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Depth-zero supercuspidal L-packets
and their stability

By STEPHEN DEBACKER and MARK REEDER

In this paper we verify the local Langlands correspondence for pure inner
forms of unramified p-adic groups and tame Langlands parameters in “general
position”. For each such parameter, we explicitly construct, in a natural
way, a finite set (“L-packet”) of depth-zero supercuspidal representations of
the appropriate p-adic group, and we verify some expected properties of this
L-packet. In particular, we prove, with some conditions on the base field, that
the appropriate sum of characters of the representations in our L-packet is
stable; no proper subset of our L-packets can form a stable combination. Our
L-packets are also consistent with the conjectures of B. Gross and D. Prasad
on restriction from SOsgy,4+1 to SOg, [24].

These L-packets are, in general, quite large. For example, Sp,, has an
L-packet containing 2" representations, of which exactly two are generic. In
fact, on a quasi-split form, each L-packet contains exactly one generic represen-
tation for every rational orbit of hyperspecial vertices in the reduced Bruhat-
Tits building. When the group has connected center, every depth-zero generic
supercuspidal representation appears in one of these L-packets.

We emphasize that there is nothing new about the representations we con-
struct. They are induced from Deligne-Lusztig representations on subgroups of
finite index in maximal compact mod-center subgroups, see [42], [44], [61]. The
point here is to assemble these representations into L-packets in a natural and
explicit way and to verify that these L-packets have the required properties.

To explain further, we need some notation. Let k be a p-adic field of
characteristic zero, let K be a maximal unramified extension of k, let I' =
Gal(K/k), and let Frob € I" be a Frobenius element. Let W;, Z; be the tame
Weil group of k and its inertia subgroup. Let G be a connected reductive
k-group which is K-split and k-quasi-split. To simplify the exposition, we
assume in this introduction that G is semisimple. Let G := G(K), and let F
be the action of Frob on G, arising from the given k-structure on G.

In the spirit of local class field theory, we construct both the “geometric”
and “p-adic” sides of our local Langlands correspondence, and make an explicit
connection between the two sides.
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We start with the geometric side. The action of F on the root datum
of G gives rise to an automorphism 9 of the Langlands dual group G. The
Langlands parameters considered in this paper are continuous homomorphisms

© W, — () x G,

(for the discrete topology on (1)) x G) whose centralizer in ( is finite, and such
that ¢(Frob) is a semisimple element in 9G, and ¢(Z;), a priori a finite cyclic
group, is generated by a regular semisimple element in G. This latter condition
is what we mean by “general position”. It implies that ¢(Z;) is contained in
a unique maximal torus 7' C G. The element ¢(Frob) normalizes T, acting
via an element of the form 19121, where w belongs to the Weyl group of T in G.
Moreover, the centralizer of ¢ is the finite abelian group

Cyp = Tﬁﬁ’

of fixed-points of ¢(Frob) in T'.

For each irreducible character p € Irr(C,,), we will define a representation
of the group of k-points of a certain inner form of G.

First, we parametrize Irr(C,) as follows. The automorphisms 1§Aand w

induce dual automorphisms ¢ and w of the character group X := X*(7T'), and

each A € X determines a character py € Irr(Cy,) by restriction from T to TV
Thus we have an isomorphism

X/(1—wd)X = Trr(Cyp), A py.

Next, for each A € X we construct an unramified cocycle uy € Z1(T', G),
hence an inner twist of G with Frobenius F\ = Ad(uy) o F, along with an
irreducible depth-zero supercuspidal representation 7y of G™.

The cocycle uy is found as follows. Let W be the affine Weyl group of G,
acting on the apartment A = R ® X in the Bruhat-Tits building B(G) of G.
The character A € X determines a translation ¢, € W. Since T’ i i finite, it
follows that the operator t)ywt has a unique fixed-point x) € A. If we choose
an alcove C) C A containing x) in its closure, we can then uniquely write

(1) tHwd = wayaV,

where w) belongs to the “parahoric subgroup” of W at z) and y, € W satisfies
yaz?-Cy = C)y. The cocycle uy : I' — G sends Frob to an appropriately chosen
representative of yy in G.

Now for the representation 7. The point x) is F)-stable, and is in fact
a vertex in B(G™). The parahoric subgroup G of G at x) is Fy-stable, and
G};* is a maximal parahoric subgroup of G*™. The representation 7y of G is
compactly-induced from a representation k) of GE*.

This x) is obtained as follows. The element w) determines an Fy-anisotropic
torus Ty of G with TAF* C G). By the depth-zero Langlands correspondence
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for tori (known, but reproved in Chapter 4.3 below), we can associate to (¢, \)
a depth-zero character x, of T, whence a Deligne-Lusztig representation

Thus, for each A € X, we define
. 1GF
Ty = 1ndG§ KX,

using compact (equivalently, smooth) induction, and prove that = is an irre-
ducible representation of G™. Of course, we now have infinitely many groups
G™ and representations 7y, whereas the L-packet II(¢) should be parametrized
by the finite set Irr(Cy).

However, according to Vogan’s idea of “representations of pure-inner forms”
[62], we must take into account the natural G-action on pairs (u,m,), where
u € ZYT',G) and , is a representation of G (here F, = Ad(u)oF). We prove
that the G-orbit [uy, 7] is independent of all choices made in the construction,
and that for A\, u € X, we have

[u, mx] = [Umﬂ'u] < PA=pu € Irr(C'(p).

Thus, our construction leads to an L-packet II(¢p) in the form of equivalence
classes:

() = {[ur,m] = pa € Irr(Cy)}-
We have a partition
Oe)= [] Tew),
weH (T',G)
where II(¢p,w) consists of the classes [uy, 7)] with u) € w. Let
Irr(Cy) = H Irr(Cyp, w)
weH(T",G)

be the corresponding partition of Irr(Cy).
The first expected property of II(y) is that Irr(Cy,w) should be the fiber
over w under the composition

(2) Ir(C,) — Irr(2°) =5 HY(T, G),

where the first map is restriction, the second map is Kottwitz’ isomorphism
[34], and Z is the center of G. This amounts to proving that the map described
in (2) sends py € Irr(C,) to the class of uy in H(T',G). For this, and other
purposes, we need a very explicit description of Kottwitz’ isomorphism on the
level of cocycles. Chapter 2 contains a simple proof of Kottwitz’ isomorphism
in the form we need, along with related facts used in the proof of stability.
The second expected property of II(¢) is that the ratio of formal degrees

deg(my)
deg(Sty)’
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where Sty is the Steinberg representation of G™, should be independent of
A € X. This is proved by a direct calculation in Chapter 5.

The third expected property of II(y) is that my (here A = 0) should be
generic. This is true. In fact, we determine all generic representations in II(p),
and show that they are in natural bijection with rational classes of hyperspecial
vertices in the reduced building of G. En route, we classify all depth-zero su-
percuspidal generic representations of unramified groups; see Chapter 6. There
is a more general conjecture, due to B. Gross and D. Prasad [23], about which
Whittaker models are afforded by the generic representations in II(¢). This
conjecture is verified for II(¢) in [19].

We illustrate the construction and above-mentioned properties, in Chap-
ter 13, with a “canonical example” of L-packets arising from the opposition
involution.

The rest of our paper is devoted to the fourth expected property, namely,
the stability of II(¢,w).

We now consider L-packets from the p-adic side. Let G be any connected
reductive K-split k-group with Frobenius automorphism F' on . Take a pair
(S,0), where S = S(K) is the group of K-points in an unramified k-anisotropic
maximal torus S in G and 6 is a depth-zero character of S = S(k). The
group S has a unique fixed-point 2 € B(GF). We have a Deligne-Lusztig
virtual character Rgg of the parahoric subgroup G, which we lift to a class
function R(G,S,0) on the set of regular semisimple elements of G¥', using
Harish-Chandra’s character integral. One checks that R(G, S, 6) depends only
on the GF-orbit 7 of the pair (S,6). For (S,6) € T, we define

R(G,T) := R(G, S,0).

We say that two pairs (S7,601), (S2,02) as above are G-stably-conjugate if
there is g € G such that Ad(g) sends (Sf',61) to (S, 60s). Each G-stable class
Tt of pairs (5,0) is a finite disjoint union

~

of GF-orbits. We consider the function
n
R(G,Tu) == Y _R(G,T)).
i=1
Our aim is to prove that R(G,7Ts) is a stable class-function on the set of
strongly regular semisimple elements in G¥'.

But first, we relate R(G, 7y ) to the L-packets constructed previously on
the geometric side. To do this, we must put the representations in II(p) in
“normal form”, as follows. We fix w € H*(T', G), and choose u € w. For each
A € X, with uy € w, there is my in G such that Ad(my) sends G™ to G¥.
For each p € Irr(Cy,w), we define

Tu(p, p) 1= Ad(my)
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where A € X is such that py = p. Then m,(¢, p) is a representation of G*
whose isomorphism class is independent of the choices of A and my. The
“normalized” L-packet is then defined as

Iy (p) := {mulp, p) : p € Trr(Cyp,w)};

it consists of representations of the fixed group G¥».

The comparison between the p-adic and geometric sides consists in proving
that the sum of characters in IT,,(¢) is, up to a constant factor, a function of the
form R(G, ’j;t) for an appropriate 7g. This involves an explicit parametrization
of the G-stable classes of pairs (S,0), in terms of characters A\ € X. This
parametrization follows naturally from our study of Kottwitz’ isomorphism in
Chapter 2.

Now, to prove stability for our L-packets, it remains to prove that the
functions R(G,'f;t) are stable. The first main step is a reduction formula,
using the topological Jordan decomposition. This reduction becomes trivial on
the set of strongly regular topologically semisimple elements in G¥', proving
stability there without any restrictions on the residue characteristic.

To prove stability everywhere, we must examine the restriction of R(G, ’j;t)
to the topologically unipotent set. We are dealing here with a p-adic analogue
of a Green function, so we write Q(G,Ty) for the restriction of R(G,7Zy) to
the topologically unipotent set in G*".

To use the reduction formula, we must establish an identity between
Q(G,Ty) and Q(G',T2), where G/ is an inner form of G. To prove this iden-
tity, we use Murnaghan-Kirillov theory. The idea is to use a logarithm map and
Kazhdan’s proof of the Springer Hypothesis [31] to express Q(G, Ts) as the
Fourier transform of a stable orbital integral on the Lie algebra of G¥'. We then
invoke a deep result of Waldspurger [63], to the effect that the fundamental
lemma is valid for inner forms, and this completes the proof.

However, there are two difficulties with this argument, one pleasant, one
not. The pleasant difficulty is about a certain sign in Waldspurger’s result.
It is given in [63] as a ratio of gamma constants. For us, it is necessary that
this ratio be equal to Kottwitz’ sign e(G) [33]. This equality of signs is a
particular case of a conjecture of Kottwitz. Because of its importance, here
and elsewhere, we give two proofs, the first using Shalika germs, the second
continuing in the combinatorial spirit of [63].

The unpleasant difficulty is about the logarithm map, which is required to
satisfy certain compatibility properties with respect to the Moy-Prasad filtra-
tions on G and its Lie algebra. It is at this point that restrictions on k& must be
imposed. We require that p > (2 + e)n, where p is the residual characteristic
of k, e is the ramification degree of k/Q,, and n is the dimension of a faithful
algebraic representation of G over k.
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Finally, some remarks about exhaustion. All depth-zero supercuspidal
representations of G are constructed in [44]. Many of them do not appear in
our L-packets I1(¢). They should appear in square-integrable L-packets where
¢ is tame, but has a nontrivial component on SLy(C) and therefore cannot be
in general position. For groups with connected center, such L-packets have
been found for unramified ¢ in [39], [40], [41], [48]. For groups with connected
center, the L-packets constructed in this paper should be exactly those depth-
zero L-packets which consist entirely of supercuspidal representations. See
Chapter 3 for more discussion of this.

We thank Robert Kottwitz, Fiona Murnaghan, Dipendra Prasad, Gopal
Prasad, Loren Spice, and Jiu-Kang Yu for helpful conversations. We thank
Loren Spice for allowing us to use his proof of Lemma B.7.2. Part of this
work was done in 2001 while one of us (MR) was visiting the Ecole Normale
Supérieure in Paris, and the Korteweg-de Vries Institute in Amsterdam. He
thanks Anne-Marie Aubert and Eric Opdam, respectively, for their hospitality.
Finally, we acknowledge the National Science Foundation for its support, via
grants DMS-0200542 (SD) and DMS-0207231 (MR).

While we were writing the details of our stability proof, D. Kazhdan and
Y. Varshavsky announced a similar stability result, also using Murhaghan-
Kirillov theory. See [32].
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The cardinality of a finite set X is denoted by | X|. We denote the action of
a group G on aset X by g-x or 9z, for g € G,x € X. The fixed point set of g in
X is denoted by X9, and X := NgecX9. The set of G-orbits in X is denoted

The conjugation
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map ¢’ — gg'g~! on G is denoted by Ad(g). The normalizer of a subgroup
S C G is denoted by N(G,S). In this paper, the phrase “representation of a
group G” means “equivalence class of complex representations of G”. The set
of irreducible representations of a finite group G is denoted by Irr(G).

In this paper, k is a field of characteristic zero with a nontrivial discrete
valuation for which k is complete with finite residue field f. Let ¢ = |f|, and let
p be the characteristic of f. We fix an algebraic closure k of k. Let K be the
maximal unramified extension of k in k, and let § denote the residue field of K.
Then § is an algebraic closure of f. Until Section 12 there are no restrictions
on p or q. We fix an element w € k of valuation equal to one.

Let Z be the inertia subgroup of the Galois group Gal(k/k), and let T’ =
Gal(k/k)/Z. Then T is topologically generated by an element Frob whose
tnverse induces the automorphism x — x? on §. We let Frob, “the Frobenius”,
denote both this automorphism of K/k and the automorphism of §/f which it
induces. We have K = k%, k = Kb,

We use the following conventions for algebraic groups and their groups
of rational points. For any k-group G, we identify G with its group G(k) of
k-rational points, and let G := G(K) = G denote the K-rational points of G.
For most of our purposes, the group GG will play the role of “algebraic group”.
The given action of Gal(k/k) on G restricts to an action of I" on G, which is
completely determined by an automorphism F' € Aut(G) given by the action
of Frob. We have GI' = G(k). Likewise, we identify f-groups G with their
groups of F-rational points, and we have G = G(f).

The set of irreducible admissible representations of Gf' is denoted by
Irr(G¥). The subset of square-integrable representations in Irr(G¥) is denoted
by Irr?(GF).

If S is a k-torus in G, we say that a character 6 € Irr(ST) is F-regular if
6 has trivial stabilizer in [N (G, S)/S]*.

Given an element v in either G or G, we let G, or G, denote the identity
component of the centralizer of v in G or G, respectively. If v € G, then we
set G := GNG,. We say the element v in G or G is regular semisimple if G
or Gy is a torus. We let G™° denote the set of regular semisimple elements of
G. We say that v in G or G is strongly regular semisimple if Cg () or Cg(7¥)
is a torus. We let G denote the set of strongly regular semisimple elements
of G. If S is a maximal k-torus in G, then by [8, 1.10] the set G*'** N ST is
nonempty.

For two reductive groups G1, Gs or Gy, Go of respective ranks 1, ro over
k or §, we let

e(G1,Ge) = (1), (G, Gy) = (1),

respectively.
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For any torus S or S, we let X,(S) or X,(S) denote the group of algebraic
one-parameter subgroups of S or S. We say an f-torus S C G is F-minisotropic
in G if every p € X,(S)F has image contained in the center of G.

The analogous notion for tori in G has an extra condition: In this paper,
an unramified torus is a group of the form S = S(K), where S is a k-torus
which splits over K. These conditions mean that Z acts trivially on X.(S),
and the action of Gal(k/k) on X, (S) factors through I'. An F-minisotropic
torus in G is a group of the form S = S(K), where S is a k-torus in G such
that S is split over K, and the Frobenius F', arising from the given k-structure
on G, has the property that every u € X,(S)! has image contained in the
center of G.

If S is a K-split k-torus, we let °.S denote the maximal bounded subgroup
of the unramified torus S. We have an isomorphism

K*® X.(S) = S
given by evaluation. This restricts to an isomorphism
R ® X.(S) =108,

where R} is the group of units in the ring of integers of K.

For this paper, until the appendices, G denotes a connected reductive
k-group which splits over K. Let F be the Frobenius automorphism of G
arising from the given k-structure on G. Let B(G), B(G!) denote the Bruhat-
Tits buildings of G, G¥', respectively. The Frobenius F acts naturally on B (G),
and we have B(GF) = B(G)F.

Let j : G — G,q denote the adjoint quotient. Following our conventions,
we set Gaq := Gaq(K), and denote again by F' the action of Frob on Gaq.

Via the map j, the group G acts on B(G,q). The latter is sometimes
referred to as the “reduced building” of G. Likewise, the reduced building of
GT is B(GL)) = B(Gaa)*.

Each unramified torus S in G determines apartments A(S) C B(G) and
A.d(S) C B(Gaq); these apartments can be defined as the fixed-point sets of
9S in B(G) and B(Gaq), respectively. The Euclidean closure of any subset .J
of an apartment is denoted by .J.

If J is an F-stable subset of a facet in B(G) or B(Gaq), we let G denote the
corresponding parahoric subgroup of GG, and let G}r denote the pro-unipotent
radical of Gj. The quotient G; := GJ/G}_ is the group of §-points of a
connected reductive group over f. We have F(G;) = Gy, F(GF) = G}, and
the induced action of F on Gj agrees with the f-structure on G;. We have
GL =Gl /GHr.

Recall that G is split over K. By [10, 5.1.10], there exists a K-split
maximal torus T C G which is defined over k and maximally k-split. We
abbreviate X := X,(T), A:= A(T). Let N be the normalizer of T"in G. The
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affine Weyl group of T' in G is the quotient
W := N/T.

We will use "= T(K) as a “platonic” unramified torus in G; various unrami-
fied tori S as above will arise from twisted embeddings of T in G.

Let T,q = j(T) denote the image of T in G,q, and abbreviate A,q :=
A(Thaq), Xaq := Xi(Taq). Let Woq be the affine Weyl group of Toq in Gaq.
Since T and T,q are defined over k, the Frobenius F induces automorphisms
of X, Xaq, A, Aag, W, Waq. We write also

J:X = Xad, J:W — Waq

for the maps induced by j. These maps are F-equivariant, since j is defined
over k. The kernel and image of the latter map are given as follows.

We may identify X with the normal subgroup T/°T < W, via evaluation
at w. If A € X, we let t) := A(w) denote both the corresponding element of T'
and its image in W. There is a map W,q — X,q/7X, to be defined shortly,
which fits into an exact sequence

(3) 11— X" W Wy — Xaa/iX — 1.

Note that the last group X,q/j X is finite. The group X" acts trivially on A,q.

There exists an F-stable alcove C C A. Let W° be the subgroup of W
generated by reflections in the walls of C, and let Q¢ :={w e W : w-C = C}.
The group ¢ is abelian, isomorphic to the quotient of X by the co-root
sublattice X° C X. The normal subgroup W° <« W acts simply-transitively on
alcoves in A, so we have a semidirect product expression

W =QcW°.

A similar discussion and decomposition holds for Wq.

We have been using F' to denote the Frobenius arising from an arbitrary
K-split k-structure on G. When this k-structure is in fact k-quasi-split, we
denote the Frobenius by F. The key difference in the quasi-split case is the
existence of an F-fixed hyperspecial vertex o € A,gq.

In the quasi-split case, we denote by ¥ the automorphisms of X, X,q, A,
Aad, W, W,q induced by F. Choose a 9J-fixed hyperspecial vertex o € A,q. We
let W, be the image of N, := N NG, in W. We may identify W, = N/T via
the natural maps

W, — W = N/°T — N/T.

The map j is injective on W, and we identify W, with j(W,). We have semidi-
rect product decompositions

W =X xW,, Waa = Xaq X Wo,
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and all factors are preserved by . The map Woq — X,q/7X in the exact
sequence (3) is induced by projection onto the X,q factor in Weq.

Finally, an inner twist of F by a cocycle u € Z'(F,G) (see §2) will be
denoted by F, := Ad(u) o F.

2. Remarks on Galois cohomology

To state the Langlands conjectures at the level of refinement considered
in this paper requires some notions from the Galois cohomology of reductive
groups over local fields. The central results here are due to Kottwitz [34], [35],
who computes H'(k, G) in terms of the action of Gal(k/k) on the center of the
dual group of G, and Bruhat-Tits [11], who compute H'(k, G) in terms of the
building of G. Here we give simple proofs of the above-mentioned results at the
level of cocycles. This allows us to construct cocycles in G from fixed-points
in A of elements in the affine Weyl group. Such fixed-points arise from the
Langlands parameters we consider. Thus we can associate an explicit Frobenius
to each Langlands parameter. We also use our cocycles to give representatives
for various stable and rational classes of tori and semisimple elements in G.
These will be used in the proof of stability.

2.1. Unramified cohomology. Let U be a group and let F' be an endomor-
phism of U. For an integer d > 1 and g € U, define

Nu(F)(g) = gF(g)---F" ! (g) € U.
Note that
(4) Ny (F) = Ny (F%) 0 Ny(F).

Assume that every element of U is fixed by some power of F'. Giving U
the discrete topology, this means that the group Z of profinite integers, with
topological generator F', acts continuously on U. We denote by

HY(F,U) = HY(Z,U)

the continuous (nonabelian) cohomology of U. Any cocycle is determined by
its value on F', which is an element of the set

ZYF,U):={ucU: Ny(u)=1 for some m > 1}.

Thus we view cocycles as elements of U, and H'(F,U) is the quotient of
ZY(F,U) under the U-action: g * u = guF(g)~!. Note that if N,,(u) =1 and
Fi(g) = g, then N,,q(F)(g*u) = 1.

If U is nonabelian, the set Z'(F,U) of cocycles is not closed under multi-
plication. However, if u,v € Z'(F,U) and d > 1 we have

() Na(F)(vu) = Na(Fu)(v) - Na(F)(w),
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where

F, :=Ad(u) o F € End(U).
From Equations (4) and (5) we conclude:

LEMMA 2.1.1. If two of the following hold, then so does the third:
(1) we ZY(F,U),
(2) ve ZY(F,,U),
(3) vu € ZH(F,U).

LEMMA 2.1.2. If the fized-point group UF" is finite for each d > 1, then
ZYFU)=U.

Proof.  Fix d > 1 and suppose that ¢™ = 1 for each ¢ € UF". From
Equation (4), we have

Nim(F)(g) = Nua(F%) (Na(F) (9)) = (Na(F)(g))™ = 1. .

LEMMA 2.1.3. Suppose U is a compact group with endomorphism F and
a decreasing filtration U = Uy D Up D Uz D --- by open normal F-stable
subgroups Uy, such that (", Un = {1}. Assume that H'(F,U,/Up+1) = 1 for
alln > 0. Then HY(F,U) = 1.

Proof. Let uw € ZY(F,U), so that u € U, for some n > 0. By the
vanishing assumption and normality, there are g9 € U, and uw; € Up41 such
that u = g * u1. Then u; = gy *u € Z'(F,U). Repeating, we have elements
9k, ur € Upyy for all k > 1, such that u = (gog1 -+ gr—1) * ug. Since U is
compact, the limit g := limy, gog; - - - gx exists, and u = g x 1. |

2.2. Steinberg’s vanishing theorem. In this section, G is only required to
be a connected k-group, with Frobenius automorphism F on G. At several
points we use the following consequence of a well-known result of Steinberg
[56, Thm. 1.9]:

THEOREM 2.2.1. HY(K,G) = 1.

One consequence of Theorem 2.2.1 is that the natural surjection Gal(k/k) — I’
induces an isomorphism

HY(F,G) ~ H'(k,G).

Each cocycle u € Z'(F,G) arises from a twisted k-structure on G, under
which Frob acts on G via the automorphism

F,:=Ad(u) o F € Aut(G),
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so that GFv is the group of k-rational points under this twisted k-structure
[51, III.1.3]. Note that for g € G, we have

Ad(g) o Fy = Fguy 0 Ad(g),
so that Ad(g) induces an isomorphism
Ad(g) : GF+ = G,

Thus, the isomorphism class of G depends only on the class of u in H!(F, Q).
However, the dependence is noncanonical, in the sense that a class in H'(F, G)
does not determine a unique twist of F’; one must choose a cocycle in the class.
We must therefore accept a wide range of Frobenius endomorphisms F), giving
rise to the same k-isomorphism class of groups.

2.3. Eaxplicit cocycles. For the rest of this chapter, G is a connected
reductive k-group with Frobenius automorphism F on G. To keep things as
simple and clear as possible, we assume that G is K-split and k-quasi-split,
even though these assumptions are not necessary until later in the paper. The
following result is a special case of [64, Prop. 2.3]. We give a direct proof, in
our context.

LEMMA 2.3.1. For each x € B(G)!" we have H'(F,G,) = 1, where Gy is
the parahoric subgroup attached to x.

Proof. If u € Z'(F,G,), then u € Gfd for some d > 1. We want to
apply 2.1.3 to the compact group U = Gfd. Let G, r € R>q, be the Moy-
Prasad-Yu filtration of G, [65]. There is an increasing sequence {r, : n =
0,1,2,...} C R>g such that for every r > 0 we have G, = G, for a unique
n. These filtration subgroups are F-stable; we set U, := Gi in.

Each quotient group U, /U, 41 is the group of f4-rational points in a con-
nected f-group U,. Here f4 denotes the degree d extension of f. By the Lang-
Steinberg theorem, we have H'(f,U,) = 1 for all n > 0. Since the natural
map

H'(fa/§,Un(fa)) — H'(f, Up)

is injective [51, 1.5.8], we have H'(f4/f, Un(f4)) = 1 for all n > 0.
We have shown that the groups U, satisfy the conditions of Lemma 2.1.3,

which implies that the cocycle u is a coboundary in H(F,Up), hence also in
HY(F,G,). O

Recall that T is a K-split maximal k-torus in G, such that T contains
a maximal k-split torus in G, and N is the normalizer of T' in G. The affine
Weyl group of T in G is the quotient W := N/°T, where °T is the maximal
bounded subgroup of T'. The apartment of 7" in B(G) is denoted by A, and
the N-action on A factors through a faithful action of W on A.
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To describe H'(F,G) on the level of cocycles, the first step is to reduce
the group in which the cocycles live. Let C' be an F-stable alcove in A (see [60,
3.4.3]). Let G¢ be the Iwahori subgroup of G attached to C. The normalizer
in G of G¢ is the group

t={geG: g-C=C}.
We have N N G¢o = T, and we set
Ne = NNGg.
Then the group
Qo ={weW: w-C=C}
is the image of N¢ in W. The inclusion N¢ — G induces an isomorphism
d:Qc — G /Ge.

Since F-C = C, we have F(G}) = G, so we may define H'(F,G§,) as
in 2.2, and similarly for H'(F, N¢). The first reduction relies on the existence
and conjugacy of rational alcoves, already used above.

LEMMA 2.3.2. The inclusion G5, — G induces an isomorphism
HYF,G%) = HY(F, Q).

Proof.  We first prove surjectivity. Let u € Z'(F,G). By [60, 1.10.3]
there is an F,-stable alcove C,, C B(G) and g - C,, = C for some g € G. Since
F,-Cy, = Cy, we have uF(g7!)-C =g¢g7!-C, e, gxu € G§.

For injectivity, suppose u,v € Z!(F, G%), and g * u = v for some g € G.
Then

F,.g-C=vF(g)-C=gu-C=g-C.

Thus ¢g - C and C are two F-stable alcoves in B(G). By [60, §2.5] there is
h € GF» such that hg - C = C, so that hg € G¢. However, h = F,(h) implies
(hg)uF(hg) ™' = hoF(h)™! = v,
and so [u] = [v] in H'(F,G§). O

To go further, we need another vanishing result. The image of T in G¢
is a maximal f-torus T in Go. We let °T* be the kernel of the natural map
07 — T. Then °Tt is the pro-unipotent radical of °T".

Recall that I' = Gal(K/k). A topological I'-module [50, XIII, p.188] is a
I'-module in which every element is fixed by some power of Frob.

LEMMA 2.3.3. For anyn € N, letting Frob act on °T via F,, := Ad(n)oF
makes °T a topological T-module for which H*(F,,°T) = 0.
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Proof. As endomorphisms of T, we have F,, = F,, where w is the image
of nin N/T. Now

FF = Ad[wF(w)---F*Yw)] o FF, forall k> 1.

Since N/T is finite, the term in brackets is 1 for some k (cf. Lemma 2.1.2) and
multiples thereof. Also every ¢t € T is fixed by some F™ and multiples thereof.
The first assertion now follows.

The exact sequence of topological I'-modules

1— 7" =07 T —1
gives an exact sequence [51, §2.2, p.10] in Galois cohomology:
- — H*(F,, T") — H?*(F,,°T) — H?*(F,, T) — ---

Since T is a torsion group, H2(F,, T) = 0 by [50, Prop. 2, p.189]. Since °T*
is the union of an inverse limit of torsion groups, from [50, Lemma 3, p.185]
we have H?(F,,T*) = 0. O

Consider now the following commutative diagram, where the horizontal
maps are inclusions, and the vertical maps are the natural projections.

Ne —2 G,

Q0 —% G5 /Go

LEMMA 2.3.4. The maps a,b,c,d in the above diagram induce isomor-
phisms ax, by, Cx,dy on HY(F,-).

Proof. The map d is already an isomorphism. The map a, is surjective by
Lemma 2.3.3 and [51, Cor., p. 54]. Since the induced diagram on cohomology
is commutative, the map ¢, is also surjective.

If u € ZY(F,Gg), then from [51, Cors. 1 and 2, p. 52] the fiber of c,
through [u] is in bijection with ker[H!(F,, Gt) — H'(F,,G§/Gc)]. By the
exact sequence

- — HY(F,,Gc) — HY(F,,G%) — HY(F,, G /Geo)

in nonabelian cohomology [51, Prop. 38, p.51] and the vanishing of H'(F,, G¢)
by Lemma 2.3.1, the above kernel is trivial. Hence ¢, is injective. A similar
argument shows that a, is injective, which completes the proof. O

2.4. Kottwitz’ theorem. In this section we will recover Kottwitz’ theorem
on the level of cocycles. First we need an elementary result.
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LEMMA 2.4.1. Let A be a finitely generated abelian group, and let o €
Aut(A) be an automorphism of finite order. Define

Ay:={acA: Il+o+--+0"YNa=0 forsome n>1},
Ay:={a€A: mae(1—o0)A for some m >1}.
ThenAleg.

Proof. Forp>1let Ny=1+0+ -+ 0P~ € End(A4). Then
Npg=Np+ 0Ny +---+ 0?0 IN, = (1407 4+ PN,

Hence if Ny(a) = Ny(b) = 0, then Npq4(a+b) = 0. That is, A; is a subgroup of
A. Also, since A is finite, every element of Aty is fixed by some power of o. If
ga = 0, then o”(a) = a for some p > 1, so that Np,(a) = ¢Np(a) = Np(ga) = 0.
Thus, Ator - Al.

Set A = A1/Ator, V = Q® A. The latter is a finite-dimensional Q-vector
space, to which ¢ and N, extend for all p. We claim that V7 = {0}. If
0 # v € V7, we may assume, by clearing denominators, that v € A. Then
Np(v) =pv # 0 for all p > 1, a contradiction. Hence 1 — o is invertible on V.
Let a € A; have image a € A. Write a = (1 — o)b, for some b € V. Clearing
denominators, we have ma = (1 — o)c for some m € Z, ¢ € A;. So ma =
(1 —o)c+ z, where z € Ator. Say gz = 0. Then gma = (1 —o)gc € (1 — o)A,
showing that A; C As.

The other containment is easy: If ga = (1 — 0)b, and p is the order of o,
then

Npo(a) = gNy(a) = Ny(ga) = Np(1 - o) = (1 - o")b=0. O

Let X = X, (T), and let W° be the subgroup of W generated by reflections
in the walls of an alcove in A. Evaluation at w identifies A € X with the
operator ty € W of translation by A on A. Under this identification, X N"\W*° =:
X° is the co-root lattice of T. We set X := X/X°. The group W° acts simply-
transitively on alcoves, hence we have the semidirect product decomposition

W =W°xQc.

The automorphism F preserves T, hence induces an automorphism % of
W, which preserves X, W°, Q¢. If G is actually k-split then 9 is trivial. In
general, ¥ has finite order.

For A € X, let wy be the unique element of t{,W° N Q¢. Then wy =1
exactly when X belongs to X°; the map A — w) induces a ¥-equivariant group
isomorphism X — Q.

COROLLARY 2.4.2. The map X\ — wy induces an isomorphism
[X/(l - ﬁ)X]tor — HI(F’QC)~
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Proof.  Apply Lemma 2.4.1 to the abelian group A = Q¢, 0 = 9. Since
(1 =9)Q¢c C (2¢)2, we have

H'(F,Qc) = (20)1/(1 —9)Qc = (Q0)2/(1 = 9)Q0 = [Qc/(1 — 9)Qc]ior-

The isomorphism X ~ Q¢ finishes the proof. O

Combining 2.3.4 and 2.4.2, we can express Kottwitz’ isomorphism in the
following form.

COROLLARY 2.4.3. The composition
(X/(1 = 0)X]sor — H'(F,Qc) “~> H'(F,N¢) = H'(F,G)

is a bijection. A class [ € [X/(1—0)X]tor, represented by X € X, corresponds
to the class )] € HY(F,G), where &y € Z'(F,N¢) is any element whose
image in W is the unique element wy of tA\W° N Q.

2.5. The dual group. Corollary 2.4.3 is usually expressed in terms of the
dual group G of G. Let Y := X *(T) be the algebraic character group of T,
and let (, ) : X XY — Z be the natural pairing. The dual group of T is the
complex torus T :=Y @ C%; it is a maximal torus in G. Let Z denote the
center of G.

For any o € Aut(X), let 6 € Aut(Y’) be defined by

(cAm) =(\aon), A€EX neY.

The action of 9 on Y extends to the automorphism J®1 of T, thence by
restriction to an automorphism of Z.
We may identify
X = Hom(Z,C*),

via restriction of characters. Restricting further to Zﬁ, we may identify
X/(1—9)X = Hom(Z?,C).

The elements in X /(1 —9¥)X vanishing on the identity component of 79 are
exactly the torsion elements in X /(1 — ) X. Hence we may identify

[X/(1 = 9)X)ior = Trr[mo(27)].

With these identifications, Corollary 2.4.3 becomes the usual expression of
Kottwitz’ isomorphism.

2.6. A commutative diagram. It is at this point that we first use seriously
the assumption that F arises from a quasi-split k-structure on G which is K-
split. Such an assumption ensures the existence of an F-fixed hyperspecial

vertex o € j(C).
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Let W, be the image of N, = N NG, in W. The latter has another
semidirect product expression

W =X xW,,

and both factors are preserved by 9.

Since G is K-split and k-quasi-split, there is a Gal(k/k)-invariant pinning
in G. Applying Proposition 3 of [59] to this pinning, we see that there is an
F-stable finite subgroup W, C N, projecting onto W,.

Let w € Wy, choose a lift v € W, of w, and set F,, := Ad(w)oF. Applying
Lemmas 2.1.2 and 2.3.1 to the groups W, and G,, respectively, there exists
po € G, such that

w=py " F(po).
The map Ad(pg) : T — G intertwines the pairs (T, F,), (G,F). Let
(6) r:H'(F,,T) — H'(F,G),

be the map induced by Ad(pp).
A version of the following result was proved by Kottwitz [35, Thm. 1.2].

LEMMA 2.6.1. We have a commutative diagram
[X/(1 = wd)X]tor — [X/(1—0)X]tor

~| 1=

HY(F,,T) LN H'(F,G)
where the vertical maps are from 2.4.3 applied to T and G, the top row is the
natural projection and the map r is defined as in Equation (6).

Proof. Starting at [X/(1 — wd)X]tor and going down the left side, then
over on the bottom row, we see that the class of A € [X/(1 — w) X]ior goes to
the class

[potapy '] = [tapg " F(po)] = [tad] € H'(F, G).
Equation (9) below shows that [tyxw] = [wy], which is the result of the other
route, by Corollary 2.4.3. O

2.7. Fized points and cocycles. We continue in the set-up of Section 2.4.
In this section we show how cocycles in Z!(F, G) arise from fixed-points in A of
elements in the affine Weyl group W. This will be used to associate Frobenius
endomorphisms on G to Langlands parameters in “G.
Let w € W, and let X,, be the preimage in X of [X/(1 — w)X]or. For
A € Xy, we define
oy =tawd e W x (9).
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LEMMA 2.7.1. The element oy € W x () has finite order.

Proof. The element w?d has finite order, say n, since it belongs to the
finite group W, x (9). We let Nyy = 1 + wd + --- + (wd)" ! € End(X)
be the associated norm mapping. Since A € X,,, there is m > 1 such that
mA = (1 — wd)v, for some v € X. Then

o™ = Ny (tmr) = Nyg(1 — wd)(t,) = 1. O

By Lemma 2.7.1, o) preserves a facet Jy in A. Choose an alcove C)
in A containing Jy in its closure. Let W) be the subgroup of W*° generated
by reflections in the hyperplanes containing Jy. The group W) acts simply-
transitively on alcoves in A containing Jy in their closure. Hence there is a
unique element wy € Wy such that

oy - Cy=wy-Cy.
Set yy 1= w;lt szw. Thus we have two expressions for oy:
(7) tawd = o\ = wayrv,

and the latter is characterized as the unique factorization of o) such that
wy € W)y and yy) € W satisfies yy0 - C), = C). Since w) fixes Jy pointwise, we
also have y)9 - Jy = Jy; indeed, o) and y ¢ have the same action on J).

To briefly look ahead: Equation (7) is the essence of our Langlands cor-
respondence. The expression tywd will arise from a certain kind of Langlands
parameter; that is, tyw?d is an object on the “geometric side”. On the other
hand, y» and w) will determine a twisted Frobenius F and an unramified torus
in GP| respectively, so y\ and wy are objects on the “p-adic side”. The next
result leads us to F).

LEMMA 2.7.2. There exists a lift uy € N of yy such that uy € Z'(F,N).

Proof. If j is the order of o) (see Lemma 2.7.1), then
L= (wayp0) = wi(yaoy,

for some w) € W°. Since W*° acts simply-transitively on alcoves in A, we can
decompose
W x (9) =W° xQ¢,,

where Qg is the stabilizer of Cy in W x (9). It follows that (yy9)’ = 1. Let
k be the order of ¥. Then

L= (ya0)7" = [yad(ya) - - 9 ()]07F = gt (yn) - - 075 ().

That is, yy € Z'(F,W). Hence, for all z € W, we have 2~ ly\9(x) € ZY(F,W).
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Recall that y)9-C) = C). Let x € W° be the element such that C'y = z-C.
Then y\d-z-C = x-C, so that 27 1y\d(z) € Q¢ (recall C is ¥-stable). By the
previous paragraph, we have in fact 21y d(z) € Z1(F, Q¢).

By Lemma 2.3.4 there is a lift n € Z1(F,N) of 71y \J(x) such that
n-C = C. Choose a lift © € N of . Then the element

uy == inF(z)~t € ZY(F,N)
is a lift of y, as claimed. dJ

LEMMA 2.7.3. The class of uy in HY(F,G) is equal to that of Wy €
ZYF, Q). (See 2.4.3.)

Proof. By the construction of u) in Lemma 2.7.2, we have [uy] = [n],
where n € ZY(F, N) is a lift of 271y \9(x) € Q¢, and 7 is a certain element of
We. By Corollary 2.4.3, it suffices to show that

7y () € WO

First note that £,WW° is preserved under conjugation by W°. The equation
tyw = wyyy then implies yy € t\W°. Since z € W° as well, it follows that
x_lyAﬁ(az) e tyWwe. O

Fix once and for all a lift @ of w in W,. Since t,\wy)fl = w) € W°, there
exists a unique lift wy € N of w) satisfying

t)\w = w)\u,\.

Set
G)\ = GJM F)\ = Ad(uA) oF.

Since yy ¥ - C) = C), we have
) -C)\ = C)\.

Now,
ty € ZY(Fy, G), we ZY(F,Q),

the first by the definition of X,, and the second by Lemma 2.1.2 applied to the
group W,. From Lemma 2.1.1 we conclude that

tai € Z1(F,G).

But also uy € Z'(F,G), so that, using Lemma 2.1.1 again, we conclude
wy € ZH(Fy, Gy).

By Lemma 2.3.1 there is an element py € G such that

Py Fa(py) = .
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This equation can be written as

(8) tah = pytuy F(py).

It follows that tyw € Z'(F,G), and, in view of Lemma 2.7.3, we have
(9) [txi] = [un] = [0n] € H'(F,G),

as claimed in the proof of Lemma 2.6.1.

2.8. A normal form for Frobenius endomorphisms. Keep the set-up of
Section 2.7. For each A € X,, we have defined a Frobenius automorphism
F\ and an Fy-stable alcove C) in A. For certain w € W,, we will eventually
associate to A, and some additional data, a representation 7y € Irr(G™). This
association will be quite natural, but it will leave us with infinitely many pairs
(GF*,WA), which are almost all conjugate to one another in some sense, and
we will need to compare them. To do this, we seek a normal form for our
Frobenius endomorphisms F).

Fix a class w € H'(F,G), along with a representative u € w N N, such
that w-C = C. This is possible by Lemma 2.3.4. In this section we will gather
together all of the F) for which uy € w. We will then use our explicit cohomol-
ogy picture to keep track of conjugacy classes of tori and certain semisimple
elements in a fixed group GF. This, in turn, will be used in our stability
calculations.

From Lemma 2.6.1, we have a map

r: Xy — HYF,G)

sending A — [Wy]. For A € r~1(w), define o) = tywd, and choose Jy, Cy, uy
as in Section 2.7. Recall that the Frobenius F\ = Ad(uy) o F stabilizes the
alcove C'y.

LEMMA 2.8.1. For each A € r=Y(w), there exists my € N such that

my * Uy = U, my - Cy =C.

Proof. Choose ky € N such that k) - Cy = C. Since F,-Cy\ = C,,
it follows that ky % uy € No. In Lemma 2.7.3 we proved that [u] = [uy] in
HY(F,G). Therefore [u] = [ky * uy] in HY(F,G). Since u and ky * uy belong
to N¢, and H'(F,N¢) — H'(F,G) is injective (see Lemma 2.3.4), we have
[u] = [kx*uy] in H'(F, N¢). Hence there is £y € N¢ such that u = (£yky) *uy.
Then my := £)k) has the required properties. O

As in Section 2.7, we have the alternative expression oy = wyy v, where
wy € W) and y), is the image of uy in W. Recall that we have fixed a lift w € W,
of w, which determines a lift wy € N N G by the equation tyw = wyu), and
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we have an element py € G such that p/(l Fx(pn) = wy. Choose my as in
Lemma 2.8.1 and set

@ i=mapy € G, Sy = Ad(q\)T-

Then in G we have, using equation (8),

-1

qleu(QA) =D, !

-m;lu F(my -p,\)u_l = p;1u>\ F(py)u! = tywu "

Thus, we have the analogue of equation (8) for gy:

(10) tai = gy 'uF(g).

Equation (10) will be used repeatedly in future calculations. It implies
that the map Ad(qy) : T — S, satisfies

Fu OAd(qA) = Ad(qA) o) Fw .

In particular, Sy is an F,-stable unramified maximal torus in G, whose under-
lying algebraic group S is k-isomorphic to the twist of T by w.

In this section we have constructed an infinite family {S) : A € r~1(w)}
of such tori, and our next task is to group these tori, and their strongly regular
elements, into GF*-conjugacy classes.

2.9. Conjugacy. We will use several times another consequence of Stein-
berg’s vanishing result, Theorem 2.2.1.

LEMMA 2.9.1. Let Guq be the adjoint group of G, and let Goq = Gaq(K).
Suppose G,q acts on a k-variety X, with connected stabilizers. For x,y €
X(K), the following are equivalent:

(1) x and y are in the same G-orbit,
(2)
3)

x and y are in the same G,q-orbit,

x and y are in the same G-orbit.
Here G acts on X via the canonical map j: G — Gaq.

Proof.  Implication (1) = (2) is clear. Since G — Ggq is surjective,
(2) = (3) is also clear. Assume (3) holds, so there is g € G such that g-x = y.
Since z,y € X(K) = XZ, the map sending o € T to g~ 'o(g) € G is a cocycle in
ZY(K,G,). By hypothesis, G is the full stabilizer of x in G. By Theorem 2.2.1
we have H'(K,G,) = 1, so there is h € G, such that (gh)"1o(gh) = 1 for all
o € Z. Hence gh € G, and (1) follows. O
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We say that v € GF' is strongly regular semisimple in G if the centralizer
of v in G is a torus. By 2.9.1 we have for such v the equalities

[Ad(G)7]CH M) = [Ad(Gaa)y]" = [Ad(G)H]".

Such a set is called the G-stable conjugacy-class of . It is a finite union of
Ad(GT)-orbits, which are called the rational classes in the stable class.

2.10. Rational classes in a stable class. We continue with the setup of
Section 2.8. Our aim is to explicitly parametrize the rational classes in the
stable classes of certain elements v € G.

Recall that the map r : X, — H'(F,G) is defined as a composition

r: Xy — [X/(1 — w9)X]tor — HY(F,QG).

We have fixed w € H!(F, G), and have considered the fiber r~!(w) C X,,. Now
let [r~!(w)] denote the image of 7~1(w) in [X/(1 — w) X]ior- In other words,
[r~1(w)] is the fiber over w in the second map in the above composition. By
Lemma 2.6.1, we may identify [r~!(w)] with the fiber over w of the natural
map HY(F,,T) — HY(F, Q).

Let v € T be a strongly regular element of G. For A € 7~ !(w), we set

M= aady | € Sy

LEMMA 2.10.1. For A\, € 7~ 1(w), the elements v5 and v, are GY-con-
gugate if and only if A = p mod (1 — wd)X. Thus, sending X\ — ) defines a
bijection

(@) = [Ad(G] /G

Proof. Since S\ = G,,, this is almost obvious from Lemma 2.6.1. How-
ever, we will give a direct proof which produces the conjugation from elements
already in play.

By Equation (10) we have

G 'uF() =tab, g, 'uF(g) = tui.

Let h = quq)fl, so that Ad(h)yx = v,. Then h=! F,(h) € S, since v is strongly
regular. Moreover, 7, € Ad(GF)y, if and only if the class [h~ 1 F,(h)] in
H!(F,, S)) is the identity element. We have

h™ ' Fu(h) = qx - g, uF(qu) - Flgn) 'u!
= ot Fgn) u™!
= gatind gyt
= q,\tp—AqA_ly

so that
[h_l Fu(h)] = [qktu—)\Q)Tl] € Hl(FUa S)x)
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On the other hand, we have isomorphisms

X/(1—wi)X],,, = H' (8, T) "% H(R,, 5)).
The first isomorphism is Corollary 2.4.3 applied to T, F,,; for v € X, it sends
the class of v mod (1—w¥)X to the class of ¢, in H(F,, T). Thus, [gxt,—xq; ']
is trivial in H(F,, S)) if and only if A — p € (1 — w?)X. O

2.11. A partition of the rational classes in a stable class. We have seen in
Lemma 2.10.1 that the fiber [r~!(w)] parametrizes the G'+-conjugacy classes
in the stable class of ), for A € r~!(w). In this section we study an additional
structure on this fiber. Namely, the group

WO“”? =1z, € Wy : wd(zo)w ' = 2,}

acts naturally on Xy, [X/(1 — wd) XJior, and [X /(1 — 9) X]ior, and WY acts
trivially on the latter. Hence there is a natural W¥Y-action on the fiber
[r~!(w)]. This action in fact corresponds to G¥:-conjugacy among the fam-
ily of tori {Sy : A €r 1 (w)}, as follows.

LEMMA 2.11.1. For A\, € r~Y(w) the following are equivalent.
(1) There is z, € W27 such that zop =X mod (1 — wv)X.
(2) There is g € G¥ such that 9, € Sy.

(3) There is g € G¥ such that 95, = Sy.

Proof.  Assertions (2) and (3) are equivalent because Sy = G, for all
A € r~1(w). (We have made them separate statements for later convenience.)

Assume (3) holds. Then qxlgqﬂ € N. Applying Equation (10) for x and
A, we find that

4y 9qu -t - Flay g an) = a5 'guF(9) " F(an)
=qy'g-uF(g) " gataid
=qy'g-Fulg)™" - aatadh
— tyib.

(11)

Let z € W be the image of qxlgqu, and write z = t,2, with v € X, z, € W,,.
Mapping the first and last terms of Equation (11) to W, we have

tuzo - tyw -9z, ) = tyw.
This shows that z, € W27 and then projection onto W, yields
A= zZop + (1 — wid)y,

so (1) holds.
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Conversely, if (1) holds, then A = zou + (1 — wd)v for some v € X, and
we set z = t,2,. Since H'(F,,’T) = 1, there is a lift 2, € N* of z,, and we
set 2 =1,2,. Then

F(2) = tg, i 2o,
Set g = q,\équl. It is clear that 95, = S). To prove (3), it remains to show
that g € G, Using equation (10) again, we compute

Fu(9) =uF(q)) - F(2) - F(gu) "u™

. 1. . .1 -1
=q\taw - Ty, W "Zow W t_uqu

N
=qx - t)\+wi9u—zou : Zoqu

= Otvioq,
=9,
as desired. O

Let
W;’jf ={zeW?: z2A=) mod (1 —wd)X}
be the stabilizer in W»? of the class of A in [~ (w)]. The next result interprets
WY and W;”fe as “large” and “small” Weyl groups of S), respectively. This
will be used to relate L-packets to stable conjugacy classes of tori.

LEMMA 2.11.2. For XA € r~Y(w), the map Ad(qy) induces isomorphisms
Wil =5 N(G,8Y)/Sh Wl = N(G,83)™ /8

Proof. First, a remark about normalizers of tori. Let I’ be a Frobenius
on G arising from some k-structure, and let .S be the group of K-points of a
maximal k-torus S C G. We claim that
(12) [N(G,8)/S]" = N(G, SF)/8.
For C: Let n € N(G, S) be such that F'(n) = ns for some s € S. Then on S
we have Ad(n) o F = F o Ad(n), implying that n € N(G, S¥). For D: Choose
s0 € SFNG¥S. For n € N(G,ST), and s € S, the element nsn~! centralizes
s0, hence lies in S. This shows that N(G,S¥) C N(G,S). Moreover, we
have Ad(n)so € S, implying that Ad(n~'F(n))sg = so; hence F(n) € nS, as
desired.

This remark shows that W*¥ = N(G,T")/T, and the first isomorphism
follows. The second isomorphism amounts to showing that the projections
N — W — W, induce an isomorphism

(13) NEow /¥ W;j’f.

Let n € N¥aw  and let ¢,z be the image of n in W, where v € X and z € W,
We want to show that z € W*. From the equation Ad(ty) Fy(n) = n, we get

Ad(tyw)d(tyz) =ty z,
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which leads to
t)\+(w1971)u Ad(w)ﬂ(z) =107

hence z € WY and 2\ = A+ (wd — 1), as desired. This shows also that (13)
is injective.
To see that (13) is surjective, let z € W;;‘jf, and choose a lift 2 € N,. Since
Ad(ty\w)d(z) = z in W, = N, /T, we have
Ad(t) F(2) = 2,

for some t € °T. Since H'(F,,T) = 1 we can write t = sF,(s™1) for some
5 € 9T. Then #s is a lift of z in N, O

3. The conjectural local Langlands correspondence

Very roughly speaking, the conjectural local Langlands correspondence
predicts a relationship between representations of a p-adic group and cer-
tain maps from the Weil group into the dual group. The latter maps are
called “Langlands parameters”; they should partition the representations of the
p-adic group into finite sets, called “L-packets”, and it is conjectured that these
L-packets have many nice properties. We now make these statements more
precise.

3.1. Frobenius endomorphisms and representations of p-adic groups. Con-
tinue with the set-up of Section 2.3: G is a connected reductive k-group which

is k-quasi-split and K-split, with Frobenius automorphism F on the group
G =G(K).
For each cocycle u € Z'(F, G), we have a twisted Frobenius

F,:=Ad(u)oF
on G, and for g € G, we have
Ad(g) o Fy0Ad(g) ™ = Fyuu -
Therefore Ad(g) is an isomorphism
Ad(g) : G — GForv,
which induces a bijection on irreducible representations, denoted by
Ad(g)s : Trr(GY™) — Trr(GFor).

This bijection preserves the sets Irr?(-) of square-integrable representations.
Thus we have a G-action on the set

R2(F,G) = {(u,7): ue ZF,G), m € Irr?(GF)}.
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Considering the u-coordinate, we can partition R?(F, G) into G-stable subsets

RF,G) = [ RF.Guw),
weH'(F,G)

where R?(F, G,w) consists of the pairs (u,7) € R*(F,G) with u € w.

3.2. Dual group. Let G be the dual group of G. By definition, the dual
torus

T:=Y ®C*

is a maximal torus in G. The operator J € Aut(Y) dual to 9 extends to an
automorphism of the torus T with trivial action on C*.

We choose, once and for all, a pinning (7', B, {z}) where B is a Borel
subgroup of G containing T and the z, are nontrivial elements in the simple
root groups of T in B. There is a unique extension of J to an automorphism of
G, satisfying 9(za) = 2y (see [7]). We can then form the semidirect product

La .= (W) x G.

3.3. Weil group. Recall that the inertia subgroup Z < Gal(k/k) is the
kernel of the natural map

Gal(k/k) — Gal(K/k).

The Weil group W is the subgroup of Gal(k/k) generated by Z and the Frobe-
nius Frob. The wild inertia subgroup Z% < Z is the maximal pro-p subgroup
of Z. The tame inertia group is the quotient Z; := Z/Z*, and the tame Weil
group is the quotient W; := W/ZT. We will have more to say about these
groups in Section 4.3.

3.4. Elliptic Langlands parameters. An elliptic Langlands parameter is a
homomorphism
¢ : W x SLy(C) — LG
with the following properties:
©(Z) is a finite subgroup of G,
o(Frob) = Uf, where f € G is semisimple,

The restriction of ¢ to SLa(C) is algebraic.
e The identity component Cp(p)° of Ca(p) is equal to the identity com-
ponent (Z7)° of 2V,
The last condition expresses the “ellipticity” of ¢; it is equivalent to requiring

that the image of ¢ not be contained in a proper Levi subgroup of “G, where
the meaning of “Levi subgroup” is as in [7, 3.4].
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We let C, denote the component group of Cx(y). Since 7Y is contained
in the center of C(yp), each p € Irr(C,) determines a central character on

A hence, via Kottwitz” isomorphism (Corollary 2.4.3), a class w, € H'(F, G).
Thus we may partition

Irr(Cy) = H Irr(Cy, w),
weHY(F,G)

where Irr(Cy,,w) consists of the representations p € Irr(Cy,) with w, = w.

3.5. The conjectures. The version of the Langlands conjectures stated here
is the product of many refinements, by Deligne, Lusztig, Vogan and others.
The local Langlands correspondence for G is a conjectural bijection between
the set of G-orbits of pairs (¢, p), where @ is an elliptic Langlands parameter
and p € Irr(C,,), and the set of G-orbits in R*(F,G). Among many other ex-
pected properties, the G-orbit corresponding to (¢, p) should lie in R?(F, G, w)
precisely when w, = w.

Thus, we expect to have, for each @—conjugacy class of elliptic Langlands
parameters ¢, a finite set

Te)= ] Tpw),
weH'(F,G)

where

(14) H(p,w) :==A{[r(p,p)] : p€Irr(Cyp,w)},

and [7(¢, p)] = {(u, Tu(p,p)) : u € w} is a G-orbit in R%(F, G, w).
These putative sets II(¢) are known as “L-packets”. These L-packets
should form partitions

RYF,G)/G= [] T(p), RF Gw)/G= [] M w).
{}/C {e}/G
To describe the properties we expect of an L-packet, we fix a representative
u € ZY(F, N) of each class w € H'(F,G). We represent the trivial class by
u = 1, recalling that F1 = F. Then {m,(¢,p) : p € Irr(Cy,w)} is a set of
representatives for the G-orbits comprising I1(¢, w).
We expect L-packets to have the following properties.

(i) The representation (¢, p) is unipotent [39] if and only if ¢ is un-
ramified, (that is, if ¢ is trivial on the inertia subgroup Z of W). For G with
connected center, Lusztig has constructed unipotent L-packets corresponding
to unramified ¢ [39], [40]. See also [41] and [48] and for orthogonal and split
adjoint exceptional groups, respectively.

(i) mu (e, p) has depth-zero (that is, has nonzero vectors fixed under the
pro-unipotent radical of some parahoric subgroup in G+) if and only if ¢ is
tame (that is, ¢ is trivial on the wild inertia subgroup Z* of 7).
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(iii) 71 (¢, 1) should be generic (that is, have a Whittaker model). If G has
a connected center, then 7 (¢, 1) should be the unique generic representation
in II(p).

(iv) Let “M be a minimal Levi subgroup of G containing ¢(W). (It is
unique up to conjugacy by the connected centralizer of (W) [7].) If M = LG,
then every class in II(¢) should consist of supercuspidal representations. In
this case, we say that II(p) itself is “supercuspidal”. The L-packets in this
paper are all supercuspidal.

If “M # G, then “M corresponds to an F-stable Levi subgroup M C G
contained in an F-stable proper parabolic subgroup P C G. The restriction ¢ :
W — LM inductively corresponds to a generic supercuspidal representation
M (p,1) of MY, and 71 (g, 1) should be a generic constituent of the smoothly
induced representation Indgi M (p,1). For (u,p) # (1,1), the representation
7w (¢, p) should be supported on Levi subgroups of G¥ whose center has k-rank
no larger than that of MF.

(v) For each u, normalize Haar measure on G so that the formal degree
of the Steinberg representation of G is independent of u. (For example, one
could make all Steinberg formal degrees equal to one, but we will choose a
different normalization.) Let Deg denote formal degree with respect to these
measures. Then we should have

Deg[mu(p, p)] = dim p - Deg[m (¢, 1)].
Recall that m,(p,p) and 71(p,1) may be representations of nonisomorphic
groups.
Properties (i-v) were verified in [48] for unipotent L-packets of split adjoint
exceptional groups (see (i) above).
(vi) Fix u and ¢, and let ©, be the character of m,(yp,p), viewed as
a function on the set (G*™)f of regular semisimple elements of G¥. The

Z dimp- 0,

pelrr(C, w)

function

should be stable. That is, if v,7" € (G*%) are G-conjugate!, strongly regular
elements (see §1), then we should have

Z dimp - ©,(vy) = Z dimp - 6,(v).
pElrr(Cy,,w) pElrr(Cy,,w)

This was verified in [41] for unipotent L-packets for inner forms of SO(2n + 1)
(see (i) above).

Tt is customary to require the elements to be G-conjugate, but we have seen in
Lemma 2.9.1 that two strongly regular, semisimple elements of G are G-conjugate if and
only if they are G-conjugate.
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4. From tame regular semisimple parameters to depth-zero
supercuspidal L-packets

We shall construct L-packets satisfying (ii)-(vi) above, for tame param-
eters  in “general position”. We will first make this condition precise, and
outline the construction.

Our construction relies on the tame Langlands correspondence for tori. A
general Langlands correspondence for tori was proved by Langlands [37] but it
seems more difficult to extract the depth-zero correspondence from [37] than
to re-prove it from scratch, so we give a short self-contained account of the
tame Langlands correspondence for tori. Then we construct our L-packets,
using the material from Section 2.7.

4.1. Tame regular semisimple parameters. We say that a Langlands pa-
rameter o is tame regular semisimple if it is trivial on the wild inertia subgroup
7+ and the centralizer of o(Z) in G is a torus. The latter condition is what
we mean by “general position”. This forces ¢ to be trivial on SLa(C). (There
is a more general notion of “tame regular” parameter which we will consider
elsewhere.)

Recall that Wy = W/Z" and Z; = Z/Z". Our choice of inverse Frobenius
determines a splitting

Wt = <FI‘Ob> X It,

where Frob™! z Frob = 27 for x € Z;.

Recall that the Weyl group N/T is identified with W,, the image of N, in
W. We let W, denote the Weyl group N / T where N is the normalizer of 7' in
G. The restriction of the duality map

Aut(X) =5 Aut(Y)

defines an anti- 1som0rphlsm w — W from W, to W,,.

After conjugating by G, we may assume that ¢(Z;) € T and p(Frob) = Jf,
where f € N. Let @ be the image of f in W,, corresponding to w € W, via
the above anti-isomorphism.

Then

Cale) =17,

which implies that the restriction map X — Hom(7™”,C*) induces an iso-
morphism

(15) (X/(1- wﬂ)X]tor — Irr(C,), A py.
Moreover, ¢ is elliptic if and only if

(1) = (Z7).
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To summarize: A tame regular semisimple elliptic Langlands parameter
(TRSELP) is given by two objects:

e a continuous homomorphism s : Z, — 7', with Ca(s) = T, and

e an element f € N satisfying the two conditions

DoAd(fosti=s, (T =(2°),
where w € W, arises from f as above.

Remark 4.1.1. If G is semisimple, then the ellipticity condition on ¢ is
that 7% be finite. In this case, the map 7' — T given by t — t~ w19( ) has
finite fibers, hence is surjective. Thus, if we conjugate 9 f by elements of T we
can change f to any other representative of w. This means the T- conjugacy
class of o f is determined by the image & of f in W, and so the G-conjugacy
classes of TRSELPs are in bijection with W, conjugacy classes of pairs (s, W),
where s : Z, — T is continuous, with C a(s) = T, and @ € W, satisfies

wos? =s, ng is finite.

4.2. Qutline of the construction. Suppose we have a TRSELP ¢, with
s, f,w as above. Recall from Section 2.7 that X, denotes the preimage in
X of [X/(1 — w?)X]tor- For A € X, let py be as in (15). In Section 2.7
we associated to A a cocycle uy whose class in H'(F,G) is w,,. The twisted
Frobenius F\, = F,,, stabilizes a facet J)y C A with corresponding parahoric
subgroup G). Ellipticity will imply that the facet J is in fact a minimal
F\-stable facet in A, so that GE* is a maximal parahoric subgroup of G™.

To (¢, A) we will further associate an Fy-minisotropic torus T), a depth-
zero character y) of T, whence an irreducible cuspidal representation /1(/{ of
GE* = (GA/G;\F)FA (viewed as a representation of GE*), via the Deligne-Lusztig
construction. In fact, x, will define an extension k) of n(/{ to ZFGE* such that
the smoothly induced representation

Ty = IndC" ry K

ZFG

is irreducible. Here Z denotes the group of K-rational points of the maximal
k-split torus in the center of G. An exercise shows that the functions in my
necessarily have compact support modulo Z¥, so we could just as well define
) using the compact induction functor ind.

In our construction, u) and Jy are not uniquely defined, but the G-orbit
[uy, Ty] € R?(F,G) will be independent of the choices of uy and Jy. Moreover,
for A\, u € Xy, we will have

[ux, )] = [uuaﬂ'u] < Px= Pu-
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Thus, to (p, p) we will associate the G-orbit [uy,m\] € R*(F,G,w,), where
A € X, is any character of T restricting to p.

The L-packets thus defined are the “natural” ones: All choices involved
in the construction are rendered equivalent by taking G-orbits. However, to
make the stability calculations, we need representations of a fixed group. Using
Section 2.8, we will choose a representative (u,7) in each G-orbit [uy, 7], so
as to have all representations in the “unnatural” L-packet living on the single
group G,

4.3. Depth zero characters of unramified tori. Recall that X = X, (T), Y =
X*(T). Let 0 € Aut(X) be an automorphism of X of order n, and let
F, = 0 @ Frob~! be the corresponding twisted Frobenius of both T'= X @ K*
and T = X ® §*. (Recall that Frob™! is the g-power map on §.) Let f, be the
degree n extension of | contained in §. Since ¢ has order n, the torus T with
Frobenius F, splits over f,, and T¥ = X ® {*.

Given automorphisms «, 8 of abelian groups A, B, respectively, let

Hom, 3(A, B)

denote the set of homomorphisms f: A — B such that foa = o f.
We have an exact sequence

1— T 78 2y iy Noy R
where N, (t) =t F,(t)F2(t)---E*~1(t). So N, induces an isomorphism
Hom(T',C*) % Homp, 14(T",C*) = Homp, 14(X @ X, C*).
There is also an isomorphism
Hom(f*,T) = Hom(X ® £5,C*), s+ xs,
where xs(A ® a) = A(s(a)), for A € X, a € §. One checks that
Xs € Homp, q(X ®f,;,C*) & Gos=soFrob,

where & € Aut(Y) is dual to o. (The action of & on T is such that o- XA = Ao &
for all A € X.) Hence s — xs is an isomorphism

Hompyop 6 (£, T) — Homp, 14(X @ X, C).
The tame inertia group Z; is identified with the projective limit
1 = lim f;;zv
m
with respect to the norm mappings on the finite fields f,,. The canonical

projection

It—)f::l
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induces an isomorphism as Frob-modules

7;/(1 — Ad Frob™)Z; — §<.

Since ¢ has order n, any s € Homaq prob,5(Z¢, T') is trivial on (1 — Ad Frob™)Z;.
It follows that
HomFrobﬁ(f;; ) T) = HomAd Frob,o (Ita T)

Thus the map s — ¥, is a canonical bijection

Homaq rrob.s (Zt, T) — Hom (T, C*).

Now s o AdFrob = 6 o s if and only if for some (equivalently, any) 7 € T,
the assignment Frob — & x 7 extends s to a homomorphism

@ : W, — T,

where T, = (6) x T is the L-group of the torus T with Frobenius F,. The
T -conjugacy class of the extension ¢ is uniquely determined by the image of 7
in T/ (1-— &)T. The latter group is identified with the character group of X7,
whereby 7 corresponds to

Xr € Hom(X7,C*), xXr(A) = A(7).
Our choice of uniformizer in k gives an isomorphism
T ~ 07" x X°,

where 7 is the group of Rx-points of T. Hence the above isomorphisms give a
canonical bijection between T-conjugacy classes of admissible homomorphisms
W, — LT and depth-zero characters

Xo = Xs ® Xr € Irr(TFf’),

where s = |7, and ¢(Frob) = ¢ x 7. This bijection has the following naturality
property.

LEMMA 4.3.1. Let « be an algebraic automorphism of T commuting with
Fy, so that a € Aut(X) and & € Aut(Y'). Then Xy © @ = Xaop-

Proof. We check it first on X?. Since x, (1) = p(7), for p € X7, we have

Xl - p) = (- p)(7) = p(& - T) = Xaop(1t)-
Now on T¥ we have X¢ = Xs, Where x, € Homg, 14(X ® f,C*). For A € X,
a € f, we have
Xdogp(A ® a) :Xdos(A ® a) = )‘(d ) (S(a)))
=(a-A)(s(a)) = (xsca)A®a) = (xp o) (AR a). 0
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Now let ¢ : W, — LG be a TRSELP, with associated w € W, and set
o = wy. We want to construct from ¢ a T-conjugacy class of Langlands
parameters
or Wy — LTO’7

such that ¢ = ¢ on Z, and such that ¢ (Frob) and ¢(Frob) have the same
action on T'. We will have

or(Frob) =6 x 7

for some 7 € T, which is only defined up to &-twisted conjugacy. That is, we
need only define the coset of 7 in 7'/(1 — 6)7.

We define the coset of 7 as follows. Let G be the derived group of G, and
let 77 = TN (. Ellipticity implies that the map 7 +— 76 (7)~! has finite kernel
on T”, which means that

(1-6)T" =1,

and so the inclusion 7' < @ induces a bijection

~

T/(1-8)T" = GG =: Gy
It follows that 7 < G induces a bijection
(16) T/(1=6)T = Gap/(1 = 0)Gap

between the set of 6-twisted conjugacy classes in T and the set of J-twisted
conjugacy classes in the abelianization Gap. Now, if o(Frob) = 0 x f, we take
any T € T whose class in T/(1 — 6)T corresponds under (16) to the image of
Jin Gab/(l - ﬂ)Galr

Hence, from the TRSELP ¢ we get a character X, € Irr(7%). We will
abuse notation slightly and again denote this character by x..

4.4. From tame parameters to depth-zero types. Let ¢ : Wy — LG be a
TRSELP with ¢(Frob) = 9Jf as in Section 4.1. Let w € W, be the element
such that @ is the image of f in W,. Since ¢ is elliptic, we have

(17) X=Xz, Xuf ={0},

where Z° is the identity component of the center Z of G.
Let A € X, and set

oy =tywd e W x <’l9>,

as in Section 2.7. By the second equation in (17), the operator I — wv acts
invertibly on A.q4, so that o) has a unique fixed-point z) € A.q, given by

zy = (I —wd) ;)0

Let ) be the pre-image of x in A%,
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The facet Jy from Section 2.7 is the unique facet in A containing ). As
in Section 2.7, we choose an alcove C) in A containing Jy in its closure, and
write

Gy:=Gy,, Wy = [NOGA]/OT, Gy = G)\/G;.
We choose uy € Z!(F, N) as in Lemma 2.7.2, and define
FA = Ad(u/\) oF.

Then F) is a Frobenius endomorphism of G for some k-rational structure on
G which is inner to the quasi-split structure on G given by F. Recall also that
F) stabilizes the apartment A, the alcove C), and the facet J).

LEMMA 4.4.1. We have
A = JP = T = 7y,
In particular, the point xy is a vertex in B(Gaq)™.
Proof. From (7) of Section 2.7 we may decompose o in two ways:
oy = bhwd = wyyrv.
Since w) fixes Jy pointwise, we have
I = g = g = gy,

Also, A = I C J, implying that A7 = J7*. O

Since Fy -Jy = Jy, F) induces a Frobenius endomorphism of G, preserv-
ing T. Since F) -C) = C), the Frobenius F\ also preserves a Borel subgroup of
G, containing T. It follows [6, 20.6] that T is a maximally f-split torus in Gy
with respect to F).

From Section 2.7 we have the alternative expression

o\ = WYY,

where wy € W), and y, is the image of uy in W. Moreover, our fixed choice of
lift w of w defines a lift wy € N N G, of wy, via the equation

t)\w = w)\U)\.
Recall that we can then choose an element p) € G such that
Py Fa(py) = 1.

Note that
F\oAd(py) = Ad(py) o Ad(wyuy) o F.

Define
Ty := Ad(p))T.



830 STEPHEN DEBACKER AND MARK REEDER

Then T) is an Fy-stable unramified torus in G. On T, we have Ad(wyuy) =
Ad(w), so that Ad(py) : T — T) satisfies

F)\ OAd(p/\) = Ad(p)\) o Fw,

where F,, = Ad(w) o F.
By ellipticity, we have

TP = X0 O™ = X, (2°)7 % T = 2707,

This implies that Ty is F\-minisotropic. Moreover, we have Ty = Ty N G,
and Ty projects to an Fy-minisotropic maximal torus Ty in Gy.

On A and A,q we have Ad(wyuy)F = o). By Lemma 4.4.1 the unique
fixed-point of Ty in B(Gaq)™ is

P Aad]™ =py - AT} = py -2\ = 20
As in Section 4.3, we have a depth-zero character x = x,, of TP Since ¢

is in general position, Lemma 4.3.1 implies that x is F,-regular.
This character y transports to a depth-zero Fy-regular character

X i= Ad(py)«x € Trr(Ty2).

The restriction of yy to T 1;* factors through a character x3 € Irr(Ti*),
which is in “general position” with respect to Fy, in the sense of [20, 5.16].
By [20, 8.3], Deligne-Lusztig induction then gives an irreducible cuspidal rep-
resentation

KS == €(Gy, Ty) - R%,x‘; € Irr(GY).

Inflate /1?\ to a representation of Gf* and define an extension to Z FGI;* by
Ky = XA @ K3,

This makes sense since (Z N G)™ acts on £9 via the restriction of the scalar
character X?\.

So far, to the TRSELP ¢ and A € X,,, we have associated a Frobenius
F\, an F)-stable parahoric subgroup G, and an irreducible representation )
of ZFGEA. In the process we made choices of w, Cy, uy, px.

LEMMA 4.4.2. Given a TRSELP ¢ and A € X, both fized, suppose there
are two sets of choices (w, Cy, ux,px) and (W', CY,u\,p)\) as above, giving rise
to (Fx, T, xx, kx) and (F5,T5, X\, xy) as above. Then there is h € Gy such
that

(1) hxu) =wuy;

(2) Ad(h)«(T3, X5, £)) = (Tx, Xa, Ka)-
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Proof. Note that (1) implies that Ad(h) (Giﬁ) = GI;*, so that (2) makes
sense. Since o) is defined before the choices are made, we have

wyyy = hw = WY},
and so there is t € °T such that
WU = twl)\u')\

Here, both sides belong to Z!(F, N) and act on T via w. Lemma 2.1.1 implies
that t € Z1(F,, T). By Lemma 2.3.1 for T, there is s € °T such that

(18) sFu(s)™ ' =t
Since Ad(w) = Ad(wiu)) on T, equation (18) can be written
(19) swhu = ti\u) F(s) = wyuy F(s).

Recall our equations characterizing py and p):

_ . ~1 .
(20) Py Ealpa) =tx,  ph~ Fx(ph) = wh.
These allow us to write (19) in the form

-1 _
(21) s-p\u\F(ph) = p)\lu)\ F(py) - F(s).

Equation (21) shows that the element h := p,\sp')\_1 satisfies h * u) = uy. We
have h € G) since py,s,p) are all in G. It is clear that Ad(h)(T,x)) =
(T, x»), which then implies that Ad(h).k)\ = K. O

4.5. Definition of the L-packets. Given a TRSELP ¢, an element A € X,
and a set of choices (C),uy,p)), define

G

Ty = IndZFGiA KX,

where Ind denotes smooth induction. (The functions in 7y automatically have
compact support modulo Z'.) In this notation we have suppressed the choices
(Cx, ux,pyr), but by Lemma 4.4.2 the G-orbit (in fact the G)y-orbit) of (uy, m))
is independent of these choices.

LEMMA 4.5.1. The representation s of G™ is irreducible supercuspidal.

Proof. By [44, 6.6] it suffices to show that x) induces irreducibly to the

group
(GO ={g€G™: g-Jx =},

which is the normalizer of G? in GP™. For this, it is enough to show the
stabilizer of k) in (GX)™ is just Z™ GE*.

Suppose h € (G%)™ and Ad(h).ry = kx. By [20, Thm. 6.8], there is
g€ GE* such that

Ad(gh)«(Tx, xx) = (Ta, xa)-
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Then by [14] there is £ € (G})™ such that

Ad(Lgh)«(Tx, xx) = (T, x0)-

That is, {gh € N(G,T\)™ and fixes x). Hence pglfghp,\ € NP and fixes y.
Let z be the projection of pglﬁghpA to W,. By Lemma 4.3.1 we have Zos = s,
but Cpx(s) = T, so z = 1. Tt follows that £gh € Tf* N(GyM ¢ ZF*GI;*. Since
£ and g are in GE*, this implies that h € Z™ GE*. O

At this point we have a supercuspidal representation 7y € Irr(G™) for
every A € X,,. We now show that the G-orbit [uy,my\] := Ad(G) - (uy, m))

depends only on the character py € Irr(C,) corresponding to the image of A
in [X/(1 —w?)X]ior = Irr(Cy) (see §4.1).

LEMMA 4.5.2. Given ¢, along with A\, u € X,,, make choices (Cx,ux,px),
(Cu,uy,pu) as above. Then py = p,, if and only if there exists g € G such that
(1) g% ux = uy;
(2)g-In= Jus
(3) Ad(g)xkr =~ K.
Proof. Suppose px = p,. This is equivalent to having p = A+ (1 — wd)v
for some v € X, which amounts to the following equation in W x (9):
tyoat, b = t,hwit, = t,wd = o,
Lifting to IV, we have
(22) tuinuy F(t,) ™ = ti,uy,

for some t € °T. Arguing as in the proof of Lemma 4.4.2, there is s € OTH
such that
putpy =57 Eu(s).
Using Equations (20) we then find that
gFuUN = Uy,
where g = spﬂtyp)fl.
Since o and o, have unique fixed-points z and x, in A,q, we must have

ty - €\ = x, hence t, - Jy = J,, from which (2) is immediate.
Finally, we have

Ad(Q)*(T)w XA) = Ad(3p,utu)*(T7 X) = Ad(s)*(Tm Xu):

so that Ad(g)«k\ =~ K-
Turning to the converse, suppose we have g € G satisfying items (1)—(3)
above. By (2) and (3) and [20, Thm. 6.8], the pairs

(Ad(9)Tx, Ad(g)sxx), (T xp)
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are conjugate in GE“, and so without loss of generality, we may assume these
two pairs are equal. Then, the element n := p;lgpA belongs to N. By
(1), Ad(n) preserves T, and it preserves the F,-regular character Y, since
Ad(g)«xx = Xxu- It follows that n € T. Let t, be the image of n in W. As in
the first paragraph of the proof, it suffices to prove that t,ox\t;! = o,. But
this follows from the equation

Ad(n) o Ad(tauy) o FoAd(n)~! = Ad(w,u,) o F,
which is proved using Equations (20) as before. O

Now we have our first main result.

THEOREM 4.5.3. Given a TRSELP ¢ with associated w € W,, let
r: Xy — HY(F,G) be as in Section 2.8. For each w € H'(F,G) define

(p,w) = {[un,m] : AerH(w)}.

Then there is a well-defined bijection Irr(C,,w) = Il(p,w), as follows. Given
p € Irr(Cy,w), choose any X € r~1(w) such that py = p, and associate to p the
G-orbit [uy, 7] € I(p,w).

Proof. Recall that r(A\) = w if and only if py € Irr(¢,w). Suppose we
have A\, € X, such that py,p, € Irr(p,w). From [44, 6.2] it follows that
conditions 1-3 of Lemma 4.5.2 are equivalent to having g € G such that

Ad(g) - (ux,mx) = (up, ).

So we have proved that

[’LL)\,7T)\] = [u,u,aﬂ-,u] < PAx = Pus

as desired. 0

Remark 4.5.4. Recall that Irr(Cy,w) is equal to the fiber over w under
the composition

Trr(C,) = [X/(1—wd)X], — [X/(1 —9)X]

~ 1
to tor H <F’ G)’
whereby p = px +— r(A). By Lemma 2.7.3 we have uy € wy = r(\) = w.
Hence our representation my lives on an inner twist of G belonging to the class

w € HY(F,G), in accordance with the conjectures in Section 3.

4.6. Choosing representatives in an L-packet. We now use Section 2.8 to
choose representatives, living on a single group, of each G-orbit in an L-packet
(p,w). We fix u € wN N, and for each A € r~!(w) we choose my as in
Section 2.8. For each p € Irr(Cy,w), define

(@, p) == Ad(my)«my € Irr(GF),
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for any A € r~1(w) such that py = p. We have seen that the isomorphism class
of ) is independent of the choice of A\. Two choices of m) differ by an element
of G¥+, so the isomorphism class of 7, (¢, px) likewise does not depend on the
choice of m). The normalized L-packet is then defined as

() == {mul(p.p) : p € Irr(Cp,w)}.

More explicitly, the representation 7, (¢, p) is given as follows. Recall that
my - C) is our fixed F,-stable alcove C'. The facet I := m) - J) is contained
in C, and is likewise F,-stable. The F,-minisotropic torus Sy = Ad(my)T\ =
Ad(gx)T (see §2.8) has the property that S\NG, projects to an F,-minisotropic
torus Sy in Gz,. The character 0y := Ad(my).xn = Ad(gy)«x is Fy-regular,
and gives a(n inflated) Deligne-Lusztig representation

0._ Gi F.
sy 1 =¢(Gr,,S\) - Rs Y, € Iir(GY),
and an extension of %9\ to a representation sy of ZF G% Finally, we have

Fy
ﬂ-u(@v p) = IndgFGFu M-
Y

5. Normalizations of measures and formal degrees

We now move toward Harmonic Analysis. The first step is a uniform nor-
malization of Haar measures on groups of the form G¥', where G = G(K) and
G is a connected reductive k-group, split over K. We then verify the equality
of formal degrees in an L-packet, according to the conjectures in Section 3.
(Note that the group Cy, is abelian for these L-packets.) Except where noted,
our Frobenius on G is now unspecified, and is denoted by F', according to our
conventions.

5.1. Haar measure. We denote the Lie algebra of G by g, and again let F
denote the induced Frobenius action on g.

Suppose x € B(G) or B(G,q). Just as we could attach a parahoric G
and its pro-unipotent radical G to z, so we can define lattices g, and g} in g
(see [43, §3.2], [3, §2.2], where the corresponding objects are called g, , and
9.0+)- As before, the lattices g, and g, are independent of the facet to which
x belongs. If J is any subset of a facet and x € J, then we set g; = g, and
gj = g . If J is an F-stable subset of a facet, then

Ly:=gs/9}
is the Lie algebra of Gy, and we have

Ly = ol /(g5").
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Let dg denote the Haar measure on G, normalized so that

_ 165
||_§|1/2

measg, (GF)

for one, in fact every, F-stable facet J in B(G).
Let dX denote the Haar measure on g, normalized so that

measyx (g5) = L]/

for one (in fact, every) F-stable facet J in B(G).

To show that these normalizations are independent of the choice of J as
claimed, it is enough to show that if J and J" are F-stable facets in B(G) with
J' C J, then

Py _ |Gyl
measqy(G) = [RARE
J
implies ‘ .
G,
meas,(Gh) = ‘LFT1/2
J/

(and similarly for the measure dX on g). Since J’ C J, we have
Gl cGlcGycGy.

Moreover, the image of Gy in G is a parabolic f-subgroup with unipotent
radical Gj / Gj, and Levi component isomorphic to Gj. A short calculation
gives the desired result.

Remark 5.1.1. The above expression for measq,(GY) can be simplified a
bit. Let G be a connected reductive group over { with Frobenius F'. Let T C B
be an F-stable maximal torus and an F'-stable Borel subgroup in G. Then

G| = [G": B"]- [BF| = ¢"[G" : BT] - [T"],

where v is the number of (absolute) roots of T in B. The latter two factors are

prime to p, so that
GF |y = (67 : BF] - [T,

where | - |,y is the largest factor of |- | which is prime to p. We have dim G =
dim T + 2v. It follows that

measqy(G) = ¢ 9G]y

where rk(G) is the absolute rank of G.
This normalization applies as well to the largest k-split torus Z of the
center of G, and gives

F _r _1/onr
measg, (2" ) = ¢ D2 ZF) = (¢1/? — V2@,

where Z =097/07".
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For any irreducible admissible representation 7 of G which is square-
integrable modulo Z¥| let Deg(n) denote the formal degree of m with respect
to the quotient measure dg/dz on G¥'/Z¥ (cf. [26]).

5.2. Formal degree of the Steinberg representations. The formal degree
conjectures in Section 3 require Haar measures for which the formal degree
of the Steinberg representation of G¥' is unchanged by inner twists of F, for
F =F,. In this section we show that the measures dg defined above have this
property. First we consider some constants arising in this formal degree.

Recall that the quasi-split Frobenius F acts on X = X,(T) by the auto-
morphism ¥, and that Z denotes the largest k-split torus in the center of G.
Note that G/Z = (G/Z)*.

Let X1 = X«(T/Z) and let Cy be the projection to the apartment of T'/Z
in B(G/Z) of the ¥-stable alcove C in A. Let ©; be the stabilizer of C; in the
affine Weyl group of T/Z in G/Z. The inclusion X,(Z) — X projects to an
embedding

X.(Z) — (X/X°)" ~ Q2

where X° is the co-root lattice of T. Identifying, as we may, X° with the
co-root lattice of T/Z, we have

O~ X, /X°~Q0/X(Z),
and a finite subgroup Qs := Q% /X, (Z) — € fitting into the exact sequence
1—Q — 0 20, — /(1 - 0)Q — 1,
showing that
(23) Q2| = [Q1/(1 = 0)u| = [H'(F,G/Z)|.

Now take a cocycle u€ Z'(F, N¢), with corresponding twist F,=Ad(u)oF
as before. Since u € N¢ and ¢ is abelian, we have Q%ﬂ = Qg. It follows
that Q29 is unchanged if we replace ¥ by an inner twist ud. Of course this also
follows from (23).

Next, let V1 = X; ® C, let R be the graded C-algebra of W,-invariant
polynomial functions on the C-vector space Vi, and let m be the maximal
ideal in R of functions vanishing at 0 € Vi. Then V := m/m? is a vector
space of dimension ¢ := dim Vj. The space V inherits a grading from R,
written V' = @V (d). Moreover, 9 acts naturally on R and V', preserving the
grading. Choose a basis of eigenvectors for ¥ in each V(d) and let fi,..., fo
be the collection of eigenvectors obtained. Let d; = deg(f;) and let €; be the
eigenvalue of ¥ on f;.

Define the constant

Lo e
(G/Z) = Q|- Hﬁ
i=1 '
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The denominators in ¢(G/Z) are nonzero because each ¢; is a root of unity
and V(1)? = {0}. Since u acts trivially on R and |Qs| is invariant under
inner-twists, it follows that ¢(G/Z) is invariant under inner-twists.

Let G¢, be the Iwahori subgroup of G/Z at the alcove C;. From
[5, 5.3] and [55, 3.10], (see also [22, 5.5]) it follows that the formal degree
of the Steinberg representation St, of G is given, using our normalizations
in Section 5.1, by

[T /2" 1
Deg(Sty,) = .
(Stu) c(G/Z) measdg/dZ(Gg“l)
Gt |y grk(G/2)/2
- dG/Z) |G|y
 gk(G/2)2
(G/Z)

This last expression is independent of u, as claimed.

5.3. Formal degrees in our L-packets. Now suppose 7 is an irreducible cus-
pidal representation of G of the sort considered in 4.5, namely 7 = Indgg gr K,

for some minimal F-stable facet J C B(G) and k € Irr(G5 ZF). The formal
degree of 7 is given by

measg, (OZF)

D — dim % - .
eg(m) im K meas (GT)

Recall also that x is of the following form. We have an F-minisotropic torus
S < G such that A(S)F = JF, a regular character 6 € Irr(S) whose restric-
tion to SN G}j factors through S = SN GF /SN G and on Gf;,

k=e(G;,S) - RSY.

By [20, Thm. 7.1],
|G§ i
S

dimk =
Using also Remark 5.1.1, we find that
Deg(r) = (21 @22
|S¥]

Now if F' =F, and 7 = 7, (¢, p) as in 4.6, then the torus S is k-isomorphic

to the platonic torus T with twisted Frobenius F,, (see 2.8). Therefore, we have
K(C/2)/2
Deg(mu(p. p)) = TRz

The right side of this equation is independent of u and p, so all representations
in an L-packet II(p) (see §4.5) have the same formal degree.
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6. Generic representations

In this section we determine the generic representations in our L-packets
II(¢). Only quasi-split groups have generic representations, so these can
only occur in packets II(p,w) for w belonging to the kernel of the map jg :
HY(F,G) — HY(F, G,q) induced by the adjoint map j : G — Gaq.

Let B be a Borel subgroup of G defined over k, and let U be the unipotent
radical of B. We may and shall assume that B contains our fixed maximal
torus T, which is the centralizer of a maximal k-split torus S.

A character ¢ : U¥ — C* is generic if ¢ is nontrivial on each simple root
group of ST in UF. A representation w € Irr(GY) is generic if Homyr (1, 1)) # 0,
for some generic character 1 of UY. We say that 7 is 1-generic if we want to
specify .

If w € kerjg and p € Irr(Cy,w), the class 7(p, p) € H(p,w) is generic if
some (equivalently, every) representation in 7(p, p) is generic.

Generic characters and representations for finite reductive groups are de-
fined similarly.

6.1. Depth-zero generic characters and representations. The first section
of this chapter concerns all generic depth-zero supercuspidal representations,
not just those arising in our L-packets.

Given a hyperspecial vertex x € A%, set U, := U NG, U :==UNGS.
The quotient U, := U,/U;" is the unipotent radical of an F-stable Borel sub-
group of G,. We say that a character 1 : UY — C* has depth-zero at x if
the restriction of ¥ to U factors through a generic character 1, of UE. Note
that a depth-zero character at z is automatically generic for UY, since x is
hyperspecial. Moreover, any generic character 1, of UY arises from some 1)
having depth-zero at x (using, for example, [27, 24.12]).

Let x° € Irr(GY) be the inflation of an irreducible cuspidal representation
of GE, and let x be an extension of k° to ZF¥GY. In this chapter, it is convenient
to use the notation

(24) m(x, k) == indgigg K

for the compactly induced representation of GF. Since z is hyperspecial, the
normalizer of GE in G¥ is ZFGY, so that [44, 6.6] implies that 7(z, k) is an
irreducible depth-zero supercuspidal representation of GF.

LEMMA 6.1.1. Let xz € Agd be a hyperspecial vertex, let i be a character
of UY having depth-zero at x, and let 1, be the corresponding generic character
of UY as above. Assume that k° is 1,-generic. Then m(x, k) is 1-generic.

Proof. This follows from Frobenius reciprocity: Let V' C w(x, k) be the
space of functions supported on Z¥GEUY. Then V =~ 1ndUF K as representa-
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tions of UY, and V is a UF-stable direct summand of m(x, k). We have
0 # Homyr (K, ¥,) = Homgr (indgg? Ky 1)
= I—IOHIUF (V7 sz))
C Homyr (7(x, k), ). =

The next result shows that all generic depth-zero supercuspidals are of
the form m(z, k) as constructed in (24) above.

LEMMA 6.1.2. Let ¢ be a generic character of UY, and let © be an irre-
ducible supercuspidal depth-zero 1)-generic representation of G¥. Then there
1s a hyperspecial vertexr x € Agd and a cuspidal representation k° of GE (which
we inflate to a representation of GY), such that the following hold.

(1) % has depth-zero at x, and K° is a V,-generic representation of G .

(2) There is an estension of k° to a representation k of Z¥GE, such that
T~ 7(z, k).

Proof. From [44, 6.8] there is a vertex z € .Agd, a cuspidal representation
#, of GF, and a representation i, of the normalizer G¥ of GF in G¥ such that
K. appears in f.|gr and 7 ~ indgi K.

We may assume that z is contained in the closure of our fixed alcove
jCv c .Agd. Let @ be the set of affine roots of S in G. For any point y in the
closure of jCV, we set

Then (in is a spherical root system, and @; is a set of positive roots in éy.
We let fIy be the unique base of (:t_»y contained in é;

Let ®,, @; , 11, be the respective sets of gradients of the affine roots in
i’y, é;, 1:[y. Each of these sets lies in ®,, a set upon which Wf acts. The
roots in II, are nondivisible in ®,, and form a base of the reduced root system
consisting of nondivisible roots in ®,,.

Let

WY ={weW?: v, c &}}.

. . . . . . F
Since 7 is 1-generic and is a quotient of mdgp Kz, we have
. F F
Homgr (ind%r £, IndSx 4) # 0.

As in the proof of [47, Lemma 4], this implies that there exists n € N¥ whose
image v € WY belongs to ,W? and such that 4| Gt npre 18 trivial, while
n«|G.Anyr appears in K;|g,Anpr.
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By [47, Lemma 2], the image VI of G, N"UY in G! is the maximal unipo-
tent subgroup of GI' generated by root groups Ug for § € 1I,. Let 6 be the
character of VY obtained from the restriction of "t to G, N"U¥F. We have seen
that 6 appears in & |ye.

We claim that v~'II, C II,. Suppose not, and choose 3 € II, such that
v713 € ®F \ I,. Then the root group Uf,l 3 is contained in the kernel of
1, so that 6 is trivial on the simple root group Ug in VE. This contradicts
the cuspidality of x,. So v~'I, C II,; hence in fact v~'II, = II,, since
T, | = |TI,| = dim AY,.

We have shown, moreover, that for each o € 11, the character " is trivial
on GF NUE,, and nontrivial on G, N UE,. Hence 1 is trivial on G:_l.z NnUY
and nontrivial on G,,-1., N UE.

It now suffices to prove that the vertex z is hyperspecial. For then the
previous paragraph shows that ¢ has depth-zero at = := n™! - z, and taking
k= Ad(n 1)k, k = Ad(n1).k, will satisfy the conclusions of the lemma.

Since vll, = II,, it is clear that z is special, but not immediately clear
that it is hyperspecial. Let o € II,. Since va € I1,, there is k, € Z such that
va — kg € I1,. Tt follows that

z = H tkavda * 05

a€cll,

where {\, : a € II,} C X,q is the dual basis of II,. Hence z =t - o, for an
element t € TY,. Since Ad(t) is a k-rational automorphism of GF, it follows
that z is hyperspecial. O

6.2. Generic representations in our L-packets. Fix a TRSELP ¢ with
corresponding w € W,. We identify

Irr(C,) = HY(Fy, T) = [X/(1 — wd) X]tor-
We likewise identify
HY(Fy, Toq) = Xad/(1 — w9) Xoq.

(Note that the latter group is finite.) For A\ € X, let p) denote the image of
A in HY(F,,T), and pj) the image of jA in H'(F,, Taq). Then pjx = juw(pa),
where

juw 2 HY (Fy, T) — H'(Fy, Taq)

is the map induced by the map j : G — G,q. Recall that x) is the unique
fixed-point of tywd in A,q.

LEMMA 6.2.1. For A € Xy, the following are equivalent.

(1) pjx =1;
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(2) the vertex x) is hyperspecial,
(3) the representation my of Section 4.5 is generic.

Proof. The representations k) are generic, by [21, 3.10]. The equivalence
of (2) and (3) now follows from Lemmas 6.1.1 and 6.1.2.

To prove the equivalence of (1) and (2), recall that z is defined by the
relation

(I —wd)zy =ty -o.

Now z) is hyperspecial if and only if z) € X,q-0, if and only if jA € (1—w1) X,q,
if and only if p;\ = 1. O

For w € ker jg, we set
Irr(Cyp, w)gen = {p € Irr(Cy,w) : 7(p,p) is generic}.
LEMMA 6.2.2. For w € ker jqg,

| Irr (Clp, w) gen| = [Xﬁd 5j(Xﬂ)]-

a

In particular, the number of generic representations in Il(p,w) is independent
of the TRSELP ¢ and the class w € ker jq.

Proof. We give the proof assuming that p { [Xaq : jX]|. The argument for
general p is more complicated (see [19]). In this proof only, we change notation
and let Z denote the full center of G, and set Z = GNZ. We have a diagram
of group homomorphisms

H'(k,Z) -~ HYF,G) 2% H'(F,Gp)
I r 1

HY(k,Z) 2 HY(F,,T) 2% HY(F,, Taq)
I

Irr(Cy)

induced by the inclusions Z — T — G, the adjoint map j : G — G,q, and
Ad(po) : T — G, where py ' F(po) = w (see §2.7). The rows are exact at the
middle term [51, Prop. 38], and ¢ = r o ¢,,. Recall that r~!(w) = Irr(C,, w).
We prove the result by computing |ker | in two ways.

We have kert,, C ker:, so the t-fibers are unions of i,-fibers. From
Lemma 6.2.1 it follows that

(171 (@) = Ire(Ci ) e
This implies that

[ker¢| = |t H(w)| = | Trr(Cyp, w) gen| - | ker iy
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Now
ker ¢y, =~ TaF;’f/j(TFw),

and we have
w 3 o FuN L vw . 0rFu
Tiy = Xpo! x (o)™, §(T™) = §(X*7) x §(°T™).
Since X% = {0}, it follows that
. 0rFu
(25) | ker ¢ = | Irr(Clp, w)gen| - |(°“Taa)™ /5 (°T)].
On the other hand, we have
| kero| = |Ga/§(GT)].
Since G is quasi-split, [8, 5.6] implies that the inclusion Thq < G,q induces a
bijection
Tha/3(T7) == GLa/i(GT).

Since de = de x (OTnq)F, we have

Taa/3(T") = [X3a/i(X")] % ("Toa)" /5 (OT),
so that

. . 0F

(26) | kero| = | Xpu /(X ") - |(°Taa)" /5 (°T" ).

Comparing Equations (25) and (26), we see that the proof boils down to show-
ing that

(27) (OTaa)™ /5CT™)| = |OTaa)¥ /5 (°T")).

If pt [Xaq : jX], then jX @ Rjy = X,q® R}, and so we have an exact sequence
1—TnzZ — o7 107, — 1.

Since HY(F,,°T) = HY(F,°T) = 1 and w acts trivially on Z, it follows that
both sides of Equation (27) are equal to |H'(F,°T N Z)]|. O

It follows from [60, 2.5] that [X7, : 7(X?)] is the number of G¥-orbits of
hyperspecial vertices in B(G¥). Lemma 6.2.2 leads one to expect that each of
these orbits supports a unique generic representation in II, (). We will prove

this in a few steps, as follows.

LEMMA 6.2.3. Let F, be a quasi-split Frobenius, and let S be an F,-min-
isotropic torus in G. Assume that the unique fized-point x of S¥ in B(Gaq)™
18 hyperspecial. Then

N(G¥,8)/S" = N(G, 8¥)/S.
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Proof. Let n € N(G,S¥™) c N(G,S). Since x is hyperspecial and is
contained in the apartment of S'in B(Gaq), we have N (G, S) = N(G,, S)S, and
so we may assume n € N (G, S™). Then F,(n) = nt for some t € SNG, ="°85.
Choose d > 1 such that Fj(n) = n. If d = 1 there is nothing to prove, so
assume d > 1. This implies that ¢ F,(t) - - - F¢~1(¢) = 1. By Lemma 2.3.1 there
is s € °T such that t = sF,(s)7}, so that F,(ns) = ns. O

Returning to the notation of Section 4.6, let u € w € ker ja, and suppose
A € r7Hw) are such that py,p, € kerjy,. It follows from Lemma 6.2.1
that vy := my - z) and v, := m, - x, are hyperspecial vertices in A:gl. The
representations m, (¢, p) and m,(p, p,) are induced from the stabilizers in G*™
of vy and v, respectively.

LEMMA 6.2.4. Assume that vy and v, are GY -conjugate hyperspecial ver-
tices. Then py = p,.

Proof. We first prove that Sy and S, are GF-conjugate. Since G™ =
p m Jug
GE:NF GE::', there is n € N¥ such that n - v, = vy. The F,-minisotropic tori

S1:= S, Sy :="8,

both have vy as their unique fixed-point in B(Gaq)™. Let T and S; be the
images of T'N G, and S; N G,,, respectively, in G, .

Set

1 1

-1 -1 —
k1= qm) ", ko :=ngum, n"".

Then k; € G, and S; = Ad(k;)T for i = 1,2. Let k; be the image of k; in G, ,
so that S; = Ad(k;)T.
Using Equation (10) we find that
k:l_l F, (k1) = my - wu™? -Fu(m,\)_1 mod T,
ky ' Fy(ko) = nmy, - wu™t - Fy(nm,)™' mod T.
Since vy is hyperspecial, every class in N/T has a representative in N N G, .
Applying this to m)T', nm,T and wu"'T, we obtain that 12:1_1 F. (k1) and
k5 ' F, (k) are F,-conjugate in the Weyl group of T in G,,. This means (cf. [12,
3.3.3]) that Sy and Sy are G}»-conjugate. The uniqueness part of Lemma 8.0.10
then implies that S; and Sy are GF»-conjugate. Hence Sy and S, are GYu-
conjugate, as claimed.
By Lemma 2.11.1 there is z, € W*? such that

A= 2zop mod (1 —w?d)X.
But Lemmas 6.2.3 and 2.11.2 imply that
Wy =wer.
Hence A = ¢ mod (1 — wd)X, so px = py. O
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Remark 6.2.5. Lemma 6.2.3 and the last step in the above proof can be
seen in another way, as follows. Since vy is hyperspecial, Lemma 6.2.2 implies
that py € kerj, = imi, : [H'(k,Z) — H'(F,,T)]. Since W27 acts trivially
on H'(k,Z), it follows that py is a W*?-fixed point in H'(F,,T).

Combining Lemmas 6.2.2 and 6.2.4 yields the promised result:

COROLLARY 6.2.6. There is a bijection between the set of generic rep-
resentations in IL,(p) and the set of GY«-orbits of hyperspecial vertices in
B(Gaq)¥*, such that a generic representation is induced from the stabilizer of
any hyperspecial vertex in the corresponding orbit.

Remark 6.2.7. If G has connected center, then G, has connected center
for any hyperspecial vertex © € B(G). Assume x is F,-stable. It follows from
Proposition 5.26 and Theorems 6.8 and 10.7 of [20] that every cuspidal generic
representation of G, is of the form iRgfe for some F,-minisotropic maximal
torus S C G, and # € Irr(S™) in general position. By Lemma 6.1.2, this implies
that every depth-zero generic supercuspidal representation of G appears in
I1,(¢) for some TRSELP ¢.

7. Topological Jordan decomposition

We define the set of compact elements in G by
Go:= |J Gu
zeB(G)
and the set of topologically unipotent elements in G by
Gor = |J Gi.
z€B(G)

We define gg and g+ similarly. These G x (F')-stable subsets of G will play an
important role in this paper.

Remark 7.0.8. From [16] we have that if z € B(G), then
Gy Nstabg(x) = G,.

Let p denote the characteristic of f. Choose m such that for all F-stable
facets J in B(G) and all elements g € Gf; we have ¢P™) = s where s denotes
the semisimple component in the Jordan decomposition of g.

Suppose v € G{'. Let J C B(G) be any F-stable facet such that v € G.

Since v € G§ , it follows that we can define
v = lim 4®"").

n—o0
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This limit does not depend on m, and the element v; has finite order prime
to p. We set

Vo=

The topological Jordan decomposition is the commuting factorization

Y= VsVYu = YuVs-

We have v, 74 € G§ . Moreover, 5 is semisimple and has semisimple image
in Gy while v, has unipotent image in G;. In particular, v, is topologically
unipotent. We say that ~ is topologically semisimple if v = ~g, that is, if
v ="

The topological Jordan decomposition v = g7y is the unique commuting
factorization of « as a product of a topologically semisimple element and a
topologically unipotent element. This implies that if g € G is chosen so that
9y € G, then 9(7s) = (99)s and 9(vy) = (97)u.

LEMMA 7.0.9. Suppose v € GOF has topological Jordan decomposition v =
YsYu-  Then v, v, and v, all belong to G,.. Moreover, if v € G"* then
Yu € nyjs.

Proof. Choose a Borel subgroup B < G containing 7. Since BN G is a
closed subgroup of G, both 4 and 7, belong to BN G. Since 75 is semisimple,
it follows from [6, Th. 10.6 (5ii)] that the centralizer in B of 75 is connected.
Thus, 7, s, and 7, belong to B, NG C G,,.

The centralizer of v, in G, has finite index in the centralizer of v in G.
This implies the last assertion. O

Since s is compact and has finite order prime to p, the results of [46]
combined with Remark 7.0.8 allow us to identify

(28) B(G.) = BG)".

More precisely, there is an unramified maximal torus S of G containing ~s, and
a bijection from the apartment of S in B(G,,) to the apartment of S in B(G)
which extends to a G, -equivariant bijection B(G.,) — B(G)». In particular,
G, and G have the same K-rank.

For an exhaustive treatment of the topological Jordan decomposition,
see [52].

8. Unramified and minisotropic maximal tori

Recall that we are assuming G is K-split, and that we say a subgroup
S < G is a mazimal unramified torus in G if S = S(K), where S is a K-split
maximal torus in G such that S is defined over k.

All maximal unramified tori in G can be found as follows.
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LEMMA 8.0.10. Suppose we are given a nonempty F-stable subset J of a
facet in B(G) or B(Gaq) and an F-stable mazimal torus S < Gy. Then there
exists a mazrimal unramified torus S in G such that

(1) J C A(S);

(2) the image of SN Gy in Gy is exactly S.

. . . +F
Moreover, S is unique up to conjugacy by G7" .

Proof.  The existence of S is shown in the proof of [10, 5.1.10]. The
uniqueness is proved in [14, Lemma 2.2.2]. O

Such an S is called a lift of (J,S).

A maximal unramified torus S in G is called F-minisotropic in G if
X.(S) = X.(Z), where Z is the identity component of the maximal k-split
torus in the center of G.

Likewise, a maximal f-torus S in a reductive f-group G with Frobenius F' is
called F-minisotropic in G if X,(S)¥' = X,(Z), where Z is the maximal f-split
torus in the center of G.

Let T(G) be the set of F-minisotropic maximal tori in G. If S € T(G),
then there exists a unique F-stable facet J C B(G) such that

A(9)F = Jt.
The unique parahoric subgroup %S of S is given by
08 =8nG,.
Note that N(G,S)F preserves A(S)F, hence normalizes Gf and GjF . In
particular, G}FFN(G, S)F is a subgroup of G*'.
Let S be the image of SNGyin Gy. Then S is an F-minisotropic torus in
Gy, and S is a lift of (J,S).
Fix now S € T(G) and a topologically semisimple element v € G&'. For
our later integral calculations we must consider the two sets
E(v,8):={g9€G": 9ye€G,, 9y€S},
D(v,8) :={deGF: 4y e S}.
In other terms, ]3(7, S) is the set of elements of G which conjugate S into

G-, and E(v,S) is the set of elements of G which send some G(‘;F -conjugate
of S into G, and whose inverse sends J into B(G.). Since v € G, we have

D(y,5) € E(v,5).
Now, there are obvious actions, by multiplication, of G}F N(G,S)F x Gf
on E(v,9), and of N(G, S)F x Gf on D(v,S).
LEMMA 8.0.11. The inclusion D(v,S) < E(v,S) induces a bijection
N(G,8$)"\D(v,9)/Gy = G N(G,$)"\E(y,9)/G7.

Both sets of double cosets are finite.
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Proof. The set N(G, S)F\D(~, S)/Gf? parametrizes Gi—conjugacy classes
of F-minisotropic tori in G which lie in the GF-conjugacy class of S. Since
Gf; has only finitely many conjugacy classes of unramified maximal tori, the
set N(G, S)F\[D(%S)/Gf is finite.

We now prove injectivity. Suppose we have d,d € D(v,S), and h €
GjF, ne N(G,9F, ge Gf, such that d’ = nhdg. Replacing d’ by n~'d'g™!,
we may assume without loss of generality that d’ = hd. This means that %y
and "?y both belong to S, and being compact, %y and "¥v in fact belong to
SNGy. Since h € GjF, both %y and "y have the same image in S. Hence we
can write "y = 9y~ where v, € GJJFF NS is topologically unipotent. But then
dy~y1 = 41%, and since "~ is topologically semisimple, we must have y; = 1,
by uniqueness of the topological Jordan decomposition. It follows that S and
h~=1Sh are two lifts of (S, J) in ¢G.,.. By Lemma 8.0.10, there is k € (4G,,) T
such that kSk~—! = h='Sh. This implies that h € N(G, S)" - d(Gi), proving
injectivity.

For surjectivity, suppose g € E(v,S), and let H = 9G,. Then 97 fixes J
pointwise, and so by Equation (28), J is contained in a facet in the building
B(H) of H. We let Hj denote the corresponding parahoric subgroup of H.
Then 9y € Hj.

Considering root data, we find an f-isomorphism ¢ : (G)s —~+ H; making
the following diagram commutative.

HﬂGJ = Hj
! !

(Gr)e > Hy.

We have S < (G)s7 by hypothesis; hence (S is an F-stable maximal torus in
H;. Choose a lift S" in H of (J,:S). Then SN H; = S'"NG; and so S’ is a
lift of (J,S) in G. But S is also a lift of (J,S) in G, so that by 8.0.10 there
isk e G}FF such that ¥S’ = S. Since 9y € ', we have ¥9y € S. This means
kg € D(~,S), proving surjectivity. O

9. Some character computations

In this chapter we give an integral formula for the characters of the rep-
resentations constructed in Section 4.4. In fact, we define a set of integrals
on G which include these characters as a subset. Our eventual goal is to
express these integrals as combinations of similar integrals on the set of topo-
logically unipotent elements, in the same way that a Deligne-Lusztig character
is expressed as a combination of Green functions.

9.1. Harish-Chandra’s character formula. Recall that Z denotes the group
of K-rational points of the maximal k-split torus in the center of G.
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Suppose that @ is an open subgroup of G containing Z* such that Q is
compact modulo Z¥. Suppose also that & is a representation of @ for which
the compactly-induced representation 7 := indgF k of GF is irreducible. Let
Y denote the extension by zero of the character of x to a function on G¥'. In
[26] Harish-Chandra showed that the value of the character of 7 at v € (G*™5)¥
is given by the formula

Deg() . o
X (1) /GF/ZF dg /an( v) dl.

Here dg* denotes the quotient measure on G*'/Z¥" with respect to Haar mea-
sures dg and dz on G and Z¥', respectively, Deg(7) denotes the formal degree
of 7 with respect to dg* = dg/dz (see §5), and L is an arbitrary compact open
subgroup of G with Haar measure dl normalized so that measy (L) = 1.

9.2. The character integral. Let S be an F-minisotropic maximal torus in
G, and let J be the unique minimal F-stable facet in B(G) such that A(S)f =
JP. Recall that °S* = S¥ N Gy, and S NGy projects onto an F-minisotropic
torus S in Gj.

Let Irrg(S*) denote the set of depth-zero characters of S¥'. For 6 €

Irro(ST), the restriction of @ to 05" factors through S, and thus defines a
Deligne-Lusztig virtual character Rgfg. Let Rgg denote the natural inflation

of Rg‘g to a function on G?, extended by zero to the rest of GF'.
Define a function R(G, S,6) on (G™%)F by the integral

meast(Zf) / */ G ol
R(G,S,0 =L d RZ%(9' ) dl.
( y M )(’7) measdg(G§) G’F/ZF g L 579( ’7)

Here L and the measures dg*, dl are as in Section 9.1. (The integral converges;
see, for example, Lemma 10.0.7.)

Remark 9.2.1. For h € G, a change of variables shows that
R(G,"S,h.0) = R(G, S, 0),

where h.0 = 6o Ad(h)~'. If T is a G-orbit of pairs (5, 0) with S € T(G) and
6 € Irrg(ST), we sometimes write

R(G,T) = R(G,S,0),
for any (S5,0) € 7.

9.3. Relation to characters. Suppose 6 € Irrg(ST) is regular, in the sense
that 6 has trivial stabilizer in N (G, S¥)/S. There is a unique representation
r of ZFGE such that

(1) the restriction to G5 of k has the character £(Gy,S) - Rg‘g, and
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(2) the restriction of k to Z%" is given by the scalar character 6| r, times the
identity.

We have seen that the induced representation 7 := IndgiG? K is irreducible
and supercuspidal.

LEMMA 9.3.1. Let ©, be the character of the representation m just de-
fined. Then O vanishes off the set ZE¥GE . For z € Z¥ and regular semisimple
v e Gf,

Ox(27) =(Gy,S) - 0(2) - R(G,5,0)(7).

Proof. Harish-Chandra’s integral formula (see §9.1) makes the vanishing
assertion obvious and gives, for z € Z and regular semisimple v € Gg , the

formula
measg,(G5)  Deg(r)

Or(zv) =0(z) - . -R(G, S, 0 .
() =) SR Ty HES00)
Consequently, we need to show that
measq, (GY) ~Deg() —(G).S).

measdz(Zf) Rgg(l)
But, from Remark 5.3 we have
Deg(7) - measqy-(Z5 GY /ZF) = dim(k),
and the claim follows. dJ

9.4. Stable conjugacy of tori and their characters. We want to produce a
sum of character integrals that will be stable. In the situation of Section 9.3,
these sums will specialize to the sum of characters over an L-packet, as defined
in Section 4.6. Our integral sums are based on the notion of stable conjugacy
of unramified tori and their characters.

Recall that T(G) denotes the set of F-minisotropic maximal tori in G.
We say that two tori S1,S2 € T(G) are G-stably conjugate if there is g € G
such that 9(S{) = SI'. This defines an equivalence relation on %(G), whose
equivalence classes are called G-stable classes. The set of G-stable classes
injects into H'(F, N/T) as follows. Any two maximal unramified tori in G are
conjugate by an element of G. For S € T(G), write S = 9T, for g € G. Since
F(S) = S, we have an element n := g~ 'F(g) € Z'(F, N). Projection to N/T
gives an element n := g~ 1 F(g)T € Z'(F, N/T). One checks that the class [n]
of n in HY(F,N/T) is independent of g. Note that S¥ = 9(T*"), where, as
usual, F,, = Ad(n) o F.

LEMMA 9.4.1. Suppose h € G, and n,m € N. Then
h=tmF(h) € nT < M(TF) = ("),
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Proof. Implication = is straightforward. For the converse, choose a
strongly regular element ¢ € T, From the equation F,("t) = "t, we find
that the element h~!'mF(h)n~! centralizes ¢, hence lies in T O

For v =nT € N/T, set F,, = F,, and define
T, ={S €%(G): ' =9(T") for some g € G}.

LEMMA 9.4.2. The sets T, have the following properties.
If T, is nonempty, then T, is a G-stable class in T(G).
Every G-stable class in T(G) is of the form T, for some v € N/T.
Forv,v' € N/T, we have T, = T, if and only if [v] = [v/] in H'(F, N/T).
If G is k-quasi-split, then T, is nonempty.

1
2
3

(
(
(
(4

)
)
)
)

Proof. See [14]. O

For each S € 7,,, Lemma 9.4.1 implies that there is ¢ € G such that S = 9T
and g~'F(g) € v. Note that the choice of g is not uniquely determined by S;
two choices of g differ by an element of N(G,S*). The map Ad(g) : T — S
intertwines (7', F,) and (S, F). For each depth-zero character x € Irro(T"), we
have a corresponding character g,x € Irro(S¥), which depends on the choice
of g.

This dependence on g is eliminated by passing to a “covering” of 7, as
follows. Consider the set of pairs

T(G) :={(S,0): S€I(G) and 6 € Irro(SH)}.

~

We say that two pairs (S1,601), (S2,02) € T(G) are G-stably conjugate if there
is g € G such that

(1) 9(S7) =S, and

(2) g«bh = 2.
The G-stable classes of pairs (S,0) € (G) are parametrized as follows. Fix
v € N/T, x € Irrg(T*F), and define

T = {(S,0) € Z(G) : there exists g € G
such that S¥ = 9(T%), and 6 = g.x}.

LEMMA 9.4.3. (1) If 7, is nonempty, then ’]A;X is a nonempty G-stable
class in T(G).
(2) Every G-stable class in T(G) is of the form ’ZAZ,,X for some v € N/T,
X € Irro(TF).
(3) Forve NJT, x,x' € Irrg(TH), we have ’ZAZHX = ’ZAZ,7X« if and only if there
isn € N(G,Tt) such that n.x = x'.
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Proof. This follows easily from Lemma 9.4.2. O

Thus, we have a partition

=11 I Tox

vEN/T  x€lrro(TFv)/N(G,TFv)

T,#9
of (@) into nonempty G-stable classes.

Projection onto the first factor is a surjection p; : 7,, — 7,. Given
S € 7, we can project the fiber pfl(S) onto the second factor. This gives a
map
P2 py (S) — Irro(ST).

0= > 0

0 € papi ' (S)

We define

To see the dependence on Yy, choose g as in the definition of ’ZA;,X above. Then

5= > (ng)x,
neEN(G,SF)/S
and the sum is independent of the choice of g.

The character sums 6% have the following stability property.

LEMMA 9.4.4. Suppose Sy,S2 € Ty, v € ST, and x € Irro(T*+). Then for
any h € G such that "(ST) = ST,

05, (v) = 05, (™).

Proof. This is immediate from the observation that h.[pep;*(S1)] =
papy ' (S2)- O

9.5. The stable character integral. Fix a G-stable class Ty, C S(G). The
group G acts on @(G) via g-(S,60) = (95, g.0), and T is the union of finitely
many G'-orbits in (G). By Remark 9.2.1 the function R(G, S,6) depends
only on the GF-orbit of (S,6). We can therefore define a function R(G,75) on
(Grss)F by

R(G,Ty4):== Y R(G,S.0),
(S,0)€:/GT

where R(G, S, ) is as defined in Section 9.2. Our eventual goal is to show that
the function R(G,7y) is stable. But first, we relate R(G,7g) to the sum of
characters in an L-packet.

9.6. Relation to L-packets. In this section we show that the sum of
characters in an L-packet, as defined in Section 4.6, can be expressed, up to
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a sign, as one of the functions R(G,T5) as defined in Section 9.5. We return
to the notation used in Section 4.6 and previously, so that F' = F,. Set
v=1u"'T € N/T, and let x € Irro(T"*) be regular. Note that F, = F,, and
by the proof of Lemma 2.11.2, we may identify

N(G,T%) /T = Wwx?,

For each A € r~!(w) we have the pair (S,8)) = g - (T, x) € Ty.x. Recall from
Lemma 2.6.1 the commutative diagram

(X/(1 —wd)X]tor — [X/(1—9)X]sor

~| 1=

H'(F,7) M m(Fe)

where the vertical maps are bijections. Recall that [r~!(w)] denotes the fiber
of the map in the top row, and this fiber carries a natural action of W7,

LEMMA 9.6.1. Recall that v = wu™'T, and x € Irrg(T™) is regular. The
mappings X — (Sx,0)), A — Sy, respectively, induce bijections

a: [ w)] =5 Ton /G, BT W) /W S T /G
which make the following diagram commute.

[ w)] o Ty /G

pl Nz

W) /wer L1 G

Here p is the quotient map and p1 is induced by the projection p1 onto the first
factor.

Proof. The map 3 is well-defined and bijective, by Lemma 2.11.1.
If A\, u € r~}(w) are congruent modulo (1 —w¥)X, then from the proof of
Lemma 2.10.1 there exists s € Sy such that qﬂqfs € G". Since

Quay s - (Sx, 0x) = (S,,0,,),

this shows that the map « is well-defined.

The fiber of p; over the GF«-orbit of Sy in 7, is in evident bijection with
N(G, SE“)/S’)\N(GFH, S)). By Lemma 2.11.2, the latter is in bijection with the
fiber of p over the class of A in [r~(w)]/W2?.

It therefore suffices to prove that « is injective. Suppose g € G¥, \, i €
r~Hw) and g- (S, 0,) = (Sx,0)). As in the proof of Lemma 2.11.1, the element
qglgqu belongs to N(T™), and projects to an element z, € W*Y such that
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Zopt = A mod (1 —wd)X. But also g.8, = 05, which means that z, fixes x.
Since x is regular, we have z, = 1, hence p =\ mod (1 — wd)X. O

Recall that for A € r~!(w), u € w, and a TRSELP ¢ we defined in
Section 4.6 the representation
Tu(@, pa) = Ad(my ).y € Irr(G™™),

where m) is as in Lemma 2.8.1. This construction involved the character
X = Xy € Irro(TF) corresponding to ¢ as in Section 4.3.

LEMMA 9.6.2. Let G, be the inner twist of G given by the cocycle u € w,
and let Ty, be the twist of T determined by w. Then for A € r—1(w),

€(G)\, T)\) = E(Gu, Tw).
Hence, this sign is independent of A € r~1(w).

Proof. The f-rank of Gy equals the k-rank of G,,, and G,, ~ G, over
k. Likewise, we have seen that Ty ~ T, over k. O

For A € r~1(w), let ©,, be the character of m,(p, px). By construction,
the function ©,, depends only on the class of A in [r~!(w)]. We can now prove
the desired result of this section.

LEMMA 9.6.3. Let v =wu""! and let x = X, be as in Section 4.3. Then

Z Op, = &(Gy, Ty) - R(G, j;,x)-
AE[r—1(w)]

Proof. By Lemma 9.3.1, we have
pr = S(G)\, T,\) . R(G, S)\,H,\),

and so the claim follows from Lemmas 9.6.1 and 9.6.2. O

10. Reduction formulae for character integrals

If G is a connected reductive f-group with Frobenius F', S is a maximal
f-torus in G, and 6 € Irr(S), then from [20, Thm 4.2] we have the reduction
formula

G,
(29) RSp(x) = ) 9:8(s) - Qpgys (),

geGF
ISCG;

where z = su € G is the Jordan decomposition, and for any maximal f-torus
S1 C Gg, the normalized Green function le is defined on all of G by
I 6
—=R, (h) if h € GI" and h is unipotent
(30)  QS:(h):={ IGE > :

0 otherwise ,
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the right side being independent of #; € Irr(S1).

In this section we prove an analogue of Equation (29) for our functions
R(G, S, ), using now the topological Jordan decomposition.

Fix a pair (S,6) € T(G), and let 7 denote the GF-orbit of (S,6). For
v € GE N G* with topological Jordan decomposition v = Y57, we define

T(ys) :={(8,0)eT: eS8}

Then G,i preserves 7 (7s), and acts on 7 (7ys) with finitely many orbits.
Our reduction formula for R(G, S, 0) is as follows.

LEMMA 10.0.4. For v = v5vu as above,

R(G,S,0)(y) = > 0' () - R(G+,, 5", 1) ()
(8",00€T (v:)/GE.

The proof of Lemma 10.0.4 will require some preliminary steps. Let J be
the facet in A(S) such that JI' = A(S)F, and let S be the image of SN G in
Gs. Any compact element § € ST belongs to S NGy, and we let § € S denote
the image of 9.

Applying Equation (30) with G = G, s = 7,, and S; = S, we have the
normalized Green function QéG")WS defined on all of G5. We let QgGJ)WS denote

the natural inflation of QéG'])WS to a function on Gf; , extended by zero to the
rest of GF'.

LEMMA 10.0.5. Let v € G be regular semisimple with vs € S, and let
L., be a compact open subgroup of G, with Haar measure di. Then the support
of the function on Gi given by

(G)7, rhi .
hH/L QL (Min ) di,

is compact modulo the center of G§

Proof.  The function Q(SG‘I)WS on the unipotent set in (G;)5 is the re-

striction of RéGGJ)WS, for any 6 € Irrg(SF). Take @ to be regular. Since S is

F-minisotropic in (Gy)y_, the function RéGé')% is a matrix coefficient of a su-

percuspidal representation of Gi , constructed as in Section 4.4 with G there
replaced by Gf;: . Hence the function QéGJ)WS is the restriction of a supercus-

pidal matrix coefficient to the compact topological unipotent set in Gfs . The
result now follows from [26, Lemma 23, p. 59]. O
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The restriction of § to ST NGy is the inflation of a character 6y € Irr(S7).
Let 6 denote the function on G defined by

9(5):{90(5) if6eGE and § €S,

0 otherwise.

For each regular semisimple element v € G{', define a locally constant function
f~ on GF by
A g S (GJ)H:, g
f(g) = 00) - Qs 7 (I)-
Note that f, is supported on the set E(vs,S) defined in Section 8, and is
left-invariant under GjF .

LEMMA 10.0.6. Let vy € GOF be regular semisimple, and let L., be a com-

pact open subgroup of G, with Haar measure di. Then the function T, : GF—cC
defined by

(9) == /L f~(gi) di

is locally constant and compactly supported modulo Z'.

Proof. Since 7,(jg) = 74(g) for all j € (GT)" and g € GF', it is clear that
7 is locally constant.

Without loss of generality, we assume that v € G§ and 7, € S. By
Lemma 8.0.10, there is a lift of (J,S) in G,,. Any such lift is F-minisotropic
in G. It follows that the center of Gi is compact modulo ZF.

Choose a set D(s,S) of representatives for the double cosets in

N(G,8)"\D (7, 9)/GE .

By Lemma 8.0.11 the set D(vs, S) is finite, and the support of 7, is contained
in
E(vw,S) = [ GI*N(@G, 8" dGE.
deD(7:,5)
Since S is F-minisotropic, the group N(G,S)¥ is compact modulo Z¥. It
suffices therefore to show, for fixed d € D(vs, S), that the function h — 7 (dh)

on Gi has compact support modulo the center of Gf;; . This is Lemma 10.0.5
with ~ there replaced by . O

The key to the reduction formula is the following “localization” result.

LEMMA 10.0.7. Suppose vy € Gg is reqular semisimple and L is a compact
open subgroup of G, and let L, = LNG,,. Normalize Haar measures so that
measqe(L) = measg;(L+,) = 1. Then the integrals

/ dg* / £ (gi) di
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/G Y /L £(gl) i

both converge and are equal. Moreover, these integrals are independent of L.

and

Proof. The first integral is

/ 7 (g) dg".

Lemma 10.0.6 shows that this integral converges and allows us to rewrite it as

/ r(g) dg* = / dg* / - (gl) dI
GFJZF GF/ZF L
—/ dg*/ dl/ fy(gli) di
GF/ZF L L.,
- / dg* / £ (gl) i
GF/ZF L

absorbing ¢ into the integral over L.
To see that the integrals are independent of L, it suffices to show they are
unchanged if we replace L by a compact open subgroup L' < L. We have

/ dg*/ f,y(gZ)dz:/ dg/ dl/ £y (gll'y dl'.
GF/ZF GF/ZF /

By Lemma 10.0.6 again, the integral over (L'),, has compact support as a
function on G¥'/Z¥ x L, . Hence we may switch the integrals over G'/Z and
L., . The claim follows. O

Now we can prove Lemma 10.0.4. From Equation (29), we have

F
measa(Gr) s, 0)() = / / RSl
e (027) GF/ZF

. / [ /L £ (xgl) di

z€GE /GTF
Absorbing x into the integral over G /Z and using Lemma 10.0.7 , we get

measq, (G) /
—————R(G,S,0 GY dg* i
e o RE.S 00 =165 [ g [ piid

During the rest of this calculation only, we use the abbrev1at10ns
N:=N(G, S, U=G" H=aG,.

Let D(vs,S) be as in the proof of 10.0.6. The integral over L., is supported
on

E(vs,9) = H H UndHY /27

deD(vs,S) nEN/Ng
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where N; = “H N N. Consequently, we have

measq, (GF)

(31) R(G, 5,0)(v)

SIS SN Y L

deD(7.,5) REN/Ny

measg, (°Z")

Note that the map (d,n) — (nd)~! - (S,6) induces a bijection
D(’Ym S) x N/Nd — T(Vs)/H

Hence the sum in Equation (31) matches the sum in Lemma 10.0.4.
Fix d € D(~s,S) and n € N/ Ny, and set

J'=(nd)™ ], U= G5 = Ad(nd) U, (8',6) = (nd) ™"+ (S,0), ="

We then have

o measq, (U)
dg* / f(gi)di = g / / f~(ndhi) d
/UndHF/ZF L., ’y( ) measgp (H N U HFZF 7

From the definitions,

Fondhi) = 050) - Q"7 (M) = () - QS (i),
As in the proof of Lemma 8.0.11, the projection H N Gy — Gy allows us to
identify
(Gy)y, =Hy,
so that
Fy(ndhi) = 0'(v) - Q" (")
Since U = GjF and Hj,F =HNU,

/ dg* / f+(gi) di
UndHF |ZF L,

measqy (G 15)

_ gy ) dh*/ 0'(s) - Qo (M) di.
measdh(H}L,F) /HF/ZF L (%) () d

s

Since the center of H is contained in the F-minisotropic torus S’, we conclude
that Z is the group of K-rational points of the maximal k-split torus in the
center of G.,. Hence, from the definition of R(H,S’,1), we have

. N . Mmeasgy (G
65| ig [ o0 j = measay(G))
UndHF | ZF L., measg, (V72 )

Inserting this into Equation (31) completes the proof of Lemma 10.0.4.

HI( 5) - R(H7S/,1)(’yu).
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10.1. Characters in a simple case. We illustrate Lemma 10.0.4 in the
simple case where v € Gg is strongly regular and topologically semisimple.
We have 75 = v and v, = 1.

Let 7 C T(G) be a GF-orbit. We write

R(G,T) = R(G,S",0)

for any (S',6') € T. Then 7 (v) is nonempty if and only if (S,6) € 7, where
S =G, and 0 € Irro(ST), in which case

T(7) ={($,n.0) : n € N(G,8)"/S"}.
Since R(G~,S,1)(1) =1, Lemma 10.0.4 gives the formula
RGT(v= >  nb@)
neN(G,S)F /SF

if 7(v) is nonempty, and R(G,7T)(7y) = 0 otherwise.
Return now to the situation of Section 9.6, with F' = F,, etc. By Lemma 9.6.1,
7 contains

(Sx,0x) = Ad(qn) - (T, x),

for some A € r~H(w). If S is not GF-conjugate to Sy, then R(G,7T)(y) = 0.
Suppose S = "8y for some h € G¥. Let 6 = h,6), so that

T(y) ={(S,n.0) : neN(G,8)"/S}.
From Lemmas 2.11.2 and 10.0.4 it follows that
RG,T)V) = Y (hgxy)ex()-

yeWMy
From Lemma 9.3.1 we get the following character values.
ProrosiTiON 10.1.1. Suppose v € G’OF“ s strongly reqular and topologi-

cally semisimple. Then ©,, () = 0 unless v lies in a G¥ -conjugate of Sy, and
if v € 'Sy for h € G¥,

0, (1) =e(Gx, Ta) D> (hary)ox(7)-

yewry

11. Reduction formula for stable character integrals

In this section we prove the analogue of Lemma 10.0.4 for stable character
integrals. Fix a G-stable class Tt C T(G). Recall from Lemma 9.4.3 that there
is v € N/T and x € Irrg(T**) such that every pair (S,6) € Ty is of the form

(5,0) = (/T g+x)
for some g € G with g7 F(g) € v.
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Given «y € Gg regular semisimple, with topological Jordan decomposition
Y = YsYu, We define

Too(vs) == {(S,0) € Ty - ~s € S}

This set is a finite disjoint union

fr%_Hfr%;
I

where each (s, 2) is a G -stable class in ¥(G,.), and () is an index set
for these G -stable classes.
Applymg p1, we have

Zt(’}’s) = pl H st 'Ys;

1€1(s)

where each Ty (7s,1) is a G, -stable class in T(G,,), and I (7s) is an index set
for these G, -stable classes There is a surjective map 2 — 4 from [ (7s) to
I(~s), such that

D1 [,j;t(’)/& %)] = IZ;’C (757 Z)
The fiber of this map over ¢ € I(~s) has cardinality
N(i) = [N(G,,8)/8],

where S is any element of Zg(7s,17).
For any G, -stable class 7 C T(G,.), we set

QG T) = > IN(G,,,8")/SN(GE S)|- R(G,., 5, 1).
S€T;/GE,

This will turn out to be a stable p-adic analogue of a Green function. We
will consider the sums Q(G-., Tst(7s, 1)), for i € I(7s). But first we need more
notation.

For each i € [ (7s) and S € T (7s, %), we have a character sum

ZENED DN
oeps (pi)~1(S)

where pii (resp. pé) is the restriction of py (resp. p2) to Tt (Vss 1).
In fact, this sum is independent of S: Given two tori S, 5" € T4 (s, 1), we
have

0@*(%) = 0?9' (7s),

as a special case of Lemma 9.4.4. We therefore define

0X(76) = 05(75),
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for any S € Zg(7s,7). Note that the sum

07 () = Zeg(w

is none other than the character sum 6%(7s), for any S € Zg(7s,4), as defined
in Section 9.4.
Finally, recall (Section 10) that for each GF-orbit T C T, we have defined

T(3) ={(S.0)eT: 1 €5}
Now we are ready to state the reduction formula for stable character integrals.

LEMMA 11.0.2. For v € GOF reqular semisimple, with topological Jordan
decomposition v = YsVu,

0% (7s)
N(7)

RG,Tw)() = Y

: Q(G’st ,Tst(’VSa Z))(Vu)

Proof. Using Lemma 10.0.4, we compute

R(G,To) ()= Y, R(GT)()
TeT./GF

- Z Z 0(’75) ) R(G%v S, 1)(’Yu)

TeT./GF (8,0)eT (v.)/GE,

- Z Z 9(75) ) R(G’Ys7 S, 1)('7u)

i€l(y.) (S,0)€Talyed)/GE,
} : } : 9%‘(%) R
= . 1 u

ici(y) S€Tu(rd)/GE,

=) 0w D |N(G5,15)/SF| -R(G.,8,1) (1)

i€l () SET.\(v2i)/GE.
0X (7 .
i€l(vs)

11.1. A bijection between stable classes of unramified tori. Lemma 11.0.2
reduces the proof of stability to the topologically unipotent set, as follows. Let
Tst(7vs)/GA, denote the set of G -stable classes in Zg(7vs). So Tst(7s)/ G, is
indexed by I(7s)-

We now assume that v € Gg is in fact strongly regular semisimple; that
is, the centralizer of v in G is a torus. Then if g € G and 97 is again in GF',
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we can construct a bijection

to Ta(30)/Gr, = Ta(2) /G,

as follows. Let S € Zg(7s). Since v € GF and has connected centralizer,
g~ F(g) € Z(F,G5,).

Let Z, be the maximal k-split torus in the center of G, . Since S is
F-minisotropic in G, the group of co-invariants of F' in X,(S) has the same
rank as X,(Z,, ). It then follows from [35, Thm.1.2] (see also Lemma 2.6.1)
that the map H(F,S) — H!(F,G.,) is surjective.

This means there is h € G, such that (gh) "1 F(gh) € S. Hence Ad(gh) :
S — 9"S commutes with F, so that %S € Tg (97s).

Suppose also " € Tt (7s), and (S)F = #(SF) for some k € G.,.. This im-
plies that k' F (k) € S. Asabove, there exists b’ € G, such that (gh’) "1 F(gh’) €
S’. Then the element j = gh'kh~'g™! € G.,, satisfies j71F(j) € 9",
Jgh§ = 9h"S' which means that 9"S is G, -stably conjugate to 9"'S’. There-
fore, sending the G._-stable class of S to the G, -stable class of 915 gives a
well-defined injection ¢y, as above. It is straightforward to check that ¢(g-1) is
the inverse of ¢4, so that ¢, is actually a bijection.

We may view ¢4 as a bijection on index sets:

tg  L(s) — I1(%%).
This map has the property that
N(i) = N(1g(2)),

for each i € I(vs).

LEMMA 11.1.1. Let vy € Gg be strongly regular semisimple, with topolog-
ical Jordan decomposition v = YsYu, and let g € G be such that 9y € GF. Let
Tt be a G-stable class in T(G), and assume that for all i € 1(~s),

Q(Grs Tt (75, 9)) () = QUG Zst (975, 19 (4))) (U )
Then

Proof. From Lemma 11.0.2,

(32) RG T = 3 B Q6 Tt )
i€l(vs)

On the other hand, by Lemma 9.4.4 again (this time in full force),

HZX('YS) = 922(2‘) (g’)/s)-
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It follows that

N 0 (s .
B RGINO) = X 4 QG Tt (00,
i€l(vs)
whence the result. O

11.2. Stable characters in a simple case. We illustrate Section 11.1 by
considering the stable version of Section 10.1. As in the latter section, we sup-
pose v € GF is strongly regular and topologically semisimple, and let S = G,.
Let Ty, C T(G) be a G-stable class.

We describe the objects in 11.0.2 in this case. If YA;t(fy) is empty, then
R(G,Ty)(7) = 0. Assume Ty (7) is nonempty. Then there is 6 € Irro(ST) such
that

Too(y) = {(S,n.0) : ne N(G,SF)/SY.

Thus, we may identify I(v) = N(G, SF)/S, and for each n € I(v),

Tst(v,n) = {(S, n.0)}.

The index set I(y) consists of a single element, i, and

Q(Gy, Tat(7,1)) (W) = Q(S,{S}H (1) = 1.

In terms of tori, the map ¢, simply sends S to 9S. Hence the conditions of
Lemma 11.1.1 hold trivially, so that R(G,7) is constant on the G-stable class
of .

Lemma 11.0.2 gives the formula

RG,To)(yv) = >, nb(y).
neN(G,SF)/S

From Lemma 9.6.3 it follows that the sum of characters in the L-packet
II(p,w) is constant on the G-stable class of ~.

12. Transfer to the Lie algebra

Lemma 11.1.1 reduces the proof of stability to the following.

LEMMA 12.0.1. Assume as above that~y € GOF 1s strongly regular semisim-
ple, and g € G is such that 9y € GF'. Let Ty be a G -stable class in T(G.,).
Then

Q(Gr.s Tat) () = Q(Gons 1 7Tst) (T 0)-

We will prove Lemma 12.0.1 under some restrictions on k, to be installed
as they are needed. The first step in the proof of Lemma 12.0.1 is to transfer
the calculation to the Lie algebras g, and g, of G, and Gs, respectively.
We then invoke a deep result of Waldspurger [63], which states that, for groups
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which are inner forms of each other, the fundamental lemma for the Lie algebra
is true.

12.1. Orbital Integrals. Fix v and g as in the statement of Lemma 12.0.1.
Since the calculation takes place mostly in the groups G, and G, we adjust
the notation slightly for clarity. Let H = G, and let h = Lie(H) be the
Lie algebra of H. We fix an additive character A : k — C* which is trivial
on the prime ideal of R but nontrivial on R. Suppose B is a nondegenerate,
symmetric, (F) x H-invariant bilinear form on h. For f € C°(hF), the space of
locally constant, compactly supported functions on h%', we define the Fourier
transform (with respect to B) of f by

f(x) = . f(Y)-A(B(X,Y))dY,
where dY is Haar measure on b, normalized as in Section 5.
Suppose X is a regular semisimple element of h. For f € C®(h%) we
define ugp (f), the orbital integral of f with respect to X, by
dh

X)) =

pi5(f) = 7

/H FHCH(X))F
where C;(X) is the maximal unramified torus in the torus Cy(X) and dh, dt

are Haar measures on HF, Cy(X )F , respectively, normalized as in Section 5.

Remark 12.1.1. If X' € ¥ is H-conjugate to X, then the tori C,(X) and
Ch(X') are H-conjugate. Consequently, if dt’ denotes the Haar measure on
Cy(X'), it follows that the measures % and % determine the same multiple
of the top degree form on the orbit HX = HX"’,

We define [L)I}’F(f) = ,ugF(f) for f € C(hF). In this way, we have a
distribution 4" on C°(hF). Thanks to Harish-Chandra [25, Th. 4.4], we
know that ﬂ)fgp is represented on h¥" by a function, which we also denote by
ﬂgF. (The same result is true for the Fourier transform of any orbital integral.)

12.2. A result of Waldspurger. In this section, H is any connected reduc-
tive k-group splitting over K. As usual, I’ is the Frobenius action on both
H :=H(K), and b := Lie(H). For X € b’ regular semisimple, write

Ad(H)X]F =[] AdHT)X;

where the X; run over a (finite) set of representatives for the Ad(H*")-orbits
in [Ad(H)X]¥ (see §2.9.1). We set

Sk=> k.
7
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The measures used for each orbital integral are compatible, in the sense of
Remark 12.1.1.

Let H* denote a k-quasi-split inner form of H, and let H; be the adjoint
group of H*. Let H* and H}; denote the groups of K-rational points of H*
and H ,, respectively, and let F™* denote the action of Frobenius on H*, H},
and h* = Lie(H*). Choose an inner twist

¢: H— H*.
That is, ¢ is a K-isomorphism, and there is h;; € H}, such that
Ad(h;;) =FfogpoF logle Autg (H™).

Here we implicitly use the isomorphism H'(F, H,q) = H'(k,H,q); see Sec-
tion 2.2. The choice of ¢ defines an injective map Sy from the set of stable
regular semisimple orbits in h% to the set of stable regular semisimple orbits
in (h*)", as follows. If X € ¥, then F*(dp(X)) = Ad(hy)dp(X), so that
the Ad(H™*)-orbit of d¢(X) is F*-stable. If X is regular semisimple, then
so too is d¢(X). The existence of an F*-stable Kostant section shows that
the Ad(H*)-orbit of d¢(X) contains an F*-fixed point X* (see, for example,
[56, 9.5] or [36]). Finally, S, sends [Ad(H)X]F to [Ad(H*)X*]F".

Suppose now that H' is any inner form of H. Let H’ denote the group
of K-rational points of H' and let F’ denote the action of Frobenius on H’
and b/ = Lie(H’). Suppose X € h and X’ € (§')F" are regular semisimple
elements, and ¢: H — H* and ¢': H' — H* are inner twists. We say that X
and X’ are (¢, ¢')-comparable provided that

Sy ([AA(H)X]F) = Sy ([Ad(H) X))
as stable regular semisimple orbits in (h*)*".

Ezample 12.2.1. Take H = G,, as in the situation of Section 12.1. Let
log: Go+ — g be any injective (F) x G-equivariant map which takes regular
semisimple elements to regular semisimple elements. (The existence of such
a map with just these properties follows from [9, p. 333, §7.6, Prop. 10].)
Then Cg(7) is a torus in H, and F(g) = gs for some s € Cy(vy). Moreover,
Ad(g) : H — H' :=9H is an inner twist, with F/ = F. Let X := log(yu).
From [29, Th. 13.4(a)] it follows that X € h and 9X € 9h are regular semisimple
elements. Since F' and Ad(s) fix 7y, it follows that F'(X)=X, and F(9X)=9X.

Suppose ¢: H — H* is an inner twist, and let X* € [Ad(H*)do(X)]F".
One checks that the map ¢’ := ¢ o Ad(g~'): YH — H* is also an inner twist,
and that X* € [Ad(H*)d¢'(“X)]F". Tt follows that X and 9X are (¢, ¢)-
comparable.

Ezxample 12.2.2. Continue with the notation of Example 12.2.1 and also
Section 11.1. Let Ty be an H-stable class in T(H), and let T = 1,7, an
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H'-stable class in (H'), be as in Section 11.1. Suppose Sy € 7y and X is a
g-regular element of Lie(Sg)¥. Let X € [Ad(H)Xo]". Note that X is regular
in g. As in the definition of ¢4, there is h € H such that (gh) ' F(gh) € C(X),
and the elements X and X’ := 9" X ¢ [Ad(H')(X0)]F are (¢, ¢ o Ad(g)™1)-
comparable.

LEMMA 12.2.3. Let ¢: H — H* and ¢': H' — H* denote inner twists.
Suppose X, Y (resp. X', Y") are reqular semisimple elements in b¥ (resp. (§')F").
If X and X' are (¢, ¢')-comparable elliptic elements andY andY' are (¢, ¢')-
comparable elements, then

5% (Y) = e(H,H') - §%,(Y").

Remark 12.2.4. The above lemma may be viewed as more evidence for
Kottwitz’ sign conjecture [33].

Proof. Without loss of generality, H is k-quasi-split, and we may replace
H' by H*. Waldspurger has already shown [63, Th. 1.5] that for X,Y, X', Y’
as in the statement of the lemma,

S%(Y)=c-8%.(Y)

where ¢ is an eighth root of unity. (In the notation of [63], this is actually the
special case s = 1,£ = I of [63, Th. 1.5], and ¢ = va(h*)/va(h).) We will give
two proofs that ¢ = ¢(H, H*).

The first proof uses Shalika germs. For all n € Z we have

S%(@"Y) = ¢ 8T, (@"Y").
From Harish-Chandra [25, Th. 5.1.1], for all n € Z sufficiently large,
N@Y) = D0 p(X) - fio(®™Y)
0e0y(0)
= cp(X) + e(X)-q ™M fio(Y)
00, (0)\{0}

where Op(0) denotes the set of nilpotent HY-orbits in h’, the C?Q(X ) are com-
plex constants, and 0 denotes the zero orbit {0}. A similar statement is true
for $%,. Thus,

cg(X) = lim S?((WMY) = lim c- S’?(/ (@"Y") =c- ) (X').

n—oo n—oo

Let X1, Xo, ..., X, be representatives for the H-orbits in [Ad(H)X]¥". From [25,
Th. 8.1] we have

m o :
ch(x) =315 (X)),
j=1
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where Fg" (X )(X ;) denotes the evaluation of the (unnormalized) Shalika germ
corresponding to the zero orbit at X;.

If the center of H'" is compact, then so too is the center of (H*)!"". Thanks
to Rogawski [49] we have

Cy (X e(H,Z)
1ﬂob( )(Xj) = 4Deg(StH)'

Thus, if the center of HY is compact, we conclude from the above, the fact that
Deg(Stf) > 0, and the fact that c is an eighth root of unity that ¢ = (H, H*).

Suppose that the center Z¥ of H is not compact. Let Hy denote the
derived group of H and let hy denote the Lie algebra of Hy = Hy(K). The
center of Hy is finite and HY' /(HI)Z¥ is a finite group. Without loss of
generality, we assume X € bg . From Lemma 2.9.1, we have that two regular
semisimple elements of h} are H-stably conjugate if and only if they are H-
stably conjugate. However, since two regular semisimple elements of hg may
be H¥-conjugate without being Hf—conjugate, for 1 <17 < m we introduce the

group
HF :={h e HY : thereis an h' € H such that ""X; = X;}.

We have HfZF < Hf g HE, Thus, we can write

m

&ha _ E ~HT
X ’uh*leﬂ'
i=1 heHF/HF

Suppose we can show that the restriction of S?( to bg equals e - S’?f for some

constant e > 0. We would then have cg(X) =e- ng (X). Arguing as in the

previous paragraph, we would again conclude that ¢ = e(H, H*).

To complete the proof, we now show that such a constant e exists. We
use Harish-Chandra’s integral formula for the Fourier transform of a regular
semisimple orbital integral [25, Lemma 7.9]. Since we only wish to establish the
positivity of e, in what follows we are not careful about specifying our invariant
measures nor about accounting for the (positive) constants that occur. Let L
be a compact open subgroup of HY" which lies in H CI; Z¥F. There is a positive
constant, const, so that for regular semisimple Y € f)g

= const - Z Z Z

it heHF/HF qi€HF/H]ZF

/ dg;/A(B(*‘”MKthi))dﬁ
HEZF |ZF L
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which, from the definition of HZF , becomes

= const'z Z ’Hf/H5ZF’ / dgs

i heHF/HF HizZr/Z"
/ A(BEY, M X)) de.
L

We claim that for 1 <ié,5 < m,
\H] /1 Z"| = \Hf/H{ZF\.

In fact, we will show that the group HZF is independent of 7. Note that
HI'/HI'ZT can be characterized as the set of cosets in HY /HI'ZF which
intersect (Cy(X;))! nontrivially. Thus, it is enough to show that for h € HF

W(HS Z7) 0 (Cu(X0)" + 2 <= h(HEZP) N (Cr(X,)T # 2.

Suppose h € H and g € HY Z¥ so that hg € (Cy(X;))¥. It is enough to pro-
duce a ¢’ € HY ZF such that hg' € (Cy(X;))F. Since X; and X; are Hy-stably
conjugate, there is an b’ € Hy so that ¥ X; = X;. Since Cy(X;) is abelian, this
implies that "' ((Cy(X;))F) = (Cu(X;))¥. Consequently, "' (hg) € (Cu(X;))F
and "' (hg) = h(h"'Whg(h')~') € hHyZ¥. Set ¢’ := (h~'h'hg(h/)~1). Note
that g € HY' Z implies ¢’ € Hq(ZF). But also ¢’ € h™1(Cy (X)) € HY, so
in fact ¢ € HE ZF and hg' € (Cu(X;))F, as desired.

Therefore,
§% (V) = const - Z Z / dgs / A(B(%'y,h X)) de
ey THEZTIZT L
=const’-» Y / dgs / ABlY, M X)) de. O
7 }“LGHF/HZF Hf/(HfﬁZF) L

12.3. Another calculation of Waldspurger's sign. In this section we give a
second proof of Lemma 12.2.3 in terms of our pure inner forms G. This proof
continues in the vein of [63].

For A € X,,, we have a pure inner form G) of G with Frobenius F\, =
Ad(uy) o F. In particular G = G is k-quasi-split. Note that Gy = G as
groups; the subscript indicates the variation in k-structure. To simplify the
notation, we write o := wv, and set X := (o).

We define an inner twisting ¢y : Gy — Go by ¢x = Ad(h)), where
hy = pop;1 and py, po € G satisfy the equations

(34) Py Fpo) =w,  pyluaF(py) = taw

of Chapter 2.7. Let ®(T) denote the set of roots of T in G. Likewise, let
T) = Ad(p,)T, and let ®(T,) denote the set of roots of T) in G.
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The map Ad(py) : T — T, intertwines F, on T with F\ on T). It
induces a map ®(T) — ®(T,) given by
a— ay:=aoAd(py) 7},
satisfying
F)\ Q) = (O’ . Oé))\.

(Recall that F,, acts on ®(T) via o.)
Fix A € X,,. By Hilbert’s Theorem 90, there exists aset {E,, : a € ®(T)}
of T y-root vectors in g having the property that

Fx B, = E(o“a)y
The transformed root vectors
By = ¢a(Ea,)

are only preserved by F up to scalar multiples. That is, for each o € ®(T)
there is c,, € k such that

F(ca, Ep) = C(cr-oz),\Ew<

o-a”

A straightforward computation shows, for each o € ®(T), that

(35) Frob(ca,) = @M - cg.q),

Following [63], a ¥-orbit in ®(T) is called symmetric if it is closed under
o — —a and anti-symmetric otherwise. Let Sym(T) be a set of representatives
for the symmetric 3-orbits in ®(T).

For any o € ®(T), define

Yao={r€X: 7 a=a},
and let ko C k be the fixed field of the pre-image of ¥, in Gal(k/k).
For each a € Sym(T), define
Yia={r€¥: 7-a=+a},
and let k4, C k be the fixed field of the pre-image of X1, in Gal(k/k). There
is an integer m = m(«) such that
Yia={("), Yo = (%M.

We have 0"« = —a. The extension k,/k is unramified of degree 2m.
Moreover, kg /k+q is an unramified quadratic extension, hence corresponds
— {£1} given by

via class-field theory to the character x, : k3,

Xa(z) = (=1)"),

where v is the valuation on K. Using [63], Lemma 12.2.3 is equivalent to the
following formula.
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LEMMA 12.3.1.

H Xa(Cay * C—ay) = (G, Go).
aeSym(T)

The proof requires a few steps.

LEMMA 12.3.2. There exists

— . oo g(m—1),
Cop " Coay =N (Nato-at+o Oc>’

where m = m(«) and n € kX, is a norm from k.
Proof. Applying Equation (35) repeatedly,
Clok-a)y = Frob*(cqa, ) - w—Morattata)
for kK > 1. Since ¢ - a = —q,

— . (m—=1) o
Cqy = Frobm(cak) e (No-ot+o e a)'

Hence
Cay * C—ay = Ca, - Frob™(cq, ) - wha) | p-(datoattom a)
Since ¢, € kg, this proves the claim, with
n = cq, - Frob™(ca, ) - @?M. O

Choose a set of positive roots @ (T) C ®(T), and set

2p = Z 0.
)

Bed+(T
LEMMA 12.3.3.

Z MNa+o-a+-+0™I71a) = (X, 20) mod 2.
a€Sym(T)

Proof. Let O, ...,0;, be a choice of one from each pair {0}, —O;} of anti-
symmetric X-orbits in ®(T), and let Oy, ..., O, be the symmetric ¥-orbits. For
a € ®(T), define |a| = a if « € ®T(T), and |a| = —a if —a € T(T). Set

|0 = {lal: a€ O}, Of =0;n®*(T).

Then we have a disjoint union

p q
oH(T) =10l u [T o5
i=1 j=1
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For any 1 <7 < p,

Y 8= a mod2Zd(T).

BellOfl ac0;
The latter sum is Y-invariant, hence it vanishes, since o is elliptic. Then,
q
M2y =>" > (AB) mod 2.
J=1 geof
Working modulo two, we can replace each sum over (’);r by

m(a)—1
<)‘7 Uk ’ Oé>,
k=0

for any o € O;. This proves the lemma. O

Combining Lemmas 12.3.2 and 12.3.3, we get

COROLLARY 12.3.4.

H Xa(ca/\ . C,a/\) = (_1)()\,2p>.

a€Sym(T)

We next give another expression for £(Gy, Gg). Let zy € W, be the
projection of uy. Then z) and ¢ act linearly on the Q-vector space V := X ®Q
(recall that X = X.(T)), and the k-rank of G, is given by

rk(G)) = dim V7,
Let det(A) denote the determinant of an operator A € GL(V).

LEMMA 12.3.5.
€(G)\,G0) = det(Z)\).

Proof. Since z ¥ has finite order and preserves the lattice X C V,
det(z;ﬂ) _ (_1)dim\/fdisz>\19.

Likewise, | |
det(9) = (—1)dimV—dim Ve

Together, these give
det(1) = (~1)ImV>" =0V — £(Gy, Go). 0

To prove Lemma 12.3.1 it remains to prove

LEMMA 12.3.6.
det(zy) = (—=1)M2).
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Proof. From the definitions we see that z) = z\,, for any v € X° + XW,
where X° is the co-root lattice of T. Likewise, the parity of (\,2p) depends
only on the class of X in X/(X°+ X"W). We have det(zy) = (=1)?) = 41 if
AeXe+xW.

Assume now that A ¢ X° + X W Recall that T,q is the image of T in
the adjoint group G,q of G, and that X,q = X.(Taq). We may view X° as a
subgroup of X,4q. The natural map X — X,4 induces an injection

X/(X°+ X") = Xaa/XC.

The nontrivial elements in the group X,q/X° are represented by the minuscule
co-weights of Taq [9, p. 240]. Hence the class of A in X/(X°+X") determines
a simple root o € ®T(T) such that (X, 3) = 0 for all simple roots 3 # «, and
(A, a) = 1. Moreover, we have a disjoint union

‘I)(T) = 1 LUPyLI Py,

where
O, ={Be€®(T): (\3) =i}

(see [9, p. 239]).

Iwahori-Matsumoto [30, 1.18] show that z) is W,-conjugate to the unique
element of W, whose set of positive roots made negative is exactly ®;. This
implies that

det(zy) = (—=1)I%1.

On the other hand, since
OT(T) = [®g N & (T)| U &y,

it follows that

(N 20) = D (A, B) = 4].

BeD,

This proves the present lemma, as well as Lemma 12.3.1. O

12.4. Murnaghan-Kirillov theory. In this section, H is any connected re-
ductive k-group, split over K, with Frobenius F on H := H(K). Let Hy+, ho+
denote respectively the sets of topologically unipotent elements in H, and
topologically nilpotent elements in h = Lie(H).

We make the following restrictions on k& and H. Recall that ¢, a power of
a prime p, is the cardinality of the residue field f. Let e denote the ramification
degree of k over Q,, and let ¥(H) be the number of positive roots in H.

RESTRICTIONS 12.4.1. (1) ¢ > v(H).

(2) There is a faithful k-embedding ¢ : H — GL,, such that p > (2 + e)n.
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Note that if G is as in the previous part of the paper, H is the identity
component of the centralizer of a topological semisimple element in Gy, and
Restrictions 12.4.1 hold for G and some n, then they hold for H, with the
same n.

In Appendices A and B we will prove:

LEMMA 12.4.2. Assume Restrictions 12.4.1 hold. Then we have:

(1) For every F-stable facet J C B(H) and mazimal F-stable torus S C Hy
with Lie algebra Ls, there is an element Xg € LSF whose centralizer in Hy
is exactly S.

(2) There is an (F) x H-equivariant bijection log : Hp+ — bo+, which
induces, for every minimal F-stable facet J C B(H), an (F) x Hj-
equivariant bijection from the set of unipotent elements of Hy to the set
of nilpotent elements of the Lie algebra of H .

Recall that for S € T(H) there is a unique F-stable facet J C B(H) such
that JI' = B(S)F', and that S denotes the image of S in H;. Let Z denote
the maximal k-split torus in the center of H. The following lemma is a special
case of a result in [18].

LEMMA 12.4.3. Assume Restrictions 12.4.1 hold. For each S € T(H),
with (S, J) as above, and any Xs € Lie(S) N hf; whose projection to Lg s an
element Xs as in 12.4.2, we have the equality

R(H, 5,1)(v) = £(H, Z) - i, (log(7)),

for every regular semisimple v € HOFJr, where log is as in Lemma 12.4.2.

Proof. Fix a regular semisimple v € Héi . Let d¢ denote the Haar measure
on Hf with measdg(Hf) = 1. Now,

IIleanZ(ZJ ) / * / SHy (he
R(H,S, 1 = dh R dr.
( )(’Y) eanh( E[JF) HF/ZF Hf S,l( ’Y)

On the other hand, from [2, Prop. 3.3.1], we can write

36

(AH)F( ) measg: (Z)) / dh* / a0 | AB(EMX, X)) dl'
- : y AAS

Hxs measas(Crr(Xs)E) Juejzr © Jur© Jur

where X = log~y and ds is the Haar measure on (Cx(Xs))¥, normalized as
in Section 5. (Note that in [2] the quotient measure is normalized slightly
differently.)

From [2, Lemma 6.1.1] we see that the inner integral in Equation (36) is
zero unless "X € f)§ . Consequently, it is enough to show that if "X ¢ f)§ ,
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then

e(H,Z) - measqn(HY) .
measqs((Cr(Xs))h) HY

(37)  REs("y) = A(B("" X, Xs))d'.

But since
S
‘1/2’

measqs((Cr(Xs)))) = ¥

and
e(H,Z) =¢(H;,S)

because S is minisotropic, Equation (37) follows immediately from [31, Th. 3]
and the properties of the map log in Lemma 12.4.2. |

12.5. Completion of the proof of stability. In this section, we prove 12.0.1,
assuming that Restrictions 12.4.1 are in place.

Let Ty be an H-stable class in T(H). We fix Sy € Ty and X := Xg, € b
as in 12.4.3.

LEMMA 12.5.1. The map X — Cg(X) induces a surjective map
c: [Ad(H) - Xo)F /HF — T /HF,

whose fiber over the HE -orbit of S € Ty, is in bijection with N(H,ST)/SN(HY | S).

Proof. Note that

[Ad(H) - Xo)F ={"Xo: he H, and h™'F(h) € Sy},
and recall that
T ={"So: he H, and "(S) = ("Sp)F}.
Since h='F(h) € Sp if and only if "(S{") = ("Sp)¥, it follows that
{Ca(X): X € [Ad(H) - Xo]"} = T

One checks that for k,h € H with *X,"X ¢ pF', we have that Cg(*X)
is H-conjugate to Cq("X) if and only if there is ¢ € H such that k='¢h €
N(H,SE). 1t follows that the fiber of ¢ over the H-orbit of ¥Sy consists of
the distinct H-orbits Ad(H)(9"X), as n ranges over coset representatives
for N(H, (¥Sp)F)/kSoN(H* £ Sp). O

LEMMA 12.5.2. If Restrictions 12.4.1 hold, then Lemma 12.0.1 holds.
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Proof. Using Lemmas 12.4.3 and 12.5.1, we have

QH,T)(w) = Y, |IN(H,S")/SN(H",S)|- R(H,S,1)()

SeTy/HF
:5(H7Z) : Z ‘N(Hv SF)/SN(HFNS)’ 'ﬂ§§(10g<7u))
SeT./HF
—emz) Yl (g

Xe[Ad(H)-Xo]F/HF
—¢(H,Z) - S;O(log(%)).

A similar result holds for Q(YH, 1475 )(9yu). The result now follows from Ex-
amples 12.2.1, 12.2.2 and Lemma 12.2.3. O

13. L-packets arising from the opposition involution

We illustrate our L-packets with a canonical example. For simplicity, take
G to be absolutely quasi-simple and simply connected, and let w, be the unique
element of W, such that w, - C = —C. Up to isomorphism, there is a unique
K-split k-structure on G for which the Frobenius F acts on X by 9 = —w,.
This k-structure is quasi-split, and we have H'(F,G) = 1.

We tabulate the groups G below, using their names from the tables of
[60], and give the number r := [XY, : j(XV)] of generic representations in an
L-packet II(p) (see Lemma 6.2.2).

G 2A/2m 2A/2m71 Bn Cn D2m 2D2m+1 G2 F4 2E6 E7 E8

r 1 2 2 2 4 2 1 1 1 2 1

Now let ¢ be a TRSELP whose associated w is w,. Since w,9 = —Id, the
L-packet II(p) is parametrized by

Irr(Cy) = X/2X,

where X = X° is the co-root lattice of T in G. In particular, |II(p)| = 27,
where n is the absolute rank of G. With Haar measure normalized as in
Section 5.3, each representation m € II(y) has formal degree

Deg(m) = (¢ + ¢~ V%)™

Since W2o? = W,, the full Weyl group W, acts on Irr(Cy). This action has
several interpretations.

First, by Lemma 9.6.1, the W,-orbits on X/2X are in bijection with
the G¥-orbits in the G-stable class 7,,. The tori in this stable class are
k-isomorphic to UT.
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Second, the Wy-orbits in X/2X are in bijection, via evaluation at —1,
with conjugacy-classes of 2-torsion elements in G (or G, since G is simply-
connected, and Lemma 2.9.1 applies). For each A € X, we have

Ty = §t>‘ - 0,
and the root datum, with Fy-action, of G, is that of the centralizer in G
of A(—1). The generic representations in II(¢) correspond to the 2-torsion
elements in the center of G.

For exceptional groups, the 2-torsion picture places a strong limitation on
the type of inducing parahorics that appear in II(p). For example, in Eg there
are three Wy-orbits in X/2X. The L-packet II(p) has 256 = 1 + 120 4 135
representations, induced from parahoric subgroups of type Fs, AiFE7, Ds,
respectively.

Third and finally, the generic representations in II(¢) are parametrized by
the W, -invariants:

TIrr(Cp ) gen = Irr(C) V.
Containment “C” is shown in Remark 6.2.5. For the other containment, note
that a W-invariant element in X,q/2X.q corresponds to a central 2-torsion
element in G,q, hence must be trivial. Containment “O” now follows from
Lemma 6.2.1.

Appendix A. Good bilinear forms and regular elements

In the appendices, we prove various results used in the proof of stability.
Here G is any connected reductive k-group, not necessarily split over K, and
F is the corresponding Frobenius automorphism of G.

A.1. Good bilinear forms. We say that a symmetric bilinear form B on
g is “good” if B is (F) x G-equivariant, nondegenerate, and restricts to the
Killing form, B’, on the derived algebra g’ = [g, g] of g.

Let g ¢, gz,++ be the Moy-Prasad filtration subalgebras of g attached to
x € B(G) and t € R. (See §B.5 below for a brief introduction to Moy-Prasad
filtrations.)

LEMMA A.1.1. Ifp>n+1, wheren > 2 is the dimension of a faithful
k-representation of G, then there exists a good bilinear form B on g which
induces, for all x € B(G) and for all t € R, a nondegenerate pairing

Ot/ Bu,t+ X O (—t)/ Oz, (—t)+ — S
Remark A.1.2. If B satisfies Lemma A.1.1 and z is F-fixed, then the
induced pairing,
gx,t/ﬂx,t*’ X ga;,(—t)/gw,(—t)Jr — 35,

is (F) x Gg-equivariant.
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Proof. The existence of such a form B follows from the proof of
[4, Prop. 4.1] under the condition that p + B'(H,, H,) for any root « of a
maximal torus T C G, where H, is the corresponding Chevalley basis vector
in the Lie algebra of T.

Let g1,...,9, be the simple factors of g’. Let m; be the sum of the
coefficients in the expression of the highest co-root of g; in terms of simple co-
roots. From [54, 1.4.8], any prime dividing B'(H,, H,) must divide 6(m;} + 1),
where g; is the factor containing a.

Let m* = max{m; : 1 < ¢ < r}. We have n > m*. To prove this,
one may assume g simple, and check the result case-by-case (recall that k has
characteristic zero). The result follows. dJ

A.2. Regular elements. Suppose J is an F-stable facet in B(G) and S is a
maximal f-torus in Gy. We wish to establish conditions on p and ¢ which will
guarantee that the Lie algebra Lg contains a regular semisimple element of L ;.

Let Fy be the g-power Frobenius of §F/f. Let ®; be the set of F-roots of
G with respect to S, and let £ = dim Lg. There is a permutation 7 of ®; such
that

aoF =Fyor(a)
for all & € ®;. Let d be the order of 7. Let ®; be the set of orbits in ®; under

the group generated by 7 and a — —a.

LEMMA A.2.1. Ifp+# 2 and q > @J‘, then Lg contains a reqular element
of Lj.
Proof. Set fq := fFéi, L‘Sl = Lgd. The f-linear map
tr: Lgl — LE,
given by
d-1
trX =) Fi(X)
§=0

has the property that for all a € ®;, the composition « o tr is not identically
Zero on Lg. Indeed, suppose there exists a € ®; for which « o tr is zero. Since
S is f4-split, we can assume that the Chevalley basis vector H, belongs to Lcsl.
For all t € §4, we have

0= a(tr(tHy))
0(tHy + tIHoq + - + 19"

-1

_ Hoory)
= t{a, &) + t%a, 7a) + -+ 19 (o, 79 1),

Since p # 2, we have (o, &) # 0. Hence we have a nonzero polynomial of degree
at most g%~ but with ¢¢ zeros in §, a contradiction.
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Thus, for each a € ®; we have a nonzero f-linear map
aotr: L‘Sl — fq-
Let Z, be the kernel of this linear map. Since
Fo(r(a)(tr X)) = a(tr X),

we have Z (q) = Zo and Z, = Z_,. Hence the subspace Z, depends only on
the image of av in @ ;.
It suffices to show that the set

L=\ | 2
acd;

is nonempty. We have

o d ld 3
181 = L8| = | U Za| = ¢~ |8,] 125,
acd,
where 3 is chosen so that |Z3| = max{|Z,|: a € ®;}. Since dim; Zz < d — 1,
we have |Zg| < ¢““~1. Consequently,

’Lg‘ > qéd _ ‘(T)J|q£d71.
Therefore ¢ > @ J| ensures that Lg is nonempty. O

Note that
@] < v(g),

where v(g) is the number of positive (absolute) roots in g.

If p is not a torsion prime for Gz, then the centralizer in G; of any semisim-
ple element in L; is connected [58, Th. 3.14]. The torsion primes of G; are
also torsion primes of G. Consequently, if p is not a torsion prime for G, then
any regular element of Lg has centralizer equal to S. The torsion primes of G
are less than the number m* defined in the proof of Lemma A.1.1. Putting
all this together with Lemma A.2.1 gives the following result. Let n be as in
Lemma A.1.1.

LEMMA A.2.2. Ifp>n+1 and q > v(g), then for every F'-stable facet J
in B(G), and every mazimal F-stable maximal torus S C Gy, the Lie algebra
Lg contains an element whose centralizer in Gy is exactly S.

Appendix B. A logarithm mapping for G

Let e denote the ramification degree of k over @, and let ¢ : G — GL,,
be a faithful k-representation. We suppose that v(K*) = Z where v is the
valuation on K. For notational convenience we sometimes write (G)y+ instead
of (G0+>F.

The purpose of this appendix is to prove the following lemma.
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LEMMA B.0.3. If p > (2 + e)n, then there exists an (F') x G-equivariant
bijective map
log: Go+ — do+

which, for each F-stable facet J in B(G), induces a (F) X Gj-equivariant bi-
jective map from the set of unipotent elements in Gy to the set of nilpotent
elements in Ly.

B.1. The exponential map for the general linear group. Recall that ¢ is
the order of the residue field of k. For each X € gl,,(k) we have X € gl,,(k)o+
if and only if |u| < ¢~'/™ for each eigenvalue p of X. For each g € GL,(k), we
have g € GLy(k)o+ if and only if |u — 1| < ¢~/ for each eigenvalue p of g.

We begin with a technical result.

LEMMA B.1.1. If p > en+ 1, then

(1) T < q " for j > 2 and
4!
qu/n

2 - 0.
@) 17!

Proof. Set

, J J J
AG) = M n M ; M e

Note that

qu/n qij/n

T geaw 4

To establish item (1) it is enough to show

and to establish item (2) it is enough to show
N —J
39 neA(j) —j < .
(39) 0-i< 525
Write

¢
J= sz’pz
=0
with b; € {0,1,2,...,(p — 1)} and by # 0. Now,
. l 4
-
p t
for 1 <t < ¢. Consequently, (p — 1)A(j) = Zf:o bi(p' — 1) = j — >_b;. Thus,
enA(j) < (p—1DA@J) < (G - 1),
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establishing (38), and

(p—1)(neA(j) = j)=nej —ney bi— (p—1)j
<(ne—p+1)j<—j

establishing (39). O

Our assumption p > (2 + e)n ensures that p > en + 1. Thus, thanks to
Lemma B.1.1 and [25, §10.1], the map exp defined by
X — Z o
=0
converges to a GL,(k)-equivariant bijective analytic map from gl (k)o+ to
GL,(k)o+. We extend exp to an (F) x GL,(K)-equivariant bijective ana-
lytic map from gl,(K)o+ to GL,(K)p+ as follows. For each m € Z>;, by
replacing k& by K*" in the discussion above, we obtain an analytic map
expy,: (gl (K)o+ )™ — (GLn(K)o+)™™. Thus, if X € gl,(K)o+, we may
choose m € Z>1 so that X € (gl,(K)o+)"" and define exp(X) := exp,,(X) €
(GLp(K)o+)¥™ € GLu(K)p+. This gives a well-defined (F) x GL,,(K)-equi-
variant bijective analytic map from gl,, (K )+ to GL;, (K )g+.
For each facet J in B(GL,(K)), the map exp takes gl,,(K);Ngl,(K)o+ to
GL,(K)s N GLy(K)o+. Finally, the map exp also takes the Haar measure on
gl,,(k) into the Haar measure on GL,, (k).

B.2. The logarithmic mapping v. From [9, III, §7.3, 2, Prop. 3|, there
is a neighborhood V of 0 in g’ and a map ¢: V — G¥ such that ¢(V) is an
open subgroup of G and ¢: V' — ¢(V) is a k-analytic isomorphism of analytic
manifolds with the property that ¢(mX) = ¢(X)™ for all m € Z and for all
X € V. From [9, III, §7.6, 6, Prop. 10|, there is a neighborhood U of the
identity in (G¥)o+ and a unique k-analytic map v: (G¥)o+ — g such that
Y(U) =V, ¢porp =1y, and ¥(g™) = map(g) for all g € (GF)p+ and all m € Z.
Note that 1 is locally injective, hence injective.

Recall that the exponential map, exp, for the general linear group was
defined in Section B.1. The unique map from GL, (k)o+ to gl,, (k) determined
(in the sense of the previous paragraph) by exp is called log. It has the usual
power series expansion. Since p > (2+e)n > en + 1, the map log: gl,,(k)o+ —
GL,,(k)o+ is the inverse of exp: GL,(k)o+ — gl,(k)o+ (see, for example, [25,
Lemma 10.1]).

From [9, III, §4.4, Cor. 2] there is a neighborhood V'’ C V in g’ such that

(40) P(d(X)) = exp(dp(X))
for all X € V' and
dp(¥(g)) = log(v(g))
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for all g € ¢(V’). Suppose g € (G)}.. Choose m € Z>1 so that g*" € (V).
Now,

de(ip(g)) =p ™ - dp((g"")) = p~™ -log(p(g"")) = log(v(g)).
Thus

(41) de(¥(g)) = log(e(g))
for all g € (Go+)F".

B.3. An extension of 1b. The map 1 has a unique extension, which we
shall also call ¥, to an (F') x G-equivariant map from Gy+ to g. Indeed, for
each m € Zs, by replacing k by K™ in the discussion above, we obtain a
(unique) K" -analytic map 9, : (Go+)F™" — gf™ for which

de(m(g)) = log(p(g))
for all g € (Go+)F™. Thus, since dy is injective, for m’ > m > 1 we have
Y (9) = ¥m(g) whenever g € (Go+)F™. In particular, 1,,(g) = 11(g) when-
ever g € (Go+)F. Thus, we may define ¢: Go+ — g by setting ¥(g) = 1¥m(g)
whenever g € (Gg+)F™. To see that v is (F) x G - equivariant, it is enough to
check that it is F-equivariant. Since dy is injective, it is enough to check that
dp(Y(Fg)) = dp(F(1(g))) for all g € Go+. However,

dp(Y(Fg)) =log(p(Fg)) = F'log(v(g))
=Fdp(y(g)) = dp(F¢(g)).

B.4. The adjoint representation and 1. Suppose Y € gl,, (K )g+. Since the
valuations of the eigenvalues of ad(Y") are bounded (below) by those of Y, and
p > (2 + e)n, the power series for exp(ad(Y)) converges in GL(gl,)(K), and
we have

(42) exp(ad(Y)) = Ad(exp(Y)).
Similarly, for all g € GL,,(K)o+,
(43) log(Ad(g)) = ad(log(g)).

For h € Gy+, we define log(Ad(h)) € gl(g)(K) by
log(Ad(h)) = — Y Mﬂ‘j(h)yn.
m>1
Thus, for all h € Gy+ and X € g,
delad(y(h))X] = [ad(dp (¥ (h)))]de(X)  (from Equation (41))
= [ad(log(¢(h)))]de(X) (from Equation (43))
= [log(Ad(p(h)))]de(X)
= dip(log(Ad(h))(X)).
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Since dp is injective, we conclude that
(44) log(Ad(h))X = ad(t(k))X
for all h € Go+ and X € g.

B.5. A brief introduction to the filtrations of Moy and Prasad. We recall
here what we need from the theory of Moy-Prasad filtration lattices ([44], [43]).

Let T denote the group of K-rational points of a maximally K-split torus
in G. Let A denote the apartment in B(G) corresponding to T, let & denote
the set of roots of GG with respect to T', and let A denote the set of affine roots
of G with respect to T' and our valuation on K. The elements of A are affine
functions on A. For § € A, we let § € ® denote the gradient of 4.

For a € ®, let g, denote the corresponding root space in g. For § € A,
define the lattices ggr and gs in g; as follows: Choose a facet J in A on which
0 is zero. Set

g5 :=gsNgs and gy == g} N g
These definitions are independent of the choice of J.

Since G is K-quasi-split, the centralizer M := Cg(T) is the group of
K-rational points of a maximal K-torus M of G. Let m denote the Lie algebra
of M. For s € R, we define

mg = {X e m|v(dx(X)) > s for all x € X*(M)}.
For z € A and s € R, we define the lattice

Gzs =M D Z gs-
deN; §(x)>s

For t > s we have g, ; C g, in fact,
ng,s =6, and mgx,s = {0}
S

We set

Gz st = U Yt

t>s
If y is in B(G), then there is a g in G so that gy € A. For s € R, we define
Oy,s = I9z,s and gy o+ =99, o+

This is independent of the choice of g.
Recall [3, §3] that, for s € R, we have the closed, open, G-invariant subsets

gs ‘= 9z.s and ge+ = U gt-
zeB(G) t>s

For each s € R>g and each z € B(G), we also define, in a completely anal-
ogous manner, Moy-Prasad filtration subgroups G, s < Gz 0 = G, (see [43]).
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The Moy-Prasad filtration lattices and subgroups have the following prop-
erties (which we shall use without further comment). The first two properties
are proved in [45, §2]; the third is a formal consequence of the definitions, and
the final is [1, Prop. 1.4.3].

(1) For s,t € R and x € B(G), we have [gz.t, 8z,s] C 8z, (1+5)-
(2) For s,t € R> and x € B(G), we have (Gus, Gut) C Gy (144)-
(3) For s € R and = € B(G) we have

W Bz,s = Bz, (s+1)-
(4) For t € R>g, s € R, and z € B(G), we have (Ad(g) — 1)gz,s C ga s+t for
all g € Gy

B.5.1. A technical result. The purpose of this section is to establish
a (weak) connection between the Moy-Prasad filtrations for g and those for
gl,,(K). We do this so as to avoid introducing another constant (r¢ below)
into our hypotheses.

Fix a facet J C B(G). Define a continuous, piecewise-linear function
r: J — Ry by sending x € J to the unique real number r(x) for which

gj = Bz (x) G 9z r(x)*

After extending by zero, the function r becomes a continuous function on the
closure of .J. Hence, we may choose x; € J so that

r(xy) > r(x)

for all x in the closure of J. Define r; := r(z;). The (rational) number r;
depends only on the G-conjugacy class of J. We set

rg = minry.
J

Note that, if J is F-stable, then, from the concavity of r and the Bruhat-
Tits fixed-point theorem (see, for example, [60, §2.3.1]), we may assume that
xy is F-fixed.

LEMMA B.5.1. If C is an alcove in B(G), then rg = rc.

Proof. Without loss of generality, G is semisimple. We can write
B(G) =] B(G:)
i=1

where the G; are the simple factors of G. This decomposition respects the
polysimplicial structure of B(G). If, with respect to this decomposition, z € J
is written as

(1, Tm),
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then, from the way in which the Moy-Prasad filtration lattices are defined,

r(z) = min{ri(z1),...,rm(Tm)}

Here 71, ..., are the analogues of r: J — R. Hence, we may in fact assume
that G is simple.

Let J be a facet in B(G) and let C' be an alcove in B(G). We shall show
that ry > ro. After conjugating, we may assume that J is contained in the
boundary of C' and that C C A. Let A¢ denote the set of simple affine roots
in A determined by C. Let A be the set

{6 Ac|resjd #0}={0 € Ac|res;d > 0}.

We set
/ .
r'; := max min J(x
T RET sen, (@),
and we let s denote the smallest positive number for which mg; # my+. From
the way in which the Moy-Prasad filtration lattices are defined, we have

r; =min{s,7;} and r¢ = min{s,r;}.

Thus, it is enough to show that r¢, <7/}
One can show that

=T vs/[ D C TI vl

dEA 0'eA; feA~N{d'}

where 75 denotes the maximum value that ¢ obtains on the closure of J (and
hence, on the closure of C).

Suppose J' is a facet in the closure of C' such that J is contained in the
closure of J' and dim(J’) = dim(J) + 1. Let § € A¢ denote the affine root for
which Ay = Ay U {5} Algebraic manipulation yields
re
T = qufrf] -Tf] < 7{].

By iterating the above process, we conclude that ri < 77/). O

Remark B.5.2. If G is simple modulo its center and K-split, then

re=(1+ Zma)*l,

where m,, runs over the coefficients of the simple roots in the expression for

the highest root. In particular, for G = GL,(K), we have rg = n~1.

LEMMA B.5.3.
9o+ = Ore 7 Or-
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Proof. Let C be an alcove in B(G). For all J in the closure of C' we have
g}“ C gJC“. Consequently
gor = |J %0

geG

Thus, the equality follows from the fact that gJCr = Grore-

As in the proof of Lemma B.5.1, we may assume that G is simple; we use
the notation of that proof.

Suppose g, = 9,4 Under this assumption, from [3, Cor. 3.2.2] we have
Jecre C Bperd + N. Thus, from, for example, [17, §4.1.2] or [43, Prop. 4.3],
every coset Z in gz o/ Bt is killed by a one-parameter subgroup of M :=

My /MJ’ ; that is, for each Z there exists a one-parameter subgroup pu = u=z
of the f-group M so that lim;_q #tZ = (0. Consequently, in order to show
that g,, # 9 it is enough to find an X € g, . for which the coset Zx :=
X+ Bo it is not killed by any one-parameter subgroup of M.

If s < 7y, then choose X € my \ mg+. Since M is abelian, no one-
parameter subgroup of M can kill Zx. If s > r(,, then for each 6 € Ac, we
may choose X in the root space corresponding to the gradient of § so that

X5 € Geore Vet Xs & @zorg+- From, for example, [13, Prop. 1.2], the coset
EX for
X = Z X
6

cannot be killed by a one-parameter subgroup of M. O
LEMMA B.5.4. We have r¢ > n~'. In particular, Gé = Gye,1/n and
chr = Bzc,1/n-

Proof. Since we are assuming that p > (2 + e)n, it follows that every
K-torus in G or GL, splits over a tame extension of K. Hence, from the
discussion in [3, §3.6] we have

9N g, (K)sr = g+
and
gNgl,(K)s = gs

for all s. From Remark B.5.2 and Lemma B.5.3, we have gl,, (K )o+ = gl,,(K)1/,,
# 90, (K)1/n+. We conclude that 1/n < rg. For the last assertion, note that
Geor = Gy o+ for 0 <r < rg, and likewise for g, ,. O

B.6. A logarithmic map for semisimple groups. Suppose that G is semi-
simple.

Moy-Prasad filtrations and the adjoint representation.
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LEMMA B.6.1. Suppose z € B(G), t € R, and X € g, ;. Now,
X¢ Gz t+
if and only if there exist ¢ € R and Q € gz g \ @z q+ such that
ad(X)Q € 8a,(t4q) ™ Ba,(t44)*-

Proof. “<=": Suppose X € g, +. Then for all ¢ € R and for all Q € g, 4
we have

ad(X)Q € 9z, (t+9)+>

a contradiction.
“=": From Lemma A.1.1, there exists Y € g5 —+ \ g, (—)+ such that

(45) B(X,Y) € R*.

For all s € R we have
(ad(X)ad(Y))ge.s C ga,s-

Since G is semisimple, we have that B is the Killing form. We conclude from
Equation (45) that there exist a ¢ € R and a Z € g, (114) \ 04,(14¢)+ Such that

ad(X)(ad(Y)Z) € O, (t+q) Bz, (t+q)*-

Let Q :=ad(Y)Z € gz 4. Since ad(X)Q € gz (14q) \ Ba,(t+q)+» We conclude that
Q € Oz, ™ Bz,q+- [

COROLLARY B.6.2. Suppose = € B(G), s € R, and X € g. Now,
X € gas
if and only if for all q € R and for all ) € gz.4,
ad(X)Q € 9z,(51¢)-

Proof. “=": There is nothing to prove.
“<": If X & g, then there exists ¢ < s such that X € g, \ gz +-
From Lemma B.6.1, as X & g, ;+, there exist ¢ € R and Q € g, 4 such that

ad(X)Q ¢ Ya,(t+q)+- But 9z,(s+q) C Bz, (t+q)+> SO that ad(X)Q ¢ Yaz,(s+q)- u

Moy-Prasad filtrations and v, 1.

Remark B.6.3. Since p > (2+e¢) - n, we have m > n-v(m)+ 2 for m > 2.
If we assume that m > (2n — 1), then m > n - (2+v(m)) — 1.

LEMMA B.6.4. Suppose z € B(G) and t € R>yy,. If g € Gyy, then for
all g € R and for all Q € gz 4

log(Ad(9))Q = (Ad(g) — 1)@ modulo g, (2144)-
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Proof. Fix g € R and Q € g, 4. For m > 1,

(1- fjj(g)) 0
belongs to
1
m 9z, (g+tm) < Bz (q+tm—v(m))

C Bz, (g+2t+t(m—2)—v(m))-
From Remark B.6.3 we have m > n - v(m) + 2. Thus
9z, (g+2t+t(m—2)—v(m)) C Bz, (g+2t)-

Consequently,
log(Ad(g))Q = (Ad(g) — 1)Q modulo g, (442¢)- 0

COROLLARY B.6.5. For all x € B(G) and for all s > 1/n,
w(Gz,s) C 9x,s-

Proof. From Corollary B.6.2, it is enough to show that for all ¢ € R, for
all Q € gz,4, and for all g € G, 4,

ad(¥(9))Q € 9u,(s+q)-

However, from Equation (44),

ad(¢(9))Q = log(Ad(9))@,
and log(Ad(g))Q € g4,(s+q) from Lemma B.6.4. O

Logarithmic behavior of 1.

LEMMA B.6.6. Suppose x € B(G) and s,t € R with s <t. If g € Gy 5
and h € G, then for all ¢ € R and for all Q € g. 4,
(1 —-Ad(gh)"Q = (1—-Ad(9))"Q modulo gy (t1q+(m—1)s)
for allm € Z>1.
Proof. We will argue by induction on m. Suppose z € B(G), s,t € Rsg

with s < ¢, g € Gps, and h € G,;. For ¢ € R and @ € g, 4, we define
T=T(Q,h) € gz, (q+1t) by T := "Q-Q.
When m = 1, we have that for all ¢ € R and for all Q € g, 4
(1-Ad(gh)Q=Q-"Q=Q-9Q—T
=Q —YQ modulo g, ;44 = (1 — Ad(g))Q.
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If

(1- Ad(gh))le =(1- Ad(g))mQ, modulo 9z,(¢ +t+(m—1)s)
for all ¢ € R and for all Q' € g, 4, then for all ¢ € R and for all Q € g, 4
(1= Ad(gh))™ Q= (1 — Ad(gh))™[(1 — Ad(gh))Q)
(since s < t, we have (1 — Ad(gh))Q € gz,(g+s))
= (1 - Ad(9))™[(1 — Ad(gh))Q] modulo 9z, (g+s+t+(m—1)s)
(= (1 - Ad(g))"[(1 - Ad(gh))Q] modulo gx,(q+t+ms))
= [(1 - Ad(g))" Q] — [(1 — Ad(9)™(°T)]
(since 9T € g, (144) and s < t)
=(1- Ad(Q))(mH)Q modulo gz (¢4q4ms)- O

LEMMA B.6.7. Suppose v € B(G) and s,t € R witht > s> 1/n. For all
g € Gy and for all h € Gy,

Y(gh) = ¥(g) +¥(h) modulo g, (si1)-

Proof. Suppose x, s, t, g, and h are as in the statement of the lemma.
From Corollary B.6.2, it will be enough to show that if ¢ € R and Q € g5,
then

ad[y(gh) — ¥(g) — ¥ (h)]Q € g (grs+1)-
Thus, from Equation (44), it will be enough to show that

[log(Ad(gh)) —log(Ad(g)) — log(Ad(h))]Q € @u(g+s+1)-

Since
(1-Ad@h)" (- Adg)™ (1 Ad(h)"

m m m

all tend to zero in gl(g)(K), there exists N € Z~1, independent of g and @, so
that

[log(Ad(gh)) — log(Ad(g)) — log(Ad(h))]Q
is equivalent to
N

Z% (1— Ad(gh))™ — (1 — Ad(g))™ — (1 — Ad(R))™|Q

1
modulo g, (54149 Fix 2 <m < N. From Lemma B.6.6 we have

[(1—Ad(gh))"—(1 — Ad(g))"™ — (1 — Ad(R))"]Q
= —(1 — Ad(h))mQ modulo gxy(t+q+s(m71))
(since t > s)

= 0 modulo gx,(t+q+s(m—1))'
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Thanks to Remark B.6.3, for m > 2,

s(m — 2) — v(m) > %(m — )~ u(m) > 0.

We conclude that for m > 2

%[(1 — Ad(gh))™ — (1 = Ad(g))"™ — (1 — Ad(h))™]Q
belongs to g, (q+i+s)- Consequently,
[log(Ad(gh)) —log(Ad(g)) — log(Ad(h))]Q

is equivalent to

—[(1 = Ad(gh)) = (1 = Ad(g)) — (1 — Ad(h))]Q
modulo g, (44¢+s)- But the latter is (Ad(g) — 1)(Ad(h) — 1)@, which belongs
to gx,(q+t+s)~ [}

Remark B.6.8. The condition ¢ > s in Lemma B.6.7 is not required. Sup-
pose x, g, h are as in the statement of the lemma and 1/n <t < s. Choose
u € Gy (s4¢) 50 that 9h = hu. Then

P(gh) = ¢(("h)g) = ¥(h) + ¢(g) modulo g, (s4+)
hu) +1(g) = P (h) + P(u) + P(g) modulo g (o¢1s)
from Corollary B.6.5)
= tp(h) + (g) modulo g, (s1r) = 1¥(g) + ¥ (h).

We can now reformulate Lemma B.6.7 as follows.

o
=(
(

COROLLARY B.6.9. Suppose v € B(G) and s,t € R>q,,. For all g € Gy
and for all h € G,

¢(gh) = 7/1(9) + ¢(h) modulo Oz, (s+t)-
Filtration quotients and 1.

Remark B.6.10. Since every torus of G splits over a tamely ramified ex-
tension of K, for all ¢ € Ry and for all z € B(G) we have an isomorphism of
abelian groups

G'ac,t/G':v,tJr = gx,t/ﬂx,t* .

This isomorphism has the property that for each coset Z2g in G, /G, ¢+ the
isomorphism identifies a coset Zg in gz +/gs ++ so that for all ¢ € R and for each
Q € gz,q we have

ad(X)Q = (Ad(g) — 1)Q modulo g, (144)+
for all X € =4 and for all g € Z¢. See [64, Cor. 2.4] or [65] for details.
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LEMMA B.6.11. Suppose x € B(G) andt € Rg. If g € Gyt~ Gyy+, then
there exist ¢ € R and Q) € gz \ gz,q+ such that

(Ad(g) - 1)Q € Bz (t+q) ™ Bz, (t+q)+-

Proof. Choose g as in the statement of the lemma. If X € Zg, where =4 €
92,/ 0z,+ corresponds to the coset 9G4+ in Gyt /Gypy+, then X € goy \ gy it
From Lemma B.6.1 we can choose ¢ € R and Q) € gy 4 \ gz 4+ so that

a’d(X)Q € 9z (t+q) > Bz, (t+q)*-
Since, from Remark B.6.10,

(Ad(g) — 1)Q = ad(X)Q modulo g, (;4q)+,

the lemma follows. U

LEMMA B.6.12. Suppose t > 1/n and x € B(G). The restriction of ¢ to
Gy, induces an isomorphism

Got/Grt = Gut/at+
of abelian groups.

Proof. Fixt > 1/n and x € B(G). Since ¥: Go+ — g is injective and
from Corollary B.6.5

'(Z)(G:c,t"') C Gz tt+
while

¢(G$,t) - Oz,

from Lemma B.6.7 we have that 1 induces a group homomorphism

Gait/Gapr = Bat/ B+

We will show that this map is surjective. Since G /Gy ¢+ and gq;/gz++ are
finite-dimensional §-vector spaces of the same dimension, injectivity will follow.
Now, we must show that for each X € g, ; there is a g € G for which

X —1(g) € 9o+

Equivalently, from Corollary B.6.2, we need that for all ¢ € R and for all
Q € guyg
[ad(X) — ad(¥(9))]Q € 8z,(g+1)+-

Suppose X € g, ;. From Remark B.6.10, there is a g € G, so that for all
¢ € R and each Q € g, 4 we have

(46) (Ad(g) — 1)Q = ad(X)Q modulo g, (g44)+-
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Now, for all ¢ € R and for all @ € g5,

[ad(X) — ad(v(9))]Q = [ad(X) — log(Ad(g))]@ (from Corollary B.6.4)

— [ad(X) — (Ad(g) — 1]Q modulo g, (p2
(from Equation (46))
= 0 modulo g, (g44)+-

Thus [ad(X) — ad(4(9))]Q € gy .

Moy-Prasad filtrations and ¢, I1. We begin with an abstract result about
maps between complete topological groups.

LEMMA B.6.13. Suppose H and L are complete topological groups. Let
f: H— L be a map for which there exist neighborhood bases at the identity

{Hi <H|Hy:=H2>Hy>H3>--->{1}}
and
{Li<L|Ly:=L>Ly>L3>--->{1}}

for H and L so that

(1) f(H;) C L; for alli and

(2) if h € H; and i € Hj, then f(hh') = f(h)f(R') modulo L;;.
If the induced map

H;/Hgp1y — Li/ Ly,
is surjective for all i, then f is surjective.
Remark B.6.14. Note that the first condition on f implies that it is con-

tinuous at the identity, while the second implies that f is continuous every-
where.

Proof.  Suppose £ € L. Fix jo € Z>; so that £ € Lj, \ L 4+1)- By
hypothesis, there is an hg € Hj, such that f(ho) = ¢ modulo L; ;1). Fix
J1 > jo so that f(ho)* € Lj, ~ Lj,41)- Since the induced map

Hjl /H(j1+1) - Lj1/L(j1+1)

is surjective, there is an h} € Hj, so that f(h}) = f(ho)~ ¢ modulo Lj,+1)-
Set hy := hoh/l. Now,

f(h1) = f(ho)f(h}) modulo L +j,-

Thus, f(h1) = ¢ modulo Lj, 1.
Choose j2 > j; so that f(hy)"Y € Lj, L(j,+1)- Since the induced map

Hj, [Hj,11) = Lj, /L(j,41)
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is surjective, there is an h)y € Hj, so that f(hy) = f(h1)~'¢ modulo Lj,+1)-
Set hy := hih}. Then

f(h2) = f(h1)f(hy) modulo Lj, ;.

Thus, f(he) = ¢ modulo Lj, ;.
Continuing in this fashion, we produce a convergent sequence (h;) in H.
If h = lim h;, then f(h) = ¢. O

LEMMA B.6.15. For all facets J C B(G) and for all s > 0 we have
V(Gays) = Bays-

Proof. From Lemma B.5.4 we may assume that s > 1/n. Thanks to
Corollary B.6.5 it suffices to prove surjectivity.

Choose m' € Z>; so that J is F™ _stable. We let z = z;. It will be
enough to show that for all m € Z>,

Fm Fm
w(G:E,s ) =05
Note that Gﬁ: " and gf’ o are complete topological groups. Thanks to Corol-

lary B.6.5, Lemma B.6.7, and Lemma B.6.12, the result follows from Lemma
B.6.13. O

COROLLARY B.6.16.
Y(Go+) = go+

Proof. From Lemma B.6.15, for all facets .J in B(G) we have ¢(G7F) = g7.
Since

Go+ = LJGJJr and go+ = Ug}r,
J J

the result follows. O
The map over the residue field induced by 1.

LEMMA B.6.17. Suppose x € B(G). Ift > 1/n and g € Gy, then for all
q € R and for each Q € gz 4,

2(n—1) m
og(Ad(g)Q =~ 3 LA,
m=1

modulo gx,(q+2,1/n) .

Proof. Fix t > 1/n and g € Gy;. Suppose ¢ € R and Q € g, 4. For all

m e Zzl,
(1—Ad(g)™
Q€ 9z (g+mt—v(m))-
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Since p > (2 + e)n, we conclude that for 1 < m < (3n — 2),

1— Ad(yg
(W”L())Q €g x,(g+mt)
(since m is a unit). In particular, as t > 1/n, we conclude that
2(n—1) (3n—2)
1—-Ad — Ad(
3 ( (=AW Z =A™ G snodulo g g12 10
m=1
To finish the proof, it is enough to show that if m > (3n—1), then mt —v(m) >
2 — 1/n. This follows from Remark B.6.3. O

LEMMA B.6.18. Suppose J C B(G) is a facet and C C B(G) is an alcove
which contains J in its closure. If g € Gg and h € G}r, then

¥(gh) € ¥(9) + g5

Proof.  Since Gj < GJCC, both g and gh belong to GJCC = Gy.1/n (see
Lemma B.5.4). Consequently, from Lemma B.6.15, both ¢(g) and ¢ (gh) be-
long to g < g;. Hence, the images of ¥(g) and 1(gh) in L; belong to the
nilradical of the Borel subgroup of G; corresponding to C. Hence, they both
belong to the derived Lie algebra of L ;. Since the restriction of B to g induces
the Killing form on the derived Lie algebra of Lj, it will be enough to show
that for all Q € g,

[ad((gh)) — ad(4(9))]Q € g5 -
Fix @ € g;. Since wQ € gj,
Q € w_lg}_ < w_lgg = Bz0,1/n—1-
From Lemma B.6.17 and Equation (44),

2(n—1)

ad(y(gh))Q = log(Ad(gh))Q = — Y

m=1

(1 — Ad(gh))™

Q

modulo g1 = wgc < wgy < gj. (Note: m is a unit for 1 <m < 2(n —1).)

Similarly,
2(n—1)

ad((9)Q =~ )

m=1

(1 - Ad(g)"

Q

modulo gj. Consequently,
2(n—1)

[ad(¥(gh) —¥(@)Q= >

m=1

[(1 — Ad(g))™ — (1 — Ad(gh))™

m

Q

modulo gj. Since h acts trivially on gJ/g}’,

(1—Ad(gh))"Q = (1 - Ad(9))"@Q

modulo gj. The result follows. O
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COROLLARY B.6.19. Suppose J is an F-stable facet in B(G). The re-
striction of ¥ to Go+ NGy induces an (F) x G j-equivariant bijective map from
Uy, the f-variety of unipotent elements in Gy, to Ny, the f-variety of nilpotent
elements in L.

Proof. If g € Uy, then there exist an alcove C and a g € GJCr such that
J C C and g is a lift of g. From Lemma B.6.15 we have ¢(g) € g, C g;. Thus,
the image of ¢/(g) in L; belongs to Ay. From Lemma B.6.18, the image of 1(g)
in L; is independent of the choice of g. Hence 9 induces a map ¢: Uy — N.
As 9 is (F) x G j-equivariant, it follows that ¢ is (F)) x Gj-equivariant.

To see that 1 : U; — N is bijective, we note that p > (2+e)n implies (see
for example [12, §1.15]) that there is a (nonunique) bijective, G -equivariant
f-morphism identifying ¢; with N;. Thus, for all m € Z> the sets Z/{f " and
N f " have the same cardinality. Consequently, it is enough to show that the
restriction to UL of 4 surjects onto NI, If X € NI™, then there exist

an F"™-stable alcove C' and X € (gJCC)Fm such that J C C and X is a lift of

X. From the proof of Lemma B.6.15 there exists a g € (Gg)F such that
¥(g) = X.
Since Uy is the image of Go+ N Gy in Gy, the corollary follows. O

B.7. An extension to reductive groups. Drop the assumption that G
is semisimple. In this section, we prove that the (F) x G-equivariant map
1: G+ — g has the properties described in Lemma B.0.3.

Let G’ denote the group of K-rational points of the derived group of G.
Let Z denote the group of K-rational points of Z, the identity component of
the center of G. We recall that Z N G’ is finite. We let g’ (resp. 3, resp. 3)
denote the Lie algebra of G (resp. Z, resp. Z).

In Section B.6 we proved that the map

resg:: Gor — @
has the properties required by Lemma B.0.3. From [9, III, §7, Prop. 11],
(47) P(zh) = P(z) + ¢ (h)

for all z € Zy+ and all h € Gy, .
Suppose S is any torus in G. Let S denote the group of K-rational points
of S. Let s (resp. s) denote the Lie algebra of S (resp. S).

LEMMA B.7.1. With our assumptions on p,
¢(So+) = 50+.

Proof. Let E denote the splitting field of S over K. Since ¢: G — GL,
is faithful and (S) is a torus in GL,, the field E is a tame Galois extension
of K and vg(p) < nv(p).
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Since E is a tame Galois extension of K, from [2, Lemma 2.2.3], we have
So+ = S(E)p+ N S.

By an argument similar to that given in Section B.3, there is a unique Gal(F/K)x
G(E)-equivariant extension of ¥ to a map ¢: G(E)p+ — ¢g(E). From Equa-
tion (44) the image of the restriction to S(E)o+ of this map lies in s(F). It
will be enough to show that ¢¥(S(E)o+) = s(E)o+.

Since S is E-split, there is an E-isomorphism ¢g from S to (GL;)? for
some j. Since

p=>(2+v(p)n = 2n+ve(p),

we have p > 2 + vg(p). We conclude (see the discussion concerning GL,, in
§B.1) that

log((GL1(E))},) = (M1(E))},.

Since g and dpg are E-isomorphisms, the result follows from the fact that
dps(1(s)) = log(ps(s)) for s € S(E)p+ (see Equation (41)). O

LEMMA B.7.2. Under our assumptions on p, the map (z,h) — zh from
Zo+ x Gy to Gor is bijective.

The proof below is due to Loren Spice; it is shorter than our original proof.

Proof (Spice).  Since for each x € B(G) we have Zp+ C Gy o+ and
G;70+ C Gyo+, it suffices to check that the map iy: Zo+ x Gl o — Guo+
which sends (z, h) to zh is bijective for all x € B(G).

Fix x € B(G). To show i, is bijective, it is enough to check that the
induced map on successive quotients of Moy-Prasad filtration subgroups is
bijective. Fix r € Rsg. From [64, Cor. 2.4], it is enough to check that the
induced map

37‘/3T+ X gix,r/g;;,ﬁr - gx,r/gw,r+

is bijective. From [4, Prop. 3.2], it is surjective. If (Z, X) is in its kernel, then
there exist Z € 3, (resp., X € g, ) lifting Z (resp., X) so that Z + X € gy +.
From [4, Prop. 3.2], we conclude that Z € 3+ and X € g/, .. Thus, the map
is injective as well. 7 O

Thanks to Equation (47), from Lemma B.7.1 and Lemma B.7.2, the map
¥ is a bijective (F) x G-equivariant map from Go+ to go+ = o+ + gi+. More-
over, since, for all x € B(G), the image of 30+ in L, is trivial, it follows from
Lemma B.7.1 (with S = Z) that 1 has the properties required by Lemma B.0.3.
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Index of selected notation and terms

elliptic Langlands parameter
F-regular

F-minisotropic

generic representation
G-stable conjugacy-class
G-stably conjugate

G-stable classes

lift of (J,S)

(¢, ¢')-comparable

rational classes

regular semisimple

strongly regular semisimple
tame regular semisimple
topological Jordan decomposition
topologically semisimple
TRSELP

unramified torus

* g*u:=guF(g)~!

Ad adjoint action of GG

A(S) apartment of unramified torus S

A apartment corresponding to T

ACH)XIF 1T, Ad(HP)X,

B nondegenerate, symmetric, (F') x H-invariant bilinear
form on b

B(G) Bruhat-Tits building of G

Cy an alcove in A which contains J in its closure

Cy component group of Cx(y)

deg(m) formal degree of 7

D(,8) {deGF: iye S}

e(+,-) sign depending on relative ranks

E(v,9) {geGF: 9v¢c@G;, 9yeS}

f element of N

f Fourier transform of f with respect to B

f residue field of k

fa the degree d extension of §

5 residue field of K

Frob topological generator for I'

F automorphism of G arising from k-structure on G

895

821
802
803
838
817
849
849
846
864
817
802
802
824
845
845
825
803

805
802
803
804
863
863

803
813
822
798
846
802
846
825
863
802
807
802
802
803
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Ind
Irr
Irr

Irrg
Irr(Cy, w)
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the automorphism F' when G is k-quasisplit
Ad(u) oF

Ad(U)\) oF

compact elements of G

topologically unipotent elements in G

dual group of G

() x G

set of regular semisimple elements of G

set of strongly regular semisimple elements of G
group of K-rational points of the adjoint group of G
parahoric subgroup of G corresponding to J C B(G)
Gy,

pro-unipotent radical of Gy

connected reductive f-group associated to J C B(G)
G/ G;\r

lattice in g attached to J C B(G)

sublattice in g

compact elements of g

topologically nilpotent elements in g

Gal(k/k)/T

identity component of the centralizer of v in G
topologically semisimple part of ~

topologically unipotent part of -

compact induction functor

smooth induction functor

set of irreducible representations

set of irreducible square-integrable representations
set of irreducible depth-zero representations
representations p € Irr(Cy,) with w, = w

inertia subgroup of Gal(k/k)

wild inertia subgroup

tame inertia group

index set for certain G, _-stable classes

index set for certain G -stable classes

map from I(vs) to I(97s)

facet in A preserved by o)

finite extension of Q,

maximal unramified extension of k

€(Gy, Ty) - R?;Xg € Irr(GY)

representation of ZFG};A

Lie algebra of G; identified with g;/g7

element of N for which my xuy = u and my-Cy =C

804
805
814
844
844
811
821
802
802
803
803
814
803
803
829
834
834
844
844
802
802
845
845
797
823
802
802
848
822
802
821
821
859
859
861
813
802
802
830

830
834
815
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b
A

Wu((pv P)
I, ()
P

b2

q

q

‘/\(G)
QS J) s

QG T)
)
R(G, S,0)
R(G,T)
R(G7 Ij;t)
2

OX

Sx

HF-orbital integral of f with respect to X
function representing Fourier transform of ,u)}gF
normalizer of a subgroup S C G

N(G,T)

NNG,

IN(G..,ST)/S|, where S € Ts (s, 1)
{weW: w-C =C} for some alcove C' in A
unique element of t;,W° N Qe

element of Z!(F, N¢) with image wy in W
fixed element of H'(F,G)

F-fixed hyperspecial vertex in A,q
characteristic of the residue field §

element of G for which le Fx(py) = W

F
IndG * F, K\
ZFG

Ad(my)«my € Irr(GH)

normalized L-packet

surjective projection onto first factor: ’ZA;,’X — T,
projection on second factor: py'(S) — Trrg(SF)
cardinality of the residue field f

mapy € G

natural inflation of QgG")WS, extended by zero to G
stable p-adic analogue of a Green function

map X, — HY(F, Q)

image of r~1(w) in [X/(1 — wd)X]sor

function on (G*)

R(G, S,0), where T is the GF-orbit of (S, 6)
E(s,e)ei;t/GF R(G,5,9)

homomorphism s : Z; — T with Ca(s) = T
maximal bounded subgroup of an unramified torus S
twd € W <29>

Ad(g\)T

Steinberg representation

Fourier transform of the stable orbital integral
associated to X

fixed maximally k-split K-split torus in G
maximal bounded subgroup of T’

Ad(px)T

Y ® C*

element of T" or W corresponding to A € X
set of F-minisotropic maximal tori in G
{(S,0): Se€%(G) and 6 € Irrg(ST)}
{S€%(@): SF =9(T*) for some g € G}

897

863
863
802
804
804
859
804
810
811
815
804
802
815
831

834
834
851
851
802
816
854
859
815
817
848
848
851

825
803
812
816
798
864

804
804
830
811
804
846
850
850
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Tox (S,0) for which there is g € G so that S = 9(T*)
and 6 = g.x

Tt fixed G-stable class in T(G)

T GF-orbit in T(G)

T() {(50)eT: e

Ts(7s) {(5,0) € Ty : s €5}

05 26 ¢ papi(5) 9

02(('}’5) 995'((%), for any S € Zs (s, 1)

SPN character of m, (¢, px)

U fixed representative of w

w fixed uniformizer of k

9 automorphism of X, X.q, A, Aaq, W, or Waq

w Weil group of k

Wk tame Weil group

W N/OT

we generated by reflections in the walls of an alcove C

W, image of N, in W

WO Tits extension of W,

W generated by reflections in hyperplanes containing Jy

Wwo {20 € Wy i wi(zo)w™t = 2}

wwy stabilizer in W*? of the class of X in [r~(w)]

w element of W,

W fixed lift in W, of w

wy unique element in W) for which oy - C) = w) - C)y

W)y unique lift of wy in N satisfying tyw = wyuy

Ty unique fixed-point in A for tywi

X.(H) group of algebraic one-parameter subgroups of H

X X.(T)

X° co-root sublattice in X

X X/X°

Xw preimage in X of [X/(1 — w?)X]or

X depth zero character corresponding to ¢

XA Ad(pyr)«x € Irr(Tf*)

Y algebraic character group of T

Y w;lt AW

ZYF,U) continuous cocycles I' — U

Z center of G
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