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The concept of duality in convex analysis,

and the characterization of
the Legendre transform

By Shiri Artstein-Avidan and Vitali Milman*

Abstract

In the main theorem of this paper we show that any involution on the
class of lower semi-continuous convex functions which is order-reversing, must
be, up to linear terms, the well known Legendre transform.

1. Introduction

The notion of duality is one of the central concepts both in geometry and
in analysis. At the same time, it is usually defined in a very concrete way,
using very concrete structures. It turns out, however, that in many of the
central examples of duality in geometry and analysis, the standard definitions
arise, explicitly, from two very simple and natural properties: involution, and
order reversion. This basic fact, which, it seems, was not discovered until now
despite the very common use of duality throughout mathematical research,
can be seen in the following result regarding the Legendre transform, which,
together with its consequences, is the main subject of this paper.

Denote the class of lower-semi-continuous convex functions φ : Rn →
R ∪ {±∞} by Cvx(Rn) (so that the only function attaining the value −∞ is
the constant −∞ function). Denote by 〈·, ·〉 the standard scalar product on
Rn. Recall the definition of the classical Legendre transform L : Cvx(Rn) →
Cvx(Rn) given by

(1) (Lφ)(x) = sup
y

(〈x, y〉 − φ(y)) .

For background on the Legendre transform and its many applications, see, e.g.,
[Arn], [Ho] and [Ro]. The following theorem shows why it is, in some sense,
the only natural transform to associate with duality of convex functions.
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author was partially supported by the ISF grant no. 865/07, and the second named author
was partially supported by an ISF grant.
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Theorem 1. Assume a transform T : Cvx(Rn) → Cvx(Rn) (defined on
the whole domain Cvx(Rn)) satisfies

1. T T φ = φ,

2. φ ≤ ψ implies T φ ≥ T ψ.

Then, T is essentially the classical Legendre transform; namely there exists
a constant C0 ∈ R, a vector v0 ∈ Rn, and an invertible symmetric linear
transformation B ∈ GLn such that

(T φ)(x) = (Lφ)(Bx+ v0) + 〈x, v0〉+ C0.

Thus, the two seemingly weak conditions, which we are used to associating
with any geometric ‘duality’ transform, are already enough to imply, up to an
additive linear function (compensated by a translation) and a symmetric linear
transformation, the concrete form of the Legendre transform.

It turns out that even the involution condition (1) is stronger than needed,
and variants of Theorem 1 where this condition is replaced by a weaker one
will be presented in Section 5 below.

The main part of this note will be dedicated to proving this theorem and
some of its applications. However, we have obtained several more results of this
type, and in fact, in every form of geometric and functional dualities we were
interested in, we have been able to prove a similar result. These cases include
duality for positive functions concave on their support (and, more generally, s-
concave functions), and subclasses of this class, log-concave duality and more.
The case of indicator functions of compact convex bodies with 0 in the interior
was settled recently by Böröczky and Schneider [BSc]. We present the general
picture, as we view it, and some of these additional results, without proofs,
in the last section of this note. For a more elaborate discussion we refer the
reader to the announcement paper [AM1].

2. First observation: Interchanging inf and sup

The class of convex functions is closed under the operation of taking the
supremum of a family of functions, but not under infimum. To this end we
introduce the notation for ‘regularized infimum’, ˆinf, which will denote the
largest convex function which is less than or equal to each of the functions in
the family. More precisely,

ˆinfα{fα} = sup{f : f ∈ Cvx(Rn), and f ≤ fα ∀α},

and so clearly ˆinfα{fα} ∈ Cvx(Rn).
For later use, the following lemma is given under weaker conditions than

those of Theorem 1.
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Lemma 2. Assume we are given a transformation T : Cvx(Rn)→ Cvx(Rn),
invertible, satisfying

a. φ ≤ ψ implies T φ ≥ T ψ,

b. T φ ≤ T ψ implies φ ≥ ψ.

Then T ( ˆinf(fα)) = sup(T fα), and vice versa.

Proof. Indeed, by surjectivity we have that supα(T fα) = T h for some
h ∈ Cvx(Rn), so T h ≥ T fα for all α, and so by (b) we must have h ≤ fα
for all α, and since h ∈ Cvx(Rn) we have h ≤ h′ = ˆinfα(fα). Next, as
h′ ≤ fα for all α, we must have by (a.) that T h′ ≥ T fα for all α, and so
T h′ ≥ supα T fα = T h, and be condition (b) we get that h′ ≤ h. We thus have
equality h = h′.

The other side is proved in the exact same way, ˆinfα(T fα) = T h for some
h ∈ Cvx(Rn), so, T h ≤ T fα for all α, and so by (b) we must have h ≥ fα
for all α, and since h ∈ Cvx(Rn) we have h ≥ h′ = supα(fα). However, by
(a.) T h′ ≤ T fα for every α, so that T h′ ≤ ˆinfα(T fα) = T h and by (b) again,
h′ ≥ h, so there is equality h = h′.

3. Second observation: Linear and delta-functions suffice

For simplicity of notation, for θ ∈ Rn we will denote the function− log δθ(x)
by Dθ(x), that is,

Dθ(θ) = 0 and Dθ(y) = +∞ for y 6= θ.

we will refer to these functions throughout the paper as ‘delta-type functions’.
These functions clearly belong to Cvx(Rn), and so do their parallels (or shifts)
Dθ+c. Moreover, any function can be expressed as the infimum of such shifted
functions, namely f(x) = infy(Dy(x) + f(y)). Taking this into account, the
following theorems are quite straightforward.

Lemma 3. Assume a 1-1 and onto transform T : Cvx(Rn) → Cvx(Rn)
(defined on the whole domain Cvx(Rn)) satisfies

1. φ ≤ ψ implies T φ ≥ T ψ,
2. T φ ≤ T ψ implies φ ≥ ψ,
3. There exist C0,∈ R, C1 > 0, B ∈ GLn and v0, v1 ∈ Rn such that for any
θ and c

(T (Dθ + c)) (x) = 〈Bθ + v1, x〉+ 〈v0, θ〉 − C1c+ C0.

Then T is a variant of the Legendre transform defined by

(T φ)(x) = C0 + 〈v1, x〉+ C1(Lφ)(B′x+ v′0).

for B′ = B∗/C1 ∈ GLn and v′0 = v0/C1.
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Proof. Let

φ(x) =
(

ˆinfy(φ(y) +Dy)
)

(x),

so that by Lemma 2 we have that

(T φ)(x) = sup
y
T (φ(y) +Dy)(x),

which by (3) equals

(T φ)(x) = sup
y

(〈By + v1, x〉+ 〈v0, y〉 − C1φ(y) + C0)

=C0 + 〈v1, x〉+ sup
y

(〈y, v0 +B∗x〉 − C1φ(y))

=C0 + 〈v1, x〉+ C1 sup
y

(〈y,B′x+ v′0〉 − φ(y))

=C0 + 〈v1, x〉+ C1(Lφ)(B′x+ v′0).

Secondly, we will need a version which applies to the involution condition,
which is stronger than the second condition above.

Lemma 4. Assume a transform T : Cvx(Rn)→ Cvx(Rn) (defined on the
whole domain Cvx(Rn)) satisfies

1. T T φ = φ,

2. φ ≤ ψ implies T φ ≥ T ψ,
3. There exist C0 ∈ R, C1 > 0, v0, v1 ∈ Rn and B ∈ GLn such that for any
θ and c

T (Dθ + c) = 〈Bθ + v1, ·〉+ 〈v0, θ〉 − C1c+ C0.

Then B must be symmetric, B = B∗, C1 = 1, v0 = v1, and T is a variant of
the Legendre transform, given by

(T φ)(x) = C0 + 〈v0, x〉+ (Lφ)(Bx+ v0).

Proof. Lemma 3 implies that the transform has the form

(T φ)(x) = C0 + 〈v1, x〉+ C1(Lφ)(B′x+ v′0)

for B′ = B∗/C1 ∈ GLn and v′0 = v0/C1.
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We will apply the transform twice to a general function φ. Apply first the
Legendre transform to T φ:

(LT φ)(x) = sup
y

(〈x, y〉 − (T φ)(y))

=−C0 + sup
y

(
〈x− v1, y〉 − C1(Lφ)(B′y + v′0)

)
=−C0 + sup

z

(
〈x− v1, (B′)−1(z − v′0)〉 − C1(Lφ)(z)

)
=−C0 − 〈x− v1, (B′)−1v′0〉+ C1(LLφ)((

(B′)−1

C1
)∗(x− v1))

=−C0 − 〈x− v1, (B∗)−1v0〉+ C1φ(B−1(x− v1)).

We then use the formula defining T and get that

(T T φ)(x) =C0 + 〈v1, x〉+ C1(L(T φ))(B′x+ v′0)

=C0 + 〈v1, x〉 − C1(C0 + 〈B′x+ v′0 − v1, (B∗)−1v0〉)
+ C2

1φ(B−1(B′x+ v′0 − v1)).

This last expression must equal φ(x) for every x and φ. Letting φ = 0 we see
that for every x

C0 + 〈v1, x〉 − C1C0 − C1〈B′x+ v′0 − v1, (B∗)−1v0〉 = 0

which in particular means that B(B∗)−1v0 = v1. The formula becomes

φ(x) = C2
1φ(B−1(B′x+ v′0 − v1)).

Obviously this means that C1 = 1, say, by looking at a constant function. This
leaves us with B−1(B′x+ v′0 − v1) = x, which implies that (v0 =)v′0 = v1, and
that B = B∗, as required.

4. Linear and delta-functions, and a proof of Theorem 1

We now proceed to the proof of the main theorem. To this end, we show
the following theorem, which together with Lemma 4 gives Theorem 1.

Theorem 5. Assume an invertible transform T : Cvx(Rn) → Cvx(Rn)
satisfies

1. φ ≤ ψ implies T φ ≥ T ψ,
2. T φ ≤ T ψ implies φ ≥ ψ.

Then, there exist constants C0 ∈ R, C1 > 0, two vectors v0, v1 ∈ Rn, and
B ∈ GLn such that for any θ and c,

T (Dθ + c) = 〈Bθ + v1, ·〉+ 〈v0, θ〉 − C1c+ C0.
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The proof is composed of several steps: first we show that delta functions
must be mapped to linear functions and vice versa. Then we show that this
correspondence is in essence linear, and then we interpret this linearity.

Step One. We will show that for any θ ∈ Rn and c ∈ R there exist
aθ,c ∈ Rn, Aθ,c ∈ R such that

Dθ + c = T (〈aθ,c, ·〉+Aθ,c).

Assume T φ = Dθ + c. (We know there exists such a φ, from surjectivity).
We claim that each two linear functionals h1, h2 satisfying hi ≤ φ, i = 1, 2,
differ by a constant from one another. This means that φ itself is linear, since
any convex function which is not linear has at least two different supporting
hyperplanes. Indeed, assume φ had two linear functionals hi = 〈·, ai〉 + Ai,
for i = 1, 2, which are below it. Since T is 1-1, the two functions T h1 and
T h2 are different. On the other hand, they both have to be greater than or
equal to Dθ + c at each point x, and so can be 6= ∞ only at θ. From this
we conclude that they are both equal to Dθ + ci for some constants c1 and
c2, respectively. But then, from Lemma 2, T (max(h1, h2)) = Dθ + min(c1, c2),
which contradicts the injectivity unless max(h1, h2) = hi for one of the i = 1, 2,
which means that they are parallel.

Step Two. In the same way we may show that for every a ∈ Rn and
A ∈ R there exist θa,A and ca,A such that

Dθa,A
+ ca,A = T (〈a, ·〉+A).

(That is, the class of linear functions is mapped, onto, the class of delta-type
functions.) Indeed, denote φa,A = 〈a, ·〉 + A. All we have to show is that
the support of T φa,A is one point. This follows from the fact that every two
functions which are greater than T φa,A are images of two functions which are
less than φa,A, and are hence, in particular, comparable (one is greater than
the other). However, if the support of T φa,A includes two different points, x1

and x2, then above it are, for some constants α1 and α2, both Dx1 + α1 and
Dx2 + α2, which are not comparable.

Step Three. In the same way, for any θ ∈ Rn and c ∈ R there exist
a′θ,c ∈ Rn, A′θ,c ∈ R such that

T (Dθ + c) = 〈a′θ,c, ·〉+A′θ,c,

and moreover this mapping is onto, namely for every a ∈ Rn and A ∈ R there
exist θa,A ∈ Rn and ca,A ∈ R such that

T (Dθa,A
+ ca,A) = 〈a, ·〉+A.

Indeed, this can be achieved directly, but one may instead notice that the
conditions regarding T and T −1 are identical, and so by the first two steps
applied to T −1 instead of T we get the required conclusion.
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Step Four. From the above it follows that for any θ and c there exists
another c′ such that T (Dθ + c) = T (Dθ) + c′, and that for any a ∈ Rn and
A ∈ R there exists A′ ∈ R with T (〈a, ·〉+A) = T (〈a, ·〉) +A′ (simply because
comparable pairs are mapped to comparable pairs). Note that from anti-
monotonicity, the signs of c and c′ must be opposite, and also of A and A′, a
fact which we will use later.

Thus the above also implies that for any θ

T {Dθ + c : c ∈ R} = {T Dθ + c : c ∈ R},

and that for any a

T {〈a, ·〉+A : A ∈ R} = {T 〈a, ·〉+A : A ∈ R}.

More precisely, define the two mappings G1, G2 : Rn+1 → Rn+1 in the
following way: G1(θ, c) = (a′, A′) where T (Dθ+c) = 〈a′, ·〉+A′, and G2(a,A) =
(θ, c) where T (〈a, ·〉 + A) = Dθ + c. Then G1 maps the interval {(θ, tc) :
t ∈ [t1, t2]} to an interval {(ac, A) : A ∈ [A1, A2]}, and G2 maps an interval
{(a,A) : A ∈ [A1, A2]} to an interval {(θa, tc) : t ∈ [t1, t2]}.

Step Five. We will now show that the mappings Gi map any interval to
an interval. For fixed θ0, c0, θ1, c1, denoting T (Dθ0 +c0) = φ0 and T (Dθ1 +c1) =
φ1, we show that

T {Dθ + cθ : (θ, cθ) =λ(θ0, c0) + (1− λ)(θ1, c1), 0 ≤ λ ≤ 1}
= {µφ0 + (1− µ)φ1 : 0 ≤ µ ≤ 1}.

This implies that the mapping G1 defined in Step Four above, maps intervals
in Rn+1 to intervals. We then show a corresponding fact for G−1

2 .
Indeed, look at m̂in(Dθ0 +c0, Dθ1 +c1). This is a function which is linear in

the interval [θ0, θ1] (joining (θ0, c0) and (θ1, c1)) and∞ elsewhere. Its transform
is, by Lemma 2, equal to max(φ1, φ2). For every 0 ≤ λ ≤ 1, the function Dθ+cθ
for θ = λθ0 + (1 − λ)θ1 and cθ = λc0 + (1 − λ)c1 is clearly above this m̂in,
and thus its image under T is below max(φ1, φ2). However, its image is a
linear function 〈a, ·〉+A, and so a ∈ [a0, a1] where ai = ∇φi (recall that φi are
linear). That is, for some 0 ≤ µ ≤ 1 we have a = µa0 + (1 − µ)a1. Secondly,
the graph of T (Dθ + cθ) must touch the graph of max(φ1, φ2), otherwise for
some positive c′′ we have T (Dθ + cθ) + c′′ ≤ max(φ1, φ2) and then (applying
T −1), Dθ + cθ − c′′′ ≥ m̂in(Dθ1 , Dθ2) which does not hold for any positive c′′′.
The fact that it touches the graph implies that also A = µA0 +(1−µ)A1, thus,
T (Dθ + cθ) ∈ [φ1, φ2], as required.

The same considerations can be applied to T −1, and so G−1
2 maps intervals

to intervals (which will imply the same for G2, as we will see in the next step).

Step Six. The conclusion of Step Five implies that the mapping G1 :
Rn+1 → Rn+1 maps all straight lines in Rn+1 to straight lines, and, what is
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formally stronger, maps intervals to intervals. Notice that n+ 1 ≥ 2, and thus
we can apply the following fact, called the fundamental fact of affine geometry:

Fact. For m ≥ 2, an injective mapping F : Rm → Rm which maps all
straight lines to straight lines, must be an affine linear map (i.e., there is some
B ∈ GLm such that F (x) = F (0) +Bx).

Remark 6. The above fact is well known, and plays a basic role in pro-
jective geometry, see for example [Art]. For the convenience of the reader we
provide the proof for the formally weaker statement which we use (namely,
that such a map, mapping intervals to intervals, is affine linear). To prove
it one first notices that the case F (0) = 0 and m = 2 is enough, since the
fact that straight lines are mapped to straight lines implies that affine two-
dimensional subspaces are mapped to affine two-dimensional subspaces, and
a translation is always possible. In m = 2 one first notices that for linearly
independent x any y, one has that F (x) and F (y) are linearly independent (or
it would contradict injectivity). Second, one uses the fact that parallel lines
must be mapped to parallel lines (since they must not intersect), to see that
F (x + y) must lie on both lines {F (x + cy) : c ∈ R} = F (x) + cF (y) and
{F (cx + y) : c ∈ R} = F (y) + cF (x). These intersect at F (x) + F (y) only;
hence F (x + y) = F (x) + F (y). We are almost done, since, taking x linearly
independent of y and such that x + y is linearly independent of y as well, we
have

F (x) = F (x+ y − y) = F (x+ y) + F (−y) = F (x) + F (y) + F (−y),

which implies F (−y) = −F (y), and so

F (x+ x) = F (x+ y) + F (x− y) = 2F (x).

Similarly for any p ∈ N we have F (px) = pF (x). Assume that F (ax) = bF (x)
and that p

q ≤ a ≤ p+1
q , then F (aqx) = qF (ax) = qbF (x) but, from the

conditions on intervals,

F (aqx) ∈ [F (px), F ((p+ 1)x)] = [pF (x), (p+ 1)F (x)],

so that b ∈ [p/q, (p + 1)/q]. Thus, a = b, and the mapping is truly linear
F (ax) = aF (x).

We would also like to remark that this fact, although relatively simple, has
very interesting consequences not only for geometry but also in various other
fields of mathematics; for example it has surprisingly appeared in decision
theory applications communicated to us by David Schmeidler [BGSS].

Thus, G1 is given by an affine linear map, G1(θ, c) = B1(θ, c) + V1 for
B1 ∈ GLn+1, V1 ∈ Rn+1. Similarly, G−1

2 is affine linear, and therefore so is G2,
so we write that G2(a,A) = B2(a,A) + V2 for B2 ∈ GLn+1, V2 ∈ Rn+1.
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Moreover, Step Four implies that the a-coordinate of G1(θ, c) does not
depend on c, and that the θ-coordinate of G2 does not depend on A. Therefore
B1 and B2, in matrix form, have zeros in all the entries of their last column
except for the (n+ 1)-th entry.

Step Seven. We thus see that for some B ∈ GLn, v0, v1 ∈ Rn, C1, C0 ∈ R,
we have G1(θ, c) = (Bθ + v1, 〈v0, θ〉 −C1c+C0). (Indeed, simply let B be the
first n×n block of B1, V1 = (v1, C0), and (v0, C1) be the (n+ 1)th row of B1.)
From the reversion of order it is clear that C1 > 0.

That is,

T (Dθ + c) = 〈·, Bθ + v1〉+ 〈v0, θ〉 − C1c+ C0.

This completes the proof of Theorem 5.

Proof of Theorem 1. The above equation, namely the conclusion of
Theorem 5, is exactly the form given in the statement of Lemma 4, and so we
arrive at the conclusions of that lemma, namely that C1 = 1, B is symmetric,
and that for any function φ

(T φ)(x) = C0 + 〈v0, x〉+ (Lφ)(Bx+ v0)).

This completes the proof of Theorem 1.

5. Two consequences and two remarks

When the condition of involution is replaced by the weaker fact that both
T and its inverse are order reversing, one produces a similar result, with some
additional terms. More precisely

Theorem 7. Assume an invertible transform T : Cvx(Rn) → Cvx(Rn)
satisfies

1. φ ≤ ψ implies T φ ≥ T ψ,
2. T φ ≤ T ψ implies φ ≥ ψ.

Then, there exist constants C0 ∈ R, C1 > 0, two vectors v0, v1 ∈ Rn, and an
invertible linear transformation B ∈ GLn such that

(T φ)(x) = C0 + 〈v1, x〉+ C1(Lφ)(Bx+ v0).

Proof. Combine Theorem 5 with Lemma 3, and change notation slightly.

The above theorem is useful for determining all the order preserving 1-1
and onto maps from Cvx(Rn) to itself. Each such 1-1 and onto order preserving
map is composed of a translation in the argument, multiplication by a positive
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constant, and addition of an affine linear function. More precisely, we may
conclude the following

Corollary 8. Assume an invertible transform F : Cvx(Rn)→ Cvx(Rn)
satisfies

1. φ ≤ ψ implies Fφ ≤ Fψ,
2. Fφ ≤ Fψ implies φ ≤ ψ.

Then there exist constants C0 ∈ R, C1 > 0, two vectors v0, v1 ∈ Rn, and an
invertible linear transformation B ∈ GLn such that

(Fφ)(x) = C0 + 〈v1, x〉+ C1φ(Bx+ v0).

Proof. Assume F is given, and consider the transformation T = F ◦ L :
Cvx(Rn) → Cvx(Rn). It is invertible, order reversing, and also its inverse
(which is L◦F−1) is order reversing, so we are in the conditions of Theorem 7.
Therefore T is of the form

(T φ)(x) = C0 + 〈v1, x〉+ C1(Lφ)(Bx+ v0).

To reconstruct F , simply observe that F = T ◦ L, and also that

(T Lφ)(x) = C0 + 〈v1, x〉+ C1φ(Bx+ v0).

It should be remarked here that one could begin with a direct proof of
Corollary 8, about order-preserving transformations, and receive as a conse-
quence Theorem 7 and the main theorem. This is another way to approach
the subject, and the proofs in both approaches are quite similar.

Remark 9. The two conditions of Corollary 8 can be replaced by the fol-
lowing two conditions:

1. F(m̂in(φ, ψ)) = m̂in(Fφ,Fψ),

2. F(max(φ, ψ)) = max(Fφ,Fψ).

These two conditions are equivalent to the two conditions above, and
should be compared with results of Gruber [Gr1], [Gr2] regarding the lattice
of convex bodies and of normed spaces. However, we do have the additional
assumption that F is invertible.

Similarly, in Theorem 7, we may replace the two conditions by the equiv-
alent

1. T (m̂in(φ, ψ)) = max(T φ, T ψ),

2. T (max(φ, ψ)) = m̂in(T φ, T ψ).
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Remark 10. It turns out that an even stronger theorem than Theorem 7
and Corollary 8 holds, when the condition of order reversion, or preservation,
is replaced by the condition of ‘comparability-preservation’. More precisely,
if one merely assumes, concerning the invertible transform, that both it, and
its inverse, map comparable pairs of functions in Cvx(Rn), already it must be
either order-reversing for all functions or order-preserving for all functions, and
so must be either a Legendre-type transform as in Theorem 7, or an identity-
type transform as in Corollary 8. For more details see the announcement paper
[AM1].

6. Discussion and additional results

As explained in the introduction, Theorem 1, regarding the Legendre
transform, is one (perhaps the main) example of a more general concept of
duality, which can be applied not only to the class Cvx(Rn), but also to vari-
ous other classes. The concept of duality is captured in the following definition,
which, in all the examples we have considered, together with a specified class
of functions, implies a concrete form of the duality transform, as can be seen
in Theorem 1, and in the other theorems we quote below.

Definition 11 (The concept of duality). A transform T generates a du-
ality transform on a set of functions S defined on Rn if the following two
properties are satisfied:

1. For any f ∈ S we have T T f = f,

2. For any two functions in S satisfying f ≤ g. we have T f ≥ T g

First we would like to remark that, by the same reasoning as in Lemma 2,
these two conditions imply that the regularized infimum is transformed to the
regularized supremum and vice versa (provided that these regularizations are
well defined in the class).

One important example, mentioned in the introduction, is that of polarity
of compact convex bodies with zero in their interior (or of their indicator
functions, as is more appropriate in out setting). For this class, Böröczky
and Schneider showed in [BSc] a classification of transforms which satisfy the
following condition: the transform of a convex hull of two convex sets, is the
intersection of the transforms of the sets, and vice versa. As a conclusion from
this, together with the equivalent of Lemma 2, one gets that an order-reversing
involution defined on this class must be, up to a linear transformation, the usual
polarity for convexity, given by

K◦ = {x : sup
y∈K
〈x, y〉 ≤ 1}.
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Two related papers which study transformations which preserve the lattice of
centrally symmetric (compact) convex bodies with respect to intersection of
bodies and to the convex hull of their union, and also for the lattice of norms,
are Gruber [Gr1] and [Gr2]. The latter implies, as was noticed in [BSc], the
corresponding duality result for centrally symmetric convex bodies with 0 in
their interior. For the case of closed convex sets with 0 inside but possibly on
the boundary, see [AM2].

A direct application of Theorem 1 is a corresponding theorem for duality
of log-concave functions. The class of log-concave functions, defined below, is
studied in probability and in convex geometry, see [Bor], [Ba], and for more
recent developments see e.g. [Kl], [M]. Denote by LC(Rn) (for “log-concave”)
the class of upper semi-continuous non-negative functions with convex non-
empty support, such that on their support, their logarithm is concave. The
concept of duality for this class was studied in a joint paper of the authors and
B. Klartag [AKM] where the following definition was given for the dual of a
log-concave function:

(2) f◦(x) = inf
y∈Rn

e−〈x,y〉

f(y)
.

Theorem 1 implies that this definition, up to linear terms, is the only
definition corresponding to abstract duality, i.e., if one demands the duality
operation to satisfy the abstract duality properties of Definition 11. Indeed:

Corollary 12. Assume a transform T : LC(Rn)→ LC(Rn) (defined on
the whole domain LC(Rn)) satisfies

1. T T f = f,

2. f ≤ g implies T f ≥ T g.

Then, there exist a constant 0 < C0 ∈ R, a vector v0 ∈ Rn, and an invertible
symmetric linear transformation B ∈ GLn such that T is defined as follows:

(T f)(x) = C0e
−〈v0,x〉 inf

y

e−〈Bx+v0,y〉

f(y)
.

(Notice that (T f)(x) = C0e
−〈v0,x〉f◦(Bx + v0) for the functional duality

f◦ defined above in (2).)
Other classes are of interest in geometry, and we quote just one additional

result, namely a corresponding theorem for s-concave functions.
Define for s > 0 the set Concs(Rn) to be the set of all upper semi-

continuous non-negative functions on Rn which are s-concave, namely have
convex support which includes 0, and f1/s is concave on the support. In [AKM]
the following definition was given for duality in this class (and in several related
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classes):

(3) Lsf = inf
{y:f(y)>0}

(
1− 〈x,y〉s

)s
+

f(y)
.

It turns out (but requires an independent, and quite involved, proof) that
again this transform is uniquely defined, up to some linear terms, if we require
it to satisfy abstract duality as in Definition 11. The following theorem’s proof,
and several other variants of it, will appear in [AM2]:

Theorem 13. Assume n ≥ 2 and we are given a transform T : Concs(Rn)
→ Concs(Rn) (defined on the whole domain) satisfying

1. T T f = f,

2. f ≤ g implies T f ≥ T g.

Then, there exist a constant C0 ∈ R and an invertible symmetric linear trans-
formation B ∈ GLn such that

(T f)(x) = C0 inf
(y:f(y)>0)

(1− 〈x, y〉)s+
f(By)

.

Finally, we describe one more related theorem. Before stating it, let us
note that the Legendre transform has another remarkable property, a priori
not connected with the fact that it reverses order. With the definition of the
inf-convolution of two functions f, g ∈ Cvx(Rn), given by

(f2g)(z) = inf
x+y=z

(f(x) + g(y)) ,

the Legendre transform exchanges the sum of two functions with their inf-
convoltuion, namely

Lf + Lg = L(f2g)

for all f, g ∈ Cvx(Rn). (We need some convention to decide what to do with
−∞ +∞. We omit the justification for the following reasonable agreement:
(−∞)�f ≡ −∞ for all f , and (−∞) + f = −∞ for all f 6≡ +∞, and, as
functions, −∞+∞ ≡ +∞.)

Thus, the theorems above imply that any involutive transform on Cvx(Rn)
which reverses order, essentially (after linear corrections) satisfies a relation of
this form. The opposite is also true, and we can prove the following theorem
(for details see the announcement paper [AM1])

Theorem 14. Assume that there is a transform T : Cvx(Rn)→ Cvx(Rn)
(defined on the whole domain) satisfying

1. T T f = f,

2. T f + T g = T (f2g).
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Then, there exists a symmetric linear transformation B ∈ GLn such that for
all f

(T f)(x) = sup
y∈Rn

(〈Bx, y〉 − f(y)) .
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