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Depth-zero supercuspidal L-packets
and their stability

By Stephen DeBacker and Mark Reeder

In this paper we verify the local Langlands correspondence for pure inner
forms of unramified p-adic groups and tame Langlands parameters in “general
position”. For each such parameter, we explicitly construct, in a natural
way, a finite set (“L-packet”) of depth-zero supercuspidal representations of
the appropriate p-adic group, and we verify some expected properties of this
L-packet. In particular, we prove, with some conditions on the base field, that
the appropriate sum of characters of the representations in our L-packet is
stable; no proper subset of our L-packets can form a stable combination. Our
L-packets are also consistent with the conjectures of B. Gross and D. Prasad
on restriction from SO2n+1 to SO2n [24].

These L-packets are, in general, quite large. For example, Sp2n has an
L-packet containing 2n representations, of which exactly two are generic. In
fact, on a quasi-split form, each L-packet contains exactly one generic represen-
tation for every rational orbit of hyperspecial vertices in the reduced Bruhat-
Tits building. When the group has connected center, every depth-zero generic
supercuspidal representation appears in one of these L-packets.

We emphasize that there is nothing new about the representations we con-
struct. They are induced from Deligne-Lusztig representations on subgroups of
finite index in maximal compact mod-center subgroups, see [42], [44], [61]. The
point here is to assemble these representations into L-packets in a natural and
explicit way and to verify that these L-packets have the required properties.

To explain further, we need some notation. Let k be a p-adic field of
characteristic zero, let K be a maximal unramified extension of k, let Γ =
Gal(K/k), and let Frob ∈ Γ be a Frobenius element. Let Wt, It be the tame
Weil group of k and its inertia subgroup. Let G be a connected reductive
k-group which is K-split and k-quasi-split. To simplify the exposition, we
assume in this introduction that G is semisimple. Let G := G(K), and let F
be the action of Frob on G, arising from the given k-structure on G.

In the spirit of local class field theory, we construct both the “geometric”
and “p-adic” sides of our local Langlands correspondence, and make an explicit
connection between the two sides.
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We start with the geometric side. The action of F on the root datum
of G gives rise to an automorphism ϑ̂ of the Langlands dual group Ĝ. The
Langlands parameters considered in this paper are continuous homomorphisms

ϕ :Wt −→ 〈ϑ̂〉n Ĝ,

(for the discrete topology on 〈ϑ̂〉n Ĝ) whose centralizer in Ĝ is finite, and such
that ϕ(Frob) is a semisimple element in ϑ̂Ĝ, and ϕ(It), a priori a finite cyclic
group, is generated by a regular semisimple element in Ĝ. This latter condition
is what we mean by “general position”. It implies that ϕ(It) is contained in
a unique maximal torus T̂ ⊂ Ĝ. The element ϕ(Frob) normalizes T̂ , acting
via an element of the form ϑ̂ŵ, where ŵ belongs to the Weyl group of T̂ in Ĝ.
Moreover, the centralizer of ϕ is the finite abelian group

Cϕ := T̂ ϑ̂ŵ

of fixed-points of ϕ(Frob) in T̂ .
For each irreducible character ρ ∈ Irr(Cϕ), we will define a representation

of the group of k-points of a certain inner form of G.
First, we parametrize Irr(Cϕ) as follows. The automorphisms ϑ̂ and ŵ

induce dual automorphisms ϑ and w of the character group X := X∗(T̂ ), and
each λ ∈ X determines a character ρλ ∈ Irr(Cϕ) by restriction from T̂ to T̂ ϑ̂ŵ.
Thus we have an isomorphism

X/(1− wϑ)X ∼−→ Irr(Cϕ), λ 7→ ρλ.

Next, for each λ ∈ X we construct an unramified cocycle uλ ∈ Z1(Γ, G),
hence an inner twist of G with Frobenius Fλ = Ad(uλ) ◦ F, along with an
irreducible depth-zero supercuspidal representation πλ of GFλ .

The cocycle uλ is found as follows. Let W be the affine Weyl group of G,
acting on the apartment A = R ⊗X in the Bruhat-Tits building B(G) of G.
The character λ ∈ X determines a translation tλ ∈ W . Since T̂ ϑ̂ŵ is finite, it
follows that the operator tλwϑ has a unique fixed-point xλ ∈ A. If we choose
an alcove Cλ ⊂ A containing xλ in its closure, we can then uniquely write

(1) tλwϑ = wλyλϑ,

where wλ belongs to the “parahoric subgroup” of W at xλ and yλ ∈W satisfies
yλϑ ·Cλ = Cλ. The cocycle uλ : Γ −→ G sends Frob to an appropriately chosen
representative of yλ in G.

Now for the representation πλ. The point xλ is Fλ-stable, and is in fact
a vertex in B(GFλ). The parahoric subgroup Gλ of G at xλ is Fλ-stable, and
GFλ
λ is a maximal parahoric subgroup of GFλ . The representation πλ of GFλ is

compactly-induced from a representation κλ of GFλ
λ .

This κλ is obtained as follows. The element wλ determines an Fλ-anisotropic
torus Tλ of G with TFλ

λ ⊂ Gλ. By the depth-zero Langlands correspondence
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for tori (known, but reproved in Chapter 4.3 below), we can associate to (ϕ, λ)
a depth-zero character χλ of TFλ

λ , whence a Deligne-Lusztig representation

κλ := ±RGλTλ χλ.

Thus, for each λ ∈ X, we define

πλ := indG
Fλ

G
Fλ
λ

κλ,

using compact (equivalently, smooth) induction, and prove that πλ is an irre-
ducible representation of GFλ . Of course, we now have infinitely many groups
GFλ and representations πλ, whereas the L-packet Π(ϕ) should be parametrized
by the finite set Irr(Cϕ).

However, according to Vogan’s idea of “representations of pure-inner forms”
[62], we must take into account the natural G-action on pairs (u, πu), where
u ∈ Z1(Γ, G) and πu is a representation of GFu (here Fu = Ad(u)◦F). We prove
that the G-orbit [uλ, πλ] is independent of all choices made in the construction,
and that for λ, µ ∈ X, we have

[uλ, πλ] = [uµ, πµ] ⇔ ρλ = ρµ ∈ Irr(Cϕ).

Thus, our construction leads to an L-packet Π(ϕ) in the form of equivalence
classes:

Π(ϕ) = {[uλ, πλ] : ρλ ∈ Irr(Cϕ)}.

We have a partition

Π(ϕ) =
∐

ω∈H1(Γ,G)

Π(ϕ, ω),

where Π(ϕ, ω) consists of the classes [uλ, πλ] with uλ ∈ ω. Let

Irr(Cϕ) =
∐

ω∈H1(Γ,G)

Irr(Cϕ, ω)

be the corresponding partition of Irr(Cϕ).
The first expected property of Π(ϕ) is that Irr(Cϕ, ω) should be the fiber

over ω under the composition

(2) Irr(Cϕ) −→ Irr(Ẑ ϑ̂) ∼−→ H1(Γ, G),

where the first map is restriction, the second map is Kottwitz’ isomorphism
[34], and Ẑ is the center of Ĝ. This amounts to proving that the map described
in (2) sends ρλ ∈ Irr(Cϕ) to the class of uλ in H1(Γ, G). For this, and other
purposes, we need a very explicit description of Kottwitz’ isomorphism on the
level of cocycles. Chapter 2 contains a simple proof of Kottwitz’ isomorphism
in the form we need, along with related facts used in the proof of stability.

The second expected property of Π(ϕ) is that the ratio of formal degrees

deg(πλ)
deg(Stλ)

,
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where Stλ is the Steinberg representation of GFλ , should be independent of
λ ∈ X. This is proved by a direct calculation in Chapter 5.

The third expected property of Π(ϕ) is that π0 (here λ = 0) should be
generic. This is true. In fact, we determine all generic representations in Π(ϕ),
and show that they are in natural bijection with rational classes of hyperspecial
vertices in the reduced building of G. En route, we classify all depth-zero su-
percuspidal generic representations of unramified groups; see Chapter 6. There
is a more general conjecture, due to B. Gross and D. Prasad [23], about which
Whittaker models are afforded by the generic representations in Π(ϕ). This
conjecture is verified for Π(ϕ) in [19].

We illustrate the construction and above-mentioned properties, in Chap-
ter 13, with a “canonical example” of L-packets arising from the opposition
involution.

The rest of our paper is devoted to the fourth expected property, namely,
the stability of Π(ϕ, ω).

We now consider L-packets from the p-adic side. Let G be any connected
reductive K-split k-group with Frobenius automorphism F on G. Take a pair
(S, θ), where S = S(K) is the group of K-points in an unramified k-anisotropic
maximal torus S in G and θ is a depth-zero character of SF = S(k). The
group SF has a unique fixed-point x ∈ B(GF ). We have a Deligne-Lusztig
virtual character RGxS,θ of the parahoric subgroup GFx , which we lift to a class
function R(G,S, θ) on the set of regular semisimple elements of GF , using
Harish-Chandra’s character integral. One checks that R(G,S, θ) depends only
on the GF -orbit T̂ of the pair (S, θ). For (S, θ) ∈ T̂ , we define

R(G, T̂ ) := R(G,S, θ).

We say that two pairs (S1, θ1), (S2, θ2) as above are G-stably-conjugate if
there is g ∈ G such that Ad(g) sends (SF1 , θ1) to (SF2 , θ2). Each G-stable class
T̂st of pairs (S, θ) is a finite disjoint union

T̂st = T̂1 t · · · t T̂n
of GF -orbits. We consider the function

R(G, T̂st) :=
n∑
i=1

R(G, T̂i).

Our aim is to prove that R(G, T̂st) is a stable class-function on the set of
strongly regular semisimple elements in GF .

But first, we relate R(G, T̂st) to the L-packets constructed previously on
the geometric side. To do this, we must put the representations in Π(ϕ) in
“normal form”, as follows. We fix ω ∈ H1(Γ, G), and choose u ∈ ω. For each
λ ∈ X, with uλ ∈ ω, there is mλ in G such that Ad(mλ) sends GFλ to GFu .
For each ρ ∈ Irr(Cϕ, ω), we define

πu(ϕ, ρ) := Ad(mλ)∗πλ
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where λ ∈ X is such that ρλ = ρ. Then πu(ϕ, ρ) is a representation of GFu

whose isomorphism class is independent of the choices of λ and mλ. The
“normalized” L-packet is then defined as

Πu(ϕ) := {πu(ϕ, ρ) : ρ ∈ Irr(Cϕ, ω)};

it consists of representations of the fixed group GFu .
The comparison between the p-adic and geometric sides consists in proving

that the sum of characters in Πu(ϕ) is, up to a constant factor, a function of the
form R(G, T̂st) for an appropriate T̂st. This involves an explicit parametrization
of the G-stable classes of pairs (S, θ), in terms of characters λ ∈ X. This
parametrization follows naturally from our study of Kottwitz’ isomorphism in
Chapter 2.

Now, to prove stability for our L-packets, it remains to prove that the
functions R(G, T̂st) are stable. The first main step is a reduction formula,
using the topological Jordan decomposition. This reduction becomes trivial on
the set of strongly regular topologically semisimple elements in GF , proving
stability there without any restrictions on the residue characteristic.

To prove stability everywhere, we must examine the restriction ofR(G, T̂st)
to the topologically unipotent set. We are dealing here with a p-adic analogue
of a Green function, so we write Q(G, T̂st) for the restriction of R(G, T̂st) to
the topologically unipotent set in GF .

To use the reduction formula, we must establish an identity between
Q(G, T̂st) and Q(G′, T̂ ′st), where G′ is an inner form of G. To prove this iden-
tity, we use Murnaghan-Kirillov theory. The idea is to use a logarithm map and
Kazhdan’s proof of the Springer Hypothesis [31] to express Q(G, T̂st) as the
Fourier transform of a stable orbital integral on the Lie algebra of GF . We then
invoke a deep result of Waldspurger [63], to the effect that the fundamental
lemma is valid for inner forms, and this completes the proof.

However, there are two difficulties with this argument, one pleasant, one
not. The pleasant difficulty is about a certain sign in Waldspurger’s result.
It is given in [63] as a ratio of gamma constants. For us, it is necessary that
this ratio be equal to Kottwitz’ sign e(G) [33]. This equality of signs is a
particular case of a conjecture of Kottwitz. Because of its importance, here
and elsewhere, we give two proofs, the first using Shalika germs, the second
continuing in the combinatorial spirit of [63].

The unpleasant difficulty is about the logarithm map, which is required to
satisfy certain compatibility properties with respect to the Moy-Prasad filtra-
tions on G and its Lie algebra. It is at this point that restrictions on k must be
imposed. We require that p ≥ (2 + e)n, where p is the residual characteristic
of k, e is the ramification degree of k/Qp, and n is the dimension of a faithful
algebraic representation of G over k.
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Finally, some remarks about exhaustion. All depth-zero supercuspidal
representations of GF are constructed in [44]. Many of them do not appear in
our L-packets Π(ϕ). They should appear in square-integrable L-packets where
ϕ is tame, but has a nontrivial component on SL2(C) and therefore cannot be
in general position. For groups with connected center, such L-packets have
been found for unramified ϕ in [39], [40], [41], [48]. For groups with connected
center, the L-packets constructed in this paper should be exactly those depth-
zero L-packets which consist entirely of supercuspidal representations. See
Chapter 3 for more discussion of this.
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Prasad, Loren Spice, and Jiu-Kang Yu for helpful conversations. We thank
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1. Basic notation

The cardinality of a finite set X is denoted by |X|. We denote the action of
a group G on a set X by g ·x or gx, for g ∈ G, x ∈ X. The fixed point set of g in
X is denoted by Xg, and XG := ∩g∈GXg. The set of G-orbits in X is denoted
by X/G. The centralizer of g ∈ G is denoted by CG(g). The conjugation
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map g′ 7→ gg′g−1 on G is denoted by Ad(g). The normalizer of a subgroup
S ⊂ G is denoted by N(G,S). In this paper, the phrase “representation of a
group G” means “equivalence class of complex representations of G”. The set
of irreducible representations of a finite group G is denoted by Irr(G).

In this paper, k is a field of characteristic zero with a nontrivial discrete
valuation for which k is complete with finite residue field f. Let q = |f|, and let
p be the characteristic of f. We fix an algebraic closure k̄ of k. Let K be the
maximal unramified extension of k in k̄, and let F denote the residue field of K.
Then F is an algebraic closure of f. Until Section 12 there are no restrictions
on p or q. We fix an element $ ∈ k of valuation equal to one.

Let I be the inertia subgroup of the Galois group Gal(k̄/k), and let Γ =
Gal(k̄/k)/I. Then Γ is topologically generated by an element Frob whose
inverse induces the automorphism x 7→ xq on F. We let Frob, “the Frobenius”,
denote both this automorphism of K/k and the automorphism of F/f which it
induces. We have K = k̄I , k = KFrob.

We use the following conventions for algebraic groups and their groups
of rational points. For any k-group G, we identify G with its group G(k̄) of
k̄-rational points, and let G := G(K) = GI denote the K-rational points of G.
For most of our purposes, the group G will play the role of “algebraic group”.
The given action of Gal(k̄/k) on G restricts to an action of Γ on G, which is
completely determined by an automorphism F ∈ Aut(G) given by the action
of Frob. We have GF = G(k). Likewise, we identify f-groups G with their
groups of F-rational points, and we have GF = G(f).

The set of irreducible admissible representations of GF is denoted by
Irr(GF ). The subset of square-integrable representations in Irr(GF ) is denoted
by Irr2(GF ).

If S is a k-torus in G, we say that a character θ ∈ Irr(SF ) is F -regular if
θ has trivial stabilizer in [N(G,S)/S]F .

Given an element γ in either G or G, we let Gγ or Gγ denote the identity
component of the centralizer of γ in G or G, respectively. If γ ∈ G, then we
set Gγ := G∩Gγ . We say the element γ in G or G is regular semisimple if Gγ

or Gγ is a torus. We let Grss denote the set of regular semisimple elements of
G. We say that γ in G or G is strongly regular semisimple if CG(γ) or CG(γ)
is a torus. We let Gsrss denote the set of strongly regular semisimple elements
of G. If S is a maximal k-torus in G, then by [8, 1.10] the set Gsrss ∩ SF is
nonempty.

For two reductive groups G1, G2 or G1, G2 of respective ranks r1, r2 over
k or f, we let

ε(G1,G2) = (−1)r1−r2 , ε(G1,G2) = (−1)r1−r2 ,

respectively.
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For any torus S or S, we let X∗(S) or X∗(S) denote the group of algebraic
one-parameter subgroups of S or S. We say an f-torus S ⊂ G is F -minisotropic
in G if every µ ∈ X∗(S)F has image contained in the center of G.

The analogous notion for tori in G has an extra condition: In this paper,
an unramified torus is a group of the form S = S(K), where S is a k-torus
which splits over K. These conditions mean that I acts trivially on X∗(S),
and the action of Gal(k̄/k) on X∗(S) factors through Γ. An F -minisotropic
torus in G is a group of the form S = S(K), where S is a k-torus in G such
that S is split over K, and the Frobenius F , arising from the given k-structure
on G, has the property that every µ ∈ X∗(S)F has image contained in the
center of G.

If S is a K-split k-torus, we let 0S denote the maximal bounded subgroup
of the unramified torus S. We have an isomorphism

K× ⊗X∗(S) ∼−→ S

given by evaluation. This restricts to an isomorphism

R×K ⊗X∗(S) ∼−→ 0S,

where R×K is the group of units in the ring of integers of K.
For this paper, until the appendices, G denotes a connected reductive

k-group which splits over K. Let F be the Frobenius automorphism of G
arising from the given k-structure on G. Let B(G), B(GF ) denote the Bruhat-
Tits buildings of G, GF , respectively. The Frobenius F acts naturally on B(G),
and we have B(GF ) = B(G)F .

Let j : G→ Gad denote the adjoint quotient. Following our conventions,
we set Gad := Gad(K), and denote again by F the action of Frob on Gad.

Via the map j, the group G acts on B(Gad). The latter is sometimes
referred to as the “reduced building” of G. Likewise, the reduced building of
GF is B(GFad) = B(Gad)F .

Each unramified torus S in G determines apartments A(S) ⊂ B(G) and
Aad(S) ⊂ B(Gad); these apartments can be defined as the fixed-point sets of
0S in B(G) and B(Gad), respectively. The Euclidean closure of any subset J
of an apartment is denoted by J̄ .

If J is an F -stable subset of a facet in B(G) or B(Gad), we letGJ denote the
corresponding parahoric subgroup of G, and let G+

J denote the pro-unipotent
radical of GJ . The quotient GJ := GJ/G

+
J is the group of F-points of a

connected reductive group over f. We have F (GJ) = GJ , F (G+
J ) = G+

J , and
the induced action of F on GJ agrees with the f-structure on GJ . We have
GFJ = GFJ /G

+F
J .

Recall that G is split over K. By [10, 5.1.10], there exists a K-split
maximal torus T ⊂ G which is defined over k and maximally k-split. We
abbreviate X := X∗(T), A := A(T ). Let N be the normalizer of T in G. The
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affine Weyl group of T in G is the quotient

W := N/0T .

We will use T = T(K) as a “platonic” unramified torus in G; various unrami-
fied tori S as above will arise from twisted embeddings of T in G.

Let Tad = j(T) denote the image of T in Gad, and abbreviate Aad :=
A(Tad), Xad := X∗(Tad). Let Wad be the affine Weyl group of Tad in Gad.
Since T and Tad are defined over k, the Frobenius F induces automorphisms
of X,Xad,A,Aad,W,Wad. We write also

j : X → Xad, j : W −→Wad

for the maps induced by j. These maps are F -equivariant, since j is defined
over k. The kernel and image of the latter map are given as follows.

We may identify X with the normal subgroup T/0T / W , via evaluation
at $. If λ ∈ X, we let tλ := λ($) denote both the corresponding element of T
and its image in W . There is a map Wad −→ Xad/jX, to be defined shortly,
which fits into an exact sequence

(3) 1 −→ XW −→W
j−→Wad −→ Xad/jX −→ 1.

Note that the last group Xad/jX is finite. The group XW acts trivially on Aad.
There exists an F -stable alcove C ⊂ A. Let W ◦ be the subgroup of W

generated by reflections in the walls of C, and let ΩC := {ω ∈W : ω ·C = C}.
The group ΩC is abelian, isomorphic to the quotient of X by the co-root
sublattice X◦ ⊂ X. The normal subgroup W ◦ /W acts simply-transitively on
alcoves in A, so we have a semidirect product expression

W = ΩCW
◦.

A similar discussion and decomposition holds for Wad.
We have been using F to denote the Frobenius arising from an arbitrary

K-split k-structure on G. When this k-structure is in fact k-quasi-split, we
denote the Frobenius by F. The key difference in the quasi-split case is the
existence of an F-fixed hyperspecial vertex o ∈ Aad.

In the quasi-split case, we denote by ϑ the automorphisms of X,Xad,A,
Aad,W,Wad induced by F. Choose a ϑ-fixed hyperspecial vertex o ∈ Aad. We
let Wo be the image of No := N ∩Go in W . We may identify Wo = N/T via
the natural maps

Wo ↪→W = N/0T −→ N/T.

The map j is injective on Wo and we identify Wo with j(Wo). We have semidi-
rect product decompositions

W = X oWo, Wad = Xad oWo,
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and all factors are preserved by ϑ. The map Wad −→ Xad/jX in the exact
sequence (3) is induced by projection onto the Xad factor in Wad.

Finally, an inner twist of F by a cocycle u ∈ Z1(F, G) (see §2) will be
denoted by Fu := Ad(u) ◦ F.

2. Remarks on Galois cohomology

To state the Langlands conjectures at the level of refinement considered
in this paper requires some notions from the Galois cohomology of reductive
groups over local fields. The central results here are due to Kottwitz [34], [35],
who computes H1(k,G) in terms of the action of Gal(k̄/k) on the center of the
dual group of G, and Bruhat-Tits [11], who compute H1(k,G) in terms of the
building of G. Here we give simple proofs of the above-mentioned results at the
level of cocycles. This allows us to construct cocycles in G from fixed-points
in A of elements in the affine Weyl group. Such fixed-points arise from the
Langlands parameters we consider. Thus we can associate an explicit Frobenius
to each Langlands parameter. We also use our cocycles to give representatives
for various stable and rational classes of tori and semisimple elements in G.
These will be used in the proof of stability.

2.1. Unramified cohomology. Let U be a group and let F be an endomor-
phism of U . For an integer d ≥ 1 and g ∈ U , define

Nd(F )(g) := gF (g) · · ·F d−1(g) ∈ U.

Note that

(4) Ndm(F ) = Nm(F d) ◦Nd(F ).

Assume that every element of U is fixed by some power of F . Giving U
the discrete topology, this means that the group Ẑ of profinite integers, with
topological generator F , acts continuously on U . We denote by

H1(F,U) = H1(Ẑ, U)

the continuous (nonabelian) cohomology of U . Any cocycle is determined by
its value on F , which is an element of the set

Z1(F,U) := {u ∈ U : Nm(u) = 1 for some m ≥ 1}.

Thus we view cocycles as elements of U , and H1(F,U) is the quotient of
Z1(F,U) under the U -action: g ∗ u = guF (g)−1. Note that if Nm(u) = 1 and
F d(g) = g, then Nmd(F )(g ∗ u) = 1.

If U is nonabelian, the set Z1(F,U) of cocycles is not closed under multi-
plication. However, if u, v ∈ Z1(F,U) and d ≥ 1 we have

(5) Nd(F )(vu) = Nd(Fu)(v) ·Nd(F )(u),
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where
Fu := Ad(u) ◦ F ∈ End(U).

From Equations (4) and (5) we conclude:

Lemma 2.1.1. If two of the following hold , then so does the third :

(1) u ∈ Z1(F,U),

(2) v ∈ Z1(Fu, U),

(3) vu ∈ Z1(F,U).

Lemma 2.1.2. If the fixed-point group UF
d

is finite for each d ≥ 1, then
Z1(F,U) = U .

Proof. Fix d ≥ 1 and suppose that gm = 1 for each g ∈ UF
d

. From
Equation (4), we have

Ndm(F )(g) = Nm(F d) (Nd(F )(g)) = (Nd(F )(g))m = 1.

Lemma 2.1.3. Suppose U is a compact group with endomorphism F and
a decreasing filtration U = U0 ⊃ U1 ⊃ U2 ⊃ · · · by open normal F -stable
subgroups Un such that

⋂
n Un = {1}. Assume that H1(F,Un/Un+1) = 1 for

all n ≥ 0. Then H1(F,U) = 1.

Proof. Let u ∈ Z1(F,U), so that u ∈ Un for some n ≥ 0. By the
vanishing assumption and normality, there are g0 ∈ Un and u1 ∈ Un+1 such
that u = g0 ∗ u1. Then u1 = g−1

0 ∗ u ∈ Z1(F,U). Repeating, we have elements
gk, uk ∈ Un+k for all k ≥ 1, such that u = (g0g1 · · · gk−1) ∗ uk. Since U is
compact, the limit g := limk g0g1 · · · gk exists, and u = g ∗ 1.

2.2. Steinberg’s vanishing theorem. In this section, G is only required to
be a connected k-group, with Frobenius automorphism F on G. At several
points we use the following consequence of a well-known result of Steinberg
[56, Thm. 1.9]:

Theorem 2.2.1. H1(K,G) = 1.

One consequence of Theorem 2.2.1 is that the natural surjection Gal(k̄/k)→ Γ
induces an isomorphism

H1(F,G) ' H1(k,G).

Each cocycle u ∈ Z1(F,G) arises from a twisted k-structure on G, under
which Frob acts on G via the automorphism

Fu := Ad(u) ◦ F ∈ Aut(G),
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so that GFu is the group of k-rational points under this twisted k-structure
[51, III.1.3]. Note that for g ∈ G, we have

Ad(g) ◦ Fu = Fg∗u ◦Ad(g),

so that Ad(g) induces an isomorphism

Ad(g) : GFu ∼−→ GFg∗u .

Thus, the isomorphism class of GFu depends only on the class of u in H1(F,G).
However, the dependence is noncanonical, in the sense that a class in H1(F,G)
does not determine a unique twist of F ; one must choose a cocycle in the class.
We must therefore accept a wide range of Frobenius endomorphisms Fu giving
rise to the same k-isomorphism class of groups.

2.3. Explicit cocycles. For the rest of this chapter, G is a connected
reductive k-group with Frobenius automorphism F on G. To keep things as
simple and clear as possible, we assume that G is K-split and k-quasi-split,
even though these assumptions are not necessary until later in the paper. The
following result is a special case of [64, Prop. 2.3]. We give a direct proof, in
our context.

Lemma 2.3.1. For each x ∈ B(G)F we have H1(F,Gx) = 1, where Gx is
the parahoric subgroup attached to x.

Proof. If u ∈ Z1(F,Gx), then u ∈ GF
d

x for some d ≥ 1. We want to
apply 2.1.3 to the compact group U = GF

d

x . Let Gx,r, r ∈ R≥0, be the Moy-
Prasad-Yu filtration of Gx [65]. There is an increasing sequence {rn : n =
0, 1, 2, . . . } ⊂ R≥0 such that for every r ≥ 0 we have Gx,r = Gx,rn for a unique
n. These filtration subgroups are F -stable; we set Un := GF

d

x,rn .
Each quotient group Un/Un+1 is the group of fd-rational points in a con-

nected f-group Un. Here fd denotes the degree d extension of f. By the Lang-
Steinberg theorem, we have H1(f,Un) = 1 for all n ≥ 0. Since the natural
map

H1(fd/f,Un(fd)) −→ H1(f,Un)

is injective [51, I.5.8], we have H1(fd/f,Un(fd)) = 1 for all n ≥ 0.
We have shown that the groups Un satisfy the conditions of Lemma 2.1.3,

which implies that the cocycle u is a coboundary in H1(F,U0), hence also in
H1(F,Gx).

Recall that T is a K-split maximal k-torus in G, such that T contains
a maximal k-split torus in G, and N is the normalizer of T in G. The affine
Weyl group of T in G is the quotient W := N/0T , where 0T is the maximal
bounded subgroup of T . The apartment of T in B(G) is denoted by A, and
the N -action on A factors through a faithful action of W on A.



808 STEPHEN DEBACKER AND MARK REEDER

To describe H1(F, G) on the level of cocycles, the first step is to reduce
the group in which the cocycles live. Let C be an F-stable alcove in A (see [60,
3.4.3]). Let GC be the Iwahori subgroup of G attached to C. The normalizer
in G of GC is the group

G?C := {g ∈ G : g · C = C}.

We have N ∩GC = 0T , and we set

NC := N ∩G?C .

Then the group
ΩC := {ω ∈W : ω · C = C}

is the image of NC in W . The inclusion NC ↪→ G?C induces an isomorphism

d : ΩC
∼−→ G?C/GC .

Since F ·C = C, we have F(G?C) = G?C , so we may define H1(F, G?C) as
in 2.2, and similarly for H1(F, NC). The first reduction relies on the existence
and conjugacy of rational alcoves, already used above.

Lemma 2.3.2. The inclusion G?C ↪→ G induces an isomorphism

H1(F, G?C) ∼−→ H1(F, G).

Proof. We first prove surjectivity. Let u ∈ Z1(F, G). By [60, 1.10.3]
there is an Fu-stable alcove Cu ⊂ B(G) and g · Cu = C for some g ∈ G. Since
Fu ·Cu = Cu, we have uF(g−1) · C = g−1 · C, i.e., g ∗ u ∈ G?C .

For injectivity, suppose u, v ∈ Z1(F, G?C), and g ∗ u = v for some g ∈ G.
Then

Fv ·g · C = v F(g) · C = gu · C = g · C.

Thus g · C and C are two Fv-stable alcoves in B(G). By [60, §2.5] there is
h ∈ GFv such that hg · C = C, so that hg ∈ G?C . However, h = Fv(h) implies

(hg)uF(hg)−1 = hv F(h)−1 = v,

and so [u] = [v] in H1(F, G?C).

To go further, we need another vanishing result. The image of 0T in GC
is a maximal f-torus T in GC . We let 0T+ be the kernel of the natural map
0T −→ T. Then 0T+ is the pro-unipotent radical of 0T .

Recall that Γ = Gal(K/k). A topological Γ-module [50, XIII, p.188] is a
Γ-module in which every element is fixed by some power of Frob.

Lemma 2.3.3. For any n ∈ N , letting Frob act on 0T via Fn := Ad(n)◦F
makes 0T a topological Γ-module for which H2(Fn, 0T ) = 0.
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Proof. As endomorphisms of T , we have Fn = Fw, where w is the image
of n in N/T . Now

Fkw = Ad[wF(w) · · ·Fk−1(w)] ◦ Fk, for all k ≥ 1.

Since N/T is finite, the term in brackets is 1 for some k (cf. Lemma 2.1.2) and
multiples thereof. Also every t ∈ T is fixed by some Fm and multiples thereof.
The first assertion now follows.

The exact sequence of topological Γ-modules

1 −→ 0T+ −→ 0T −→ T −→ 1

gives an exact sequence [51, §2.2, p.10] in Galois cohomology:

· · · −→ H2(Fw, 0T+) −→ H2(Fw, 0T ) −→ H2(Fw,T) −→ · · · .

Since T is a torsion group, H2(Fw,T) = 0 by [50, Prop. 2, p.189]. Since 0T+

is the union of an inverse limit of torsion groups, from [50, Lemma 3, p.185]
we have H2(Fw, 0T+) = 0.

Consider now the following commutative diagram, where the horizontal
maps are inclusions, and the vertical maps are the natural projections.

NC
b //

a

��

G?C

c

��
ΩC

d // G?C/GC

Lemma 2.3.4. The maps a, b, c, d in the above diagram induce isomor-
phisms a∗, b∗, c∗, d∗ on H1(F, ·).

Proof. The map d is already an isomorphism. The map a∗ is surjective by
Lemma 2.3.3 and [51, Cor., p. 54]. Since the induced diagram on cohomology
is commutative, the map c∗ is also surjective.

If u ∈ Z1(F, G?C), then from [51, Cors. 1 and 2, p. 52] the fiber of c∗
through [u] is in bijection with ker[H1(Fu, G?C) → H1(Fu, G?C/GC)]. By the
exact sequence

· · · −→ H1(Fu, GC) −→ H1(Fu, G?C) −→ H1(Fu, G?C/GC)

in nonabelian cohomology [51, Prop. 38, p.51] and the vanishing of H1(Fu, GC)
by Lemma 2.3.1, the above kernel is trivial. Hence c∗ is injective. A similar
argument shows that a∗ is injective, which completes the proof.

2.4. Kottwitz ’ theorem. In this section we will recover Kottwitz’ theorem
on the level of cocycles. First we need an elementary result.
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Lemma 2.4.1. Let A be a finitely generated abelian group, and let σ ∈
Aut(A) be an automorphism of finite order. Define

A1 := {a ∈ A : (1 + σ + · · ·+ σn−1)a = 0 for some n ≥ 1},

A2 := {a ∈ A : ma ∈ (1− σ)A for some m ≥ 1}.

Then A1 = A2.

Proof. For p ≥ 1 let Np = 1 + σ + · · ·+ σp−1 ∈ End(A). Then

Npq = Np + σpNp + · · ·+ σp(q−1)Np = (1 + σp + · · ·+ σp(q−1))Np.

Hence if Np(a) = Nq(b) = 0, then Npq(a+ b) = 0. That is, A1 is a subgroup of
A. Also, since Ator is finite, every element of Ator is fixed by some power of σ. If
qa = 0, then σp(a) = a for some p ≥ 1, so that Npq(a) = qNp(a) = Np(qa) = 0.
Thus, Ator ⊆ A1.

Set Ā = A1/Ator, V = Q⊗ Ā. The latter is a finite-dimensional Q-vector
space, to which σ and Np extend for all p. We claim that V σ = {0}. If
0 6= v ∈ V σ, we may assume, by clearing denominators, that v ∈ Ā. Then
Np(v) = pv 6= 0 for all p ≥ 1, a contradiction. Hence 1− σ is invertible on V .
Let a ∈ A1 have image ā ∈ Ā. Write ā = (1 − σ)b̄, for some b̄ ∈ V . Clearing
denominators, we have mā = (1 − σ)c̄ for some m ∈ Z, c ∈ A1. So ma =
(1− σ)c+ z, where z ∈ Ator. Say qz = 0. Then qma = (1− σ)qc ∈ (1− σ)A,
showing that A1 ⊆ A2.

The other containment is easy: If qa = (1 − σ)b, and p is the order of σ,
then

Npq(a) = qNp(a) = Np(qa) = Np(1− σ)b = (1− σp)b = 0.

Let X = X∗(T), and let W ◦ be the subgroup of W generated by reflections
in the walls of an alcove in A. Evaluation at $ identifies λ ∈ X with the
operator tλ ∈W of translation by λ on A. Under this identification, X∩W ◦ =:
X◦ is the co-root lattice of T. We set X̄ := X/X◦. The group W ◦ acts simply-
transitively on alcoves, hence we have the semidirect product decomposition

W = W ◦ o ΩC .

The automorphism F preserves T , hence induces an automorphism ϑ of
W , which preserves X,W ◦,ΩC . If G is actually k-split then ϑ is trivial. In
general, ϑ has finite order.

For λ ∈ X, let ωλ be the unique element of tλW ◦ ∩ ΩC . Then ωλ = 1
exactly when λ belongs to X◦; the map λ 7→ ωλ induces a ϑ-equivariant group
isomorphism X̄

∼−→ ΩC .

Corollary 2.4.2. The map λ 7→ ωλ induces an isomorphism[
X̄/(1− ϑ)X̄]tor

∼−→ H1(F,ΩC).
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Proof. Apply Lemma 2.4.1 to the abelian group A = ΩC , σ = ϑ. Since
(1− ϑ)ΩC ⊂ (ΩC)2, we have

H1(F,ΩC) = (ΩC)1/(1− ϑ)ΩC = (ΩC)2/(1− ϑ)ΩC =
[
ΩC/(1− ϑ)ΩC ]tor.

The isomorphism X̄ ' ΩC finishes the proof.

Combining 2.3.4 and 2.4.2, we can express Kottwitz’ isomorphism in the
following form.

Corollary 2.4.3. The composition[
X̄/(1− ϑ)X̄]tor

∼−→ H1(F,ΩC)
a−1
∗−→ H1(F, NC) b∗−→ H1(F, G)

is a bijection. A class [λ] ∈
[
X̄/(1−ϑ)X̄]tor, represented by λ ∈ X, corresponds

to the class [ω̇λ] ∈ H1(F, G), where ω̇λ ∈ Z1(F, NC) is any element whose
image in W is the unique element ωλ of tλW ◦ ∩ ΩC .

2.5. The dual group. Corollary 2.4.3 is usually expressed in terms of the
dual group Ĝ of G. Let Y := X∗(T) be the algebraic character group of T,
and let 〈 , 〉 : X × Y → Z be the natural pairing. The dual group of T is the
complex torus T̂ := Y ⊗ C×; it is a maximal torus in Ĝ. Let Ẑ denote the
center of Ĝ.

For any σ ∈ Aut(X), let σ̂ ∈ Aut(Y ) be defined by

〈σλ, η〉 = 〈λ, σ̂η〉, λ ∈ X, η ∈ Y.

The action of ϑ̂ on Y extends to the automorphism ϑ̂ ⊗ 1 of T̂ , thence by
restriction to an automorphism of Ẑ.

We may identify
X̄ = Hom(Ẑ,C×),

via restriction of characters. Restricting further to Ẑ ϑ̂, we may identify

X̄/(1− ϑ)X̄ = Hom(Ẑ ϑ̂,C×).

The elements in X̄/(1 − ϑ)X̄ vanishing on the identity component of Ẑ ϑ̂ are
exactly the torsion elements in X̄/(1− ϑ)X̄. Hence we may identify[

X̄/(1− ϑ)X̄]tor = Irr[π0(Ẑ ϑ̂)].

With these identifications, Corollary 2.4.3 becomes the usual expression of
Kottwitz’ isomorphism.

2.6. A commutative diagram. It is at this point that we first use seriously
the assumption that F arises from a quasi-split k-structure on G which is K-
split. Such an assumption ensures the existence of an F-fixed hyperspecial
vertex o ∈ j(C̄).
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Let Wo be the image of No = N ∩ Go in W . The latter has another
semidirect product expression

W = X oWo,

and both factors are preserved by ϑ.
Since G is K-split and k-quasi-split, there is a Gal(k̄/k)-invariant pinning

in G. Applying Proposition 3 of [59] to this pinning, we see that there is an
F-stable finite subgroup Ẇo ⊂ No projecting onto Wo.

Let w ∈Wo, choose a lift ẇ ∈ Ẇo of w, and set Fw := Ad(ẇ)◦F. Applying
Lemmas 2.1.2 and 2.3.1 to the groups Ẇo and Go, respectively, there exists
p0 ∈ Go such that

ẇ = p−1
0 F(p0).

The map Ad(p0) : T −→ G intertwines the pairs (T,Fw), (G,F). Let

(6) r : H1(Fw, T ) −→ H1(F, G),

be the map induced by Ad(p0).
A version of the following result was proved by Kottwitz [35, Thm. 1.2].

Lemma 2.6.1. We have a commutative diagram

[X/(1− wϑ)X]tor −→ [X̄/(1− ϑ)X̄]tor

'↓ ↓'

H1(Fw, T ) r−→ H1(F, G)

where the vertical maps are from 2.4.3 applied to T and G, the top row is the
natural projection and the map r is defined as in Equation (6).

Proof. Starting at [X/(1 − wϑ)X]tor and going down the left side, then
over on the bottom row, we see that the class of λ ∈ [X/(1−wϑ)X]tor goes to
the class

[p0tλp
−1
0 ] = [tλp−1

0 F(p0)] = [tλẇ] ∈ H1(F, G).

Equation (9) below shows that [tλẇ] = [ω̇λ], which is the result of the other
route, by Corollary 2.4.3.

2.7. Fixed points and cocycles. We continue in the set-up of Section 2.4.
In this section we show how cocycles in Z1(F, G) arise from fixed-points in A of
elements in the affine Weyl group W . This will be used to associate Frobenius
endomorphisms on G to Langlands parameters in LG.

Let w ∈ Wo, and let Xw be the preimage in X of [X/(1− wϑ)X]tor. For
λ ∈ Xw, we define

σλ := tλwϑ ∈W o 〈ϑ〉.
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Lemma 2.7.1. The element σλ ∈W o 〈ϑ〉 has finite order.

Proof. The element wϑ has finite order, say n, since it belongs to the
finite group Wo o 〈ϑ〉. We let Nwϑ = 1 + wϑ + · · · + (wϑ)n−1 ∈ End(X)
be the associated norm mapping. Since λ ∈ Xw, there is m ≥ 1 such that
mλ = (1− wϑ)ν, for some ν ∈ X. Then

σnmλ = Nwϑ(tmλ) = Nwϑ(1− wϑ)(tν) = 1.

By Lemma 2.7.1, σλ preserves a facet Jλ in A. Choose an alcove Cλ
in A containing Jλ in its closure. Let Wλ be the subgroup of W ◦ generated
by reflections in the hyperplanes containing Jλ. The group Wλ acts simply-
transitively on alcoves in A containing Jλ in their closure. Hence there is a
unique element wλ ∈Wλ such that

σλ · Cλ = wλ · Cλ.

Set yλ := w−1
λ tλw. Thus we have two expressions for σλ:

(7) tλwϑ = σλ = wλyλϑ,

and the latter is characterized as the unique factorization of σλ such that
wλ ∈ Wλ and yλ ∈ W satisfies yλϑ · Cλ = Cλ. Since wλ fixes Jλ pointwise, we
also have yλϑ · Jλ = Jλ; indeed, σλ and yλϑ have the same action on Jλ.

To briefly look ahead: Equation (7) is the essence of our Langlands cor-
respondence. The expression tλwϑ will arise from a certain kind of Langlands
parameter; that is, tλwϑ is an object on the “geometric side”. On the other
hand, yλ and wλ will determine a twisted Frobenius Fλ and an unramified torus
in GFλ , respectively, so yλ and wλ are objects on the “p-adic side”. The next
result leads us to Fλ.

Lemma 2.7.2. There exists a lift uλ ∈ N of yλ such that uλ ∈ Z1(F, N).

Proof. If j is the order of σλ (see Lemma 2.7.1), then

1 = (wλyλϑ)j = w′λ(yλϑ)j ,

for some w′λ ∈W ◦. Since W ◦ acts simply-transitively on alcoves in A, we can
decompose

W o 〈ϑ〉 = W ◦ o Ω̃Cλ ,

where Ω̃Cλ is the stabilizer of Cλ in W o 〈ϑ〉. It follows that (yλϑ)j = 1. Let
k be the order of ϑ. Then

1 = (yλϑ)jk = [yλϑ(yλ) · · ·ϑjk−1(yλ)]ϑjk = yλϑ(yλ) · · ·ϑjk−1(yλ).

That is, yλ ∈ Z1(F,W ). Hence, for all x ∈W , we have x−1yλϑ(x) ∈ Z1(F,W ).
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Recall that yλϑ·Cλ = Cλ. Let x ∈W ◦ be the element such that Cλ = x·C.
Then yλϑ ·x ·C = x ·C, so that x−1yλϑ(x) ∈ ΩC (recall C is ϑ-stable). By the
previous paragraph, we have in fact x−1yλϑ(x) ∈ Z1(F,ΩC).

By Lemma 2.3.4 there is a lift n ∈ Z1(F, N) of x−1yλϑ(x) such that
n · C = C. Choose a lift ẋ ∈ N of x. Then the element

uλ := ẋnF(ẋ)−1 ∈ Z1(F, N)

is a lift of yλ as claimed.

Lemma 2.7.3. The class of uλ in H1(F, G) is equal to that of ω̇λ ∈
Z1(F, G). (See 2.4.3.)

Proof. By the construction of uλ in Lemma 2.7.2, we have [uλ] = [n],
where n ∈ Z1(F, N) is a lift of x−1yλϑ(x) ∈ ΩC , and x is a certain element of
W ◦. By Corollary 2.4.3, it suffices to show that

x−1yλϑ(x) ∈ tλW ◦.

First note that tλW ◦ is preserved under conjugation by W ◦. The equation
tλw = wλyλ then implies yλ ∈ tλW

◦. Since x ∈ W ◦ as well, it follows that
x−1yλϑ(x) ∈ tλW ◦.

Fix once and for all a lift ẇ of w in Ẇo. Since tλwy−1
λ = wλ ∈ W ◦, there

exists a unique lift ẇλ ∈ N of wλ satisfying

tλẇ = ẇλuλ.

Set
Gλ := GJλ , Fλ := Ad(uλ) ◦ F .

Since yλϑ · Cλ = Cλ, we have

Fλ ·Cλ = Cλ.

Now,
tλ ∈ Z1(Fw, G), ẇ ∈ Z1(F, G),

the first by the definition of Xw and the second by Lemma 2.1.2 applied to the
group Ẇo. From Lemma 2.1.1 we conclude that

tλẇ ∈ Z1(F, G).

But also uλ ∈ Z1(F, G), so that, using Lemma 2.1.1 again, we conclude

ẇλ ∈ Z1(Fλ, Gλ).

By Lemma 2.3.1 there is an element pλ ∈ Gλ such that

p−1
λ Fλ(pλ) = ẇλ.
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This equation can be written as

(8) tλẇ = p−1
λ uλ F(pλ).

It follows that tλẇ ∈ Z1(F, G), and, in view of Lemma 2.7.3, we have

(9) [tλẇ] = [uλ] = [ω̇λ] ∈ H1(F, G),

as claimed in the proof of Lemma 2.6.1.

2.8. A normal form for Frobenius endomorphisms. Keep the set-up of
Section 2.7. For each λ ∈ Xw we have defined a Frobenius automorphism
Fλ and an Fλ-stable alcove Cλ in A. For certain w ∈ Wo, we will eventually
associate to λ, and some additional data, a representation πλ ∈ Irr(GFλ). This
association will be quite natural, but it will leave us with infinitely many pairs
(GFλ , πλ), which are almost all conjugate to one another in some sense, and
we will need to compare them. To do this, we seek a normal form for our
Frobenius endomorphisms Fλ.

Fix a class ω ∈ H1(F, G), along with a representative u ∈ ω ∩ N , such
that u ·C = C. This is possible by Lemma 2.3.4. In this section we will gather
together all of the Fλ for which uλ ∈ ω. We will then use our explicit cohomol-
ogy picture to keep track of conjugacy classes of tori and certain semisimple
elements in a fixed group GFu . This, in turn, will be used in our stability
calculations.

From Lemma 2.6.1, we have a map

r : Xw → H1(F, G)

sending λ 7→ [ω̇λ]. For λ ∈ r−1(ω), define σλ = tλwϑ, and choose Jλ, Cλ, uλ
as in Section 2.7. Recall that the Frobenius Fλ = Ad(uλ) ◦ F stabilizes the
alcove Cλ.

Lemma 2.8.1. For each λ ∈ r−1(ω), there exists mλ ∈ N such that

mλ ∗ uλ = u, mλ · Cλ = C.

Proof. Choose kλ ∈ N such that kλ · Cλ = C. Since Fλ ·Cλ = Cλ,
it follows that kλ ∗ uλ ∈ NC . In Lemma 2.7.3 we proved that [u] = [uλ] in
H1(F, G). Therefore [u] = [kλ ∗ uλ] in H1(F, G). Since u and kλ ∗ uλ belong
to NC , and H1(F, NC) → H1(F, G) is injective (see Lemma 2.3.4), we have
[u] = [kλ ∗uλ] in H1(F, NC). Hence there is `λ ∈ NC such that u = (`λkλ)∗uλ.
Then mλ := `λkλ has the required properties.

As in Section 2.7, we have the alternative expression σλ = wλyλϑ, where
wλ ∈Wλ and yλ is the image of uλ inW . Recall that we have fixed a lift ẇ ∈ Ẇo

of w, which determines a lift ẇλ ∈ N ∩ Gλ by the equation tλẇ = ẇλuλ, and
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we have an element pλ ∈ Gλ such that p−1
λ Fλ(pλ) = ẇλ. Choose mλ as in

Lemma 2.8.1 and set

qλ := mλpλ ∈ G, Sλ := Ad(qλ)T.

Then in G we have, using equation (8),

q−1
λ Fu(qλ) = p−1

λ ·m
−1
λ uF(mλ · pλ)u−1 = p−1

λ uλ F(pλ)u−1 = tλẇu
−1.

Thus, we have the analogue of equation (8) for qλ:

(10) tλẇ = q−1
λ uF(qλ).

Equation (10) will be used repeatedly in future calculations. It implies
that the map Ad(qλ) : T −→ Sλ satisfies

Fu ◦Ad(qλ) = Ad(qλ) ◦ Fw .

In particular, Sλ is an Fu-stable unramified maximal torus in G, whose under-
lying algebraic group Sλ is k-isomorphic to the twist of T by w.

In this section we have constructed an infinite family {Sλ : λ ∈ r−1(ω)}
of such tori, and our next task is to group these tori, and their strongly regular
elements, into GFu-conjugacy classes.

2.9. Conjugacy. We will use several times another consequence of Stein-
berg’s vanishing result, Theorem 2.2.1.

Lemma 2.9.1. Let Gad be the adjoint group of G, and let Gad = Gad(K).
Suppose Gad acts on a k-variety X, with connected stabilizers. For x, y ∈
X(K), the following are equivalent :

(1) x and y are in the same G-orbit,

(2) x and y are in the same Gad-orbit,

(3) x and y are in the same G-orbit.

Here G acts on X via the canonical map j : G −→ Gad.

Proof. Implication (1) ⇒ (2) is clear. Since G −→ Gad is surjective,
(2)⇒ (3) is also clear. Assume (3) holds, so there is g ∈ G such that g ·x = y.
Since x, y ∈ X(K) = XI , the map sending σ ∈ I to g−1σ(g) ∈ G is a cocycle in
Z1(K,Gx). By hypothesis, Gx is the full stabilizer of x in G. By Theorem 2.2.1
we have H1(K,Gx) = 1, so there is h ∈ Gx such that (gh)−1σ(gh) = 1 for all
σ ∈ I. Hence gh ∈ G, and (1) follows.
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We say that γ ∈ GF is strongly regular semisimple in G if the centralizer
of γ in G is a torus. By 2.9.1 we have for such γ the equalities

[Ad(G)γ]Gal(k̄/k) = [Ad(Gad)γ]F = [Ad(G)γ]F .

Such a set is called the G-stable conjugacy-class of γ. It is a finite union of
Ad(GF )-orbits, which are called the rational classes in the stable class.

2.10. Rational classes in a stable class. We continue with the setup of
Section 2.8. Our aim is to explicitly parametrize the rational classes in the
stable classes of certain elements γ ∈ G.

Recall that the map r : Xw −→ H1(F, G) is defined as a composition

r : Xw −→ [X/(1− wϑ)X]tor −→ H1(F, G).

We have fixed ω ∈ H1(F, G), and have considered the fiber r−1(ω) ⊂ Xw. Now
let [r−1(ω)] denote the image of r−1(ω) in [X/(1− wϑ)X]tor. In other words,
[r−1(ω)] is the fiber over ω in the second map in the above composition. By
Lemma 2.6.1, we may identify [r−1(ω)] with the fiber over ω of the natural
map H1(Fw, T ) −→ H1(F, G).

Let γ ∈ TFw be a strongly regular element of G. For λ ∈ r−1(ω), we set

γλ := qλγq
−1
λ ∈ S

Fu
λ .

Lemma 2.10.1. For λ, µ ∈ r−1(ω), the elements γλ and γµ are GFu-con-
jugate if and only if λ ≡ µ mod (1− wϑ)X. Thus, sending λ 7→ γλ defines a
bijection

[r−1(ω)] ∼−→ [Ad(G)γ]Fu/GFu .

Proof. Since Sλ = Gγλ , this is almost obvious from Lemma 2.6.1. How-
ever, we will give a direct proof which produces the conjugation from elements
already in play.

By Equation (10) we have

q−1
λ uF(qλ) = tλẇ, q−1

µ uF(qµ) = tµẇ.

Let h = qµq
−1
λ , so that Ad(h)γλ = γµ. Then h−1 Fu(h) ∈ Sλ since γ is strongly

regular. Moreover, γµ ∈ Ad(GFu)γλ if and only if the class [h−1 Fu(h)] in
H1(Fu, Sλ) is the identity element. We have

h−1 Fu(h) = qλ · q−1
µ uF(qµ) · F(qλ)−1u−1

= qλtµẇF(qλ)−1u−1

= qλtµẇẇ
−1t−λq

−1
λ

= qλtµ−λq
−1
λ ,

so that
[h−1 Fu(h)] = [qλtµ−λq−1

λ ] ∈ H1(Fu, Sλ).
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On the other hand, we have isomorphisms[
X/(1− wϑ)X

]
tor

∼−→ H1(Fw, T )
Ad(qλ)−→ H1(Fu, Sλ).

The first isomorphism is Corollary 2.4.3 applied to T,Fw; for ν ∈ Xw, it sends
the class of ν mod (1−wϑ)X to the class of tν in H1(Fw, T ). Thus, [qλtµ−λq−1

λ ]
is trivial in H1(Fu, Sλ) if and only if λ− µ ∈ (1− wϑ)X.

2.11. A partition of the rational classes in a stable class. We have seen in
Lemma 2.10.1 that the fiber [r−1(ω)] parametrizes the GFu-conjugacy classes
in the stable class of γλ, for λ ∈ r−1(ω). In this section we study an additional
structure on this fiber. Namely, the group

Wwϑ
o := {zo ∈Wo : wϑ(zo)w−1 = zo}

acts naturally on Xw, [X/(1− wϑ)X]tor, and [X̄/(1− ϑ)X̄]tor, and Wwϑ
o acts

trivially on the latter. Hence there is a natural Wwϑ
o -action on the fiber

[r−1(ω)]. This action in fact corresponds to GFu-conjugacy among the fam-
ily of tori {Sλ : λ ∈ r−1(ω)}, as follows.

Lemma 2.11.1. For λ, µ ∈ r−1(ω) the following are equivalent.
(1) There is zo ∈Wwϑ

o such that zoµ ≡ λ mod (1− wϑ)X.
(2) There is g ∈ GFu such that gγµ ∈ Sλ.
(3) There is g ∈ GFu such that gSµ = Sλ.

Proof. Assertions (2) and (3) are equivalent because Sλ = Gγλ for all
λ ∈ r−1(ω). (We have made them separate statements for later convenience.)

Assume (3) holds. Then q−1
λ gqµ ∈ N . Applying Equation (10) for µ and

λ, we find that

q−1
λ gqµ · tµẇ · F(q−1

µ g−1qλ) = q−1
λ guF(g)−1 F(qλ)

= q−1
λ g · uF(g)−1u−1 · qλtλẇ

= q−1
λ g · Fu(g)−1 · qλtλẇ

= tλẇ.

(11)

Let z ∈ W be the image of q−1
λ gqµ, and write z = tνzo with ν ∈ X, zo ∈ Wo.

Mapping the first and last terms of Equation (11) to W , we have

tνzo · tµw · ϑ(z−1
o t−ν) = tλw.

This shows that zo ∈Wwϑ
o , and then projection onto Wo yields

λ = zoµ+ (1− wϑ)ν,

so (1) holds.
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Conversely, if (1) holds, then λ = zoµ + (1 − wϑ)ν for some ν ∈ X, and
we set z = tνzo. Since H1(Fw,0 T ) = 1, there is a lift żo ∈ NFw of zo, and we
set ż = tν żo. Then

F(ż) = tϑνẇ
−1żoẇ.

Set g = qλżq
−1
µ . It is clear that gSµ = Sλ. To prove (3), it remains to show

that g ∈ GFu . Using equation (10) again, we compute

Fu(g) = uF(qλ) · F(ż) · F(qµ)−1u−1

= qλtλẇ · tϑνẇ−1żoẇ · ẇ−1t−µq
−1
µ

= qλ · tλ+wϑν−zoµ · żoq−1
µ

= qλtν żoq
−1
µ

= g,

as desired.

Let
Wwϑ
o,λ := {z ∈Wwϑ

o : zλ ≡ λ mod (1− wϑ)X}
be the stabilizer in Wwϑ

o of the class of λ in [r−1(ω)]. The next result interprets
Wwϑ
o and Wwϑ

o,λ as “large” and “small” Weyl groups of Sλ, respectively. This
will be used to relate L-packets to stable conjugacy classes of tori.

Lemma 2.11.2. For λ ∈ r−1(ω), the map Ad(qλ) induces isomorphisms

Wwϑ
o

∼−→ N(G,SFu
λ )/Sλ, Wwϑ

o,λ
∼−→ N(G,Sλ)Fu/SFu

λ .

Proof. First, a remark about normalizers of tori. Let F be a Frobenius
on G arising from some k-structure, and let S be the group of K-points of a
maximal k-torus S ⊂ G. We claim that

(12)
[
N(G,S)/S

]F = N(G,SF )/S.

For ⊆: Let n ∈ N(G,S) be such that F (n) = ns for some s ∈ S. Then on S

we have Ad(n) ◦ F = F ◦Ad(n), implying that n ∈ N(G,SF ). For ⊇: Choose
s0 ∈ SF ∩Gsrss. For n ∈ N(G,SF ), and s ∈ S, the element nsn−1 centralizes
s0, hence lies in S. This shows that N(G,SF ) ⊆ N(G,S). Moreover, we
have Ad(n)s0 ∈ SF , implying that Ad(n−1F (n))s0 = s0; hence F (n) ∈ nS, as
desired.

This remark shows that Wwϑ
o = N(G,TFw)/T , and the first isomorphism

follows. The second isomorphism amounts to showing that the projections
N →W →Wo induce an isomorphism

(13) NFtλw/TFw −→Wwϑ
o,λ .

Let n ∈ NFtλw , and let tνz be the image of n in W , where ν ∈ X and z ∈Wo.
We want to show that z ∈Wwϑ

o,λ . From the equation Ad(tλ) Fw(n) = n, we get

Ad(tλw)ϑ(tνz) = tνz,
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which leads to
tλ+(wϑ−1)ν Ad(w)ϑ(z) = tzλz;

hence z ∈Wwϑ
o and zλ = λ+ (wϑ− 1)ν, as desired. This shows also that (13)

is injective.
To see that (13) is surjective, let z ∈Wwϑ

o,λ , and choose a lift ż ∈ No. Since
Ad(tλw)ϑ(z) = z in Wo = No/

0T , we have

Ad(tλ) Fw(ż) = żt,

for some t ∈ 0T . Since H1(Fw, 0T ) = 1 we can write t = sFw(s−1) for some
s ∈ 0T . Then żs is a lift of z in NFtλw .

3. The conjectural local Langlands correspondence

Very roughly speaking, the conjectural local Langlands correspondence
predicts a relationship between representations of a p-adic group and cer-
tain maps from the Weil group into the dual group. The latter maps are
called “Langlands parameters”; they should partition the representations of the
p-adic group into finite sets, called “L-packets”, and it is conjectured that these
L-packets have many nice properties. We now make these statements more
precise.

3.1. Frobenius endomorphisms and representations of p-adic groups. Con-
tinue with the set-up of Section 2.3: G is a connected reductive k-group which
is k-quasi-split and K-split, with Frobenius automorphism F on the group
G = G(K).

For each cocycle u ∈ Z1(F, G), we have a twisted Frobenius

Fu := Ad(u) ◦ F

on G, and for g ∈ G, we have

Ad(g) ◦ Fu ◦Ad(g)−1 = Fg∗u .

Therefore Ad(g) is an isomorphism

Ad(g) : GFu −→ GFg∗u ,

which induces a bijection on irreducible representations, denoted by

Ad(g)∗ : Irr(GFu) −→ Irr(GFg∗u).

This bijection preserves the sets Irr2(·) of square-integrable representations.
Thus we have a G-action on the set

R2(F, G) := {(u, π) : u ∈ Z1(F, G), π ∈ Irr2(GFu)}.
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Considering the u-coordinate, we can partition R2(F, G) into G-stable subsets

R2(F, G) =
∐

ω∈H1(F,G)

R2(F, G, ω),

where R2(F, G, ω) consists of the pairs (u, π) ∈ R2(F, G) with u ∈ ω.

3.2. Dual group. Let Ĝ be the dual group of G. By definition, the dual
torus

T̂ := Y ⊗ C×

is a maximal torus in Ĝ. The operator ϑ̂ ∈ Aut(Y ) dual to ϑ extends to an
automorphism of the torus T̂ , with trivial action on C×.

We choose, once and for all, a pinning (T̂ , B̂, {xα}) where B̂ is a Borel
subgroup of Ĝ containing T̂ and the xα are nontrivial elements in the simple
root groups of T̂ in B̂. There is a unique extension of ϑ̂ to an automorphism of
Ĝ, satisfying ϑ̂(xα) = xϑ·α (see [7]). We can then form the semidirect product

LG := 〈ϑ̂〉n Ĝ.

3.3. Weil group. Recall that the inertia subgroup I ≤ Gal(k̄/k) is the
kernel of the natural map

Gal(k̄/k) −→ Gal(K/k).

The Weil group W is the subgroup of Gal(k̄/k) generated by I and the Frobe-
nius Frob. The wild inertia subgroup I+ C I is the maximal pro-p subgroup
of I. The tame inertia group is the quotient It := I/I+, and the tame Weil
group is the quotient Wt := W/I+. We will have more to say about these
groups in Section 4.3.

3.4. Elliptic Langlands parameters. An elliptic Langlands parameter is a
homomorphism

ϕ :W × SL2(C) −→ LG

with the following properties:

• ϕ(I) is a finite subgroup of Ĝ,

• ϕ(Frob) = ϑ̂f , where f ∈ Ĝ is semisimple,

• The restriction of ϕ to SL2(C) is algebraic.

• The identity component CĜ(ϕ)◦ of CĜ(ϕ) is equal to the identity com-
ponent (Ẑ ϑ̂)◦ of Ẑ ϑ̂.

The last condition expresses the “ellipticity” of ϕ; it is equivalent to requiring
that the image of ϕ not be contained in a proper Levi subgroup of LG, where
the meaning of “Levi subgroup” is as in [7, 3.4].



822 STEPHEN DEBACKER AND MARK REEDER

We let Cϕ denote the component group of CĜ(ϕ). Since Ẑ ϑ̂ is contained
in the center of CĜ(ϕ), each ρ ∈ Irr(Cϕ) determines a central character on
Ẑ ϑ̂ hence, via Kottwitz’ isomorphism (Corollary 2.4.3), a class ωρ ∈ H1(F, G).
Thus we may partition

Irr(Cϕ) =
∐

ω∈H1(F,G)

Irr(Cϕ, ω),

where Irr(Cϕ, ω) consists of the representations ρ ∈ Irr(Cϕ) with ωρ = ω.

3.5. The conjectures. The version of the Langlands conjectures stated here
is the product of many refinements, by Deligne, Lusztig, Vogan and others.
The local Langlands correspondence for G is a conjectural bijection between
the set of Ĝ-orbits of pairs (ϕ, ρ), where ϕ is an elliptic Langlands parameter
and ρ ∈ Irr(Cϕ), and the set of G-orbits in R2(F, G). Among many other ex-
pected properties, the G-orbit corresponding to (ϕ, ρ) should lie in R2(F, G, ω)
precisely when ωρ = ω.

Thus, we expect to have, for each Ĝ-conjugacy class of elliptic Langlands
parameters ϕ, a finite set

Π(ϕ) =
∐

ω∈H1(F,G)

Π(ϕ, ω),

where

(14) Π(ϕ, ω) := {[π(ϕ, ρ)] : ρ ∈ Irr(Cϕ, ω)},

and [π(ϕ, ρ)] = {(u, πu(ϕ, ρ)) : u ∈ ω} is a G-orbit in R2(F, G, ω).
These putative sets Π(ϕ) are known as “L-packets”. These L-packets

should form partitions

R2(F, G)/G =
∐
{ϕ}/Ĝ

Π(ϕ), R2(F, G, ω)/G =
∐
{ϕ}/Ĝ

Π(ϕ, ω).

To describe the properties we expect of an L-packet, we fix a representative
u ∈ Z1(F, N) of each class ω ∈ H1(F, G). We represent the trivial class by
u = 1, recalling that F1 = F. Then {πu(ϕ, ρ) : ρ ∈ Irr(Cϕ, ω)} is a set of
representatives for the G-orbits comprising Π(ϕ, ω).

We expect L-packets to have the following properties.

(i) The representation πu(ϕ, ρ) is unipotent [39] if and only if ϕ is un-
ramified, (that is, if ϕ is trivial on the inertia subgroup I of W). For G with
connected center, Lusztig has constructed unipotent L-packets corresponding
to unramified ϕ [39], [40]. See also [41] and [48] and for orthogonal and split
adjoint exceptional groups, respectively.

(ii) πu(ϕ, ρ) has depth-zero (that is, has nonzero vectors fixed under the
pro-unipotent radical of some parahoric subgroup in GFu) if and only if ϕ is
tame (that is, ϕ is trivial on the wild inertia subgroup I+ of I).
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(iii) π1(ϕ, 1) should be generic (that is, have a Whittaker model). If G has
a connected center, then π1(ϕ, 1) should be the unique generic representation
in Π(ϕ).

(iv) Let LM be a minimal Levi subgroup of LG containing ϕ(W). (It is
unique up to conjugacy by the connected centralizer of ϕ(W) [7].) If LM = LG,
then every class in Π(ϕ) should consist of supercuspidal representations. In
this case, we say that Π(ϕ) itself is “supercuspidal”. The L-packets in this
paper are all supercuspidal.

If LM 6= LG, then LM corresponds to an F-stable Levi subgroup M ⊂ G
contained in an F-stable proper parabolic subgroup P ⊂ G. The restriction ϕ :
W −→ LM inductively corresponds to a generic supercuspidal representation
πM1 (ϕ, 1) of MF, and π1(ϕ, 1) should be a generic constituent of the smoothly
induced representation IndG

F

PF πM1 (ϕ, 1). For (u, ρ) 6= (1, 1), the representation
πu(ϕ, ρ) should be supported on Levi subgroups of GFu whose center has k-rank
no larger than that of MF.

(v) For each u, normalize Haar measure on GFu so that the formal degree
of the Steinberg representation of GFu is independent of u. (For example, one
could make all Steinberg formal degrees equal to one, but we will choose a
different normalization.) Let Deg denote formal degree with respect to these
measures. Then we should have

Deg[πu(ϕ, ρ)] = dim ρ ·Deg[π1(ϕ, 1)].

Recall that πu(ϕ, ρ) and π1(ϕ, 1) may be representations of nonisomorphic
groups.

Properties (i-v) were verified in [48] for unipotent L-packets of split adjoint
exceptional groups (see (i) above).

(vi) Fix u and ϕ, and let Θρ be the character of πu(ϕ, ρ), viewed as
a function on the set (Grss)Fu of regular semisimple elements of GFu . The
function ∑

ρ∈Irr(Cϕ,ω)

dim ρ ·Θρ

should be stable. That is, if γ, γ′ ∈ (Gsrss)Fu are G-conjugate1, strongly regular
elements (see §1), then we should have∑

ρ∈Irr(Cϕ,ω)

dim ρ ·Θρ(γ) =
∑

ρ∈Irr(Cϕ,ω)

dim ρ ·Θρ(γ′).

This was verified in [41] for unipotent L-packets for inner forms of SO(2n+ 1)
(see (i) above).

1It is customary to require the elements to be G-conjugate, but we have seen in
Lemma 2.9.1 that two strongly regular, semisimple elements of G are G-conjugate if and
only if they are G-conjugate.
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4. From tame regular semisimple parameters to depth-zero
supercuspidal L-packets

We shall construct L-packets satisfying (ii)-(vi) above, for tame param-
eters ϕ in “general position”. We will first make this condition precise, and
outline the construction.

Our construction relies on the tame Langlands correspondence for tori. A
general Langlands correspondence for tori was proved by Langlands [37] but it
seems more difficult to extract the depth-zero correspondence from [37] than
to re-prove it from scratch, so we give a short self-contained account of the
tame Langlands correspondence for tori. Then we construct our L-packets,
using the material from Section 2.7.

4.1. Tame regular semisimple parameters. We say that a Langlands pa-
rameter ϕ is tame regular semisimple if it is trivial on the wild inertia subgroup
I+ and the centralizer of ϕ(I) in Ĝ is a torus. The latter condition is what
we mean by “general position”. This forces ϕ to be trivial on SL2(C). (There
is a more general notion of “tame regular” parameter which we will consider
elsewhere.)

Recall that Wt =W/I+ and It = I/I+. Our choice of inverse Frobenius
determines a splitting

Wt = 〈Frob〉n It,

where Frob−1 xFrob = xq for x ∈ It.
Recall that the Weyl group N/T is identified with Wo, the image of No in

W . We let Ŵo denote the Weyl group N̂/T̂ where N̂ is the normalizer of T̂ in
Ĝ. The restriction of the duality map

Aut(X) σ 7→σ̂−→ Aut(Y )

defines an anti-isomorphism w 7→ ŵ from Wo to Ŵo.
After conjugating by Ĝ, we may assume that ϕ(It) ⊂ T̂ and ϕ(Frob) = ϑ̂f ,

where f ∈ N̂ . Let ŵ be the image of f in Ŵo, corresponding to w ∈ Wo via
the above anti-isomorphism.

Then
CĜ(ϕ) = T̂

cwϑ,
which implies that the restriction map X → Hom(T̂ cwϑ,C×) induces an iso-
morphism

(15)
[
X/(1− wϑ)X

]
tor

∼−→ Irr(Cϕ), λ 7→ ρλ.

Moreover, ϕ is elliptic if and only if

(T̂
cwϑ)◦ = (Ẑ ϑ̂)◦.
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To summarize: A tame regular semisimple elliptic Langlands parameter
(TRSELP) is given by two objects:

• a continuous homomorphism s : It −→ T̂ , with CĜ(s) = T̂ , and

• an element f ∈ N̂ satisfying the two conditions

ϑ̂ ◦Ad(f) ◦ sq = s, (T̂
cwϑ)◦ = (Ẑϑ)◦,

where w ∈Wo arises from f as above.

Remark 4.1.1. If Ĝ is semisimple, then the ellipticity condition on ϕ is
that T̂ cwϑ be finite. In this case, the map T̂ −→ T̂ given by t 7→ t−1ŵϑ(t) has
finite fibers, hence is surjective. Thus, if we conjugate ϑ̂f by elements of T̂ , we
can change f to any other representative of ŵ. This means the T̂ -conjugacy
class of ϑ̂f is determined by the image ŵ of f in Ŵo, and so the Ĝ-conjugacy
classes of TRSELPs are in bijection with Ŵo-conjugacy classes of pairs (s, ŵ),
where s : It −→ T̂ is continuous, with CĜ(s) = T̂ , and ŵ ∈ Ŵo satisfies

ŵϑ ◦ sq = s, T̂
cwϑ is finite.

4.2. Outline of the construction. Suppose we have a TRSELP ϕ, with
s, f, ŵ as above. Recall from Section 2.7 that Xw denotes the preimage in
X of [X/(1 − wϑ)X]tor. For λ ∈ Xw, let ρλ be as in (15). In Section 2.7
we associated to λ a cocycle uλ whose class in H1(F, G) is ωρλ . The twisted
Frobenius Fλ = Fuλ stabilizes a facet Jλ ⊂ A with corresponding parahoric
subgroup Gλ. Ellipticity will imply that the facet Jλ is in fact a minimal
Fλ-stable facet in A, so that GFλ

λ is a maximal parahoric subgroup of GFλ .
To (ϕ, λ) we will further associate an Fλ-minisotropic torus Tλ, a depth-

zero character χλ of Tλ, whence an irreducible cuspidal representation κ0
λ of

GFλ
λ := (Gλ/G+

λ )Fλ (viewed as a representation of GFλ
λ ), via the Deligne-Lusztig

construction. In fact, χλ will define an extension κλ of κ0
λ to ZFGFλ

λ such that
the smoothly induced representation

πλ := IndG
Fλ

ZFG
Fλ
λ

κλ

is irreducible. Here Z denotes the group of K-rational points of the maximal
k-split torus in the center of G. An exercise shows that the functions in πλ
necessarily have compact support modulo ZF, so we could just as well define
πλ using the compact induction functor ind.

In our construction, uλ and Jλ are not uniquely defined, but the G-orbit
[uλ, πλ] ∈ R2(F, G) will be independent of the choices of uλ and Jλ. Moreover,
for λ, µ ∈ Xw, we will have

[uλ, πλ] = [uµ, πµ] ⇔ ρλ = ρµ.
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Thus, to (ϕ, ρ) we will associate the G-orbit [uλ, πλ] ∈ R2(F, G, ωρ), where
λ ∈ Xw is any character of T̂ restricting to ρ.

The L-packets thus defined are the “natural” ones: All choices involved
in the construction are rendered equivalent by taking G-orbits. However, to
make the stability calculations, we need representations of a fixed group. Using
Section 2.8, we will choose a representative (u, π) in each G-orbit [uλ, πλ], so
as to have all representations in the “unnatural” L-packet living on the single
group GFu .

4.3. Depth zero characters of unramified tori. Recall thatX = X∗(T), Y =
X∗(T). Let σ ∈ Aut(X) be an automorphism of X of order n, and let
Fσ = σ⊗Frob−1 be the corresponding twisted Frobenius of both T = X ⊗K×
and T = X⊗F×. (Recall that Frob−1 is the q-power map on F.) Let fn be the
degree n extension of f contained in F. Since σ has order n, the torus T with
Frobenius Fσ splits over fn, and TFnσ = X ⊗ f×n .

Given automorphisms α, β of abelian groups A,B, respectively, let

Homα,β(A,B)

denote the set of homomorphisms f : A −→ B such that f ◦ α = β ◦ f .
We have an exact sequence

1 −→ TFσ −→ TFnσ 1−Fσ−→ TFnσ Nσ−→ TFσ −→ 1,

where Nσ(t) = tFσ(t) F2
σ (t) · · ·Fn−1

σ (t). So Nσ induces an isomorphism

Hom(TFσ ,C×) ∼−→ HomFσ,Id(TFnσ ,C×) = HomFσ,Id(X ⊗ f×n ,C×).

There is also an isomorphism

Hom(f×n , T̂ ) ∼−→ Hom(X ⊗ f×n ,C×), s 7→ χs,

where χs(λ⊗ a) = λ(s(a)), for λ ∈ X, a ∈ f×n . One checks that

χs ∈ HomFσ,Id(X ⊗ f×n ,C×) ⇔ σ̂ ◦ s = s ◦ Frob,

where σ̂ ∈ Aut(Y ) is dual to σ. (The action of σ̂ on T̂ is such that σ ·λ = λ◦ σ̂
for all λ ∈ X.) Hence s 7→ χs is an isomorphism

HomFrob,σ̂(f×n , T̂ ) ∼−→ HomFσ,Id(X ⊗ f×n ,C×).

The tame inertia group It is identified with the projective limit

It = lim
←
m

f×m,

with respect to the norm mappings on the finite fields fm. The canonical
projection

It −→ f×m
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induces an isomorphism as Frob-modules

It/(1−Ad Frobm)It
∼−→ f×m.

Since σ̂ has order n, any s ∈ HomAd Frob,σ̂(It, T̂ ) is trivial on (1−Ad Frobn)It.
It follows that

HomFrob,σ̂(f×n , T̂ ) ' HomAd Frob,σ̂(It, T̂ ).

Thus the map s 7→ χs is a canonical bijection

HomAd Frob,σ̂(It, T̂ ) ∼−→ Hom(TFσ ,C×).

Now s ◦Ad Frob = σ̂ ◦ s if and only if for some (equivalently, any) τ ∈ T̂ ,
the assignment Frob 7→ σ̂ n τ extends s to a homomorphism

ϕ :Wt −→ LT σ,

where LT σ = 〈σ̂〉 n T̂ is the L-group of the torus T with Frobenius Fσ. The
T̂ -conjugacy class of the extension ϕ is uniquely determined by the image of τ
in T̂ /(1− σ̂)T̂ . The latter group is identified with the character group of Xσ,
whereby τ corresponds to

χτ ∈ Hom(Xσ,C×), χτ (λ) = λ(τ).

Our choice of uniformizer in k gives an isomorphism

TFσ ' 0T
Fσ ×Xσ,

where 0T is the group of RK-points of T. Hence the above isomorphisms give a
canonical bijection between T̂ -conjugacy classes of admissible homomorphisms
ϕ :Wt −→ LTσ and depth-zero characters

χϕ := χs ⊗ χτ ∈ Irr(TFσ),

where s = ϕ|It and ϕ(Frob) = σ̂nτ . This bijection has the following naturality
property.

Lemma 4.3.1. Let α be an algebraic automorphism of T commuting with
Fσ, so that α ∈ Aut(X) and α̂ ∈ Aut(Y ). Then χϕ ◦ α = χα̂◦ϕ.

Proof. We check it first on Xσ. Since χϕ(µ) = µ(τ), for µ ∈ Xσ, we have

χϕ(α · µ) = (α · µ)(τ) = µ(α̂ · τ) = χα̂◦ϕ(µ).

Now on TFσ we have χϕ = χs, where χs ∈ HomFσ,Id(X ⊗ f×n ,C×). For λ ∈ X,
a ∈ f×n , we have

χα̂◦ϕ(λ⊗ a) =χα̂◦s(λ⊗ a) = λ
(
α̂ · (s(a))

)
= (α · λ)(s(a)) = (χs ◦ α)(λ⊗ a) = (χϕ ◦ α)(λ⊗ a).
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Now let ϕ : Wt → LG be a TRSELP, with associated w ∈ Wo and set
σ = wϑ. We want to construct from ϕ a T̂ -conjugacy class of Langlands
parameters

ϕT :Wt −→ LTσ,

such that ϕT = ϕ on I, and such that ϕT (Frob) and ϕ(Frob) have the same
action on T̂ . We will have

ϕT (Frob) = σ̂ n τ

for some τ ∈ T̂ , which is only defined up to σ̂-twisted conjugacy. That is, we
need only define the coset of τ in T̂ /(1− σ̂)T̂ .

We define the coset of τ as follows. Let Ĝ′ be the derived group of Ĝ, and
let T̂ ′ = T̂ ∩ Ĝ′. Ellipticity implies that the map τ 7→ τ σ̂(τ)−1 has finite kernel
on T̂ ′, which means that

(1− σ̂)T̂ ′ = T̂ ′,

and so the inclusion T̂ ↪→ Ĝ induces a bijection

T̂ /(1− σ̂)T̂ ′ ∼−→ Ĝ/Ĝ′ =: Ĝab.

It follows that T̂ ↪→ Ĝ induces a bijection

(16) T̂ /(1− σ̂)T̂ ∼−→ Ĝab/(1− ϑ̂)Ĝab

between the set of σ̂-twisted conjugacy classes in T̂ and the set of ϑ̂-twisted
conjugacy classes in the abelianization Ĝab. Now, if ϕ(Frob) = ϑ̂n f , we take
any τ ∈ T̂ whose class in T̂ /(1 − σ̂)T̂ corresponds under (16) to the image of
f in Ĝab/(1− ϑ̂)Ĝab.

Hence, from the TRSELP ϕ we get a character χϕT ∈ Irr(TFσ). We will
abuse notation slightly and again denote this character by χϕ.

4.4. From tame parameters to depth-zero types. Let ϕ : Wt −→ LG be a
TRSELP with ϕ(Frob) = ϑ̂f as in Section 4.1. Let w ∈ Wo be the element
such that ŵ is the image of f in Ŵo. Since ϕ is elliptic, we have

(17) Xwϑ = X∗(Z◦)ϑ, Xwϑ
ad = {0},

where Z◦ is the identity component of the center Z of G.
Let λ ∈ Xw, and set

σλ = tλwϑ ∈W o 〈ϑ〉,

as in Section 2.7. By the second equation in (17), the operator I − wϑ acts
invertibly on Aad, so that σλ has a unique fixed-point xλ ∈ Aad, given by

xλ = (I − wϑ)−1tjλ · o.

Let x̃λ be the pre-image of xλ in Aσλ .
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The facet Jλ from Section 2.7 is the unique facet in A containing x̃λ. As
in Section 2.7, we choose an alcove Cλ in A containing Jλ in its closure, and
write

Gλ := GJλ , Wλ := [N ∩Gλ]/0T , Gλ := Gλ/G
+
λ .

We choose uλ ∈ Z1(F, N) as in Lemma 2.7.2, and define

Fλ := Ad(uλ) ◦ F .

Then Fλ is a Frobenius endomorphism of G for some k-rational structure on
G which is inner to the quasi-split structure on G given by F. Recall also that
Fλ stabilizes the apartment A, the alcove Cλ, and the facet Jλ.

Lemma 4.4.1. We have

Aσλ = Jσλλ = JFλ
λ = x̃λ.

In particular, the point xλ is a vertex in B(Gad)Fλ.

Proof. From (7) of Section 2.7 we may decompose σλ in two ways:

σλ = tλwϑ = wλyλϑ.

Since wλ fixes Jλ pointwise, we have

JFλ
λ = Jyλϑλ = Jσλλ = x̃λ.

Also, Aσλ = x̃λ ⊆ Jλ, implying that Aσλ = Jσλλ .

Since Fλ ·Jλ = Jλ, Fλ induces a Frobenius endomorphism of Gλ, preserv-
ing T. Since Fλ ·Cλ = Cλ, the Frobenius Fλ also preserves a Borel subgroup of
Gλ containing T. It follows [6, 20.6] that T is a maximally f-split torus in Gλ
with respect to Fλ.

From Section 2.7 we have the alternative expression

σλ = wλyλϑ,

where wλ ∈Wλ and yλ is the image of uλ in W . Moreover, our fixed choice of
lift ẇ of w defines a lift ẇλ ∈ N ∩Gλ of wλ, via the equation

tλẇ = ẇλuλ.

Recall that we can then choose an element pλ ∈ Gλ such that

p−1
λ Fλ(pλ) = ẇλ.

Note that
Fλ ◦Ad(pλ) = Ad(pλ) ◦Ad(ẇλuλ) ◦ F .

Define
Tλ := Ad(pλ)T.
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Then Tλ is an Fλ-stable unramified torus in G. On T , we have Ad(ẇλuλ) =
Ad(w), so that Ad(pλ) : T −→ Tλ satisfies

Fλ ◦Ad(pλ) = Ad(pλ) ◦ Fw,

where Fw = Ad(ẇ) ◦ F.
By ellipticity, we have

TFw = Xwϑ × 0T
Fw = X∗(Z◦)ϑ × 0T

Fw = ZF · 0TFw
.

This implies that Tλ is Fλ-minisotropic. Moreover, we have 0T λ = Tλ ∩ Gλ,
and 0T λ projects to an Fλ-minisotropic maximal torus Tλ in Gλ.

On A and Aad we have Ad(ẇλuλ) F = σλ. By Lemma 4.4.1 the unique
fixed-point of Tλ in B(Gad)Fλ is

[pλ · Aad]Fλ = pλ · Aσλad = pλ · xλ = xλ.

As in Section 4.3, we have a depth-zero character χ = χϕ of TFw . Since ϕ
is in general position, Lemma 4.3.1 implies that χ is Fw-regular.

This character χ transports to a depth-zero Fλ-regular character

χλ := Ad(pλ)∗χ ∈ Irr(TFλ
λ ).

The restriction of χλ to 0T
Fλ
λ factors through a character χ0

λ ∈ Irr(TFλ
λ ),

which is in “general position” with respect to Fλ, in the sense of [20, 5.16].
By [20, 8.3], Deligne-Lusztig induction then gives an irreducible cuspidal rep-
resentation

κ0
λ := ε(Gλ,Tλ) ·RGλ

Tλ,χ0
λ
∈ Irr(GFλ

λ ).

Inflate κ0
λ to a representation of GFλ

λ and define an extension to ZFGFλ
λ by

κλ := χλ ⊗ κ0
λ.

This makes sense since (Z ∩Gλ)Fλ acts on κ0
λ via the restriction of the scalar

character χ0
λ.

So far, to the TRSELP ϕ and λ ∈ Xw, we have associated a Frobenius
Fλ, an Fλ-stable parahoric subgroup Gλ, and an irreducible representation κλ
of ZFGFλ

λ . In the process we made choices of ẇ, Cλ, uλ, pλ.

Lemma 4.4.2. Given a TRSELP ϕ and λ ∈ Xw, both fixed, suppose there
are two sets of choices (ẇ, Cλ, uλ, pλ) and (ẇ′, C ′λ, u

′
λ, p
′
λ) as above, giving rise

to (Fλ, Tλ, χλ, κλ) and (F′λ, T
′
λ, χ

′
λ, κ
′
λ) as above. Then there is h ∈ Gλ such

that

(1) h ∗ u′λ = uλ;

(2) Ad(h)∗(T ′λ, χ
′
λ, κ
′
λ) = (Tλ, χλ, κλ).
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Proof. Note that (1) implies that Ad(h)
(
G

F′λ
λ

)
= GFλ

λ , so that (2) makes
sense. Since σλ is defined before the choices are made, we have

wλyλ = tλw = w′λy
′
λ,

and so there is t ∈ 0T such that

ẇλuλ = tẇ′λu
′
λ.

Here, both sides belong to Z1(F, N) and act on T via w. Lemma 2.1.1 implies
that t ∈ Z1(Fw, 0T ). By Lemma 2.3.1 for 0T , there is s ∈ 0T such that

(18) sFw(s)−1 = t.

Since Ad(w) = Ad(ẇ′λu
′
λ) on T , equation (18) can be written

(19) sẇ′λu
′
λ = tẇ′λu

′
λ F(s) = ẇλuλ F(s).

Recall our equations characterizing pλ and p′λ:

(20) p−1
λ Fλ(pλ) = ẇλ, p′λ

−1 F′λ(p′λ) = ẇ′λ.

These allow us to write (19) in the form

(21) s · p′λ
−1
u′λ F(p′λ) = p−1

λ uλ F(pλ) · F(s).

Equation (21) shows that the element h := pλsp
′
λ
−1 satisfies h ∗ u′λ = uλ. We

have h ∈ Gλ since pλ, s, p
′
λ are all in Gλ. It is clear that Ad(h)(T ′λ, χ

′
λ) =

(Tλ, χλ), which then implies that Ad(h)∗κ′λ = κλ.

4.5. Definition of the L-packets. Given a TRSELP ϕ, an element λ ∈ Xw

and a set of choices (Cλ, uλ, pλ), define

πλ := IndG
Fλ

ZFG
Fλ
λ

κλ,

where Ind denotes smooth induction. (The functions in πλ automatically have
compact support modulo ZF .) In this notation we have suppressed the choices
(Cλ, uλ, pλ), but by Lemma 4.4.2 the G-orbit (in fact the Gλ-orbit) of (uλ, πλ)
is independent of these choices.

Lemma 4.5.1. The representation πλ of GFλ is irreducible supercuspidal.

Proof. By [44, 6.6] it suffices to show that κλ induces irreducibly to the
group

(G?λ)Fλ = {g ∈ GFλ : g · Jλ = Jλ},

which is the normalizer of GFλ
λ in GFλ . For this, it is enough to show the

stabilizer of κλ in (G?λ)Fλ is just ZFλGFλ
λ .

Suppose h ∈ (G?λ)Fλ and Ad(h)∗κλ = κλ. By [20, Thm. 6.8], there is
g ∈ GFλ

λ such that
Ad(gh)∗(Tλ, χλ) = (Tλ, χλ).
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Then by [14] there is ` ∈ (G+
λ )Fλ such that

Ad(`gh)∗(Tλ, χλ) = (Tλ, χλ).

That is, `gh ∈ N(G,Tλ)Fλ and fixes χλ. Hence p−1
λ `ghpλ ∈ NFw and fixes χ.

Let z be the projection of p−1
λ `ghpλ to Wo. By Lemma 4.3.1 we have ẑ ◦ s = s,

but CĜ(s) = T̂ , so z = 1. It follows that `gh ∈ TFλ
λ ∩ (G?λ)Fλ ⊂ ZFλGFλ

λ . Since
` and g are in GFλ

λ , this implies that h ∈ ZFλGFλ
λ .

At this point we have a supercuspidal representation πλ ∈ Irr(GFλ) for
every λ ∈ Xw. We now show that the G-orbit [uλ, πλ] := Ad(G) · (uλ, πλ)
depends only on the character ρλ ∈ Irr(Cϕ) corresponding to the image of λ
in [X/(1− wϑ)X]tor = Irr(Cϕ) (see §4.1).

Lemma 4.5.2. Given ϕ, along with λ, µ ∈ Xw, make choices (Cλ, uλ, pλ),
(Cµ, uµ, pµ) as above. Then ρλ = ρµ if and only if there exists g ∈ G such that

(1) g ∗ uλ = uµ;

(2) g · Jλ = Jµ;

(3) Ad(g)∗κλ ' κµ.

Proof. Suppose ρλ = ρµ. This is equivalent to having µ = λ+ (1− wϑ)ν
for some ν ∈ X, which amounts to the following equation in W o 〈ϑ〉:

tνσλt
−1
ν = tνtλwϑt

−1
ν = tµwϑ = σµ.

Lifting to N , we have

(22) tνẇλuλ F(tν)−1 = tẇµuµ,

for some t ∈ 0T . Arguing as in the proof of Lemma 4.4.2, there is s ∈ 0Tµ
such that

pµtp
−1
µ = s−1 Fµ(s).

Using Equations (20) we then find that

g ∗ uλ = uµ,

where g = spµtνp
−1
λ .

Since σλ and σµ have unique fixed-points xλ and xµ in Aad, we must have
tν · xλ = xµ, hence tν · Jλ = Jµ, from which (2) is immediate.

Finally, we have

Ad(g)∗(Tλ, χλ) = Ad(spµtν)∗(T, χ) = Ad(s)∗(Tµ, χµ),

so that Ad(g)∗κλ ' κµ.
Turning to the converse, suppose we have g ∈ G satisfying items (1)–(3)

above. By (2) and (3) and [20, Thm. 6.8], the pairs

(Ad(g)Tλ,Ad(g)∗χλ), (Tµ, χµ)
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are conjugate in G
Fµ
µ , and so without loss of generality, we may assume these

two pairs are equal. Then, the element n := p−1
µ gpλ belongs to N . By

(1), Ad(n) preserves TFw , and it preserves the Fw-regular character χ, since
Ad(g)∗χλ = χµ. It follows that n ∈ T . Let tν be the image of n in W . As in
the first paragraph of the proof, it suffices to prove that tνσλt−1

ν = σµ. But
this follows from the equation

Ad(n) ◦Ad(ẇλuλ) ◦ F ◦Ad(n)−1 = Ad(ẇµuµ) ◦ F,

which is proved using Equations (20) as before.

Now we have our first main result.

Theorem 4.5.3. Given a TRSELP ϕ with associated w ∈ Wo, let
r : Xw → H1(F, G) be as in Section 2.8. For each ω ∈ H1(F, G) define

Π(ϕ, ω) := {[uλ, πλ] : λ ∈ r−1(ω)}.

Then there is a well-defined bijection Irr(Cϕ, ω) ∼→ Π(ϕ, ω), as follows. Given
ρ ∈ Irr(Cϕ, ω), choose any λ ∈ r−1(ω) such that ρλ = ρ, and associate to ρ the
G-orbit [uλ, πλ] ∈ Π(ϕ, ω).

Proof. Recall that r(λ) = ω if and only if ρλ ∈ Irr(ϕ, ω). Suppose we
have λ, µ ∈ Xw such that ρλ, ρµ ∈ Irr(ϕ, ω). From [44, 6.2] it follows that
conditions 1–3 of Lemma 4.5.2 are equivalent to having g ∈ G such that

Ad(g) · (uλ, πλ) = (uµ, πµ).

So we have proved that

[uλ, πλ] = [uµ, πµ] ⇔ ρλ = ρµ,

as desired.

Remark 4.5.4. Recall that Irr(Cϕ, ω) is equal to the fiber over ω under
the composition

Irr(Cϕ) ∼→
[
X/(1− wϑ)X

]
tor
→
[
X̄/(1− ϑ)X̄

]
tor

∼→ H1(F, G),

whereby ρ = ρλ 7→ r(λ). By Lemma 2.7.3 we have uλ ∈ ωλ = r(λ) = ω.
Hence our representation πλ lives on an inner twist of G belonging to the class
ω ∈ H1(F, G), in accordance with the conjectures in Section 3.

4.6. Choosing representatives in an L-packet. We now use Section 2.8 to
choose representatives, living on a single group, of each G-orbit in an L-packet
Π(ϕ, ω). We fix u ∈ ω ∩ N , and for each λ ∈ r−1(ω) we choose mλ as in
Section 2.8. For each ρ ∈ Irr(Cϕ, ω), define

πu(ϕ, ρ) := Ad(mλ)∗πλ ∈ Irr(GFu),
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for any λ ∈ r−1(ω) such that ρλ = ρ. We have seen that the isomorphism class
of πλ is independent of the choice of λ. Two choices of mλ differ by an element
of GFu , so the isomorphism class of πu(ϕ, ρλ) likewise does not depend on the
choice of mλ. The normalized L-packet is then defined as

Πu(ϕ) := {πu(ϕ, ρ) : ρ ∈ Irr(Cϕ, ω)}.

More explicitly, the representation πu(ϕ, ρ) is given as follows. Recall that
mλ · Cλ is our fixed Fu-stable alcove C. The facet Iλ := mλ · Jλ is contained
in C̄, and is likewise Fu-stable. The Fu-minisotropic torus Sλ = Ad(mλ)Tλ =
Ad(qλ)T (see §2.8) has the property that Sλ∩GIλ projects to an Fu-minisotropic
torus Sλ in GIλ . The character θλ := Ad(mλ)∗χλ = Ad(qλ)∗χ is Fu-regular,
and gives a(n inflated) Deligne-Lusztig representation

κ0
λ := ε(GIλ ,Sλ) ·RGIλ

Sλ,θλ
∈ Irr(GFu

Iλ
),

and an extension of κ0
λ to a representation κλ of ZFGFu

Iλ
. Finally, we have

πu(ϕ, ρ) = IndG
Fu

ZFGFu
Iλ

κλ.

5. Normalizations of measures and formal degrees

We now move toward Harmonic Analysis. The first step is a uniform nor-
malization of Haar measures on groups of the form GF , where G = G(K) and
G is a connected reductive k-group, split over K. We then verify the equality
of formal degrees in an L-packet, according to the conjectures in Section 3.
(Note that the group Cϕ is abelian for these L-packets.) Except where noted,
our Frobenius on G is now unspecified, and is denoted by F , according to our
conventions.

5.1. Haar measure. We denote the Lie algebra of G by g, and again let F
denote the induced Frobenius action on g.

Suppose x ∈ B(G) or B(Gad). Just as we could attach a parahoric Gx
and its pro-unipotent radical G+

x to x, so we can define lattices gx and g+
x in g

(see [43, §3.2], [3, §2.2], where the corresponding objects are called gx,0 and
gx,0+). As before, the lattices gx and g+

x are independent of the facet to which
x belongs. If J is any subset of a facet and x ∈ J , then we set gJ = gx and
g+
J = g+

x . If J is an F -stable subset of a facet, then

LJ := gJ/g
+
J

is the Lie algebra of GJ , and we have

LFJ = gFJ /(g
+F
J ).
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Let dg denote the Haar measure on GF , normalized so that

measdg(GFJ ) =
|GFJ |
|LFJ |1/2

for one, in fact every, F -stable facet J in B(G).
Let dX denote the Haar measure on gF , normalized so that

measdX(gFJ ) = |LFJ |1/2

for one (in fact, every) F -stable facet J in B(G).
To show that these normalizations are independent of the choice of J as

claimed, it is enough to show that if J and J ′ are F -stable facets in B(G) with
J ′ ⊂ J̄ , then

measdg(GFJ ) =

∣∣GFJ ∣∣
|LFJ |1/2

implies

measdg(GFJ ′) =

∣∣GFJ ′∣∣
|LFJ ′ |1/2

(and similarly for the measure dX on g). Since J ′ ⊂ J̄ , we have

G+
J ′ ⊂ G

+
J ⊂ GJ ⊂ GJ ′ .

Moreover, the image of GJ in GJ ′ is a parabolic f-subgroup with unipotent
radical G+

J /G
+
J ′ and Levi component isomorphic to GJ . A short calculation

gives the desired result.

Remark 5.1.1. The above expression for measdg(GFJ ) can be simplified a
bit. Let G be a connected reductive group over f with Frobenius F . Let T ⊂ B

be an F -stable maximal torus and an F -stable Borel subgroup in G. Then

|GF | = [GF : BF ] · |BF | = qν [GF : BF ] · |TF |,

where ν is the number of (absolute) roots of T in B. The latter two factors are
prime to p, so that

|GF |p′ = [GF : BF ] · |TF |,

where | · |p′ is the largest factor of | · | which is prime to p. We have dim G =
dim T + 2ν. It follows that

measdg(GFJ ) = q− rk(G)/2|GFJ |p′ .

where rk(G) is the absolute rank of G.
This normalization applies as well to the largest k-split torus Z of the

center of G, and gives

measdz(0Z
F ) = q− rk(Z)/2|ZF | = (q1/2 − q−1/2)rk(Z),

where Z = 0Z/0Z
+.
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For any irreducible admissible representation π of GF which is square-
integrable modulo ZF , let Deg(π) denote the formal degree of π with respect
to the quotient measure dg/dz on GF /ZF (cf. [26]).

5.2. Formal degree of the Steinberg representations. The formal degree
conjectures in Section 3 require Haar measures for which the formal degree
of the Steinberg representation of GF is unchanged by inner twists of F , for
F = Fu. In this section we show that the measures dg defined above have this
property. First we consider some constants arising in this formal degree.

Recall that the quasi-split Frobenius F acts on X = X∗(T) by the auto-
morphism ϑ, and that Z denotes the largest k-split torus in the center of G.
Note that G/Z = (G/Z)I .

Let X1 = X∗(T/Z) and let C1 be the projection to the apartment of T/Z
in B(G/Z) of the ϑ-stable alcove C in A. Let Ω1 be the stabilizer of C1 in the
affine Weyl group of T/Z in G/Z. The inclusion X∗(Z) ↪→ X projects to an
embedding

X∗(Z) ↪→ (X/X◦)ϑ ' Ωϑ
C ,

where X◦ is the co-root lattice of T. Identifying, as we may, X◦ with the
co-root lattice of T/Z, we have

Ω1 ' X1/X
◦ ' ΩC/X∗(Z),

and a finite subgroup Ω2 := Ωϑ
C/X∗(Z) ↪→ Ω1 fitting into the exact sequence

1 −→ Ω2 −→ Ω1
1−ϑ−→ Ω1 −→ Ω1/(1− ϑ)Ω1 −→ 1,

showing that

(23) |Ω2| = |Ω1/(1− ϑ)Ω1| = |H1(F, G/Z)|.

Now take a cocycle u∈Z1(F, NC), with corresponding twist Fu=Ad(u)◦F
as before. Since u ∈ NC and ΩC is abelian, we have Ωuϑ

C = Ωϑ
C . It follows

that Ω2 is unchanged if we replace ϑ by an inner twist uϑ. Of course this also
follows from (23).

Next, let V1 = X1 ⊗ C, let R be the graded C-algebra of Wo-invariant
polynomial functions on the C-vector space V1, and let m be the maximal
ideal in R of functions vanishing at 0 ∈ V1. Then V := m/m2 is a vector
space of dimension ` := dimV1. The space V inherits a grading from R,
written V = ⊕V (d). Moreover, ϑ acts naturally on R and V , preserving the
grading. Choose a basis of eigenvectors for ϑ in each V (d) and let f1, . . . , f`
be the collection of eigenvectors obtained. Let dj = deg(fj) and let εj be the
eigenvalue of ϑ on fj .

Define the constant

c(G/Z) := |Ω2| ·
∏̀
i=1

qdi − εi
qdi−1 − εi

.
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The denominators in c(G/Z) are nonzero because each εi is a root of unity
and V (1)ϑ = {0}. Since u acts trivially on R and |Ω2| is invariant under
inner-twists, it follows that c(G/Z) is invariant under inner-twists.

Let GC1 be the Iwahori subgroup of G/Z at the alcove C1. From
[5, 5.3] and [55, 3.10], (see also [22, 5.5]) it follows that the formal degree
of the Steinberg representation Stu of GFu is given, using our normalizations
in Section 5.1, by

Deg(Stu) =
|TFu/ZFu |
c(G/Z)

· 1
measdg/dz(G

Fu
C1

)

=
|GFu
C1
|p′

c(G/Z)
· q

rk(G/Z)/2

|GFu
C1
|p′

=
qrk(G/Z)/2

c(G/Z)
.

This last expression is independent of u, as claimed.

5.3. Formal degrees in our L-packets. Now suppose π is an irreducible cus-
pidal representation of GF of the sort considered in 4.5, namely π = IndG

F

GFJ Z
F κ,

for some minimal F -stable facet J ⊂ B(G) and κ ∈ Irr(GFJ Z
F ). The formal

degree of π is given by

Deg(π) = dimκ · measdz(0Z
F )

measdg(GFJ )
.

Recall also that κ is of the following form. We have an F -minisotropic torus
S < G such that A(S)F = JF , a regular character θ ∈ Irr(SF ) whose restric-
tion to S ∩GFJ factors through SF = S ∩GF /S ∩G+F

J , and on GFJ ,

κ = ε(GJ , S) ·RGJ
S,θ.

By [20, Thm. 7.1],

dimκ =
|GFJ |p′
|SF |

.

Using also Remark 5.1.1, we find that

Deg(π) =
|ZF |
|SF |

qrk(G/Z)/2.

Now if F = Fu and π = πu(ϕ, ρ) as in 4.6, then the torus S is k-isomorphic
to the platonic torus T with twisted Frobenius Fw (see 2.8). Therefore, we have

Deg
(
πu(ϕ, ρ)

)
=
qrk(G/Z)/2

|TFw/ZF|
.

The right side of this equation is independent of u and ρ, so all representations
in an L-packet Π(ϕ) (see §4.5) have the same formal degree.
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6. Generic representations

In this section we determine the generic representations in our L-packets
Π(ϕ). Only quasi-split groups have generic representations, so these can
only occur in packets Π(ϕ, ω) for ω belonging to the kernel of the map jG :
H1(F, G)→ H1(F, Gad) induced by the adjoint map j : G→ Gad.

Let B be a Borel subgroup of G defined over k, and let U be the unipotent
radical of B. We may and shall assume that B contains our fixed maximal
torus T, which is the centralizer of a maximal k-split torus S.

A character ψ : UF −→ C× is generic if ψ is nontrivial on each simple root
group of SF in UF. A representation π ∈ Irr(GF) is generic if HomUF(π, ψ) 6= 0,
for some generic character ψ of UF. We say that π is ψ-generic if we want to
specify ψ.

If ω ∈ ker jG and ρ ∈ Irr(Cϕ, ω), the class π(ϕ, ρ) ∈ Π(ϕ, ω) is generic if
some (equivalently, every) representation in π(ϕ, ρ) is generic.

Generic characters and representations for finite reductive groups are de-
fined similarly.

6.1. Depth-zero generic characters and representations. The first section
of this chapter concerns all generic depth-zero supercuspidal representations,
not just those arising in our L-packets.

Given a hyperspecial vertex x ∈ Aϑad, set Ux := U ∩ Gx, U+
x := U ∩ G+

x .
The quotient Ux := Ux/U

+
x is the unipotent radical of an F-stable Borel sub-

group of Gx. We say that a character ψ : UF −→ C× has depth-zero at x if
the restriction of ψ to UF

x factors through a generic character ψx of UF
x . Note

that a depth-zero character at x is automatically generic for UF, since x is
hyperspecial. Moreover, any generic character ψx of UF

x arises from some ψ
having depth-zero at x (using, for example, [27, 24.12]).

Let κ◦ ∈ Irr(GF
x) be the inflation of an irreducible cuspidal representation

of GF
x , and let κ be an extension of κ◦ to ZFGF

x . In this chapter, it is convenient
to use the notation

(24) π(x, κ) := indG
F

ZFGF
x
κ

for the compactly induced representation of GF. Since x is hyperspecial, the
normalizer of GF

x in GF is ZFGF
x , so that [44, 6.6] implies that π(x, κ) is an

irreducible depth-zero supercuspidal representation of GF.

Lemma 6.1.1. Let x ∈ Aϑad be a hyperspecial vertex, let ψ be a character
of UF having depth-zero at x, and let ψx be the corresponding generic character
of UF

x as above. Assume that κ◦ is ψx-generic. Then π(x, κ) is ψ-generic.

Proof. This follows from Frobenius reciprocity: Let V ⊂ π(x, κ) be the
space of functions supported on ZFGF

xU
F. Then V ' indU

F

UF
x
κ as representa-
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tions of UF, and V is a UF-stable direct summand of π(x, κ). We have

0 6= HomUF
x

(κ, ψx) = HomUF(indU
F

UF
x
κ, ψ)

= HomUF(V, ψ)

⊂ HomUF(π(x, κ), ψ).

The next result shows that all generic depth-zero supercuspidals are of
the form π(x, κ) as constructed in (24) above.

Lemma 6.1.2. Let ψ be a generic character of UF, and let π be an irre-
ducible supercuspidal depth-zero ψ-generic representation of GF. Then there
is a hyperspecial vertex x ∈ Aϑad and a cuspidal representation κ◦ of GF

x (which
we inflate to a representation of GF

x), such that the following hold.

(1) ψ has depth-zero at x, and κ◦ is a ψx-generic representation of GF
x .

(2) There is an extension of κ◦ to a representation κ of ZFGF
x , such that

π ' π(x, κ).

Proof. From [44, 6.8] there is a vertex z ∈ Aϑad, a cuspidal representation
κz of GF

z , and a representation κ̇z of the normalizer ĠF
z of GF

z in GF such that
κz appears in κ̇z|GF

z
and π ' indG

F

ĠF
z

κ̇z.
We may assume that z is contained in the closure of our fixed alcove

jCϑ ⊂ Aϑad. Let Φ̃ be the set of affine roots of S in G. For any point y in the
closure of jCϑ, we set

Φ̃y := {α̃ ∈ Φ̃ : α̃(y) = 0},
Φ̃+
y := {α̃ ∈ Φ̃y : α̃|C > 0}.

Then Φ̃y is a spherical root system, and Φ̃+
y is a set of positive roots in Φ̃y.

We let Π̃y be the unique base of Φ̃y contained in Φ̃+
y .

Let Φy, Φ+
y , Πy be the respective sets of gradients of the affine roots in

Φ̃y, Φ̃+
y , Π̃y. Each of these sets lies in Φo, a set upon which W ϑ

o acts. The
roots in Πy are nondivisible in Φy, and form a base of the reduced root system
consisting of nondivisible roots in Φy.

Let
zW

ϑ
o := {w ∈W ϑ

o : w−1Πz ⊂ Φ+
o }.

Since π is ψ-generic and is a quotient of indG
F

GF
z
κz, we have

HomGF(indG
F

GF
z
κz, IndG

F

UF ψ) 6= 0.

As in the proof of [47, Lemma 4], this implies that there exists n ∈ NF whose
image v ∈ W ϑ

o belongs to zW
ϑ
o and such that n∗ψ|G+

z ∩nUF is trivial, while
n∗ψ|Gz∩nUF appears in κz|Gz∩nUF .
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By [47, Lemma 2], the image VF
z of Gz ∩ nUF in GF

z is the maximal unipo-
tent subgroup of GF

z generated by root groups UF
β for β ∈ Πz. Let θ be the

character of VF
z obtained from the restriction of nψ to Gz ∩nUF. We have seen

that θ appears in κz|VF
z
.

We claim that v−1Πz ⊂ Πo. Suppose not, and choose β ∈ Πz such that
v−1β ∈ Φ+

o r Πo. Then the root group UF
v−1β is contained in the kernel of

ψ, so that θ is trivial on the simple root group UF
β in VF

z . This contradicts
the cuspidality of κz. So v−1Πz ⊂ Πo; hence in fact v−1Πz = Πo, since
|Πz| = |Πo| = dimAϑad.

We have shown, moreover, that for each α ∈ Πo, the character nψ is trivial
on G+

z ∩ UF
vα, and nontrivial on Gz ∩ UF

vα. Hence ψ is trivial on G+
n−1·z ∩ U

F
α

and nontrivial on Gn−1·z ∩ UF
α .

It now suffices to prove that the vertex z is hyperspecial. For then the
previous paragraph shows that ψ has depth-zero at x := n−1 · z, and taking
κ◦ := Ad(n−1)∗κz, κ = Ad(n−1)∗κ̇z will satisfy the conclusions of the lemma.

Since vΠo = Πz, it is clear that z is special, but not immediately clear
that it is hyperspecial. Let α ∈ Πo. Since vα ∈ Πz, there is kα ∈ Z such that
vα− kα ∈ Π̃z. It follows that

z =
∏
α∈Πo

tkαvλα · o,

where {λα : α ∈ Πo} ⊂ Xad is the dual basis of Πo. Hence z = t · o, for an
element t ∈ TF

ad. Since Ad(t) is a k-rational automorphism of GF, it follows
that z is hyperspecial.

6.2. Generic representations in our L-packets. Fix a TRSELP ϕ with
corresponding w ∈Wo. We identify

Irr(Cϕ) = H1(Fw, T ) = [X/(1− wϑ)X]tor.

We likewise identify

H1(Fw, Tad) = Xad/(1− wϑ)Xad.

(Note that the latter group is finite.) For λ ∈ Xw, let ρλ denote the image of
λ in H1(Fw, T ), and ρjλ the image of jλ in H1(Fw, Tad). Then ρjλ = jw(ρλ),
where

jw : H1(Fw, T ) −→ H1(Fw, Tad)

is the map induced by the map j : G −→ Gad. Recall that xλ is the unique
fixed-point of tλwϑ in Aad.

Lemma 6.2.1. For λ ∈ Xw, the following are equivalent.

(1) ρjλ = 1;
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(2) the vertex xλ is hyperspecial;

(3) the representation πλ of Section 4.5 is generic.

Proof. The representations κλ are generic, by [21, 3.10]. The equivalence
of (2) and (3) now follows from Lemmas 6.1.1 and 6.1.2.

To prove the equivalence of (1) and (2), recall that xλ is defined by the
relation

(1− wϑ)xλ = tjλ · o.

Now xλ is hyperspecial if and only if xλ ∈ Xad·o, if and only if jλ ∈ (1−wϑ)Xad,
if and only if ρjλ = 1.

For ω ∈ ker jG, we set

Irr(Cϕ, ω)gen := {ρ ∈ Irr(Cϕ, ω) : π(ϕ, ρ) is generic}.

Lemma 6.2.2. For ω ∈ ker jG,

| Irr(Cϕ, ω)gen| = [Xϑ
ad : j(Xϑ)].

In particular, the number of generic representations in Π(ϕ, ω) is independent
of the TRSELP ϕ and the class ω ∈ ker jG.

Proof. We give the proof assuming that p - [Xad : jX]. The argument for
general p is more complicated (see [19]). In this proof only, we change notation
and let Z denote the full center of G, and set Z = G ∩Z. We have a diagram
of group homomorphisms

H1(k,Z) ι−→ H1(F, G)
jG−→ H1(F, Gad)

q r ↑
H1(k,Z) ιw−→ H1(Fw, T )

jw−→ H1(Fw, Tad)
q

Irr(Cϕ)

induced by the inclusions Z ↪→ T ↪→ G, the adjoint map j : G −→ Gad, and
Ad(p0) : T −→ G, where p−1

0 F(p0) = ẇ (see §2.7). The rows are exact at the
middle term [51, Prop. 38], and ι = r ◦ ιw. Recall that r−1(ω) = Irr(Cϕ, ω).
We prove the result by computing | ker ι| in two ways.

We have ker ιw ⊆ ker ι, so the ι-fibers are unions of ιw-fibers. From
Lemma 6.2.1 it follows that

ιw(ι−1(ω)) = Irr(Cϕ, ω)gen.

This implies that

| ker ι| = |ι−1(ω)| = | Irr(Cϕ, ω)gen| · | ker ιw|.
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Now
ker ιw ' TFw

ad /j(T
Fw),

and we have

TFw
ad = Xwϑ

ad × (0Tad)Fw , j(TFw) = j(Xwϑ)× j(0T
Fw).

Since Xwϑ
ad = {0}, it follows that

(25) | ker ι| = | Irr(Cϕ, ω)gen| · |(0Tad)Fw/j(0T
Fw)|.

On the other hand, we have

| ker ι| = |GF
ad/j(G

F)|.

Since G is quasi-split, [8, 5.6] implies that the inclusion Tad ↪→ Gad induces a
bijection

TF
ad/j(T

F) ∼−→ GF
ad/j(G

F).

Since TF
ad = Xϑ

ad × (0Tad)F, we have

TF
ad/j(T

F) = [Xϑ
ad/j(X

ϑ)]× (0Tad)F/j(0T
F),

so that

(26) | ker ι| = |Xϑ
ad/j(X

ϑ)| · |(0Tad)F/j(0T
F)|.

Comparing Equations (25) and (26), we see that the proof boils down to show-
ing that

(27) |(0Tad)Fw/j(0T
Fw)| = |(0Tad)F/j(0T

F)|.

If p - [Xad : jX], then jX⊗R×K = Xad⊗R×K , and so we have an exact sequence

1 −→ 0T ∩ Z −→ 0T
j−→ 0T ad −→ 1.

Since H1(Fw, 0T ) = H1(F, 0T ) = 1 and w acts trivially on Z, it follows that
both sides of Equation (27) are equal to |H1(F, 0T ∩ Z)|.

It follows from [60, 2.5] that [Xϑ
ad : j(Xϑ)] is the number of GFu-orbits of

hyperspecial vertices in B(GFu). Lemma 6.2.2 leads one to expect that each of
these orbits supports a unique generic representation in Πu(ϕ). We will prove
this in a few steps, as follows.

Lemma 6.2.3. Let Fu be a quasi-split Frobenius, and let S be an Fu-min-
isotropic torus in G. Assume that the unique fixed-point x of SFu in B(Gad)Fu

is hyperspecial. Then

N(GFu , S)/SFu = N(G,SFu)/S.
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Proof. Let n ∈ N(G,SFu) ⊂ N(G,S). Since x is hyperspecial and is
contained in the apartment of S in B(Gad), we have N(G,S) = N(Gx, S)S, and
so we may assume n ∈ N(Gx, SFu). Then Fu(n) = nt for some t ∈ S∩Gx = 0S.
Choose d ≥ 1 such that Fdu (n) = n. If d = 1 there is nothing to prove, so
assume d > 1. This implies that tFu(t) · · ·Fd−1

u (t) = 1. By Lemma 2.3.1 there
is s ∈ 0T such that t = sFu(s)−1, so that Fu(ns) = ns.

Returning to the notation of Section 4.6, let u ∈ ω ∈ ker jG, and suppose
λ, µ ∈ r−1(ω) are such that ρλ, ρµ ∈ ker jw. It follows from Lemma 6.2.1
that vλ := mλ · xλ and vµ := mµ · xµ are hyperspecial vertices in AFu

ad. The
representations πu(ϕ, ρλ) and πu(ϕ, ρµ) are induced from the stabilizers in GFu

of vλ and vµ, respectively.

Lemma 6.2.4. Assume that vλ and vµ are GFu-conjugate hyperspecial ver-
tices. Then ρλ = ρµ.

Proof. We first prove that Sλ and Sµ are GFu-conjugate. Since GFu =
GFu
vλN

FuGFu
vµ , there is n ∈ NFu such that n · vµ = vλ. The Fu-minisotropic tori

S1 := Sλ, S2 := nSµ

both have vλ as their unique fixed-point in B(Gad)Fu . Let T and Si be the
images of T ∩Gvλ and Si ∩Gvλ , respectively, in Gvλ .

Set
k1 := qλm

−1
λ , k2 := nqµm

−1
µ n−1.

Then ki ∈ Gvλ and Si = Ad(ki)T for i = 1, 2. Let k̄i be the image of ki in Gvλ ,
so that Si = Ad(k̄i)T.

Using Equation (10) we find that

k−1
1 Fu(k1) ≡ mλ · wu−1 · Fu(mλ)−1 mod T,

k−1
2 Fu(k2) ≡ nmµ · wu−1 · Fu(nmµ)−1 mod T.

Since vλ is hyperspecial, every class in N/T has a representative in N ∩ Gvλ .
Applying this to mλT , nmµT and wu−1T , we obtain that k̄−1

1 Fu(k̄1) and
k̄−1

2 Fu(k̄2) are Fu-conjugate in the Weyl group of T in Gvλ . This means (cf. [12,
3.3.3]) that S1 and S2 are GFu

vλ -conjugate. The uniqueness part of Lemma 8.0.10
then implies that S1 and S2 are GFu-conjugate. Hence Sλ and Sµ are GFu-
conjugate, as claimed.

By Lemma 2.11.1 there is zo ∈Wwϑ
o such that

λ ≡ zoµ mod (1− wϑ)X.

But Lemmas 6.2.3 and 2.11.2 imply that

Wwϑ
o = Wwϑ

o,µ .

Hence λ ≡ µ mod (1− wϑ)X, so ρλ = ρµ.
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Remark 6.2.5. Lemma 6.2.3 and the last step in the above proof can be
seen in another way, as follows. Since vλ is hyperspecial, Lemma 6.2.2 implies
that ρλ ∈ ker jw = im iw : [H1(k,Z) → H1(Fw, T )]. Since Wwϑ

o acts trivially
on H1(k,Z), it follows that ρλ is a Wwϑ

o -fixed point in H1(Fw, T ).

Combining Lemmas 6.2.2 and 6.2.4 yields the promised result:

Corollary 6.2.6. There is a bijection between the set of generic rep-
resentations in Πu(ϕ) and the set of GFu-orbits of hyperspecial vertices in
B(Gad)Fu , such that a generic representation is induced from the stabilizer of
any hyperspecial vertex in the corresponding orbit.

Remark 6.2.7. If G has connected center, then Gx has connected center
for any hyperspecial vertex x ∈ B(G). Assume x is Fu-stable. It follows from
Proposition 5.26 and Theorems 6.8 and 10.7 of [20] that every cuspidal generic
representation of Gx is of the form ±RGx

S,θ for some Fu-minisotropic maximal
torus S ⊂ Gx and θ ∈ Irr(SFu) in general position. By Lemma 6.1.2, this implies
that every depth-zero generic supercuspidal representation of GFu appears in
Πu(ϕ) for some TRSELP ϕ.

7. Topological Jordan decomposition

We define the set of compact elements in G by

G0 :=
⋃

x∈B(G)

Gx,

and the set of topologically unipotent elements in G by

G0+ =
⋃

x∈B(G)

G+
x .

We define g0 and g0+ similarly. These Go 〈F 〉-stable subsets of G will play an
important role in this paper.

Remark 7.0.8. From [16] we have that if x ∈ B(G), then

G0 ∩ stabG(x) = Gx.

Let p denote the characteristic of f. Choose m such that for all F -stable
facets J in B(G) and all elements g ∈ GFJ we have g(pm) = s where s denotes
the semisimple component in the Jordan decomposition of g.

Suppose γ ∈ GF0 . Let J ⊂ B(G) be any F -stable facet such that γ ∈ GJ .
Since γ ∈ GFJ , it follows that we can define

γs := lim
n→∞

γ(pmn).
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This limit does not depend on m, and the element γs has finite order prime
to p. We set

γu = γ · γ−1
s .

The topological Jordan decomposition is the commuting factorization

γ = γsγu = γuγs.

We have γs, γu ∈ GFJ . Moreover, γs is semisimple and has semisimple image
in GJ while γu has unipotent image in GJ . In particular, γu is topologically
unipotent. We say that γ is topologically semisimple if γ = γs, that is, if
γ = γp

m

.
The topological Jordan decomposition γ = γsγu is the unique commuting

factorization of γ as a product of a topologically semisimple element and a
topologically unipotent element. This implies that if g ∈ G is chosen so that
gγ ∈ GF , then g(γs) = (gγ)s and g(γu) = (gγ)u.

Lemma 7.0.9. Suppose γ ∈ GF0 has topological Jordan decomposition γ =
γsγu. Then γ, γs, and γu all belong to Gγs. Moreover, if γ ∈ Grss, then
γu ∈ Grss

γs
.

Proof. Choose a Borel subgroup B < G containing γ. Since B ∩G is a
closed subgroup of G, both γs and γu belong to B∩G. Since γs is semisimple,
it follows from [6, Th. 10.6 (5ii)] that the centralizer in B of γs is connected.
Thus, γ, γs, and γu belong to Bγs ∩G ⊂ Gγs .

The centralizer of γu in Gγs has finite index in the centralizer of γ in G.
This implies the last assertion.

Since γs is compact and has finite order prime to p, the results of [46]
combined with Remark 7.0.8 allow us to identify

(28) B(Gγs) = B(G)γs .

More precisely, there is an unramified maximal torus S of G containing γs, and
a bijection from the apartment of S in B(Gγs) to the apartment of S in B(G)
which extends to a Gγs-equivariant bijection B(Gγs)

∼−→ B(G)γs . In particular,
Gγs and G have the same K-rank.

For an exhaustive treatment of the topological Jordan decomposition,
see [52].

8. Unramified and minisotropic maximal tori

Recall that we are assuming G is K-split, and that we say a subgroup
S < G is a maximal unramified torus in G if S = S(K), where S is a K-split
maximal torus in G such that S is defined over k.

All maximal unramified tori in G can be found as follows.
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Lemma 8.0.10. Suppose we are given a nonempty F -stable subset J of a
facet in B(G) or B(Gad) and an F -stable maximal torus S < GJ . Then there
exists a maximal unramified torus S in G such that

(1) J ⊂ A(S);

(2) the image of S ∩GJ in GJ is exactly S.

Moreover, S is unique up to conjugacy by G+F
J .

Proof. The existence of S is shown in the proof of [10, 5.1.10]. The
uniqueness is proved in [14, Lemma 2.2.2].

Such an S is called a lift of (J,S).
A maximal unramified torus S in G is called F -minisotropic in G if

X∗(S)F = X∗(Z), where Z is the identity component of the maximal k-split
torus in the center of G.

Likewise, a maximal f-torus S in a reductive f-group G with Frobenius F is
called F -minisotropic in G if X∗(S)F = X∗(Z), where Z is the maximal f-split
torus in the center of G.

Let T(G) be the set of F -minisotropic maximal tori in G. If S ∈ T(G),
then there exists a unique F -stable facet J ⊂ B(G) such that

A(S)F = JF .

The unique parahoric subgroup 0S of S is given by
0S = S ∩GJ .

Note that N(G,S)F preserves A(S)F , hence normalizes GFJ and G+F
J . In

particular, G+F
J N(G,S)F is a subgroup of GF .

Let S be the image of S ∩GJ in GJ . Then S is an F -minisotropic torus in
GJ , and S is a lift of (J, S).

Fix now S ∈ T(G) and a topologically semisimple element γ ∈ GF0 . For
our later integral calculations we must consider the two sets

E(γ, S) := {g ∈ GF : gγ ∈ GJ , gγ ∈ S},
D̃(γ, S) := {d ∈ GF : dγ ∈ S}.

In other terms, D̃(γ, S) is the set of elements of GF which conjugate S into
Gγ , and E(γ, S) is the set of elements of GF which send some G+F

J -conjugate
of S into Gγ and whose inverse sends J into B(Gγ). Since γ ∈ GF0 , we have
D̃(γ, S) ⊂ E(γ, S).

Now, there are obvious actions, by multiplication, of G+F
J N(G,S)F ×GFγ

on E(γ, S), and of N(G,S)F ×GFγ on D̃(γ, S).

Lemma 8.0.11. The inclusion D̃(γ, S) ↪→ E(γ, S) induces a bijection

N(G,S)F \D̃(γ, S)/GFγ
∼−→ G+F

J N(G,S)F \E(γ, S)/GFγ .

Both sets of double cosets are finite.
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Proof. The set N(G,S)F \D̃(γ, S)/GFγ parametrizes GFγ -conjugacy classes
of F -minisotropic tori in Gγ which lie in the GF -conjugacy class of S. Since
GFγ has only finitely many conjugacy classes of unramified maximal tori, the
set N(G,S)F \D̃(γ, S)/GFγ is finite.

We now prove injectivity. Suppose we have d, d′ ∈ D̃(γ, S), and h ∈
G+F
J , n ∈ N(G,S)F , g ∈ GFγ , such that d′ = nhdg. Replacing d′ by n−1d′g−1,

we may assume without loss of generality that d′ = hd. This means that dγ

and hdγ both belong to S, and being compact, dγ and hdγ in fact belong to
S ∩GJ . Since h ∈ G+F

J , both dγ and hdγ have the same image in S. Hence we
can write hdγ = dγγ1, where γ1 ∈ G+F

J ∩S is topologically unipotent. But then
dγγ1 = γ1

dγ, and since hdγ is topologically semisimple, we must have γ1 = 1,
by uniqueness of the topological Jordan decomposition. It follows that S and
h−1Sh are two lifts of (S, J) in dGγs . By Lemma 8.0.10, there is k ∈ (dGγs)

+F
J

such that kSk−1 = h−1Sh. This implies that h ∈ N(G,S)F · d(GFγs
), proving

injectivity.
For surjectivity, suppose g ∈ E(γ, S), and let H = gGγ . Then gγ fixes J

pointwise, and so by Equation (28), J is contained in a facet in the building
B(H) of H. We let HJ denote the corresponding parahoric subgroup of H.
Then gγ ∈ HJ .

Considering root data, we find an f-isomorphism ι : (GJ)gγ
∼−→ HJ making

the following diagram commutative.

H ∩GJ = HJ

↓ ↓
(GJ)gγ

ι−→ HJ .

We have S < (GJ)gγ by hypothesis; hence ιS is an F -stable maximal torus in
HJ . Choose a lift S′ in H of (J, ιS). Then S′ ∩HJ = S′ ∩ GJ and so S′ is a
lift of (J, S) in G. But S is also a lift of (J, S) in G, so that by 8.0.10 there
is k ∈ G+F

J such that kS′ = S. Since gγ ∈ S′, we have kgγ ∈ S. This means
kg ∈ D̃(γ, S), proving surjectivity.

9. Some character computations

In this chapter we give an integral formula for the characters of the rep-
resentations constructed in Section 4.4. In fact, we define a set of integrals
on GF which include these characters as a subset. Our eventual goal is to
express these integrals as combinations of similar integrals on the set of topo-
logically unipotent elements, in the same way that a Deligne-Lusztig character
is expressed as a combination of Green functions.

9.1. Harish-Chandra’s character formula. Recall that Z denotes the group
of K-rational points of the maximal k-split torus in the center of G.
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Suppose that Q is an open subgroup of GF containing ZF such that Q is
compact modulo ZF . Suppose also that κ is a representation of Q for which
the compactly-induced representation π := indG

F

Q κ of GF is irreducible. Let
χ̇κ denote the extension by zero of the character of κ to a function on GF . In
[26] Harish-Chandra showed that the value of the character of π at γ ∈ (Grss)F

is given by the formula

Deg(π)
χκ(1)

∫
GF /ZF

dg∗
∫
L
χ̇κ(glγ) dl.

Here dg∗ denotes the quotient measure on GF /ZF with respect to Haar mea-
sures dg and dz on GF and ZF , respectively, Deg(π) denotes the formal degree
of π with respect to dg∗ = dg/dz (see §5), and L is an arbitrary compact open
subgroup of GF with Haar measure dl normalized so that measdl(L) = 1.

9.2. The character integral. Let S be an F -minisotropic maximal torus in
G, and let J be the unique minimal F -stable facet in B(G) such that A(S)F =
JF . Recall that 0S

F = SF ∩GJ , and S ∩GJ projects onto an F -minisotropic
torus S in GJ .

Let Irr0(SF ) denote the set of depth-zero characters of SF . For θ ∈
Irr0(SF ), the restriction of θ to 0S

F factors through SF , and thus defines a
Deligne-Lusztig virtual character RGJ

S,θ. Let ṘGJ
S,θ denote the natural inflation

of RGJ
S,θ to a function on GFJ , extended by zero to the rest of GF .
Define a function R(G,S, θ) on (Grss)F by the integral

R(G,S, θ)(γ) :=
measdz(ZFJ )
measdg(GFJ )

·
∫
GF /ZF

dg∗
∫
L
ṘGJ

S,θ(
glγ) dl.

Here L and the measures dg∗, dl are as in Section 9.1. (The integral converges;
see, for example, Lemma 10.0.7.)

Remark 9.2.1. For h ∈ GF , a change of variables shows that

R(G, hS, h∗θ) = R(G,S, θ),

where h∗θ = θ ◦Ad(h)−1. If T is a GF -orbit of pairs (S, θ) with S ∈ T(G) and
θ ∈ Irr0(SF ), we sometimes write

R(G, T ) := R(G,S, θ),

for any (S, θ) ∈ T .

9.3. Relation to characters. Suppose θ ∈ Irr0(SF ) is regular, in the sense
that θ has trivial stabilizer in N(G,SF )/S. There is a unique representation
κ of ZFGFJ such that

(1) the restriction to GFJ of κ has the character ε(GJ ,S) · ṘGJ
S,θ, and
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(2) the restriction of κ to ZF is given by the scalar character θ|ZF , times the
identity.

We have seen that the induced representation π := IndG
F

ZFGFJ
κ is irreducible

and supercuspidal.

Lemma 9.3.1. Let Θπ be the character of the representation π just de-
fined. Then Θπ vanishes off the set ZFGF0 . For z ∈ ZF and regular semisimple
γ ∈ GF0 ,

Θπ(zγ) = ε(GJ ,S) · θ(z) ·R(G,S, θ)(γ).

Proof. Harish-Chandra’s integral formula (see §9.1) makes the vanishing
assertion obvious and gives, for z ∈ ZF and regular semisimple γ ∈ GF0 , the
formula

Θπ(zγ) = θ(z) ·
measdg(GFJ )
measdz(ZFJ )

· Deg(π)
ṘGJ

S,θ(1)
·R(G,S, θ)(γ).

Consequently, we need to show that

measdg(GFJ )
measdz(ZFJ )

· Deg(π)
ṘGJ

S,θ(1)
= ε(GJ ,S).

But, from Remark 5.3 we have

Deg(π) ·measdg∗(ZFGFJ /Z
F ) = dim(κ),

and the claim follows.

9.4. Stable conjugacy of tori and their characters. We want to produce a
sum of character integrals that will be stable. In the situation of Section 9.3,
these sums will specialize to the sum of characters over an L-packet, as defined
in Section 4.6. Our integral sums are based on the notion of stable conjugacy
of unramified tori and their characters.

Recall that T(G) denotes the set of F -minisotropic maximal tori in G.
We say that two tori S1, S2 ∈ T(G) are G-stably conjugate if there is g ∈ G
such that g(SF1 ) = SF2 . This defines an equivalence relation on T(G), whose
equivalence classes are called G-stable classes. The set of G-stable classes
injects into H1(F,N/T ) as follows. Any two maximal unramified tori in G are
conjugate by an element of G. For S ∈ T(G), write S = gT , for g ∈ G. Since
F (S) = S, we have an element n := g−1F (g) ∈ Z1(F,N). Projection to N/T
gives an element n̄ := g−1F (g)T ∈ Z1(F,N/T ). One checks that the class [n̄]
of n̄ in H1(F,N/T ) is independent of g. Note that SF = g(TFn), where, as
usual, Fn = Ad(n) ◦ F .

Lemma 9.4.1. Suppose h ∈ G, and n,m ∈ N . Then

h−1mF (h) ∈ nT ⇔ h(TFn) = (hT )Fm .
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Proof. Implication ⇒ is straightforward. For the converse, choose a
strongly regular element t ∈ TFn . From the equation Fm(ht) = ht, we find
that the element h−1mF (h)n−1 centralizes t, hence lies in T .

For v = nT ∈ N/T , set Fv = Fn, and define

Tv := {S ∈ T(G) : SF = g(TFv) for some g ∈ G}.

Lemma 9.4.2. The sets Tv have the following properties.
(1) If Tv is nonempty, then Tv is a G-stable class in T(G).

(2) Every G-stable class in T(G) is of the form Tv for some v ∈ N/T .

(3) For v, v′ ∈ N/T , we have Tv = Tv′ if and only if [v] = [v′] in H1(F,N/T ).

(4) If G is k-quasi-split, then Tv is nonempty.

Proof. See [14].

For each S ∈ Tv, Lemma 9.4.1 implies that there is g ∈ G such that S = gT

and g−1F (g) ∈ v. Note that the choice of g is not uniquely determined by S;
two choices of g differ by an element of N(G,SF ). The map Ad(g) : T −→ S

intertwines (T, Fv) and (S, F ). For each depth-zero character χ ∈ Irr0(TFv), we
have a corresponding character g∗χ ∈ Irr0(SF ), which depends on the choice
of g.

This dependence on g is eliminated by passing to a “covering” of Tv, as
follows. Consider the set of pairs

T̂(G) := {(S, θ) : S ∈ T(G) and θ ∈ Irr0(SF )}.

We say that two pairs (S1, θ1), (S2, θ2) ∈ T̂(G) are G-stably conjugate if there
is g ∈ G such that

(1) g(SF1 ) = SF2 , and

(2) g∗θ1 = θ2.

The G-stable classes of pairs (S, θ) ∈ T̂(G) are parametrized as follows. Fix
v ∈ N/T , χ ∈ Irr0(T vF ), and define

T̂v,χ := {(S, θ) ∈ T̂(G) : there exists g ∈ G
such that SF = g(TFv), and θ = g∗χ}.

Lemma 9.4.3. (1) If Tv is nonempty, then T̂v,χ is a nonempty G-stable
class in T̂(G).

(2) Every G-stable class in T̂(G) is of the form T̂v,χ for some v ∈ N/T ,
χ ∈ Irr0(TF ).

(3) For v ∈ N/T , χ, χ′ ∈ Irr0(TFv), we have T̂v,χ = T̂v,χ′ if and only if there
is n ∈ N(G,TFv) such that n∗χ = χ′.
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Proof. This follows easily from Lemma 9.4.2.

Thus, we have a partition

T̂(G) =
∐

v∈N/T
Tv 6=∅

∐
χ∈Irr0(TFv )/N(G,TFv )

T̂v,χ

of T̂(G) into nonempty G-stable classes.
Projection onto the first factor is a surjection p1 : T̂v,χ −→ Tv. Given

S ∈ Tv we can project the fiber p−1
1 (S) onto the second factor. This gives a

map
p2 : p−1

1 (S) −→ Irr0(SF ).

We define
θχS =

∑
θ ∈ p2p

−1
1 (S)

θ.

To see the dependence on χ, choose g as in the definition of T̂v,χ above. Then

θχS =
∑

n̄∈N(G,SF )/S

(ng)∗χ,

and the sum is independent of the choice of g.

The character sums θχS have the following stability property.

Lemma 9.4.4. Suppose S1, S2 ∈ Tv, γ ∈ SF1 , and χ ∈ Irr0(TFv). Then for
any h ∈ G such that h(SF1 ) = SF2 ,

θχS1
(γ) = θχS2

(hγ).

Proof. This is immediate from the observation that h∗[p2p
−1
1 (S1)] =

p2p
−1
1 (S2).

9.5. The stable character integral. Fix a G-stable class T̂st ⊂ T̂(G). The
group GF acts on T̂(G) via g · (S, θ) = (gS, g∗θ), and T̂st is the union of finitely
many GF -orbits in T̂(G). By Remark 9.2.1 the function R(G,S, θ) depends
only on the GF -orbit of (S, θ). We can therefore define a function R(G, T̂st) on
(Grss)F by

R(G, T̂st) :=
∑

(S,θ)∈T̂st/GF
R(G,S, θ),

where R(G,S, θ) is as defined in Section 9.2. Our eventual goal is to show that
the function R(G, T̂st) is stable. But first, we relate R(G, T̂st) to the sum of
characters in an L-packet.

9.6. Relation to L-packets. In this section we show that the sum of
characters in an L-packet, as defined in Section 4.6, can be expressed, up to
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a sign, as one of the functions R(G, T̂st) as defined in Section 9.5. We return
to the notation used in Section 4.6 and previously, so that F = Fu. Set
v = ẇu−1T ∈ N/T , and let χ ∈ Irr0(TFw) be regular. Note that Fv = Fw, and
by the proof of Lemma 2.11.2, we may identify

N(G,TFw)/T = Wwϑ
o .

For each λ ∈ r−1(ω) we have the pair (Sλ, θλ) = qλ · (T, χ) ∈ T̂v,χ. Recall from
Lemma 2.6.1 the commutative diagram

[X/(1− wϑ)X]tor −→ [X̄/(1− ϑ)X̄]tor

'↓ ↓'

H1(Fw, T )
Ad(p0)−→ H1(F,G)

where the vertical maps are bijections. Recall that [r−1(ω)] denotes the fiber
of the map in the top row, and this fiber carries a natural action of Wwϑ

o .

Lemma 9.6.1. Recall that v = ẇu−1T , and χ ∈ Irr0(TFw) is regular. The
mappings λ 7→ (Sλ, θλ), λ 7→ Sλ, respectively, induce bijections

α : [r−1(ω)] ∼−→ T̂v,χ/GFu , β : [r−1(ω)]/Wwϑ
o

∼−→ Tv/GFu ,

which make the following diagram commute.

[r−1(ω)] α−→ T̂v,χ/GFu

p ↓ ↓ p̄1

[
r−1(ω)

]
/Wwϑ

o
β−→ Tv/GFu

Here p is the quotient map and p̄1 is induced by the projection p1 onto the first
factor.

Proof. The map β is well-defined and bijective, by Lemma 2.11.1.
If λ, µ ∈ r−1(ω) are congruent modulo (1−wϑ)X, then from the proof of

Lemma 2.10.1 there exists s ∈ Sλ such that qµq−1
λ s ∈ GFu . Since

qµq
−1
λ s · (Sλ, θλ) = (Sµ, θµ),

this shows that the map α is well-defined.
The fiber of p̄1 over the GFu-orbit of Sλ in Tv is in evident bijection with

N(G,SFu
λ )/SλN(GFu , Sλ). By Lemma 2.11.2, the latter is in bijection with the

fiber of p over the class of λ in
[
r−1(ω)

]
/Wwϑ

o .
It therefore suffices to prove that α is injective. Suppose g ∈ GFu , λ, µ ∈

r−1(ω) and g ·(Sµ, θµ) = (Sλ, θλ). As in the proof of Lemma 2.11.1, the element
q−1
λ gqµ belongs to N(TFw), and projects to an element zo ∈ Wwϑ

o such that
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zoµ ≡ λ mod (1 − wϑ)X. But also g∗θµ = θλ, which means that zo fixes χ.
Since χ is regular, we have zo = 1, hence µ ≡ λ mod (1− wϑ)X.

Recall that for λ ∈ r−1(ω), u ∈ ω, and a TRSELP ϕ we defined in
Section 4.6 the representation

πu(ϕ, ρλ) = Ad(mλ)∗πλ ∈ Irr(GFu),

where mλ is as in Lemma 2.8.1. This construction involved the character
χ = χϕ ∈ Irr0(TFw) corresponding to ϕ as in Section 4.3.

Lemma 9.6.2. Let Gu be the inner twist of G given by the cocycle u ∈ ω,
and let Tw be the twist of T determined by w. Then for λ ∈ r−1(ω),

ε(Gλ,Tλ) = ε(Gu,Tw).

Hence, this sign is independent of λ ∈ r−1(ω).

Proof. The f-rank of Gλ equals the k-rank of Guλ , and Guλ ' Gu over
k. Likewise, we have seen that Tλ ' Tw over k.

For λ ∈ r−1(ω), let Θρλ be the character of πu(ϕ, ρλ). By construction,
the function Θρλ depends only on the class of λ in [r−1(ω)]. We can now prove
the desired result of this section.

Lemma 9.6.3. Let v = wu−1 and let χ = χϕ be as in Section 4.3. Then∑
λ∈[r−1(ω)]

Θρλ = ε(Gu,Tw) ·R(G, T̂v,χ).

Proof. By Lemma 9.3.1, we have

Θρλ = ε(Gλ,Tλ) ·R(G,Sλ, θλ),

and so the claim follows from Lemmas 9.6.1 and 9.6.2.

10. Reduction formulae for character integrals

If G is a connected reductive f-group with Frobenius F , S is a maximal
f-torus in G, and θ ∈ Irr(SF ), then from [20, Thm 4.2] we have the reduction
formula

(29) RG
S,θ(x) =

∑
g∈GF
gS⊂Gs

g∗θ(s) ·QGs
gSg−1(u),

where x = su ∈ GF is the Jordan decomposition, and for any maximal f-torus
S1 ⊂ Gs, the normalized Green function QGs

S1
is defined on all of GF by

(30) QGs
S1

(h) :=


1
|GFs |

RGs
S1,θ1

(h) if h ∈ GFs and h is unipotent

0 otherwise ,
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the right side being independent of θ1 ∈ Irr(SF1 ).
In this section we prove an analogue of Equation (29) for our functions

R(G,S, θ), using now the topological Jordan decomposition.
Fix a pair (S, θ) ∈ T̂(G), and let T̂ denote the GF -orbit of (S, θ). For

γ ∈ GF0 ∩Grss with topological Jordan decomposition γ = γsγu, we define

T̂ (γs) := {(S′, θ′) ∈ T̂ : γs ∈ S′}.

Then GFγs
preserves T̂ (γs), and acts on T̂ (γs) with finitely many orbits.

Our reduction formula for R(G,S, θ) is as follows.

Lemma 10.0.4. For γ = γsγu as above,

R(G,S, θ)(γ) =
∑

(S′,θ′)∈T̂ (γs)/GFγs

θ′(γs) ·R(Gγs , S
′, 1)(γu).

The proof of Lemma 10.0.4 will require some preliminary steps. Let J be
the facet in A(S) such that JF = A(S)F , and let S be the image of S ∩GJ in
GJ . Any compact element δ ∈ SF belongs to S ∩GJ , and we let δ ∈ S denote
the image of δ.

Applying Equation (30) with G = GJ , s = γs, and S1 = S, we have the
normalized Green function Q(GJ)γs

S defined on all of GFJ . We let Q̇(GJ)γs
S denote

the natural inflation of Q(GJ)γs
S to a function on GFJ , extended by zero to the

rest of GF .

Lemma 10.0.5. Let γ ∈ GF0 be regular semisimple with γs ∈ S, and let
Lγs be a compact open subgroup of Gγs with Haar measure di. Then the support
of the function on GFγs

given by

h 7→
∫
Lγs

Q̇
(GJ)γs
S (hiγu) di,

is compact modulo the center of GFγs
.

Proof. The function Q
(GJ)γs
S on the unipotent set in (GJ)γs

is the re-

striction of R(GJ)γs
S,θ , for any θ ∈ Irr0(SF ). Take θ to be regular. Since S is

F -minisotropic in (GJ)γs
, the function Ṙ

(GJ)γs
S,θ is a matrix coefficient of a su-

percuspidal representation of GFγs
, constructed as in Section 4.4 with GF there

replaced by GFγs
. Hence the function Q̇

(GJ)γs
S is the restriction of a supercus-

pidal matrix coefficient to the compact topological unipotent set in GFγs
. The

result now follows from [26, Lemma 23, p. 59].
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The restriction of θ to SF ∩GJ is the inflation of a character θ0 ∈ Irr(SF ).
Let θ̇ denote the function on GF defined by

θ̇(δ) =

{
θ0(δ̄) if δ ∈ GFJ and δ̄ ∈ S,
0 otherwise.

For each regular semisimple element γ ∈ GF0 , define a locally constant function
fγ on GF by

fγ(g) := θ̇(gγs) · Q̇
(GJ)gγs
S (gγu).

Note that fγ is supported on the set E(γs, S) defined in Section 8, and is
left-invariant under G+F

J .

Lemma 10.0.6. Let γ ∈ GF0 be regular semisimple, and let Lγs be a com-
pact open subgroup of Gγs with Haar measure di. Then the function τγ : GF→ C
defined by

τγ(g) :=
∫
Lγs

fγ(gi) di

is locally constant and compactly supported modulo ZF .

Proof. Since τγ(jg) = τγ(g) for all j ∈ (G+
J )F and g ∈ GF , it is clear that

τγ is locally constant.
Without loss of generality, we assume that γ ∈ GFJ and γs ∈ S. By

Lemma 8.0.10, there is a lift of (J,S) in Gγs . Any such lift is F -minisotropic
in G. It follows that the center of GFγs

is compact modulo ZF .
Choose a set D(γs, S) of representatives for the double cosets in

N(G,S)F \D̃(γs, S)/GFγs
.

By Lemma 8.0.11 the set D(γs, S) is finite, and the support of τγ is contained
in

E(γs, S) =
∐

d∈D(γs,S)

G+F
J N(G,S)FdGFγs

.

Since S is F -minisotropic, the group N(G,S)F is compact modulo ZF . It
suffices therefore to show, for fixed d ∈ D(γs, S), that the function h 7→ τγ(dh)
on GFγs

has compact support modulo the center of GFγs
. This is Lemma 10.0.5

with γ there replaced by dγ.

The key to the reduction formula is the following “localization” result.

Lemma 10.0.7. Suppose γ ∈ GF0 is regular semisimple and L is a compact
open subgroup of GF , and let Lγs = L∩Gγs. Normalize Haar measures so that
measd`(L) = measdi(Lγs) = 1. Then the integrals∫

GF /ZF
dg∗

∫
Lγs

fγ(gi) di
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and ∫
GF /ZF

dg∗
∫
L
fγ(gl) dl

both converge and are equal. Moreover, these integrals are independent of L.

Proof. The first integral is∫
GF /ZF

τγ(g) dg∗.

Lemma 10.0.6 shows that this integral converges and allows us to rewrite it as∫
GF /ZF

τγ(g) dg∗ =
∫
GF /ZF

dg∗
∫
L
τγ(gl) dl

=
∫
GF /ZF

dg∗
∫
L
dl

∫
Lγs

fγ(gli) di

=
∫
GF /ZF

dg∗
∫
L
fγ(gl) dl,

absorbing i into the integral over L.
To see that the integrals are independent of L, it suffices to show they are

unchanged if we replace L by a compact open subgroup L′ < L. We have∫
GF /ZF

dg∗
∫
Lγs

fγ(gl) dl =
∫
GF /ZF

dg∗
∫
Lγs

dl

∫
(L′)γs

fγ(gll′) dl′.

By Lemma 10.0.6 again, the integral over (L′)γs has compact support as a
function on GF /ZF ×Lγs . Hence we may switch the integrals over GF /ZF and
Lγs . The claim follows.

Now we can prove Lemma 10.0.4. From Equation (29), we have

measdg(GFJ )

measdz(0ZF )
R(G,S, θ)(γ) =

∫
GF /ZF

dg∗
∫
L
ṘGJ

S,θ(
glγ) dl

=
∑

x∈GFJ /G
+F
J

∫
GF /ZF

dg∗
∫
L
fγ(xgl) dl.

Absorbing x into the integral over GF /ZF and using Lemma 10.0.7 , we get

measdg(GFJ )

measdz(0ZF )
R(G,S, θ)(γ) = |GFJ |

∫
GF /ZF

dg∗
∫
Lγs

fγ(gi) di.

During the rest of this calculation only, we use the abbreviations

N := N(G,S)F , U := G+F
J , H = Gγs .

Let D(γs, S) be as in the proof of 10.0.6. The integral over Lγs is supported
on

E(γs, S) =
∐

d∈D(γs,S)

∐
n̄∈N/Nd

UndHF /ZF ,
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where Nd = dH ∩N . Consequently, we have

(31)
measdg(GFJ )

measdz(0ZF )
R(G,S, θ)(γ)

= |GFJ |
∑

d∈D(γs,S)

∑
n̄∈N/Nd

∫
UndHF /ZF

dg∗
∫
Lγs

fγ(gi) di.

Note that the map (d, n̄) 7→ (nd)−1 · (S, θ) induces a bijection

D(γs, S)×N/Nd
∼−→ T̂ (γs)/H.

Hence the sum in Equation (31) matches the sum in Lemma 10.0.4.
Fix d ∈ D(γs, S) and n̄ ∈ N/Nd, and set

J ′ = (nd)−1J, U ′ = G+F
J ′ = Ad(nd)−1U, (S′, θ′) = (nd)−1 · (S, θ), γ′s = ndγs.

We then have∫
UndHF /ZF

dg∗
∫
Lγs

fγ(gi) di =
measdg(U)

measdh(H ∩ U ′)

∫
HF /ZF

dh∗
∫
Lγs

fγ(ndhi) di.

From the definitions,

fγ(ndhi) = θ̇(γ′s) · Q̇
(GJ)

γ′s
S (ndhiγu) = θ̇′(γs) · Q̇

(GJ′ )γs
S′ (hiγu).

As in the proof of Lemma 8.0.11, the projection H ∩GJ ′ −→ GJ ′ allows us to
identify

(GJ ′)γs = HJ ′ ,

so that
fγ(ndhi) = θ̇′(γs) · Q̇HJ′

S′ (hiγu).

Since U = G+F
J and H+F

J ′ = H ∩ U ′,∫
UndHF /ZF

dg∗
∫
Lγs

fγ(gi) di

=
measdg(G+F

J )
measdh(H+F

J ′ )

∫
HF /ZF

dh∗
∫
Lγs

θ̇′(γs) · Q̇HJ′
S′ (hiγu) di.

Since the center of H is contained in the F -minisotropic torus S′, we conclude
that Z is the group of K-rational points of the maximal k-split torus in the
center of Gγs . Hence, from the definition of R(H,S′, 1), we have

|GFJ |
∫
UndHF /ZF

dg∗
∫
Lγs

fγ(gi) di =
measdg(GFJ )

measdz(0ZF )
θ′(γs) ·R(H,S′, 1)(γu).

Inserting this into Equation (31) completes the proof of Lemma 10.0.4.
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10.1. Characters in a simple case. We illustrate Lemma 10.0.4 in the
simple case where γ ∈ GF0 is strongly regular and topologically semisimple.
We have γs = γ and γu = 1.

Let T̂ ⊂ T̂(G) be a GF -orbit. We write

R(G, T̂ ) := R(G,S′, θ′)

for any (S′, θ′) ∈ T̂ . Then T̂ (γ) is nonempty if and only if (S, θ) ∈ T̂ , where
S = Gγ and θ ∈ Irr0(SF ), in which case

T̂ (γ) = {(S, n∗θ) : n ∈ N(G,S)F /SF }.

Since R(Gγ , S, 1)(1) = 1, Lemma 10.0.4 gives the formula

R(G, T̂ )(γ) =
∑

n∈N(G,S)F /SF

n∗θ(γ)

if T̂ (γ) is nonempty, and R(G, T̂ )(γ) = 0 otherwise.
Return now to the situation of Section 9.6, with F = Fu etc. By Lemma 9.6.1,

T̂ contains
(Sλ, θλ) = Ad(qλ) · (T, χ),

for some λ ∈ r−1(ω). If S is not GFu-conjugate to Sλ, then R(G, T̂ )(γ) = 0.
Suppose S = hSλ for some h ∈ GFu . Let θ = h∗θλ, so that

T̂ (γ) = {(S, n∗θ) : n ∈ N(G,S)Fu/S}.

From Lemmas 2.11.2 and 10.0.4 it follows that

R(G, T̂ )(γ) =
∑

y∈Wwϑ
o,λ

(hqλy)∗χ(γ).

From Lemma 9.3.1 we get the following character values.

Proposition 10.1.1. Suppose γ ∈ GFu
0 is strongly regular and topologi-

cally semisimple. Then Θρλ(γ) = 0 unless γ lies in a GFu-conjugate of Sλ, and
if γ ∈ hSλ for h ∈ GFu ,

Θρλ(γ) = ε(Gλ,Tλ)
∑

y∈Wwϑ
o,λ

(hqλy)∗χ(γ).

11. Reduction formula for stable character integrals

In this section we prove the analogue of Lemma 10.0.4 for stable character
integrals. Fix a G-stable class T̂st ⊂ T̂(G). Recall from Lemma 9.4.3 that there
is v ∈ N/T and χ ∈ Irr0(TFv) such that every pair (S, θ) ∈ T̂st is of the form

(S, θ) = (gT , g∗χ)

for some g ∈ G with g−1F (g) ∈ v.
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Given γ ∈ GF0 regular semisimple, with topological Jordan decomposition
γ = γsγu, we define

T̂st(γs) := {(S, θ) ∈ T̂st : γs ∈ S}.

This set is a finite disjoint union

T̂st(γs) =
∐

î∈Î(γs)

T̂st(γs, î),

where each T̂st(γs, î) is a Gγs-stable class in T̂(Gγs), and Î(γs) is an index set
for these Gγs-stable classes.

Applying p1, we have

Tst(γs) := p1[T̂st(γs)] =
∐

i∈I(γs)

Tst(γs, i),

where each Tst(γs, i) is a Gγs-stable class in T(Gγs), and I(γs) is an index set
for these Gγs-stable classes. There is a surjective map î 7→ i from Î(γs) to
I(γs), such that

p1[T̂st(γs, î)] = Tst(γs, i).

The fiber of this map over i ∈ I(γs) has cardinality

N(i) := |N(Gγs , S
F )/S|,

where S is any element of Tst(γs, i).
For any Gγs-stable class T 1

st ⊂ T(Gγs), we set

Q(Gγs , T 1
st) :=

∑
S∈T 1

st/G
F
γs

|N(Gγs , S
F )/SN(GFγs

, S)| ·R(Gγs , S, 1).

This will turn out to be a stable p-adic analogue of a Green function. We
will consider the sums Q(Gγs , Tst(γs, i)), for i ∈ I(γs). But first we need more
notation.

For each î ∈ Î(γs) and S ∈ Tst(γs, î), we have a character sum

θîS =
∑

θ∈pî2(pî1)−1(S)

θ,

where pî1 (resp. pî2) is the restriction of p1 (resp. p2) to T̂st(γs, î).
In fact, this sum is independent of S: Given two tori S, S′ ∈ Tst(γs, i), we

have
θîS(γs) = θîS′(γs),

as a special case of Lemma 9.4.4. We therefore define

θχ
î
(γs) := θîS(γs),
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for any S ∈ Tst(γs, i). Note that the sum

θχi (γs) :=
∑
î 7→i

θχ
î
(γs)

is none other than the character sum θχS(γs), for any S ∈ Tst(γs, i), as defined
in Section 9.4.

Finally, recall (Section 10) that for each GF -orbit T̂ ⊂ T̂st, we have defined

T̂ (γs) = {(S, θ) ∈ T̂ : γs ∈ S}.

Now we are ready to state the reduction formula for stable character integrals.

Lemma 11.0.2. For γ ∈ GF0 regular semisimple, with topological Jordan
decomposition γ = γsγu,

R(G, T̂st)(γ) =
∑

i∈I(γs)

θχi (γs)
N(i)

·Q(Gγs , Tst(γs, i))(γu).

Proof. Using Lemma 10.0.4, we compute

R(G, T̂st)(γ) =
∑

T̂ ∈T̂st/GF
R(G, T̂ )(γ)

=
∑

T̂ ∈T̂st/GF

∑
(S,θ)∈T̂ (γs)/GFγs

θ(γs) ·R(Gγs , S, 1)(γu)

=
∑

î∈Î(γs)

∑
(S,θ)∈T̂st(γs ,̂i)/GFγs

θ(γs) ·R(Gγs , S, 1)(γu)

=
∑

î∈Î(γs)

∑
S∈Tst(γs,i)/GFγs

θîS(γs)
|N(GFγs

, S)/SF |
·R(Gγs , S, 1)(γu)

=
∑

i∈I(γs)

θχi (γs)
∑

S∈Tst(γs,i)/GFγs

1
|N(GFγs

, S)/SF |
·R(Gγs , S, 1)(γu)

=
∑

i∈I(γs)

θχi (γs)
N(i)

·Q(Gγs , Tst(γs, i))(γu).

11.1. A bijection between stable classes of unramified tori. Lemma 11.0.2
reduces the proof of stability to the topologically unipotent set, as follows. Let
Tst(γs)/Gγs denote the set of Gγs-stable classes in Tst(γs). So Tst(γs)/Gγs is
indexed by I(γs).

We now assume that γ ∈ GF0 is in fact strongly regular semisimple; that
is, the centralizer of γ in G is a torus. Then if g ∈ G and gγ is again in GF ,
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we can construct a bijection

ιg : Tst(γs)/Gγs

∼−→ Tst(gγs)/Ggγs

as follows. Let S ∈ Tst(γs). Since γ ∈ GF and has connected centralizer,
g−1F (g) ∈ Z1(F,Gγs).

Let Zγs be the maximal k-split torus in the center of Gγs . Since S is
F -minisotropic in Gγs , the group of co-invariants of F in X∗(S) has the same
rank as X∗(Zγs). It then follows from [35, Thm.1.2] (see also Lemma 2.6.1)
that the map H1(F, S) −→ H1(F,Gγs) is surjective.

This means there is h ∈ Gγs such that (gh)−1F (gh) ∈ S. Hence Ad(gh) :
S −→ ghS commutes with F , so that ghS ∈ Tst(gγs).

Suppose also S′ ∈ Tst(γs), and (S′)F = k(SF ) for some k ∈ Gγs . This im-
plies that k−1F (k) ∈ S. As above, there exists h′ ∈ Gγs such that (gh′)−1F (gh′) ∈
S′. Then the element j := gh′kh−1g−1 ∈ Ggγs satisfies j−1F (j) ∈ ghS,
jghS = gh′S′, which means that ghS is Ggγs-stably conjugate to gh′S′. There-
fore, sending the Gγs-stable class of S to the Ggγs-stable class of ghS gives a
well-defined injection ιg, as above. It is straightforward to check that ι(g−1) is
the inverse of ιg, so that ιg is actually a bijection.

We may view ιg as a bijection on index sets:

ιg : I(γs) −→ I(gγs).

This map has the property that

N(i) = N(ιg(i)),

for each i ∈ I(γs).

Lemma 11.1.1. Let γ ∈ GF0 be strongly regular semisimple, with topolog-
ical Jordan decomposition γ = γsγu, and let g ∈ G be such that gγ ∈ GF . Let
T̂st be a G-stable class in T̂(G), and assume that for all i ∈ I(γs),

Q(Gγs , Tst(γs, i))(γu) = Q(Ggγs , Tst(gγs, ιg(i)))(gγu).

Then
R(G, T̂st)(γ) = R(G, T̂st)(gγ).

Proof. From Lemma 11.0.2,

(32) R(G, T̂st)(γ) =
∑

i∈I(γs)

θχi (γs)
N(i)

·Q(Gγs , Tst(γs, i))(γu).

On the other hand, by Lemma 9.4.4 again (this time in full force),

θχi (γs) = θχιg(i)(
gγs).
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It follows that

(33) R(G, T̂st)(gγ) =
∑

i∈I(γs)

θχi (γs)
N(i)

·Q(Ggγs , Tst(gγs, ιg(i)))(gγu),

whence the result.

11.2. Stable characters in a simple case. We illustrate Section 11.1 by
considering the stable version of Section 10.1. As in the latter section, we sup-
pose γ ∈ GF is strongly regular and topologically semisimple, and let S = Gγ .
Let T̂st ⊂ T̂(G) be a G-stable class.

We describe the objects in 11.0.2 in this case. If T̂st(γ) is empty, then
R(G, T̂st)(γ) = 0. Assume T̂st(γ) is nonempty. Then there is θ ∈ Irr0(SF ) such
that

T̂st(γ) = {(S, n∗θ) : n ∈ N(G,SF )/S}.

Thus, we may identify Î(γ) = N(G,SF )/S, and for each n ∈ Î(γ),

T̂st(γ, n) = {(S, n∗θ)}.

The index set I(γ) consists of a single element, i, and

Q(Gγ , Tst(γ, i))(γu) = Q(S, {S})(1) = 1.

In terms of tori, the map ιg simply sends S to gS. Hence the conditions of
Lemma 11.1.1 hold trivially, so that R(G, T̂st) is constant on the G-stable class
of γ.

Lemma 11.0.2 gives the formula

R(G, T̂st)(γ) =
∑

n∈N(G,SF )/S

n∗θ(γ).

From Lemma 9.6.3 it follows that the sum of characters in the L-packet
Π(ϕ, ω) is constant on the G-stable class of γ.

12. Transfer to the Lie algebra

Lemma 11.1.1 reduces the proof of stability to the following.

Lemma 12.0.1. Assume as above that γ ∈ GF0 is strongly regular semisim-
ple, and g ∈ G is such that gγ ∈ GF . Let Tst be a Gγs-stable class in T(Gγs).
Then

Q(Gγs , Tst)(γu) = Q(Ggγs , ιgTst)(gγu).

We will prove Lemma 12.0.1 under some restrictions on k, to be installed
as they are needed. The first step in the proof of Lemma 12.0.1 is to transfer
the calculation to the Lie algebras gγs and ggγs of Gγs and Ggγs respectively.
We then invoke a deep result of Waldspurger [63], which states that, for groups
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which are inner forms of each other, the fundamental lemma for the Lie algebra
is true.

12.1. Orbital Integrals. Fix γ and g as in the statement of Lemma 12.0.1.
Since the calculation takes place mostly in the groups Gγs and Ggγs , we adjust
the notation slightly for clarity. Let H = Gγs , and let h = Lie(H) be the
Lie algebra of H. We fix an additive character Λ : k −→ C× which is trivial
on the prime ideal of R but nontrivial on R. Suppose B is a nondegenerate,
symmetric, 〈F 〉nH-invariant bilinear form on h. For f ∈ C∞c (hF ), the space of
locally constant, compactly supported functions on hF , we define the Fourier
transform (with respect to B) of f by

f̂(X) =
∫

hF
f(Y ) · Λ(B(X,Y )) dY,

where dY is Haar measure on h, normalized as in Section 5.
Suppose X is a regular semisimple element of hF . For f ∈ C∞c (hF ) we

define µH
F

X (f), the orbital integral of f with respect to X, by

µH
F

X (f) :=
∫
HF /(C′H(X))F

f(hX)
dh

dt

where C ′H(X) is the maximal unramified torus in the torus CH(X) and dh, dt
are Haar measures on HF , C ′H(X)F , respectively, normalized as in Section 5.

Remark 12.1.1. If X ′ ∈ hF is H-conjugate to X, then the tori C ′H(X) and
C ′H(X ′) are H-conjugate. Consequently, if dt′ denotes the Haar measure on
C ′H(X ′), it follows that the measures dh

dt and dh
dt′ determine the same multiple

of the top degree form on the orbit HX = HX ′.

We define µ̂H
F

X (f) := µH
F

X (f̂) for f ∈ C∞c (hF ). In this way, we have a
distribution µ̂H

F

X on C∞c (hF ). Thanks to Harish-Chandra [25, Th. 4.4], we
know that µ̂H

F

X is represented on hF by a function, which we also denote by
µ̂H

F

X . (The same result is true for the Fourier transform of any orbital integral.)

12.2. A result of Waldspurger. In this section, H is any connected reduc-
tive k-group splitting over K. As usual, F is the Frobenius action on both
H := H(K), and h := Lie(H). For X ∈ hF regular semisimple, write

[Ad(H)X]F =
∐
i

Ad(HF )Xi

where the Xi run over a (finite) set of representatives for the Ad(HF )-orbits
in [Ad(H)X]F (see §2.9.1). We set

Ŝh
X =

∑
i

µ̂H
F

Xi .
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The measures used for each orbital integral are compatible, in the sense of
Remark 12.1.1.

Let H∗ denote a k-quasi-split inner form of H, and let H∗ad be the adjoint
group of H∗. Let H∗ and H∗ad denote the groups of K-rational points of H∗

and H∗ad, respectively, and let F ∗ denote the action of Frobenius on H∗, H∗ad

and h∗ = Lie(H∗). Choose an inner twist

φ : H → H∗.

That is, φ is a K-isomorphism, and there is h∗φ ∈ H∗ad such that

Ad(h∗φ) = F ∗ ◦ φ ◦ F−1 ◦ φ−1 ∈ AutK(H∗).

Here we implicitly use the isomorphism H1(F,Had) = H1(k,Had); see Sec-
tion 2.2. The choice of φ defines an injective map Sφ from the set of stable
regular semisimple orbits in hF to the set of stable regular semisimple orbits
in (h∗)F

∗
, as follows. If X ∈ hF , then F ∗(dφ(X)) = Ad(h∗φ)dφ(X), so that

the Ad(H∗)-orbit of dφ(X) is F ∗-stable. If X is regular semisimple, then
so too is dφ(X). The existence of an F ∗-stable Kostant section shows that
the Ad(H∗)-orbit of dφ(X) contains an F ∗-fixed point X∗ (see, for example,
[56, 9.5] or [36]). Finally, Sφ sends [Ad(H)X]F to [Ad(H∗)X∗]F

∗
.

Suppose now that H′ is any inner form of H. Let H ′ denote the group
of K-rational points of H′ and let F ′ denote the action of Frobenius on H ′

and h′ = Lie(H ′). Suppose X ∈ hF and X ′ ∈ (h′)F
′

are regular semisimple
elements, and φ : H → H∗ and φ′ : H ′ → H∗ are inner twists. We say that X
and X ′ are (φ, φ′)-comparable provided that

Sφ
(
[Ad(H)X]F

)
= Sφ′

(
[Ad(H ′)X ′]F

′)
as stable regular semisimple orbits in (h∗)F

∗
.

Example 12.2.1. Take H = Gγs as in the situation of Section 12.1. Let
log : G0+ → g be any injective 〈F 〉 n G-equivariant map which takes regular
semisimple elements to regular semisimple elements. (The existence of such
a map with just these properties follows from [9, p. 333, §7.6, Prop. 10].)
Then CG(γ) is a torus in H, and F (g) = gs for some s ∈ CH(γ). Moreover,
Ad(g) : H −→ H ′ := gH is an inner twist, with F ′ = F . Let X := log(γu).
From [29, Th. 13.4(a)] it follows that X ∈ h and gX ∈ gh are regular semisimple
elements. Since F and Ad(s) fix γu, it follows that F (X)=X, and F (gX)= gX.

Suppose φ : H → H∗ is an inner twist, and let X∗ ∈ [Ad(H∗)dφ(X)]F
∗
.

One checks that the map φ′ := φ ◦ Ad(g−1) : gH → H∗ is also an inner twist,
and that X∗ ∈ [Ad(H∗)dφ′(gX)]F

∗
. It follows that X and gX are (φ, φ′)-

comparable.

Example 12.2.2. Continue with the notation of Example 12.2.1 and also
Section 11.1. Let Tst be an H-stable class in T(H), and let T ′st = ιgTst, an
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H ′-stable class in T(H ′), be as in Section 11.1. Suppose S0 ∈ Tst and X0 is a
g-regular element of Lie(S0)F . Let X ∈ [Ad(H)X0]F . Note that X is regular
in g. As in the definition of ιg, there is h ∈ H such that (gh)−1F (gh) ∈ CG(X),
and the elements X and X ′ := ghX ∈ [Ad(H ′)(gX0)]F are (φ, φ ◦ Ad(g)−1)-
comparable.

Lemma 12.2.3. Let φ : H → H∗ and φ′ : H ′ → H∗ denote inner twists.
Suppose X,Y (resp. X ′, Y ′) are regular semisimple elements in hF (resp. (h′)F

′
).

If X and X ′ are (φ, φ′)-comparable elliptic elements and Y and Y ′ are (φ, φ′)-
comparable elements, then

Ŝh
X(Y ) = ε(H,H′) · Ŝh′

X′(Y
′).

Remark 12.2.4. The above lemma may be viewed as more evidence for
Kottwitz’ sign conjecture [33].

Proof. Without loss of generality, H′ is k-quasi-split, and we may replace
H′ by H∗. Waldspurger has already shown [63, Th. 1.5] that for X,Y,X ′, Y ′

as in the statement of the lemma,

Ŝh
X(Y ) = c · Ŝh∗

X′(Y
′)

where c is an eighth root of unity. (In the notation of [63], this is actually the
special case s = 1, ξ = I of [63, Th. 1.5], and c = γΛ(h∗)/γΛ(h).) We will give
two proofs that c = ε(H,H∗).

The first proof uses Shalika germs. For all n ∈ Z we have

Ŝh
X($nY ) = c · Ŝh∗

X′($
nY ′).

From Harish-Chandra [25, Th. 5.1.1], for all n ∈ Z sufficiently large,

Ŝh
X($2nY ) =

∑
O∈Oh(0)

chO(X) · µ̂O($2nY )

= ch0(X) +
∑

O∈Oh(0)\{0}

chO(X) · q−n·dimO · µ̂O(Y )

where Oh(0) denotes the set of nilpotent HF -orbits in hF , the chO(X) are com-
plex constants, and 0 denotes the zero orbit {0}. A similar statement is true
for Ŝh∗

X′ . Thus,

ch0(X) = lim
n→∞

Ŝh
X($2nY ) = lim

n→∞
c · Ŝh∗

X′($
2nY ′) = c · ch

∗

0 (X ′).

LetX1, X2, . . . , Xm be representatives for theHF -orbits in [Ad(H)X]F . From [25,
Th. 8.1] we have

ch0(X) =
m∑
j=1

ΓCh(Xj)
0 (Xj),
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where ΓCh(Xj)
0 (Xj) denotes the evaluation of the (unnormalized) Shalika germ

corresponding to the zero orbit at Xj .
If the center of HF is compact, then so too is the center of (H∗)F

∗
. Thanks

to Rogawski [49] we have

ΓCh(Xj)
0 (Xj) =

ε(H,Z)
Deg(StH)

.

Thus, if the center of HF is compact, we conclude from the above, the fact that
Deg(StH) > 0, and the fact that c is an eighth root of unity that c = ε(H,H∗).

Suppose that the center ZF of HF is not compact. Let Hd denote the
derived group of H and let hd denote the Lie algebra of Hd = Hd(K). The
center of Hd is finite and HF /(HF

d )ZF is a finite group. Without loss of
generality, we assume X ∈ hFd . From Lemma 2.9.1, we have that two regular
semisimple elements of hFd are H-stably conjugate if and only if they are Hd-
stably conjugate. However, since two regular semisimple elements of hFd may
be HF -conjugate without being HF

d -conjugate, for 1 ≤ i ≤ m we introduce the
group

HF
i := {h ∈ HF : there is an h′ ∈ HF

d such that h′hXi = Xi}.

We have HF
d Z

F E HF
i E HF . Thus, we can write

Ŝhd
X =

m∑
i=1

∑
h̄∈HF /HF

i

µ̂
HF
d

h−1Xi
.

Suppose we can show that the restriction of Ŝh
X to hFd equals e · Ŝhd

X for some
constant e > 0. We would then have ch0(X) = e · chd0 (X). Arguing as in the
previous paragraph, we would again conclude that c = ε(H,H∗).

To complete the proof, we now show that such a constant e exists. We
use Harish-Chandra’s integral formula for the Fourier transform of a regular
semisimple orbital integral [25, Lemma 7.9]. Since we only wish to establish the
positivity of e, in what follows we are not careful about specifying our invariant
measures nor about accounting for the (positive) constants that occur. Let L
be a compact open subgroup of HF which lies in HF

d Z
F . There is a positive

constant, const, so that for regular semisimple Y ∈ hFd

Ŝh
X(Y ) = const ·

∑
i

∫
HF /ZF

dg∗
∫
L

Λ(B(g`Y,Xi)) d`

= const ·
∑
i

∑
h̄∈HF /HF

i

∑
ḡ1∈HF

i /H
F
d Z

F

·
∫
HF
d Z

F /ZF
dg∗2

∫
L

Λ(B(g1g2`Y, h
−1
Xi)) d`
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which, from the definition of HF
i , becomes

= const ·
∑
i

∑
h̄∈HF /HF

i

∣∣HF
i /H

F
d Z

F
∣∣ · ∫

HF
d Z

F /ZF
dg∗2

·
∫
L

Λ(B(g2`Y, h
−1
Xi)) d`.

We claim that for 1 ≤ i, j ≤ m,∣∣HF
i /H

F
d Z

F
∣∣ =

∣∣HF
j /H

F
d Z

F
∣∣ .

In fact, we will show that the group HF
i is independent of i. Note that

HF
i /H

F
d Z

F can be characterized as the set of cosets in HF /HF
d Z

F which
intersect (CH(Xi))F nontrivially. Thus, it is enough to show that for h ∈ HF ,

h(HF
d Z

F ) ∩ (CH(Xi))F 6= ∅⇐⇒ h(HF
d Z

F ) ∩ (CH(Xj))F 6= ∅.

Suppose h ∈ HF and g ∈ HF
d Z

F so that hg ∈ (CH(Xi))F . It is enough to pro-
duce a g′ ∈ HF

d Z
F such that hg′ ∈ (CH(Xj))F . Since Xi and Xj are Hd-stably

conjugate, there is an h′ ∈ Hd so that h
′
Xi = Xj . Since CH(Xi) is abelian, this

implies that h′((CH(Xi))F ) = (CH(Xj))F . Consequently, h
′
(hg) ∈ (CH(Xj))F

and h′(hg) = h(h−1h′hg(h′)−1) ∈ hHdZ
F . Set g′ := (h−1h′hg(h′)−1). Note

that g ∈ HF
d Z

F implies g′ ∈ Hd(ZF ). But also g′ ∈ h−1(CH(Xj))F ⊂ HF , so
in fact g′ ∈ HF

d Z
F and hg′ ∈ (CH(Xj))F , as desired.

Therefore,

Ŝh
X(Y ) = const′ ·

∑
i

∑
h̄∈HF /HF

i

∫
HF
d Z

F /ZF
dg∗2

∫
L

Λ(B(g2`Y, h
−1
Xi)) d`

= const′ ·
∑
i

∑
h̄∈HF /HF

i

∫
HF
d /(H

F
d ∩ZF )

dg∗2

∫
L

Λ(B(g2`Y, h
−1
Xi)) d`.

12.3. Another calculation of Waldspurger’s sign. In this section we give a
second proof of Lemma 12.2.3 in terms of our pure inner forms Gλ. This proof
continues in the vein of [63].

For λ ∈ Xw, we have a pure inner form Gλ of G with Frobenius Fλ =
Ad(uλ) ◦ F. In particular G = G0 is k-quasi-split. Note that Gλ = G as
groups; the subscript indicates the variation in k-structure. To simplify the
notation, we write σ := wϑ, and set Σ := 〈σ〉.

We define an inner twisting φλ : Gλ −→ G0 by φλ = Ad(hλ), where
hλ = p0p

−1
λ and pλ, p0 ∈ G satisfy the equations

(34) p−1
0 F(p0) = ẇ, p−1

λ uλ F(pλ) = tλẇ

of Chapter 2.7. Let Φ(T) denote the set of roots of T in G. Likewise, let
Tλ = Ad(pλ)T, and let Φ(Tλ) denote the set of roots of Tλ in Gλ.
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The map Ad(pλ) : T −→ Tλ intertwines Fw on T with Fλ on Tλ. It
induces a map Φ(T) −→ Φ(Tλ) given by

α 7→ αλ := α ◦Ad(pλ)−1,

satisfying
Fλ ·αλ = (σ · α)λ.

(Recall that Fw acts on Φ(T) via σ.)
Fix λ ∈ Xw. By Hilbert’s Theorem 90, there exists a set {Eαλ : α ∈ Φ(T)}

of Tλ-root vectors in g having the property that

Fλ ·Eαλ = E(σ·α)λ .

The transformed root vectors

E∗α := φλ(Eαλ)

are only preserved by F up to scalar multiples. That is, for each α ∈ Φ(T)
there is cαλ ∈ k̄ such that

F(cαλE
∗
α) = c(σ·α)λE

∗
σ·α.

A straightforward computation shows, for each α ∈ Φ(T), that

(35) Frob(cαλ) = $〈λ,σ·α〉 · c(σ·α)λ .

Following [63], a Σ-orbit in Φ(T) is called symmetric if it is closed under
α 7→ −α and anti-symmetric otherwise. Let ˙Sym(T) be a set of representatives
for the symmetric Σ-orbits in Φ(T).

For any α ∈ Φ(T), define

Σα = {τ ∈ Σ : τ · α = α},

and let kα ⊂ k̄ be the fixed field of the pre-image of Σα in Gal(k̄/k).
For each α ∈ ˙Sym(T), define

Σ±α = {τ ∈ Σ : τ · α = ±α},

and let k±α ⊂ k̄ be the fixed field of the pre-image of Σ±α in Gal(k̄/k). There
is an integer m = m(α) such that

Σ±α = 〈σm〉, Σα = 〈σ2m〉.

We have σmα = −α. The extension kα/k is unramified of degree 2m.
Moreover, kα/k±α is an unramified quadratic extension, hence corresponds

via class-field theory to the character χα : k×±α −→ {±1} given by

χα(x) = (−1)v(x),

where v is the valuation on K. Using [63], Lemma 12.2.3 is equivalent to the
following formula.
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Lemma 12.3.1. ∏
α∈ ˙Sym(T)

χα(cαλ · c−αλ) = ε(Gλ,G0).

The proof requires a few steps.

Lemma 12.3.2. There exists

cαλ · c−αλ = n ·$−〈λ,α+σ·α+···+σ(m−1)·α〉,

where m = m(α) and n ∈ k×±α is a norm from kα.

Proof. Applying Equation (35) repeatedly,

c(σk·α)λ = Frobk(cαλ) ·$−〈λ,σ·α+···+σk·α〉,

for k ≥ 1. Since σm · α = −α,

c−αλ = Frobm(cαλ) ·$−〈λ,σ·α+···+σ(m−1)·α−α〉.

Hence

cαλ · c−αλ = cαλ · Frobm(cαλ) ·$2〈λ,α〉 ·$−〈λ,α+σ·α+···+σm−1·α〉.

Since cα ∈ kα, this proves the claim, with

n = cαλ · Frobm(cαλ) ·$2〈λ,α〉.

Choose a set of positive roots Φ+(T) ⊂ Φ(T), and set

2ρ =
∑

β∈Φ+(T)

β.

Lemma 12.3.3.∑
α∈ ˙Sym(T)

〈λ, α+ σ · α+ · · ·+ σm(α)−1 · α〉 ≡ 〈λ, 2ρ〉 mod 2.

Proof. Let O′1, . . . ,O′p be a choice of one from each pair {O′i,−O′i} of anti-
symmetric Σ-orbits in Φ(T), and letO1, . . . ,Oq be the symmetric Σ-orbits. For
α ∈ Φ(T), define |α| = α if α ∈ Φ+(T), and |α| = −α if −α ∈ Φ+(T). Set

‖O′i‖ = {|α| : α ∈ O′i}, O+
j = Oj ∩ Φ+(T).

Then we have a disjoint union

Φ+(T) =
p∐
i=1

‖O′i‖ t
q∐
j=1

O+
j .
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For any 1 ≤ i ≤ p, ∑
β∈‖O′i‖

β ≡
∑
α∈O′i

α mod 2ZΦ(T).

The latter sum is Σ-invariant, hence it vanishes, since σ is elliptic. Then,

〈λ, 2ρ〉 ≡
q∑
j=1

∑
β∈O+

j

〈λ, β〉 mod 2.

Working modulo two, we can replace each sum over O+
j by

m(α)−1∑
k=0

〈λ, σk · α〉,

for any α ∈ Oj . This proves the lemma.

Combining Lemmas 12.3.2 and 12.3.3, we get

Corollary 12.3.4.∏
α∈ ˙Sym(T)

χα(cαλ · c−αλ) = (−1)〈λ,2ρ〉.

We next give another expression for ε(Gλ,G0). Let zλ ∈ Wo be the
projection of uλ. Then zλ and ϑ act linearly on the Q-vector space V := X⊗Q
(recall that X = X∗(T)), and the k-rank of Gλ is given by

rk(Gλ) = dimV zλϑ.

Let det(A) denote the determinant of an operator A ∈ GL(V ).

Lemma 12.3.5.

ε(Gλ,G0) = det(zλ).

Proof. Since zλϑ has finite order and preserves the lattice X ⊂ V ,

det(zλϑ) = (−1)dimV−dimV zλϑ .

Likewise,
det(ϑ) = (−1)dimV−dimV ϑ .

Together, these give

det(zλ) = (−1)dimV zλϑ−dimV ϑ = ε(Gλ,G0).

To prove Lemma 12.3.1 it remains to prove

Lemma 12.3.6.

det(zλ) = (−1)〈λ,2ρ〉.
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Proof. From the definitions we see that zλ = zλ+ν for any ν ∈ X◦ +XW ,
where X◦ is the co-root lattice of T. Likewise, the parity of 〈λ, 2ρ〉 depends
only on the class of λ in X/(X◦+XW ). We have det(zλ) = (−1)〈λ,2ρ〉 = +1 if
λ ∈ X◦ +XW .

Assume now that λ /∈ X◦ + XW . Recall that Tad is the image of T in
the adjoint group Gad of G, and that Xad = X∗(Tad). We may view X◦ as a
subgroup of Xad. The natural map X → Xad induces an injection

X/(X◦ +XW ) ↪→ Xad/X
◦.

The nontrivial elements in the group Xad/X
◦ are represented by the minuscule

co-weights of Tad [9, p. 240]. Hence the class of λ in X/(X◦+XW ) determines
a simple root α ∈ Φ+(T) such that 〈λ, β〉 = 0 for all simple roots β 6= α, and
〈λ, α〉 = 1. Moreover, we have a disjoint union

Φ(T) = Φ−1 t Φ0 t Φ1,

where
Φi = {β ∈ Φ(T) : 〈λ, β〉 = i}

(see [9, p. 239]).
Iwahori-Matsumoto [30, 1.18] show that zλ is Wo-conjugate to the unique

element of Wo whose set of positive roots made negative is exactly Φ1. This
implies that

det(zλ) = (−1)|Φ1|.

On the other hand, since

Φ+(T) = [Φ0 ∩ Φ+(T)] t Φ1,

it follows that
〈λ, 2ρ〉 =

∑
β∈Φ1

〈λ, β〉 = |Φ1|.

This proves the present lemma, as well as Lemma 12.3.1.

12.4. Murnaghan-Kirillov theory. In this section, H is any connected re-
ductive k-group, split over K, with Frobenius F on H := H(K). Let H0+ , h0+

denote respectively the sets of topologically unipotent elements in H, and
topologically nilpotent elements in h = Lie(H).

We make the following restrictions on k and H. Recall that q, a power of
a prime p, is the cardinality of the residue field f. Let e denote the ramification
degree of k over Qp, and let ν(H) be the number of positive roots in H.

Restrictions 12.4.1. (1) q ≥ ν(H).

(2) There is a faithful k-embedding ϕ : H ↪→ GLn such that p ≥ (2 + e)n.
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Note that if G is as in the previous part of the paper, H is the identity
component of the centralizer of a topological semisimple element in G0, and
Restrictions 12.4.1 hold for G and some n, then they hold for H, with the
same n.

In Appendices A and B we will prove:

Lemma 12.4.2. Assume Restrictions 12.4.1 hold. Then we have:

(1) For every F -stable facet J ⊆ B(H) and maximal F -stable torus S ⊂ HJ
with Lie algebra LS, there is an element X̄S ∈ LFS whose centralizer in HJ
is exactly S.

(2) There is an 〈F 〉 n H-equivariant bijection log : H0+ −→ h0+ , which
induces, for every minimal F -stable facet J ⊆ B(H), an 〈F 〉 n HJ -
equivariant bijection from the set of unipotent elements of HJ to the set
of nilpotent elements of the Lie algebra of HJ .

Recall that for S ∈ T(H) there is a unique F -stable facet J ⊂ B(H) such
that JF = B(S)F , and that S denotes the image of S in HJ . Let Z denote
the maximal k-split torus in the center of H. The following lemma is a special
case of a result in [18].

Lemma 12.4.3. Assume Restrictions 12.4.1 hold. For each S ∈ T(H),
with (S, J) as above, and any XS ∈ Lie(S) ∩ hFJ whose projection to LFS is an
element X̄S as in 12.4.2, we have the equality

R(H,S, 1)(γ) = ε(H,Z) · µ̂HF

XS
(log(γ)),

for every regular semisimple γ ∈ HF
0+ , where log is as in Lemma 12.4.2.

Proof. Fix a regular semisimple γ ∈ HF
0+ . Let d` denote the Haar measure

on HF
J with measd`(HF

J ) = 1. Now,

R(H,S, 1)(γ) =
measdz(ZFJ )
measdh(HF

J )
·
∫
HF /ZF

dh∗
∫
HF
J

ṘHJ
S,1(h`γ) d`.

On the other hand, from [2, Prop. 3.3.1], we can write
(36)

µ̂H
F

XS
(X) =

measdz(ZFJ )
measds((CH(XS))FJ )

·
∫
HF /ZF

dh∗
∫
HF
J

d`

∫
HF
J

Λ(B(`
′h`X,XS)) d`′

where X = log γ and ds is the Haar measure on (CH(XS))F , normalized as
in Section 5. (Note that in [2] the quotient measure is normalized slightly
differently.)

From [2, Lemma 6.1.1] we see that the inner integral in Equation (36) is
zero unless h`X ∈ hFJ . Consequently, it is enough to show that if h`X ∈ hFJ ,
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then

(37) ṘHJ
S,1(h`γ) =

ε(H,Z) ·measdh(HF
J )

measds((CH(XS))FJ )
·
∫
HF
J

Λ(B(`
′h`X,XS)) d`′.

But since

measds((CH(XS))FJ ) =

∣∣SF ∣∣∣∣LFS ∣∣1/2 ,
and

ε(H,Z) = ε(HJ ,S)

because S is minisotropic, Equation (37) follows immediately from [31, Th. 3]
and the properties of the map log in Lemma 12.4.2.

12.5. Completion of the proof of stability. In this section, we prove 12.0.1,
assuming that Restrictions 12.4.1 are in place.

Let Tst be an H-stable class in T(H). We fix S0 ∈ Tst and X0 := XS0 ∈ hF

as in 12.4.3.

Lemma 12.5.1. The map X 7→ CG(X) induces a surjective map

c : [Ad(H) ·X0]F /HF −→ Tst/H
F ,

whose fiber over the HF -orbit of S ∈ Tst is in bijection with N(H,SF )/SN(HF , S).

Proof. Note that

[Ad(H) ·X0]F = {hX0 : h ∈ H, and h−1F (h) ∈ S0},

and recall that

Tst = {hS0 : h ∈ H, and h(SF0 ) = (hS0)F }.

Since h−1F (h) ∈ S0 if and only if h(SF0 ) = (hS0)F , it follows that

{CG(X) : X ∈ [Ad(H) ·X0]F } = Tst.

One checks that for k, h ∈ H with kX, hX ∈ hF , we have that CG(kX)
is HF -conjugate to CG(hX) if and only if there is ` ∈ HF such that k−1`h ∈
N(H,SF0 ). It follows that the fiber of c over the HF -orbit of kS0 consists of
the distinct HF -orbits Ad(HF )(gnX), as n ranges over coset representatives
for N(H, (kS0)F )/kS0N(HF , kS0).

Lemma 12.5.2. If Restrictions 12.4.1 hold, then Lemma 12.0.1 holds.
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Proof. Using Lemmas 12.4.3 and 12.5.1, we have

Q(H, Tst)(γu) =
∑

S∈Tst/HF

|N(H,SF )/SN(HF , S)| ·R(H,S, 1)(γu)

= ε(H,Z) ·
∑

S∈Tst/HF

|N(H,SF )/SN(HF , S)| · µ̂HF

XS (log(γu))

= ε(H,Z) ·
∑

X∈[Ad(H)·X0]F /HF

µ̂H
F

X (log(γu))

= ε(H,Z) · Ŝh
X0

(log(γu)).

A similar result holds for Q(gH, ιgTst)(gγu). The result now follows from Ex-
amples 12.2.1, 12.2.2 and Lemma 12.2.3.

13. L-packets arising from the opposition involution

We illustrate our L-packets with a canonical example. For simplicity, take
G to be absolutely quasi-simple and simply connected, and let wo be the unique
element of Wo such that wo · C = −C. Up to isomorphism, there is a unique
K-split k-structure on G for which the Frobenius F acts on X by ϑ = −wo.
This k-structure is quasi-split, and we have H1(F, G) = 1.

We tabulate the groups G below, using their names from the tables of
[60], and give the number r := [Xϑ

ad : j(Xϑ)] of generic representations in an
L-packet Π(ϕ) (see Lemma 6.2.2).

G 2A′2m
2A′2m−1 Bn Cn D2m

2D2m+1 G2 F4
2E6 E7 E8

r 1 2 2 2 4 2 1 1 1 2 1

Now let ϕ be a TRSELP whose associated w is wo. Since woϑ = − Id, the
L-packet Π(ϕ) is parametrized by

Irr(Cϕ) = X/2X,

where X = X◦ is the co-root lattice of T in G. In particular, |Π(ϕ)| = 2n,
where n is the absolute rank of G. With Haar measure normalized as in
Section 5.3, each representation π ∈ Π(ϕ) has formal degree

Deg(π) = (q1/2 + q−1/2)−n.

Since Wwoϑ
o = Wo, the full Weyl group Wo acts on Irr(Cϕ). This action has

several interpretations.
First, by Lemma 9.6.1, the Wo-orbits on X/2X are in bijection with

the GF-orbits in the G-stable class Two . The tori in this stable class are
k-isomorphic to Un

1 .
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Second, the Wo-orbits in X/2X are in bijection, via evaluation at −1,
with conjugacy-classes of 2-torsion elements in G (or G, since G is simply-
connected, and Lemma 2.9.1 applies). For each λ ∈ X, we have

xλ =
1
2
tλ · o,

and the root datum, with Fλ-action, of Gxλ is that of the centralizer in G
of λ(−1). The generic representations in Π(ϕ) correspond to the 2-torsion
elements in the center of G.

For exceptional groups, the 2-torsion picture places a strong limitation on
the type of inducing parahorics that appear in Π(ϕ). For example, in E8 there
are three Wo-orbits in X/2X. The L-packet Π(ϕ) has 256 = 1 + 120 + 135
representations, induced from parahoric subgroups of type E8, A1E7, D8,
respectively.

Third and finally, the generic representations in Π(ϕ) are parametrized by
the Wo-invariants:

Irr(Cϕ)gen = Irr(Cϕ)Wo .

Containment “⊆” is shown in Remark 6.2.5. For the other containment, note
that a Wo-invariant element in Xad/2Xad corresponds to a central 2-torsion
element in Gad, hence must be trivial. Containment “⊇” now follows from
Lemma 6.2.1.

Appendix A. Good bilinear forms and regular elements

In the appendices, we prove various results used in the proof of stability.
Here G is any connected reductive k-group, not necessarily split over K, and
F is the corresponding Frobenius automorphism of G.

A.1. Good bilinear forms. We say that a symmetric bilinear form B on
g is “good” if B is 〈F 〉 n G-equivariant, nondegenerate, and restricts to the
Killing form, B′, on the derived algebra g′ = [g, g] of g.

Let gx,t, gx,t+ be the Moy-Prasad filtration subalgebras of g attached to
x ∈ B(G) and t ∈ R. (See §B.5 below for a brief introduction to Moy-Prasad
filtrations.)

Lemma A.1.1. If p > n + 1, where n ≥ 2 is the dimension of a faithful
k-representation of G, then there exists a good bilinear form B on g which
induces, for all x ∈ B(G) and for all t ∈ R, a nondegenerate pairing

gx,t/gx,t+ × gx,(−t)/gx,(−t)+ → F.

Remark A.1.2. If B satisfies Lemma A.1.1 and x is F -fixed, then the
induced pairing,

gx,t/gx,t+ × gx,(−t)/gx,(−t)+ → F,

is 〈F 〉nGx-equivariant.
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Proof. The existence of such a form B follows from the proof of
[4, Prop. 4.1] under the condition that p - B′(Hα, Hα) for any root α of a
maximal torus T ⊂ G, where Hα is the corresponding Chevalley basis vector
in the Lie algebra of T.

Let g1, . . . , gr be the simple factors of g′. Let m∗i be the sum of the
coefficients in the expression of the highest co-root of gi in terms of simple co-
roots. From [54, I.4.8], any prime dividing B′(Hα, Hα) must divide 6(m∗i + 1),
where gi is the factor containing α.

Let m∗ = max{mi : 1 ≤ i ≤ r}. We have n ≥ m∗. To prove this,
one may assume g simple, and check the result case-by-case (recall that k has
characteristic zero). The result follows.

A.2. Regular elements. Suppose J is an F -stable facet in B(G) and S is a
maximal f-torus in GJ . We wish to establish conditions on p and q which will
guarantee that the Lie algebra LFS contains a regular semisimple element of LJ .

Let F0 be the q-power Frobenius of F/f. Let ΦJ be the set of F-roots of
GJ with respect to S, and let ` = dim LS. There is a permutation τ of ΦJ such
that

α ◦ F = F0 ◦ τ(α)

for all α ∈ ΦJ . Let d be the order of τ . Let Φ̄J be the set of orbits in ΦJ under
the group generated by τ and α 7→ −α.

Lemma A.2.1. If p 6= 2 and q >
∣∣Φ̄J

∣∣, then LFS contains a regular element
of LJ .

Proof. Set fd := fF
d
0 , LdS := LF

d

S . The f-linear map

tr : LdS −→ LFS ,

given by

trX :=
d−1∑
j=0

F j(X)

has the property that for all α ∈ ΦJ , the composition α ◦ tr is not identically
zero on LdS. Indeed, suppose there exists α ∈ ΦJ for which α ◦ tr is zero. Since
S is fd-split, we can assume that the Chevalley basis vector Hα belongs to LdS.
For all t ∈ fd, we have

0 = α(tr(tHα))

= α(tHα + tqHτα + · · ·+ tq
d−1
Hτd−1α)

= t〈α, α̌〉+ tq〈α, τ̌α〉+ · · ·+ tq
d−1〈α, ˇτd−1α〉.

Since p 6= 2, we have 〈α, α̌〉 6= 0. Hence we have a nonzero polynomial of degree
at most qd−1 but with qd zeros in F, a contradiction.
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Thus, for each α ∈ ΦJ we have a nonzero f-linear map

α ◦ tr : LdS −→ fd.

Let Zα be the kernel of this linear map. Since

F0

(
τ(α)(trX)

)
= α(trX),

we have Zτ(α) = Zα and Zα = Z−α. Hence the subspace Zα depends only on
the image of α in Φ̄J .

It suffices to show that the set

L◦S := LdS \
⋃
α∈Φ̄J

Zα

is nonempty. We have

|L◦S| =
∣∣∣LdS∣∣∣−

∣∣∣∣∣∣
⋃
ᾱ∈Φ̄J

Zα

∣∣∣∣∣∣ ≥ q`d − ∣∣Φ̄J

∣∣ |Zβ| ,
where β is chosen so that |Zβ| = max{|Zα| : α ∈ Φ̄J}. Since dimf Zβ ≤ `d− 1,
we have |Zβ| ≤ q`d−1. Consequently,

|L◦S| ≥ q`d −
∣∣Φ̄J

∣∣ q`d−1.

Therefore q >
∣∣Φ̄J

∣∣ ensures that L◦S is nonempty.

Note that
|Φ̄J | ≤ ν(g),

where ν(g) is the number of positive (absolute) roots in g.
If p is not a torsion prime for GJ , then the centralizer in GJ of any semisim-

ple element in LJ is connected [58, Th. 3.14]. The torsion primes of GJ are
also torsion primes of G. Consequently, if p is not a torsion prime for G, then
any regular element of LS has centralizer equal to S. The torsion primes of G
are less than the number m∗ defined in the proof of Lemma A.1.1. Putting
all this together with Lemma A.2.1 gives the following result. Let n be as in
Lemma A.1.1.

Lemma A.2.2. If p > n+ 1 and q > ν(g), then for every F -stable facet J
in B(G), and every maximal F -stable maximal torus S ⊂ GJ , the Lie algebra
LFS contains an element whose centralizer in GJ is exactly S.

Appendix B. A logarithm mapping for G

Let e denote the ramification degree of k over Qp, and let ϕ : G −→ GLn
be a faithful k-representation. We suppose that ν(K×) = Z where ν is the
valuation onK. For notational convenience we sometimes write (GF )0+ instead
of (G0+)F .

The purpose of this appendix is to prove the following lemma.
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Lemma B.0.3. If p ≥ (2 + e)n, then there exists an 〈F 〉nG-equivariant
bijective map

log : G0+ → g0+

which, for each F -stable facet J in B(G), induces a 〈F 〉 n GJ -equivariant bi-
jective map from the set of unipotent elements in GJ to the set of nilpotent
elements in LJ .

B.1. The exponential map for the general linear group. Recall that q is
the order of the residue field of k. For each X ∈ gln(k) we have X ∈ gln(k)0+

if and only if |µ| ≤ q−1/n for each eigenvalue µ of X. For each g ∈ GLn(k), we
have g ∈ GLn(k)0+ if and only if |µ− 1| ≤ q−1/n for each eigenvalue µ of g.

We begin with a technical result.

Lemma B.1.1. If p > en+ 1, then

(1)
q−j/n

|j!|
≤ q−1/n for j ≥ 2 and

(2)
q−j/n

|j!|
→ 0.

Proof. Set

A(j) :=
⌊
j

p

⌋
+
⌊
j

p2

⌋
+
⌊
j

p3

⌋
+ · · · .

Note that
q−j/n

|j!|
=

q−j/n

q−eA(j)
= q(neA(j)−j)/n.

To establish item (1) it is enough to show

(38) neA(j)− j ≤ −1,

and to establish item (2) it is enough to show

(39) neA(j)− j ≤ −j
(p− 1)

.

Write

j =
∑̀
i=0

bip
i

with bi ∈ {0, 1, 2, . . . , (p− 1)} and b` 6= 0. Now,⌊
j

pt

⌋
=
∑̀
t

bip
i−t

for 1 ≤ t ≤ `. Consequently, (p− 1)A(j) =
∑`

i=0 bi(p
i − 1) = j −

∑
bi. Thus,

enA(j) < (p− 1)A(j) ≤ (j − 1),
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establishing (38), and

(p− 1)(neA(j)− j) =nej − ne
∑

bi − (p− 1)j

< (ne− p+ 1)j ≤ −j

establishing (39).

Our assumption p ≥ (2 + e)n ensures that p > en + 1. Thus, thanks to
Lemma B.1.1 and [25, §10.1], the map exp defined by

X 7→
∞∑
`=0

X`

`!

converges to a GLn(k)-equivariant bijective analytic map from gln(k)0+ to
GLn(k)0+ . We extend exp to an 〈F 〉 n GLn(K)-equivariant bijective ana-
lytic map from gln(K)0+ to GLn(K)0+ as follows. For each m ∈ Z≥1, by
replacing k by KFm in the discussion above, we obtain an analytic map
expm : (gln(K)0+)F

m → (GLn(K)0+)F
m

. Thus, if X ∈ gln(K)0+ , we may
choose m ∈ Z≥1 so that X ∈ (gln(K)0+)F

m

and define exp(X) := expm(X) ∈
(GLn(K)0+)F

m ⊂ GLn(K)0+ . This gives a well-defined 〈F 〉 n GLn(K)-equi-
variant bijective analytic map from gln(K)0+ to GLn(K)0+ .

For each facet J in B(GLn(K)), the map exp takes gln(K)J ∩gln(K)0+ to
GLn(K)J ∩ GLn(K)0+ . Finally, the map exp also takes the Haar measure on
gln(k) into the Haar measure on GLn(k).

B.2. The logarithmic mapping ψ. From [9, III, §7.3, 2, Prop. 3], there
is a neighborhood V of 0 in gF and a map φ : V → GF such that φ(V ) is an
open subgroup of GF and φ : V → φ(V ) is a k-analytic isomorphism of analytic
manifolds with the property that φ(mX) = φ(X)m for all m ∈ Z and for all
X ∈ V . From [9, III, §7.6, 6, Prop. 10], there is a neighborhood U of the
identity in (GF )0+ and a unique k-analytic map ψ : (GF )0+ → gF such that
ψ(U) = V , φ ◦ ψ = 1U , and ψ(gm) = mψ(g) for all g ∈ (GF )0+ and all m ∈ Z.
Note that ψ is locally injective, hence injective.

Recall that the exponential map, exp, for the general linear group was
defined in Section B.1. The unique map from GLn(k)0+ to gln(k) determined
(in the sense of the previous paragraph) by exp is called log. It has the usual
power series expansion. Since p ≥ (2 + e)n > en+ 1, the map log : gln(k)0+ →
GLn(k)0+ is the inverse of exp: GLn(k)0+ → gln(k)0+ (see, for example, [25,
Lemma 10.1]).

From [9, III, §4.4, Cor. 2] there is a neighborhood V ′ ⊂ V in gF such that

(40) ϕ(φ(X)) = exp(dϕ(X))

for all X ∈ V ′ and
dϕ(ψ(g)) = log(ϕ(g))
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for all g ∈ φ(V ′). Suppose g ∈ (G)F0+ . Choose m ∈ Z≥1 so that gp
m ∈ φ(V ′).

Now,

dϕ(ψ(g)) = p−m · dϕ(ψ(gp
m

)) = p−m · log(ϕ(gp
m

)) = log(ϕ(g)).

Thus

(41) dϕ(ψ(g)) = log(ϕ(g))

for all g ∈ (G0+)F .

B.3. An extension of ψ. The map ψ has a unique extension, which we
shall also call ψ, to an 〈F 〉 n G-equivariant map from G0+ to g. Indeed, for
each m ∈ Z≥1, by replacing k by KFm in the discussion above, we obtain a
(unique) KFm-analytic map ψm : (G0+)F

m → gF
m

for which

dϕ(ψm(g)) = log(ϕ(g))

for all g ∈ (G0+)F
m

. Thus, since dϕ is injective, for m′ ≥ m ≥ 1 we have
ψm′(g) = ψm(g) whenever g ∈ (G0+)F

m

. In particular, ψm(g) = ψ1(g) when-
ever g ∈ (G0+)F . Thus, we may define ψ : G0+ → g by setting ψ(g) = ψm(g)
whenever g ∈ (G0+)F

m

. To see that ψ is 〈F 〉nG - equivariant, it is enough to
check that it is F -equivariant. Since dϕ is injective, it is enough to check that
dϕ(ψ(Fg)) = dϕ(F (ψ(g))) for all g ∈ G0+ . However,

dϕ(ψ(Fg)) = log(ϕ(Fg)) = F log(ϕ(g))

=Fdϕ(ψ(g)) = dϕ(Fψ(g)).

B.4. The adjoint representation and ψ. Suppose Y ∈ gln(K)0+ . Since the
valuations of the eigenvalues of ad(Y ) are bounded (below) by those of Y , and
p ≥ (2 + e)n, the power series for exp(ad(Y )) converges in GL(gln)(K), and
we have

(42) exp(ad(Y )) = Ad(exp(Y )).

Similarly, for all g ∈ GLn(K)0+ ,

(43) log(Ad(g)) = ad(log(g)).

For h ∈ G0+ , we define log(Ad(h)) ∈ gl(g)(K) by

log(Ad(h)) := −
∑
m≥1

(1−Ad(h))m

m
.

Thus, for all h ∈ G0+ and X ∈ g,

dϕ[ad(ψ(h))X] = [ad(dϕ(ψ(h)))]dϕ(X) (from Equation (41))

= [ad(log(ϕ(h)))]dϕ(X) (from Equation (43))

= [log(Ad(ϕ(h)))]dϕ(X)

= dϕ(log(Ad(h))(X)).
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Since dϕ is injective, we conclude that

(44) log(Ad(h))X = ad(ψ(h))X

for all h ∈ G0+ and X ∈ g.

B.5. A brief introduction to the filtrations of Moy and Prasad. We recall
here what we need from the theory of Moy-Prasad filtration lattices ([44], [43]).

Let T denote the group of K-rational points of a maximally K-split torus
in G. Let A denote the apartment in B(G) corresponding to T , let Φ denote
the set of roots of G with respect to T , and let ∆ denote the set of affine roots
of G with respect to T and our valuation on K. The elements of ∆ are affine
functions on A. For δ ∈ ∆, we let δ̇ ∈ Φ denote the gradient of δ.

For α ∈ Φ, let gα denote the corresponding root space in g. For δ ∈ ∆,
define the lattices g+

δ and gδ in gδ̇ as follows: Choose a facet J in A on which
δ is zero. Set

gδ := gJ ∩ gδ̇ and g+
δ := g+

J ∩ gδ̇.

These definitions are independent of the choice of J .
Since G is K-quasi-split, the centralizer M := CG(T ) is the group of

K-rational points of a maximal K-torus M of G. Let m denote the Lie algebra
of M . For s ∈ R, we define

ms := {X ∈ m | ν(dχ(X)) ≥ s for all χ ∈ X∗(M)}.

For x ∈ A and s ∈ R, we define the lattice

gx,s := ms ⊕
∑

δ∈∆; δ(x)≥s

gδ.

For t ≥ s we have gx,t ⊂ gx,s; in fact,⋃
gx,s = g, and

⋂
s

gx,s = {0}.

We set
gx,s+ :=

⋃
t>s

gx,t.

If y is in B(G), then there is a g in G so that gy ∈ A. For s ∈ R, we define

gy,s := ggx,s and gy,s+ := ggx,s+ .

This is independent of the choice of g.
Recall [3, §3] that, for s ∈ R, we have the closed, open, G-invariant subsets

gs :=
⋃

x∈B(G)

gx,s and gs+ :=
⋃
t>s

gt.

For each s ∈ R≥0 and each x ∈ B(G), we also define, in a completely anal-
ogous manner, Moy-Prasad filtration subgroups Gx,s ≤ Gx,0 = Gx (see [43]).
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The Moy-Prasad filtration lattices and subgroups have the following prop-
erties (which we shall use without further comment). The first two properties
are proved in [45, §2]; the third is a formal consequence of the definitions, and
the final is [1, Prop. 1.4.3].

(1) For s, t ∈ R and x ∈ B(G), we have [gx,t, gx,s] ⊂ gx,(t+s).

(2) For s, t ∈ R≥0 and x ∈ B(G), we have (Gx,s, Gx,t) ⊂ Gx,(t+s).
(3) For s ∈ R and x ∈ B(G) we have

$ · gx,s = gx,(s+1).

(4) For t ∈ R≥0, s ∈ R, and x ∈ B(G), we have (Ad(g)− 1)gx,s ⊂ gx,s+t for
all g ∈ Gx,t.

B.5.1. A technical result. The purpose of this section is to establish
a (weak) connection between the Moy-Prasad filtrations for g and those for
gln(K). We do this so as to avoid introducing another constant (rG below)
into our hypotheses.

Fix a facet J ⊂ B(G). Define a continuous, piecewise-linear function
r : J → R>0 by sending x ∈ J to the unique real number r(x) for which

g+
J = gx,r(x) 6= gx,r(x)+

After extending by zero, the function r becomes a continuous function on the
closure of J . Hence, we may choose xJ ∈ J so that

r(xJ) ≥ r(x)

for all x in the closure of J . Define rJ := r(xJ). The (rational) number rJ
depends only on the G-conjugacy class of J . We set

rG := min
J
rJ .

Note that, if J is F -stable, then, from the concavity of r and the Bruhat-
Tits fixed-point theorem (see, for example, [60, §2.3.1]), we may assume that
xJ is F -fixed.

Lemma B.5.1. If C is an alcove in B(G), then rG = rC .

Proof. Without loss of generality, G is semisimple. We can write

B(G) =
m∏
i=1

B(Gi)

where the Gi are the simple factors of G. This decomposition respects the
polysimplicial structure of B(G). If, with respect to this decomposition, x ∈ J
is written as

(x1, . . . , xm),
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then, from the way in which the Moy-Prasad filtration lattices are defined,

r(x) = min{r1(x1), . . . , rm(xm)}.

Here r1, . . . , rm are the analogues of r : J → R. Hence, we may in fact assume
that G is simple.

Let J be a facet in B(G) and let C be an alcove in B(G). We shall show
that rJ ≥ rC . After conjugating, we may assume that J is contained in the
boundary of C and that C ⊂ A. Let ∆C denote the set of simple affine roots
in ∆ determined by C. Let ∆J be the set

{δ ∈ ∆C | resJ δ 6= 0} = {δ ∈ ∆C | resJ δ > 0}.

We set
r′J := max

x∈J
min
δ∈∆J

δ(x),

and we let s denote the smallest positive number for which ms 6= ms+ . From
the way in which the Moy-Prasad filtration lattices are defined, we have

rJ = min{s, r′J} and rC = min{s, r′C}.

Thus, it is enough to show that r′C ≤ r′J .
One can show that

r′J =
[ ∏
δ∈∆J

rδ
]
/
[ ∑
δ′∈∆J

(
∏

δ∈∆Jr{δ′}

rδ)
]

where rδ denotes the maximum value that δ obtains on the closure of J (and
hence, on the closure of C).

Suppose J ′ is a facet in the closure of C such that J is contained in the
closure of J ′ and dim(J ′) = dim(J) + 1. Let δ̃ ∈ ∆C denote the affine root for
which ∆J ′ = ∆J ∪ {δ̃}. Algebraic manipulation yields

r′J ′ =
rδ̃

rδ̃ + r′J
· r′J < r′J .

By iterating the above process, we conclude that r′C ≤ r′J .

Remark B.5.2. If G is simple modulo its center and K-split, then

rG = (1 +
∑

mα)−1,

where mα runs over the coefficients of the simple roots in the expression for
the highest root. In particular, for G = GLn(K), we have rG = n−1.

Lemma B.5.3.

g0+ = grG 6= gr+G
.
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Proof. Let C be an alcove in B(G). For all J in the closure of C we have
g+
J ⊂ g+

C . Consequently

g0+ =
⋃
g∈G

gg+
C .

Thus, the equality follows from the fact that g+
C = gxC ,rG .

As in the proof of Lemma B.5.1, we may assume that G is simple; we use
the notation of that proof.

Suppose grG = gr+G
. Under this assumption, from [3, Cor. 3.2.2] we have

gxC ,rG ⊂ gxC ,r+G
+N . Thus, from, for example, [17, §4.1.2] or [43, Prop. 4.3],

every coset Ξ in gxC ,rG/gxC ,r+G is killed by a one-parameter subgroup of M :=
M0/M

+
0 ; that is, for each Ξ there exists a one-parameter subgroup µ = µΞ

of the f-group M so that limt→0
µ(t)Ξ = 0. Consequently, in order to show

that grG 6= gr+G
, it is enough to find an X ∈ gxC ,rG for which the coset ΞX :=

X + gxC ,r+G
is not killed by any one-parameter subgroup of M.

If s < r′C , then choose X ∈ ms r ms+ . Since M is abelian, no one-
parameter subgroup of M can kill ΞX . If s ≥ r′C , then for each δ ∈ ∆C , we
may choose Xδ in the root space corresponding to the gradient of δ so that
Xδ ∈ gxC ,rG yet Xδ 6∈ gxC ,rG+ . From, for example, [13, Prop. 1.2], the coset
ΞX for

X :=
∑
δ

Xδ

cannot be killed by a one-parameter subgroup of M.

Lemma B.5.4. We have rG ≥ n−1. In particular, G+
C = GxC ,1/n and

g+
C = gxC ,1/n.

Proof. Since we are assuming that p ≥ (2 + e)n, it follows that every
K-torus in G or GLn splits over a tame extension of K. Hence, from the
discussion in [3, §3.6] we have

g ∩ gln(K)s+ = gs+

and
g ∩ gln(K)s = gs

for all s. From Remark B.5.2 and Lemma B.5.3, we have gln(K)0+ = gln(K)1/n

6= gln(K)1/n+ . We conclude that 1/n ≤ rG. For the last assertion, note that
GxC ,r = GxC ,0+ for 0 < r ≤ rG, and likewise for gxC ,r.

B.6. A logarithmic map for semisimple groups. Suppose that G is semi-
simple.

Moy-Prasad filtrations and the adjoint representation.



DEPTH-ZERO SUPERCUSPIDAL L-PACKETS AND THEIR STABILITY 885

Lemma B.6.1. Suppose x ∈ B(G), t ∈ R, and X ∈ gx,t. Now,

X 6∈ gx,t+

if and only if there exist q ∈ R and Q ∈ gx,q r gx,q+ such that

ad(X)Q ∈ gx,(t+q) r gx,(t+q)+ .

Proof. “⇐”: Suppose X ∈ gx,t+ . Then for all q ∈ R and for all Q ∈ gx,q
we have

ad(X)Q ∈ gx,(t+q)+ ,

a contradiction.
“⇒”: From Lemma A.1.1, there exists Y ∈ gx,−t r gx,(−t)+ such that

(45) B(X,Y ) ∈ R×.

For all s ∈ R we have
(ad(X) ad(Y ))gx,s ⊂ gx,s.

Since G is semisimple, we have that B is the Killing form. We conclude from
Equation (45) that there exist a q ∈ R and a Z ∈ gx,(t+q) r gx,(t+q)+ such that

ad(X)(ad(Y )Z) ∈ gx,(t+q) r gx,(t+q)+ .

Let Q := ad(Y )Z ∈ gx,q. Since ad(X)Q ∈ gx,(t+q) rgx,(t+q)+ , we conclude that
Q ∈ gx,q r gx,q+ .

Corollary B.6.2. Suppose x ∈ B(G), s ∈ R, and X ∈ g. Now,

X ∈ gx,s

if and only if for all q ∈ R and for all Q ∈ gx,q,

ad(X)Q ∈ gx,(s+q).

Proof. “⇒”: There is nothing to prove.
“⇐”: If X 6∈ gx,s, then there exists t < s such that X ∈ gx,t r gx,t+ .

From Lemma B.6.1, as X 6∈ gx,t+ , there exist q ∈ R and Q ∈ gx,q such that
ad(X)Q 6∈ gx,(t+q)+ . But gx,(s+q) ⊂ gx,(t+q)+ , so that ad(X)Q 6∈ gx,(s+q).

Moy-Prasad filtrations and ψ, I.

Remark B.6.3. Since p ≥ (2 + e) ·n, we have m ≥ n · ν(m) + 2 for m ≥ 2.
If we assume that m ≥ (2n− 1), then m ≥ n · (2 + ν(m))− 1.

Lemma B.6.4. Suppose x ∈ B(G) and t ∈ R≥1/n. If g ∈ Gx,t, then for
all q ∈ R and for all Q ∈ gx,q

log(Ad(g))Q ≡ (Ad(g)− 1)Q modulo gx,(2t+q).



886 STEPHEN DEBACKER AND MARK REEDER

Proof. Fix q ∈ R and Q ∈ gx,q. For m > 1,

(1−Ad(g))m

m
Q

belongs to

1
m
· gx,(q+tm) ⊂ gx,(q+tm−ν(m))

⊂ gx,(q+2t+t(m−2)−ν(m)).

From Remark B.6.3 we have m ≥ n · ν(m) + 2. Thus

gx,(q+2t+t(m−2)−ν(m)) ⊂ gx,(q+2t).

Consequently,

log(Ad(g))Q ≡ (Ad(g)− 1)Q modulo gx,(q+2t).

Corollary B.6.5. For all x ∈ B(G) and for all s ≥ 1/n,

ψ(Gx,s) ⊂ gx,s.

Proof. From Corollary B.6.2, it is enough to show that for all q ∈ R, for
all Q ∈ gx,q, and for all g ∈ Gx,s,

ad(ψ(g))Q ∈ gx,(s+q).

However, from Equation (44),

ad(ψ(g))Q = log(Ad(g))Q,

and log(Ad(g))Q ∈ gx,(s+q) from Lemma B.6.4.

Logarithmic behavior of ψ.

Lemma B.6.6. Suppose x ∈ B(G) and s, t ∈ R>0 with s ≤ t. If g ∈ Gx,s
and h ∈ Gx,t, then for all q ∈ R and for all Q ∈ gx,q,

(1−Ad(gh))mQ ≡ (1−Ad(g))mQ modulo gx,(t+q+(m−1)s)

for all m ∈ Z≥1.

Proof. We will argue by induction on m. Suppose x ∈ B(G), s, t ∈ R>0

with s ≤ t, g ∈ Gx,s, and h ∈ Gx,t. For q ∈ R and Q ∈ gx,q, we define
T = T (Q, h) ∈ gx,(q+t) by T := hQ−Q.

When m = 1, we have that for all q ∈ R and for all Q ∈ gx,q

(1−Ad(gh))Q=Q− ghQ = Q− gQ− gT

≡Q− gQ modulo gx,(q+t) = (1−Ad(g))Q.
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If

(1−Ad(gh))mQ′ ≡ (1−Ad(g))mQ′ modulo gx,(q′+t+(m−1)s)

for all q′ ∈ R and for all Q′ ∈ gx,q′ , then for all q ∈ R and for all Q ∈ gx,q

(1−Ad(gh))(m+1)Q = (1−Ad(gh))m[(1−Ad(gh))Q]

(since s ≤ t, we have (1−Ad(gh))Q ∈ gx,(q+s))

≡ (1−Ad(g))m[(1−Ad(gh))Q] modulo gx,(q+s+t+(m−1)s)(
≡ (1−Ad(g))m[(1−Ad(gh))Q] modulo gx,(q+t+ms)

)
= [(1−Ad(g))(m+1)Q]− [(1−Ad(g))m(gT )]

(since gT ∈ gx,(t+q) and s ≤ t)

≡ (1−Ad(g))(m+1)Q modulo gx,(t+q+ms).

Lemma B.6.7. Suppose x ∈ B(G) and s, t ∈ R with t ≥ s ≥ 1/n. For all
g ∈ Gx,s and for all h ∈ Gx,t,

ψ(gh) ≡ ψ(g) + ψ(h) modulo gx,(s+t).

Proof. Suppose x, s, t, g, and h are as in the statement of the lemma.
From Corollary B.6.2, it will be enough to show that if q ∈ R and Q ∈ gx,q,
then

ad[ψ(gh)− ψ(g)− ψ(h)]Q ∈ gx,(q+s+t).

Thus, from Equation (44), it will be enough to show that

[log(Ad(gh))− log(Ad(g))− log(Ad(h))]Q ∈ gx,(q+s+t).

Since
(1−Ad(gh))m

m
,

(1−Ad(g))m

m
, and

(1−Ad(h))m

m

all tend to zero in gl(g)(K), there exists N ∈ Z>1, independent of q and Q, so
that

[log(Ad(gh))− log(Ad(g))− log(Ad(h))]Q

is equivalent to

−
N∑
1

1
m
· [(1−Ad(gh))m − (1−Ad(g))m − (1−Ad(h))m]Q

modulo gx,(s+t+q). Fix 2 ≤ m ≤ N . From Lemma B.6.6 we have

[(1−Ad(gh))m−(1−Ad(g))m − (1−Ad(h))m]Q

≡ −(1−Ad(h))mQ modulo gx,(t+q+s(m−1))

(since t ≥ s)
≡ 0 modulo gx,(t+q+s(m−1)).
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Thanks to Remark B.6.3, for m ≥ 2,

s(m− 2)− ν(m) ≥ 1
n

(m− 2)− ν(m) ≥ 0.

We conclude that for m ≥ 2
1
m

[(1−Ad(gh))m − (1−Ad(g))m − (1−Ad(h))m]Q

belongs to gx,(q+t+s). Consequently,

[log(Ad(gh))− log(Ad(g))− log(Ad(h))]Q

is equivalent to

−[(1−Ad(gh))− (1−Ad(g))− (1−Ad(h))]Q

modulo gx,(q+t+s). But the latter is (Ad(g) − 1)(Ad(h) − 1)Q, which belongs
to gx,(q+t+s).

Remark B.6.8. The condition t ≥ s in Lemma B.6.7 is not required. Sup-
pose x, g, h are as in the statement of the lemma and 1/n ≤ t < s. Choose
u ∈ Gx,(s+t) so that gh = hu. Then

ψ(gh) = ψ((gh)g) ≡ ψ(gh) + ψ(g) modulo gx,(s+t)

= ψ(hu) + ψ(g) ≡ ψ(h) + ψ(u) + ψ(g) modulo gx,(2t+s)

(from Corollary B.6.5)

≡ ψ(h) + ψ(g) modulo gx,(s+t) = ψ(g) + ψ(h).

We can now reformulate Lemma B.6.7 as follows.

Corollary B.6.9. Suppose x ∈ B(G) and s, t ∈ R≥1/n. For all g ∈ Gx,s
and for all h ∈ Gx,t,

ψ(gh) ≡ ψ(g) + ψ(h) modulo gx,(s+t).

Filtration quotients and ψ.

Remark B.6.10. Since every torus of G splits over a tamely ramified ex-
tension of K, for all t ∈ R>0 and for all x ∈ B(G) we have an isomorphism of
abelian groups

Gx,t/Gx,t+ ∼= gx,t/gx,t+ .

This isomorphism has the property that for each coset ΞG in Gx,t/Gx,t+ the
isomorphism identifies a coset Ξg in gx,t/gx,t+ so that for all q ∈ R and for each
Q ∈ gx,q we have

ad(X)Q ≡ (Ad(g)− 1)Q modulo gx,(t+q)+

for all X ∈ Ξg and for all g ∈ ΞG. See [64, Cor. 2.4] or [65] for details.
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Lemma B.6.11. Suppose x ∈ B(G) and t ∈ R>0. If g ∈ Gx,trGx,t+, then
there exist q ∈ R and Q ∈ gx,q r gx,q+ such that

(Ad(g)− 1)Q ∈ gx,(t+q) r gx,(t+q)+ .

Proof. Choose g as in the statement of the lemma. If X ∈ Ξg, where Ξg ∈
gx,t/gx,t+ corresponds to the coset gGx,t+ in Gx,t/Gx,t+ , then X ∈ gx,t r gx,t+ .
From Lemma B.6.1 we can choose q ∈ R and Q ∈ gx,q r gx,q+ so that

ad(X)Q ∈ gx,(t+q) r gx,(t+q)+ .

Since, from Remark B.6.10,

(Ad(g)− 1)Q ≡ ad(X)Q modulo gx,(t+q)+ ,

the lemma follows.

Lemma B.6.12. Suppose t ≥ 1/n and x ∈ B(G). The restriction of ψ to
Gx,t induces an isomorphism

Gx,t/Gx,t+ ∼= gx,t/gx,t+

of abelian groups.

Proof. Fix t ≥ 1/n and x ∈ B(G). Since ψ : G0+ → g is injective and
from Corollary B.6.5

ψ(Gx,t+) ⊂ gx,t+

while
ψ(Gx,t) ⊂ gx,t,

from Lemma B.6.7 we have that ψ induces a group homomorphism

Gx,t/Gx,t+ → gx,t/gx,t+ .

We will show that this map is surjective. Since Gx,t/Gx,t+ and gx,t/gx,t+ are
finite-dimensional F-vector spaces of the same dimension, injectivity will follow.
Now, we must show that for each X ∈ gx,t there is a g ∈ Gx,t for which

X − ψ(g) ∈ gx,t+ .

Equivalently, from Corollary B.6.2, we need that for all q ∈ R and for all
Q ∈ gx,q

[ad(X)− ad(ψ(g))]Q ∈ gx,(q+t)+ .

Suppose X ∈ gx,t. From Remark B.6.10, there is a g ∈ Gx,t so that for all
q ∈ R and each Q ∈ gx,q we have

(46) (Ad(g)− 1)Q ≡ ad(X)Q modulo gx,(q+t)+ .
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Now, for all q ∈ R and for all Q ∈ gx,q,

[ad(X)− ad(ψ(g))]Q = [ad(X)− log(Ad(g))]Q (from Corollary B.6.4)

≡ [ad(X)− (Ad(g)− 1)]Q modulo gx,(q+2t)

(from Equation (46))

≡ 0 modulo gx,(q+t)+ .

Thus [ad(X)− ad(ψ(g))]Q ∈ gx,(q+t)+ .

Moy-Prasad filtrations and ψ, II. We begin with an abstract result about
maps between complete topological groups.

Lemma B.6.13. Suppose H and L are complete topological groups. Let
f : H → L be a map for which there exist neighborhood bases at the identity

{Hi ≤ H |H1 := H ≥ H2 ≥ H3 ≥ · · · ≥ {1}}

and
{Li ≤ L |L1 := L ≥ L2 ≥ L3 ≥ · · · ≥ {1}}

for H and L so that

(1) f(Hi) ⊂ Li for all i and

(2) if h ∈ Hi and h′ ∈ Hj , then f(hh′) ≡ f(h)f(h′) modulo Li+j.

If the induced map
Hi/H(i+1) → Li/L(i+1),

is surjective for all i, then f is surjective.

Remark B.6.14. Note that the first condition on f implies that it is con-
tinuous at the identity, while the second implies that f is continuous every-
where.

Proof. Suppose ` ∈ L. Fix j0 ∈ Z≥1 so that ` ∈ Lj0 r L(j0+1). By
hypothesis, there is an h0 ∈ Hj0 such that f(h0) ≡ ` modulo L(j0+1). Fix
j1 > j0 so that f(h0)−1` ∈ Lj1 r L(j1+1). Since the induced map

Hj1/H(j1+1) → Lj1/L(j1+1)

is surjective, there is an h′1 ∈ Hj1 so that f(h′1) ≡ f(h0)−1` modulo L(j1+1).
Set h1 := h0h

′
1. Now,

f(h1) ≡ f(h0)f(h′1) modulo Lj1+j0 .

Thus, f(h1) ≡ ` modulo Lj1+1.
Choose j2 > j1 so that f(h1)−1` ∈ Lj2 r L(j2+1). Since the induced map

Hj2/H(j2+1) → Lj2/L(j2+1)
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is surjective, there is an h′2 ∈ Hj2 so that f(h′2) ≡ f(h1)−1` modulo L(j2+1).
Set h2 := h1h

′
2. Then

f(h2) ≡ f(h1)f(h′2) modulo Lj2+j1 .

Thus, f(h2) ≡ ` modulo Lj2+1.
Continuing in this fashion, we produce a convergent sequence (hi) in H.

If h = limhi, then f(h) = `.

Lemma B.6.15. For all facets J ⊂ B(G) and for all s > 0 we have
ψ(GxJ ,s) = gxJ ,s.

Proof. From Lemma B.5.4 we may assume that s ≥ 1/n. Thanks to
Corollary B.6.5 it suffices to prove surjectivity.

Choose m′ ∈ Z≥1 so that J is Fm
′
-stable. We let x = xJ . It will be

enough to show that for all m ∈ Z≥m′

ψ(GF
m

x,s ) = gF
m

x,s .

Note that GF
m

x,s and gF
m

x,s are complete topological groups. Thanks to Corol-
lary B.6.5, Lemma B.6.7, and Lemma B.6.12, the result follows from Lemma
B.6.13.

Corollary B.6.16.

ψ(G0+) = g0+ .

Proof. From Lemma B.6.15, for all facets J in B(G) we have ψ(G+
J ) = g+

J .
Since

G0+ =
⋃
J

G+
J and g0+ =

⋃
J

g+
J ,

the result follows.

The map over the residue field induced by ψ.

Lemma B.6.17. Suppose x ∈ B(G). If t ≥ 1/n and g ∈ Gx,t, then for all
q ∈ R and for each Q ∈ gx,q,

log(Ad(g))Q ≡ −
2(n−1)∑
m=1

(1−Ad(g))m

m
Q

modulo gx,(q+2−1/n).

Proof. Fix t ≥ 1/n and g ∈ Gx,t. Suppose q ∈ R and Q ∈ gx,q. For all
m ∈ Z≥1,

(1−Ad(g))m

m
Q ∈ gx,(q+mt−ν(m)).
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Since p ≥ (2 + e)n, we conclude that for 1 ≤ m ≤ (3n− 2),
(1−Ad(g))m

m
Q ∈ gx,(q+mt)

(since m is a unit). In particular, as t ≥ 1/n, we conclude that
2(n−1)∑
m=1

(1−Ad(g))m

m
Q ≡

(3n−2)∑
m=1

(1−Ad(g))m

m
Q modulo gx,(q+2−1/n).

To finish the proof, it is enough to show that if m ≥ (3n−1), then mt−ν(m) ≥
2− 1/n. This follows from Remark B.6.3.

Lemma B.6.18. Suppose J ⊂ B(G) is a facet and C ⊂ B(G) is an alcove
which contains J in its closure. If g ∈ G+

C and h ∈ G+
J , then

ψ(gh) ∈ ψ(g) + g+
J .

Proof. Since G+
J ≤ G+

C , both g and gh belong to G+
C = GxC ,1/n (see

Lemma B.5.4). Consequently, from Lemma B.6.15, both ψ(g) and ψ(gh) be-
long to g+

C ≤ gJ . Hence, the images of ψ(g) and ψ(gh) in LJ belong to the
nilradical of the Borel subgroup of GJ corresponding to C. Hence, they both
belong to the derived Lie algebra of LJ . Since the restriction of B to gJ induces
the Killing form on the derived Lie algebra of LJ , it will be enough to show
that for all Q ∈ gJ ,

[ad(ψ(gh))− ad(ψ(g))]Q ∈ g+
J .

Fix Q ∈ gJ . Since $Q ∈ g+
J ,

Q ∈ $−1g+
J ≤ $

−1g+
C = gxC ,1/n−1.

From Lemma B.6.17 and Equation (44),

ad(ψ(gh))Q = log(Ad(gh))Q ≡ −
2(n−1)∑
m=1

(1−Ad(gh))m

m
Q

modulo gxC ,1 = $gC ≤ $gJ ≤ g+
J . (Note: m is a unit for 1 ≤ m ≤ 2(n− 1).)

Similarly,

ad(ψ(g))Q ≡ −
2(n−1)∑
m=1

(1−Ad(g))m

m
Q

modulo g+
J . Consequently,

[ad(ψ(gh)− ψ(g))]Q ≡
2(n−1)∑
m=1

[
(1−Ad(g))m − (1−Ad(gh))m

m

]
Q

modulo g+
J . Since h acts trivially on gJ/g

+
J ,

(1−Ad(gh))mQ ≡ (1−Ad(g))mQ

modulo g+
J . The result follows.
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Corollary B.6.19. Suppose J is an F -stable facet in B(G). The re-
striction of ψ to G0+ ∩GJ induces an 〈F 〉n GJ -equivariant bijective map from
UJ , the f-variety of unipotent elements in GJ , to NJ , the f-variety of nilpotent
elements in LJ .

Proof. If ḡ ∈ UJ , then there exist an alcove C and a g ∈ G+
C such that

J ⊂ C̄ and g is a lift of ḡ. From Lemma B.6.15 we have ψ(g) ∈ g+
C ⊂ gJ . Thus,

the image of ψ(g) in LJ belongs to NJ . From Lemma B.6.18, the image of ψ(g)
in LJ is independent of the choice of g. Hence ψ induces a map ψ̄ : UJ → NJ .
As ψ is 〈F 〉nGJ -equivariant, it follows that ψ̄ is 〈F 〉n GJ -equivariant.

To see that ψ̄ : UJ → NJ is bijective, we note that p ≥ (2+e)n implies (see
for example [12, §1.15]) that there is a (nonunique) bijective, GJ -equivariant
f-morphism identifying UJ with NJ . Thus, for all m ∈ Z≥1 the sets UFmJ and
N Fm

J have the same cardinality. Consequently, it is enough to show that the
restriction to UFmJ of ψ̄ surjects onto NFm

J . If X̄ ∈ N Fm

J , then there exist
an Fm-stable alcove C and X ∈ (g+

C)F
m

such that J ⊂ C̄ and X is a lift of
X̄. From the proof of Lemma B.6.15 there exists a g ∈ (G+

C)F
m

such that
ψ(g) = X.

Since UJ is the image of G0+ ∩GJ in GJ , the corollary follows.

B.7. An extension to reductive groups. Drop the assumption that G
is semisimple. In this section, we prove that the 〈F 〉 n G-equivariant map
ψ : G0+ → g has the properties described in Lemma B.0.3.

Let G′ denote the group of K-rational points of the derived group of G.
Let Z denote the group of K-rational points of Z, the identity component of
the center of G. We recall that Z ∩ G′ is finite. We let g′ (resp. z, resp. z)
denote the Lie algebra of G′ (resp. Z, resp. Z).

In Section B.6 we proved that the map

resG′ ψ : G′0+ → g′

has the properties required by Lemma B.0.3. From [9, III, §7, Prop. 11],

(47) ψ(zh) = ψ(z) + ψ(h)

for all z ∈ Z0+ and all h ∈ G′0+ .
Suppose S is any torus in G. Let S denote the group of K-rational points

of S. Let s (resp. s) denote the Lie algebra of S (resp. S).

Lemma B.7.1. With our assumptions on p,

ψ(S0+) = s0+ .

Proof. Let E denote the splitting field of S over K. Since ϕ : G → GLn
is faithful and ϕ(S) is a torus in GLn, the field E is a tame Galois extension
of K and νE(p) ≤ nν(p).
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Since E is a tame Galois extension of K, from [2, Lemma 2.2.3], we have

S0+ = S(E)0+ ∩ S.

By an argument similar to that given in Section B.3, there is a unique Gal(E/K)n
G(E)-equivariant extension of ψ to a map ψ : G(E)0+ → g(E). From Equa-
tion (44) the image of the restriction to S(E)0+ of this map lies in s(E). It
will be enough to show that ψ(S(E)0+) = s(E)0+ .

Since S is E-split, there is an E-isomorphism ϕS from S to (GL1)j for
some j. Since

p ≥ (2 + ν(p))n ≥ 2n+ νE(p),

we have p ≥ 2 + νE(p). We conclude (see the discussion concerning GLn in
§B.1) that

log((GL1(E))j0+) = (M1(E))j0+ .

Since ϕS and dϕS are E-isomorphisms, the result follows from the fact that
dϕS(ψ(s)) = log(ϕS(s)) for s ∈ S(E)0+ (see Equation (41)).

Lemma B.7.2. Under our assumptions on p, the map (z, h) 7→ zh from
Z0+ ×G′0+ to G0+ is bijective.

The proof below is due to Loren Spice; it is shorter than our original proof.

Proof (Spice). Since for each x ∈ B(G) we have Z0+ ⊆ Gx,0+ and
G′x,0+ ⊆ Gx,0+ , it suffices to check that the map ix : Z0+ × G′x,0+ → Gx,0+

which sends (z, h) to zh is bijective for all x ∈ B(G).
Fix x ∈ B(G). To show ix is bijective, it is enough to check that the

induced map on successive quotients of Moy-Prasad filtration subgroups is
bijective. Fix r ∈ R>0. From [64, Cor. 2.4], it is enough to check that the
induced map

zr/zr+ × g′x,r/g
′
x,r+ → gx,r/gx,r+

is bijective. From [4, Prop. 3.2], it is surjective. If (Z̄, X̄) is in its kernel, then
there exist Z ∈ zr (resp., X ∈ g′x,r) lifting Z̄ (resp., X̄) so that Z +X ∈ gx,r+ .
From [4, Prop. 3.2], we conclude that Z ∈ zr+ and X ∈ g′x,r+ . Thus, the map
is injective as well.

Thanks to Equation (47), from Lemma B.7.1 and Lemma B.7.2, the map
ψ is a bijective 〈F 〉nG-equivariant map from G0+ to g0+ = z0+ + g′0+ . More-
over, since, for all x ∈ B(G), the image of z0+ in Lx is trivial, it follows from
Lemma B.7.1 (with S = Z) that ψ has the properties required by Lemma B.0.3.
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Index of selected notation and terms

elliptic Langlands parameter 821
F -regular 802
F -minisotropic 803
generic representation 838
G-stable conjugacy-class 817
G-stably conjugate 849
G-stable classes 849
lift of (J, S) 846
(φ, φ′)-comparable 864
rational classes 817
regular semisimple 802
strongly regular semisimple 802
tame regular semisimple 824
topological Jordan decomposition 845
topologically semisimple 845
TRSELP 825
unramified torus 803

∗ g ∗ u := guF (g)−1 805
Ad adjoint action of G 802
A(S) apartment of unramified torus S 803
A apartment corresponding to T 804
[Ad(H)X]F

∐n
i=1 Ad(HF )Xi 863

B nondegenerate, symmetric, 〈F 〉nH-invariant bilinear
form on h

863

B(G) Bruhat-Tits building of G 803
Cλ an alcove in A which contains Jλ in its closure 813
Cϕ component group of CĜ(ϕ) 822
deg(π) formal degree of π 798
D̃(γ, S) {d ∈ GF : dγ ∈ S} 846
ε(·, ·) sign depending on relative ranks 802
E(γ, S) {g ∈ GF : gγ ∈ GJ , gγ ∈ S} 846
f element of N̂ 825
f̂ Fourier transform of f with respect to B 863
f residue field of k 802
fd the degree d extension of f 807
F residue field of K 802
Frob topological generator for Γ 802
F automorphism of G arising from k-structure on G 803
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F the automorphism F when G is k-quasisplit 804
Fu Ad(u) ◦ F 805
Fλ Ad(uλ) ◦ F 814
G0 compact elements of G 844
G0+ topologically unipotent elements in G 844
Ĝ dual group of G 811
LG 〈ϑ̂〉n Ĝ 821
Grss set of regular semisimple elements of G 802
Gsrss set of strongly regular semisimple elements of G 802
Gad group of K-rational points of the adjoint group of G 803
GJ parahoric subgroup of G corresponding to J ⊂ B(G) 803
Gλ GJλ 814
G+
J pro-unipotent radical of GJ 803

GJ connected reductive f-group associated to J ⊂ B(G) 803
Gλ Gλ/G

+
λ 829

gJ lattice in g attached to J ⊂ B(G) 834
g+
J sublattice in gJ 834

g0 compact elements of g 844
g0+ topologically nilpotent elements in g 844
Γ Gal(k̄/k)/I 802
Gγ identity component of the centralizer of γ in G 802
γs topologically semisimple part of γ 845
γu topologically unipotent part of γ 845
ind compact induction functor 797
Ind smooth induction functor 823
Irr set of irreducible representations 802
Irr2 set of irreducible square-integrable representations 802
Irr0 set of irreducible depth-zero representations 848
Irr(Cϕ, ω) representations ρ ∈ Irr(Cϕ) with ωρ = ω 822
I inertia subgroup of Gal(k̄/k) 802
I+ wild inertia subgroup 821
It tame inertia group 821
I(γs) index set for certain Gγs-stable classes 859
Î(γs) index set for certain Gγs-stable classes 859
ιg map from I(γs) to I(gγs) 861
Jλ facet in A preserved by σλ 813
k finite extension of Qp 802
K maximal unramified extension of k 802
κ0
λ ε(Gλ,Tλ) ·RGλ

Tλ,χ0
λ
∈ Irr(GFλ

λ ) 830

κλ representation of ZFGFλ
λ 830

LJ Lie algebra of GJ ; identified with gJ/g
+
J 834

mλ element of N for which mλ ∗ uλ = u and mλ ·Cλ = C 815
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µH
F

X (f) HF -orbital integral of f with respect to X 863
µ̂H

F

X function representing Fourier transform of µH
F

X 863
N(G,S) normalizer of a subgroup S ⊂ G 802
N N(G,T ) 804
No N ∩Go 804
N(i) |N(Gγs , S

F )/S|, where S ∈ Tst(γs, i) 859
ΩC {ω ∈W : ω · C = C} for some alcove C in A 804
ωλ unique element of tλW ◦ ∩ ΩC 810
ω̇λ element of Z1(F, NC) with image ωλ in W 811
ω fixed element of H1(F, G) 815
o F-fixed hyperspecial vertex in Aad 804
p characteristic of the residue field f 802
pλ element of Gλ for which p−1

λ Fλ(pλ) = ẇλ 815
πλ IndG

Fλ

ZFG
Fλ
λ

κλ 831

πu(ϕ, ρ) Ad(mλ)∗πλ ∈ Irr(GFu) 834
Πu(ϕ) normalized L-packet 834
p1 surjective projection onto first factor: T̂v,χ −→ Tv 851
p2 projection on second factor: p−1

1 (S) −→ Irr0(SF ) 851
q cardinality of the residue field f 802
qλ mλpλ ∈ G 816
Q̇

(GJ)γs
S natural inflation of Q(GJ)γs

S , extended by zero to GF 854
Q(Gγs , T 1

st) stable p-adic analogue of a Green function 859
r map Xw → H1(F, G) 815
[r−1(ω)] image of r−1(ω) in [X/(1− wϑ)X]tor 817
R(G,S, θ) function on (Grss)F 848
R(G, T ) R(G,S, θ), where T is the GF -orbit of (S, θ) 848
R(G, T̂st)

∑
(S,θ)∈T̂st/GF R(G,S, θ) 851

s homomorphism s : It −→ T̂ with CĜ(s) = T̂ 825
0S maximal bounded subgroup of an unramified torus S 803
σλ tλwϑ ∈W o 〈ϑ〉 812
Sλ Ad(qλ)T 816
St Steinberg representation 798
Ŝh
X Fourier transform of the stable orbital integral

associated to X
864

T fixed maximally k-split K-split torus in G 804
0T maximal bounded subgroup of T 804
Tλ Ad(pλ)T 830
T̂ Y ⊗ C× 811
tλ element of T or W corresponding to λ ∈ X 804
T(G) set of F -minisotropic maximal tori in G 846
T̂(G) {(S, θ) : S ∈ T(G) and θ ∈ Irr0(SF )} 850
Tv {S ∈ T(G) : SF = g(TFv) for some g ∈ G} 850
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T̂v,χ (S, θ) for which there is g ∈ G so that SF = g(TFv)
and θ = g∗χ

850

T̂st fixed G-stable class in T̂(G) 851
T̂ GF -orbit in T(G) 854
T̂ (γs) {(S′, θ′) ∈ T̂ : γs ∈ S′} 854
T̂st(γs) {(S, θ) ∈ T̂st : γs ∈ S} 859
θχS

∑
θ ∈ p2p

−1
1 (S) θ 851

θχi (γs) θχS(γs), for any S ∈ Tst(γs, i) 860
Θρλ character of πu(ϕ, ρλ) 853
u fixed representative of ω 815
$ fixed uniformizer of k 802
ϑ automorphism of X, Xad, A, Aad, W , or Wad 804
W Weil group of k 821
Wt tame Weil group 821
W N/0T 804
W ◦ generated by reflections in the walls of an alcove C 804
Wo image of No in W 804
Ẇo Tits extension of Wo 812
Wλ generated by reflections in hyperplanes containing Jλ 813
Wwϑ
o {zo ∈Wo : wϑ(zo)w−1 = z} 818

Wwϑ
o,λ stabilizer in Wwϑ

o of the class of λ in [r−1(ω)] 819
w element of Wo 812
ẇ fixed lift in Ẇo of w 814
wλ unique element in Wλ for which σλ · Cλ = wλ · Cλ 813
ẇλ unique lift of wλ in N satisfying tλẇ = ẇλuλ 814
xλ unique fixed-point in A for tλwϑ 796
X∗(H) group of algebraic one-parameter subgroups of H 803
X X∗(T) 804
X◦ co-root sublattice in X 804
X̄ X/X◦ 810
Xw preimage in X of [X/(1− wϑ)X]tor 812
χϕ depth zero character corresponding to ϕ 827
χλ Ad(pλ)∗χ ∈ Irr(TFλ

λ ) 830
Y algebraic character group of T 811
yλ w−1

λ tλw 813
Z1(F,U) continuous cocycles Γ −→ U 805
Ẑ center of Ĝ 811
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