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The singular set of 1-1 integral currents

By TRISTAN RIVIERE and GANG TIAN

Abstract

We prove that 2 dimensional integer multiplicity 2 dimensional rectifiable
currents which are almost complex cycles in an almost complex manifold ad-
mitting locally a compatible positive symplectic form are smooth surfaces aside
from isolated points and therefore are J-holomorphic curves.

I. Introduction

Let (M?P,J) be an almost complex manifold. Let k € N, k < p. We shall
adopt classical notation from Geometric Measure Theory [Fe]. We say that
a 2k-current C in (M?P,.J) is an almost complex integral cycle whenever it
fulfills the following three conditions

i) Rectifiability: There exists an at most countable union of disjoint oriented
C' 2k-submanifolds C = U;N; and an integer multiplicity 6 € L{. (C)

such that for any smooth compactly supported in M 2k-form ) one has

C“"):Z:/MM'

ii) Closedness: C is a cycle,

oC =0; ie.,YaeD* M), C(da)=0.

iii) Almost complex: For H?F and almost every point z in C, the approximate
tangent plane T, to the rectifiable set C is invariant under the almost
complex structure J; i.e.,

In this work we address the question of the regularity of such a cycle: Does
there exist a smooth almost complex manifold (£2¥, ) without boundary and a
smooth j — J-holomorphic map u (Vo € ¥ and VX € T,X duy,j- X = J-duy X)
such that v would realize an embedding in M?P aside from a locally finite 2k —2
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measure closed subset of M and such that C = u.[%2}]; i.e., Vi € C5O(AZ M)

cw) = [

In the very particular case where the almost complex structure J is integrable,
this regularity result is optimal (C' is the integral over multiples of algebraic
subvarieties of M) and was established in [HS] and [Ale]. There are numer-
ous motivations for studying the general case of arbitrary, almost complex
structures J. First, as explained in [RT], the above regularity question for rec-
tifiable almost complex cycles is directly connected to the regularity question
of J-holomorphic maps into complex projective spaces. It is conjectured, for
instance, that the singular set of W12(M?P, N)) .J-holomorphic maps between
almost complex manifolds M and N should be of finite (2p — 4)-Hausdorff
measure. The resolution of that question leads, for instance, to the character-
ization of stable-bundle, almost complex structures over almost Kahler mani-
folds via Hermite-Einstein Structures and extends Donaldson, Uhlenbeck-Yau
characterization in the integrable case (see [Dol, [UY]) to the nonintegrable
one. Another motivation for studying the regularity of almost complex recti-
fiable cycles is the following. In [Li] and [Ti] it is explained how the loss of
compactness of solutions to geometric PDEs having a given conformal invari-
ant dimension ¢ (a dimension at which the PDE is invariant under conformal
transformations - ¢ = 2 for harmonic maps, ¢ = 4 for Yang-Mills Fields...etc)
arises along m — ¢ rectifiable cycles (if m denotes the dimension of the do-
main). These cycles happen sometimes to be almost complex (see more details
in [Ril]).

By trying to produce in (R?",.J) an almost complex graph of real dimen-
sion 2k in a neighborhood of a point zg € R?? as a perturbation of a complex
one (Jz,-holomorphic), one realizes easily that, for generic almost complex
structures J, the problem is overdetermined whenever k& > 1 and well posed
for K = 1. Therefore the case of 2-dimensional integer rectifiable almost com-
plex cycles is the generic one from the existence point of view. We shall restrict
to that important case in the present paper. After complexification of the tan-
gent bundle to M?P a classical result asserts that a 2-plane is invariant under
J if and only if it has a 1 — 1 tangent 2-vector. Therefore we shall also speak
about 1 — 1 integral cycles for the almost complex 2-dimensional integral cy-
cles. In the present work we consider the locally symplectic case: We say that
(M?P,.J) has the locally symplectic property if at a neighborhood of each point
xo in M?P there exist a positive symplectic structure compatible with J and a
neighborhood U of zy and a smooth closed 2-form w such that w(-, J-) defines
a scalar product. It was proved in [RT] that arbitrary, 4-dimensional, almost
complex manifolds satisfy the locally symplectic property. This is no more the
case in larger dimension: one can find an almost complex structure in S¢ which
admits no compatible positive symplectic form even locally; see [Br].
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Our main result is the following.

THEOREM 1.1. Let (M?P,.J) be an almost complex manifold satisfying the
locally symplectic property above. Let C be an integral 2 dimensional almost
complex cycle. Then, there exist a J-holomorphic curve 3 in M, smooth aside
from isolated points, and a smooth integer-valued function 0 on % such that,
for any 2 form ¢ € C*(M),

Cw):/zew.

In the “locally symplectic case” being an almost-complex 2 cycle is equiv-
alent for a 2-cycle to being calibrated by the local symplectic form w for the
local metric w(+, J-). Therefore the regularity question for almost complex cy-
cles is embedded into the problem of calibrated current and hence the theory
of area-minimizing rectifiable 2-cycles. Therefore our result appears to be a
consequence of the “Big Regularity Paper” of F. Almgren [Alm] combined with
the PhD thesis of his student S. Chang [Ch]. Our attempt here is to present an
alternative proof independent of Almgren’s monumental work and adapted to
the case we are interested in. The motivation is to give a proof that could be
modified in order to solve the general case (non locally symplectic one) which
cannot be “embedded” in the theory of area-minimizing cycles anymore.

A proof for the regularity of almost complex cycle in the locally symplectic,
p = 2 case, independent of the regularity theory for area-minimizing surfaces,
was also one of the results of the work Gr=-SW of C. Taubes [Ta] for p = 2.
In particular, [Ta] presents a proof of Theorem 1.1 when p = 2. In [RT], we
gave an alternative proof for this special case. Theorem 1.1 can be seen as the
generalization to higher dimension (p > 2) of these works.

One of the main difficulties arising in dimension p > 2 is the nonneces-
sary existence of J-holomorphic foliations transverse to our almost complex
current C' in a neighborhood of a point. This then prevents describing the
current as a Q-multivalued graph from D? into CP~1, {(a¥(2))g=10-1}i=1..¢ in
a neighborhood of a point of density IV solving locally an equation of the form

p—1
(I.1) dzal = ZA(Z, a;)f - Vak 4 oF(a;, 2)
=1

where A and « are small in C? norm, as for p = 2 in [RT]. What we can
only ensure instead is to describe the current C, in a neighborhood of a point
of multiplicity @, as an “algebraic Q-valued graph” from D? into CP~!; that
is, a family of points in CP~1, {ai(2),...,ap(2),b1(2),...,bn(2)} where only
P — N = @ is independent on z (neither P nor N is a priori independent
on z), a; are the positive intersection points and b; are the negative ones.
This “algebraic @-valued graph” solves locally a much less attractive equation
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than (I.1),

p—1 p—1
(1.2) dzaf =Y Al(z,a;,Va;)  Va + Z Bi(z,a;) - Va. + C*(z,a;) ,
=1 =1

where A(z,a,p), B(z,a) and C(z,a) are also small in C? norm but the depen-
dence on p in A(z,a,p) is linear and therefore as Va; gets bigger, which can
happen, the right-hand side of (I.2) cannot be handled as a perturbation of
the left-hand one in steps such as the “unique continuation argument”. This
was used in [RT] for proving that singularities of multiplicity @ cannot have
an accumulation point in the carrier C of C.

The strategy of the proof goes as follows. A classical blow-up analysis tells
us that, for an arbitrary point zo of the manifold M?P, the limiting density
0(xg) = lim,_or2M(CL B,(xg)). Here M denotes the mass of a current
and L is the restriction operator which equals 7 times an integer (). Since
the density function r — r=2M(CL B,(z)) at every point is a monotonic
increasing function, the complement of the set Cg := {z € M ; 0(z) < Q} is
closed in M and this permits us to perform an inductive proof of Theorem I.1
restricting the current to Cg and considering increasing integers ). A point of
multiplicity @ is called a singular point of C' if it is in the closure of points of
nonzero multiplicity strictly less than Q.

The goal of the proof is then to show that singularities of multiplicity less
than @ are isolated. We assume this fact for Q — 1 and the paper is devoted
to the proof that this then holds for @ itself. From a now classical result of B.
White (see [Wh]), the dilated currents at a point zq of density ) # 0 converge
in flat norm to a sum of @ flat J,, -holomorphic disks. Moreover, for any € > 0
and r sufficiently small C'L B, (xg) is supported in the cones whose axes are
the limiting disks and angle €. For () > 1, if two of these limiting disks are
different it is then easy to observe that xg cannot be an accumulation point of
singularities of multiplicity @); this is the so called “easy case”. If the limiting
disks are all identical, equal to Dy, then we are in the “difficult case” and much
more work has to be done in order to reach the same statement.

Contrary to the special case of dimension 4 (p = 2) considered by the
authors in [RT], we could not find nice coordinates that would permit us to
write C' as a (J-valued graph over the limiting disk Dy. Considering then some
Jz,-complex coordinates (z,ws,...,wp—1) in a neighborhood Bﬁfo (o) such
that Nw; 140} corresponds to Dy, by the mean of the “lower-epiperimetric
inequality” proved by the first author in [Ri2], one can construct a Whitney-
Besicovitch covering, {BJ (zi)}icr, of the orthogonal projection on Dy of the
points in Bgf , (z0) having a positive density strictly less than Q. This covering
is such that for every i € I there exists x; = (2;, w;) € Bgfo (zo) verifying that

the restriction of C' to the tube Bzi(zi) X Bl%f(:z(O) is in fact supported in the
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ball Bgﬁi (z;) of radius 2p;, two times the width of the tube. Moreover if one

looks inside B,%? (x;), C is “split”: this last word means that C' restricted to
Bgf’ (z;) is at a flat distance comparable to p? from the @ multiple of any graph
over B2 (z;). This comes from the fact that the density ratio p; 2 M(B,, (x;)) is
strictly less than 7() minus a constant o depending only on p, @, J and w.
We then construct an average curve for C'. In the 4-dimensional case since
C was a Q-valued graph over Dy we simply took the average of the () points
over any point in Dy. Here, in arbitrary dimension, the construction of the
average curve is more delicate and uses the covering. We first approximate
CLB,%? (x;) by a Jz,-holomorphic graph C; using a technique introduced in
[Ri3], and choosing a J,,-holomorphic disk D; approximating Dy we can ex-
press C; as a Q-valued graph over D; for which we take the average C; that
happens to be Lipschitz with a uniformly bounded Lipschitz constant.
Therefore the J,,-holomorphic curve C; can be viewed as a graph a; over
Bg(zz) Patching the a; together we get a graph a that extends over the whole
Bgm(O) as a C'1 graph for any a < 1 which is almost .J-holomorphic and

which passes through all the Bzf (z;). The fact that the average curve is more
regular than the J-holomorphic cycle C' from which it is produced is clear in
the integrable case (since it is holomorphic); (z, £1/z) is a C%2 2-valued graph
whereas its average (z,0) is smooth. This was extended in the nonintegrable
case in the particular case of the 4 dimension in [ST].

The points of multiplicity ) in C are contained in the average curve a.
We then show, by means of a unique continuation argument in the spirit of
the one developed in [Ta] in 4 dimensions, that the points where C' gets to
coincide with a are either isolated or coincide with the whole curve a. We have
then shown that any point zg of multiplicity @ is either surrounded by points
of multiplicity @ only, and in sz)f ,» C coincides with @) times a smooth graph
over Dy or zg is not an accumulation point of points of multiplicity ) and is
surrounded in Bgfo by points of multiplicity strictly less than Q. It remains
at the end to show that it cannot be an accumulation point of singularities
of lower density. This is obtained again using an approximation argument by
holomorphic curves introduced in [Ri3].

The paper is organized as follows. In Section II we establish prelimi-
naries, introduce notation and give the main statement, assertion Pg, to be
proved by induction in the rest of the paper. In Section III, with the help
of the “upper-epiperimetric inequality” of B. White, we establish the unique-
ness of the tangent cone and a quantitative version of it; see Lemma III.2.
In Section IV we prove the relative Lipschitz estimate together with a tilt-
ing control of the tangent cones of density ) points in a neighborhood of a
density @ point; see Lemma IV.2. In Section V we proceed to the covering
argument, Lemma V.3, which is based on the “splitting before tilting” lemma
(see Lemma V.1, proved in [Ri2]). In Section VI we construct the approxi-
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mated average curve and prove the C1® estimate for this curve, Lemma VI.3.
In Section VII we perform the unique continuation argument showing that
singularities of multiplicity () cannot be accumulation points of singularities
of multiplicity . In Section VIII we show that singularities of multiplicity
() cannot be accumulation points of singularities of multiplicity less than @
either.

II. Preliminaries

Notation. We shall adopt standard notation from the Geometric Measure
Theory [Fe] such as M(A) for the Mass of a current A, F(A) for its flat norm,
AL E for its restriction to a measurable subset E...etc; we refer the reader to
[Fe].

Preliminaries. Since our result is a local one we shall work in a neigh-
borhood U of a point x¢ and use a symplectic form w compatible with J. We
denote by g the metric generated by J and w: g(-,-) = w(+,J-). We also intro-
duce normal coordinates (x1,x2,...,Z2,—1,2,) about z¢ in U which can be
chosen such that at xg,

(IL1) Jo - =2 0

: = fori=0...p—1.
P Oraip1 OTaite

Since C' is a calibrated current in (U,w,J), it is an area-minimizing current
and its generalized mean curvature vanishes (see [All] or [Si]). One may iso-
metrically embed (U, g) into a euclidian space R?’** and the generalised mean
curvature of C' in R?P** coincides with the mean curvature of the embedding
of (U,g) and is therefore a bounded function. Combining this fact together
with the monotonicity formula (17.3) of [Si] we get that

M(CI_BT-(Z'()))

(I1.2) 5 = f(r)+0O(r),

r
where f(r) is an increasing function, M denotes the Mass of a current and
C'L B, (z0) is the restriction of C' to the geodesic ball of center zy and radius r.
There exists in fact a constant o depending only on g such that emw
is an increasing function in r (see [Si]). The factor e®” is a perturbation of an
order which will have no influence on the analysis below; therefore, by an
abuse of notation we will often omit to write it and consider outright that
M(CL B,.(x0)) - . . .
———3——> is an increasing function.

By means of the coordinates (1 ...z2,) we shall identify U with a subdo-
main in R?” and use the same notation C for the push forward of C' in R? by
this chart. For small radii 7 we introduce the dilation function \"*°(z) = #=*o,
and we introduce the following dilation of C' about xg with rate r as being the
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following current in R2P ,
(IL.3) Crwy = (A"™.C) L B{(0) .

Observe that 72My(C.z,) = My(C'L B?(0)) where My denotes the mass in
the flat metric go in R?". Since g = go + O(r?), we deduce from (I1.2) that
My(Cr4,) is uniformly bounded as r tends to zero. Again since g and g
coincide up to the second order, it does not hurt in the analysis below if one
mixes the notations for the two masses M and My and speaks only about M.
Since now C'is a cycle in U, 0C, 4, I_pr (0) = 0 and we can apply the Federer-
Fleming compactness theorem to deduce that, from any sequence r; — 0 one
can extract a subsequence r; such that C., ;, converges in Flat norm to a
limiting current Cp 4, called a tangent cone of C' at x¢. One of the purposes of
the next section will be to establish that Cp 4, is independent of the subsequence
and that the tangent cone is unique. The lower semi-continuity of the mass
under weak convergence implies that

M(C'L By (xp))

(IL.4) lim -

r—0 r

= 1im M(Ch.z,) > M(Coa, ) -

r—0

Now, from the fact that C is calibrated by w we deduce that the inequality
(I1.4) is an equality. Indeed

M(Cyz,) = T*QCI_B,?”(O)(w) = Cr.z, (TQ()\T’IO)*w) .

It is clear that lim,_ g ||72(A"%)*w — wo||e Where wy = P dwoi—1 A dxy;.
Therefore Cy. , (r?(A"*0)*w — wp) — 0 and we get that
(11.5) lim M(Cﬁxo) = lim Cri/,:ro (wo) = CO@O (UJ()) .

r—0 i/ —~+00
Since the comass of wy is equal to 1, Cp 4, (wo) < M(Cpg,). Combining this
last fact with (I1.4) and (II.5) we have established that

(IL6) lim M(Cray) = M(C,a,) = o, (wo)

which means in particular that Cp,, is calibrated by the Kahler form wg in
(R2p, Jo) ~ CP which is equivalent to the fact that Cp,, is Jo-holomorphic.
Using the explicit form of the monotonicity formula (see [Si] page 202), one
observes that for any s € R’

CO,Z'U = Ai CO,Z()

which means that for H? almost everywhere on the carrier Co,z, of Co g, %

is in the approximate tangent plane to Cpg,; in other words, Cp s, is a cone.
Since it is Jo-holomorphic, H?-a.e.  in Cp z,, the approximate tangent cone is
given by

0

0
T,Co 4, = Span {E)?“’ JO(?T} .
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Integral curves of JO% are great-circles, fibers of the Hopf fibration
(z1 =1 +iza, ..., 2p) — [21,...,2p) -

Therefore we deduce that Cp ,, is the sum of the integrals over radial extensions
of such great circles I'1...I'g in S52r~1 which is the integral over a sum of Q
flat holomorphic disks. We adopt the following notation (in fact identical to
the one used in [Wh]) for the radial extensions in B%p (0) of currents supported
in OB%I’ (0):

Como = 2 OFT; .

Then we deduce that

(IL.7) lin%] M(Chz,) = TQ € TZ .
For any x € U one denotes ), the integer such that
M B,
lim M(CL B (@) - @) _ o, .
r—0 r

Using the monotonicity formula, it is straightforward to deduce that for any
QeN,
Co={zeU: 0<Q; <Q}

is an open subset of C, = {x € U: 0 < Q,}. For Q > 1, let us also denote
Sing? ={zx €C,: Q,=Q and z is an acc. point of Co-1} -

Observe that, from Allard’s theorem, it is clear that C'L(U \ UgSing®) is the
integral along a smooth surface with a smooth integer multiplicity. Although
we won’t make use of Allard’s theorem this justifies a priori our notation.
The whole purpose of our paper is to show that UQSingQ is made of isolated
points. As we said, we won’t make use of Allard’s paper below since the relative
Lipschitz estimate we establish in Lemma IV.2 gives Allard’s result in our case
which is more specific. Because of this nice stratification of C' (Cq is open in
C.) we can argue by induction on @) . Let Py be the following assertion

(I1.8) Pg : Ug<@Sing? is made of isolated points .

From the beginning of Section IV until Section VII we will assume either () = 2
or that Pgp_1 holds and the goal will be to establish Pg.

III. The uniqueness of the tangent cone

The uniqueness of the tangent cone means that the limiting cone Co 4,,
obtained in the previous section while dilating at a point following a subse-
quence of radii r;, is independent of the subsequence and is unique. Since
our calibrated two-dimensional rectifiable cycle is area-minimizing, this fact
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is a consequence of B. White upper-epiperimetric inequality in [Wh] (see also
[Ri2] for the justification of the prefix “upper”). We need, however, a more
quantitative version of this uniqueness of the tangent cone and express how far
we are from the unique tangent cone in terms of the closedness of the density
of area M(C'L_ B,(w0))/m7? to the limiting density Q. Precisely the goal of this
section is to prove the following lemma:

LEMMA III.1 (Uniqueness of the tangent cone). For any >0 and Q€N
there exists § > 0 and p. < 1 such that, for any compatible pair (J,w) almost

complex structure—symplec;ic form over B%p(O) satisfying J(0) = Jo(0), w(0) =
wo(0),

(IIL1) 1 = Jolle2(s,) + llw —wollc2(s,) <6,
for any J-holomorphic integral 2-cycle C' in B1(0) such that Qo = Q, if
M(CL B?(0)) < 71Q +6 .

Then, there ewist QQ Jo holomorphic flat discs Di...Dg passing through 0,
intersection of holomorphic lines of CP with B%p(()), such that, for any p < p.

(I11.2) F(Cpo— a2 D) <e
and for any ¢ € C(BY\ {z € B! ; dist(z,U;D;) < €|z|}),
(IIL.3) Coo(t) = 0.

Before proving Lemma III.1, we first establish the following intermediate
result:

LEMMA II1.2. For any € > 0 and Q € N there exists 6 > 0 such that the
following is true. If (J,w) is a compatible pair of almost complex structure-
symplectic form over BP(0) satisfying J(0) = Jo(0), w(0) = wo(0)

1] = Jollc2(s,) + llw = wolle2(s,) <6,
for any J-holomorphic integer rectifiable 2-cycle C' such that Q. = Q, if
M(CLBX(0)) < 7Q +6

then, there exist QQ Jo holomorphic flat discs D1 ... Dqg passing through 0, in-
tersection of holomorphic lines of CP with B%p(()), such that,

F(CLB(0)— 6% D) <e.

Remark 111.1. Lemma III.2 give much less information than Lemma III.1.
Since a priori in Lemma II1.2 the disks D; may vary a lot as one dilates C
about 0, whereas Lemma III.1 controls such a tilting as one dilates the current
further.



750 TRISTAN RIVIERE AND GANG TIAN

Proof of Lemma T11.2. We prove Lemma II1.2 by contradiction. Assume
there exist g > 0, 6, — 0, compatible J,, and w,, and C,, such that

(I11.4)
i) [Jn = Jollc2 + llwn — wolle> < bn
lim 71 ~2M(C, L B, (0)) = Q ,

r—0

ii

1v

)
iii) M(C,LB;1) < 7Q + 0y, ,

) inf {f(Cnl_Bl — @9, D;) s.t. D; flat holom discs, 0 € Di} > e .
Since 9C,,L_B; = 0 and since the mass of C,, is uniformly bounded, one may
assume, modulo extraction of a subsequence if necessary, that C), converges to

a limiting rectifiable cycle C'w. Exactly as in Section III we have the fact that
forany 0 <r <1

(IIL5) lim M(CyLB;) = M(CooL B;) = Coc L By () -

We deduce then that C, is calibrated by wg and is therefore a Jy-holomorphic
cycle. Using ii) we deduce also that

lim 71 2M(Co L B, (0)) = Q

r—0
and finally, from iii) and the lower semicontinuity of the mass, we have that
M(Cu L B1) = 7Q Thus, since 7~ 1r2M(Cw L B,(0)) is an increasing function,
we have established that on [0, 1],
(I11.6) I M(Co L B (0) = Q .

Let, for almost every r, ST, = (Cu,dist(+,0),r) be the slice current obtained
by slicing Coso with 0B,(0) (see [Fe, 4.2.1]). By Fubini, we have that for a.e.
0<r<l

M((Coo, dist(-,0),7)) < 2wQr .

Let 0457, be the radial extension of S, in B,(0).
M(04S7,) = gM(sgo) = 71Qr2 = M(Cs L B,(0)) .

Since 0(Cxo L B, (0) — 04S%,) = 0, and since C L B,(0) is area-minimizing we
have that 0457, is also area-minimizing. Let a be such that da = w and

M(085%,) = M(CooL Br(0)) = Coc L B;(0)(wo) = S5 (a) = (0855, )(wo) -

Therefore 0457, is a holomorphic cone which is a cycle. So we deduce as in
Section II that 0§57, is a sum of flat holomorphic disks for any r. Thus C is
also a sum

Q
CoLB1(0) =) D;
=1
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where each D; is the intersection of a complex straight line in CP with pr .
From the Federer-Fleming compactness theorem we have the fact that the weak
convergence of C,, to Cy, holds in flat norm

Q
F <cn|_B1 —ZDl) — 0

i=1

which contradicts iv), and Lemma III.2 is proved. O

Proof of Lemma. III.1. We first prove assertion (III.2) and recall Brian
White’s upper-epiperimetric inequality adapted to our present context: White’s
upper-epiperimetric inequality was proved for area-minimizing surfaces in R??.
Here, in the present situation, we are dealing with area-minimizing currents
which are J-holomorphic for a metric g = w(-,J-) which gets as close as we
want to the standard one because of assumption (III.1). Therefore very minor
changes have to be provided to adapt White’s theorem to the present context.
An adaptation of the epiperimetric inequality for ambient nonflat metric is
also given in [Ch, App. A]. So we have the following result.

Given an integer @, there exists a positive number g > 0, such that, for
any compatible pair w, .J in B3 (0) satisfying |w—wollc2(m,) + I = Jollc2(By) <
e@ and for any C' J-holomorphic 2-rectifiable integral current in ng (0), satis-
fying 8CI_B§p = 0, assuming there exist () flat holomorphic disks D1 ... Dg
in (B:P(0),.J) ~ CP N B:?(0) passing through the origin such that

Q
(IH.?) F (CQyOI_Bl (0) - ZDZ> < €Q
i=1

(where we used a common notation for the oriented 2-disks D; and the corre-
sponding 2-currents) we have

(I1L.8) M(CLB¥) — 7Q < (1 — 0) (;M (a(CLpr)) - wQ) .

Remark 111.2. Observe that in the statement of the epiperimetric prop-
erty in Definition 2 of [Wh] the epiperimetric constant eg may a priori also
depend on the cone Z'?:l D;. Tt is however elementary that this space of cones
made of the intersection of () holomorphic straight lines passing through the
origin with pr (0) is compact for the flat distance. Now by using a simple
finite covering argument for this space of cones by balls (for the flat distance)
one may obtain a constant eg > 0 for which the epiperimetric property holds
independently of the cone 2?:1 D;.

Once again we shall ignore the factor e®” in front of »~2M(C'L B,.) which
induces lower order perturbations and argue as if r~2M(CL B,) itself would



752 TRISTAN RIVIERE AND GANG TIAN

be an increasing function (observe also that o may be taken arbitrarily small
because J and w are chosen as close as we want to Jy and wyp).

Thene > 0, < g, and § > 0, given by Lemma II1.2 for that . Assuming
then M(C'L By) < 7@ + § implies from the monotonicity formula that for any
r <1, r2M(CL B,(0)) = M(C0) < (rQ+6). Applying Lemma II1.2 to Ca,. g

s =

for r < 1/2 we deduce the existence of @) flat disks Dy ... Dg such that

Q
(I11.9) F (CM - Di> <e.
=1

We can then apply the epiperimetric inequality to C). o and get, after rescaling,

(IIL10)  M(CL B,(0)) — 7Qr2 < (1 — o) (gM(é(CLBT(O))) - erz) .

Denote f(r) = M(CL B,(0)) —7Qr?, f'(r) > M(0(CL B,(0))) —27Qr. There-
fore (I11.10) implies

2 ) 2 1)

Integrating this differential inequality between s and o (1/2 > s > o), we see
that f(s) > (£)' e f(o). When v = ﬁ —-2>0,
(s) o (s\» [flo)
1111 ZASZAPS (7) 19
( ) 2 ~ \o o2
Let F(z) = %. Then,

||

MIECLBONB O = [

A ”’"’ 0] dH2LC
||

where 7 denotes the unit 2-vector associated to the oriented approximate tan-
gent plane to C' and is defined H?-a.e. along the carrier C of the rectifiable
current, 6 is the L!(C) integer-valued multiplicity of C (i.e using classical GMT
notations:C = (C,0, 7)) and dH?L C is the restriction to C of the 2-dimensional
Hausdorff measure. Using Cauchy-Schwarz and 5.4.3 (2) of [Fe] (the explicit
formulation of the monotonicity formula) and (III.11), we have

(IIL.12)  M(F. (CLBs(0) \ B,(0)))

- [M(CL By(0)) M(CI_BU(O))F [M(CLBS(O))]é
>~ I 82 0_2 0—2

< OB _ o] [MOLEO)):

= f(j)] [SZM(CI}BS(O))]; <Kst2,
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Withr < p < 1/2, applying (IT1.12) for s = 27 %pand o = 27*~1p for k < log, e
and summing over k we get

(I11.13) M(F, (CLB,(0) \ B.(0))) < Cp= .

Observe that O(F, (C-B,(0) \ B;(0))) = 0C,0 — 0C;.o. Therefore we deduce
(II1.14) F ((Cp,o — Cro)LBy(0) \ B%(O)) < Cps .

Since

F ((Coo = Cro)L By (0\B;(0)) < <§)) i ((Cs0 = Co0)LBI0)\B,(0) |

applying (II1.14) for p, r replaced by 27%p, 27%r and summing over k =
1,...,00 we finally obtain
(I1L15) F((Cpo — Cro) L B1(0)) < Cp*

which is the desired inequality (I11.2).

It remains to show (III.3) in order to finish the proof of Lemma III.1.
We argue by contradiction. Assume there exists e¢g > 0, p, — 0 and ¥, €
C§°(A?By) such that
supp ¥, C Eg = {x € B! ; dist(x,U;D;) < golz|} ,
where Cp o = @?ZIDZ-, and
Cpo0(thn) # 0.

This latter fact implies in particular that there exists ™ € FEy such that
lim, o M(C}.z,) # 0. Using the monotonicity formula we deduce then that

x ™
M (Cpnxn,o'—BaO/z (,;,)) > —ef.
n

Tn
]

s
M(Cpn|$n|70LB380/4('TOO)) Z ZE(Q) .

We may then extract a subsequence such that — Too. Thus,

Now,

x *
M(Cy. o101 Ba a(50)) = Cy. om0 Baaitoc) ( y ) .

polzn] "
Since ||wn, — wol/c2 — 0 and since wy, (0) = wp(0) we clearly have that
| = wtllac — 0.
Pnln|
Therefore
z  x
Colzn, 0 Baey ja(Too) <pn|$n| wn — wo> ‘

X

*
——— W — wWolleo — 0.
Pn’wn’

<M(Cy, 21,0 Bey ja(o0)) ||
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Thus

. s
Co,0L Baeyja(Too)(wo) = Hm O, 1210l B3ey/a(Too)(wo) > ZE(QJ

n—-+o0o

which contradicts the fact that Bs. /4(7) C Eo. Therefore (II1.3) holds and
Lemma III.1 is proved. O

IV. Consequences of Lemma III.1.
No accumulation of points in Sing® in the easy case.
The relative Lipschitz estimate in the difficult case

In this section we expose two important consequences of Lemma III.1.
Before explaining them we first observe that proving the implication Pg_1 =
Pg, will require considering two cases separately. The first case (the easy
one) is the case where the tangent cone at the point xy of multiplicity @ (i.e.
7 1r2M(B,(z0)) — Q) is not made of @ times the same disk. The second
case is the case where the tangent case is made of ) times the same disk.
In the first case we will deduce almost straight from Lemma III.1 that such
an rg cannot be an accumulation point of points of multiplicity @) also; see
Lemma IV.1 below. In the second case, much more analysis will be needed to
reach the same statement and this is the purpose of Sections IV through IX.

We can nevertheless deduce in this section an important consequence of
our quantitative version of the uniqueness of the tangent cone (Lemma IIL.1)
for the difficult case: this is the so called “relative Lipshitz estimate” (see
Lemma IV.2 below). This property says that, given a point zy of multiplicity
(@ whose tangent cone is () times a flat disk and given an € > 0, there exists
a radius ¢ z, > 0 such that given any two points of Cx N B, , (o), one of the
two being also of multiplicity @, the slope they realize relative to the tangent
cone of x is less than e.

The condition that one of the two points has multiplicity @ (this could
be zy itself for instance) is a crucial assumption. It is indeed straightforward
to find counterexamples to any Lipschitz estimates of multivalued graphs of
holomorphic curves. Take for instance w? = z in C2 ~ {(z,w) z,w € C} viewed
as a 2-valued graph over the line {w = 0}, all points having multiplicity 1, (0,0)
included of course, but the best possible estimate is a Holder one C%:. We
cannot exclude that such a configuration exists as we dilate at a point zg of
mupltiplicity @ > 1.

We first prove the following consequence of Lemma III.1

LEMMA IV.1 (no accumulation — the easy case). Let Q € N, Q > 2.
Let zo be a point in Cg \ Co-1 (i.e., 7 ' 2M(B,(z0)) — Q as r — 0). As-
sume that the tangent cone at xg, Coz,, contains at least two different flat
Juo-holomorphic disks (i.e., Coz, # QD for the single flat J,, -holomorphic
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disk D). Then, there exists r > 0 such that
By (x0) N (Cq \ Co-1) = {0} -

Proof of Lemma IV.1. Let xg be as in the statement of the lemma: xg €
Co \ Cg—1 and Cp 4y = @filQi D; (where D; # Dj for i # j and K > 1).
Let € > 0 be a positive number smaller than 1/4Q times the maximal angle «
between the various disks Dy, ..., Di in the tangent cones in such a way that
there exists ¢ # j such that

E.(D;) N Ee(Dj) = {zo} ,
where we use the following notation
E.(Dy){x € R? ; dist(z, D;) < e|lz — x0|}) .

By taking ¢ as small as above, we even have ensured that UE.(D;) \ zo has
at least two connected components whose intersections with dBi(zg) are at
a distance larger than «/2. We now prove Lemma IV.1 by contradiction.
Assume there exists x,, € Cg \ Co—1 such that =, — z¢ and z,, # xg. Let
0 > 0 be given by Lemma III.1 for € chosen as above. Let p > 0 be such that
p*M(CL B,(x9)) < 7Q + /2. For any = € BP%(JE()) we have

4w

(IV.1) M(CL B, s (x)) SM(CL By(w9)) < P’ <7TQ+ g)
((-50)) (-50) (o3)
<o (t-)) w00

Choose then z,, € B, s (o). Applying (IIL.3) for zyp we know that z, is con-

™

tained in one of the E.(D;), say E.(D1). Denote E; the connected component
of UE.(D;) \ {zo} that contains E.(D;). We have chosen ¢ small enough such
that UE.(D;) has at least two connected components. Therefore we can chose
D; such that E.(Dj) is disjoint from the component containing E.(D1) \ {zo}.
Let « be the angular distance, relative to g, from E.(D;) and the component
containing E.(D;) \ {zo}. Clearly, al is bounded from below by a positive
number as one chooses € smaller and smaller. Applying Lemma III.1 this time
to z,, we know that in By, |(¥n) \ Bz, |(75) the support of C is at the e|zy|
distance from a union of flat disks passing through z, (the tangent cone at
Zn). This implies that the angular distance between the tangent cone at z,
and Dy is less than Cge, where Cg depends on @ only . Therefore

(IV.2) supp(CL Byjg,|(¥n) \ Bz, |(Tn)) C Ey = {x ; dist(z, D1) < Cgelzn|} .

Observe that dist{Eg(Dj) N (B|$n|($0) \ B‘xn‘/g(l'o)) ;El} > «/4. This later
fact combined with (IV.2) contradicts (II1.2). Lemma IV.1 is then proved. O
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From now on until the beginning of Section X we will be dealing with the
difficult case only: the case where the point xy of multiplicity @) has a tangent
cone which is made of () times the same disk. As we have been doing since
Section II, we will work in a neighborhood of zy where a compatible simplectic
form w for J exists, and we shall use normal coordinates for g(-, cdot) = w(-, J-)
about xp, compatible with J,, at zg, satisfying (II.1); we can also assume that
the tangent cone at xg is

(IV.3) Co,z, L B1(0) = Q[D]

where Dy is the flat, oriented disk whose tangent 2-vector is 8%1 A 8%2. From
now on we also use the following notation for complex coordinates about xq:

(IV.4) z=x1+iry and w; = Topr1 +ixopso for k=1...p—1.

We will also denote w = (w1, ..., wp—1). A second consequence to Lemma III.1
is the following result:

LEMMA IV.2 (the relative Lipschitz estimate). Let z¢ be a point of mul-
tiplicity Q (i.e. xg € Cg \ Cg—1), assume the tangent cone Cy 5, L B1(0) at g
is Q times a flat disk (i.e. of the form (IV.3)). Let € > 0; then there exists
Tex, Such that for any r < re g,

(IV.5) Vx € Br(mo) M (CQ \CQfl), .7:((0073; — CO,zU)LBl (0)) <e.

Also, for all z = (z,w) € By(x0) N (Cg \ Co-1) and 2’ = (2',w’) € By(zo) NCs
we have

(IV.6) lw—w'| <elz— 2.
Proof of Lemma IV.2. Let ¢ > 0 and § > 0 be given by Lemma III.1.
Choose r1 such that

)
M(CL By, (z0)) < 72 <7rQ + 2) .
This implies in particular that for any r < rq,
(IV.7) F((Crazo — Cozy)LB1(0)) <.
As in the proof of Lemma IV.1, see (IV.1), we have that for any = €

B, s (x9) andr<r1(1—&)

Tlm
M(CLB,(z)) < r*(7Q +6) .
Then, letting z € Bmﬁ (20) N (Cq \ Cg-1) and applying Lemma IIL.1, we have
for r <m(1— &) =y,

(IV.8) F((Cry — Cou)LBy(0)) < &
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Choose now = € By, (z9) N (Cg \ Co—1). Cr,q is fast eine e-translation from
C', ao; therefore, since M(C,.4,) < 27Q,

(IV'Q) f((Crz,xo - Crz,:c)l—Bl(O)) <27Q .

Taking r. 5, = min{ery, %rl} and combining (IV.7), (IV.8) and (IV.9), we
deduce that
(IV.10)

Vx € BTs,mo (zg) N (CQ \CQ_l), .':r((C()VI — CO,Q;O) L B1(0)) < (2+27Q)e .

It remains to check (IV.6) which is in fact an almost direct consequence of
(IT1.3) and (IV.5). Lemma IV.2 is then proved. O

V. The covering argument

Let x9 be a point of multiplicity ¢ > 1 whose tangent cone Cj,, is
@ times the integral over the flat disk Dy given by w; = 0 for ¢...Q — 1
(we use the system of coordinates introduced in the beginning of §IV) . The
purpose of this section is to construct a Whitney-Besicovitch covering Bzi (2i)
of II(Cg-1) N Bg(xo) where II is the projection on Dy which gives the first
complex coordinate of each point (II(z,w; ... wp—1) = 2), for some radius p,
small enough depending on xy. This covering will be chosen in such a way that
the following striking facts hold: first, CLLII"'(BZ (z;)) is in fact supported in
a ball of radius 27, Bgﬁ» (x;), moreover CI_Bgfi (x;) is “split”. This last word
means that the flat distance between C LII" (B2 (2)) and the @ multiple of
any single-valued graph over Dy is larger than K 73 where K only depends on
p, J and w. This will come from the fact that r; may be chosen in such a
way that r;2M(BEf(xi) < 7 — K’ where again K’ > 0 only depends on p, Q,
J and w. The existence of such a covering is a consequence of the “splitting
before tilting” lemma proved in [Ri2].

Let a be given by Lemma V.1 and let ¢ > 0 be chosen small enough;
compare to « later. Let r.;, be the radius given by Lemma IV.2. We may
choose also 7. ;, small enough in such a way that

(V.1) Vr < 7Temy,  M(Cray L B1(0) <7Q + €%

Using the proof of Lemma III.1 (from (II1.12) until the end of the proof), we
deduce that

(V.2) Vr < 7e F((Crazo — Cozy) B1(0)) < Ke .

(In fact 6 = O(e?) works in the statement of Lemma II1.1.) On one hand,
as in the proof of Lemma IV.1, we have that for any = € B, , (7o) and
T < e (1—e?),

(V.3) M(CL By(z)) <72 (7Q + £%) .
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On the other hand, arguing as in the proof of Lemma IV.2, between (IV.8)
and (IV.10), we have, using also (V.23),

(V.4) V€ B.2(xo), F(Cres , LB1(0) —7Q [Dyo]) < Ke .

Having chosen Ke < a we are in a position to apply the “Splitting before
tilting” lemma of [Ri2] which is a key step in our proof of the regularity of 1-1
rectifiable cycles.

LEMMA V.1 (splitting before tilting, [Ri2]). There exists o > 0 such that
for any xo € Co—1 and for any radius 0 < p < a,
(V.5) f(CQ/J,xo LB1(0) = Q [Do]) <«

where Dy is a flat Jy,-holomorphic disk passing through xo. Then, for any
r < p and any Jy,-holomorphic flat disk, D1, passing through xo and satisfying

(V.6) F(Do] - (D) > +
we have
(V.7) F(CrazLB1(0) —Q[D1]) > .

Moreover, there exist 1o < p and Ko a constant depending only on ||w|c: and
55, the epiperimetric constants, such that

(VS) M(Cro,xo LBl(O)) = 7TQ - K[)Oé y
(V.9) F(Cros LB1(0) — QDo) < K Ve

for some constant K depending also only on ||w||c: and 55 Finally, for any

Jz,-holomorphic disk D passing through 0,
(V.10) Vr < ro, F(CrazyLB1(0) —Q [D]) > .

For any z € Cp—1 N Bezy, , (7o) we denote by r, the radius rq given by the
lemma. We then have

(V.11) M(C,, »_B1(0)) = 7Q — Koo ,

(V.12) F(Cy, oL B1(0) — mQ[Do]) < K V&
for some constant K depending only on ||w||¢c: and 82:2. Moreover, for o chosen

small enough and ¢ small enough compared to «, the following lemma holds

LEMMA V.2. Under the above notation, for any x € Cp—1 N Ber, , (20),

(V.13)  supp (C'I_H_l(Bfm (II(x)) N B (aco)) - B?I (II(x)) x Bff_Q(O) ,

Te,xq

and

(V.14) supp (CLIT"Y(B? (I(z)) N By, (%0)) C Cp—1 -
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Proof of Lemma V.2. We claim that for any r between r% and r, one
has

(V.15) supp(Cro L B1(0)) C E(ai)
where we use the notation
(V.16) EN) ={y=(z,w) € B1(0): |w| <A} .

We show (V.15) arguing by contradiction. First of all from the proof of

Lemma V.1 applied to  we have the fact that for any r € [ry, TE‘;O]

(V.17) F(CruLB1(0) — mQ[Dy]) < K Vo .
Let woy = Xa w = X (@) w where x is a smooth cut-off function on R
o4

satisfying x = 1 on [0,1/2] and x = 0 in [1,+00). Let S and R be a 3 and a
2-current satisfying (C, L B1(0) — 7Q[Do]) = 05 + R with M(S) + M(R) <
2K/a. Now,

[(Cra L B1(0) = 7Q[Do])(wa)| = |S(w A dxa) + R(wa)|
<[ VXalloo llwooll M(S) + [[walleo M(R) < Kai.
Thus we get in particular
(V.18) 7Q — Ka' < [CruL Bi(0)(wa)l < M(Cro L B1(0) N E(0))wall
) -

Assume now that there exists y € (Cpz)« N B1(0) N (R?P \ E(aﬁ)). From the
monotonicity formula we deduce that

=

<M(CyoLB1(0) N E(a

(V.19) M(CLB_ . (y) > Zaé r2.
Combining (V.18) and (V.19), we obtain
(V.20) M(CL B, (z)) > 12 (WQ ~ Kai+ Za%) .

For o small enough (V.20) contradicts (V.11) and (V.15) holds true for any
7 € [ry, ~52]. From this latter fact one deduces (V.13).

It remains to prove (V.14). Again we argue by contradiction. Assume
there exists y € (C,\ Cp—1) NII™H(B? (Il(z)) N B, (o). Because of (V.3) and
since y € B, _(z9) we can apply Lemma IV.2 to y in order to deduce that
C« N By, () is included in a cone of center y, axis parallel to Dy and angle ¢.

This cone of course contains z and then we can deduce that
(V.21) supp(Cr, L B1(0)) C E(4e) .

(The notation E(A) is introduced in (V.16)). We have 0C, L B1(0) = 0;
moreover, because of (V.17); for a small enough we deduce that the intersection
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number of CL B2 (I(z)) x B2P72(0) with any vertical current II=1(z) for z €
B? is Q. Combining this fact with (V.21), using Fubini, one deduces that

(V.22) M(C,, »LB1(0)) > 71Q — O(£%) .

For € small enough compared to o we get a contradiction while compar-
ing (V.22) and (V.11) and (V.14) is proved. This concludes the proof of
Lemma V.2. O

In the following second lemma of this section, we show that the covering
(B2 ((@)acc, .nBz,  (xo) Of H(Cp-1N B, (w0) has the “Whitney” prop-
erty: two balls intersecsfimﬁlg each-other have comparable size. From now on we
adopt the following notation granting the fact that « and e are fixed small
enough for the constraint mentionend above to be fulfilled:

(V.23) Py 1= EXTe -
Precisely we have:

LEMMA V.3 (Whitney property of the covering). There exists v > 0 de-
pending only on Q such that, given xo € Cp,\ Cp—1 whose tangent cone is Q[ Do)
and letting (B2 (II(x))) for x € Cp_q N Bgzo (x0) the covering of II(Cp—1 N
Bﬁfo (xo) described above, assuming for some x,y € Cp—1 N Bﬁmo (o)

BE ()N B (y) # 0,
then
(V.24) Ty > Ty .

Proof of Lemma V.3. This lemma is again a consequence of the upper
and lower-epiperimetric inequalities. Assume for instance that r, < ry. From
(V.10) we have

(V.25) F(Cy,yLB1(0) = Q [Do]) > .
Which implies that for all » < r,
(V.26) F(CL B (z) x B (0) = Q[B}(zy) x {0}]) > ar’

where y = (zy,wy). Since |z, — 2zy| < 2max{r,,r,} = 2r, and B, (z,) C
Bz, (2z), (V.26) implies that

(V.27) F(CLBY, (22) x B (0) = QB (22) x {w,})) > 57} -

This passage from (V.26) to (V.27) is obtained by applying a Fubini type
argument. Indeed, let A = C’I_Biru (z2) X B,%fg (0) — Q[BZTV (22) x {wy}] and let
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S and R be such that A = 85 + R and M(S) + M(R): < 2F(A). For almost
every r in [ry/2,1,] we have

A(SLB:(zy) x B2P (0)) = SL B2 (zy) x B2P (0)) + (S, dist(-, {z = z,},7)

where (S, dist(, {z = 2, }), ) is the slice current between S and the boundary
of the cylinder B2(z,) x Bgf ,(0) and dist(-,{z = z,}) denotes the distance
function to the axis of this cylinder (see [Fe, 4.2.1, pp. 395...]). Thus

(V.28)
AL B (zy) x B (0) =p(SL B} (z,) x B3 (0))

— (S, dist(-, {z = 2z, },7) + RL B%(2,) x Bng(O) .
We have, see [Fe, 4.2.1, p. 395],

Ty

(V.29) M (S, dist(-, {z = 2, },r)) < M (SI_(ny \ B2,) x 3350(0)) :

Ty

Using Fubini’s theorem we may then find r = € [r,/2,r,] such that
(V.30)
2 2
M ({S,dist(, {z = ,},11)) < =M (SL(ny \ B%,) x B (0)) < ZM(S).
y 2 ’ y

Combining (V.28), (V.29) and (V.30) we deduce that

(V.31) F(CLB? (2) x B (0) — QBY, (2) x {0}])
= F(AL B}(zy) x B} (0)) < M(S) + (M(R) + 2 M(s))

Ty

(SIS

Thus, combining (V.26) for » = 1 and (V.31), we have

3
Y

N |

> ar

M(S) + (M(R) + —M(S))

Ty

and since

N

FICUBY, () x B2 (0) ~ QIBY, () x {w,))) > 3 [M(8) + M(R)3] |

we obtain (V.27). Therefore we deduce that

1
3 x 43

.

(V.32) F(Cuar,zLB1(0) — Q [Do]) >

Let 22 > s, > r, be such that

g2

(V.33) M(Cs, L B1(0)) = 7Q .

Because of (V.3), arguing as in the proof of Lemma IV.2, between (IV.8) and
(IV.10), we have

(V.34) Vg <7 < ng F(CralB1(0) — Q [Dy]) < Ke .
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Assuming, as we did above that o >> &, comparing (V.32) and (V.26) we
deduce that s, > 4r,. Let A = 47=. From the proof of Lemma V.1, in fact
from (V.9) precisely, for any r € [rg, s;| we have

(V.35) F(Carsl B1(0) ~ 7Q[Do]) < K va < e,

which means in particular that we are in the position to apply the lower-
epiperimetric inequality and the differential inequality (II1.27) in [Ri2] deduced
from it. Integrating then this inequality between 7, and 4r, we have

log, A
(V.36) 7Q — M(Cyy, oL B1(0)) < ( _ ) [7Q — M(Cy, oL B1(0))]

B 1 log, A
B 2255 @

Using now (II1.28) from [Ri2], we deduce from (V.36) that

(V.37)  F((Cop — Can, )L Bi(0) £/7Q — M(Ciy, - B1(0))

B 1 log, A
= 2575 o

Combining (V.34) and (V.37) one gets that

[NIES

log, A .
(V38) f(C4,«y7x|_B1(0) — Q[Do]) < <) az + Ke .

2¢Q

Comparing (V.32) and (V.38) we obtain

1 1 log, A .
. < | — 2,
(V.39) T B S (2%) a

log, A
Since Ke < ﬁa we have GX%& < <1> as. Taking the log of this last
2°Q

inequality we obtain

log A _

1 1
@aQ logi + §loga > loga — log(6 x 43) .

Thus . .
iloga + log(6 x 43) > eglogh.

By taking « small enough, we may always assume that log i > 4 x log(6 x 43)
and we finally get that
1 1
—log — >1log A,
EQ «

which leads to the desired inequality (V.24) and, now, Lemma V.3 is proved.[]
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Constructing a partition of unity adapted to the covering. From the
covering (B} (z)) for z € Cp—1 N By, (x0) of IL(Cp—1 N By, (0)) we extract
a Besicovitch covering (B2 (x;)) for i € I (I is a countable set) of II(Cp—1 N
By, (w0)) that is a covering such that

i

(V.40) Vz € Bgmo (z0), Card {z cl:ze B,,%T (xl)} <n,

where N is some universal number (see [Fe]). To simplify the notation we
will simply write r; for r5,. Note that since balls intersecting each other have
comparable size (see Lemma V.3), each ball BZ(z;) intersects a uniformly
bounded number of other balls: there exists Ng . such that

(V.41) Viel, Card {j €1:B2(z)Nn B2 (=) # @} < Noa -

We now construct a partition of unity adapted to a slightly modified covering.
Considering the covering (B2 (z;)) for i € I (I is a countable set) of II(C,—1 N

Bﬁf ' (20)), we can apply Lemma A.1 and obtain § depending on a and () such
that (A.3) holds true for some P € N. Letting ¢ € I, we can deduce from (A.3)
and (V.24) that the radii r; of balls ij(zj) intersecting Bfi<1+5)(2i) satisfy
aPr; < rj < a~"Pr;. From this latter fact we deduce that there exists a

number M € N depending only on « and ) such that
(V.42) Card {j € I : By, (2:) N B116)r,(2;) #0} < M .

Indeed, assuming B, (2;) N By, (z;) = 0, if By, (2;) N Bi1s)r,(2;) we have just
seen that a* ri <rp < a P rj: the two radii have comparable size which is of
course also comparable with the distance |z; — z;|. From (V.40) it is then clear
that the number of such ball B, (z;) is bounded by a constant depending only

on the variables @ and Q. It is now not difficult to deduce that (Bf_(1 L5 ))ie I

realizes a locally finite covering of II(Cp—1 N B,%f ' (z0)) satisfying
(V43) Vie I,  Card {j €1: By 5, (2) N Byys), () # (Z)} <M+P.
Indeed, when we assume for instance that r; > r;, then

Baysy, (2:) N Byay, (2) # 0

implies clearly that B(1s),,(2:) N By, (2j) # 0 and the number of such a j is
controlled by P (see A.3), whereas if r; < rj, B(y s), (2:) N B(ysy,,(25) # 0

implies clearly that By, (z;) N B, (144)(2j) # 0 and the number of such a j is
controlled by M (see V.42). Thus (V.43) holds true. And we shall use from

now on the notation

5
(V.44) Viel, pi=r (1 + 2) .
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For any ¢ € I we define x; to be a smooth nonnegative function satisfying

(V.45) i) xi=1 in B ().

(V.46) ii) xi=0 inR?\ B(21 N E
K

(V.47) iif) VEEN, [[VExlleo < =2,

where K}, depends only on k& and Q.
We define now
Xi

Zz‘el Xi

It is clear that (¢;) defines a partition of unity adapted to B

2

(1+§m)(zi) and

satisfying the following estimates
Ky,

(V.49) vReN,  |[Vieille <

where K}, depends only on k£ and Q.

VI. The approximated average curve

This section is another step towards the proof that Pg_; = Py which
continues until Section VIII. We thus assume that Pg_; holds (or that @ = 1).
Again in this part we consider the difficult case which is the case where we
are blowing-up the current at a point xy of multiplicity ¢ > 1 whose tangent
cone Cp 4, is () times the integral over the flat disk Dy given by w; = 0 for
i...Q—1 (we use the system of coordinates introduced at the beginning of §II)
and where zg belongs to the closure of Cg_1. The purpose of this section is to
approximate first our current over each ball of the covering introduced in the
previous section C'LII"'(B2 (z;)) by a Q-valued graph {al},—1..¢ over B2 (z;)
which is almost J-holomorphic (J;,-holomorphic in fact where z; € C, and
II(z;) = z;). Gluing the average curves a; = 52,?:1 a¥ of each of these J,-
holomorphic Q-valued graphs together we shall produce a single-valued graph
a over Bgzo (zo) which approximates C' and for which we will study regularity
properties that will be used in the following Section VII devoted to the unique
continuation argument . Finally in the second subsection of this section we
construct new coordinates adapted to the average curve.

VI.1. Constructing the average curve. Let py, be given by (V.23) and
let (B2 (zi))icr be the Besicovitch-Whitney covering of II(Co—1 N By, (o))

i

obtained at the end of the previous section. As we have seen above, for any
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i€l C.NII™Y (B2 (z)) C Co1N B2 () x Bgﬁ:z(wi) where x; = (z;, w;) is in
C« (see Lemma V.2). For convenience we shall adopt the following notation:

(VL1) N} = B}(z) x By~ *(w;) .

Assuming Pg_1, CL Ny, is a J-holomorphic curve: there exist a smooth Rie-
mannian surface and a smooth J-holomorphic map

(VI.2) U; zg,i_wgm

§—Ui(§)
such that W,[¥9;] = CL Na,,. Let H)(2;) be the sets respectively of holo-
morphic and antiholomorphic functions on ¥9; . We introduce now 7; the
map from Y ; into R2P—2 chosen such that the perturbation ¥; + n; is Jy.-
holomorphic; precisely, n; is given by
0 0 .
2 (Wi +mi) + Jo, 5~ (Wi +1m) =0 in g

P P
(VL3) o ©

Vh € H(Eg}i) / h dm' =0
0% 4

where (£1,&2) are local coordinates on X3 ; compatible with the complex struc-
ture. The existence of n; is justified in a few lines below. To this aim we shall
make use of the following notation. Since J is smooth the inverse function
theorem gives the existence of a smooth map A : B2’ ' (w0) X R — R -
for p,, chosen small enough such that

(VL.4) i) Ay = Az, ) is a linear isomorphism of R
(VL5) i) Ay, =id,
(VL6)

i)  VeeBY (v)) Ju=| . - R I A v

0
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We shall denote by (2¢ = 2% + izh, wi = x4 + izl ... ,w; = Ilép—1 + ixép) the
following complex coordinates in Na),

':Ul ‘Tl
CCZ2 o
xi x
2p—1 2p—1
xz’
2p Z2p

We will also denote by II; the map that assign to any point z in Nzi the
complex coordinate z° and by D’ we denote the .J,,-holomorphic 2-disk

(VL8) Di:={x;Vk=1...p—1 w,=0}=A;"'Dy.
Using these complex coordinates in N3 0.+ We see that (VL.3) means
On; = —0V; in ¥y,
(VL9)
Vh € H(EQ}Z‘), / h d’m =0.
0%s;
The existence and uniqueness of 7; are given by Proposition A.3 of [Ri3]. Since
U, is J-holomorphic we have 0¢, V; + J(W¥;(£))0g, ¥; = 0; thus
|0, Wi + J(24)0g, V3| < [J(Wi(§)) — J(wi)| [V .

Combining this fact with the second part of Proposition A.3 (i.e. estimate
(A.13) of [Ri3]) we obtain

(VL10) / Vnil* < Kr?/ IV [* < Ko
Yo Yo
For A\ <2, we denote by Xy ; the surface ¥y ; = X2, N Q/;l(Nipi) such that
(VL11) V. [%i] = CLB; (z) x By %(0) .
We then prove in [Ri3] the following lemma:

LEMMA VI.1. Under the notation above,

(VL12) ”mHL‘X’(E%J) < Kr?
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where K is a constant depending only on |VJ||s and the choice of o made in
the previous section.

Consider now the J,. -holomorphic curve C? given by the image by ¥;+; of
s ;. Since 8\112'*[2271] is supported in H_l(angi), we know from Lemma VI.1
that [n;lec < Cr?. Therefore OU; + m*[Egﬂ-] is supported in an r? neighbor-
hood of H_I(E)Bgm (0)) (for r; small enough : that holds if € has been cho-
sen small enoughQ in Section VI). Thus we have that \I’Z*[E%z]) is a cycle in
H;l(ngi (0)) and the part of the image of Y3 ; included in H;l(Bépi(O)) by
U, +n; 4is a J,-holomorphic cycle and therefore it is a Q-valued graph over D*
for the complex coordinates given by (2, w'). We denote by {%}k:;...@ this
Q-valued graph (i.e. aj(z}) are the w’ coordinates, in the chart (z*,w"), of the
@ intersection points between the J,.-holomorphic curve ¥; 4 m(Z%,i) and the
Jz,-holomorphic submanifold given by z¢ = z{). We now define C' to be the
Jz, holomorphic curve in H;l(Bgi) given by
(VL.13)

Q
Ch = {:g =A;) ((zi, al(z) = ézai(zi)) + z) vzl e ngi(())} :

Observe that

94—y in D'(B%_(0)).

0zt " 1Pi

Moreover, the conformal invariance of the Dirichlet energy gives

(VI.14)

Q
(VL15) / SO [Vap 2(21) do' A d
R O

i

/(\If,-+m)1(cmni1(Br (0)))

Aot

We then deduce that

(VI.16) / \Vai|%(2") dz* < Kr? .
B3 (0)
Combining (VI.15) and (VI.16) and using standard elliptic estimates we
get that for any [ € N

(VL17) HvlaﬁHLoc(ngv(o)) < K™
The subscript ¢ in the notation d% is here to recall that we express C? as a graph

in the (2%, w') coordinates. The same .J,,-holomorphic curve C can also, due to
(VI.17), be expressed as a graph in a neighboring system of coordinate (27, w?)
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where B, (z;) N B,,(z;) # 0 (indeed the passage from (z%,w’) to (z7,w7) is
given by a transformation matrix in R?” close to the identity at a distance of
the order r;). In such system of coordinates (27,w’), we shall denote d;'-(zj )
the graph corresponding to C.

Since C" is a graph over w’ = 0 given by (2%,d}(z")) whose gradient is
bounded (see (VI.17)), and since the passage from the (z,w) coordinates to
(2*,w") coordinates is given by a transformation A, whose distance to the
identity is bounded by |z;| that tends to zero, C' is then also realized by a
graph over B%p_ (II(z;)) that we shall now denote (z,a;(2)):

Ips

(VL18) CTLITH(BE, (T(@:)) = (=,ai(2))-[B2,, (T())]

6l 6 Pi
Consider now 7 and j such that B, (z;) N B,,(zj) # 0. We shall compare a;
and a; in II7Y(B,, (2;) N By, (2j)). Precisely, we have the following lemma:

LEMMA VI.2. Under the notation above,

(VL.19) VieN,  [|Vi(a— @j)|| L= (B2, (200 B2, (2))) < Kipi ™

Proof of Lemma V1.2. First of all we compare C; and C; in II"1(B,, (2;) N

B, (zj)). We can always assume that ¥ ; and 3 ; are part of a same Rieman-
nian surface 3 with a joint parametrization ¥ = W; on 33 ; and ¥ = W; on 3 ;
and such that ¥, [X] = C'I_Ngipi Ungj. Let X% := \Ilfl(supp(C'))ﬂNzipi ﬁngj.
We consider the following mapping

(V1.20) EYSY x [0,1) — N3, N N3,
(&t) — (&) +tn; (&) + (L —t)mi(§) -
3
Clearly for any A < 5
(V1.21) OZY,[T] x [0, 1]LN{, NN{, =C7 = C*LNAp; N DY, .

We have
1

(V1.22) M(EY,[2Y] x [0,1]) = / / J3=Y
0 Jxii

where (J3=%)? is the sum of the squares of the determinants of the 3 x 3
submatrices of DZY. Clearly
(VI.23)

[J=71(68) < K [llmilloo + Imjlloc] [IVEA€) + [Vl (&) + [V (€] -

Combining Lemma V.3, Lemma VI.1, (VI1.22) and (VI.23), we get that
for any A\ < %

(V1.24) M(EY.[59] x [0, ]L N Ap; N NY, ) < K 7.
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Therefore, combining (VI.21) and (VI.24), using a standard slicing and Fubini
type argument, we may find A € (2, 2) such that

42
(V1.25) F((C' = CI)LN, NNY, ) < Kr}.
We shall now compare C* and CJ. Denote (xf,z}. ..ah,) the coordi-

nates given by (zf,ab...ab )" = Ay, - [(x1,22. .. 29

)T — z;] where we keep
denoting (z1, 2 .. .azgp) our original normal coordinates vanishing at the cen-
ter xg introduced in (II.1) and A,, is the transformation matrix introduced in
(VL4). Observe that with this notation (z9,29...29)) = (2}, 2%...2%)), that
(z1,23...23,) = (¢],2% ... 23,) + Mg - (2, — x;) and that (zf,2}...25)) has

been chosen in order to vanish at a fixed point x;. Observe also that

d
1.26) | <Ay
(V1.26) ‘ o

d d
<k, || | <Kt
=27 dt:C L“’(Bifi(xi))+ dty L= (B2 (z:)) — "

ti=al +izb and for k=1...p— 1 w' :=

Ty q + b, . Observe then that 2 = constant or wj, = constant are Jy:-

We also adopt the notation z

holomorphic 2p — 2 submanifolds, or simply complex varieties in (R?, J,). In
order to compare C* and C7 we shall perturb Z¥ in the following way: denote
first U, ] and 7} the maps ¥,n; and 7; expressed in the coordinates (2% wt),
and consider the map st : (X)¥ — CP solving

(VL.27) Ogs' = O(U' +ty + (1 —t)n!)  in ()7

Vh € H(ZY), / stdh =0,
%

where X% := ¥~1(supp(C)) N Nép‘ N ng_. The existence and uniqueness of
2 M Pl

st are given by Proposition A.3 of [Ri3]. We shall now replace the map =% on
(~)% by the map

(V1.28)
(E)7 : (X)) x[0,1] — N3, N N3,
(&,1) — A [UH(E) + 0 (©) + (1 — )l (&) — '] + s .

Observe that for each t € [0,1] the map Z¥(-,t) is a Jy:-holomorphic curve.
Observe also that, for t = 0, s = 0 and for t = 1, 8%(\111 +77]1-) = 0, since ¥+
is J,i-holomorphic and (2!, w') are .J,; coordinates, thus we have also s = 0.
One can easily verify, as in proving (VI.10) that for all ¢ € [0, 1]

[ 10wt st 4 (- 0P < K
(E/)ij

Now, using Lemma VI.1 we have ||st||o((X")¥) < Kr? where

(Z//)ij = \I/_l(supp(c)) n N%pL n N%Pa‘ '



770 TRISTAN RIVIERE AND GANG TIAN

Therefore for any A < g we have
(VI.29)  9(E)Y,[(Z)7] x [0, 1JLNAp; NN}, = C7 = C*LNAp; N NS, -

We consider now the following interpolation between C and CV : let =%
be the following map

(VI.30) EVIN(W((Z")7)) x [0,1] — N3, N N3,
(2,t) — A [(2,0%(2)] + i
where the p — 1 complex components are given by the slices of
Ct = (=), 1)) % {1}

by 2! = ¢ evaluated on the functions w}i. Precisely, using the notation of [Fe,
4.3], we have

(VL31) ap(z) == (C*, 2", 2) (w},) .
. 6
It is clear that for any A < ¢
(VI.32)  EY[L(T((Z)7)]x[0,1]LNApNN], = C/=C LN AN NY, -

In order to get a bound for F(C7 — C*LL N*\p; N Nipj), it remains to
evaluate the mass of Z[I1;(¥((2)¥))] x [0,1]L Nixp; N Nipj for A = & for
instance. We have

(VI33) s 0) < | DA (2,8 ]| () [14 V-]

Because of the same arguments developed to prove (VI.17), since a‘(£) is holo-
morphic, we have

(VL.34) IV ()]l g (zry) < K-

Thus
(VL.35)

. 1 ~ ..
M(EH [P ((S)9)] [0, 1]L N Ap; mNip_) < / / |J32Y|
’ 0 JII(W((27)+))

1
<K / / QA;} [(z,a"(2)]| dz AdzAdt
0 Jr(w(srym)) |0t
1 8&t
<x [ [ %mwm+ ].
0 Jrgu(smy)

On the one hand, since IT;(¥((%")¥)) |(2,at(2))| < K 7, we have

ot
1
(V1.36) // ril(z,a'(2))| < Kri .
0 Jrw(s)9))
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On the other hand

(VL.37)
1 N—
—| = lim — / &% z —&lTl z)| dzAdz
/ / Z” N_"‘I‘OON ; H(\IJ( E” | ( ) ( )|
We have

We have to control the sum over [ of the integral over II(¥((X")¥)) of the
three absolute values on the right-hand side of (VI.38) one by one. For the
first term of the right-hand side of (VI.38) we have, using [Fe, 4.3.1], since

L L
[wi lloo + lldwg floo < 1,

(VI.39) / (CF — O 2% 2)(w])| dz Adz
m(w((=))
kt1 k k41

< Lip(z ™) FNi, ANy ,(C% -

Similarly, as we established estimate (VI.25) we can show that

(V1.40) Fny o, (C% —CV) <K N rd
Thus
N-1 . l
VI.41 lim / o — C’lTl,z#,z (wY)| < K r}.
vy S )(wf)

For the second term on the right-hand side of (VI.38) we use 4.3.9 (3) of [Fe]
and get

Vi) [ (O 2%, 2) (W) — (CF 27, 2) ()]
(W (%))

+1

K" dt/ 2% — 2% | d||C |
% (=)~ (W ((2)"9)))

"
N
<K

K -CM(CF LN'Ap; N NY, )

2|55
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where we have used (VI.26). Therefore we obtain

(V1.43)
N-l 1 ! ! 1 1 !
im > [ (O 2%, ) wp ) — (CF 25 2) (wf)] < Kt
I=to0 &= J(w((n)id))

Finally for the second term of the right-hand side of (VI.38), we use again
(VI.26) and 4.3.2 (2) of [Fe| to obtain that

141 141 L [y

Viay [ e ] - )
(W (X))

<MEF NN, ) r

= ( N L Pi N )\pj) N N .
Combining (VI.35), (V1.36), (VI.37), (VI.38), (VI1.41), (VI1.43) and (VI1.44), we
obtain that

(VL.45) M(EY [T ((2))] x [0, 1]LN§,, N NY, ) <rf .

<K

Combining this last inequality with (VI.32) and a Fubini type argument we

obtain that there exists A € [£, &] such that

(VL46) F((Ci=CLNAp; N NF, ) <t

From this fact we then deduce, since C; and C'j are single valued graphs with
uniformly bounded gradients

(VL.47) jai (") —al| < Kr .

/Hi(NinimNépj)

Using the notation introduced in (VI.4) and (VI.13), we have that for any
z there exists £ such that
(VL.48) (2 = 2, ai(2) — wi) = A7 (€, a(6))
where |Ay, —id| < K |z;] < K pgy. Let 2 := p; 'z — z) and a;(2') =
p; t(@i(2) —w;). Let also & := p; *¢ and ai(¢) := a(€). Since a! is holomorphic
(see (VI.14), a! is also clearly holomorphic and since ||| (p, ) < K, we
have that for any [ € N ’

(VL.49) IV & L (14 (o)) < K-

Using the above notation we have
(VL50) (', ai(2) = AZ (€, a5(€) -
From the inverse function theorem, since |A,, —id| < K |z;| < K, p,, can be

taken as small as we want by taking p,, small enough, we have that for all
[ € N there exists K; such that

(VL51) VL E oo < K .
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Therefore, combining (VI.49), (VI.50 and (VI.51, we obtain
(VI1.52) V5 a5 (2)]|oo < K

From that estimate we then deduce

(VL53) ||vi(~1i”L°°(B§px(zi)) <Kt

Since C? is J,,-holomorphic, we have the existence of A}, uij, Ab, ub such that

1 1 0
Lol O = O || !
8C~Li 3C~Li a&i
0
(VL54) Oz Oz Y
0 1 0
8(% 8&5 adi
y Oz dy

Writing J,, = Jo + 6(x;), we first observe that
(VL.55) 0(zi)| < [l il < Kpa, -

From this notation we deduce using (VI.54),

, 2 o
A1 =9 i 011(2i) o
1 Ll(x ) + ; 1,l($ ) ox
| 2 oal
/fl =1+ 6271(.’Ei) + Z 52,l(1:i) a:;
(VL56) " P
Ay = —1+ 1 2(x;) + 251,1(961)87;
1=3
2p ~1
. oa;
ph = Ga2(zi) + ) 52’1(%)87/ :

\ =3
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Therefore the equation solved by a; is forany k=1...p— 1,

(9a?*! gaht? - gal] aa?+?
or dy = Ol + gél’l(%)ax Oox
2p ~1 ~2k+2
Oa; | Oa;
+ |01 () + ; 52,1(%)%] 5
2p ~1
Oa,
—0ok42,1 (i) — lz; 52k+2,l% ,
(VL57) k41 2k-+2 2p— ! 2k 42
oa; oa; oa: | oa;
i i — s 5 5 ; ) i
oy + ox [ 1’2(x>+§ Uw)&y] ox
2p ~1 ~2k+2
oat | oa;
8a.0(2s Soy(ai) o | S
+ | 62,2(x:) +zz; 2,1(;) 6y] 9y
2p "‘l
oa;
—okt2.1 (i) — Z; 52k+2,l($i)87y

Then we deduce that there exist a linear map

A(zs,) « R2@R?P2 — Pl gy (R2@R¥72)"
and an element

B(x;,-) € CP ' gg (R2@R¥2)* |

such that a; solves
0a;
0z
Observe also that the dependence of A and B in B, (7o) is smooth and that
A(zo,-) = 0, B(zo,) = 0, D(zp) = 0 and because of (VI.55) we have an
estimate of the sort

(VL59)  VpeR*@R™  [A(wy,p)| +|B(zi,p)l < K |zi|(1+[p]) -
Consider now i and j such that B2 (z) N Bﬁj(zj) # (. On B%p (zi) N

7

(VI.58) = A(xz, Vdi) -Va; + B(l‘i, V&i) + D(l‘i, &i) .

B%pj (2j) @; — a; solves the following equation
(VI1.60) Oz(a; — a;) = Az, Va,) - Va; + B(x;, Va)
—A(x;,Va,) - Va; — B(xj, Vi)
=C(zi,Vai, Vay) - V(a; — a;)
+E(z;,Va;) — E(z;,Va;) ,
where

(Vlﬁl) C'(xl, ngi, VELJ) . V(ELZ - ELJ') = A(l‘l, VELZ) . VELZ - A(.’El, Vdj) . Vdj
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+B(:L‘l, V&Z) — B(l‘l, VELJ) ,

(where we have used the linear dependence in p of A(x;,p) and B(z;,p)), and
where

(VL.62) E(x,p) := A(x,p) -p+ B(x,p) + D(x) .

Observe, on the one hand, that C(x,p,q) has a linear dependence in p and ¢
in R? ® R?~2, that

(VL.63) C(,p,q)] < K || (1+ |p| +al) ,

and that the following estimates hold for D(x,p), for all [ € N:

(VI1.64) VeE(z,p)| < K (1+[p) .

On Bé (p;tzi) N B% (p;12;) the function f(2') := a;(pi2') — aj(p;2') solves
(VL.65) Ozf = C() - Vf=yg(a),

where

C(7) = C(w;, Va;, Va,)(piz') ,
and
9(#') := pi [D(xs, Vaj(piz)) — D(x;, Vi(piz'))] -
Using (VI.53), observe that for any [ € N,
(VL.66) [|V2(Clas, (V2 (pi2'), (V2a7) (piz))) o
< K [ai] [ VE ailloo + 1958l < K1, -

Therefore, for p,, small enough, L := 9 — C(%') - V. is an elliptic coercive
first order operator with smooth coefficients whose derivatives are uniformly
bounded. Observe also that, using again (VI.53),

(VL67) ||V p; [D(xs,Vaj(piz')) — D(zj, Vaj(piz'))] |l

[1/2]
<Kp; |0 > IViTasllee V5 asllc0 + pf IVE 00
s=0
Then we have
(V1.68) IV, glloe < i 0.

From (VI.46) we deduce that

(VL.69) IfI <K pf .

/B% (Pflzi)ﬂB% (p; %)
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Thus combining (VI.65)...(VI.69) and using standard elliptic estimates we
obtain that for any [ € N

(VL70) IV fll e (B2 2 2nm2 (o 2) < Kt pi s
which yields, going back to the original scale, the estimate (VI.19) and
Lemma VI.2 is proved. O

Definition of the approximated average curve. On Bﬁmo (0) = I(B,,, (z0))
we define the approximated average curve as follows. Let ¢ be the partition of
unity of II(Co-1 N By, (z0)) defined in (V.48). We denote

d(ZO) = Z QO(Z())&@(Z()) Vzg € H(CQ_l N Bpwo (afo)) ,
(VL.71) i€l
a(zo) == (C, z, 20)(w) Vzo € I((Cq \ Co-1) N By, (70)) -

Observe that, because of Lemma IV.2, for any 29 € I1((Cq \ Co-1) N By, (70))
the slice (C, z,zp) consists of exactly one point and a(zp) is simply the w
coordinates of that point. The following estimates for & holds :

LEMMA VI1.3. Under the above notation, for any q < 400 there exists a
constant K, independent of py, such that

(VL.72) / IV2a|? < K, p2,
B3,, (0)

2

Proof of Lemma VI.3. We claim first that a is a Lipschitz map over
ngo (0). InII(Cq-1NB,,, (20)), by the assumptions of the inductive procedure,
we know that a is smooth and using both (VI.53) and (VI.19), because also of
(V.49), we have

(VL73) IVall L= cq-1nB,,, (@) < K -

Consider now two arbitrary points z and y of B§w0 (0). Either the segment
[z,y] in Bgmo (0) is included in II(Co-1 N By, (70)) and then we can integrate
(VL.73) all along that segment to get

(VL.74) la(z) —a(y)| < K|z -yl ,

or there exists 2 € [z,y] NII((Cqo \Cqo—1) N By, (w0)). Using this time (IV.6) we
also get (VI.74), which proves the desired claim. Using the equation (VI.58)
solved by the @;s we obtain that, in II(Cq—1 N By, (z0)), @ is a solution of

(VL75) 0za — A((z,a(z)),Va)-Va— B((z,a(z)),Va) — D(z,a(z)) = ((2) ,
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where
(VL76)  ((2):=>_ i [Alas, Vi) - Vi, — A((2,a(2)), Va) - Vil
i€l
+> [B(wi, Vi) — B((2,d(2)), Va)]
el

—i—z&goz [a; —a .

el

Observe that ), ; 0zp;a was added at the end because this quantity vanishes.
Since for any z; and r;, (V.10) holds, since also for any z € II((Cg \ Cg-1) N
By, (w0)) we have for an € as small as we want (recall a was fixed independently
of €), the relative Lipschitz estimate (IV.6) holds and granting the fact that
H((Cqo \ Co—1) N By, (x0)) is a compact subset of By, (zo), it is clear that

(VL.77) Vn>0 36>0:Viel
dist(By, (2:), I((Co \ Co-1))) <6 = |pi| <n.
Observe that

(VL.78) CEI<K Y wil2)ei(2) laj — wil
ijel
> wi(2)p;(2) V(@ — ay)|
igel
> IVei(2)les(2) lai(z) —a;(2)] -
i,5€1

Using (VI.19), we have that
(VL79) [¢(2)] < Kmax{r;i€l; z € Bzi(zi)} < K dist(z, II((Co \ Cg-1))) -

Combining (VI.77) and (VI.79), we have that ((z) converges uniformly to 0 as
z tends to II((Cg \ Cg—1)). We then extend ¢ by 0 in II((Cg \ Cg-1)). Now ¢
is a continuous function in Bizo (zo) and we claim that
(VL.80)

0za — A((z,a(z)),Va) - Va — B((z,a(z)),Va) = ((z) in D'(Bi0 (20)) -
Since a is a Lipschitz function in Bﬁzo (x0), 0za — A((z,a(z)),Va) - Va —
B((z,a(z)), Va) is a bounded function in Bzmo (zo) and therefore, in order to
prove (VL.80), it suffices to prove that for H? almost every z in I1((Co \Cg—1))N
BQ,, (:EO)?
(VL.81)  0za — A((z,a(z)),Va)-Va— B((z,a(z)),Va) — D(z,a(z)) =0.

This latter equality, because of the computations between (VI.54)...(VI.58), is
just equivalent to the fact that the tangent plane of the graph (z,a(z)) at that
point is J-holomorphic, which is the case at every point of II((Cg \ Cg—1)) N
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Bgm (o) due to Lemma IV.2. Thus (VI.80) is proved. Using again (VI.19) we
observe that

(V1.82)
IVCRI<K Y wil2)pi(2) [[Vay] + [Va, ]
i,j€1
Y wil2)ei(2) [Vasl(2) V(@ — a;)l(2)
i,j€l
> IVP0i2)lei(2) + Vil (2)| Vs (2)]] |ai(2) — ()] + | — wi
i,j€l
<K.

We claim now that ¢ is Lipschitz in ngo (o). Indeed, arguing as for a, given x
and y in Bio (x0), if the segment [z, y] has no intersection with II((Cgo\Cq-1)),
then, integrating (VI.78) on that segment gives

(VI.83) (@) =S < K |z —y .
Otherwise, if there exists z € [z,y] NII((Cq \ Cg-1)), then, (VI.79) gives
C@)| + ¢ < K [o— 2]+ |y — 2],

which gives (VI.83) and the claim is proved. We claim now that a €
W“(Bim /2(0)) for any ¢ < +o00. Let e be a unit vector in Bi /2(0). For

small h we denote ap(z) := a(z+h) and (,(z) := (2 +h). We have, using the
linear dependencies of

- B((Za d)’ V(EL - dh))
=(—Cn+ A((z,a), Vay) - Vap — A((z + h, an), Vag) - Vay
B((z,a),Vay) — B((z + h,an),Vap) + D(z,a) — D(z + h,ay,) .

Denote Ay, the right-hand side of (VI.84) and observe that there exists a con-
stant K such that

(VL.85) IAp| < K b

Let x,,, be a cut-off function such that x,, =1 in B2,,(0) and Xp., = 0 in
R2\ Bzzo (0). Let fn = X,,, (@ — as), and let Ly, be the operator such that

(VL86) Luf := d=f — A((2,d),Va)-Vf—A((z,a), V) Van— B((z,a),Vf) .
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Now,

(VL87) Linfn="Xp,,An+ (@ — an)ozxp,, — Al(2,a),Va) - (a — an)Vxp,,
—A((2,a), (@ — an)Vxy,,) - Van — B((2,a), (@ — an)VXy,,) -

Since a is Lipschitz, using (VI.85) and (VI.59), we have that

(VL8S) \Lnful <K h .

Observe that |Ly fr| > [0zfn| — Kpz,|V fr]. Since fr, =0 on 0Bgzo (0), for any
p < 400 we have that
(VL.89)
VAT K, [ ORI Ky [ Ll KoL [TA
5., (0 5., 0 5., 0
Dividing by h? and making h tend to zero, we get that for p,, small enough
inequality (VI.72) holds and Lemma VI.3 is proved. O

VI.2. Constructing adapted coordinates to C' in a neighborhood of xg €
Co\Cg—1. We consider a point x¢ in the support of our J-holomorphic current
C and we assume, as above, that the multiplicity at x¢ is @ and that the
tangent cone Co g, is @ times a J;,-holomorphic disk D. We start with the
coordinates (z,wn,...,wp—1) chosen in (IL.1) such that Cp,, = Q[D] is Q
times the “horizontal” disk given by w; =0 for ¢ = 1,...,p — 1 and we work
in the ball B,%f , (x0) whose radius p, is given by (V.23). The purpose of this
subsection is to construct new coordinates (§, A\1,...,A,—1) in Bﬁf , (zo) such
that the set \; =0 for ¢ =1,...,p— 1 coincides with the graph of the average
map a constructed in the previous subsection.

On the graph A(z) := (z,a(z)) we consider the complex structure j given
by the metric induced by g := w(J-,-). Let X be a vector tangent to A at
(2,a(z)). We compare jX and JX in R?. Let n(z,a(z)) be the 2p — 2-unit
vector normal to T(Z’a(z))fi, making the identification between 2p — 1-vectors
and the vector given by the ambient metric,

1 X =nANX.

We have seen that

[Jn —n|(z,a(2)) < riza)) -
Therefore
§IX = JjX[ < [nAJX = J(n AX)| < [nATX = InATX] < 7 a0 |X] -

Thus, [(J —j)(J +7)X]| < r(;a(z))|X| where we extend j to the normal bundle

to A again by means of the induced metric. Since |(J + j)X| and |X| are
comparable independent of X, we have

(VI.QO) VX e T(Z@(z))zzl |(J —])X| < KT(z,a(z))|X| .
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We choose now coordinates & = (£;,&) on A compatible with j (i.e. ja%l =
). Let (2,a(2") := (pz), pza(pa,2’)) and in B*(0) consider the metric
Lw') = pr2(pay?’s paow’)*g where g in szo( ) is the original metric g(-, ) =

o)
9¢;
9%,
w(J-,-). After this scaling we have, using (VI.72),

(VL91) /B IV2alP dz' < Kyp?,

and
(VL92) 49 =69 + hY  where h(0,0) =0 and |[VAY||o < Kpy, -

We look for isothermal coordinates (£},&5) in A = {(2/,a(2")), 2’ € B#(0)} of
the form ¢ = 2’ + §(2') where ¢ will be small in W2?. On B?(0) we consider
the metric k = (2, a(2'))*§ = (1 + k11)(da))? 4 2kioda daty + (1 + koo)(dah)?.
From the estimates above we have for any ¢ > 0, (since Va(0,0) = 0 and
IV%allg < pa, that for [|Vélle < pay),

(V1.93) /B V|7 < Ky p22 .

Following [DNF, pp. 110-111], it suffices to find §; solving
(VL94)
d (1+ k1) 52

0
855/1 \/(1+k11)(1+k22) —k%Ql 8.7;’2

(1 + k’22)861 8901
\/(1 + kll)(l + kzg) — k%z

Taking §; = 0 on 9B?(0) we get a well-posed elliptic problem and obtain the

existence of ¢y satisfying

026,

iim o = )
aj@xé(“)ac;- Vo

i=1

where a;; are Holder continuous, [ai; — 045]|co.(p2) < Kap?® and F € L7 with
[|F|? < Kppal. Standard elliptic estimates give then
(VI.95) 181 lw=0(m2) < Kp3, -
Therefore, going back to the original scale, we have found coordinates & =
T + pay0i(pgy 2) = i + ai(2) such that
0 _ 0
o " 06
We translate these coordinates in such a way that «(0,0) = (0,0).

Inside GI(IR?P), the space of invertible 2p x 2p matrices with real coeffi-

cients, we denote U(p) the subspace of matrices M which commute with Jj.
U(p) is a compact submanifold of GI(R?") and for some metric in GI(R?*") we

(VL.96) [Valleo < Kp2,  and
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denote 77 () the orthogonal projection from a neighborhood of U(p) onto U (p).
We consider M(z) the matrix which is given by

Al
(VI.97) M(Z) = A(z,d(z))ﬂ-U(P) (A(z,a(z))) s
where we recall that A, is given by (VI.6). We have clearly, since ||Va| < K
and [5. ) |V2al? < qu20 for any p < +o00,

Z

(VL98) WMo, oy <K and  [VM()ags, (o) < Kook -
We continue denoting eq, e, ..., ez, the canonical basis of R?P. Let

(VL.99) ep(z) ==M(z) - €; .

We have for all ¢ = 1...p that

(VL100) J((2,a(2)) - e2i-1(2) = J((2,@(2)) - Ay o) (Aza(e)) - €2im1

-1

- (z,d(z))JOﬂ-U(p) (A(z,&(z))) T €2i—1
-1

= A a2) ™) A zage) o - e2im1
-1

=A™ m M) - e

= 521'(2) .

In Bgf , (z0) we consider the new coordinates (£, \) given by

2p
(VLI01) W :(§,0) — W(EN) = (2(),a(2(€)) + > Neryal2(6)) -
=1

Letting J be the expression of the almost complex structure in these coordi-
nates (i.e. j(g)\) - X = dV (e 5 - dV - X), we shall now estimate |J — Jo| for
points satisfying [A| < ry(e y); recall that 7, was defined in the beginning of
Section VI (see (V.11) and (V.12)), which corresponds in B3’ ' (z0) to a neigh-
borhood of A(z) = (z,a(z)) containing the support of C. We have first for
i = 1,2, using (VI.90),

. 0 0 0
1.102) dWJgpe; = L e iven — v
(VL102) dWJieoyes = Juco) - 5 =Juen) * g + (Jueo) ~Jueo) " 3¢

2

= ()" e+ Ol 0)
1
where we are using the convention %M = 36?—1' We have then, for 1 <[ < p,

0
Oary1

~ 0
(VI.103) d\I’J(&O)te = J\p(&o)@ = J\p(&o)ﬁgl = —&9]—1 =
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For |A] < ry(¢,\) we have for i = 1,2,

(VI.104) d\I/j(g,,\)ei = Jq,(&)\) . d\I/(&)\)ei = J\p(&o) . d\II(&O)ei
+Hlueo)  [A¥ e — d¥ g g)ei]
+[Twen — Jueo] - d¥enei

Using the facts that |J\p(€’)\) — J\p(é’o)\ < [ Jler |W(E,A) — P(E0)] < Kryen
and that dW ¢ yye; — dW (e gye; = (6, A) = GE(€,0) = 3212y Mg er12, we have
then

(VI.105) |d\Ifj(§7>\)€1 — J\I/(&,O) . d\II(£70)61| S 0(7“\1,(&/\)) .

Using (VI.90) again, we have ’[J\I/(g,o) — 7(¥(,0))] ~d¥ el < O(ryep))s
thus, since W is Lipschitz, ry ) and ry o) from Lemma V.3 are comparable
and (VI.105) implies

(VIlOﬁ) ‘d\I/j(g’)\)el — d\I’(&)\) . 62|
< |d\I/J(§,)\)61 — d‘l’(ﬁ}o) . 62| + |d\1’(£70) s ey — d\I/(&)\) . €2| .

Using again the fact that [dV ¢ ) - e2 — dV (¢ ) - e2| = \%(5, A) — %(5,0)\ =
| > 1=1 MiOe,ci42] < O(rg(e ), we have finally that

(VI.107) AU J (e yyer — AT e y) - €2] < O(ryen)) -

Finally, for 1 <[ < p,

(VI.108) dWJ(e yyeor = Jy(en) - AV g e = —d¥ (e yyear—1
Hd¥ (e x) — d¥0)lea—1 + Jueo) - [A¥ () — AP 0)ea]
Fuen = Jueol - d¥ e -

Using the estimates from the above lines, (VI.108) becomes for 1 < I < p,

(V1.109) AW J(e ayexr + d¥ ¢ yyea—1] < O(rgen)) -

Thus combining (VI.107) and (VI.109), we obtain

(VL.110) V(& N), such that [A| < rgen),  [en — Jol < K rggey) -

VII. The unique continuation argument

In this part we show that, assuming Pg_; (recall that the definition is
given by (I1.8)), a point z¢ in Cq \ Cg—1 is isolated in Cq \ Co—1 unless all
points in C. in a neighborhood from zy are of multiplicity ). This fact has
already been proved in Section IV in the case where Cp;, was not @ times
the same flat holomorphic disk (the easy case). Here we assume that we are in
the difficult case Cp 5, = Q[Dyp] where Dy is the horizontal unit disk as before.
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We adopt the coordinate system about xg constructed in Section VIII.2. We
denote by II the map that assigns the first complex coordinate & = &1 + i&s.
Assuming there exists a sequence of points z,, € Cg\Cg-1 different from z¢ and
converging to g, the goal of this section is to show that C in a neighborhood
is a @ times the same graph. The strategy is inspired by [Ta, Ch. 1]; in
our coordinates, the points in Cg \ Cg—1 are contained in the disk \; = 0 for
i =1,...,2p — 2 and we shall use a unique continuation argument based on
the proof of a Carleman estimate to show that our assumption implies that
the whole cycle in the neighborhood of xg is included in that disk. Let (&,,0)
be the coordinates of x, — zg. We can always extract a subsequence such
that [£,41] < |€n]%. We then introduce the function gy (&) = Hévzl(f —&n).
Because of the speed of convergence of our sequence &, to zero it is not difficult
to check that there exists a constant K independent of N such that for any
e ngo the following holds:

KL g K1 e
VIL1 I —
VLY e 11 ] <1916 < v e 1l

where N¢ is the index less than N such that [ — {y,| is minimal among the
|€ — &l. Tt is also straightforward to check that

K(N—-Ng) 1
(VIL.2) |VQN (§) < |EIN—Net1 € — &, | H |£J

K 1 1 K
e L grtenes gNgr Z i H &

and we have a corresponding estimate for |V*gy!|(¢) for arbitrary k in general.
Let £ € II(Cgp—1) with £ belonging to some Bgi (&) of the covering constructed in
Section VI. To every such i we assign k;, an index such that [&, |+ pk, < [&i]—pi
and such that |&, — &| < Kp; and such that p; and py, are comparable:

(VIL3) K 'p; < pp, < Kp; .

This is always possible due to the Whitney-Besicovitch nature of our covering;
moreover for every k there exists a uniformly bounded number of ¢ such that
k; = k. Observe also, because of the relative Lipschitz estimate (IV.6) with
constant € and because of the “splitting stage” of Cy, ,, characterized by (V.10)
we have that for any 6 > 0 one may choose € small enough compared to «
defined in Section V such that for any ¢ € II(Cg—1)

(VIL4) dist (&, T1(Cq \ Cg—1)) = 6 "p; ,
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where £ € B2 (&). Combining (VIL.3) and (VIL4) we get that Vi € I, V& €
B; (&), Y¢ € B, (&),
(VIL5)

%dist (& (Cq \ Co-1)) < dist (¢, II(Cq \ Co-1)) < 2dist (£, II(Cq \ Co-1)) -

From (VIL1), (VIL.2) and (VIL.5) we get that for any N € N, for any
e Bgi (&) and for any ¢ € Bﬁkv (&)

(VIL6) l9n1(6) < Klgi'1(¢)
and

\Y% \& 1
(VILT) i||g]€]’\;’(§) +p$‘ ‘g]fg'(ﬁ) < KW(O'

Let x,,, be a cut-off function identically equal to 1 in Bg /2 (0) and equal
=0
to 0 outside Bﬁmo. In Bgmo (20) x R?P~2 we introduce the cycle C9¥ which is
given by
(VIL8) vEe B, (O9ILE) =gy (€), (CILE) .

In other words if ¥ : ¥ — Bgmo (0) x R?P=2 is a parametrization of a piece of

C, a parametrization of the corresponding piece in C9¥ is given by (¢, g;,I o
IToW U)) where (¥¢,¥y) are the coordinates of W. Since CY9¥ is a cycle in

Bgzo (20) x R?P~2_ we have, denoting ) := f;ll dXoi—1 N dAyp),
p—1

(VIL9) C9 (xp,, 011 Q) = —C9~ (dxp% ollAY Agl_ldAgl> .
I=1

Splitting C9¥ (x,,, ol Q) = C9¥ I—Bimoﬂ x R?~2(Q) + C9~ |_(B§m0 \Bgmﬂ) X
R*72(x,,, o II Q), we have
(VIL10)

p—1
CONLB2 ) xRP2(Q) =Y CINLB2 ,xR¥? (wi oIl) Q) :
iel =1
where we recall that the partition of unity was constructed in (V.48) adapted
to the covering Bgi (&). Let ¥; : %, — B22p7: (&) x ng:Q(O) be a smooth
parametrization of C’I_ngi (&) % Bgf 072(0) and denote by 7; the map from %;
into R?? given by [Ri3, Prop. A.3], such that ¥; 4 ; is Jo-holomorphic. Since
J in ngi((fiv 0)) is closed to Jy at a distance comparable to p; — see (VI.110)
— we have

(VIL.11) ||V77iHL2(E%J.) < p?

where we recall that s,
2 9

=%, N ;1B (&) x R?). Using now Lemma I1.2
of [Ri3], which does not require J to be C! in these coordinates but just the
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metric g to be close to the flat one, one has

(VIL12) nill s, ) <P}

i
3

From the parametrization ¥; = (U, ¢, ¥; ),
(VIL13) C9L B, x R?*(p; 011 Q)

p—1

= / p(Wig) > d

X =1

20-1
L5

9(Vig)

2l
\Ijz,)\

9(Vig)

We compare this quantity with
(VIL14) C?¥L(p;oIl Q)

1 2 2
ix T A

/ p \I/2l 1 + nil)\fl
5, z - Wig +Mig) 9(Wig +1mig)
Now,
p—1
(VIL15) |(Cf™ — C9Y) (Sf’i oll Z dAgi—1 N d)\21> ‘
=1
|: 2)\+T71)\ :H ’ |: 1)\+77z)\ :H
7&- + 777‘75 l é + 77275)
2
<5K/ O, |: z,\+77@/\ :H
Wig + Mig)
[ Wir+mia Wia ] 2
Uie+mie)  9(Wig)
Next,
U, . U, 2
(VIL16) / Y [ AT ir __Tid }
s, I(Wie+mie)  9(Vig)
2

: /z v [\PZ (g(‘l’z‘,§1+ mie) 9(‘;@5))]

1
+ Vn;lsu 2 (e)T7og T /|7 su 2 .
/Ei‘ i[suPeeps (c,) NGERES mil” subgepz (c) FIE (€)

Let fo(§) be the flat norm of the slice of CY" minus the average curve, ¥y = 0,
by II1(€) |

fn(§) = FUCM,ILE) — Qdo) -

Using (V.8) (observe that the difference of the densities for the metrics w(-, J-)
and wo(-, Jo-) is as small as we want for p;, chosen small enough) and using
also (VIL.11), (VIL.12), (VIL.6) and (VIL.7), we have
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Vgn|?
(VIL17) / Vi supees ) oo / 2 supees (e) 0 (€)
| lgn]
<K |fn]?
Bﬁki(fki)

> K pgl. This lower
bound, a crucial point in our paper, comes from the fact that C restricted
to By, (w,) is split; p,;ZM(CI_Bpki (xg,)) is less that 7Q — Koo (see (V.11))
where K¢ and o only depend on p, @, J and w. If ¥y, y had been too close to
0 in the L? norm, since the intersection number between (¥y ).[X,] and the
2p — 2-planes IT-1(¢) for € € 32 (ﬁ’k ) is Q, py. 2M(C’I_Bpk (xk,)) would have
been too large which Contradlcts ‘the upper bound (V.11). The first term on
the right-hand side of (VII.16) can be bounded as follows

(VIL18) /Z 1V [‘I’ ( gN(\pi; +ig) QN(il’i,s))}

1 12
S _
2, [IN(Wie+mie)  gv(Wie)

+/p?V
b

i

2

2

1 1
<9N(‘I’z‘,s + Nie) gN(‘I’z',g)>

Vg
<K/ pz SupEEB2 (&) “g ]‘\;| (5)
Van!|?
+K/ 71V n|? SUPgeBgi(gi)’ | (&)
|V9N
+K/ ’nl| Sup£€B2 |9N’3 (6)
2
+K/ o nil? SUPgeB2 (&) W ) -

Using (VIIL.6) and (VIL.7) as above and combining (VII.15)—(VII.18), we have
finally for every 6 > 0

(VIL.19)

p—1
(CZgN - CgN) (901‘ oll Z dXoj_1 N d)\21>

=1
<5K/ Vi

Since ¥; +n;/goIlo¥; +n; is a holomorphic map into CP, the A-coordinate of
it, W; x +min/g oIl oW; + 1, is also a holomorphic map but into Cr~1. Now,

2

+ K

|: i T\ :H + K |fN‘2~
(Wie + mie) o JB2 (&)
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(VIL.20)

—1 p—1

Wix+min -~ (pz 1 -

A T A dhor1 Aoy | =5 (Wix+min)* (D dA AdA,
9(Wie +nig) \= 2 P

v; ix |2 =

:‘v“”’* ‘ d¢ A dC

9(Wie +nig)

where ¢ denotes local complex coordinates on ¥;, and A; is the complex coor-
dinate A; = Ag;—1 + ¢Ag. Therefore, combining (VII.19) and (VII.20) we have
for § chosen such that 6K < %

p—1
(VH.Ql) CcIN (901' oll Z dXgj—1 N\ d)\gl)
=1

1 W, \ 4+ M 2 K
2/ ©i ‘Vzm’ - —= Fit
2 Jy, 9(Wie +mig)

Letting {al(£)}1=1. ¢ be the holomorphic @-valued graph realized by
(Pig + Mg, On' (Vie + 75,6 Vix + 1in),

we have

Wi+ mix
VIL22 / i ‘V”
( ) o 9(Wie+nie)

2 p—1 B
— [ eIV den e
Bfn‘ =1

Clearly this quantity is larger than fBQv 901"va|2 where fN(f) is the Flat

norm of the slice by II71(¢) of the difference betweenC?™ and the average
curve. Replacing fy by fu itself, we see the slice by II71(¢), of C9% minus the
average curve, in the integral [p. ¢V fn|?, induces error terms which can be

controlled by |5, ) |fn|? as in the computation of the error between C9~
Pk, i

and C{~ above. Therefore we have

K

1
(VIL.23) C9% (p; o I1 Q) > 2/2 oi |V fn|? = 5 ) [fnl?

Pk, é’%

Because of the relative Lipschitz estimate, fy extends as a W12 function on
all of Bﬁzo (0). Standard Poincaré estimates yield

(VIL.24) /B Xp.y SN ]? < Kp§0/2 IV (Xpoy SN -

P Pxq
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Taking pg, small enough we can ensure that Kp2 > O(J) and combining
(VIL.9), (VIL.23) and (VII.24) we finally get that

(VIL25) /B |fN|2§K1/2 NP+ VN

pag /2 P pxg /2

p—1
+09N (dxpwo ollAD Agl_ld)\gl>
=1

where K is a constant independent of N. By taking the sequence &,, such that

the largest |¢; | satisfies |¢| < 22, if C does not coincide with the average curve

(fw is not identically zero) near the origin we would have (% )2N e N | ?
Pz

tending to infinity, whereas, it is not difficult to check that the right-hand side
of (VII.25) which involves quantities supported in Bzmo \Bﬁ, /2 is bounded by

K., N? (%)72]\7. The multiplication of it by (%)ZN tends clearly to zero as
N tend to infinity. We have then obtained a contradiction and have proved
that any point inside Cg \ Cg—1 is surrounded in C, by points which are all in
Cq \ Cg-1 or by points which are all in Cg_;. It remains to show that a point
in Cg\ Cg—1 is not an accumulation point of Ug<g—1Sing?. This is the purpose

of the next section.

VIII. Points in Cg \ Cg—; are not
accumulation points of U,<g_1Sing?

In this section we prove, assuming Pg_1, that points in Cg \ Cg—1 are not
accumulation points of Uz<g—1Sing? and combining this fact with the result
in the previous section we will have proved Pg.

Let then zg € Cg \ Cg—1, and assume that x( is an accumulation point of
Cgo—1, which means, by the monotonicity formula, Lemma IV.1 together with
the result obtained in the previous section, that there exists a radius p such
that C.NB,(x) C Cq and that (Cq\Cq—1)NB,(xo) = {xo}. From the assumed
hypothesis Pg_1, we have then that there exists a Riemann surface ¥ and a
smooth J-holomorphic map ¥ such that C'L B, (xg) = ¥,[X]. The goal is to
show that 3 has a finite topology and that it is a closed Riemann surface. The
idea is to perturb ¥ by finding n € L>°(X) such that ¥ 4 7 is Jy-holomorphic
and (U + n).[X] is a cycle.

For any r < rg, we denote Y, the finite Riemann surface obtained by
taking SNV~ (B,(x)\Br(z0)) and we shall denote I, the part of the boundary
of ¥, which is disjoint from 0% C (|¥ — zo|)~(r0). On X, we consider 7, the
map which is given by Proposition A.3 in [Ri3]. It satisfies in particular, when
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we use the complex coordinates induced by J,

(VIIL1) (¥ +n,)=0 in o,
Vr <o, / V|2 < / |J(U) — Jo|?|VI|? < Krg
P

where for the induced metric by ¥ on ¥ (¥ is an isometry), we have [, [V¥|? =
M(C'L By, (20)) < Kr3. Using local &1, & coordinates in ¥, we have for all
k=1...2p,

ok AN owk . aul
3 lel (W5 g lel F) e,

Taking respectively the & derivative and the & derivative of these two equa-
tions we obtain

2p
(VIIL2) VE=1...2p, Ay UF=x (Z d(JF(D;)) A d@ﬁ) :
=1
From (VIIL.1) we deduce that Ay, (¥ + 7n,) = 0; therefore this yields
2p
(VIIL3) VeE=1...2p, AgnF=—=x <Z d(JF(U) A d@ﬁ) :
=1
Let 6% be given by
Audt e (S UKD A0E)
(VIIL4)
sk =0 on 0%, .

From [Ge] and [To] there exists a universal constant K such that
(VILS) 6l + IVl < Kl [ V917 < K.

Because of the above estimates, taking some sequence r,, — 0, one can always
extract a subsequence 1,» such that 7, , and o, , converge to limits 79 and dg
that satisfy in particular
(VIIL6) (¥ + ) =0 iny,
As(no + dg) =0 in ¥,
IVoll L2(s2) + 160l e sy <K -

For any k =1, ..., 2p we consider the harmonic function u* := n* + 6. Using
the coarea formula we have, for any r < ro,

(VIIL7) /ds/ \vuk|:/ |VuF| |V|\11|§r</ |Vuk|2> .
0 r, T\Z, \Z,
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Therefore, by use of a mean formula, for any € > 0, there exists s > 0 such
that

(VIILS) / Vu| <e.
FS
Now,
ouk ouk
VIIL9 0= [ AsuF= [ =— -
( ) /Es = r, 87/ + ox 61/

By choosing ¢ smaller and smaller and taking the corresponding s given by

(VIIL.8), one gets

k
(VIIL10) o
oy ov

Let m < M be two values such that supgyxu* < m and consider the truncation
T ,],\L/[ u® equal to m if u¥ < m equal to M if u* > M and equal to u* otherwise.
We have

(VIIL11)
k k
0_/ TMyk Aguk——/ \VT,%’“\?JF/ T},‘fu’faier ou”
2. . . v oy, Ov
Therefore
(VIIL12) / |VTMyk)2 <M/ \Vu*],
ZS 1—‘s

and by choosing again s tending to zero according to (VIIL.8), one gets that
TMyF is identically equal to m and we deduce that u* < m in X. Similarly one
gets that u* is bounded from below and then we have proved that ||| Le(m) <
+00. Combining this fact with (VIIL.6) we have that

(VIIL13) 1m0l L= sy < +o0 .

Being more careful above by taking eventually ¥, instead of % for some r €
[ro/2, 0], and using [Ri3] we could have shown that [[nolp=) < K r§. We
claim now that (¥ + ng)«[X] = (¥ + 10)[0%]; that is, for any smooth 1-form
¢ equal to zero in a neighborhood of (¥ + 19)(0%), one has

(VIIL.14) L (¥ +m0)*dp=0.

Now,

(VIIL15)

/. S(‘I“r??o)*d(ﬁ‘ - ‘ / (¥ m)'s

Arguing as in the proof of (VIIL8), for any e, we can find s such that
Jr. V¥ +no| < e and we then deduce (VIIT.14). Thus in B2 (2:0) \ ¥ +10(0%),
(U +1np)«[X] is an integer-multiplicity, rectifiable, holomorphic cycle. Using the

§K¢/ VO 4] -
Ty
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results of Harvey-Shiffman and King ([HS] and [Ki]) we have that there exists
a compact Riemann surface with boundary ¥’ and a holomorphic map ¥’ such
that (U + 19)«[X] = V,[¥]. Therefore (¢ + n)(X) is a holomorphic curve —
with boundary — in C?. We claim that ¥ + 1 is a holomorphic simple cover-
ing of . Indeed letting wy; be the pull-back by ¥ of the symplectic form w in
R? we have [pwy = [; U*w = [ |V¥[* > 7Qrf, because of the monotonicity
formula (zg € Cq \ Cg—1). Let wss be the restriction of wy to ¥'. We have
S5 (W +no) wsy = [(¥ 4 mo)*wo = [ [V (¥ + mo)|?. Because of (VIIL1), the
holomorphic covering ¥ + 79 from X onto Y’ satisfies

/EWE—/E(‘I“FWO)WZ' = 0, (/Zu@) -

Therefore, for rg small enough this covering has to be a simple one and X

(VIIL16)

is a compact Riemann surface. Now W is a J-holomorphic map from a com-
pact Riemann surface X into (B?,.J); it is then smooth and CL B/ is a
J-holomorphic curve.

A. Appendix

LEMMA A.1. Let U be an open subset of R?, let 0 < A\ < 1 and let
(Bfi(zi))ig a covering of U which is locally finite. There exists n € N such
that

(A1) Vz e, card{z'efzzeB,%z (zi)} <N.

Moreover one assumes that

(A.2) Vi, j €, By (2i)) N Br(2) #0 = 1> Arj.
Then there exist § and P € N depending on A only such that

(A.3) Viel, Card {j € I : By,(2;) N B(issy, (2:) 0} < P

Proof of Lemma A.1. We argue by contradiction. Assume there exist
0n, — 0, a sequences of coverings of U, (Bfn(zm)) for i € I satisfying (A.1)

and (A.2) and a sequence of indices i, such that
(A4)

Card{j € I : By, (2jn) N Bys, i, o (Zinn) # 0} — 400 asn— +oo.
After a possible rescaling of the whole covering and a translation we can assume
that 7;, , = 1 and z;, , = 0. Also, after extraction of a subsequence, we can
ensure that there exists A € 9B1(0) such that for any r > 0
(A.5) Card{j € I : By, (2jn) N By(A) #0} — +00  asn — +00.

For a given r and n we take the longest sequence of distinct balls of our covering
B, . (2j,n) for p=0... P, satisfying

i) Brm,n (Zjo,n) = B1(0),
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11) vp S Pn - 17 Brjp,n(szyn) N Brjp+1,n(sz+lyn) 7£ @ )

iii) Vp < P, By, . (2j,n) N Br(A) #0.
It is clear that for a given r, P, — +4o00; indeed if it were not the case, i.e.
P, < P, < 400, this would imply that the minimal radius for the balls of
the covering intersecting B,.(A) is A*. Combining this fact with (A.5) would

contradict (A.1). Therefore we can find r,,, — 400 and n,, — +00 as m — 400
and sequences (B, , ) for 1 <p <@, and for m =0---+ oo such that

i) By, (Zjosn) = B1(0)
(A.6) ii) Vp < Qm-1, Biy, .. (25,m.) N By, o (Zjomn) 0,
(A.7) i)  Vp<Qm,  Br . (2,n,) 0B (A)#0,
)

iv Qm — 00 .

Since A < 7, ., < A7! and since the distance |zj, »,.| is bounded, we can
extract from n,, a subsequence that we still denote n,, such that B, (zj, n,,)
converges to a limiting ball B, _(z1,00) with A <7 oo < AL 2100 <2and A €
By, (#1,00)- This procedure can be iterated and using a diagonal argument
we can assume that

VD EN, Tjn. = Tpoos Zjynm — Zpoo
such that
VpeN, MW <71, <A P |zpe| <2 and A€ B, _(2p00) -
Moreover because of (A.1) we have that

(A.8) VzeR2,  Card {p EN:ze ngm(zppo)} <N.

Because of this latter fact, since A € B, _(zpoo) for all p, it is clear that
Tpoo — 400 as p — +oo. Because of (A.8) again, the number of open balls
B,, _(%pc) containing A is bounded by N and we can therefore forget them
while considering the sequence and assume that

Vp, Ae aszwx(zppo) .

Let £,(A) € S be the unit exterior normal to asz,o@(zp,OO) at A. Let o be
an accumulation unit vector of the sequence t_;:,(A). Given a direction # and an
open disk containing A in its boundary and whose exterior normal at A is given
by ¢ any other open disk containing A in its boundary and whose exterior unit
at A is not —t as a nonempty intersection with that disk. When ngo,m (Zpo,00),
such that £,,(A) # —ts, there exist infinitely many disks B72’p,oo (2p,00) having
nonempty intersections with B?po)m(zpmoo). But then, because of (A.2), that
passes to the limit and all these infinitely many disks have radii which are
bounded from below by positive numbers and this contradicts the fact that
Tpoo — +00 as implied by (A.8). Thus Lemma A.1 is proved. O
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