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Abstract

Let f : M →M be a C2 diffeomorphism of a compact surface. We give a
complete description of the dynamics of any compact invariant set having dom-
inated splitting. In particular, we prove a Spectral Decomposition Theorem
for the limit set L(f) under the assumption of dominated splitting. Moreover,
we describe all the bifurcations that these systems can exhibit and the different
types of dynamics that could follow for small Cr−perturbations.

1. Introduction

In the theory of differentiable dynamics, i.e. the study of the asymptotic
behavior of orbits {fn(x)} when f : M → M is a diffeomorphism of a com-
pact Riemaniann manifold M, one may say that a fundamental problem is to
understand how the dynamics of the tangent map Df controls or determines
the underlying dynamics of f.

So far, this program has been solved for hyperbolic dynamics in the so-
called Spectral Decomposition Theorem, where it is given a satisfactory (com-
plete) description of the dynamics of a system within the assumption that
the tangent map has a hyperbolic structure. More precisely, under the as-
sumption that the tangent bundle over L(f) (the minimum closed invariant
set that contains the ω and α limit set of any orbit) splits into two subbundles,
TL(f)M = Es ⊕ Eu, invariant under Df and vectors in Es are contracted by
positive iteration of the tangent map (the same holding for Eu but under neg-
ative iteration), Newhouse [N1] proved that L(f) can be decomposed into the
disjoint union of finitely compact invariant and transitive sets. Moreover, the
periodic points are dense in L(f) and the asymptotic behavior of any point in
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the manifold is represented by an orbit in L(f). These sets can be regarded as
(the orbit of) a homoclinic class of a hyperbolic periodic point (that is, the clo-
sure of the transversal intersection between the stable and unstable manifold
of a hyperbolic periodic point). Smale’s Ω-Spectral Decomposition Theorem
for Axiom A [S] systems is obtained from the above since in this case the
nonwandering set Ω(f) is equal to the limit set L(f).

There are, basically, two ways to relax hyperbolicity. One, called partial
hyperbolicity, allows the tangent bundle to split into Df -invariant subbundles
TM = Es ⊕ Ec ⊕ Eu, the behavior of vectors in Es, Eu is similar to the
hyperbolic case, but vectors in Ec may be neutral for the action of the tangent
map (see [Sh2], [M2], [BD], [BV] for examples of these systems and [HP],
[PS3] for an overview). And two, non-uniform hyperbolicity (or Pesin theory),
where the tangent bundle splits for points a.e. with respect to some invariant
measure, and vectors are asymptotically contracted or expanded at a rate that
may depend on the base point.

Since the latter case starts on a measure-theoretical setting, one cannot
expect to obtain a description from the topological dynamic point of view.
In the former, there is no general theory regarding its topological dynamic
consequences (although there are many important results from the ergodic
point of view, see for instance [BP], [PuSh], [ABV], [CY]).

There is also another category which includes the partially hyperbolic
systems: dominated splitting. An f -invariant set Λ is said to have dominated
splitting if we can decompose its tangent bundle in two continuous invariant
subbundles TΛM = E ⊕ F, such that:

‖Dfn/E(x)‖‖Df
−n
/F (fn(x))‖ ≤ Cλ

n, for all x ∈ Λ, n ≥ 0

with C > 0 and 0 < λ < 1.
Although partially hyperbolic systems arose in a natural way (time one

maps of Anosov flows, frame flows, group extensions), the concept of dominated
splitting was introduced independently by Mañé, Liao and Pliss, as a first step
in the attempt to prove that structurally stable systems satisfy a hyperbolic
condition on the tangent map. However, during the last decades, there has
been a large amount of research on this subject, mostly from the ergodic point
of view.

A natural question arises: what is the feedback of a system having dom-
inated splitting? In other words, is it possible to describe the dynamics of a
system having dominated splitting? The aim of this paper is to give a positive
answer (as satisfactory as in the hyperbolic case) to this question when M is a
compact surface. We would like to emphasize that, similar to one-dimensional
dynamics, smoothness plays a key role.

We remark that nonhyperbolic periodic points can coexist with the exis-
tence of dominated splitting and this coexistence could be an obstruction to
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understanding the dynamics of a set having dominated splitting. The following
theorem opens the way to bypass this major difficulty.

Theorem A. Let f : M → M be a C2-diffeomorphism of a two dimen-
sional compact riemannian manifold M and let Λ be a compact invariant set
having dominated splitting. Then, there exists an integer N1 > 0 such that any
periodic point p ∈ Λ whose period is greater than N1, is a hyperbolic periodic
point of saddle type.

At this point it is important to recall a breakthrough result from New-
house ([N3]) in the study of the dynamics of surface diffeomorphisms: close
to a diffeomorphism exhibiting a homoclinic tangency (that is, a diffeomor-
phism such that for some hyperbolic periodic point the stable and unstable
manifolds have a non-transverse intersection) there are residual subsets of dif-
feomorphisms exhibiting infinitely many periodic attractors or repeller with
unbounded periods. Theorem A above has an interesting consequence that
can be regarded as a partial converse of Newhouse’s result:

Corollary 1. Let f ∈ Diff2(M2) having infinitely many sinks or sources
with unbounded period. Then, f can be C1-approximated by a diffeomorphism
exhibiting a homoclinic tangency.

The proof of this corollary is an immediate consequence of Theorem A
combined with a result in [PS1] (see also [PS2]); a system that cannot be C1

approximated by another that exhibits a homoclinic tangency has dominated
splitting over the nonwandering set Ω(f).

A second step to understand the dynamics of systems with dominated
splitting is to investigate the case where the closures of the periodic points
have dominated splitting. We denote by Perh(f) the set of hyperbolic periodic
points of saddle type and by PerNh the set of hyperbolic periodic points with
period greater than N .

Theorem B. Let f ∈ Diff2(M2) and assume that Perh(f) has a dominated
splitting. Then, there exists N > 0 such that PerNh (f) can be decomposed into
the disjoint union of finitely many homoclinic classes. Moreover, PerNh (f)
contains at most finitely many nonhyperbolic periodic points and f

/PerNh (f)
is

expansive.

We would like to comment briefly on one of the main ingredients of The-
orem B above. In the hyperbolic case, the description of the dynamics follows
from a fundamental tool: at each point there are transverse invariant man-
ifolds of uniform size and these manifolds have a dynamic meaning (points
in the “stable” one are asymptotic to each other in the future, and points in
the “unstable” one are asymptotic to each other in the past). Under the sole
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assumption of dominated splitting, even if locally invariant manifolds do exist,
they do not have any dynamic meaning at all. However, in the two dimensional
case, using the fact that these locally invariant manifolds are one-dimensional
together with smoothness, we are able to prove that these manifolds already
have a dynamic meaning, perhaps not of uniform size, but enough to proceed
to a description of the dynamics.

The next result gives a global and complete description of the dynamics
when dominated splitting exists on the whole limit set L(f). It represents a
spectral decomposition theorem as in the hyperbolic case.

Spectral Decomposition Theorem. Let f ∈ Diff2(M2) and assume
that L(f) has a dominated splitting. Then L(f) can be decomposed into L(f) =
I ∪ L̃(f) ∪R such that

1. I is a set of periodic points with bounded periods and is contained in
a disjoint union of finitely many normally hyperbolic periodic arcs or
simple closed curves.

2. R is a finite union of normally hyperbolic periodic simple closed curves
supporting an irrational rotation.

3. L̃(f) can be decomposed into a disjoint union of finitely many compact
invariant and transitive sets. The periodic points are dense in L̃(f) and
contain at most finitely many nonhyperbolic periodic points. The (basic)
sets above are the union of finitely many (nontrivial) homoclinic classes.
Furthermore f/L̃(f) is expansive.

Roughly speaking, the above theorem says that the dynamics of a C2 dif-
feomorphism having dominated splitting can be decomposed into two parts:
one where the dynamics consist of periodic and almost periodic motions (I, R)
and the diffeomorphism acts equicontinuously, and another one where the dy-
namics is expansive and similar to the hyperbolic case. Moreover, the set L̃(f)
can be characterized as the set of point in L(f) that can be approximated
by periodic points with unbounded periods. We will make a more precise
statement of the theorem above in Section 4.

One may ask if the above theorem holds if we replace the limit set L(f)
by the non-wandering set Ω(f). The Spectral Decomposition Theorem does
not hold, in general, when Ω(f) is hyperbolic but not equal to the limit set
L(f). However, in [NP] it is proved that if Ω(f) is hyperbolic and f is a
diffeomorphism of a compact surface then Ω(f) = L(f). This also holds in
our case: if Ω(f) has dominated splitting and f is a C2 diffeomorphism of
a compact surface then Ω(f) = L(f) and hence the Spectral Decomposition
Theorem holds for Ω(f) (see §6).

A consequence of our Spectral Decomposition Theorem is that any C2

diffeomorphism with dominated splitting over L(f) with a sequence of periodic
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points with unbounded periods, must exhibit a nontrivial homoclinic class, and
hence its topological entropy is nonzero.

Corollary 2. The topological entropy of a C2 diffeomorphism of a
compact surface having dominated splitting over L(f) and having a sequences
of periodic points with unbounded periods is positive.

Now, we turn our attention to another important property of hyperbolic
sets which is called analytic continuation: if Λ ⊂ Ω(f) is a hyperbolic set then,
for any nearby diffeomorphism g there is a set Λg homeomorphic to Λ and
such that the dynamics of f/Λ and g/Λg are conjugated. We may wonder if
sets having dominated splitting also exhibit an analytic continuation. In the
full generality, the answer is no. For instance, an isolated saddle node fixed
point is a set having dominated splitting, but this point might disappear after
a small perturbation. However, it is also possible to perturb the system in
such a way that the fixed point not only persists but also becomes hyperbolic.
If the set having dominated splitting contains a nontrivial homoclinic class, it
cannot disappear, but may “explode” (see §5). However, we may perturb the
system in such a way that the set has an analytical continuation and becomes
hyperbolic as well. More precisely:

Theorem C. Let f ∈ Diff2(M2) and assume that L(f) has a dominated
splitting and let Λ be a basic piece of the spectral decomposition of L̃(f). Then
there exists a connected open set V ⊂ Diff2(M) such that

1. f ∈ V.

2. For all g ∈ V there is a set Λg ⊂ L̃(g) homeomorphic to Λ such that Λg
is a basic hyperbolic set for g (i.e. a locally maximal transitive hyperbolic
set) and f/Λ and g/Λg are conjugated.

We point out that the continuation of hyperbolic sets can be done through
analytic methods (the implicit function theorem in Banach spaces, see [HPS])
but this is not the case for dominated splitting: we have to understand first
the topological behavior of the initial system and then show that this structure
is “rigid” in the C2-topology.

Note that a fundamental step towards the proof of Theorem C is to show
that the periods of nonhyperbolic periodic points are bounded in a “suitable”
neighborhood of f, i.e., the number N1 in Theorem A can be chosen uniformly
for any appropriate perturbation of f. A remarkable consequence of this fact is
that, in the absence of saddle-node periodic points (but in the presence of other
nonhyperbolic periodic points), there are sequences of f -periodic points with
one (normalized) eigenvalue converging to one and they cannot be perturbed
to obtain a nonhyperbolic periodic point, i.e., they are C2-stably hyperbolic:
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Theorem D. There exist a C2 diffeomorphism f : M →M and a neigh-
borhood U of f in the C2 topology such that f has a sequence of periodic points
pn with unbounded periods and one normalized eigenvalue of pn converging to 1
and any periodic point of g ∈ U of period greater than 2 is hyperbolic.

This theorem implies that the Franks’ lemma in [F], which is extremely
useful in the C1-topology, is no longer valid in the C2-topology (see §5).

In view of Theorem C, we may also ask if L(f) has a hyperbolic analytic
continuation. This fails to be true if f exhibits a simple closed curve supporting
an irrational rotation or if f has infinitely many periodic points with bounded
periods: there is no way to “unfold” an irrational rotation without passing
through other irrational rotations, and there is no way to “unfold” infinitely
many periodic points with bounded periods (except in some very degenerate
situations) without passing through another bifurcation.

Does L̃(f) have a hyperbolic analytic continuation? Even in the hyper-
bolic case this is not true without the no-cycle condition. Thus, if L(f) satisfies
a no-cycle condition (see §6) we get a hyperbolic continuation of L̃(f).

Theorem E. Let f ∈ Diff2(M2) and assume that L(f) has a dominated
splitting and assume that the no-cycle condition holds. Then there exists a
connected open set V ⊂ Diff2(M) such that

1. f ∈ V.

2. For all g ∈ V the set L̃(g) is hyperbolic and f/L̃(f) and g/L̃(g) are
conjugated.

Finally, we will use the theorems above to obtain results regarding the
topological entropy. Although systems with dominated splitting are not stable,
and in a one parameter family many bifurcations may exist, the topological
entropy does not change.

Theorem F. Let U ⊂ Diff∞(M2) be such that for any f ∈ U , Ω(f) has
dominated splitting. Then the topological entropy on U is constant.

By the observation made just after Corollary 1, as a consequence of The-
orem E, we have as a corollary a result proved in [PS2].

Corollary 3. Let f : M →M be a C∞ diffeomorphism such that for any
C∞-neighborhood U of f , the map U 3 g → htop(g) is not constant. Then f

can be C1-approximated by a diffeomorphism exhibiting a homoclinic tangency.

The paper is organized as follows: in section 2 we state some results and
tools that will be used to prove the theorems above; in Section 3 we prove
Theorem A; in Section 4 we prove Theorem B and the Spectral Decomposi-
tion Theorem; Section 5 is devoted to proving Theorem C and D. Finally, in
Section 6, Theorems E and F are proved.
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2. Preliminaries

Let f : M → M be a diffeomorphism of a compact riemannian manifold
M. Recall that a compact f -invariant set Λ is said to have a dominated splitting
if its tangent bundle splits into two Df -invariant subbundles TΛM = E ⊕ F,
and such that:

‖Dfn/E(x)‖‖Df
−n
/F (fn(x))‖ ≤ Cλ

n, for all x ∈ Λ, n ≥ 0

with C > 0 and 0 < λ < 1.
We observe that in the compact invariant subset of Λ where one of the

subbundles is trivial, the other one must be hyperbolic (contracting or expand-
ing) and hence this subset is finite and consist just on periodic attractors or
repeller. In other words, the dominated splitting is interesting when none of
the subbundles are trivial and we shall assume that this is the case through
our paper.

We will assume also that C = 1. It is not a major assumption since we
can replace f by a power of itself and notice that all the theorems that we will
prove, if they are true for a power of f then they are also true for f. We shall
refer λ (in the above definition) as a constant of domination. And through the
paper, M will denote a two dimensional compact Riemannian manifold, i.e., a
compact surface (unless otherwise indicated).

2.1. Sufficient conditions for hyperbolicity. Here we state a slight modifi-
cation of Theorem B of [PS1].

Theorem 2.1. Let f be a C2-diffeomorphism on a compact surface, and
let Λ ⊂ Ω(f) be a compact f -invariant set having a dominated splitting T/ΛM =
E ⊕ F and such that all the periodic points in Λ are hyperbolic. Then, Λ =
Λ1∪Λ2 where Λ1 is a hyperbolic set and Λ2 consists of a finite union of periodic
simple closed curves C1, . . . , Cn, normally hyperbolic and such that fmi : Ci → Ci
is conjugated to an irrational rotation (mi denotes the period of Ci).

The mentioned theorem in [PS1] requires that the periodic points in Λ
are hyperbolic of saddle type. However, this is a superfluous assumptions as
we will see. Denote by P0 the set of periodic attractors and by F0 the set of
periodic repellors. Observe that P0 and F0 are isolated in Λ (since Λ ⊂ Ω(f))
and hence Λ0 = Λ\{P0 ∪ F0} is compact, invariant, contained in Ω(f) and all
the hyperbolic periodic points in Λ0 are hyperbolic of saddle type. Therefore,
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we can apply Theorem B of [PS1] and obtain the desired decomposition for
Λ0 (that is, Λ0 is the union of a hyperbolic set and a finitely many periodic
curves supporting an irrational rotation). It follows that P0 and F0 must be
finite (otherwise all their limit points belong to a hyperbolic set, which is
impossible). Thus, our theorem follows from Theorem B of [PS1].

2.2. Central stable and unstable manifolds I. A fundamental tool used
throughout the paper is the existence of locally invariant manifolds which
already exist under the assumption of dominated splitting. However, we will
need these manifolds to be of class C2. For this purpose, a sufficient condition
is the 2-domination: we say that a compact invariant set Λ having dominated
splitting is 2-dominated if there exist C > 0 and σ < 1 such that

‖Dfn/E(x)‖‖Df
−n
/F (fn(x))‖

2 < Cσn

and
‖Dfn/E(x)‖

2‖Df−nF (fn(x))‖ < Cσn

hold for any point x ∈ Λ and n ≥ 0. The presence of a periodic attractor
or repeller could be an obstruction for the 2-domination. Let explain this.
Consider µ, 0 < µ < λ and assume that a periodic attractor (sink) p has
(normalized) eigenvalues µ and µ2. This periodic attractor may exists in a set
having dominated splitting with λ as a constant of domination. However, if m
is the period of p then

‖Dfm/E(p)‖‖Df
−m
/F (fm(p))‖

2 = 1

and the 2-domination fails.
In order to bypass this possible obstruction, we make the following defini-

tion: given µ, 0 < µ < 1, a hyperbolic periodic point p of period m is a µ-sink
(resp. µ-source) if the modulus of the eigenvalues of Dfmp : TpM → TpM is
less (resp. greater) than µm (resp. µ−m). Notice that µ-sinks or sources are
isolated in the nonwandering set (or in the limit set).

Theorem 2.2. Let f : M → M be a C1 diffeomorphism and Λ be a set
with dominated splitting T/ΛM = E ⊕ F . Then, for any 0 < µ < 1 the set of
µ-sinks in Λ is finite. The same holds for µ-sources.

Proof. Let 0 < µ < 1 and fix γ, µ < γ < 1. Let p be a µ-sink in Λ and
denote its period by m. We claim that there exists pi = f i(p) in the orbit of p
such that

(1) ‖Dfn/F (pi)
‖ ≤ γn, 1 ≤ n ≤ m.

Arguing by contradiction, assume that this is not true. Then for every pi =
f i(p) there exists n(pi), 1 ≤ n(pi) ≤ m such that ‖Dfn(pi)

/F (pi)
‖ > γn(pi). Let
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C = supx∈M{‖Df ix‖ : i = 1, . . . ,m}. Take k0 such that for k ≥ k0 we have

(2)
Cµkm

γm
< γkm

Take k ≥ k0 and consider n1 = n(p), n2 = n(fn1(p)), . . . , ni = n(fn1+···+ni−1(p)).
There is some i so that km ≤ n1 + · · ·+ ni ≤ km+m. Set N = n1 + · · ·+ ni.

Then

‖DfN/F (p)‖= ‖Dfkm/F (p)‖‖Df
N−km
/F (fkm(p))‖

≤Cµkm < γkm+m ≤ γN < ‖DfN/F (p)‖,

a contradiction. This proves our claim. (Notice that, since γ is arbitrary, it
follows that (1) holds for γ = µ, but this is not necessary for our purpose).
Thus, we have proved that if p is a µ-sink, then there is pi in the orbit of
p satisfying (1). We may assume that p = pi. Since m is the period of p it
follows that ‖Dfn/F (p)‖ ≤ γ

n, n ≥ 0. By the domination and since angle(E,F )
is bounded away from zero in Λ, we conclude that there is a constant K such
that

‖Dfnp ‖ ≤ Kγn, n ≥ 0.

Let c > 0 such that γ(1 + c) < 1 and let n0 be such that Kγn0(1 + c)n0 < 1.
Since f is C1 there is some η > 0 such that

(3) if d(f j(x), f j(y)) < η, j = 0, 1, . . . , n− 1 then ‖Dfny ‖ < (1 + c)n‖Dfnx ‖.

Take ε > 0 such that if d(x, y) < ε then d(f j(x), f j(y)) < η, j = 0, 1, . . . , n0−1.
Consider any y ∈ Bε(p). It follows that

‖Dfn0
y ‖ < (1 + c)n‖Dfn0

p ‖ < Kγn0(1 + c)n0 < 1.

Therefore d(fn0(y), fn0(p)) < ε. By (3), using induction we get that ‖Dfny ‖ ≤
Kγn(1 + c)n and d(fn(y), fn(p) < kγn(1 + c)nd(y, p), n ≥ n0. In other words,
Bε(p) is in the basin of attraction of the µ-sink p. Since ε does not depend on
p and different sinks have disjoint basin of attraction, it follows that there can
be only finitely many µ-sinks in Λ.

This theorem is no longer valid if M is an n-dimensional manifold with
n ≥ 3 without supplementary hypotheses. Further details exceed the purpose
of this paper.

The next lemma is an adaptation of Lemma 3.0.3 of [PS1] and in its proof
we shall indicate the main lines; details can be found in the lemma cited above.
For µ, 0 < µ < 1 and Λ a compact invariant set, denote by Pµ(Λ) (Fµ(Λ)) the
set of µ-sinks (resp. µ-sources) in Λ.

Lemma 2.2.1. Let f : M → M be a C1 diffeomorphism and let Λ be a
compact invariant set having a dominated splitting T/ΛM = E⊕F . There exists
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µ, 0 < µ < 1 such that any compact invariant subset Λ0,Λ0 ⊂ Λ\{Pµ(Λ) ∪
Fµ(Λ)} is 2-dominated.

Proof. Since angle(E,F ) > γ > 0 for every point in Λ there exist a
positive constant K such that

‖Dfn(z)‖ ≤ K sup{‖Dfn/E(z)‖, ‖Df
n
/F (z)‖} ≤ K‖Df

n
/F (z)‖

for all z ∈ Λ and for all positive integers n, where the last inequality follows
by the dominated splitting again.

Take σ0, λ < σ0 < 1 and q such that 2Kλq < σ0. Let µ be such that
σ0 < µq.

We now prove, for this choice of µ, and Λ0 as in the statement of the
lemma that the conclusion is true. We shall prove only the first item of the
2-domination, the second one being analogous. It is enough to show the exis-
tence of a positive integer m such that for every x ∈ Λ we have

‖Dfm/E(x)‖‖Df
−m
/F (fm(x))‖

2 <
1
2
.

Now, arguing by contradiction, we get that for each positive integer n there
exists xn ∈ Λ0 such that

‖Df j/E(xn)‖‖Df
−j
/F (f j(xn))‖

2 ≥ 1
2

for all 0 ≤ j ≤ n. We may assume that xn → x for some x ∈ Λ0. For this x,
by the domination and the way we chose q we get

n∏
j=0

‖Df q(f qj(x))‖ ≤ Kn2λqn = 2(Kλq)n < σn0

for all n ≥ 0. Let g = f q. Thus
n∏
j=0

‖Dg(gj(x))‖ ≤ σn0 ∀n ≥ 0

Consider 0 < λ < σ0 < σ1 < σ2 < µq < 1. Then, there exists a sequence of
integers nk →∞ such that, for any k and for every positive n,

‖Dgn(gnk(x))‖ ≤
n∏
j=0

‖Dg(gj(gnk(x)))‖ < σ1
n.

Thus, it can be proved that there exist η > 0, independent of k, such that for
any y ∈ Bη(gnk(x)),

‖Dgn(gnk(x))‖ ≤ σ2
n

holds. Let j0 be such that for every j ≥ j0 we get σ2
j < η

4 . Now, take ni and nl
such that nl−ni > j0 and dist(gnl(x), gni(x)) < η

4 . Setting r = nl−ni, we see
that gr(Bη(gni(x))) ⊂ Bη(gni(x)) and g/Bη(gni (x)) is a contraction. Then there
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is a point p ∈ Bη(gni(x)) which is fixed under gr. Since g = f q we conclude
that p is an attracting fixed point under f qr. Therefore p is a sink, attracting
the point z = gni(x) and so p ∈ Λ0. Moreover

‖Df qrp ‖ = ‖Dgrp‖ ≤ σ2
r < µrq.

Hence p is a µ-sink in Λ0, a contradiction.

Let I1 = (−1, 1) and Iε = (−ε, ε), and denote by Emb2(I1,M) the set of
C2-embeddings of I1 on M. The next result can be found in [HPS].

Lemma 2.2.2. Let f : M → M be a C2 diffeomorphism and let Λ be a
compact invariant set having dominated splitting which is also 2-dominated.
Then, there exist two continuous functions φcs : Λ → Emb2(I1,M) and φcu :
Λ → Emb2(I1,M) such that φcs(x)(0) = φcu(x)(0) = x and if we define
W cs
ε (x) = φcs(x)Iε and W cu

ε (x) = φcu(x)Iε the following properties hold :

a) TxW cs
ε (x) = E(x) and TxW cu

ε (x) = F (x),

b) for all 0 < ε1 < 1 there exist ε2 such that

f(W cs
ε2

(x)) ⊂W cs
ε1

(f(x))

and
f−1(W cu

ε2
(x)) ⊂W cu

ε1
(f−1(x)).

From now on, whenever we have a set Λ as in the Lemma 2.2.2, we shall
assume the functions φcs and φcu to be chosen and fixed. We call the manifold
W cs the (local) center stable manifold and W cu the (local) center unstable
manifold. Observe that property b) means that f(W cs

ε (x)) contains a neigh-
borhood of f(x) in W cs

ε (f(x)) and f−1(W cu
ε (x)) contains a neighborhood of

f−1(x) in W cu
ε (f−1(x)). In particular, we have:

Corollary 2.2.1. Given ε, there exists a number δ = δ(ε) with the fol-
lowing property :

1. If y ∈ W cs
ε (x) and dist(f j(x), f j(y)) ≤ δ for 0 ≤ j ≤ n then f j(y) ∈

W cs
ε (f j(x)) for 0 ≤ j ≤ n.

2. If y ∈W cu
ε (x) and dist(f−j(x), f−j(y)) ≤ δ for 0 ≤ j ≤ n then f−j(y) ∈

W cu
ε (f−j(x)) for 0 ≤ j ≤ n.

Another consequence is Corollary 3.2 of [PS1] to be used later and we
state it here for the sake of completeness.

Corollary 2.2.2. Let Λ be as in Lemma 2.2.2 and let γ, 0 < γ < 1.
Then, there exists ε = ε(γ) such that for any x ∈ Λ satisfying

‖Df−n/F (x)‖ ≤ γ
n, ∀n ≥ 0
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then, the length
`(f−n(W cu

ε (x)))→n 0

i.e., the central unstable manifold of size ε is in fact an unstable manifold.

A fundamental fact that we will use, regarding the C2 smoothness of the
central manifolds is the following lemma, which is classical in one dimensional
dynamics (see for example [dMS]). We will state it for the central unstable
manifolds. A similar result holds for the central stable ones. Note that the
center manifolds vary continuously in the C2 topology and hence there is a
uniform Lipschitz constant K0 of log(Df) along these manifolds. If J is an
arc, i.e., an embedding of the unit interval, we will denote by `(J) its length.

Lemma 2.2.3. There exists K0 such that for all x ∈ Λ and any arc J ⊂
W cu
ε (x) such that, if f−j(J) ⊂W cu

ε (f−j(x)) for 0 ≤ j ≤ n then

1.
‖Df−n

/F̃ (y)
‖

‖Df−n
/F̃ (z)

‖ ≤ exp(K0
∑n−1

j=0 `(f
−j(J))); y, z ∈ J , F̃ (y) = TyJ , F̃ (z) = TzJ.

2. ‖Df−n
/F̃ (y)

‖ ≤ `(f−n(J))
`(J) exp(K0

∑n−1
j=0 `(f

−j(J))).

We end this section making some comments about sets having dominated
splitting (for a more precise discussion see the beginning of §3.2 of [PS1]).
Assume that Λ is a set having dominated splitting. Similar to the hyperbolic
case, we can find a family of continuous cone fields (central unstable and central
stable cone fields) with the property that the diffeomorphism leaves these cone
fields invariant (indeed, the central unstable cones are mapped strictly into
them in the future, the same for the central stable ones in the past), but without
the property of expansion and contraction of vectors. Nevertheless, these cone
fields can be continuously extended to a neighborhood of Λ having the same
property where it makes sense. We will say that an arc in this neighborhood
is transversal to the E-direction (resp. F -transversal) if the tangent space at
any point lies in the central unstable (resp. stable) cone field. Finally, since for
x ∈ Λ, the tangent space at x of the central unstable (resp. stable) manifold
is F (resp. E), there is some ε0 (fixed from now on) such that W cu

ε0
(x) (resp.

W cs
ε0

(x)) is an arc transversal to the E- direction (resp. F -direction).

2.3. Boxes and distortion. Throughout this section Λ denotes a compact
invariant set having dominated splitting and it is 2-dominated.

Definition 2.3.1. Boxes. A box B is a (small) open rectangle such that
B ∩ Λ 6= ∅ having the boundary transversal to the E and F -direction. More
precisely

B = int(h([−1, 1]2))
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where h : [−1, 1]2 → M is a diffeomorphism onto its image such that if we
define the central stable boundary as

∂cs(B) = h({−1, 1} × [−1, 1]),

we require that the two components (arcs) of it are transversal to the
E-direction. For the central unstable boundary

∂cu(B) = h([−1, 1]× {−1, 1})

we require transversality to the F -direction. The axes of the box are the arcs
h([−1, 1]× {0}) and h({0} × [−1, 1]).

A vertical strip is a subrectangle S ⊂ B such that ∂cu(S) ⊂ ∂cu(B) (we do
not require that S ∩ Λ 6= ∅).

Definition 2.3.2. Subboxes. We say that B′ ⊂ B is a cu-subbox if it is a
box and ∂cu(B′) ⊂ ∂cu(B). In a similar way we define cs-subboxes.

In the sequel we assume that the diameter of a box B is much smaller
than ε0 so that if y ∈ B ∩ Λ then any component of W cu

ε0
(y) − {y} intersects

the boundary of B. Now, we will introduce some particular boxes exhibiting a
kind of Markov property.

Definition 2.3.3. Adapted boxes. Let B be a box. For y ∈ B ∩ Λ we
denote by Jcu

B (y) the connected component of W cu
ε0

(y)∩B that contains y. We
say that a box B is ε-cu-adapted (or adapted only) if for every y ∈ B ∩ Λ the
following conditions are satisfied:

1. Jcu
B (y) ∩ ∂cs(B) = ∅,

2. `(f−n(Jcu
B (y))) ≤ ε for all n ≥ 0,

3. f−n(Jcu
B (y)) ∩B = ∅ or f−n(Jcu

B (y)) ⊂ B for all n ≥ 0.

Definition 2.3.4. Returns. Let B be an adapted box. A map ψ : S → B,
where S ⊂ B, is called a cu-return of B associated to Λ if:

• S ∩ Λ 6= ∅,
• there exist k > 0 such that ψ = f−k/S ,

• ψ(S) = f−k(S) is a connected component of f−k(B) ∩B,

• f−i(y) /∈ B, 1 ≤ i < k for any y ∈ S ∩ Λ.

Let ψ : S → B be a cu-return, ψ = f−k/S and let y ∈ S ∩ Λ. Since B is
adapted, it follows that f−i(Jcu

B (y)) ∩B = ∅, 1 ≤ i < k and f−k(Jcu
B (y)) ⊂ B.

Thus, Jcu
B (y) ⊂ S.

We will denote the set of cu-returns of B associated to Λ by Rcu(B,Λ).
Moreover, we say that a return ψ ∈ Rcu(B,Λ), ψ : S → B is hyperbolic if we
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have |ψ′| < ξ < 1 , that is, if |ψ′| := ‖Df−k
/F̃ (z)

‖ < ξ for all z ∈ Jcu
B (y), y ∈ S∩Λ,

where ψ = f−k/S and F̃ (z) = TzJ
cu
B (y) = TzW

cu
ε0

(y).
For our purposes, we need a refinement of the definition of an adapted

box. Before doing so, let us make an observation that may help the reader
to understand the following definition. If B is an adapted box such that Λ ∩
∂cs(B) = ∅ then we may find a cu-subbox B′ so that B −B′ = S1 ∪ S2 where
S1, S2 are vertical strips with Si ∩ Λ = ∅, i = 1, 2. However the condition
Λ ∩ ∂cs(B) = ∅ is not always possible (for instance, if Λ = M).

Definition 2.3.5. Well adapted boxes. Let B be an adapted box. We say
that B is well adapted if there exist a cu-subbox B′ and two disjoint vertical
strips S1, S2, such that

B −B′ = S1 ∪ S2

where S1, S2 satisfy either

a) Si ∩ Λ = ∅ or

b) Si is a domain of a cu-return ψi ∈ R(B,Λ) and ψi(Si) is a cs-subbox.

Moreover, if ki is such that ψi = f−ki/Si then we require that f−j(Si)∩B = ∅
for 1 ≤ j < ki.

At some point we will have to compare the volume of a box, and the length
of the axis. And this is well performed if we have some kind of “distortion”
properties.

Definition 2.3.6. Distortion. We say that a box B has distortion (or cu-
distortion) C if for any two arcs, J1, J2, in B transversal to the E-direction
whose endpoints are in ∂cu(B), the following holds:

1
C
≤ `(J1)
`(J2)

≤ C.

Remark 2.3.1. If an adapted box has distortion C, then, for any y, z ∈
B ∩ Λ,

1
C
≤
`(Jcu

B (z))
`(Jcu

B (y))
≤ C.

Notice that, in order to guarantee distortion C on a box B it is sufficient
to find a C1 foliation close to the E-direction in the box, such that, for any
two arcs J1, J2 (taken as in the definition of distortion),

1
C
≤ ‖Π′‖ ≤ C

holds, where Π = Π(J1, J2) is the projection along the foliation between these
arcs.
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2.4. Denjoy property. Let Λ be a set with dominated splitting, and let V
be an admissible neighborhood of Λ; that is, any compact invariant set in V

has dominated splitting. Take U , another neighborhood of Λ, Λ ⊂ U ⊂ U ⊂ V.
Denote by Λ1 = ∩n∈Zf

n(U) the maximal invariant set in U (the closure of U)
and by Λ+

1 = ∩n≥0f
−n(U) the set of points which remains in U in the future

and by Λ−1 = ∩n≥0f
n(U) the set of points which remains in U in the past.

Notice that Λ1 has a dominated splitting TΛ1 = E ⊕ F since V is admissible.
Moreover, for every point x ∈ Λ+

1 we have a uniquely determined E-direction.
Recall that an open arc I ⊂ M means an embedding of the real line (or the
open unit interval) in M and `(I) denotes its length. A simple closed curve
S ⊂ M will mean an embedding of the circle S1 in M . The ω-limit set of an
arc I, ω(I), is the union of the ω-limit set of any point in I.

Definition 2.4.1. We say that an open C2 arc I in M is a δ-E-arc if the
next two conditions hold:

1. I ⊂ Λ+
1 and `(fn(I)) ≤ δ for all n ≥ 0.

2. fn(I) is always transversal to the E-direction.

In an analogous way we define δ-F -arc.
In order to prove dynamics properties on the central manifolds, we recall

Proposition 3.1 from [PS1]. Although items 2a and 2b are not included in the
original statement, they are consequences of the proof of the cited proposition.
Before we state it, let us say that a compact arc J ⊂ Λ+

1 is E-normally
hyperbolic if it is transversal to the E-direction and moreover, for all z ∈ J we
have that ‖DfnE(z)‖ ≤ Cγn for some 0 < γ < 1 and all n ≥ 0. In this case, for
all z ∈ J there is stable manifold W s(z) which is tangent to E(z). We define
the basin of attraction of J as ∪z∈JW s(z). Notice that if J is periodic, i.e.
fm(J ) ⊂ J for some positive integer m, then the only non-wandering points
in the interior of its basin of attraction are just the periodic points in J .

Theorem 2.3 (Denjoy’s property). There exists δ0(≤ ε0) such that if I
is a δ-E-arc with δ ≤ δ0, then one of the following properties holds:

1. ω(I) is a periodic simple closed curve C normally hyperbolic and fm/C : C →
C (where m is the period of C) is conjugated to an irrational rotation,

2. ω(I) ⊂ Per(f/V ) where Per(f/V ) is the set of the periodic points of f
in V . More precisely : either

(a) There is a periodic closed arc J E-normally hyperbolic and I is in
its basin of attraction or

(b) ω(I) is a sink or a saddle-node periodic point.
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Remark 2.4.1. For future purposes, let us remark that V can be chosen so
small such that for any g in a suitable neighborhood U of f the set ∩n∈Zg

n(U)
has dominated splitting and the same family of cone fields is appropriate for
g ∈ U . Then, the constant δ0 in Theorem 2.3 can be chosen uniformly on U .

Note. In the sequel we say that a set Λ does not have a closed curve
supporting an irrational rotation if there is no (periodic) simple closed curve
in Λ normally hyperbolic C such that fm/C : C → C (where m is the period of C)
is conjugated to an irrational rotation.

3. Proof of Theorem A

Let us start to prove Theorem A. Arguing by contradiction, assume that
the conclusion of Theorem A is not true. Then, there exists a sequence pn
of periodic points whose periods are unbounded and they are not hyperbolic
periodic points of saddle type. Let Λ0 be the set of limit points of the orbits
of the points pn, i.e.:

Λ0 = ∩m≥0∪n≥mO(pn).

This set is compact invariant and, since it is a subset of Λ, has a dominated
splitting and Λ0 ⊂ Ω(f) holds.

Assume first that either all the periodic points in Λ0 are hyperbolic or Λ0

does not contain any periodic point at all. Then, by Theorem 2.1, we conclude
that Λ0 is a union of a hyperbolic set and a finite union of periodic simple closed
curves normally hyperbolic. Since given a neighborhood of Λ0 there exists n0

such that, for any n ≥ n0, the orbit of pn is contained in this neighborhood,
we get a contradiction. In fact, the orbits of pn cannot accumulate on the
periodic simple closed curves since they are normally hyperbolic (attracting or
repelling curves). Thus, Λ0 is a hyperbolic set and so the maximal invariant
set in an admissible compact neighborhood of Λ0 is hyperbolic as well. In
particular, for sufficient large n, pn lies on this maximal invariant set and so
it must be a hyperbolic periodic point of saddle type, a contradiction, and so
our assumption is false.

Therefore, Λ0 must contain a nonhyperbolic periodic point p, and the
orbits of a subsequence of {pn} accumulate on p with unbounded periods.
This contradicts the following theorem:

Theorem 3.1. Let f be a C2 diffeomorphism of a compact surface M

and Λ ⊂ Ω(f) be a compact set having a dominated splitting. Let p ∈ Λ be a
nonhyperbolic periodic point and denote by Np its period. Then, there exists a
neighborhood Up of p such that any periodic point q ∈ Λ with period greater than
2Np and whose orbit intersects Up is a hyperbolic periodic point of saddle type.
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Summarizing, the proof of Theorem A is reduced to the proof of the
theorem above, which is postponed to Section 3.4. Nevertheless, in the next
section we will give a rough outline of it.

3.1. Idea of the proof of Theorem 3.1. Let p be a nonhyperbolic periodic
point and q a periodic point whose orbit goes through a very small neighbor-
hood of p. Moreover, assume that p and q belong to Λ. We would like to show
that q is a hyperbolic periodic point of saddle type, that is ||Dfnq|Fq || > 1 and
||Dfnq|Eq || < 1 where nq is the period of q.

The idea is to split the orbit of q into pieces where either is outside the
neighborhood of p or inside of it.

On one hand, we show that outside any neighborhood of p, the derivative
along the F -direction for any trajectory is uniformly bounded away from zero;
i.e., ||Dfn/Fx || > c > 0 for f i(x) /∈ Up, i = 1, . . . , n (notice that this does not
contradict that q might be a periodic attractor).

On the other hand, when a trajectory is going through a tiny neighborhood
of p, it not only does not loose expansion (although the derivative of p along the
F−direction might be one) but it has a good expansion along the F−direction
from the first time that the point goes into Up until the last time that remains
in it (even if the exponential rate is close to one); i.e., for x such that f(x) /∈ Up,
x, . . . , f−n(x) ∈ Up and f−(n+1)(x) /∈ Up then ||Dfn|Ff−n(x)

|| > 2/c.
To explain the latter, we first consider a small central unstable segment

J containing x. Observe that since a long trajectory of x is inside Up, then
J is close to the central unstable manifold of p. We consider a segment I in
a fundamental domain of the central unstable manifold of p, obtained as the
“projection of J on the central unstable manifold of p along the central stable
foliation”. We show that the lengths of f−k(I) and f−k(J) are uniformly
comparable for any 1 ≤ k ≤ n and we conclude that

‖Df−n/F (x)‖ ≤
`(f−n(J))
`(J)

exp(K0

n−1∑
j=0

`(f−j(J)))

≈ `(f−n(I))
`(I)

exp(K0

n−1∑
j=0

`(f−j(I))) ≤ `(f−n(I))
`(I)

exp(K0`(W cu
ε (p))).

For the first part, we will also use an argument of summability, more
precisely, showing that there is a uniform constant K such that for any x

verifying f−j(x) ∈ Up, j = 0, 1, . . . , n, there is a central unstable segment J
containing x with the property that

∑n
j=0 `(f

−j(J)) < K. This is enough to
find a uniform lower bound for the derivative along the F -direction.

To develop these ideas we need to understand first the structure of the
nonhyperbolic periodic points in a set having dominated splitting and the



692 ENRIQUE R. PUJALS AND MART́ıN SAMBARINO

dynamic behavior of the central manifolds of points nearby. This will be done
in the next two sections before giving the complete proof of Theorem 3.1.

3.2. Nonhyperbolic periodic points. Recall that in the case of sets having
dominated splitting, we may have to deal with nonhyperbolic periodic points.
However, due to the dominated splitting, at least one eigenvalue of the periodic
point has modulus far from one. Hence, a nonhyperbolic periodic point in a set
with dominated splitting has only one eigenvalue with modulus one (and so it is
1 or −1). We will say that a nonhyperbolic periodic point is E-nonhyperbolic
(resp. F -nonhyperbolic) if the eigenspace associated to the eigenvalue with
modulus 1 is the E-space (resp. F -space).

Notice that if p is an F -nonhyperbolic periodic point then, for some ε,
W cs
ε = W ss

ε ; i.e., the local central stable manifold coincides with the local
strong stable manifold. Analogously, if p is an E-nonhyperbolic periodic point
then, for some ε, W cu

ε = W uu
ε , i.e., the local central unstable manifold coincides

with the local strong unstable manifold.
Let p be an F -nonhyperbolic fixed (periodic of period m) point and con-

sider the following statement: there exists some ε1 such that for any ε < ε1

there exists γ such that f−n(W cu
γ (p)) ⊂W cu

ε (p) ∀n ≥ 0.
In case this statement holds then, either for some γ any point in W cu

γ (p)
converges to p by backward iterates or for any γ this does not happen. In the
former, W cu

γ (p) is in fact an unstable manifold. In the latter, if for some γ there
is a component ofW cu

γ (p)−{p} such that any point in this component converges
to p by backward iterates, then we conclude that points in one component of
W cu
γ converge to p by backward iterates and on the other component there is

a sequence of fixed (periodic of period m) points converging to p. If for any
γ and any component of W cu

γ there are points that do not converge to p by
backward iterates, then in both components there is a sequence of fixed or
2-periodic (periodic with period m or 2m) points converging to p.

On the other hand, if the statement above does not hold, we may ask
if it is true, replacing W cu

γ by a component of W cu
γ − {p}. If it is true for

one component, we may conclude on this component that either any point
converges by backward iterates to p or there is a sequence of fixed (periodic of
period m) points converging to p. Notice that on the other component, points
must converge to p in the future. Now, if the statement is not true for any
component, then any point in a neighborhood converges to p in the future.
Thus, we have proved the following lemma (see also §§3.3 and 4.1).

Lemma 3.2.1. Let p be an F -nonhyperbolic periodic point. Then one and
only one of the following situations holds:
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1. For some ε > 0 and any x ∈ W cu
ε (p), f−nmp(x) →n→∞ p holds, where

mp is the period of p (i.e. W cu
ε is an unstable manifold). This point will

be called a periodic point of saddle-type.

2. For some ε > 0 and any x ∈ W cu
ε (p), fnmp(x) →n→∞ p holds, where

mp is the period of p (i.e. W cu
ε is a stable manifold). This point will be

called a periodic point of sink-type.

3. For some ε > 0, on one component of W cu
ε (p) − {p} we have f−nmp(x)

→n→∞ p, where mp is the period of p, and on the other one either there
is sequence of periodic points of some period other than p converging to
p or a point in this component converges to p by forward iterates. This
will be called an F -saddle-node-type periodic point.

4. Either on one component there is a sequence of periodic points converging
to p and points on the other one converging to p in the future, or in
both components there is sequence of periodic points converging to p (the
periods are, in this case, equal to or double the period of p). This will be
called a sink-node-type periodic point.

We get the same result for an E-nonhyperbolic periodic point.

Lemma 3.2.2. Let p be an E-nonhyperbolic fixed point. Then one and
only one of the following situation holds:

1. For some ε > 0 and any x ∈W cs
ε (p), fnmp(x)→n→∞ p holds, where mp

is the period of p (i.e. W cs
ε is an unstable manifold). This point will be

called a periodic point of saddle-type.

2. For some ε > 0 and any x ∈ W cs
ε (p), f−nmp(x) →n→∞ p holds, where

mp is the period of p (i.e. W cs
ε is an unstable manifold). This point will

be called a periodic point of source-type.

3. For some ε > 0, on one component of W cs
ε (p) − {p} we have fnmp(x)

→n→∞ p, where mp is the period of p, and on the other one either there
is sequence of periodic points of some period other than p converging to
p or a point in this component converges to p by forward iterates. This
will be called an E-saddle-node-type periodic point.

4. Either on one component there is a sequence of periodic points converging
to p and points on the other one converging to p in the past, or in both
components there is sequence of periodic points converging to p. This will
be called a source-node-type periodic point.

Corollary 3.2.1. Let p be a nonhyperbolic periodic point. Then,



694 ENRIQUE R. PUJALS AND MART́ıN SAMBARINO

1. If p is an F -saddle-node (resp. E-saddle node) then, for any small ball
B(p), any point in one component of B(p)\W ss

loc(p) (resp. B(p)\W uu
loc(p))

converges in the future (resp. in the past) to p or to a periodic point with
the same period as p. Moreover, given m, if the ball B(p) is small enough,
any periodic point in the other component has period greater than m and
the orbit must leave the ball B(p).

2. If p is sink or sink-node-type (resp. source or source-node type) then,
any point in a small neighborhood B(p) converges in the future (resp. in
the past) to p or to a periodic point with either the same period as p or
twice p.

3. If p is of saddle type then, given m there is a small neighborhood of p such
that any periodic point in this neighborhood has period greater than m.

3.3. Central stable and unstable manifolds II. In this section we study
the dynamic behavior of the central manifolds of points in a set Λ (having
dominated splitting) near periodic points.

Definition 3.3.1. Boxes around periodic points. Let p ∈ Λ be a periodic
point and let δs < δ0, δu < δ0 be given. A box around p is a box (see Definition
2.3.1) with p in its interior and axis W cu

δu (p) and W cs
δs (p) (and small enough so

that Corollary 3.2.1 applies with m twice the period of p).

We call branch a component of W cj
δj(p)(p) − {p}, j = u, s. This branch

divides the box B(δs,δu)(p) into four quadrants Bi
(δs,δu), 1 ≤ i ≤ 4. A quadrant

is said to be nonisolated (with respect to Λ) if there are points of Λ in this
quadrant that are either non-periodic or periodic points with period greater
than 2Np where Np is the period of p. In particular the central stable branch
and the central unstable branch bounding these quadrants are contained in the
stable manifold and in the unstable manifold respectively of p (even if p is a
nonhyperbolic periodic point).

For any y ∈ Bi
(δs,δu)(p)∩Λ, set Jcu,i

δu = Jcu
Bi(δs,δu)

and Jcs,i
δs = Jcs

Bi(δs,δu)
. Now,

using Theorem 2.3, we will prove that these central unstable (stable) arcs
defined previously, do not increase the size by negative (positive) iteration.

Lemma 3.3.1. Let Λ ⊂ Ω(f) be a compact set having dominated splitting
and 2-dominated without closed curves supporting irrational rotations and let
p ∈ Λ be a periodic point. Let B(δs,δu)(p) be as above, and let Bi

(δs,δu)(p) be a
nonisolated quadrant.

Then, for any ε, 0 < ε < δ0, there is δu∗ = δu∗ (ε) < δu such that for any
x ∈ Bi

(δs,δu∗ )(p) ∩ Λ different from p

f−n(Jcu,i
δu∗

(x)) ⊂W cu
ε (f−n(x))
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holds for any n ≥ 0. We get a similar statement for the central stable manifolds:
more precisely , for any ε > 0, there is δs∗ = δs∗(ε) < δs such that for any
x ∈ Bi

(δs∗,δ
u)(p) ∩ Λ different from p

fn(Jcs,i
δs∗

(x)) ⊂W cs
ε (fn(x))

holds for any n ≥ 0.

Proof. We shall prove the lemma only for the central unstable manifolds.
The case for central stable is similar. For convenience, we will forget the index
i in Jcu,i.

Assume that the lemma is not true. Then, setting δ = δ(ε) from Corollary
2.2.1 there exist sequences γn → 0, xn ∈ Bi

(δs,γn) ∩Λ, and mn →∞ such that,
for 0 ≤ j ≤ mn,

`(f−j(Jcu
γn(xn))) ≤ δ

and
`(f−mn(Jcu

γn(xn))) = δ.

Letting In = f−mn(Jcu
γn(xn)) we can assume (taking a subsequence if nec-

essary) that In → I and f−mn(xn)→ z, z ∈ Λ, z ∈ I (the closure of I).
Now, we have that `(fn(I)) ≤ δ for all positive n, and since I ⊂ W cu

ε0
(z),

we conclude that I is a δ-E-arc. From Theorem 2.3 ω(I) is a periodic orbit q
(a sink or a saddle-node) or I is in the basin of an invariant segment J .

We have two possibilities, either z is an interior point of I or it is not. In
the former we get that, for large n, xn is a nonwandering point if and only if
xn is the periodic point q or is a periodic point in J . Since γn → 0 we get that
dist(xn,W cs

δs (p)) → 0. If xn = q then we conclude that q ∈ W cs
δs (p) and hence

xn = q = p, a contradiction. On the other hand, if xn is a periodic point in
J , then we also conclude that p ∈ J . This is a contradiction, because xn ∈ J
and on the other hand xn belongs to a nonisolated quadrant.

If z is in the boundary of I, we get that either z ∈W s(q1) or z ∈W s(q2)
where q1 and q2 are the periodic points in the boundaries of J . Assume that
z ∈W s(q1). In case

f−mn(Jcu
γn(xn)) ∩W s(q1) 6= ∅

we get, since xn ∈ Jcu
γn(xn) = fmn(f−mn(Jcu

γn(xn))), that xn → q1 and so q1 = p.

But then Jcu
γn(xn) ∩W cs(p) 6= ∅ which contradicts the definition of Jcu.

Finally, if

f−mn(Jcu
γn(xn)) ∩W s(q1) = ∅

then, ω(f−mn(xn)) is a point in J . Thus, xn is a nonwandering point if and
only if it is a periodic point of J . As we showed above, this is a contradiction.
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Remark 3.3.1. As a consequence of the previous statements, by [HPS],
we get coherence inside each nonisolated quadrant of B(δs,δu)(p), that is, the
central unstable manifolds either are disjoint or coincide.

3.4. Proof of Theorem 3.1. Let p ∈ Λ be a periodic point. We will
prove Theorem 3.1 by contradiction. Assume then that the conclusion of the
theorem is false, that is, there exists a sequence of periodic points {qn} ⊂ Λ
accumulating at p whose periods increase to infinity such that they are not
hyperbolic of saddle type; i.e., either

‖Df−mn

/F (qn)‖ ≥ 1 or ‖Dfmn

/E(qn)‖ ≥ 1

where mn is the period of qn. Let us assume that

‖Df−mn

/F (qn)‖ ≥ 1

holds for any n. We will show that is not the case for sufficiently large n,

leading to a contradiction.
There is no loss of generality if we assume that p is a fixed point and that

the eigenvalues of Dfp are positive. Consider

Λ0 = {O(qn) : n ≥ 0}

the subset of Λ which is the closure of the orbits of qn. There is also no loss of
generality if we assume that Λ = Λ0 and so Λ does not contains closed curves
supporting an irrational rotation. Moreover, using Theorem 2.2 and Lemma
2.2.1, we may assume that Λ = Λ0 is 2-dominated.

Let B(δs,δu)(p) be a box and let Bi be a nonisolated quadrant, that is
O(qn)∩Bi 6= ∅ for each n (take a subsequence if necessary). This quadrant Bi

is determined by branches of W cs
δs (p) and W cu

δu (p). We denote these branches
by W cs,+

δs (p) and W cu,+
δu (p), and order them in some way (since they are arcs).

Let δs∗ < δs be such that
`(fn(Jcs

δs∗
)) ≤ δs/2

for n ≥ 0 (see lemma 3.3.1). Let x ∈W cs,+
δs∗

(p)−{p} be an accumulation point
of the orbits of qn.

Lemma 3.4.1. Let x ∈ W cs,+
δs∗

be as above and let ε > 0 be given. Then,
there exists a well ε-adapted box B = B(x) such that

1. x belongs to a component of ∂cu(B(x)) which is also contained in a fun-
damental domain of W cs

δs∗
(p).

2. For any large n, the orbits of qn have nonempty intersection with B(x).

Proof. Take δu∗ = δu∗ (ε) from Lemma 3.3.1; i.e.

`(f−n(Jcu
δu∗

)) ≤ ε
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holds for n ≥ 0. Take qn1 and qn2 such that z1 < x < z2 where zi, i = 1, 2 is
the endpoint of Jcu

δu∗
(qni) that belongs to W cs,+

δs∗
(p). These periodic points can

be taken such that the points between z1 and z2 (denote this arc by J(z1,z2))
are contained in a fundamental domain of W cs

δs∗
(p). Let mi be the period of qni .

Take d > 0 such that

dist(f−n(Jcu
δu∗

(qni)), J(z1,z2)) > d for 0 < n 6= kmi, i = 1, 2 k = 1, 2, . . . .

Take some periodic point q = qnk ∈ B(δ∗s ,δ
u
∗ )(p) such that, if we consider

the box B bounded by J(z1,z2), J
cu
δu∗

(qn1), Jcu
δu∗

(qn2) and Jcs
δs∗

(q), then
• dist(z, J(z1,z2)) < d for any point z in this box B.

• There are no points of the orbit of q in B.

• W cs,+
δs∗

(p) ∩B = ∅.

Notice that we may take the point q belonging to the boundary of B. We
denote by ∂cu

q B the component of the cu-boundary of B that contains q. By
the definition of B, it follows that ∂cu

q B ⊂ Jcs
δs∗

(q). We prove that this box is
ε-adapted. Condition 1) of the definition of ε-adapted boxes is already satisfied
by Remark 3.3.1 and condition 2) holds by the selection of δu∗ . Thus, we only
have to check condition 3) of this definition. Let y ∈ Λ ∩ B and assume
that for some n > 0 we have that f−n(Jcu

B (y)) ∩ B 6= ∅. We must prove that
f−n(Jcu

B (y)) ⊂ B. Arguing by contradiction, assume that this is not the case.
Then, by the coherence of the local central manifolds within B(δs∗,δ

u
∗ )(p) we

conclude that

f−n(Jcu
B (y)) ∩ J(z1,z2) 6= ∅ or f−n(Jcu

B (y)) ∩ ∂cu
q B 6= ∅.

In the former, set z = f−n(Jcu
B (y)) ∩ J(z1,z2). Now, fn(z) ∈ Jcu

B (y) ⊂ B

and, on the other hand, since z ∈ J(z1,z2) ⊂ W cs,+
δs∗

(p), we conclude that

also fn(z) ∈ W cs,+
δs∗

(p), a contradiction to the definition of B. In the latter,
that is, if f−n(Jcu

B (y)) ∩ ∂cu
q B 6= ∅, then fn(∂cu

q B) ∩ B 6= ∅ and we claim
that fn(∂cu

q B) ⊂ B, leading to a contradiction because, if this is the case,
fn(q) ∈ B; that is, there are points of the orbit of q in B. So, let us prove the
claim. Arguing by contradiction, assume that fn(∂cu

q B) is not a subset of B.
This implies that fn(∂cu

q B)∩Jcu
δu∗

(qni) 6= ∅ for i = 1 or 2, (say i = 1.) Therefore,
f−n(Jcu

δu∗
(qn1)) ∩ B 6= ∅, and in particular we have n 6= km1 k = 1, 2, . . . ( m1

is the period of qn1). This contradicts the election of d and we have proved the
claim. This finishes the proof that B is ε-adapted. Moreover, since the peri-
odic points qn accumulate at x we also have that for any large n, this periodic
point intersects the box B.

However, this box may fail to be well-adapted. In this case, we will find
a cu-subbox satisfying the thesis of the lemma.

Order the arc J(z1,z2) in some way. Consider the map Π : B ∩Λ→ J(z1,z2)

where Π(z) is the endpoint of Jcu
B (z) that belongs to J(z1,z2). Let H = Π(B∩Λ).
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We claim that x is not a boundary point of a component of the interior of H.
Arguing by contradiction, assume that there is a component of the interior of
H, say l, so that x is a boundary point of it. Let qn be a periodic point so
that Π(qn) ∈ l and denote by l+ the arc whose endpoints are Π(qn) and x. Let
W = W cs

ε (qn)∩ {∪z∈Π−1(l+)J
cu
B (z)}. Let k be the double of the period of qn so

that fk(W )∩W 6= ∅. We have three possibilities: W ⊂ fk(W ), fk(W ) ⊂W or
fk(W ) = W. In the first two it is not difficult to see that we get a contradiction,
indeed it follows that x is an interior point of H. In case fk(W ) = W we get a
contradiction as follows: consider the continuous monotone map P : l+ → l+

by P (z) = Π(f−k(wz)) where wz is some point in Π−1(z). Since B is adapted,
P (z) does not depend on the election of wz and hence P is well defined. But P
cannot be the identity: otherwise the periods of the periodic points in Π−1(l+)
are uniformly bounded (recall that Λ = {O(qn) : n ≥ 0}). On the other hand,
if P is not the identity, there is a fixed point of P , say y, attracting some
subarc of l+ containing y in its boundary. However there is a periodic point
in B ∩Λ, say q̄, such that Π(q̄) belongs to the interior of this subarc; let nq̄ be
the period of q̄. We get a contradiction since Π(q̄) is fixed by Pnq̄ and on the
other hand must converge to y under iteration of P . The proof of our claim is
complete.

Now, if x is not an interior point of H it is not difficult to find two strips
S1, S2 to the left and to the right of x such that Si ∩ Λ = ∅, i = 1, 2, and we
find in this way a well-adapted cu-subbox of B. In case x is an interior point
of H (taking a subbox if necessary) we may assume without loss of generality
that H = J(z1,z2). It is not difficult to find two periodic points q̂, q̃ ∈ B ∩ Λ
(they might be in the same orbit) in such a way that Π(q̂) < x < Π(q̃) and
for any other point y ∈ B ∩ (O(q̂) ∪ O(q̃)) we have either Π(y) < Π(q̂) or
Π(q̃) < Π(y). The subbox B̂ of B whose central stable boundary are the arcs
Jcu
B (q̂) and Jcu

B (q̃) is well adapted. To prove it, denote Jcs
1 = W cs

ε (q̂) ∩ B̂ and
let k0 = min{j ≥ 1 : f j(Jcs

1 )∩ B̂ 6= ∅}. Denote by S1 the connected component
of fk0(B̂) ∩ B̂ that contains fk0(Jcs

1 ). We will show that S1 is the domain
of a return on the condition of a well-adapted box, by the way in which we
choose the points q̂, q̃ and also that B, B̂ are cu-adapted. We conclude that
one endpoint of fk0(Jcs

1 ) belongs to the central stable boundary of B̂. On the
other hand, it is not difficult to see that

S1 =
⋃
{Jcu

B̂
(z) : z ∈ B̂ ∩ Λ, Jcu

B̂
(z) ∩ fk0(Jcs

1 ) 6= ∅}

and hence S1 is the domain of a return. Arguing similarly with q̃ we find the
other vertical strip S2.

On the other hand, let y ∈ W cu,+
δu∗

(p) − {p} be an accumulation point
of the orbits of qn, say, by q̂n = fkn(qn). Notice that we may assume that
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f j(qn) ∈ Bi
(δs,δu)(p), 0 ≤ j ≤ kn. Similar to the previous lemma, we can

construct an adapted box for y.

Lemma 3.4.2. Let y ∈W cu,+
δu∗

be as above. Then, there exists a cu-adapted
box B = B(y) such that

1. y belongs to a component of ∂cs(B(y)) which is also contained in a fun-
damental domain of W cu(p).

2. For any large n, the orbits of qn have nonempty intersection with B(y).

From now on, fix a C1-foliation Fcs on B(y) close to the E-direction, that
is, take a C1-vector field X in B(y), C0-close to the E-direction (X(z) lies in a
central stable cone), and such that, for z ∈ ∂cu(B(y)), X(z) ∈ Tz∂cu. Consider
the foliation Fcs (or the flow) generated by this vector field. For any z ∈ B(y)
let Fcs(z) be the leave passing through z. Notice that there exists C such that

1
C
≤ ‖Π′‖ ≤ C

where Π = Π(J1, J2) is the projection along this foliation between two arcs
transversal to the E-direction; this means that the box B(y) has distortion C.

Definition 3.4.1. Boxes II. Recalling that y ∈ W cu
δs∗

(p) and that Jcu
B(y)(y)

lies in a fundamental domain of W cu
δu∗

(p), let B1 be the connected component of
f−1(B(y)) ∩ B(δs,δu)(p) that contains f−1(y). For k ≥ 2, we define Bk as the
connected component of f−1(Bk−1) ∩B(δs,δu)(p) that contains f−k(y).

Moreover, given some periodic point q̂n in B(y), let kn = min{k ≥ 0 :
f−k(q̂n) ∈ B(x)}. We define Bx

kn
as the component of Bkn ∩B(x) that contains

f−kn(q̂n) (the boxes Bk defined as above). See Figure 1.

Proposition 3.1. Given r > 0, there exists s > 0 such that if dist(q̂n, y)
< s the following hold

1. Bx
kn

is a r-cu-adapted cs-subbox in B(x).

2. If r is small enough, then any return to Bx
kn

is a hyperbolic return. In-
deed, |ψ′| < 1

2 for ψ ∈ Rcu(Bx
kn
,Λ).

Let us show how the last proposition implies Theorem 3.1. In fact, we get a
contradiction to the assumption that the periodic point were not F -expanding.
To show this, take the periodic point qn = fkn(q̂n) ∈ Bx

kn
and assume that the

period is m. Let 0 < m1 < m2 < · · · < ml = m be the successive returns of
the point qn to Bx

kn
until return to itself. Then,

‖Df−m/F (qn)‖ ≤
(

1
2

)l
< 1,

a contradiction to our assumption.
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∗ )
y

q̂n

J cu
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W cu
ε (p)
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δu
∗

p W cs
ε (p) x

Bx
k

qn
n

Figure 1

In order to prove Proposition 3.1 we have to deal with arguments involving
distortion and summability. We need two lemmas.

Lemma 3.4.3. Let B(y) be the box in Lemma 3.4.2 having distortion C.

Then,

1. There exists K > 0 such that for any cu-subbox B′ ⊂ B(y) and n > 0
such that f−k(B′) ⊂ Bk for 0 ≤ k ≤ n then

n∑
i=0

`(f−k(J)) ≤ K

holds for any arc J ⊂ B′ transversal to the E-direction with endpoints in
∂cu(B′). A similar result holds for a cs-subbox in B(x).

2. There exists C2 = C2(C) such that Bx
kn

is a cu-adapted cs-subbox in B(x)
having distortion C2.

Lemma 3.4.4. Let B′ be a cu-adapted cs-subbox of B(x) having distortion
C2. Then, there exists K1 > 0 such that for z ∈ B′ ∩ Λ,

n∑
j=0

`(f−j(Jcu
B′(z))) ≤ K1

whenever f−j(z) /∈ B′, 1 ≤ j ≤ n.

Before proving Lemmas 3.4.3 and 3.4.4, let us show that they imply Propo-
sition 3.1. To prove item 1), notice that if q̂n is close enough to y, then Bx

kn
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is a cs-subbox. Moreover, it is cu-adapted since B(y) is adapted. It remains
to prove that Bx

kn
is r-adapted. Take δu1 = δu∗ (ε) with ε = r from Lemma

3.3.1. If q̂n is close enough to y, then Bx
kn
⊂ Bkn ⊂ B(δs∗,δ

u
1 )(p) and hence Bx

kn
is r-adapted. This completes the proof of item 1).

Let us prove item 2). Let C be the distortion of B(y), and C2 the distortion
from Lemma 3.4.3. Also, consider K0 from Lemma 2.2.3, K1 = K1(C2) from
Lemma 3.4.4, K from Lemma 3.4.3 and let L = min{`(JB(z)) : z ∈ B(y)∩Λ}.

Let r > 0 be such that

r
C2

L
exp(K0K1 +K0K) <

1
2
.

Take q̂n close to y such that Bx = Bx
kn

is an r-cs-subbox. We show that
any return to this box is hyperbolic. For this purpose, take any z ∈ Bx∩Λ and
let m be the first return of z to the box, i.e., f−m(z) ∈ Bx and f−i(z) /∈ Bx

for 0 < i < m. Notice that m > kn and fkn−m(z) ∈ B(y). Set h = m − kn.
Now,

‖Df−m/F (z)‖ ≤ ‖Df
−kn
/F (f−h(z))‖‖Df

−h
/F (z)‖,

and by Lemma 3.4.4,

‖Df−h/F (z)‖ <
`(f−h(Jcu

Bx(z)))
`(Jcu

Bx(z))
exp(K0K1).

On the other hand, by Lemma 3.4.3

‖Df−kn/F (f−h(z))‖ ≤
`(f−kn(Jcu

B(y)(f
−h(z))))

`(Jcu
B(y)(f

−h(z)))
exp(K0K)

and
`(f−kn(Jcu

B(y)(f
−h(z)))) = `(Jcu

Bx(f
−m(z))).

Thus,

‖Df−m/F (z)‖≤‖Df
−kn
/F (f−h(z))‖‖Df

−h
/F (z)‖

≤
`(f−kn(Jcu

B(y)(f
−h(z))))

`(Jcu
B(y)(f

−h(z)))
exp(K0K1)

`(f−h(Jcu
Bx(z)))

`(Jcu
Bx(z))

expK0K

= `(f−h(Jcu
Bx(z)))

`(Jcu
Bx(f

−m(z)))
`(Jcu

Bx(z))`(JB(y)(f−h(z)))
exp(K0K1 +K0K)

≤ rC2

L
exp(K0K1 +K0K) <

1
2
.

This proves that any cu-return is hyperbolic and finishes the proof of Propo-
sition 3.1. It only remains to prove Lemmas 3.4.3 and 3.4.4. We now proceed
to do it:
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Proof of Lemma 3.4.3.

Claim. Assume that ‖Df/E(p)‖ < λ1 = λ
1
2 < 1 and let Bk be as in

Definition 3.4.1. Then, there exists C1 = C1(C) such that, for any k, Bk has
distortion C1.

Proof of the claim. Let Fcs
k be the foliation in Bk which is the pull-back

foliation Fcs in B(y). Let Jk1 and Jk2 be two arcs in Bk transversal to the E-
direction whose endpoints are in ∂cu(Bk). We have to show that there exists
C1 such that

1
C1
≤ ‖Π′k‖ ≤ C1

where Πk is the projection along Fcs
k between Jk1 and Jk2 . Notice that J1 =

fk(Jk1 ) and J2 = fk(Jk2 ) are also two arcs in B(y) transversal to the E-direction
with endpoints in ∂cu(B(y)). For a point x ∈ f j(Jki ), i = 1, 2, set F̃ (x) =
Txf

j(Jki ), 0 ≤ j ≤ k.
By the equality

Πk ◦ f−k/J1
= f−k ◦Π

we conclude, for z ∈ J1, that

‖Π′k(f−k(z))‖.‖Df−k/F̃ (z)
‖ = ‖Df−k

/F̃ (Π(z))
‖.‖Π′(z)‖.

Hence

‖Π′k(f−k(z))‖ =
‖Df−k

/F̃ (Π(z))
‖

‖Df−k
/F̃ (z)

‖
.‖Π′(z)‖.

Thus, to finish the proof of the lemma it suffices to find M such that

1
M
≤
‖Df−k

/F̃ (Π(z))
‖

‖Df−k
/F̃ (z)

‖
≤M

which is the same, setting x = f−k(z), as

1
M
≤
‖Dfk

/F̃ (x)
‖

‖Dfk
/F̃ (Πk(x))

‖
≤M.

Observe that for any pair of point z1, z2 belonging to the same central leaf of
Fcs
k , we get a constant λ2 < 1 such that

dist(f j(z1), f j(z2)) ≤ λj2dist(z1, z2)

for j ≤ k and so, given some constant α, there is a constant A such that

Σk
i=0`(f

j(Fcs
k (x)))α < A.
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With the same arguments as in [Sh, pp. 45–46], it is possible to prove that
there exist τ > 0 and α > 0 such that∣∣∣‖Df/F̃ (f j(w1))‖ − ‖Df/F̃ (fj(w2))‖

∣∣∣ ≤ ηjD + dist(f j(w1), f j(w2))α

for some constant 0 < η < 1 and D whenever F̃ lies in the central unstable
cone and dist(f j(w1), f j(w2)) ≤ τ, 0 ≤ j ≤ k. (This is, roughly speaking,
a consequence of the fact that the distribution F is α-holder and any other
direction converges exponentially fast to F.)

Therefore, if the diameter of B(δs,δu)(p) is less than τ, it follows that

‖Dfn
/F̃ (x)

‖

‖Dfn
/F̃ (Πk(x))

‖
≤ exp

 D

1− η
+

j=k∑
j=0

dist(f j(x), f j(Πk(x)))α

 .

Since x and Πk(x) belongs to Fcs
k (x), we conclude that

k∑
j=0

dist(f j(x), f j(Πk(x)))α ≤
n∑
j=0

`(f j(Fcs
k (x)))α ≤ A.

Thus
‖Dfk

/F̃ (x)
‖

‖Dfk
/F̃ (Πk(x))

‖
≤ exp(

D

1− η
+A).

Finally, taking M = exp( D
1−η +A), we have that C1 = C.M satisfies the claim.

Let us prove item 1) of Lemma 3.4.3. Assume that ‖Df/E(p)‖ < λ1. By
the claim, there is some C1 such that Bk has distortion C1 and hence

`(f−k(J)) ≤ C1`(f−k(Jcu
B(y)(y)))

and so
n∑
i=0

`(f−i(J)) ≤ C1

n∑
i=0

`(f−i(Jcu
B(y)(y))) ≤ C1`(W cu

δs∗
(p)) = D1.

On the other hand, assume that ‖Df/E(p)‖ ≥ λ1 = λ
1
2 . It follows by

the domination that ‖Df−1
/F (p)‖ < λ1 < 1. Hence, if the box B(δs,δu)(p) is

small enough, we have that ‖Df−1
/F̃ (z)

‖ < λ2 < 1 for some λ2 > λ1 and any

z ∈ B(δs,δu)(p) and any F̃ close to the F -direction. Therefore,

n∑
i=0

`(f−i(J)) ≤
n∑
i=0

λi2`(J) ≤ C

1− λ2
`(Jcu

B(y)(y)) = D2.

Setting K = max{D1, D2} we conclude the proof of item 1).
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Now we proceed to prove item 2) of the Lemma. In case ‖Df/E(p)‖ < λ1

then, by the claim, we conclude setting C2 = C1. On the other hand, if
‖Df/E(p)‖ ≥ λ1 we shall argue as in the proof of the previous claim, together
with the fact that F is expansive in a neighborhood of p. Let Fcs

kn
be the foliation

in Bx
kn

which is the pull-back foliation Fcs in B(y). Let Jkn1 and Jkn2 be two
arcs in Bx

kn
transversal to the E-direction whose endpoints are in ∂cu(Bx

kn
).

We have to show that there exists C2 such that

1
C2
≤ ‖Π′kn‖ ≤ C2

where Πkn is the projection along Fcs
kn

between Jkn1 and Jkn2 . Notice that
J1 = fkn(Jkn1 ) and J2 = fkn(Jkn2 ) are also two arcs in B(y) transversal to the
E-direction with endpoints in ∂cu(B(y)). As in the proof of the claim, it is
enough to show that there exists M such that

1
M
≤
‖Dfk

/F̃ (x)
‖

‖Dfk
/F̃ (Πk(x))

‖
≤M.

Again, with the same arguments as in [Sh, pp. 45–46], and the fact that F is
expansive in a neighborhood of p, it is possible to prove that there exists τ > 0
(and hence assume that the diameter of B(δs,δu)(p) is less than τ) such that∣∣∣‖Df/F̃ (fj(w1))‖ − ‖Df/F̃ (f j(w2))‖

∣∣∣ ≤ ηjD + dist(f j(w1), f j(w2))

and so

‖Dfkn
/F̃ (x)

‖

‖Dfkn
/F̃ (Πkn (x))

‖
≤ exp

 D

1− η
+
j=kn∑
j=0

dist(f j(x), f j(Πkn(x)))

 .

In order to conclude the proof, we only need to bound the previous sum. From
item 1), applied to Bx

kn
⊂ B(x), we know that there exists K such that

j=kn∑
j=0

dist(f j(x), f j(Πkn(x))) ≤
j=kn∑
j=0

`(Fcs
kn(x)) ≤ K.

Therefore, setting M = exp( D
1−η + K) and C2 = CM we finished the proof

that Bx
kn

has distortion C2. This finishes the proof of Lemma 3.4.3.

Proof of Lemma 3.4.4. Since B(x) is a well-adapted box, there exist a
subbox B̂ and two disjoint vertical strip S1, S2 such that B(x)− B̂ = S1 ∪ S2

and Si is either a domain of a return or Si ∩ Λ = ∅.
Let z ∈ B′∩Λ be as in the hypothesis of the lemma, i.e.: f−j(z) /∈ B′, 1 ≤

j ≤ n and let 0 < n1 < n2 < · · · < nk ≤ n be the set {0 < j ≤ n : f−j(z) ∈
B(x)}.
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Consider (if it exists) the sequence 0 = m0 < m1 < m2 < · · · < ml ≤ n

such that
‖Df j/E(f−mi (z))‖ < λj2, 0 ≤ j ≤ mi, ∀i = 1, . . . , l.

We claim that D exists such that
l∑

i=0

`(f−mi(Jcu
B′(z))) ≤ D.

To prove the claim, assume first that z /∈ S1 ∪ S2.

Notice that there exists ε1 such that if y ∈ B̂ ∩ Λ (i.e., y /∈ S1 ∪ S2), then
W cs
ε1

(y) ⊂ B(x). Set ε2 = ε1
2 , ε3 = ε2

2 . For any point w ∈ Λ consider a box (not
necessarily adapted) B(w) with axes W cu

γ (w) and W cs
ε3

(w). Since Λ is compact
we can cover Λ by a finite number of such boxes. We will denote these by
B1, . . . , Br. Set C3 =

∑r
k=1 `(W

cu
2γ (wk)).

For 1 ≤ i ≤ l let Bmi be a box with axes W cs
ε2

(f−mi(z)) and f−mi(Jcu
B′(z))

contained in f−mi(B′). Notice that (by arguments similar to the proof of the
claim in Lemma 3.4.3) there exists C4 such that all these boxes have distor-
tion C4.

It follows for i 6= j that

Bmi ∩Bmj = ∅.

Otherwise, we would have (if i < j) f−(mj−mi)(z) ∈ B′ which is a contradiction
since mj −mi ≤ n, or we would contradict the fact that B′ is an adapted box
as well. Since B1, . . . , Br covers Λ, we have that f−mi(z) belongs to one of
these boxes, say Bk (if it belongs to more than one we choose it in an arbitrary
way). Let Jmi

= Bmi ∩W cu
2γ (wk). It follows that for every i,

1
C4
≤
`(f−mi(Jcu

B′(z)))
`(Jmi

)
≤ C4.

Moreover, since Bmi ∩Bmj = ∅ we conclude that

Jmi
∩ Jmj

= ∅.

Hence
l∑

i=0

`(f−mi(Jcu
B′(z))) ≤

l∑
i=0

C4`(Jmi
) ≤ C3C4.

If S1 ∩ Λ = ∅ and S2 ∩ Λ = ∅, we are done. If not, we consider the case
such that z ∈ S1 ∪ S2. Notice that, in this situation S1 and/or S2 are domains
of return ψr = f−kr/Sr

r = 1, 2, as in the definition of a well-adapted box.
Let i0 = min{i : f−ni(z) /∈ S1 ∪ S2}, and let j0 = min{j : mj ≥ ni0}. As

before, we can conclude that
l∑

j=j0

`(f−mj (Jcu
B′(z))) ≤ C3C4.
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Fix some z1 ∈ S1∩Λ and z2 ∈ S2∩Λ. Take i < i0. Then f−ni(z) ∈ S1∪S2.
Let B(ni) be the connected component of f−ni(B′)∩ (S1 ∪S2) which contains
f−ni(z). Assume, for instance, that f−ni(z) is in S1. Then, for every mj such
that ni ≤ mj < ni+1, consider the box Bmj = f−(mj−ni)(B(ni)), and Jmj

=
Bmj ∩ f−(mj−ni)(Jcu

B (z1)).
As before, we have that Bmj has distortion C4 and Bmj ∩ Bmk = ∅ for

every 0 ≤ mj ,mk < ni0 . Thus Jmj
∩ Jmk

= ∅. Therefore

j0−1∑
j=0

`(f−mj (Jcu
B′(z))) ≤

j0−1∑
j=0

C4`(Jmj
) ≤ 2C4M

where M is such that
∑ki

j=0 `(f
−j(Jcu

B (zi))) ≤ M . Set D = C3C4 + 2C4M.

Then,
l∑

j=0

`(f−mj (Jcu
B′(z))) ≤ D,

and the claim is proved.

Now, to complete the proof of the lemma, we must control the sum be-
tween consecutive m′is (or when the m′is do not exist). To do that we use a
reformulation of a lemma due to Pliss [Pl] which we include here for the sake
of completeness:

Pliss’ Lemma. There exist N = N(λ1, λ2, f) with the following property :
given x ∈ Λ such that for some n ≥ N we have

‖Dfn/E(x)‖ ≤ λ
n
1

then there exist 0 ≤ n1 < n2 < · · · < nl ≤ n such that

‖Df j/E(fni (x))‖ ≤ λ
j−nr
2 ; r = 1, . . . , l; nr ≤ j ≤ n,

similarly , for f−1 and the F -direction.

Continuing with the proof of our lemma, consider M1 = sup{‖Df j‖ : 1 ≤
j ≤ N}. There are two possibilities: mi+1 −mi < N or mi+1 −mi ≥ N. If
mi+1 −mi < N, then

mi+1−1∑
j=mi

`(f−j(Jcu
B′(z))) ≤ NM1`(f−mi(Jcu

B′(z))).

On the other hand, if mi+1 −mi ≥ N, then

‖Df j/E(f−mi−j(z))‖ ≥ λ
j
1 for N ≤ j ≤ mi+1 −mi.

Thus, by the dominated splitting,

‖Df−j/F (f−mi (z))‖ ≤ λ
j
1 for N ≤ j ≤ mi+1 −mi.
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By Pliss’ lemma, there exists ñi, ñi −mi < N such that

‖Df−j/F (f−ñi (z))‖ ≤ λ
j
2 for 0 ≤ j ≤ mi+1 − ñi

and so, for any y ∈ f−ñi(Jcu
B′(z)) we have for some λ3, λ2 < λ3 < 1, setting

F̃ (y) = Tyf
−ñi(J(z)), that

‖Df−j
/F̃ (y)

‖ ≤ λj3 for 0 ≤ j ≤ mi+1 − ñi.

Hence

mi+1−1∑
j=mi

`(f−j(Jcu
B′(z)))≤

ñi−1∑
j=mi

`(f−j(Jcu
B′(z))) +

mi+1−1∑
j=ñi

`(f−j(Jcu
B′(z)))

≤NM1`(f−mi(Jcu
B′(z)))

+
mi+1−ñi−1∑

j=0

M1`(f−mi(Jcu
B′(z)))λ

j
3

≤
(
NM1 +M1

1
1− λ3

)
`(f−mi(Jcu

B′(z))).

Therefore

n∑
j=0

`(f−j(Jcu
B′(z))) =

∑
i

mi+1−1∑
j=mi

`(f−j(Jcu
B′(z)))

≤
(
NM1 +M1

1
1− λ3

)∑
i

`(f−mi(Jcu
B′(z)))

≤
(
NM1 +M1

1
1− λ3

)
D = M2.

Finally, if the sequence m′is does not exist, the same argument shows that

n∑
j=0

`(f−j(Jcu
B′(z)))≤

(
NM1 +M1

1
1− λ3

)
`(Jcu

B′(z))

≤
(
NM1 +M1

1
1− λ3

)
L = M3

where L = sup{`(Jcu
B′(z)) : z ∈ B′∩Λ}. Taking K = max{M2,M3} we conclude

the proof of Lemma 3.4.4.

The proof of Theorem 3.1 is complete.
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4. Proof of Theorem B and the Spectral Decomposition Theorem

Regarding Theorem A, we know that the period of the nonhyperbolic
periodic points are bounded in a set of dominated splitting. This turns out to
be very helpful in giving a better description of the central stable and unstable
manifolds from the dynamic point of view.

4.1. Central stable and unstable manifolds III. Let p be a nonhyperbolic
periodic point. Assume also that it is an F -nonhyperbolic periodic point of
saddle-node type. In this case (recall Lemma 3.2.1) we have that, for some
γ0 = γ0(p), one component of W cu

γ0
(p)−{p}, say W cu,+

γ0 (p), is in fact an unstable
manifold, and on the other one, points converge to p in the future or there is
a sequence in it of periodic points (in this case, W cu,−

γ0 (p) is an invariant arc
normally attractive). For δu < γ0 and δs consider the box B(δs,δu)(p) as in
Definition 3.3.1. Call B+

(δs,δu)(p) the connected component of B(δs,δu)(p) −
W cs
δs (p) that contains W cu,+

γ0 (p). Notice that points on the other component
converge in the future to a point in W cu,−

γ (p). Similar properties and notation
hold for an E-nonhyperbolic periodic point of saddle-node type.

We recall the definition of local stable and unstable sets:

W s
ε (x) = {y ∈M : limn→+∞d(fn(x), fn(y)) = 0,

and d(fn(x), fn(y)) ≤ ε, n ≥ 0}
W u
ε (x) = {y ∈M : limn→−∞d(fn(x), fn(y)) = 0,

and d(fn(x), fn(y)) ≤ ε, n ≤ 0}.

Theorem 4.1. Let f : M → M be a C2 diffeomorphism and Λ be a
set having dominated splitting which is also 2-dominated and without closed
curves supporting an irrational rotation and having no sink or sink-type peri-
odic points. Assume that Λ has only finitely many nonhyperbolic periodic points
and let p1, . . . , pr be the F -saddle-node type nonhyperbolic periodic points, and
let q1, . . . , qt be the E-saddle-node ones. Let N1 = N1(Λ) from Theorem A
and set N = 2N1. Then, given ε < δ0 there exist δu = δu(ε), δs = δs(ε) and
γ = γ(δu, δs, ε) such that for any x ∈ Λ satisfying that neither ω(x) nor α(x)
is a periodic orbit with period ≤ N, the following hold :

1. If x /∈ ∪r
i=1B(δs,δu)(pi) then W cu

γ (x) ⊂W u
ε (x).

2. If x ∈ B+
(δs,δu)(pi) then Jcu,+

B+ (x) ⊂W u
ε (x).

3. If x /∈ ∪t
i=1B(δs,δu)(qi) then W cs

γ (x) ⊂W s
ε (x).

4. If x ∈ B+
(δs,δu)(qi) then Jcs,+

B+ (x) ⊂W s
ε (x).

Proof. We will prove the theorem only for the central unstable mani-
folds (i.e. items 1 and 2). We claim first that there exists an admissible com-
pact neighborhood V of Λ such that if p is a nonhyperbolic periodic point in
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Λ(V ) = ∩n∈Zf
n(V ) then its period is ≤ N1. Otherwise, there exist a sequence

Vn, ∩nVn = Λ and a sequence of nonhyperbolic periodic points pn ∈ Λ(Vn)
with periods greater than N1 (but uniformly bounded by Theorem A applied
to Λ(V1)). Let p be an accumulation point of pn. Then p ∈ Λ and it is a non-
hyperbolic period point (and hence per(p) ≤ N1). On the other hand, since
p is accumulated by periodic points with bounded periods, it follows that p
is either of sink-node or saddle-node type. The former is not possible since
Λ does not contain sink-node periodic points. Thus p is of saddle-node type.
Then, for large n we have per(pn) = per(p) ≤ N1, a contradiction. This proves
our claim.

Assume that ε ≤ δ0 and also that {x : dist(x,Λ) < ε} ⊂ V. Take δs = δs∗(ε)
and δu = δu∗ (ε) from Lemma 3.3.1. Assume that they are small enough such
that B(δs,δu)(i) ∩B(δs,δu)(j) = ∅ for i, j = p1, . . . , pr, q1, . . . , qt.

Let x ∈ Λ, and assume that x /∈ ∪r
i=1B(δs,δu)(pi). Set δ = δ(ε) from

Corollary 2.2.1. We show first that there is some γ such that

`(f−n(W cu
γ (x))) ≤ δ, n ≥ 0.

If such a γ does not exist, then there are sequences xn /∈ ∪r
i=1B(δs,δu)(pi),

γn → 0 and mn →∞ such that, for 0 ≤ j ≤ mn,

`(f−j(W cu
γn (xn))) ≤ δ

and
`(f−mn(W cu

γn (xn))) = δ.

Letting In = f−mn(W cu
γn (xn)) we can assume (taking a subsequence if

necessary) that In → I and f−mn(xn)→ z, z ∈ Λ, z ∈ I (the closure of I).
Now, we have that `(fn(I)) ≤ δ ≤ δ0 for all positive n, and since I ⊂

W cu
ε (z), we conclude that I is a δ-E-interval. Thus, ω(z) is a periodic orbit

p because z ∈ I. Since z ∈ Λ we conclude that p ∈ Λ. We claim that
Ep is contractive. Otherwise, we conclude that one of the components of
W u(p)−{p} has length less than δ0, which contradicts (if δ0 is assumed small
enough) Corollary 2.2.2, proving our claim. Hence z ∈W s(p).

If the point p is hyperbolic, we conclude that, at least, one of the compo-
nents of W u(p)− {p} has length less than ε. Thus, in case

f−mn(W cu
γn (xn)) ∩W s(p) 6= ∅,

we get a contradiction to the inclination lemma (or λ-lemma, see [P]) because
this intersection is transversal and

`(fmn(f−mn(W cu
γn (xn)))) = `(W cu

γn (xn))→ 0.

On the other hand, if

f−mn(W cu
γn (x)) ∩W s(p) = ∅
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it follows, for sufficiently large n, that ω(f−mn(xn)) is the other endpoint
(say q) of the component of W u(p)−{p} having length less than δ. By Lemma
3.3.1 of [PS1], it is a sink or a nonhyperbolic periodic point. This implies that
ω(f−mn(xn)) = ω(xn) = q for n large enough, and by theorem A the period of
q is ≤ N1 contradicting the assumption in the theorem.

In case p is a nonhyperbolic period point of saddle type, the same argument
as before also applies and we also get a contradiction. Assume now that p = pi
is a saddle node. Then, it follows that fmn(f−mn(xn)) is arbitrarily near p and
so xn ∈ B(δs,δu)(pi) contradicting our assumption that xn /∈ ∪r

i=1B(δs,δu)(pi).
To finish the proof of item 1) it remains to prove that

`(f−n(W cu
γ (x)))→ 0

for x /∈ ∪r
i=1B(δs,δu)(pi). Arguing by contradiction, assume that this is not the

case. Then, there exist η > 0 and a sequence nk →∞ such that

`(f−nk(W cu
γ (x))) > η

for some x /∈ ∪r
i=1B(δs,δu)(pi)

Letting Ink = f−nk(W cu
γ (x)) we can assume that Ink → I and f−nk(x)→

z ∈ I, z ∈ Λ. As above, we get that I is a δ0-E-interval, and so ω(z) is a
periodic point p ∈ Λ. Again, E(p) must be contractive.

Assume that the point p is hyperbolic. If z ∈ int(I), then, since I is
transversal to W s(p), it follows, by the inclination lemma, that `(W u(p)) ≤ δ

and hence the endpoints q1, q2 of W u(p) are not hyperbolic periodic points of
saddle type. Therefore, they have periods less than N1 and so the period of
p is at most 2N1 = N. On the other hand, for large n, ω(f−mn(x)) = ω(x) ⊂
{p, q1, q2}, a contradiction.

On the other hand, if z /∈ int(I), again, the inclination lemma implies that
one of the components of W u(p) − {p} has length less than δ. As above, the
case

f−nk(W cu
γ (x)) ∩W s(p) = ∅

leads to a contradiction. Now,

f−nk(W cu
γ (x)) ∩W s(p) 6= ∅.

By the inclination lemma, the fact that `(f j(f−nk(W cu
γ (x)))) ≤ δ, 0 ≤ j ≤ nk,

together with f−nk(x) → z imply that x ∈ W u(p). Therefore α(x) = p, a
periodic point with period ≤ N, which is, as before, a contradiction.

Now assume that p is not hyperbolic. It follows that p cannot be either
sink or sink-node type, otherwise (as before) ω(x) is a periodic point of period
less than N. Thus, p is saddle-type or saddle-node type. The case saddle-
type is similar to the hyperbolic case discussed above. So, assume that p is
of saddle-node type. It follows that z ∈ W ss(p). In case z ∈ int(I) it is not
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difficult to see that again ω(x) is a periodic point with period less than N1,

a contradiction. Also, arguing as before, in case z /∈ int(I) we get that ω(x)
is periodic point with period less than N1, or α(x) = p. Both cases lead to a
contradiction.

To prove item 2), notice that, by Lemma 3.3.1, we know that

`(f−n(Jcu,+
B+ (x))) ≤ δ(ε).

To finish the proof of the theorem it remains to prove that

`(f−n(Jcu,+
B+ (x)))→ 0.

The arguments are very similar to those already done and so we leave the proof
to the reader.

Remark 4.1.1. It is not assumed in the previous theorem that Λ ⊂ Ω(f).

Corollary 4.1.1. Let Λ be as in Theorem 4.1. Then, there exists η > 0
such that if z1 and z2 are two hyperbolic periodic points in Λ with period greater
than N and d(z1, z2) < η then there is a transverse intersection between W s(z1)
and W u(z2).

Proof. Let ε be small and take δs, δu and γ(δu/2, δs/2, ε) from the
previous theorem. Let η > 0 be such that for any x, y ∈ Λ and d(x, y) < η

then W cu
γ (x) and W cs

γ (y) have a (unique) nonempty transverse intersection.
Moreover, assume that η is small enough so that if x ∈ B(δs/2,δu/2)(pi) for
some i then y ∈ B(δs,δu)(pi), the same for the points qi.

Let z1 and z2 be as in the statement of the lemma. In case

z1, z2 /∈ ∪r
i=1B(δs/2,δu/2)(pi)

⋃
∪t
i=1B(δs/2,δu/2)(qi)

then W cs
γ (z1) and W cu

γ (z2) have a nonempty intersection and since W cs
γ (z1) ⊂

W s(z1) and W cu
γ (z2) ⊂ W u(z2) the result follows. On the other hand, if

z1 ∈ B(δs/2,δu/2)(qi) (or z2 ∈ B(δs/2,δu/2)(pi)) then z1, z2 ∈ B(δs,δu)(qi) (resp.
z1, z2 ∈ B(δs,δu)(pi)). Since the periods of z1 and z2 are greater than N, it
follows that z1, z2 ∈ B+

(δs,δu)(qi) (resp. z1, z2 ∈ B+
(δs,δu)(pi)) and the result

follows from the theorem.

An important consequence of Theorem 4.1 is that the central stable and
unstable manifolds are locally unique (or coherent):

Lemma 4.1.1. Let Λ be a set having dominated splitting and let ε > 0.
Assume that for some x ∈ Λ there is some γ such that W cs

γ (x) ⊂W s
ε (x), n ≥ 0.

Then, if W is any 1-submanifold containing x, TxW = E(x), and W ⊂W s
ε (x),

we get that W ∩W cs
γ (x) is relatively open for both W and W cs

γ (x).
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Proof. We just sketch the proof; details are left to the reader. We
may assume (taking a forward iterate of x if necessary) that ε is arbitrarily
small. If W ∩W cs

γ (x) is not relatively open, then there are points z ∈ W, y ∈
W cs
γ (x), z 6= y such that they can be joined by an arc A = a(z, y) transverse

to the E-direction. Moreover, dist(z, y) ≈ `(a(z, y)). Since the forward iterate
of an arc transverse to the E-direction is also tranverse to the E-direction
(as long as remains of small length), we conclude that An = fn(a(z, y)) is
an arc transverse to the E-direction joining fn(z) and fn(y) and such that
`(fn(a(z, y)) ≈ dist(fn(z), fn(y)).

Pick c > 0 so that (1 + c)2λ < 1. Then, if ε is small enough, for any large
n, there is w ∈ An = fn(a(z, y)) such that

`(A) = ‖Df−n/TwAn‖`(An) ≤ (1 + c)n‖Df−n/F (fn(x))‖`(An)

≤ (1 + c)n‖Df−n/F (fn(x))‖(K`(f
n(W )) +K`(fn(W cs

γ (x))))

≤ (1 + c)n‖Df−n/F (fn(x))‖(1 + c)n‖Dfn/E(x)‖K(`(W ) + `(W cs
γ (x))).

Therefore, by the domination,

0 <
`(A)

2K max{`(W ), `(W cs
γ (x))}

≤ (1 + c)2nλn →n→∞ 0,

a contradiction.

Let β > 0 and Λ be a set having dominated splitting. We denote by Λβ
the maximal invariant set in a β-neighborhood of Λ, i.e. Λβ = ∩n∈Zf

n({x :
d(x,Λ) ≤ β}). Also, denote by Λ+

β (Λ−β ) the set of points that remain in
{x : d(x,Λ) ≤ β} under positive (resp. negative) iteration.

Theorem 4.2. Let ε > 0 and let Λ, p1, . . . , pr, q1, . . . , qt, N , δu = δu(ε),
δs = δs(ε) be as in Theorem 4.1. Then, there exists β0 such that for any
0 < β < β0 the following hold :

1. If p is a nonhyperbolic periodic point in Λβ\Λ then p ∈ B(δs,δu)(w) for
some w = p1, . . . , pr, q1, . . . , qt and per(p) ≤ N.

2. There exists γ = γ(δs, δu, ε) such that for any y where neither ω(y) nor
α(y) is a periodic orbit with period ≤ N the following are true:
(a) If y /∈ ∪r

i=1B(δs,δu)(pi) and y ∈ Λ−β then W cu
γ (y) ⊂W u

ε (y).

(b) If y /∈ ∪t
i=1B(δs,δu)(qi) and y ∈ Λ+

β then W cs
γ (y) ⊂W s

ε (y).

3. For x ∈ Λ such that x /∈ ∪r
i=1B(δs,δu)(pi)

⋃
∪t
i=1B(δs,δu)(qi) and y satisfies

that d(fn(x), fn(y)) < β for n ≥ 0 (n ≤ 0) the following are true:
(a) If ω(x) (resp. α(x)) in none of the periodic points p1, . . . , pr, q1, . . . , qt

then y ∈W cs
γ (x) (resp. W cu

γ (x)).

(b) If ω(x) is one of the points pi, qi and x, y are non-wandering then
y ∈W cs

γ (x) (resp. W cu
γ (x)).
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Proof. (1) follows as the beginning of the proof of Theorem 4.1. Indeed,
arguing by contradiction, assume that for βn → 0 there exist nonhyperbolic
periodic points pn ∈ Λβn\Λ and pn /∈ ∪r

i=1B(δs,δu)(pi)
⋃

∪t
i=1B(δs,δu)(qi). Let

p be an accumulation point of the sequence pn. It follows that p ∈ Λ is a
nonhyperbolic periodic point of saddle-node type but

p /∈ ∪r
i=1B(δs,δu)(pi)

⋃
∪t
i=1 B(δs,δu)(qi),

is a contradiction.
The proof of item (2) goes along the same lines as the proof of Theorem

4.1 and we leave it to the reader.
To prove item (3a), let γ = γ(δs, δu, ε) be as in item (2). Notice, from

Corollary 2.2.1, that there exists η such that, for any w ∈ Λ, if z ∈ W cu
γ (w)

but f−1(z) /∈ W cu
γ (f−1(w)) then d(z, w) > η. Let γ1 < γ(δs, δu, η/2), i.e., for

any z /∈ ∪r
i=1B(δs,δu)(pi)

⋃
∪t
i=1B(δs,δu)(qi) and z ∈ Λ+

β then `(fn(W cs
γ1

(w))) ≤
η/2, n ≥ 0. We may assume that β0 is small enough so that β < η/2 and
such that if d(z, w) < β0, z ∈ Λ, w ∈ Λ+

β then W cu
γ1

(z) and W cs
γ1

(w) have a
nonempty intersection. Let x and y be as in the statement (3a). Since ω(x)
is none of the points pi or qi, it follow that there is a sequence nk → ∞
such that fnk(x) /∈ ∪r

i=1B(δs,δu)(pi)
⋃

∪t
i=1B(δs,δu)(qi). Now, assume that the

conclusion is not true. Then, the point z = W cs
γ1

(y) ∩ W cu
γ1

(x) is different
from x (otherwise, x ∈ W cs

γ1
(y) and itfollows that TxW cs

γ1
(y) = E(x) and by

Lemma 4.1.1 this would imply that y ∈ W cs
γ1

(x) as we wish). Hence, for nk
large enough, we get z /∈ f−nk(W cu

γ (fnk(x))). Let m > 0 be the least positive
integer such that

z /∈ f−m(W cu
γ (fm(x))).

Therefore,

β >d(fm−1(x), fm−1(y)) ≥
≥ d(fm−1(x), fm−1(z))− d(fm−1(z), fm−1(y)) ≥
≥ η − η/2 > β,

a contradiction.
The proof of item (3b) is very similar. Assume that ω(x) = pi. Since

x is non-wandering, x ∈ W ss(pi). Using the same notation as above, if z ∈
f−m(W cu

γ (fm(x))) for any positive integer m it follows, for m large enough,
that fm(z) (and so fm(y)) belongs to B−(δs,δu)(pi). But all the points in B− are
wandering and so will y be, a contradiction.

Corollary 4.1.2. Let Λ be as in Theorem 4.1 and let x ∈ Λ be such
that neither ω(x) nor α(x) is a periodic orbit with period less than N. Then
there are β(x), γ(x), ε such that W s

β(x) ⊂W cs
γ (x) ⊂W s(x) and so W s(x) is a

smooth manifold tangent to E(x) at x. If ω(x) is a periodic orbit p of period
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≤ N and p is of saddle type (hyperbolic or not) then W s(x) is also a smooth
manifold tangent to E(x) at x.

4.2. Proof of Theorem B. We say that a compact invariant set Λ ⊂ L(f)
admits a spectral decomposition if Λ = Λ1 ∪ · · · ∪Λr such that Λi, i = 1, . . . , r,
are compact invariant and transitive sets and Λi ∩ Λj = ∅ for i 6= j and
furthermore Λi = Λi1 ∪ · · · ∪ Λini such that f(Λij ) = Λij+1(mod(ni)) and
fni/Λij

, j = 1, . . . , ni, is topologically mixing. The sets Λi are called basic pieces
and the sets are called Λij the subbasic pieces.

On the other hand, recall that for a hyperbolic periodic point p of saddle
type, the Homoclinic class of p is defined as

Hp = {W s(p) ∩|W u(p)}.

In order to prove Theorem B we have to show that for some positive
integer N the following hold:

1. PerNh (f) has at most finitely many nonhyperbolic periodic points.

2. PerNh (f) admits a spectral decomposition such that the subbasic pieces
are homoclinic classes.

3. f
/PerNh (f)

is expansive.

Let us prove item (1): Since Perh(f) has dominated splitting, by theorem
A we conclude that there exists some N1 such that any nonhyperbolic point
in Perh(f) has period at most N1. Set N > 2N1 and now show that the
number of nonhyperbolic periodic points in PerNh (f) is finite. Arguing by
contradiction, assume that this is not the case, and let pn be a sequence of
nonhyperbolic periodic points. Take q as an accumulation of this sequence.
Since the periods of pn are bounded by N1, it follows that q is a periodic point
(and a nonhyperbolic one). Since the points pn are accumulated by periodic
points with periods greater than N = 2N1, using Corollary 3.2.1, we conclude
that q must be of saddle-node type (say F -saddle node). In this case the
sequence pn, for large n, belongs to W cu,−

γ (p), and also any point in B−(p) is
asymptotic to a periodic point in W cu,− with period at most 2N1. This is a
contradiction, because pn ∈ PerNh (f). This completes the proof of item (1).

To prove item (2) notice that, taking N > 2N1 large enough, we may (and
will) assume, by Theorem 2.2 and Lemma 2.2.1, that the dominated splitting
over PerNh (f) is also 2-dominated. In particular, Λ = PerNh (f) satisfies the
hypothesis of Theorem 4.1.

Now, we shall proceed as in the hyperbolic case. For p, q ∈ PerNh (f) define
the equivalence relation

p ∼ q iff W s(p) ∩|W u(q) 6= ∅ and W u(p) ∩|W s(q) 6= ∅.
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Denote by H(p) the closure of the equivalent class of p. We claim that, for
p, q ∈ PerNh (f) we have H(p) ∩ H(q) = ∅ or H(p) = H(p). Assume that
H(p) ∩H(q) 6= ∅ and let x be a point in this intersection. Let pn ∈ H(p) and
qn ∈ H(q) be two sequences of periodic points converging to x. From Corollary
4.1.1, since pn and qn have periods ≥ N , we get that the stable and unstable
manifolds of pn and qn have, for sufficiently large n, nonempty intersection.
Thus, p ∈ H(q) and q ∈ H(p) and so H(p) = H(q). The same argument
also shows that there are only finitely many equivalent classes. The rest of
the proof of the spectral decomposition is similar to the hyperbolic case (see,
for example [Sh]). Indeed, the subbasic pieces are exactly the sets H(p) (the
closure of the equivalent class defined above) and it is well known that H(p)
coincides with the homoclinic class Hp.

It remains to prove item (3), that is, f
/PerNh (f)

is expansive. We have to

show that there exists α > such that if x, y ∈ PerNh (f) and d(f j(x), f j(y)) ≤
α ∀j ∈ Z then x = y. We shall argue by contradiction. Assume that f is not
expansive, i.e., there exist αn → 0 and xn, yn ∈ PerNh (f), xn 6= yn such that
d(f j(xn), f j(yn)) ≤ αn ∀j ∈ Z.

Recall that there are only finitely many nonhyperbolic periodic points in
PerNh (f), and hence finitely many periodic point with periods less than N.

Moreover there are small neighborhoods of these periodic points such that any
other orbit in PerNh (f), must leave them in the future or in the past. Therefore,
we may assume that xn is not one of these periodic points, and there is no loss
of generality if we assume that xn is far from the nonhyperbolic periodic points;
that is,

xn /∈ ∪r
i=1B(δs,δu)(pi)

⋃
∪t
i=1 B(δs,δu)(qi)

where pi and qi are saddle-node periodic points in PerNh (f). Let β be as in
Theorem 4.2. Then, from items (3a) and (3b) of that theorem and αn < β we
conclude that

yn ∈W cs
γ (xn) ∩W cu

γ (xn) = xn,

a contradiction. This completes the proof of Theorem B.

4.3. Isolated periodic points. Throughout this subsection, we shall assume
that L(f) has dominated splitting, and let λ be the constant of domination
and choose 1 > λ2 > λ1 = λ

1
2 . Since the periodic points are in L(f) we know,

from Theorem B, that for some N, PerNh (f) admits a spectral decomposition.

Definition 4.3.1. We say that a periodic point p is Ω\P -isolated if it is an
interior point of Per(f)\{Ω(f)−Per(f)}, that is, if there is a neighborhood Up
such that Up ∩ Ω(f) ⊂ Per(f).

Lemma 4.3.1. The periods of the Ω\P isolated points are bounded.
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Proof. If the period of a Ω\P isolated point p is greater that N, then
p ∈ PerNh (f). Moreover, p is an isolated basic piece of PerNh (f). Since there are
finitely many basic pieces, we conclude the proof.

Let Λ = L(f) and consider V an admissible neighborhood and let U be
another neighborhood such that U ⊂ U ⊂ V. Let Λ1,Λ+, and Λ− as in the
beginning of section 2.4.

Definition 4.3.2. Let I be a closed arc or a simple closed curve. We say
that I ⊂ Λ+ is an (E,Pε)-arc (or (E,Pε) simple closed curve) if for some m
we have fm(I) ⊂ I, f j(I)∩ I = ∅, 1 ≤ j < m, is transversal to the E direction
and the periodic points in I are ε-dense; that is, any subinterval of I of length
ε contains a periodic point. We call m ≥ 1 the period of such an arc. In a
similar way, we define (F, Pε)-arcs and (F, Pε) a simple closed curve.

Lemma 4.3.2. There exist ε, C > 0 and λ3 < 1 such that if I is an
(E,Pε)-arc or simple closed curve then it is (C, λ3)-normally hyperbolic
(attractive); i.e., for each x ∈ I, TxM = E ⊕ TxI and ‖Df j/Ex‖ < Cλj3, j ≥ 0.

Proof. First notice that there exists N1 such that if I ⊂ Λ+ is an arc (or
simple closed curve not supporting an irrational rotation) transversal to the
E-direction and fm(I) ⊂ I, f j(I) ∩ I = ∅, 1 ≤ j < m, then m ≤ N.

Indeed, let N1 be from Theorem A applied to Λ = L(f). Since fm(I) ⊂ I
then I contains a periodic point. Moreover, for any periodic point p ∈ I, TpI =
F (p) holds since I is transversal to the E-direction. Also, not all the periodic
points in I can be repelling (within I), and hence there is a periodic point
p ∈ I that is either a sink or not hyperbolic of saddle type, and therefore the
period of p is bounded by N1. Since m ≤ per(p) (in fact m = per(p) if I is an
arc or per(p) is a multiple of m if I is a simple closed curve not supporting
an irrational rotation), we conclude that m ≤ N1. Furthermore, it follows that
the period of any periodic point in I is bounded by N = 2N1 (indeed they are
≤ N1 unless fm : I → I reverses orientation in I).

Let ε be such that if p is a periodic point of period less than N and
‖Df−m/F (p)‖ ≤ λ

m
1 (m is the period of p) then `(W uu(p)) > 2ε. Assume also that

ε is such if x, y ∈ Λ+, d(x, y) < ε and ‖Dfm/E(x)‖ ≤ λ
m
1 then ‖Dfm/E(y)‖ ≤ λ

m
2 .

Let I be an (E,Pε) arc or simple closed curve. Let p be a periodic point
in I. Since the periodic points in I are ε-dense, it follows that ‖Df−m/F (p)‖ ≥ λ

m
1 .

Otherwise, W uu(p) ⊂ I and `(W uu(p)) ≥ 2ε, and hence some component of
W uu(p)−{p} has length greater than ε and does not contains a periodic point,
contradicting that the periodic points in I are ε-dense.

By the domination, we conclude that

‖Dfm/E(p)‖ ≤ λ
m
1 .
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Since for any point x ∈ I there is a periodic point p such that d(x, p) ≤ ε we
get

‖Dfm/E(x)‖ ≤ λ
m
2 .

This, together with the periodicity of I, implies that there exist C > 0 and
λ3 < 1 such that

‖Df j/E(x)‖ ≤ Cλ
j
3, j ≥ 0.

Remark 4.3.1. A similar result holds for an (F, Pε) arc or simple closed
curve.

Corollary 4.3.1. If I is an (E,Pε) arc or simple closed curve (ε from
the previous lemma) then for any x ∈ I there is a local strong stable manifold
W ss

loc(x) which is tangent to E at x of uniform size. Moreover any point in
W ss

loc(I) = ∪x∈IW ss
loc(x) is asymptotic to a periodic point in I. In particular

any periodic point p in the interior of I is Ω\P isolated.

Lemma 4.3.3. There exist η > 0 such that if p and q are Ω\P isolated
and d(p, q) < η then p and q belong to either an (E,Pε) or (F, Pε) arc or simple
closed curve.

Proof. Assume that the conclusion of the lemma is false. Then, there exist
sequences ηn → 0, pn, qn Ω\P -isolated periodic points with d(pn, qn) < ηn and
pn, qn does not belong to any such arc or simple closed curves.

By Lemma 4.3.1, the periods of pn and qn are bounded. We may assume
(taking a subsequence if necessary) that pn and qn converge. They must con-
verge to a periodic point p, and since the periods of pn and qn are bounded, p is
a nonhyperbolic periodic point. Assume that p is F -nonhyperbolic (the other
case is similar). From Corollary 3.2.1 we conclude that p is of saddle-node type
or sink-node type. In any case we conclude that, given γ < ε, for large n, pn
and qn belong to W cu

γ (p). If pn, qn accumulate to p at one branch of W cu
γ (p)

then, for some pn0 in this branch, it follows that for large n, pn, qn belong to
the arc in this branch determined by pn0 and p. This arc is an (E,Pε)-arc,
which contradicts our assumption. If pn and qn accumulate to p from different
branches of W cu

γ (p) then the arc is determined by pn0 and qn0 and again we
get a contradiction. This completes the proof of the lemma.

Definition 4.3.3. We say that an (E,Pε) arc is maximal if it is not a
proper sub-arc of a (E,Pε)-arc or simple closed curve. Similarly, define (F, Pε)
as a maximal arc.

Notice that any (E,Pε) arc which is not contained in an (E,Pε) simple
closed curve, is contained in a (unique) maximal (E,Pε)-arc. Moreover any
two maximal (E,Pε) arcs are disjoint or coincide.
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Lemma 4.3.4. There are finitely many maximal (E,Pε) ((F, Pε)) arcs and
(E,Pε) ((F, Pε)) simple closed curves.

Proof. Assume that the assertion of the lemma is not true, that is,
there are infinitely many distinct maximal (E,Pε) arcs In. For each n, choose
a periodic point pn ∈ In. Then there exist n1 and n2 such that d(pn1 , pn2) < η

(η from Lemma 4.3.3). Therefore In1 ∩ In2 6= ∅, a contradiction.

We are able to state the main consequence of the results in this section.
We denote by I the set of Ω\P isolated periodic points.

Theorem 4.3. Assume that L(f) has dominated splitting and let I be
the set of Ω\P isolated periodic points. Then the periods of the periodic points
in I are bounded and I is a subset of disjoint unions of periodic points and
normally hyperbolic arcs and closed curves, i.e.

I ⊂ Γ1 ∪ . . . ∪ Γr,

where Γi, i = 1, . . . , r is compact invariant and Γi∩Γj = ∅, i 6= j. Moreover Γi is
a periodic point or a normally hyperbolic (attractive or repelling) 1-dimensional
manifold (closed arc or simple closed curve).

Proof. Let η be from Lemma 4.3.3. We say that a periodic point p is
η-isolated if Bη(p)∩Ω(f) = {p}. It is not difficult to see that there are finitely
many η-isolated points. From Lemma 4.3.3 it follows that if a periodic point
is not η-isolated then it is in a normally hyperbolic ((E,Pε) or (F, Pε)) arc
or simple closed curve. By Lemma 4.3.4 there are finitely many such arcs or
closed curves, and they are disjoint or coincide.

4.4. Proof of the spectral decomposition theorem. Recall that I denotes
the set of Ω\P -isolated periodic points. From the definition, I is open in
L(f) (but may not be compact). On the other hand, we denote by R the set
of periodic simple closed curves, normally hyperbolic supporting an irrational
rotation. Notice that these curves are isolated, i.e., they are open in L(f). We
define L̃(f) to be the complement in L(f) of I and R; that is,

L̃(f) = L(f)\(I ∪ R).

It follows that L̃(f) is compact and invariant. Notice that this definition does
not assume that L(f) has dominated splitting.

From now on, assume that L(f) has dominated splitting and set about
proving our Spectral Decomposition Theorem. In Section 3.1 of [PS1] it is
shown that there are finitely many curves in R. Also, in Theorem 4.3, the
decomposition claimed on I is proved.

On the other hand, we have that Per(f) ⊂ L(f) and so Perh(f) has
dominated splitting. From Theorem B we conclude that there is some N
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such that PerNh (f) has spectral decomposition where each subbasic piece is the
homoclinic class of a hyperbolic periodic point, contains at most finitely many
nonhyperbolic periodic points and moreover f

/PerNh (f)
is expansive.

Therefore, to finish the proof of the Spectral Decomposition Theorem it
is enough to show that L̃(f) ⊂ PerNh (f).

Lemma 4.4.1. Let p ∈ L̃(f) be a periodic point. Then there exists a
sequence of periodic points pn converging to p whose periods are unbounded,
i.e., p ∈ PerMh (f) for any positive integer M.

Proof. Consider a box B(δs,δu)(p). Since p ∈ L̃(f) it follows that p is not
Ω\P -isolated and there is a sequence of points yn ∈ L̃(f) converging to p. This
sequence converges to p through a nonisolated quadrant Bi

(δs,δu)(p). Moreover,
there is no loss of generality if we assume that yn ∈ ω(xn) for some point
xn. Let W cs,+

δs (p) and W cu,+
δu (p) be the branches that bound this nonisolated

quadrant and recall that (no matter whether p is hyperbolic or not) they are
included in the stable and unstable manifolds of p respectively. Consider V a
compact admissible neighborhood of L(f) and let L1 be the maximal invariant
set in V and L+

1 the points that remains in V in the future. Set x = xn for n
large enough. There is some positive integer m0 so that fm(x) ∈ L+

1 for any
m ≥ m0. Now, we may find m0 < m1 < m2 such that fmj (x) ∈ Bi

(δs,δu)(p), j =

1, 2. Let w1 = W cu,+
δu (p) ∩ Jcs

Bi(p)
(fm1(x)). It follows that fm2−m1(w1) ∈ Bi(p).

Therefore the point w2 = W cs,+
δs (p) ∩ Jcu

Bi(p)
(fm2−m1(w1)) is a point of trans-

verse intersection of the stable and unstable manifolds of the point p. The
result follows from standard arguments about the existence of periodic orbits
associated to transversal homoclinic orbits.

Now, to prove that L̃(f) ⊂ PerNh (f), it is enough to prove that for any x
such that ω(x) is not contained in I ∪ R, ω(x) ⊂ PerNh (f) holds.

Let z ∈ ω(x). We shall prove that z ∈ PerNh (f). In order to prove this,
assume first that ω(z) contains a periodic point p. In particular p is not Ω\P -
isolated, and hence, no matter whether p is hyperbolic or not, by the previous
lemma, there are hyperbolic periodic points qm arbitrarily near p. On the
other hand, there is a sequence nk → ∞ such that fnk(z) → p. Consider V
a compact admissible neighborhood of L(f) and let L1 and L+

1 be as above.
In particular, there is some m0 such that fm0(x) ∈ L+

1 . Notice that if qm is
close enough to p and nk is large enough, then there is a transverse intersection
w1 between the local stable manifold of qm and the local unstable manifold of
fnk(z). On the other hand, since fm(x) ∈ L+

1 for m ≥ m0, there is a nonempty
transverse intersection w2 between the local unstable manifold of qm and the
local stable one of fmk(x). Notice that w1, w2 ∈ L1. So, f−nk(w1) is close to
z and for some l > 0, f l(w2) is also close to z. In particular W cu

γ (f l(w2))
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and W cs
γ (f−nk(w1)) have a transverse intersection (near z). Since W cu

γ (w2) ⊂
W u(qm) and W cs

γ (w1) ⊂ W s(qm) we conclude that the stable and unstable
manifolds of some iterate of qm have a nonempty transverse intersection near z,
and therefore there are periodic points near z. Thus z ∈ PerNh (f).

In case ω(z) does not contain periodic points then, by Theorem 2.1, it
follows that ω(z) is a hyperbolic set. Now, ω(z) ⊂ PerNh (f). We can apply the
same argument as before, and also conclude that z ∈ PerNh (f). This completes
the proof of the Spectral Decomposition Theorem.

Moreover, from the proof we get the following corollary (where it is not
assumed that L̃(f) has dominated splitting).

Corollary 4.4.1. If Λ ⊂ L̃(f) and has dominated splitting then for any
U neighborhood of Λ we get that

Λ ⊂ PerNh (f)
⋂

∩n∈Z f
n(U).

4.5. More on the basic pieces of L̃(f) and the spectral decomposition the-
orem restated.. Regarding the basic pieces of L̃(f), there are some questions
(and answers) that we want to address. Are these basic pieces locally maximal?
Do they have local product structure? Do they have the shadowing property?
Do they exhibit Markov partitions?.

Definition 4.5.1. A set Λ having dominated splitting is said to have local
product structure if there exist γ > 0 and η > 0 such that if x, y ∈ Λ, d(x, y) < η

then W cs
γ (x) ∩W cu

γ (y) ∈ Λ.

Notice that if γ and η are small enough the above intersection is transversal
and consists of one single point.

Lemma 4.5.1. Let Λ be a basic piece of L̃(f). Then, Λ has local product
structure.

Proof. Since Λ is a basic piece of L̃(f), the hyperbolic periodic points
are dense. Thus, it is enough to show the local product structure among the
hyperbolic periodic points.

If Λ does not contain any saddle-node point, then the local stable and
unstable manifolds have uniform size (by Theorem 4.1), and the local product
structure follows by standard arguments.

On the other hand, assume Λ contains saddle-node type periodic points.
Consider boxes around these points B(δs,δu)(p) small enough such that for the
F -saddle node (resp. E-saddle-node) one component of B(δs,δu)(p) − W cs

δs (p)
(resp. B(δs,δu)(p)−W cu

δu (p)) contains (at most) only Ω\P periodic points. Con-
sider γ (less than δu/2 and δs/2) from Theorem 4.1. Let η > 0 such that for any
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two points x, y such that d(x, y) < η the local center stable manifold W cs
γ (x)

and the local center unstable manifold W cu
γ (y) have a (unique) nonempty (and

transverse) intersection. Now, if x and y are hyperbolic periodic points in Λ
and they are far from the saddle-node points, these local center stable and
unstable manifolds are contained in the stable and unstable manifold, and the
result follows by standard arguments. On the other hand if one (and hence
both) of the points x, y are near a saddle-node point, since they are not iso-
lated, the point of intersection of the central stable and unstable manifolds of
x and y respectively lies in the stable and unstable manifolds of x and y (resp.)
and hence, the result holds.

Remark 4.5.1. Observe that in the above lemma the local stable and un-
stable manifolds may not have uniform size.

Definition 4.5.2. Let Λ ⊂ L̃(f) be a compact and invariant set having
dominated splitting. A Markov partition of Λ is a collection of rectangles, i.e.
diffeomorphic images of the square Q = [−1, 1]2, say R1 = ψ1(Q), . . . , Rl =
ψl(Q) such that:

1. Λ ⊂ ∪iRi,

2. int(Ri) ∩ int(Rj) = ∅ if i 6= j, where int(Ri) denotes the interior of Ri,

3. f(∂sRi) ⊂ ∪j∂sRj and f−1(∂uRi) ⊂ ∪j∂uRj where

∂sRi = ψi({(x, y) : −1 ≤ x ≤ 1, |y| = 1})

and
∂uRi = ψi({(x, y) : −1 ≤ y ≤ 1, |x| = 1}),

4. there is a positive integer n such that fn(Ri) ∩Rj 6= ∅ ∀ 1 ≤ i, j ≤ l.

Moreover, we define the size of the Markov partition as the maximum of
the diameters of Ri.

Notice that item 3) means that the boxes are “adapted”; i.e., for any
x ∈ Ri and n ≥ 0, either f−n(Jcu

Ri
) ∩ Rj = ∅ or f−n(Jcu

Ri
) ⊂ Rj for any j,

similar to Jcs in the future. The proof of existence of Markov partitions in
[PT] (Appendix 2) without major modifications also proves the next lemma.

Lemma 4.5.2. Let Λ be a basic piece of L̃(f). Then, there exists a Markov
partition of Λ of arbitrarily small size.

Fathi [Fa] has proved that an expansive homeomorphism on a compact
space has an adapted metric (not necessarily coming from a riemannian struc-
ture) compatible with the topology. Indeed, there is some ε > 0 and 0 < λ < 1
such that if dist(fn(x), fn) < ε ∀n ≥ 0 then dist(fn(x), fn(y)) < λndist(x, y),
similarly for backward iterates. Therefore, the same proof of the shadowing
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lemma for hyperbolic sets with local product structure can be carried out in
our case, since the basic pieces are expansive and have local product structure.

Lemma 4.5.3. Let Λ be a basic piece of L̃(f). Then, it has the shadowing
property ; that is, given β > 0 there exists α > 0 such that any α-pseudo-orbit
in Λ is β- shadowed by a true orbit in Λ.

By the previous lemma and Theorem 4.2 (item 3a) we obtain the following:

Corollary 4.5.1. Let Λ be a basic piece of L̃(f). Then, if ω(x) ⊂ Λ then
there exists y ∈ Λ such that x ∈W s(y); i.e., d(fn(x), fn(y))→n→∞ 0.

In the hyperbolic theory, local product structure is equivalent to maximal
invariant. For a basic piece in L̃(f) this may not be the case.

Lemma 4.5.4. Let Λ be a basic piece of L̃(f). Then, Λ is locally maximal
if and only if Λ does not contain saddle-node points.

Proof. If Λ does not contain saddle-node points, then the stable and
unstable manifolds of any points have size bounded away from zero. From the
local product structure and the shadowing lemma the result follows. On the
other hand if Λ does contain saddle-node points it is not difficult to see that
it is not locally maximal.

Definition 4.5.3. An invariant set Λ is an attractor if
1. there exists U a neighborhood of Λ such that f(U) ⊂ U and ∩n≥0f

n(U)
= Λ.

2. Λ is transitive.

The next lemma follows with the same arguments as in the hyperbolic
case.

Lemma 4.5.5. A basic piece Λ of L̃(f) is an attractor if and only if
W u(x) ⊂ Λ for any x ∈ Λ.

Remark 4.5.2. When Λ is a transitive hyperbolic set the above definition
of attractor is equivalent to saying that there is a neighborhood U of Λ such
that ω(x) ⊂ Λ for any x ∈ U . This is not true in our case.

Now, we summarize all the above results (see also Figure 2).

Theorem 4.4 (Spectral Decomposition Theorem restated). Let f ∈
Diff2(M2) and assume that L(f) has a dominated splitting. Then L(f) can
be decomposed into L(f) = I ∪ L̃(f) ∪R such that

1. I is the set of Ω\P -isolated periodic points. The periods of the points in
I are bounded and I ⊂ Γ1 ∪ · · · ∪ Γr where Γi, i = 1, . . . , r is compact
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quaseperiodic motion

periodic arc

basic piece with periodic arc attached basic piece

E-saddle node

F-saddle node

Figure 2

invariant and Γi ∩ Γj = ∅, i 6= j. Moreover Γi is a periodic point or
a normally hyperbolic (attractive or repelling) 1-dimensional manifold
(closed arc or simple closed curve).

2. R is a finite union of normally hyperbolic periodic simple closed curves
supporting an irrational rotation.

3. f/L̃(f) is expansive and admits a spectral decomposition L̃(f) = Λ1∪· · ·∪
Λl. Each set Λi is compact, transitive and Λi ∩ Λj = ∅ for i 6= j. These
sets Λi are the (union of ) homoclinic classes associated to hyperbolic
periodic points. The hyperbolic periodic points are dense and Λi contains
at most finitely many nonhyperbolic periodic points. Λi has local product
structure, admits a Markov partition of arbitrary small size and is locally
maximal if and only if does not contain saddle-node type periodic points.

Furthermore, M =
⋃
x∈L(f)W

s(x) =
⋃
x∈L(f)W

u(x) and for any x ∈ L(f)
that is neither saddle-node nor sink-node, W s(x) is a smooth manifold.

5. Proof of Theorems C and D

It is well known that a hyperbolic set Λ of a diffeomorphism f has an
analytic continuation, meaning that for any diffeomorphism g close enough
to f there is a hyperbolic set Λg for g close to Λ (i.e. it is contained in a
neighborhood of it) and moreover they are homeomorphic and their respective
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dynamics are conjugated. This property turns out to be false for sets having
dominated splitting, even when the set is a homoclinic class of a hyperbolic
periodic point. Although the hyperbolic periodic point persists in a neighbor-
hood of the diffeomorphism, for a certain diffeomorphism arbitrarily close, the
homoclinic class of the continuation is no longer contained in a neighborhood
of the original one and furthermore what remains in a neighborhood is no
longer conjugated to the original one. For instance, take a “horseshoe” where
instead of a hyperbolic fixed point p we have a saddle-node fixed one -but this
horseshoe is the homoclinic class of another hyperbolic periodic point- (see
Figure 3a below) and, after the disappearance of the saddle-node fixed point,
the homoclinic class “moves” towards the point q in the referred figure. Fur-
thermore, more pathological behavior could appear in the case of Figure 3b
(see [DRV], [C]).

Figure 3a Figure 3b 

However, in these examples if we perturb the saddle-node in such a way
that it has a hyperbolic continuation, the “horseshoe” becomes hyperbolic.
Here is the way to prove Theorem C: perturb the diffeomorphism f in such a
way that the nonhyperbolic periodic points in a basic piece of L̃(f) (which are
finitely many) have a hyperbolic continuation. To show that this is enough, we
must guarantee that no other nonhyperbolic periodic point appears after the
perturbation. This is the content of the following section.

5.1. Theorem 3.1 revisited. Throughout this section Λ will denote an
f -compact invariant set with dominated splitting and Λ ⊂ L̃(f).

Definition 5.1.1. Let p be a periodic point in Λ and let V be a connected
subset of Diff2(M), f ∈ V. We say that p has a continuation on V provided
there exists a continuous map π : V →M such that

1. π(f) = p.
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2. For g ∈ V, π(g) is a g-periodic point with the same f -period of p.

3. π(g) is not Ω\P -isolated.

For g ∈ V the point π(g) will be called an analytic continuation of p and
will be denoted by p(g).

Theorem 5.1. Let f be a C2−diffeomorphism of a compact surface M2,

and let Λ ⊂ L̃(f) be a compact invariant set exhibiting dominated splitting
and p ∈ Λ be a nonhyperbolic periodic point. Denote its period by np. Assume
that p has a continuation on V. Then, there exist a neighborhood Up of p, a
neighborhood V of Λ, and a neighborhood U such that for any g ∈ V ∩ U and
any g-periodic point q with period greater than 2np and whose orbit is contained
in V and intersecting Up is a hyperbolic periodic point of saddle type.

Proof of Theorem 5.1. The proof goes along the same lines as the proof of
Theorem 3.1, because all the estimates involved in the proof of this theorem
hold for diffeomorphisms close to f contained in V. To begin with, take V a
small compact admissible neighborhood of Λ and a neighborhood U(f) such
that for g ∈ U , the set ∩ng

n(V ) has dominated splitting. In the sequel we
shall set ΛV (g) = ∩ng

n(V ). The following result can be found in [HPS].

Lemma 5.1.1. Let f ∈ Diff2(M2) and Λ a compact invariant set exhibit-
ing dominated splitting and being 2-dominated. Then there exist U and a neigh-
borhood V of Λ such that for any g ∈ U there exist two continuous functions
φcs
g : ΛV (g) → Emb2(I1,M) and φcu

g : ΛV (g) → Emb2(I1,M) such that if
define W cs

ε (x, g) = φcs
g (x)Iε and W cu

ε (x, g) = φcu
g (x)Iε the following properties

hold :
a) TxW

cs
ε (x, g) = Eg(x) and TxW cu

ε (x, g) = Fg(x),

b) for all 0 < ε1 < 1 there exists ε2 such that

g(W cs
ε2

(x, g)) ⊂W cs
ε1

(g(x), g)

and
g−1(W cu

ε2
(x, g)) ⊂W cu

ε1
(g−1(x), g).

Moreover, these central manifolds depend continuously on g; i.e., given gk → g,
xk ∈ ΛV (gk) converging to x ∈ ΛV (g) it follows that φcs

gk(xk) → φcs
g (x) and

φcu
gk(xk)→ φcu

g (x) (in Emb2(I1,M)).

From the previous result it follows that a Lipschitz constant of log(Df)
along the central manifolds can be chosen uniformly in a neighborhood of f,
and hence we get the following lemma.

Lemma 5.1.2. Let f ∈ Diff2(M2) and Λ a compact invariant set exhibit-
ing dominated splitting. Then there exist K0, U and a neighborhood V of Λ
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such that for any g ∈ U if O(x) ⊂ V and any arc J ⊂ W cu
ε (x, g) such that,

g−j(J) ⊂W cu
ε (g−j(x, g)) for 0 ≤ j ≤ n then

1.
‖Dg−n

/F̃g(y)
‖

‖Dg−n
/F̃g(z)

‖≤exp(K0
∑n−1

j=0 `(g
−j(J))); y, z∈J , F̃g(y)=TyJ , F̃g(z)=TzJ.

2. ‖Dg−n
/F̃g(y)

‖ ≤ `(g−n(J))
`(J) exp(K0

∑n−1
j=0 `(g

−j(J))).

Remark 5.1.1. Let p be as in Theorem 5.1, having a continuation on V.
From now on, we fix the continuation π : V →M of p. Moreover, after change
of coordinates for g ∈ V ∩ U we may assume:

1. p(g) = p;

2. W cs
ε (p(g)) = W cs

ε (p);

3. W cu
ε (p(g)) = W cu

ε (p).

Recall that for a nonhyperbolic periodic point p and for any positive num-
bers δs, δu small enough, we have defined the box B(δs,δu)(p) (see Definition
3.3.1). This is also a box for any g ∈ V ∩U if U is small enough. Let Bi

(δs,δu)(p)
be a quadrant of the above box and V a compact neighborhood of Λ. For
g ∈ V ∩U and x ∈ Bi

(δs,δu)(p)∩ΛV (g) we define Jcu,i
δu (x, g) to be the connected

component of W cu
ε0

(x, g) ∩ Bi
(δs,δu)(p) that contains x. Analogously, we define

Jcs,i
δs (x, g).

The following lemma is a version of Lemma 3.3.1 for diffeomorphisms close
to f . The proof is similar and we leave it to the reader.

Lemma 5.1.3. Let Λ ⊂ L̃(f) be a set having dominated splitting without
closed curves supporting irrational rotations and let p ∈ Λ be a nonhyperbolic
periodic point. Let B(δs,δu)(p) be a small box and let Bi

(δs,δu)(p) be a nonisolated
quadrant for f . Then, for any ε, 0 < ε < δ0, there exist δu∗ = δu∗ (ε) < δu,
U = U(ε) and a neighborhood V of Λ such that for any g ∈ V ∩ U and x ∈
Bi

(δs,δu∗ )(p) ∩ ΛV (g) different from p we get that

g−n(Jcu,i
δu∗

(x, g)) ⊂W cu
ε (g−n(x), g)

holds for any n ≥ 0.
A similar statement also holds for the central stable manifolds; more pre-

cisely : there is δs∗ = δs∗(ε) < δs such that for any x ∈ Bi
(δs∗,δ

u)(p) ∩ ΛV (g)
different from p we get that

gn(Jcs,i
δs∗

(x, g)) ⊂W cs
ε (gn(x), g)

holds for any n ≥ 0.

In order to prove Theorem 5.1 we shall argue by contradiction. So, we as-
sume that the conclusion of the theorem is false; that is, there exist a sequence
of open neighborhoods Vn of Λ, ∩nVn = Λ, a sequence of diffeomorphisms
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gn ∈ V ∩ U converging to f and a sequence of periodic points {qn} of gn
with O(qn) ⊂ Vn accumulating at p with periods greater than 2np (and hence
increasing to infinity) such that they are not hyperbolic of saddle type; i.e.,
either

‖Dg−mn
n |Fgn (qn)‖ ≥ 1 or ‖Dgmn

n |Egn (qn)‖ ≥ 1

where mn is the gn-period of qn. We may (and will) assume that

‖Dg−mn
n |Fgn (qn)‖ ≥ 1

holds for any n. We will show that is not the case for sufficiently large n,

leading to a contradiction.
This sequence of gn-periodic points accumulates (we take a subsequence if

necessary) through a quadrant Bi
(δs,δu)(p). It is not difficult to see that this is

a nonisolated quadrant for f. Denote by W cs,+
δs (p) and W cu,+

δs (p) the branches
that bound this quadrant and recall that they are contained in the stable and
unstable manifolds respectively of p (with respect to f). It follows (recall Re-
mark 5.1.1) that gn(W cs,+

δs (p)) ⊂ W cs,+
δs (p) and g−1

n (W cu,+
δs (p)) ⊂ W cu,+

δs (p). A
(maximal) interval in W cs,+

δs (p) such that forward iterates under gn are pair-
wise disjoint will be called a fundamental domain of gn in W cs,+

δs (p). In a
similar way, we define the fundamental domain of gn in W cu,+

δs (p). Take points
x ∈W cs,+

δ (p)∩{O(qn) : n ≥ 0} and y ∈W cu,+
δ (p)∩{O(qn) : n ≥ 0}. It follows

that these points belong to Λ.
By corollary 4.4.1, the points x and y are accumulated by hyperbolic

f -periodic points whose orbits are arbitrarily close to Λ. As in the proof of
Lemma 3.4.1, one way is to take hyperbolic periodic points p1, p2, p3 such
that the box B(x) determined by the arcs W cs,+

δs (p), W cs
ε (p1);W cu

ε (p2) and
W cu
ε (p3) is a well cu-adapted box such that
1. x belongs to a component of ∂cu(B(x)) which is also contained in a

fundamental domain of W cs,+
δs (p).

2. For any large n, the gn-orbits O(qn) have nonempty intersection with
B(x).

Since the points p1, p2, p3 have an analytic continuation in some neigh-
borhood of f and also p has an analytic continuation p(g) in V, we can define
the box Bg(x) bounded by the respective local stable and unstable manifolds
of p(g), p1(g), p2(g) and p3(g) as the box B(x) = Bf (x). These boxes are also
well cu-adapted and satisfy

1. x belongs to a component of ∂cu(Bg(x)) which is also contained in a
fundamental of gn in W cs,+

δs (p).

2. For any large n, the gn-orbits O(qn) have nonempty intersection with
Bg(x).

In a similar way we construct cu-adapted boxes Bg(y) satisfying
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1. y belongs to a component of ∂cs(Bg(y)) which is also contained in a
fundamental of gn in W cu,+

δu (p).

2. For any large n, the gn-orbits O(qn) have nonempty intersection with
Bg(y).

Definition 5.1.2. Boxes III. Let g ∈ V ∩ U . Set Bg
0 = Bg(y) and for

k ≥ 1 define Bg
k as the connected component of g−1(Bg

k−1)∩B(δs,δu)(p(g)) that
contains g−k(y).

Moreover, given the point q̂n of the gn-orbit of qn accumulating at y and
belonging to Bg(y), let kn = min{k ≥ 0 : g−knn (q̂n) ∈ Bg(x)}. We define Bx,g

kn

as the component of Bg
kn
∩Bg(x) that contains g−knn (q̂n) (the boxes Bg

k defined
as above).

Proposition 5.1. Given r > 0, there exists s > 0 and U such that if
gn ∈ V ∩ U and dist(q̂n, y) < s the following hold :

1. Bx,g
kn

is an r-cu-adapted cs-subbox in Bg(x).

2. If r is small enough, then any return to Bx,g
kn

is a hyperbolic return.
Indeed, for any return ψ ∈ Rcu(Bx,g

kn
,ΛVn(g)), ψ′ < 1

2 holds.

Theorem 5.1 follows from this proposition. Indeed, take n large enough
so that there is a point q̂n ∈ B(y) in the gn-orbit of qn close enough to y so
that the above proposition applies. Set qn = gknn (q̂n) ∈ Bx,gn

kn
and assume that

the period is m. Let 0 < m1 < m2 < · · · < ml = m be the successive returns
of the point qn to Bx,gn

kn
until return to itself. Then,

‖Dgn−m/F (qn)‖ ≤
(

1
2

)l
< 1.

This contradicts the assumption made over the points qn.
To prove Proposition 5.1, again, we have to deal with arguments involving

distortion and summability.

Lemma 5.1.4. Let C1 > 0. Then, there exists K1 = K1(C) > 0 such that
for any cu-adapted cs-subbox B′g of Bg(x) (previously defined) having distortion
C1 and any z ∈ B′ ∩ Λ,

n∑
j=0

`(g−j(Jcu
B′g

(z))) ≤ K1

whenever g−j(z) /∈ B′g, 1 ≤ j ≤ n.

Proof. This is a straightforward adaptation of Lemma 3.4.4, since all the
constants involved in the proof can be chosen uniformly on g.
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For each g ∈ V ∩ U , we may choose a foliation on Bg(y) such that the
g-distortion is bounded uniformly on g by some C.

Lemma 5.1.5. Let C > 0 be such that the box Bg(y) has g-distortion C

for any g ∈ V ∩ U . Then,

1. There exists K = K(C) > 0 such that for any cu-subbox B′g ⊂ Bg(y) and
m > 0 such that g−k(B′) ⊂ Bg

k for 0 ≤ k ≤ m then
m∑
i=0

`(g−k(J)) ≤ K

holds for any arc J ⊂ B′g transverse to the Eg-direction with endpoints
in ∂cu(B′). A similar result holds for a cs-subbox in Bg(x).

2. There exists C1 = C1(C) such that Bx,gn
kn

is a cu-adapted cs-subbox in
Bgn(x) having distortion C1.

Proof. This is a straightforward adaptation of the proof of Lemma 3.4.3.

Finally, Proposition 5.1 can be proved in the same way as Proposition 3.1.
This completes the proof of Theorem 5.1.

Remark 5.1.2. Notice that if the point p in the statement of Theorem 5.1
is not of saddle-node type, i.e., it is of saddle type, then it has a continuation
on a neighborhood of f. In particular, Theorem 5.1 can be restated without
mentioning the set V.

5.2. The set Λg. From now on let Λ be as in Theorem C, that is, a basic
piece of L̃(f). In this section we will define the set V and the candidate Λg
that will satisfy the thesis of Theorem C.

We shall assume, replacing f by f2, that the eigenvalue of a nonhyperbolic
periodic point with modulus one is 1.

Lemma 5.2.1. Let p be a nonhyperbolic periodic point in a basic piece
of L̃(f). Then, there exist a connected open set V(p, f) ⊂ Diff2(M) and a
continuous map π : V(p, f)→M such that

1. f ∈ V(p, f) and π(f) = p.

2. For g ∈ V(p, f), π(g) is a hyperbolic periodic point of saddle type of the
same period as p.

3. π(g) is the unique periodic point with the same period as p in a neigh-
borhood of p which is not Ω\P -isolated.

The point π(g) will be called the hyperbolic continuation of p and will be
denoted by p(g).
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Proof. It is not difficult to see that there is a one parameter family
ft, f0 = f such that for t > 0 there is a unique nonisolated hyperbolic periodic
point pt with the same period as p, pt →t→0 p. For each ft consider an open
neighborhood Vt such that pt has an analytic continuation. For the set V =
∪t>0Vt it is straightforward to prove the lemma.

Let p be a nonhyperbolic periodic point and let V(p, f) be the maximal
open connected set such that p has a hyperbolic continuation (that exists by
the previous lemma). Given any neighborhood U = U(f) let

V(f, p,U) = V(f, p) ∩ U(f).

Moreover, consider {p1, p2, . . . ., pn} the set of nonhyperbolic periodic points
in Λ. Let

V(f,Λ,U) = ∩iV(f, pi,U).

Notice that V(f,Λ,U) is nonempty.
Consider V a compact admissible neighborhood of Λ. Let U(f) be such

that, for g ∈ U(f), any g-invariant compact set in V has dominated splitting.
For g ∈ V(f,Λ,U) consider Λg = ∩gn(V ) ∩ L̃(g). We shall prove that this Λg
satisfies the thesis of Theorem C. This will be done in two steps: first we will
show that Λg is hyperbolic and secondly that Λg is homeomorphic to Λ and
f/Λ is conjugated to g/Λg .

5.3. Hyperbolicity of Λg. By Theorem 2.1, to show that Λg is hyperbolic
it is enough to show that the periodic points in Λg are hyperbolic.

Let {p1, . . . , pn} be the nonhyperbolic periodic points in Λ. For each non-
hyperbolic point, take Ui, Ni, Vi and Ui given by Theorem 5.1 for Λ = Λ.
On the other hand, take a compact neighborhood V ⊂ ∩iVi of Λ such that
∩nf

n(V \ ∪iUi) is hyperbolic (by Theorem 2.1). Let U ⊂ ∩iUi be such that
for g ∈ U , the set ∩ng

n(V \ ∪iUi) is also hyperbolic. Let q be any g-periodic
point in Λg, g ∈ V(f,Λ,U). Either the orbit O(q) intersects some Ui or not.
If not, then q ∈ ∩ng

n(V \ ∪iUi) and so q is hyperbolic. In the other case, if
O(q) intersects some Ui, either we get that the period of q is greater than the
double of the period of p and so it is hyperbolic by Theorem 5.1, or it is the
point p(g) which is hyperbolic. This shows that Λg is hyperbolic.

5.4. Conjugacy between f/Λ and g/Λg . The idea in constructing the con-
jugacy is to use the shadowing property. Indeed, if g is near f, every g-orbit
in Λg projects to an f -pseudo orbit in Λ and hence can be shadowed by an
f -orbit in Λ. Moreover, by the expansiveness of f/Λ the f -orbit that shadows
it is unique. Hence, there is a map h : Λg → Λ such that h(x) is the point such
that its f -orbit shadows the g-orbit through x. By the uniqueness, it follows
that f ◦ h = h ◦ g, and the map h is continuous. Since these last arguments
are quite standard, we shall omit the details.
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However, we have to prove that h is a homeomorphism. For this, it is
enough to prove that h is injective and surjective. The invectiveness of h follows
from the fact that the expansive constant of g/Λg can be chosen uniformly on g.
We need the following results. The first one is a uniform version of Theorem 4.1
for Λg. The proof follows from the uniformity of Denjoy’s property (Theorem
2.3) and from the fact that the g-periodic points in Λg are of saddle type.

Theorem 5.2. Let Λ be a basic piece of f, and let p1, . . . , pr be the
F -saddle-node type nonhyperbolic periodic points for f in Λ. Also, let q1, . . . , qt
be the E-saddle-node ones. Then, there exist U(f) and an admissible neigh-
borhood V such that for any g ∈ V(f,Λ,U) the following holds: given ε < δ0

there exist δu = δu(ε), δs = δs(ε) and γ = γ(δu, δs, ε) such that for any x ∈ Λg
we have that

1. If x /∈ ∪r
i=1B(δs,δu)(pi(g)) then W cu

γ (x, g) ⊂W u
ε (x, g).

2. If x ∈ B+
(δs,δu)(pi(g)) then Jcu,+

B+ (x, g) ⊂W u
ε (x, g)

3. If x /∈ ∪t
i=1B(δs,δu)(qi(g)) then W cs

γ (x, g) ⊂W s
ε (x, g).

4. If x ∈ B+
(δs,δu)(qi(g)) then Jcs,+

B+ (x, g) ⊂W s
ε (x, g).

Proof. The proof is quite similar to the proof of Theorem 4.1 so we only
give an outline of it. We shall prove just item 1.

Assume that ε ≤ δ0. Take δs = δs∗(ε) and δu = δu∗ (ε) from Lemma 5.1.3.
Assume that they are small enough such that B(δs,δu)(i) ∩ B(δs,δu)(j) = ∅ for
i, j = p1, . . . , pr, q1, . . . , qt.

Let x ∈ Λg and assume that x /∈ ∪r
i=1B(δs,δu)(pi(g)). Let show first that

there is some γ such that

`(g−n(W cu
γ (x))) ≤ δ, n ≥ 0.

If such a γ does not exist, then there are sequences xn /∈∪r
i=1B(δs,δu)(pi), γn→0

and mn →∞ such that, for 0 ≤ j ≤ mn,

`(f−j(W cu
γn (xn))) ≤ δ

and
`(g−mn(W cu

γn (xn))) = δ.

Letting In = g−mn(W cu
γn (xn)) we can assume (taking a subsequence if neces-

sary) that In → I and g−mn(xn)→ z, z ∈ Λg, z ∈ I (the closure of I).
Now, we have that `(gn(I)) ≤ δ ≤ δ0 for all positive n, and since I ⊂

W cu
ε (z), we conclude that I is a δ-E-interval. Thus, ω(z) is a periodic orbit p

because z ∈ I. Since z ∈ Λg we conclude that p ∈ Λg and hence is hyperbolic
of saddle type. Hence z ∈W s(p).

Then one of the components of W u(p)−{p} has length less than ε. Thus,
in case

g−mn(W cu
γn (xn)) ∩W s(p) 6= ∅
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we get a contradiction to the inclination lemma (or λ-lemma, see [P]) because
this intersection is transversal and

`(gmn(g−mn(W cu
γn (xn)))) = `(W cu

γn (xn))→ 0.

On the other hand, if

g−mn(W cu
γn (x)) ∩W s(p) = ∅

it follows, for sufficiently large n, that ω(g−mn(xn)) is the other endpoint (say q)
of the component of W u(p) − {p} having length less than δ. By the lemma
3.3.1 of [PS1], it is a sink or a nonhyperbolic periodic point. This implies that
ω(f−mn(xn)) = ω(xn) = q for n large enough and q ∈ Λg, a contradiction.

To finish the proof of item 1) it remains to prove that

`(g−n(W cu
γ (x)))→ 0

for x /∈ ∪r
i=1B(δs,δu)(pi(g)). Arguing by contradiction, assume that this is not

the case. Then, there exist η > 0 and a sequence nk →∞ such that

`(g−nk(W cu
γ (x))) > η

for some x /∈ ∪r
i=1B(δs,δu)(pi(g)). Letting Ink = g−nk(W cu

γ (x)) we can assume
that Ink → I and f−nk(x) → z ∈ I, z ∈ Λ. As above, we get that I is a
δ0-E-interval, and so ω(z) is a hyperbolic periodic point p ∈ Λg. If z ∈ int(I),
then, since I is transverse to W s(p), it follows, by the inclination lemma, that
`(W u(p)) ≤ δ and hence the endpoints q1, q2 of W u(p) are not hyperbolic peri-
odic points of saddle type. Therefore, p ∈ Λg is Ω\P -isolated, a contradiction
ot the definiton of Λg.

On the other hand, if z /∈ int(I), again, the inclination lemma implies that
one of the components of W u(p)−{p} has length less than δ. As we did above,
the case

g−nk(W cu
γ (x)) ∩W s(p) = ∅

leads to a contradiction. Thus,

g−nk(W cu
γ (x)) ∩W s(p) 6= ∅.

By the inclination lemma, the fact that `(gj(g−nk(W cu
γ (x)))) ≤ δ, 0 ≤ j ≤ nk

together with g−nk(x)→ z imply that x ∈W u
loc(p). Moreover, p should be one

of the pi(g). Hence x ∈ B(δs,δu)(pi(g)), a contradiction.

Lemma 5.4.1.Let Λ be a basic piece of f, and let p1, . . . , pr be the F -saddle-
node type nonhyperbolic periodic points for f in Λ, and let q1, . . . , qt be the
E-saddle-node ones. Then, there exists U(f) such that for any g ∈ V(f,Λ,U)
the following holds: given γ > 0, δs, δu there exists β such that if x, y ∈ Λg and

x /∈ ∪r
i=1B(δs,δu)(pi(g))

⋃
∪t
i=1 B(δs,δu)(qi(g))
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and d(gj(y), gj(x)) ≤ β, j ≥ 0 (resp. j ≤ 0) then y ∈ W cs
γ (x, g) (resp. y ∈

W cu
γ (x, g)).

Proof. The same proof of Theorem 4.2, item (3) works without major
modifications.

Now, we are ready to prove that the expansivity constant is uniform.
Arguing by contradiction, assume that this is not the case; that is, there are
sequences gn ∈ V(f,Λ,U) converging to f, αn → 0 and xn, yn ∈ Λgn , xn 6= yn
such that d(gjn(xn), gjn(yn)) ≤ αn ∀j ∈ Z.

Recall that there are only finitely many nonhyperbolic f -periodic points
in Λ. For each nonhyperbolic f -periodic point, there is a small neighborhood
such that, since g ∈ V(f,Λ,U), there is only one gn-periodic orbit in Λgn that
remains in this neighborhood, namely the hyperbolic continuation, and any
other gn-orbit in Λgn must leave this neighborhood in the future or in the past.
Therefore, we may assume that xn is not one of these periodic points, and
there is no loss of generality if we assume that

xn /∈ ∪r
i=1B(δs,δu)(pi(gn))

⋃
∪t
i=1 B(δs,δu)(qi(gn))

where pi and qi are as in the previous lemma. Let β also be from the previous
lemma. Then, for αn < β we conclude that

yn ∈W cs
γ (xn, gn) ∩W cu

γ (xn, gn) = xn,

a contradiction. This proves the uniformity of the expansivity constant.

The injectiveness of the map h follows now by standard arguments. It
remains to prove that h is surjective. A classical argument for this is that
the shadowing property holds uniformly. However, we shall pursue a different
argument. For this it is enough to show that h(Λg) is dense in Λ. Recall that we
have a Markov partition of arbitrary small size for Λ (and so contained in the
admissible neighborhood V ). The rectangles Ri of this Markov partition are
bounded by compact arcs of (central) stable and unstable manifolds of finitely
many periodic points (see [PT]). Hence these rectangles have a continuation
Ri(g) (in fact, they form a Markov partition for Λg). On the other hand,
the f -periodic points are dense in Λ, each one is in some Ri and they persist
for g (by Theorem 5.1). Furthermore, these continuations cannot cross the
boundary of the rectangles Ri(g) and thus they are in Λg. In particular h(Λg)
is dense in Λ and so h is surjective.

Furthermore, Λg is hyperbolic and has local product structure (by the
conjugacy), hence it is maximal invariant and a basic set.

Remark 5.4.1. If the basic piece Λ does not contain saddle-node periodic
points (in particular it is maximal invariant), the following can be proved with
similar methods: there are a neighborhood U and a neighborhood V of Λ such
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that Λg = ∩ng
n(V ) is a g-compact invariant set and there is a semiconjugacy

h : Λg → Λ between g and f.

5.5. Proof of Theorem D. Let M be the 2-torus. We claim that there
exists f : M →M such that

1. M has dominated splitting, TM = E ⊕ F.
2. f has just one nonhyperbolic fixed point p and Df/F (p) = 1. Any other

periodic point is hyperbolic.

3. f is conjugated to an Anosov linear diffeomorphism.

Indeed, a one parameter family fµ can be constructed such that fµ is
Anosov for µ < 0 and fµ is derived from Ansosov (DA) for µ > 0. This is
done through the bifurcation of the fixed point p (see for instance [R]). The
diffeomorphism f = f0 satisfies our claim. Since f is conjugated to an Anosov
diffeomorphism, there is a sequence of periodic points pn such that their orbits
spend most of the time near p. It follows, when mn is the period of pn, that(

‖Dfmn

/F (pn)‖
) 1
mn →n 1.

In other words, pn has a normalized eigenvalue arbitrarily close to 1.
Since p is of saddle-type, it has a continuation in a neighborhood V =

U1(f) of f. Let Up and U ⊂ U1 be as in Theorem 5.1. Since the maximal
invariant set in M\Up is hyperbolic for f we may assume that the same holds
for any g ∈ U .

Finally we see that f and U satisfy the conclusion of Theorem D. Let
g ∈ U and let q be a g-periodic point of period ≥ 2. If the g-orbit of q does
not intersects Up then it is hyperbolic. On the other hand, if the orbit of q
intersects Up, since the period of q is ≥ 2 (indeed, the period will be very large)
it follows from Theorem 5.1 that q is hyperbolic.

5.6. On the impossibility of a C2 Franks lemma. In [F], Franks proved
the following simple yet powerful lemma:

Franks’ Lemma. Let θ be a finite set of points in M , let Q = ⊕x∈θTMx

and let Q′ = ⊕x∈θTMf(x). If ε is small (independent of θ) and G : Q→ Q′ is
an ismorphism such that ‖G−df‖ < ε

10 = δ then there exists a diffeomorphism
g : M → M , ε-close to f in the C1 topology, such that dgx = G/TMx for any
x ∈ θ (and g = f in θ). Moreover if R is a compact subset of M disjoint from
θ we can require f(x) = g(x) for x ∈ R.

When θ is a periodic orbit, the previous lemma implies that we can perturb
the tangent map of f along the periodic orbit and find a diffeomorphism g

close to f having the same periodic orbit and the tangent map of g along
this orbit realizes that perturbation. One may ask if the above lemma can be
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proved within the C2 topology (without any requirement on the support of the
perturbation) for some δ > 0 (much smaller than ε/10). Theorem D implies
that this is impossible. Indeed, if such a statement could be proved, then it
would be possible to perturb a diffeomorphism f having a periodic orbit with
(normalized) eigenvalue close to 1 to obtain a diffeomorphism close to f having
this periodic orbit nonhyperbolic.

6. Proof of Theorems E and F

Theorem E is similar to the proof of the Ω-stability theorem for Axiom A
systems satisfying the no-cycle condition. The classical argument is through
the neighborhood construction of a filtration (see [Sh]). In our case we cannot
build a filtration in the classical sense. For this reason, we push another
argument (that also works in the hyperbolic case).

Recall from the Spectral Decomposition Theorem that if L(f) has domi-
nated decomposition, then

L(f) = Γ1 ∪ · · · ∪ Γr ∪ C1 ∪ · · · ∪ Cl ∪ Λ1 ∪ · · · ∪ Λn

where Γi, i = 1, . . . , r, is a periodic point or it is contained in a normally
hyperbolic periodic arc or closed curve (containing periodic points), Ci, i =
1, . . . , l, is a normally hyperbolic curve supporting an irrational rotation and
Λi, i = 1, . . . , n, is a basic piece of L̃(f).

Definition 6.0.1. Saddle sets. We will consider the following sets:
1. The Γi sets which consist of a single periodic orbit and are either of

saddle-type or saddle-node type.

2. The endpoints of the arcs Γi which are periodic points of saddle-type or
saddle-node type.

3. The basic pieces of L̃(f) which are neither attractor nor repeller.

We shall denote these sets by Ki, i = 1, . . . , s, and denote by P its collec-
tion.

For a periodic point p of saddle type, we denote by W ss(p) the stable
manifold of p. For a saddle-node periodic point p we denote by W ss(p) the
strong stable manifold. And for basic set Λ whose F -saddle nodes p1, . . . , pr
we define

W ss(Λ) = ∪x∈Λ\{p1,...,pr}W
s(x)

⋃
∪r
i=1 W

ss(pi).

In a similar form, define W uu.

Definition 6.0.2. Strong cycles. For two pieces of P, Ki,Kj , we say that
Ki � Kj if and only if

W uu(Ki)−Ki ∩W ss(Kj)−Kj 6= ∅.
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We say that there is a (strong) cycle in L(f), if there are i1, i2, . . . , it such that
Ki1 � Ki2 � · · · � Kit � Ki1 .

Let p1, . . . , pm be the nonhyperbolic periodic points in some Ki in P.
Given a neighborhood U of f , consider

V(f,U) = ∩m
i=1V(f, pi,U)

as in Section 5.2.
Now, assuming that there is no (strong) cycle, we shall prove Theorem E

for V(f,U) for some U small enough. That is, for g ∈ V(f,U) we get that L̃(g)
is hyperbolic and f/L̃(f) is conjugated to g/L̃(g).

Theorem 6.1. Let f ∈ Diff2(M) such that L(f) has dominated splitting
and without strong cycles. Let V be a neighborhood of L̃(f). Then, there exists
U such that if g ∈ V(f,U) we get L̃(g) ⊂ V.

We wish to show that Theorem 6.1 implies Theorem E. In fact, by the
Spectral Decomposition Theorem, we get that L̃(f) can be decomposed into
a finite number of disjoint basic pieces Λ1 . . .Λn. Let Λi be one of these basic
pieces and consider Vi a neighborhood of Λi as in (the proof of) Theorem C.
Recall that there exists Ui such that if g ∈ V(f,Λi,Ui) then the set

Λi,g = ∩n∈Zg
n(V )

⋂
L̃(g)

is hyperbolic for g and f/Λi and g/Λi,g are conjugated.
Let V = V1 ∪ · · · ∪ Vn and take U from the above theorem such that

U ⊂ ∩iUi. For g ∈ V(f,U),

L̃(g) = Λ1,g ∪ · · · ∪ Λn,g

and Theorem E follows.
Now let us prove Theorem 6.1. We shall argue by contradiction; i.e., if

the statement is false then we will be able to show the existence of a strong
cycle in L(f). So, let V be a neighborhood of L̃(f) and assume that there
exists a decreasing sequence of neighborhoods Un such that ∩nUn = {f} and
gn ∈ V(f,Un) such that L̃(gn) * V.

For each n take yn ∈ L̃(gn)\V. We may assume that yn → z for some z.
There is no loss of generality if we assume that yn belongs to ω(xn, gn) for
some point xn and also that xn → z. We need the following lemma.

Lemma 6.0.1. Let w /∈ L̃(f) be such that either ω(w, f) ∩ P = ∅ or
w ∈W s(p)\W ss(p) where p is a saddle node in some set of P. Then there exist
U(f) and U(w) such that for any x ∈ U(w) and g ∈ V(f,U), ω(x, g)∩U(w) = ∅
holds.

Proof. Notice that if ω(w, f) ∩ P = ∅ then it is a subset of:
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1. an attractor basic piece of L̃(f),

2. the interior of an (E,Pε)-arc or an (F, Pε)-arc,

3. a closed curve normally hyperbolic.

In each of these cases, the proof of the lemma is straightforward. On
the other hand, if w ∈ W s(p)\W ss(p), since g ∈ V(f,U) for U small, then w

belongs to the basin of attraction of a sink (of g) and the lemma follows.

Continuing with the proof of Theorem 6.1, from the last lemma, we con-
clude that ω(z, f) ∩ P 6= ∅, and z does not belongs to W s(p)\W ss(p) where p
is a saddle node in some set of P. That is, ω(z, f) ⊂ Ki1 and z ∈ W ss(Ki1).
We need another lemma.

Lemma 6.0.2. Let w /∈ L̃(f) such that ω(w, f) ⊂ Ki for some Ki in P.
Let Ui be a small neighborhood of Ki such that Ui ∩Kj = ∅, j 6= i, Kj in P
and let U be a neighborhood of f. Assume that there are sequences un → w,
V(f,U) 3 gn → f such that ω(un, gn) * Ui. Then there exists w1 /∈ Ui such
that w1 ∈ ∪nω(un, gn) and moreover w1 ∈W uu(Ki).

Proof. Notice that m0 exists such that fm(w) ∈ Ui ∀m ≥ m0. Then,
there is n0 such that for n ≥ n0, g

m0
n (un) ∈ Ui. For each n ≥ n0 consider

mn = min{m ≥ m0 : gmn (un) /∈ Ui}. Let w1 be an accumulation point of
gmn
n (un). It follows that f−n(w1) ∈ Ui for n ≥ 0. Thus, applying Lemma 6.0.1

for f−1, we get that α(w1, f)∩P 6= ∅, so that α(w1, f) ⊂ Ki and w1 ∈W uu(Ki).

Now, continuing with the proof of Theorem 6.1, apply the previous lemma
to z = w and take z1 = w1. Repeating the previous arguments to z1 = z we
conclude that there is Ki2 in P such that ω(z1, f) ⊂ Ki2 . Therefore

Ki1 � Ki2 .

Inductively we get Ki1 � Ki2 � Ki3 � . . . . Since there are finitely many
sets Ki we conclude that it must be a (strong) cycle, a contradiction. This
completes the proof of Theorem 6.1 and Theorem E.

Let us consider a diffeomorphism f such that Ω(f) has dominated split-
ting. In particular L(f) ⊂ Ω(f) has dominated splitting. Assume that there
is x ∈ Ω(f)\L(f) and it is outside of a neighborhood of L(f). Then, by Theo-
rem 4.1, W cu

γ (x) ⊂ W u(x) and W cs
γ (x) ⊂ W s(x) and they intersects transver-

sally at x. Arguing as in the proof of Theorem 6.1 we may construct a cycle
in L(f). This observation and the proof of Theorem 1 in [NP] followed exactly
yielding the following corollary:

Corollary 6.0.1. Let f ∈ Diff2(M2) and assume that Ω(f) has domi-
nated splitting. Then Ω(f) = L(f).
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6.1. Proof of Theorem F. We first recall the definition of topological en-
tropy (see for example [M]).

Given a metric space X and a transformation T : X → X, we say that a
subset S ⊂ X is an (n, ε)-generator if for every x ∈ X there is y ∈ S such that
d(T j(x), T j(y)) ≤ ε for all 0 ≤ j ≤ n. Let r(n, ε) = min{cardinal(S) : S is an
(n, ε)-generator}.

We define the topological entropy htop(T ) as

htop(T ) = limε→0limsupn→∞
1
n

log[r(n, ε)].

Now, to prove Theorem F, we note that the map f → htop(f) is continuous
in the C∞-topology (see [N2]). On the other hand, it is well known that
htop(f) = htop(f/Ω(f)). If Ω(f) has dominated splitting, it follows that

htop(f) = htop(f/Ω(f)) = htop(f/L(f)) = htop(f/L̃(f)).

Next, if Ω(f) has dominated splitting for f ∈ U , it follows from Theorem E
that there exists an open set Vf ⊂ U such that for g ∈ V, L̃(g) is conjugated to
L̃(f) and hence htop(g) = htop(f). Therefore, if the topological entropy is not
constant in U , the image of the map U 3 f → htop(f) contains an interval [a, b].
For each t ∈ [a, b] let f ∈ U such that htop(f) = t. It follows that there is an
open set Vt such that htop(g) = t for g ∈ Vt. Thus, the collection Vt, t ∈ [a, b]
is not enumerable and Vt ∩ Vt′ = ∅ if t 6= t′. This contradicts the fact that
Diff∞(M2) is a separable space.

Remark 6.1.1. Theorem F remains valid if we assume for

f ∈ U ⊂ Diff∞(M2)

that L(f) has dominated splitting. In fact, if L(f) has dominated splitting for
f in a open set, it can be proved that L(f) = Ω(f) with similar arguments as
in [NP].

Remark 6.1.2. Theorem F applies for example to Figure 3a of the previous
section when the saddle-node is destroyed: Although many new bifurcations
(of periodic points) could appear, the topological entropy remains constant.
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