
HKhyp.t1I x/� 1=volhyp.X/

�
��hypHKhyp.t2I x/dt1dt2 �hyp.x/:

We complete the proof by substituting (30) into (28) and then observing that
�hypHKhyp.t2I x/D�hypF.t2I x/. �

THEOREM 3.8. For any X with genus gX > 1, let

F.x/D

Z 1
0

�
HKhyp.t I x/� 1=volhyp.X/

�
dt:

Then we find that ıFal.X/ is equal to

2�
�
1�

1

gX

� Z
X

F.x/�hypF.x/�hyp.x/� 6 log.Z0X .1//C 2cX CC.gX /;

where

C.gX /D a.gX /� 6b.gX /C 2.gX � 1/ log.4/C 6 log.volhyp.X//� 2

D 2gX .�24�
0
Q.�1/� 4 log.�/C log.2/C 2/C 6 log.volhyp.X//

C .48�0Q.�1/C 6 log.2�/� 2 log.4/� 6/:

Proof. Simply combine Lemma 3.1 with Proposition 3.7. �

Remark 3.9. Theorem 3.8 gives a precise expression for ıFal.X/�C.gX / in
terms of hyperbolic data associated to X , all of which can be derived from the trace
of the hyperbolic heat kernel. As such, one can extend the hyperbolic expression to
general noncompact, finite volume hyperbolic Riemann surfaces, including those
that admit elliptic fixed points. Going further, it seems possible to employ the
techniques known as Artin formalism, which has been shown to hold for hyperbolic
heat kernels, in order to obtain analogous relations for the Faltings delta function
as well as the constant C.gX /. Note that since the Arakelov metric does not lift
through covers, there is no immediate reason to expect any relations involving
ıFal.X/ similar to those predicted by the Artin formalism; however, Theorem 3.8
implies that some relations are possible. We leave this problem for further study
elsewhere.

4. Analytic bounds

The main result of the section is Theorem 4.5, which states a bound for Falt-
ings’s delta function in terms of fundamental invariants from hyperbolic geometry.
Propositions 4.1, 4.2, and 4.3 bound the nontrivial quantities in the expression for
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Faltings’s delta function given in Theorem 3.8, and these results, together with
Lemma 4.4, are used to prove Theorem 4.5.

PROPOSITION 4.1. For any X with genus gX > 1, let F.x/ be as in Theorem
3.8, and set

dsup;X D sup
x2X

ˇ̌̌̌
�can.x/

�shyp.x/

ˇ̌̌̌
:

Then we have the estimate

0�

Z
X

F.x/�hypF.x/�hyp.x/�
.dsup;X C 1/

2 volhyp.X/

�X;1
:

Proof. From formula (29), we have the identity

gX�can.x/�gX�shyp.x/D
1

2

�Z 1
0

�hypHKhyp.t I x/dt
�
�hyp.x/

D
1
2
�hypF.x/�hyp.x/;

which immediately gives the formula

�hypF.x/D
2gX

4�.gX � 1/

�
�can.x/

�shyp.x/
� 1

�
and hence leads to the estimate supx2X j�hypF.x/j � dsup;X C 1. Since X is
compact, we can expand F.x/ in terms of the orthonormal basis of eigenfunctions
f�X;ng

1
nD0 with eigenvalues f�X;ng1nD0 of �hyp, i.e.,

F.x/D

1X
nD0

an�X;n.x/;

from which we derive �hypF.x/D
P1
nD1 �X;nan�X;n.x/, taking into account that

�X;0 D 0. Therefore, we haveZ
X

F.x/�hypF.x/�hyp.x/D

1X
nD1

�X;na
2
n:

Observing that Z
X

.�hypF.x//
2�hyp.x/D

1X
nD1

�2X;na
2
n;

which yields by the above calculations the trivial bound

1X
nD1

�2X;na
2
n D

Z
X

.�hypF.x//
2�hyp.x/� .dsup;X C 1/

2 volhyp.X/;
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and taking into account �X;1 � �X;n for all n� 1, we are finally led to the estimate
that completes the proof:

0� �X;1

Z
X

F.x/�hypF.x/�hyp.x/

D �X;1

1X
nD1

�X;na
2
n �

1X
nD1

�2X;na
2
n � .dsup;X C 1/

2 volhyp.X/: �

PROPOSITION 4.2. For any X with genus gX > 1, we have the lower bound

cX � �4 log.2gX � 2/:

Letting ˛ Dminf�X;1; 7=64g and " 2 .0; ˛/, we have the upper bound

cX � 2C
X


2H.�/
`
<5

Z0


Z

.1/C

6

"

�
CHub;X CN

Œ0;1=4/

ev;X

�
:

Proof. The lower bound is proved in [JK01, Th. 3.3]. The upper bound comes
from the proof of [JK01, Th 4.7]. Specifically, for any ı >0, we recall the inequality

cX � 1C
X

0<�X;j<"

1

�X;j
C

X

2H.�/
`
<ı

Z0


Z

.1/CCX;"e

�.1�s"/ı C 12N
Œ0;"/

ev;X e
�ı=2

with

CX;" D
1
"
4.4� 3s"/.CHub;X CN

Œ";1=4/

ev;X / and s" D 1=2C
p
1=4� ":

By choosing ıD 5 and " as stated above and by noting thatN Œ0;"/

ev;X D 1, 12e�5=2<1,
and 7=8 < s" < 1, that is, 4.4� 3s"/ < 6, the claim follows. �

PROPOSITION 4.3. For any X with genus gX > 1, we have the lower bound

� log.Z0X .1//� �4 log.4gX � 4/� 1=16:

Letting ˛ Dminf�X;1; 7=64g and " 2 .0; ˛/, we have the upper bound

(31) � log.Z0X .1//

� �

X

2H.�/
`
<5

log.Z
 .1//C 12
�
5C 1

"

� �
CHub;X CN

Œ0;1=4/

ev;X C 1
�
:

Proof. We follow the methods that proved the bounds in Proposition 4.2. Since
these calculations are not immediate from the results in [JK01], it is necessary to
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give the details. Let ı > 0, to be specified below. Then, using the trivial bounds

HTrKhyp.t/C volhyp.X/KH.t I 0/D

1X
jD0

e��X;j t � 1 for ı � t;

HTrKhyp.t/� 0 for 0� t � ı;

we get from formula (23) the bound

� log.Z0X .1//�
Z ı

0

.e�t � 1/
dt
t
C

Z 1
ı

.e�t � volhyp.X/KH.t I 0//
dt
t
:

Trivially, one has e�t � 1 � �t for t � 0, so
R ı
0 .e
�t � 1/.dt=t/ � �ı: Using the

obvious bound KH.t I 0/� e
�t=4=.4�t/, we getZ 1
ı

KH.t I 0/
dt
t
�
e�ı=4

�ı2
;

which givesZ 1
ı

.e�t � volhyp.X/KH.t I 0//
dt
t
� � volhyp.X/

Z 1
ı

KH.t I 0/
dt
t

� � volhyp.X/
e�ı=4

�ı2

and hence

� log.Z0X .1//� �ı� volhyp.X/e
�ı=4=.�ı2/:

Taking ı D 4 log.4gX � 4/ and using log.4gX � 4/ � log.4/ > 1 gives the stated
lower bound.

For the upper bound, we proceed as in [JK01, �4]. A straightforward calcu-
lation, with sw D 1=2C

p
1=4�w for w 2 Œ0; 1=4�, with ı > 4, and f .u; t/ as in

(11), yields
(32)Z 1

eı
f .u; t/dli.usw /D e�t=4

.4�t/1=2

Z 1
ı

1X
nD1

1X
mD0

e.sw�n=2�nm/�e�.n�/
2=4td�:

See also the proof of [JK01, Lem. 4.3]. Writing the term with nD 1 and mD 0 as

e�t=4

.4�t/1=2

Z 1
ı

e.sw�1=2/�e��
2=4td�De�wt� e�t=4

.4�t/1=2

Z ı

�1

e.sw�1=2/�e��
2=4td�;
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we can rewrite (32) as

e�wt D

Z 1
eı

f .u; t/dli.usw /C e�t=4

.4�t/1=2

Z ı

�1

e.sw�1=2/�e��
2=4td�

�
e�t=4

.4�t/1=2

Z 1
ı

X
.n;m/¤.1;0/

e.sw�n=2�nm/�e�.n�/
2=4td�;

where the sum is taken over all integer pairs .n;m/ with n� 1 and m� 0, except
for the pair .n;m/D .1; 0/. Using this identity twice, once with w D 0, so sw D 1,
and again with w D 1=4, so sw D 1=2, and recalling formula (16), we obtain the
equality

(33) HTrKhyp;ı.t/� 1C e
�t=4
D

Z 1
eı

f .u; t/d
�
�X .u/� li.u/C li.u1=2/

�
C

e�t=4

.4�t/1=2

Z 1
ı

X
.n;m/¤.1;0/

e.1�n=2�nm/�e�.n�/
2=4td�

C
e�t=4

.4�t/1=2

Z ı

�1

e��
2=4td�

�
e�t=4

.4�t/1=2

Z 1
ı

X
.n;m/¤.1;0/

e.1=2�n=2�nm/�e�.n�/
2=4td�

�
e�t=4

.4�t/1=2

Z ı

�1

e�=2e��
2=4td�:

After these preliminary calculations, we turn to bounding � log.Z0X .1// from above.
For this we recall formula (25) with w D 1=4, namely

(34)
X


2H.�/
`
<ı

log.Z
 .1//

� log.Z0X .1//� log.1=4/D
Z 1
0

�
HTrKhyp;ı.t/� 1C e

�t=4
�dt
t
:

As in [JK01], we substitute expression (33) for the integrand on the right side of
(34), interchange the order of integration, and evaluate. First, we do this for the
two integrals coming from the term belonging to .n;m/D .1; 0/. We follow the
convention that defines the K-Bessel function via the integral

K� .a; b/D

Z 1
0

e�a
2t�b2=t t�

dt
t

for a; b 2 R>0 and � 2 R:

In particular, it can be shown that

K�1=2.a; b/D

p
�

b
e�2ab:
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Using this notation, we getZ 1
0

�
e�t=4

.4�t/1=2

Z ı

�1

e��
2=4td� � e�t=4

.4�t/1=2

Z ı

�1

e�=2e��
2=4td�

�
dt
t

D

Z 0

�1

�
1
p
4�
K�1=2.1=2;��=2/�

e�=2
p
4�
K�1=2.1=2;��=2/

�
d�

C

Z ı

0

�
1
p
4�
K�1=2.1=2; �=2/�

e�=2
p
4�
K�1=2.1=2; �=2/

�
d�

D

Z 0

�1

1

�
.e� � e�=2/d�C

Z ı

0

1

�
.e��=2� 1/d�

D log.2/C
Z ı

0

1

�
.e��=2� 1/d�:

For the remaining terms, meaning when .n;m/¤ .1; 0/, we can integrate term by
term to getX
.n;m/¤.1;0/

Z 1
0

�
e�t=4

.4�t/1=2

Z 1
ı

e.1�n=2�nm/�e�.n�/
2=4td�

�
e�t=4

.4�t/1=2

Z 1
ı

e.1=2�n=2�nm/�e�.n�/
2=4td�

�
dt
t

D

X
.n;m/¤.1;0/

Z 1
ı

�
e.1�n=2�nm/�
p
4�

K�1=2.1=2; n�=2/

�
e.1=2�n=2�nm/�

p
4�

K�1=2.1=2; n�=2/

�
d�

D

X
.n;m/¤.1;0/

Z 1
ı

1

n�
.e.1�n�nm/� � e.1=2�n�nm/�/d�:

Having explicitly evaluated these integrals, we now proceed to estimate the results.
For the first case, we observe the trivial inequality

(35) log.2/C
Z ı

0

1

�
.e��=2� 1/d� D log.2/�

Z ı

0

1

�
.1� e��=2/d� � log.2/:

For the second case, we first note that for n� 1 and m� 0, but .n;m/¤ .1; 0/, we
have nCnm� 2, which leads to the trivial estimateˇ̌̌̌ X
.n;m/¤.1;0/

Z 1
ı

1

n�

�
e.1�n�nm/� � e.1=2�n�nm/�

�
d�
ˇ̌̌̌

� 2
X

.n;m/¤.1;0/

Z 1
ı

e.1�n�nm/�

n�
d� � 2e

ı

ı

X
.n;m/¤.1;0/

e�n.mC1/ı

n.nCnm�1/
:
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In order to further estimate the latter sum, we break it up into three parts, the first
one given by n� 2 and mD 0, the second one by nD 1 and m� 1, and the third
one by n� 2 and m� 1. For the first part, we have the upper bound

(36) 2eı

ı

1X
nD2

e�nı

n.n�1/
�
2e�ı

ı

1X
nD2

1

n.n�1/
D
2e�ı

ı
�
2

ı
:

For the second part, we estimate

(37) 2eı

ı

1X
mD1

e�.mC1/ı

m
�
2eı

ı
e�ı

e�ı

1�e�ı
D
2

ı
�
1

eı�1
�
2

ı2
:

Using the inequality nm� 1� 1, we estimate for the third part

(38) 2eı

ı

1X
nD2

1X
mD1

e�n.mC1/ı

n.nCnm�1/
�
2eı

ı

1X
nD2

1X
mD1

e�2.mC1/ı

n.nC1/

D
2eı

ı
�
1

2

1X
mD1

e�2.mC1/ı D
eı

ı
e�2ı

e�2ı

1�e�2ı
D
e�ı

ı
�

1

e2ı�1
�
e�ı

2ı2
�

1

2ı2
:

Integrating (33) with respect to t from 0 to1 and taking into account the estimates
(35), (36), (37), and (38), we get the upper bound

(39)
Z 1
0

.HTrKhyp.t/� 1C e
�t=4/

dt
t

�

Z 1
0

Z 1
eı

f .u; t/d
�
�X .u/� li.u/C li.u1=2/

�dt
t
C
4ıC5

2ı2
C log.2/:

In order to further estimate the right side of (39), we proceed as in the first part of
the proof of [JK01, Th. 4.7 (see pp. 18–20)]. For this, we first note that a direct
computation establishes the equality

F.u/D

Z 1
0

f .u; t/
dt
t
D� log

� 1Y
nD0

.1�u�.nC1//
�
;

which shows that the function F.u/ is decreasing in u. We now apply [JK01,
Lem. 4.6] to the right side of (39) with " 2 .0; ˛/, with ˛ Dminf�X;1; 7=64g, and
ı > 4 to arrive at the upper bound

(40)
Z 1
0

Z 1
eı

f .u; t/d
�
�X .u/� li.u/C li.u1=2/

�dt
t

� C 0X

Z 1
eı

F.u/dli.us"/C 2C 0XF.e
ı/li.es"ı/;

where C 0X D CHub;X CN
Œ0;1=4/

ev;X C 1; see also the proof of [JK01, Th. 4.7]. Now,
the inequality � log.1� v�1/� v�1=.1� e�ı/; which is valid for v � eı , implies
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the upper bound

F.u/�
1

1�e�ı

1X
nD0

u�.nC1/ D
1

1�e�ı
�
1

u�1
�

2

ı.1�e�ı/
�

log.u/
u

;

where the last inequality holds since log.u/ � ı > 4. (Note: Although the factor
log.u/=ı in the above bound can be eliminated by estimating F.u/ by other means,
the presence of this factor is helpful in the subsequent computations.) Using the
elementary inequality li.u/� 2u=log.u/ for u > e2, we obtain

ı

eı
li.es"ı/�

2

s"
e�.1�s"/ı ; where " < 7=64 and ı > 4.

We are now able to estimate the right side of (40) as

(41) C 0X

Z 1
eı

F.u/dli.us"/C 2C 0XF.e
ı/li.es"ı/

�
2C 0X

ı.1� e�ı/

Z 1
eı

log.u/
u

dli.us"/C
4C 0X

ı.1� e�ı/

ı

eı
li.es"ı/

D
2C 0X

ı.1� e�ı/
�
e�.1�s"/ı

1�s"
C

4C 0X

eı � 1
li.es"ı/

�
2C 0X
ı2
�
s"e

s"ı

"
C

4C 0X

eı � 1
�
2eı

s"ı
e�.1�s"/ı

�
2C 0Xe

s"ı

ı2

�
s"
"
C
4

s"

�
�
2C 0Xe

s"ı

ı2

�
5C

1

"

�
;

Combining (34) with the estimates (39), (40), and (41), we find the upper bound

� log.Z0X .1//� �
X


2H.�/
`
<ı

log.Z
 .1//C
2C 0Xe

s"ı

ı2

�
5C

1

"

�
C
4ıC5

2ı2
� log.2/:

Since we have assumed ı > 4, we can simply choose ıD 5. Observing 1=2� log.2/
< 0 and 2e5=25 < 12, we arrive at the claimed upper bound (31). �

LEMMA 4.4. With the above notations, we have the following results:

(i) For any 
 2H.�/ with `
 2 .0; 5/, we have 0� � log.Z
 .1//�
�2

6`

:

(ii) For any 
 2H.�/ with `
 > 0, we have

0�
Z0


Z

.1/� 3C log

�
1

`


�
:
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Proof. We start with the following observation. Consider the unique (up to
scaling) cusp form of weight 12 with respect to SL2.Z/ given by

�.z/D e2�iz
1Y
nD1

�
1� e2�inz

�24 for z 2 H:

It satisfies the functional equation �.z/ D .�z/�12�.�1=z/. Upon setting z D
�`
=.2�i/, we have Z
 .1/24D e`
�.�`
=.2�i//. Using the functional equation
for �.z/, we then obtain the relation

(42) Z
 .1/
24
D e`


�
`
=.2�i/

��12
�
�
2�i=`


�
D e`


�
`
=.2�/

��12
e�.2�/

2=`


1Y
nD1

�
1� e�.2�/

2n=`

�24
:

We now turn to the proof of the lemma.
(i) From the product formula for Z
 .1/, it is immediate that Z
 .1/� 1 for all

`
 � 0; hence, we get the lower bound � log.Z
 .1// � 0. Concerning the upper
bound, we derive from (42) that

� log.Z
 .1//D�
`


24
C
1

2
log
� `

2�

�
C
�2

6`

�

1X
nD1

log
�
1� e�.2�/

2n=`

�
:

We now use the elementary inequality � log.1 � x/ � x=.1 � �/, which holds
whenever x 2 Œ0; ��, and take � D e�.2�/

2=`
 to get

�

1X
nD1

log
�
1� e�.2�/

2n=`

�
�

1

1�e�.2�/
2=`


1X
nD1

e�.2�/
2n=`
 D

e.2�/
2=`


.e.2�/
2=`
�1/2

:

Letting uD .2�/2=`
 , the upper bound becomes

eu

.eu�1/2
D

1

eu�1
C

1

.eu�1/2
;

which is clearly monotone decreasing in u and hence monotone increasing in `
 .
Therefore, for `
 < 5, we obtain

1

2
log
�
`

2�

�
C

e.2�/
2=`


.e.2�/
2=`
�1/2

�
1

2
log
�
5

2�

�
C

e.2�/
2=5

.e.2�/
2=5�1/2

� 0;

where the last estimate is obtained numerically. All this proves part (i).
(ii) We begin by writing

Z0


Z

.1/D `


1X
nD1

1

en`
�1
:
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Let N � 1 be the smallest integer no less than 1=`
 , that is, N � 1 < 1=`
 �N . If
n�N , then n`
 � 1; hence, en`
 � 2. Observing en`
 � 1� en`
=2 gives

`


1X
nDN

1

en`
�1
� 2`


1X
nDN

e�n`
 D 2`

e�.N�1/`


e`
�1
�

2`


e`
�1
� 2:

For 1� n < N , we use the inequality en`
 � 1� n`
 , which implies

`


N�1X
nD1

1

en`
�1
�

N�1X
nD1

1

n
� 1C log.N � 1/� 1C log

�
1

`


�
and hence (ii): �

THEOREM 4.5. For any X with genus gX > 1, put

h.X/D gX C
1

�X

�
gX .dsup;X C 1/

2
CCHub;X CN

Œ0;1=4/

ev;X

�
C

1

`X
N
.0;5/

geo;X ;

with �X D 1=2 �minf�X;1; 7=64g and `X equal to the length of the smallest geodesic
on X . Then we have the bound ıFal.X/DO.h.X// with an implied constant that
is universal.

Proof. The result is a summary of the inequalities derived in this section,
namely Propositions 4.1, 4.2, and 4.3 and Lemma 4.4, which are then applied to
Theorem 3.8, taking, for example, "D �X in Propositions 4.2 and 4.3. �

COROLLARY 4.6. Let X1 be a finite degree cover of the compact Riemann
surface X0 of genus gX0 > 1. Then we have the bound

ıFal.X1/DOX0

�
gX1

�
1C

1

�X1;1

��
:

In particular, if fXngn�1 is a tower of finite degree covers of X0 such that there
exists a constant c > 0 satisfying �Xn;1 � c > 0 for all n � 1, we have the bound
ıFal.Xn/DOX0.gXn/:

Proof. We analyze the bound obtained in Theorem 4.5. The quantityN Œ0;1=4/

ev;X1
is

known to have order O.gX1/ with an implied constant that is universal; see [Bus92,
p. 211] or [Zog82]. The main result in [Don96] states the bound dsup;X1 DOX0.1/;
see also [JK02b], [JK04], and [JK06b] with related results. In [JK02a, Th. 3.4], it
is shown that CHub;X1 DOX0.gX1/. As discussed in the proof of [JK01, Th. 4.11],
N
.0;5/

geo;X1
DOX0.gX1/ (specifically, recall the definition of r�0;� therein). Trivially,

one has `X1 � `X0 . With all this, we have shown that h.X/DOX0.gX1CgX1=�X1/:
By choosing �X1 D 1=2 �minf�X1;1; 7=64g, the result follows. �

Remark 4.7. We view Theorem 4.5 and Corollary 4.6 as complementing
known theorems answering the asymptotic behavior of Faltings’s delta function
for a degenerating family of algebraic curves that approach the Deligne-Mumford
boundary of the moduli space of stable curves of a fixed positive genus, as first
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proved in [J90]. The expressions derived in [J90] were well suited for answering
the question of the asymptotic behavior of ıFal.X/ through degeneration, but do
not appear to allow one to bound ıFal.X/ in terms of more elementary information
concerning X , as in Theorem 4.5 or Corollary 4.6. On the other hand, the exact
expression for ıFal.X/ in terms of hyperbolic geometry could possibly be used to
understand ıFal.X/ through degeneration. Indeed, cX and log.Z0X .1// are studied
in [JL97] through degeneration, so it would remain to adapt the analysis in [JL97]
to study the integral that we bound in Proposition 4.1.

5. Applications to the modular curves X0.N /

In this section we focus on the sequence of modular curves X0.N /. The
purpose is to bound the geometric quantities in Theorem 4.5 in more elementary
terms in order to prove an analogue of Corollary 4.6 for the sequence of modular
curvesX0.N /, which admit hyperbolic metrics. As stated earlier, the set of modular
curves X0.N / that admit hyperbolic metrics does not form a single tower of
hyperbolic Riemann surfaces, and hence the results cited in the proof of Corollary
4.6 do not apply. However, the family of hyperbolic modular curves forms a
different structure, which we refer to as a “net”. More specifically, there is a
sequence of hyperbolic modular curves, which we parametrize by a set of integers
B.p0/, and every hyperbolic modular curve is a finite degree cover of (possibly
several) modular curves corresponding to elements of B.p0/. In effect, we bound
the quantities in Theorem 4.5 by first obtaining uniform bounds for all modular
curves that correspond to elements in B.p0/, after which we use bounds through
covers by citing the results that prove Corollary 4.6.

In the following definition, P denotes the set of primes.

Definition 5.1. (i) We call N 2N base hyperbolic if gX0.N / > 1 and if there
exists no proper divisor N 0 of N with gX0.N 0/ > 1.

(ii) For p0 2 P, set

B1.p0/D fN base hyperbolic jN D p˛11 � � �p
˛k
k
; pj � p0; j D 1; : : : ; k 2 Ng:

(iii) For p0 2 P with gX0.p0/ > 1, set B2.p0/D fp 2 P j p > p0g:

(iv) For p0 2 P with gX0.p0/ > 1, set B.p0/DB1.p0/[B2.p0/:

Remark 5.2. (i) For instance, one can choose p0 D 23.

(ii) The set B1.p0/ is obviously finite.

(iii) For every N 2 N with gX0.N / > 1, there exists an either N 0 jN with N 0 2
B1.p0/ or a p jN with p 2B2.p0/. In other words, one can state that for any
N 2 N with gX0.N / > 1, there exists N 0 2B.p0/ such that X0.N / is a finite
cover of X0.N 0/.
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PROPOSITION 5.3. SupposeN >N0 is such thatX0.N / has genus gX0.N />1.
Then there are positive constants c1, c2, c3, and c4, all independent of N , satisfying

(a) �X0.N/;1 � c1,

(b) N Œ0;1=4/

ev;X0.N /
� c2 �gX0.N /,

(c) `X0.N / � c3, and

(d) N Œ0;5/

geo;X0.N /
� c4 �gX0.N /.

Proof. (a) We recall from [Bro99, Th. 3.1] that

lim inf
N!1

�X.N/;1 � 5=36:

Hence, there is a constant c1 > 0, independent of N , such that �X.N/;1 � c1 for
all N > N0. Since X.N/ is a cover of X0.N /, the Raleigh quotient method for
estimating eigenvalues, which shows that the smallest eigenvalue decreases through
covers, now implies that �X.N/;1 � �X0.N/;1. This proves (a).

(b) This part of the claim follows immediately by quoting the known universal
lower bound for the number of small eigenvalues applied to the special case of the
modular curves X0.N /. In fact, one can choose c2 D 4; see [Bus92] or [Cha84,
p. 251].

(c) LetX0.N /Š�0.N /nH with�0.N / a torsionfree and cocompact subgroup
of PSL2.R/. Recall that �1.X0.N // Š �0.N / and that each homotopy class in
�1.X0.N // can be uniquely represented by a closed geodesic path onX0.N /. Thus,
we have a bijection between the elements 
 2�0.N / and closed geodesic paths
ˇ on X0.N / (with a fixed initial point); note that the quantity `
 introduced in
Section 2.4 equals the length `X0.N /.ˇ/ of ˇ.

Let p0 be as in Definition 5.1. Let p 2 B2.p0/. The hyperbolic Riemann
surfaceX0.p0p/ is a cover ofX0.p/ of degree p0C1. Let ˇ be any closed geodesic
path on X0.p/ corresponding to 
 2�0.p/ of length `X0.p/.ˇ/D `
 . Then there
exists a minimal d 2 N with 1 � d � p0C 1 such that 
 0 D 
d 2�0.p0p/. The
element 
 0 2 �0.p0p/ corresponds to a closed geodesic path ˇ0 on X0.p0p/ of
length `X0.p0p/.ˇ

0/D d � `X0.p/.ˇ/.
On the other hand, X0.p0p/ is a finite cover of X0.p0/; hence �0.p0p/ is a

subgroup of �0.p0/. Viewing 
 0 2�0.p0p/ as an element of �0.p0/, we see that
any closed geodesic path ˇ0 on X0.p0p/ descends to a closed geodesic path ˇ00

on X0.p0/ of the same length. This proves the inequality `X0.p0p/ � `X0.p0/. In
particular, we find for any closed geodesic path ˇ on X0.p/ of length `X0.p/.ˇ/
lifting to the closed geodesic path ˇ0 onX0.p0p/ of length d �`X0.p/.ˇ/ the estimate

`X0.p/.ˇ/D
`X0.p0p/.ˇ

0/

d
�
`X0.p0p/.ˇ

0/

p0C 1
�
`X0.p0p/

p0C 1
�
`X0.p0/

p0C 1
:
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Therefore, we have for any p 2B2.p0/ the bound `X0.p/ � `X0.p0/=.p0C 1/. We
now define

c3 D min
N2B1.p0/

f`X0.N /; `X0.p0/=.p0C 1/g � inf
N2B.p0/

f`X0.N /g;

which depends solely on p0. Since B1.p0/ is finite and `X0.N / is positive for any
N 2B1.p0/, we conclude that c3 is positive. Now, for any modular curve X0.N /
with gX0.N / > 1, choose N 0 2 B.p0/ so that X0.N / is a finite cover of X0.N 0/.
Using the lower bound `X0.N / � `X0.N 0/, together with the inequality `X0.N 0/ � c3
for N 0 2B.p0/, we find that `X0.N / � c3, which completes the proof of part (c).

(d) As in the proof of part (c), we let X0.N / Š �0.N / nH with �0.N / a
torsionfree and cocompact subgroup of PSL2.R/. Let p0 be as in Definition 5.1,
and let p 2B2.p0/. Recalling our notations given in Section 2.4, we have

N
Œ0;5/

geo;X0.p/
D #f
 2�0.p/ j 
 2H.�0.p//; `
 < 5g

D #f
 2�0.p/ j 
 primitive; hyperbolic; `
 < 5g=�0.p/-conjugacy

� #f
 2�0.p/ j 
 primitive; hyperbolic; `
 < 5g=�0.p0p/-conjugacy:

We introduce the sets

C.p/D f
 2�0.p/ j 
 primitive; hyperbolic; `
 < 5g=�0.p0p/-conjugacy;

C0.p0p/D f

0
2�0.p0p/ j 


0 hyperbolic; `
 0<5.p0C1/g=�0.p0p/-conjugacy:

As in the proof of part (c), we find for any 
 2 �0.p/ a minimal d 2 N with
1 � d � p0 C 1 such that 
 0 D 
d 2 �0.p0p/; note that for 
 2 �0.p/ with
`
 < 5, we have `
 0 < 5d � 5.p0C 1/. By associating the �0.p0p/-conjugacy
class of 
 2 �0.p/, with 
 primitive and hyperbolic and with `
 < 5, to the
�0.p0p/-conjugacy class of 
 0 D 
d 2 �0.p0p/, with 
 0 hyperbolic and with
`
 0 < 5.p0C 1/, we obtain a well-defined map

' W C.p/! C0.p0p/:

Let now Œ
1�; Œ
2�2C.p/ be such that '.Œ
1�/D'.Œ
2�/, i.e., there exists d1; d2 2N

with 1� d1;d2 � p0C1 and ı 2�0.p0p/ such that 
d11 D ı

d2
2 ı
�1. Since 
1; 
2

are hyperbolic elements, there exists an ˛ 2 PSL2.R/ such that

˛

d1
1 ˛
�1
D

�
e` 0

0 e�`

�
D ˛.ı


d2
2 ı
�1/˛�1

with ` 2 R>0, i.e., we have


1 D ˛
�1

�
e`=d1 0

0 e�`=d1

�
˛ and ı
2ı

�1
D ˛�1

�
e`=d2 0

0 e�`=d2

�
˛:
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This shows that 
1 and ı
2ı�1 commute in �0.p/, i.e., ı
2ı�12 Cent�0.p/.
1/.
Since 
1 is primitive, it generates its own centralizer, that is, ı
2ı�1 D 
n1 with
n 2 Z. But since ı
2ı�1 is also primitive, we must have n D ˙1. This proves
Œ
1�D Œ


˙1
2 �, i.e., the map ' is two-to-one. From this we immediately deduce the

estimate N Œ0;5/

geo;X0.p/
� #C.p/ � 2 � #C0.p0p/ for all p 2B2.p0/. Introducing the

set

C00.p0/D f

00
2�0.p0/ j 


00 hyperbolic; `
 00 < 5.p0C 1/g=�0.p0/-conjugacy;

we have the obvious map '0 W C0.p0p/!C00.p0/ given by associating the�0.p0p/-
conjugacy class of 
 0 2 �0.p0p/ with 
 0 hyperbolic and `
 0 < 5.p0C 1/ to the
�0.p0/-conjugacy class of 
 0 viewed as an element of �0.p0/. Since Œ�0.p0/ W
�0.p0p/�DpC1, at most .pC1/ �0.p0p/-conjugacy classes collapse to a single
�0.p0/-conjugacy class, i.e., '0 maps at most pC 1 elements of C0.p0p/ to the
same element of C00.p0/. Therefore, we obtain the estimate

N
Œ0;5/

geo;X0.p/
� 2 � #C0.p0p/� 2.pC 1/ � #C00.p0/:

Since the set C00.p0/ depends solely on p0 and since the set B1.p0/ is finite, we
arrive at the bound

N
Œ0;5/

geo;X0.N /
DO.gX0.N // for any N 2B.p0/,

with an implied constant depending solely on p0. Finally, in general and in particular
for N 2B.p0/, it is well known (see for example [Hej76, p. 45]) that

#f
 2�0.N / j 
 hyperbolic; `
 < 5g=�0.N /-conjugacyD
1X
nD1

N
Œ0;5=n/

geo;X0.N /
:

But from part (c), we know that N Œ0;5=n/

geo;X0.N/
D 0 provided 5=n < c3, i.e., we have

n� 5=c3 in the above sum. Therefore, we find

(43) #f
 2�0.N / j 
 hyperbolic; `
 < 5g=�0.N /-conjugacy

�

l
5

c3

m
�N

Œ0;5/

geo;X0.N /
DO

�
gX0.N /

�
for any N 2B.p0/, with an implied constant that depends solely on p0.

To complete the proof of part (d), let now X0.N / be any modular curve with
gX0.N / > 1. By definition, we have that N Œ0;5/

geo;X0.N /
is equal to

#f
 2�0.N / j 
 primitive; hyperbolic; `
 < 5g=�0.N /-conjugacy:

Given N , choose N 0 2 B.p0/ so that X0.N / is a finite cover of X0.N 0/. We
then associate the �0.N /-conjugacy class of 
 2 �0.N / with 
 primitive and
hyperbolic and with `
 < 5 to the �0.N 0/-conjugacy class of 
 viewed as an
element of �0.N 0/. Since at most deg.X0.N /=X0.N 0// �0.N /-conjugacy classes
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collapse to a single �0.N 0/-conjugacy class, we find by arguing as before that

N
Œ0;5/

geo;X0.N /
� deg.X0.N /=X0.N 0//

� #f
 0 2�0.N 0/ j 
 0 hyperbolic; `
 0 < 5g=�0.N
0/-conjugacy:

By equation (43), we conclude

N
Œ0;5/

geo;X0.N /
D deg.X0.N /=X0.N 0// �O

�
gX0.N 0/

�
;

where the implied constant depends solely on p0. The proof of part (d) is now com-
plete since deg.X0.N /=X0.N 0// �gX0.N 0/ DO.gX0.N // with an implied constant
that is universal. �

PROPOSITION 5.4. Choose N > N0 so that X0.N / has genus gX0.N / > 1.
Then we have the bound dsup;X0.N / DO.1/, where the implied constant is indepen-
dent of N .

Proof. For n 2 N, let Y0.n/D �0.n/ nH, so that X0.n/ is (isomorphic to) the
compactification of Y0.n/ by adding the cusps and re-uniformizing at the elliptic
fixed points. For n1 a divisor of n2, denote by �n2;n1 W X0.n2/ ! X0.n1/ the
natural projection. For 0 < " < 1, let B."/D fw 2 C j jwj< "g be equipped with
the complete hyperbolic metric

�hyp;B."/.w/D
i

2
�

dw^d Nw
.1�jwj2/2

:

Denote by X 00.1/ the Riemann surface obtained from X0.1/ by removing neighbor-
hoods centered at the three points corresponding to the unique cusp and the two
elliptic fixed points of Y0.1/. Let X 00.N /D �

�1
N;1.X

0
0.1//; we may assume that

X 00.N /DX0.N / n

s[
kD1

Uk;

where the neighborhoods Uk are isometric to the complex disc B."/.
In this proof, we will use the hyperbolic metric on X0.N / and Y0.N /; we

will distinguish them by respectively denoting them by �hyp;X0.N / and �hyp;Y0.N/.
(This is slightly different from our previous notation and will be used in this proof
alone.) For x 2

Ss
kD1 Uk , we now have

�hyp;X0.N /.x/�
i

2
dz.x/^ d Nz.x/;

which leads to the estimate

gX0.N / ��can;X0.N /.x/

�hyp;X0.N /.x/
�

gX0.N/X
jD1

ˇ̌
fj .z.x//

ˇ̌2
:
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Since the functions fj .z.x// for j D1; : : : ; gX0.N / are bounded and holomorphic on
the neighborhoods Uk for k D 1; : : : ; s, the functions

ˇ̌
fj .z.x//

ˇ̌2 are subharmonic
on Uk , as is the sum of these functions (see for example [Rud66, p. 362]). By
the strong maximum principle for subharmonic functions (see for example [GT83,
Th. 2.2, p. 15]), we then have

sup
x2Uk

� gX0.N/X
jD1

ˇ̌
fj .z.x//

ˇ̌2�
� sup
x2@Uk

� gX0.N/X
jD1

ˇ̌
fj .z.x//

ˇ̌2� for k D 1; : : : ; s:

In the given local coordinate, the conformal factor for the hyperbolic metric is
constant on @Uk . Thus we have shown that

sup
x2Uk

�
gX0.N / ��can;X0.N /.x/

�hyp;X0.N /.x/

�
DO"

�
sup
x2@Uk

�
gX0.N / ��can;X0.N /.x/

�hyp;X0.N /.x/

��
:

Therefore, in order to prove the proposition, it suffices to show

sup
x2X 0

0.N/

�
gX0.N / ��can;X0.N /.x/

�hyp;X0.N /.x/

�
DO.1/

with an implied constant that is independent of N . Recalling that �can;X0.N / on
X 00.N / equals �can;Y0.N/ on Y 00.N / D Y0.N / n

Ss
kD1 Uk , we can consider the

formal identity

(44)
gX0.N / ��can;X0.N /.x/

�hyp;X0.N /.x/
D
gX0.N / ��can;Y0.N/.x/

�hyp;Y0.N/.x/
�
�hyp;Y0.N/.x/

�hyp;X0.N /.x/

on the set X 00.N /D Y
0
0.N /. The argument given in [Don96], [JK02b], or [JK04]

proves a sup-norm bound for the ratio of the canonical metric by the hyperbolic
metric through compact covers; however, the argument is adapted easily to towers
of noncompact surfaces when restricting attention to compact subsets, such as the
subsets Y 00.N /. Thus, the first factor on the right side of (44) is bounded through
covers, with a bound depending solely on the base Y0.1/, i.e., one that is independent
of N . For the second factor on the right side of (44), we argue as follows. Put

F.N/D sup
x2Y 0

0.N/

�hyp;Y 0
0.N/

.x/

�hyp;X 0
0.N/

.x/
;

where

�hyp;X 0
0.N/
D �hyp;X0.N /jX 0

0.N/
and �hyp;Y 0

0.N/
D �hyp;Y0.N/jY 0

0.N/
:

The quantity F.N/ is easily shown to be finite, since �hyp;X0.N / is nonvanishing ev-
erywhere on the compact Riemann surface X0.N /, and �hyp;Y0.N/ is nonvanishing
on Y0.N / and decaying at the cusps of Y0.N /. Let then p0 be as in Definition 5.1,
and let p 2B2.p0/. Since X 00.p0p/ is an unramified cover of X 00.p/ and Y 00.p0p/
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is an unramified cover of Y 00.p/, we have (denoting both covering maps by � 0p0p;p)

� 0�p0p;p.�hyp;X 0
0.p/

/D �hyp;X 0
0.p0p/

and � 0�p0p;p.�hyp;Y 0
0.p/

/D �hyp;Y 0
0.p0p/

:

Hence F.p0p/DF.p/ for all p 2B2.p0/. Symmetrically, X 00.p0p/ and Y 00.p0p/
are unramified covers of X 00.p0/ and Y 00.p0/, respectively, which analoguously
implies (denoting both covering maps by � 0p0p;p0)

� 0p0p;p0�
�
� 0�p0p;p.�hyp;X 0

0.p/
/
�
D .pC 1/ ��hyp;X 0

0.p0/
;

� 0p0p;p0�
�
� 0�p0p;p.�hyp;Y 0

0.p/
/
�
D .pC 1/ ��hyp;Y 0

0.p0/
:

Hence F.p0p/D F.p0/ for all p 2B2.p0/. In summary, F.p/D F.p0/ for all
p 2B2.p0/. Since the set B1.p0/ is finite, we have

c D sup
N2B.p0/

fF.N/g D sup
N2B1.p0/

fF.N/; F.p0/g<1;

which just depends on p0. It remains to bound F.N/ for any N such that X0.N / is
a modular curve with gX0.N/ >1. Given such an N , we choose N 0 2B.p0/ so that
X0.N / is a finite cover of X0.N 0/. Noting that X 00.N / and Y 00.N / are unramified
covers of X 00.N

0/ and Y 00.N
0/, respectively, of the same degree, we show as above

that F.N/D F.N 0/. Since F.N 0/� c, we find F.N/� c with c depending solely
on p0 and hence being independent of N . This completes the proof. �

PROPOSITION 5.5. Choose N > N0 so that X0.N / has genus gX0.N / > 1.
Then CHub;X0.N / DO.gX0.N //, where the implied constant is universal, i.e., inde-
pendent of N .

Proof. Before entering into the proof we begin with the following general
observation. Let X1 be a finite isometric cover of the compact Riemann surface X0
of genus gX0 > 1. As usual, if �X1;j is an eigenvalue for the hyperbolic Laplacian
on X1 satisfying �X1;j � 1=4, we write �X1;j D 1=4C r

2
X1;j

with rX1;j � 0. For
r � 0, we put

NX1.r/D #frX1;j j 0� rX1;j � rg:

Similarly, we can define NX0; .r/, if  is a finite dimensional, unitary represen-
tation of the fundamental group �1.X0/ of X0. From [Ven81, Th. 6.2.2] (see
also [JK02a, Lem. 3.2(e)]), we recall that the system of functions NX1.r/ and
fNX0; .r/g satisfies the additive Artin formalism, i.e.,

NX1.r/D
X

 
mult. / �NX0; .r/;

where the sum is taken over all irreducible representations  occurring with multi-
plicity mult. / in the representation ind�1.X0/

�1.X1/
.1/.

After these preliminary remarks, we begin the proof of Proposition 5.5. For
this, we let p0 be as in Definition 5.1, and we let p 2B2.p0/. Since X0.p0p/ is a
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finite isometric cover of X0.p0/, we have by the additive Artin formalism

NX0.p0p/.r/D
X

 
mult. / �NX0.p0/; .r/:

Now, by [JK02a, Lem. 3.3], there is a constant Ap0 depending solely on p0 such
that

jNX0.p0/; .r/j � Ap0 � rk. / � r
2:

Using the relation
P
 mult. / � rk. /D deg.X0.p0p/=X0.p0//DpC1, we find

NX0.p0p/.r/� Ap0

X
 

mult. / � rk. / � r2 D Ap0 � .pC 1/ � r
2:

On the other hand, viewing X0.p0p/ as a finite isometric cover of X0.p/, we get
the trivial estimate NX0.p/.r/�NX0.p0p/.r/, since every eigenfunction on X0.p/
lifts to an eigenfunction on X0.p0p/ with the same eigenvalue. Combining the last
two inequalities yields the crucial bound

(45) NX0.p/.r/� Ap0 � .pC 1/ � r
2:

The bound (45) leads to a bound of the Huber constant CHub;X0.p/ for p 2
B2.p0/. To see how, we analyze the proof of the prime geodesic theorem on X0.p/
as given in [Cha84, pp. 295–300], which we now review.

Let G.T / D �X0.p/.u/ with T D log.u/ be the prime geodesic counting
function. Let '.x/ be a nonnegative C1-function with support on Œ�1;C1� with
L1-norm equal to one. Let " > 0, to be chosen later, let '".x/D "�1'.x="/, and
let IT .x/ be the indicator function of Œ�T;CT �. We define

g"T .x/D 2 cosh.x=2/.IT �'"/.x/;

which is a valid test function for the Selberg trace formula whose Fourier transform
is denoted by h"T .r/. If we define

H".T /D
X


2H.�/

1X
nD1

`


en`
=2� e�n`
=2
g"T .`
 /;

the Selberg trace formula yields

(46) H".T /D
X

0��X0.p/;j<1=4

h"T .sX0.p/;j /C

Z 1
0

h"T .r/ dNX0.p/.r/:

By taking "D e�T=4, it is shown on [Cha84, p. 298] that

h"T .sX0.p/;j /DET .sX0.p/;j /CO." �exp.sX0.p/;jT //; where ET .x/D eTx=x.
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Since 1=2 < sX0.p/;j � 1 and N Œ0;1=4/

ev;X0.p/
DO.gX0.p//DO.pC 1/ by Propo-

sition 5.3(b), this leads to

(47)
X

h"T .sX0.p/;j /D
X

ET .sX0.p/;j /C .pC 1/ �O.e
3T=4/;

where the sums are taken over 0� �X0.p/;j < 1=4 and where the implied constant
is universal. Continuing with the argument on [Cha84, p. 299], together with our
bound (45), we find that

(48)
Z 1
0

h"T .r/dNX0.p/.r/D .pC 1/ �Op0.e
3T=4/;

where the implied constant depends solely on p0. Substituting (47) and (48) into
(46) yields

H".T /D
X

0��X0.p/;j<1=4

ET .sX0.p/;j /C .pC 1/ �Op0.e
3T=4/;

where the implied constant depends solely on p0.
Let

H.T /D
X


2H.�/; n�1
n`
�T

`


en`
=2� e�n`
=2
:

One has H".T �"/�H.T /�H".T C"/, which follows easily from the definition
of g"T .x/. Using these bounds together with the elementary estimates

ET˙".sX0.p/;j /DET .sX0.p/;j /CO.e
3T=4/;

we getX
0��X0.p/;j<1=4

ET˙".sX0.p/;j /D
X

0��X0.p/;j<1=4

ET .sX0.p/;j /CN
Œ0;1=4/

ev;X0.p/
O.e3T=4/;

where the implied constant is universal. Using Proposition 5.3(b) again, we arrive
at the bound

(49) H.T /D
X

0��X0.p/;j<1=4

ET .sX0.p/;j /C .pC 1/ �Op0.e
3T=4/;

where the implied constant depends solely on p0.
The prime geodesic theorem, i.e., the asymptotic behavior of the function

G.T /, can now be derived applying standard methods from (49) (see [Cha84,
pp. 296–297] for a detailed proof). In order to arrive at the assertion

�X0.p/.u/�
X

0��X0.p/;j<1=4

li.usX0.p/;j /D .pC 1/ �Op0.u
3=4.log.u//�1/;
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one needs to also use Proposition 5.3(b) in the derivation of the asymptotics of
G.T / from (49). Finally, since u3=4.log.u//�1 � u3=4.log.u//�1=2, we conclude
that CHub;X0.p/ D O.pC 1/ D O.gX0.p// for any p 2 B2.p0/, with an implied
constant that depends solely on p0. Since the set B1.p0/ is finite, we end up with
the estimate CHub;X0.N / DO.gX0.N // for any N 2B.p0/, again with an implied
constant that depends solely on p0.

Finally, given any modular curve X0.N / such that gX0.N / > 1, we choose
N 0 2B.p0/ so that X0.N / is a finite cover of X0.N 0/. Then (15) states that

CHub;X0.N / � deg.X0.N /=X0.N 0// �CHub;X0.N 0/:

Since we showed above that CHub;X0.N 0/ D O.gX0.N 0// with implied constant
depending only on p0, and since deg.X0.N /=X0.N 0// �gX0.N 0/DO.gX0.N// with
a universal implied constant, the proof is now complete. �

THEOREM 5.6. Let N >N0 be such that X0.N / has genus gX0.N / > 1. Then,
we have ıFal.X0.N //D O.gX0.N //; where the implied constant is universal, i.e.,
independent of N .

Proof. Beginning with Theorem 4.5, we follow the method of proof of Corollary
4.6 by citing results from this section, namely Propositions 5.3, 5.4, and 5.5 to bound
the six geometric invariants, aside from the genus gX0.N / appearing in Theorem
4.5. �

Remark 5.7. In the finite number of cases when X0.N / is not hyperbolic,
Faltings’s delta function ıFal.X0.N // can be explicitly evaluated. If X0.N / has
genus zero, then Faltings’s delta function is simply a universal constant. If X0.N /
has genus one, then Faltings’s delta function is expressed in terms of the Dedekind
delta function, the unique holomorphic cusp form of weight 12 with respect to
PSL2.Z/; see [Fal84].

Remark 5.8. The analysis in this section establishes Theorem 5.6 for other
families of modular curves, namely fX1.N /g and fX.N/g.

6. Arithmetic implications

6.1. Faltings height of the Jacobian of X0.N /. In this section, we let N be a
squarefree natural number such that 2 and 3 do not divide N . We then let X0.N /=Z

denote a minimal regular model of the modular curve X0.N /=Q. In [AU97],
A. Abbes and E. Ullmo computed the arithmetic self-intersection number of the
relative dualizing sheaf !X0.N/ on X0.N / equipped with the Arakelov metric. They
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came up with the following upper bound (see [AU97, Th. B, p. 3]):

!2X0.N/ � �8� �
gX0.N /� 1

volhyp.X0.N //
� lim
s!1

�
Z0
�0.N/nH

Z�0.N/nH
.s/�

1

s�1

�
CgX0.N /

X
p jN

pC1

p�1
log.p/C 2gX0.N / log.N /C o.gX0.N / log.N //:

Using [MU98, Cor. 1.4, p. 649] (see also [JK01, � 5.3]), in combination with a
corresponding lower bound for !2X0.N/ (see [AU97, Pro. C]), one then finds

(50) !2X0.N/ D 3gX0.N / log.N /C o.gX0.N / log.N //:

Using Noether’s formula, one obtains the formula

(51) 12�hFal.J0.N //D!
2
X0.N/

C

X
p jN

ıp log.p/CıFal.X0.N //�4gX0.N / log.2�/

for the Faltings height hFal.J0.N // of the Jacobian J0.N /=Q of the modular curve
X0.N /; here ıp denotes the number of singular points in the special fiber of X0.N /

over Fp. This leads to the following asymptotic behavior of the Faltings height of
the Jacobian of X0.N /.

THEOREM 6.2. With the above notations, we have

hFal.J0.N //D
gX0.N /

3
log.N /C o.gX0.N / log.N //:

Proof. The claim is immediate from (51) using (50) and Theorem 5.6. �

Remark 6.3. If E=Q is a semistable elliptic curve of conductor N , one con-
jectures (see also [Ull00, Conj. 1.4]) that

(52) hFal.E/� a �
hFal.J0.N //

gX0.N/

with an absolute constant a > 0. Assuming the validity of the conjectured inequality
(52) with constant aD3=2, one can derive Szpiro’s conjecture by means of Theorem
6.2 as in [Ull00], that is, �E � c."/ �N 6C" for the minimal discriminant �E of
E. (Note that in [Ull00] it was speculated that one could take the value 1 for the
constant a.)

6.4. Congruences of modular forms. We start by saying that Theorem 5.6
improves the bounds for ıFal.X0.N // given in [Ull00, Cor. 1.3], namely

(53) �4gX0.N / log.N /C o.gX0.N / log.N //� ıFal.X0.N //

� 2gX0.N / log.N /C o.gX0.N / log.N //:
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Furthermore, Theorem 6.2 improves the bounds for the Faltings height of the
Jacobian of X0.N / given in [Ull00, Th. 1.2], namely

(54) �BgX0.N / � hFal.J0.N //�
1
2
gX0.N / log.N /C o.gX0.N / log.N //I

here B > 0 is an absolute constant. The latter upper bound was obtained by means
of the formula (see [Ull00, Th. 1.1])

(55) hFal.J0.N //D
1
2

logjıTj �
1
2

logjdet.MN /j � log.˛/;

in which the Faltings height of the Jacobian of X0.N / is expressed in terms of a
suitably defined discriminant ıT of the Hecke algebra T of J0.N /, the matrix MN

of all possible Petersson inner products of a certain basis of eigenforms of weight 2
for �0.N /, and a suitable natural number ˛ with support contained in the support
of 2N . In order to obtain the upper bound in (54), E. Ullmo established the bounds

logjıTj � 2gX0.N / log.N /C o.gX0.N / log.N //;

� logjdet.MN /j � �gX0.N / log.N /C o.gX0.N / log.N //:

The lower bound in (54) is due to unpublished work of J.-B. Bost. Combining
equation (51) with the asymptotics (50) and the estimates (54), one immediately
derives the bounds (53) for ıFal.X0.N //.

THEOREM 6.5. With the above notations, we have

(56) logjıTj �
5
3
gX0.N / log.N /C o.gX0.N / log.N //:

Proof. Using (55) in combination with Theorem 6.2, we get

1
2

logjıTj �
1
2

logjdet.MN /j � log.˛/D 1
3
gX0.N / log.N /C o.gX0.N / log.N //:

The claim now follows immediately from the upper bound for � logjdet.MN /j

given above. �

Remark 6.6. The lower bound given in Theorem 6.5 improves the lower bound

logjıTj � gX0.N / log.N /C o.gX0.N / log.N //

given in [Ull00, Th. 1.2]. Since the fundamental invariant ıT controls congruences
between modular forms, the lower bound (56) thus improves the lower bound for
the minimal number of such congruences.

Appendix I: Comparing canonical and hyperbolic metrics

In the proof of Proposition 3.7 we used the explicit relation

�can.x/D �shyp.x/C
1

2gX

�Z 1
0

�hypKhyp.t I x/dt
�
�hyp.x/:
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The purpose of this appendix is to prove this identity, rather than referring to [JK06b]
or [JK06a], and thus make the present article more self-contained. Our approach
uses analytic aspects of the Arakelov theory for algebraic curves.

PROPOSITION 6.7. With the above notations, we have the equality

gX�can.x/D �shyp.x/C
1
2

c1.�1X ; k � khyp;res/

of forms on X ; here �1X denotes the canonical line bundle on X .

Proof. By choosing �1D�shyp and �2D�can, the identity in Lemma 3.3 can
be rewritten as

(57) ghyp.x; y/�gcan.x; y/D �.x/C�.y/;

where

�.x/D

Z
X

ghyp.x; �/�can.�/�
1

2

Z
X

Z
X

ghyp.�; �/�can.�/�can.�/:

Taking dxdcx in relation (57), we get the equation

(58) �shyp.x/��can.x/D dxdcx�.x/:

On the other hand, we have by definition that

logkdz.x/k2hyp;res D lim
y!x

�
ghyp.x; y/C logjz.x/� z.y/j2

�
;

logkdz.x/k2can;res D lim
y!x

�
gcan.x; y/C logjz.x/� x.y/j2

�
:

From this we deduce, again using (57),

(59) logkdz.x/k2hyp;res� logkdz.x/k2can;res

D lim
y!x

�
ghyp.x; y/�gcan.x; y/

�
D 2�.x/:

Now, taking �dxdcx of equation (59) yields

(60) c1.�1X ; k � khyp;res/� c1.�1X ; k � kcan;res/D�2dxdcx�.x/:

Combining equations (58) and (60) leads to

(61) 2.�shyp.x/��can.x//D c1.�1X ; k � kcan;res/� c1.�1X ; k � khyp;res/:

Recalling c1.�1X ; k � kcan;res/D .2gX � 2/�can.x/, we derive from (61) that

�shyp.x/��can.x/D
1
2
.2gX � 2/�can.x/�

1
2

c1.�1X ; k � khyp;res/: �

PROPOSITION 6.8. With the above notations, we have the following formula
for the first Chern form of �1X with respect to k � khyp;res:

c1.�1X ; k � khyp;res/D
1

2�
�hyp.x/C

�Z 1
0

�hypKhyp.t I x/dt
�
�hyp.x/:
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Proof. Our proof involves analysis similar to the proof of Lemma 3.6. By our
definitions, we have for x 2X

c1.�1X ; k � khyp;res/D�dxdcx logkdz.x/k2hyp;res

D�dxdcx lim
y!x

.ghyp.x; y/C logjz.x/� z.y/j2/

D�dxdcx lim
y!x

�
4�

Z 1
0

�
Khyp.t I x; y/�

1

volhyp.X/

�
dt C logjz.x/� z.y/j2

�
D�dzdcz lim

y!x

�
4�

Z 1
0

KH.t I z.x/; z.y//dt C logjz.x/� z.y/j2
�

� dzdcz lim
y!x

�
4�

Z 1
0

� X

2� W
¤id

KH.t I z.x/; 
z.y//�
1

volhyp.X/

�
dt
�
:

Using the formula for the Green’s function gH.x; y/ on H, we obtain for the first
summand in the latter sum

AD�dzdcz lim
y!x

�
4�

Z 1
0

KH.t I z.x/; z.y//dt C logjz.x/� z.y/j2
�

D�dzdcz lim
y!x

�
gH.z.x/; z.y//C logjz.x/� z.y/j2

�
D�dzdcz logjz.x/� Nz.x/j2 D� 2i

2�
@z N@z log.z.x/� Nz.x//

D
i

�
@z

d Nz.x/
z.x/� Nz.x/

D�
i

�
�

dz.x/^ d Nz.x/
.z.x/� Nz.x//2

D�
i

�
�

dz.x/^ d Nz.x/
.2i Im.z.x///2

D
1

2�
��hyp.x/:

For the second summand we obtain

B D�dzdcz lim
y!x

�
4�

Z 1
0

� X

2� W
¤id

KH.t I z.x/; 
z.y//�
1

volhyp.X/

�
dt
�

D�4�dzdcz

Z 1
0

� X

2� W
¤id

KH.t I z.x/; 
z.x//�
1

volhyp.X/

�
dt:

Since the latter integral converges absolutely, we are allowed to interchange differ-
entiation and integration; this gives

B D�4�

Z 1
0

dzdcz

� X

2� W
¤id

KH.t I z.x/; 
z.x//�
1

volhyp.X/

�
dt

D�4�

Z 1
0

X

2� W
¤id

dzdcz KH.t I z.x/; 
z.x//dt:
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The claimed formula then follows because KH.t I z.x/; z.x// is independent of x
and because of the identity (under our normalization of the Laplacian as stated in
(7))

(62) dxdcxf .x/D�.4�/
�1�hypf .x/�hyp.x/;

for any smooth function f on X . �

THEOREM 6.9. With the above notations, we have for all x 2X the formula

�can.x/D �shyp.x/C
1

2gX

�Z 1
0

�hypKhyp.t I x/dt
�
�hyp.x/:

Proof. We simply have to combine Propositions 6.7 and 6.8 and to use that
1=volhyp.X/C 1=.4�/D gX=volhyp.X/: �

Appendix II: The Polyakov formula

We shall work from the article [OPS88]. Let us begin using the notation in
that article and then in the end indicate the changes needed to conform with other
conventions.

Let us consider two metrics, whose area forms are written as dA0 and dA1. In
a local coordinate z on the Riemann surface X , setting z D xC iy, let us write

dA0.z/D e2�0.z/ �
i

2
dz ^ d Nz and dA1.z/D e2�1.z/ �

i

2
dz ^ d Nz:

If we then write dA1 D e2'dA0 (see [OPS88, form. (1.11), p. 155]), we then have
'D �1��0. The convention for the Laplacian is established in [OPS88, form. (1.1),
p. 154]. In the above coordinates, we have

(63) �0.z/D e�2�0.z/ �
�
@2

@x2
C
@2

@y2

�
and �1.z/D e

�2�1.z/ �

�
@2

@x2
C
@2

@y2

�
:

The Gauss curvature K0 is then K0 D ��0�0. Note that if dA0 is the standard
hyperbolic metric, then e2�0 D y�2, so �0 D� log.y/, and it is easy to show that
K0 D�1 as expected.

The Polyakov formula, [OPS88, (1.13)], is proved in [OPS88, p. 156]; it says

log
�det0�'

A'

�
D �

1

6�

�
1

2

Z
X

jr0'j
2dA0C

Z
X

K0'dA0
�
CC:

If we take �1 D �0, then ' D 0, so we get C D log.det0�0=A0/. Therefore, in
obvious notation, we find

log
�det0�1

A1

�
� log

�det0�0
A0

�
D�

1

6�

�
1

2

Z
X

jr0'j
2dA0C

Z
X

K0'dA0
�
:

Let us work with the right side. Recall that, with the above notational conventions,
we have for any smooth f the formula �.f /dA D 4� ddc.f /, for any metric.
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(Note: The normalization of the Laplacian in [OPS88] as stated in (63) does not
include the minus sign as in our normalization, see (7); as a result, the formula
relating ddc to the Laplacian of [OPS88] does not contain the minus sign appearing
in (62).) Therefore, if we integrate by parts, we have

1

2

Z
X

jr0'j
2dA0 D �

1

2

Z
X

'�0'dA0 D�2�
Z
X

'ddc':

Also, we haveZ
X

K0'dA0 D�
Z
X

'�0�0dA0 D�4�
Z
X

'ddc�0:

Therefore we find

log
�det0�1

A1

�
� log

�det0�0
A0

�
D �

1

6�

�
�2�

Z
X

'ddc' � 4�
Z
X

'ddc�0
�

D
1

3

Z
X

'
�
ddc'C 2ddc�0

�
:

However, since ' D �1� �0, this becomes

log
�det0�1

A1

�
� log

�det0�0
A0

�
D
1

3

Z
X

'
�
ddc�0C ddc�1

�
:

Let us now fit this into our notation. Since dA1 D e2�1 i
2

dz ^ d Nz, we have
c1.�1X ; k � k1/D ddc.2�1/. Similarly, c1.�1X ; k � k0/D ddc.2�0/, so then

ddc�0C ddc�1 D 1
2
.c1.�1X ; k � k1/C c1.�1X ; k � k0//:

In our notation, we write �1 D e��0, so then � D 2'. Therefore, we get

log
�det0�1

A1

�
� log

�det0�0
A0

�
D
1

3

Z
X

'.ddc�0C ddc�1/

D
1

6

Z
X

� � 1
2
.c1.�1X ; k � k1/C c1.�1X ; k � k0//:

Now consider the special case when �0D�hyp is the hyperbolic metric, with Gauss
curvature equal to �1. Equivalent to the statement K0 D�1 is the statement that
c1.�1X ; k � k0/D .2gX�2/�shyp. If�1 is the Arakelov metric, then c1.�1X ; k � k1/D
.2gX � 2/�can, where �can is the canonical metric. If we write �Ar D e

�Ar�hyp,
then the above identity becomes

log
�det0�Ar

AAr

�
� log

�det0�hyp

Ahyp

�
D
gX � 1

6

Z
X

�Ar.�canC�shyp/:
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