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A combinatorial description
of knot Floer homology

By Ciprian Manolescu, Peter Ozsváth, and Sucharit Sarkar*

Abstract

Given a grid presentation of a knot (or link) K in the three-sphere, we
describe a Heegaard diagram for the knot complement in which the Heegaard
surface is a torus and all elementary domains are squares. Using this diagram,
we obtain a purely combinatorial description of the knot Floer homology of K.

1. Introduction

Heegaard Floer homology [24] is an invariant for three-manifolds, defined
using holomorphic disks and Heegaard diagrams. In [23] and [27], this con-
struction is extended to give an invariant, knot Floer homology ĤFK, for null-
homologous knots in a closed, oriented three-manifold. This construction is
further generalized in [25] to the case of oriented links. The definition of all
these invariants involves counts of holomorphic disks in the symmetric product
of a Riemann surface, which makes them rather challenging to calculate.

In its most basic form, knot Floer homology is an invariant for knots
K ⊂ S3, ĤFK(K), which is a finite-dimensional bi-graded vector space over
F = Z/2Z, i.e.

ĤFK(K) =
⊕
m,s

ĤFKm(K, s).

This invariant is related to the symmetrized Alexander polynomial ∆K(T ) by
the formula

(1) ∆K(T ) =
∑
m,s

(−1)mrank ĤFKm(K, s) · T s

(cf. [23], [27]). The topological significance of this invariant is illustrated by
the result that

g(K) = max{s ∈ Z
∣∣ĤFK∗(K, s) 6= 0},
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where here g(K) denotes the Seifert genus of K (cf. [22]), and also the fact that
ĤFK∗(K, g(K)) has rank one if and only if K is fibered ([10] in the case
where g(K) = 1 and [19] in general). The invariant is defined as a version of
Lagrangian Floer homology [6] in a suitable symmetric product of a Heegaard
surface.

Our aim here is to give a purely combinatorial presentation of knot Floer
homology with coefficients in F for knots in the three-sphere. Our description
can be extended to describe link Floer homology, and also it can be extended
to describe the “full knot filtration” (and in particular the concordance invari-
ant τ [21]). However, in the interest of exposition, we limit ourselves in the
introduction to the case of knot Floer homology, referring the interested reader
to Section 3 for more general cases.

To explain our combinatorial description, it will be useful to have the
following notions.

A planar grid diagram Γ̃ consists of a square grid on the the plane with
n× n cells, together with a collection of black and white dots on it, arranged
so that:

• every row contains exactly one black dot and one white dot;

• every column contains exactly one black dot and one white dot;

• no cell contains more than one dot.

The number n is called the grid number of Γ̃.
Given a planar grid diagram Γ̃, we can place it in a standard position

on the plane as follows: the bottom left corner is at the origin, each cell is a
square of edge length one, and every dot is in the middle of the respective cell.
We then construct a planar knot projection by drawing horizontal segments
from the white to the black dot in each row, and vertical segments from the
black to the white dot in each column. At every intersection point, we let the
horizontal segment be the underpass and the vertical one the overpass. This
produces a planar diagram for an oriented link ~L in S3. We say that ~L has a
grid presentation given by Γ̃. Figure 1 shows a grid presentation of the trefoil,
with n = 5.

It is easy to see that every knot (or link) in the three-sphere can be
presented by a planar grid diagram. In fact, grid presentations are equiva-
lent to the arc presentations of knots, which first appeared in [1], the square
bridge positions of knots of [15], and also to Legendrian realizations of knots,
cf. [17]; they have enjoyed a considerable amount of attention over the years
(see also [3], [4]). The minimum number n for which a knot K ⊂ S3 admits a
grid presentation of grid number n is called the arc index of K.

We find it convenient to transfer our planar grid diagrams to the torus T
obtained by gluing the top-most segment to the bottom-most one, and the left-
most segment to the right-most one. In the torus, our horizontal and vertical
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Figure 1: Grid diagram for the trefoil. We have pictured here a grid diagram
for the trefoil, with projection indicated on the left. To pass from a planar to
a toroidal grid diagram, we make the identifications suggested by the arrows.

arcs become horizontal and vertical circles. The torus inherits its orientation
from the plane. We call the resulting object Γ a toroidal grid diagram, or
simply a grid diagram, for K.

Given a toroidal grid diagram, we associate to it a chain complex
(
C(Γ), ∂

)
as follows. The generators X of C(Γ) are indexed by one-to-one correspon-
dences between the horizontal and vertical circles. More geometrically, we can
think of these as n-tuples of intersection points x between the horizontal and
vertical circles, with the property that no intersection point appears on more
than one horizontal (or vertical) circle.

We now define functions A : X −→ Z and M : X −→ Z (the Alexander
and Maslov gradings) as follows.

Let us define a function a on lattice points p to be minus one times the
winding number of the knot projection around p. (This is shown in Figure 2
for our trefoil example.) Each black or white dot in the diagram lies in a
square. We thus obtain 2n distinguished squares, and each of them has four cor-
ners. We denote the resulting collection of corners {ci,j}, i ∈ {1, . . . , 2n}, j ∈
{1, . . . , 4}. We set

(2) A(x) =
∑
p∈x

a(p)− 1
8

(∑
i,j

a(ci,j)
)
− n− 1

2
.

Next, given a pair of generators x and y, and an embedded rectangle r
in T whose edges are arcs in the horizontal and vertical circles, we say that
r connects x to y if x and y agree along all but two horizontal circles, if all
four corners of r are intersection points in x∪y. If we traverse each horizontal
boundary components of r in the direction dictated by the orientation that r
inherits from T , then the arc is oriented so as to go from a point in x to the
point in y. Let Rx,y denote the collection of rectangles connecting x to y.
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Figure 2: The function a. Over every lattice point p from Figure 1, we marked
minus the winding number of the knot projection around p.

Figure 3: Rectangles. At the left, we have indicated two generators x and y in
X for the grid diagram of the trefoil considered earlier. The generators x and
y are represented by the collections of (smaller) shaded dots centered on the
intersection points of the grid, with x represented by the more darkly shaded
circles and y represented by the more lightly shaded ones. Note that three
dots in x occupy the same locations on the grid as y-dots, while two do not.
At the right, we have have indicated the two rectangles in Rx,y, which are
shaded by (the two types of) diagonal hatchings. One of these rectangles r has
Px(r) + Py(r) = 1 and W (r) = B(r) = 0 (and hence it represents a nontrivial
differential from x to y), while the other rectangle r′ has Px(r′) + Py(r′) = 5
and W (r′) = B(r′) = 2.
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It is easy to see that if x,y ∈ X, and if x and y differ along exactly
two horizontal circles, then there are exactly two rectangles in Rx,y; otherwise
Rx,y = ∅ (cf. Figure 3).

Given x,y ∈ X, it is easy to find an oriented, null-homologous curve γx,y
composed of horizontal and vertical arcs, where each horizontal arc goes from
a point in x to a point in y (and hence each vertical arc goes from a point
in y to a point in x). Now, suppose that D is a two-chain whose boundary
is a collection of horizontal and vertical arcs, and x ∈ X. We let W (D) and
B(D) denote the number of white and black dots in D respectively. Moreover,
near each intersection point x of the horizontal and vertical circles, D has four
local multiplicities. We define the local multiplicity of D at x, px(D), to be
the average of these four local multiplicities. Moreover, given x ∈ X, let

Px(D) =
∑
x∈x

px(D).

Now, M is uniquely characterized up to an additive constant by the property
that for each x,y ∈ X,

(3) M(x)−M(y) = Px(D) + Py(D)− 2 ·W (D),

where here D is some two-chain whose boundary is γx,y. (Observe that we
have displayed here a simple special case of Lipshitz’s formula for the Maslov
index of a holomorphic disk in the symmetric product, cf. [14].) Note that the
right-hand side is independent of the choice of D, as follows. Let {Ai}ni=1 and
{Bi}ni=1 be the annuli given by Σ−α1−· · ·−αn and β1−· · ·−βn respectively.
Note that any two choices of D and D′ connecting x to y differ by adding or
subtracting a finite number of annuli Ai and Bj . But for each such annulus
A, Px(A) = 1, Py(A) = 1, and W (A) = 1, and hence they do not change the
right-hand side. Moreover, the additive indeterminacy in M is removed by
the following convention. Consider the generator x0 which occupies the lower
left-hand corner of each square which contains a white dot; cf. Figure 4. We
declare that M(x0) = 1− n.

Consider C(Γ), the F-vector space generated by elements of X. We define
a differential

∂ : C(Γ) −→ C(Γ)

by the formula

∂x =
∑
y∈X

∑
r∈Rx,y

{
1 if Px(r) + Py(r) = 1 and W (r) = B(r) = 0
0 otherwise

}
· y.

The condition that Px(r) + Py(r) = 1 and W (r) = B(r) = 0 is, of course,
equivalent to the condition that the interior of the rectangle r contains no
black points, white points, or points amongst the x and y.
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Figure 4: The generator x0. We have illustrated here the generator with
Maslov grading equal to 1− n.

It is easy to see that ∂ drops Maslov grading by one and preserves Alexan-
der grading. It is also elementary to verify that ∂2 = 0. Thus, we can take the
homology of this complex to obtain a bigraded vector space over F.

Let V be the two-dimensional bigraded vector space spanned by one gen-
erator in bigrading (−1,−1) and another in bigrading (0, 0).

We can now state the following:

Theorem 1.1. Fix a grid presentation Γ of a knot K, with grid number n.
Then, the homology of the above chain complex H∗(C(Γ), ∂) is isomorphic to
the bigraded group ĤFK(K)⊗ V ⊗(n−1).

The key point of the above theorem is to find a suitable Heegaard diagram
for S3 compatible with the knot K. Indeed, the diagram we use has genus one,
with Heegaard torus T , and K is represented as a collection of horizontal
and vertical arcs. This Heegaard diagram has the property that the knot
pierces T in several pairs of points, and the very interesting property that the
complement in T of the attaching circles is a collection of squares. In this
case, properties of the Maslov index ensure that the only holomorphic disks
are rectangles. Thus the chain complex C(Γ) we have described above agrees
with the Heegaard Floer complex for this diagram.

There are several other variants of Theorem 1.1. There is, for example,
a version which calculates ĤFK(K) directly (though it is uniquely determined
by the above result), except there one needs to consider a variant of the above
the chain complex defined over a suitable polynomial algebra.

In this paper, we also consider several other versions of Theorem 1.1. We
discuss how to calculate the other variants of knot Floer homology, and also a
variant for links.

This paper is organized as follows. In Section 2, we describe the construc-
tion of link Floer homology using Heegaard diagrams with the property that
the link crosses the Heegaard surface in many points. This construction is then
identified with the usual construction using methods from [25]. In Section 3,
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we identify the chain complex C(Γ) with the link Floer homology complex
using the toroidal grid diagram of L, interpreted as a Heegaard diagram for L,
and state some more general consequences. Finally, in Section 4, we describe
some simple examples to illustrate our results.

Further remarks. Whereas the constructions in this paper give a purely
combinatorial chain complex for knot Floer homology, Theorem 1.1 is still
somewhat impractical, as the chain complex C(Γ) typically has far too many
generators: for a knot with arc index n, the procedure gives a chain com-
plex with n! generators. It remains a very interesting challenge to come up
with more efficient methods for calculating the homology of the complexes we
describe here.

In a different direction, the relationship between our combinatorial de-
scription and Legendrian knots seems tantalizing: one wonders whether this
is perhaps the hint of a connection with the holomorphic invariants of those
objects; compare [2], [5], [18].

We would like to remind the reader that we have kept the introduction
as elementary as possible. The more general results of Section 3 actually lead
to a calculation of link Floer homology for links in S3. Also, the extra data
about the “knot filtration” allows one to calculate the concordance invariant
τ for knots. It is also the input needed to determine the ranks of Heegaard
Floer homology groups of Dehn surgeries on a given knot K; see [26].

Acknowledgements. This paper grew out of attempts at understanding an
earlier preprint by the third author, who made the revolutionary observation
that for Heegaard diagrams of a certain special form, the corresponding Hee-
gaard Floer homology groups can be calculated combinatorially. In a different
direction, that preprint also lead to the paper [29], which gives a method for
describing ĤF of an arbitrary three-manifold in combinatorial terms.

We are grateful to Matthew Hedden, Mikhail Khovanov, John Morgan,
and Lev Rozansky for their suggestions on an early version of our results. We
are especially grateful to Dylan Thurston for his many interesting comments,
especially for his suggestions for simplifying the Alexander gradings. Finally,
we owe a great debt of gratitude to Zoltán Szabó, whose ideas have, of course,
had a significant impact on this present work.

2. Link Floer homology with multiple basepoints

We review here the construction of knot and link Floer homology, consid-
ering the case where the link meets the Heegaard surface in extra intersection
points. The fact that Heegaard Floer homology can be extracted from this
picture follows essentially from [25].
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Let (Σ,α,β,w, z) be a Heegaard diagram, where Σ is a surface of genus g,
k is some positive integer, α = {α1, . . . , αg+k−1} are pairwise disjoint, embed-
ded curves in Σ which span a half-dimensional subspace of H1(Σ; Z) (and hence
specify a handlebody Uα with boundary equal to Σ), β = {β1, . . . , βg+k−1} is
another collection of attaching circles specifying Uβ, and w = {w1, . . . , wk}
and z = {z1, . . . , zk} are distinct marked points with

w, z ⊂ Σ− α1 − · · · − αg+k−1 − β1 − · · · − βg+k−1.

The data (Σ,α,β) specifies a Heegaard splitting for some oriented three-
manifold Y . In the present applications, we will be interested in the case
where the ambient three-manifold is the three-sphere, and hence, we make this
assumption hereafter.

Let {Ai}ki=1 resp. {Bi}ki=1 be the connected components of Σ−α1− · · · −
αg+k−1 resp. Σ− β1 − · · · − βg+k−1.

We suppose that our basepoints are placed in such a manner that each
component Ai or Bi contains exactly one basepoint amongst the w and exactly
one basepoint amongst the z. We can label our basepoints so thatAi contains zi
and wi, and then Bi contains wi and zν(i), for some permutation ν of {1, . . . , k}.

In this case, the basepoints uniquely specify an oriented link L in S3 =
Uα ∪ Uβ, by the following conventions. For each i = 1, . . . , k, let ξi denote an
arc in Ai from zi to wi and let ηi denote an arc in Bi from wi to zν(i). Let
ξ̃i ⊂ Uα be an arc obtained by pushing the interior of ξi into Uα, and η̃i be the
arc obtained by pushing the interior of ηi into Uβ. Now, we can let L be the
oriented link obtained as the sum

k⋃
i=1

(
ξ̃i + η̃i

)
.

Definition 2.1. In the above case, we say that (Σ,α,β,w, z) is a 2k-
pointed Heegaard diagram compatible with the oriented link L in S3.

Let ` denote the number of components of L. Clearly, k ≥ `. In the case
where k = `, these are the Heegaard diagrams used in the definition of link
Floer homology [25]; see also [23], [27]. In the case where k > `, these Heegaard
diagrams can still be used to calculate link Floer homology, in a suitable sense.

Definition 2.2. A periodic domain is a two-chain of the form

P =
k∑
i=1

(ai ·Ai + bi ·Bi)

which has zero local multiplicity at all of the {wi}ki=1. A Heegaard diagram
is said to be admissible if every nontrivial periodic domain has some positive
local multiplicities and some negative local multiplicities.
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Consider first the case where our link is in fact a knot. In this case,
admissibility is automatically satisfied. Specifically, if we introduce cyclic or-
derings of {Ai}ki=1 and {Bi}ki=1, {wi}ki=1 and {zi}ki=1, so that wi, zi ∈ Ai and
wi, zi+1 ∈ Bi, then nwi(P ) = ai + bi and nzi(P ) = ai + bi−1. The condition
that P is a periodic domain ensures that for each i, ai + bi = 0. Thus, if
for some i we have nzi(P ) > 0 (i.e. ai + bi−1 > 0) then for some other j,
nzj (P ) = aj + bj−1 < 0. Conversely, if nwi(P ) = nzi(P ) = 0 for all i, then
there is some constant c with all ai = c = −bi; it follows readily that P = 0.

Let (Σ,α,β,w, z) be a Heegaard diagram compatible with an oriented
knot K. We will consider Floer homology in the g + k − 1-fold symmetric
product of the surface Σ, relative to the pair of totally real submanifolds

Tα = α1 × · · · × αg+k−1 and Tβ = β1 × · · · × βg+k−1.

Given x,y ∈ Tα ∩ Tβ, let π2(x,y) denote the space of homology classes of
Whitney disks from x to y, i.e. maps of the standard complex disk into
Symg+k−1(Σ) which carry i resp. −i to x resp. y, and points on the circle with
negative resp. positive real part to Tα resp. Tβ. (Note that when g + k > 3,
homology classes of Whitney disks agree with homotopy classes.)

We consider now the chain complex CFK−(Σ,α,β,w, z) over the poly-
nomial algebra F[U1, . . . , Uk] which is freely generated by intersection points
between the tori Tα = α1 × · · · × αg+k−1 and Tβ = β1 × · · · × βg+k−1 in
Symg+k−1(Σ). This module is endowed with the differential

(4) ∂−x =
∑

y∈Tα∩Tβ

∑
{φ∈π2(x,y)

∣∣µ(φ)=1}

#
(
M(φ)

R

)
U
nw1 (φ)
1 · . . . · Unwk (φ)

k · y,

where, as usual, π2(x,y) denotes the space of homology classes of Whitney
disks connecting x to y,M(φ) denotes the moduli space of pseudo-holomorphic
representatives of φ, µ(φ) denotes its formal dimension (Maslov index), np(φ)
denotes the local multiplicity of φ at the reference point p (i.e. the algebraic
intersection number of φ with the subvariety {p} × Symg+k−2(Σ)), and #()
denotes a count modulo two. As usual, in the definition of pseudo-holomorphic
disks, one uses a suitable perturbation of the condition on the disk that it be
holomorphic with respect to the complex structure on Symg+k−1(Σ) induced
from some complex structure on Σ, as explained in [24, §3]; see also [7], [20], [8],
[9] for more general discussions. We use here a sufficiently small perturbation
to retain the property that if u is pseudo-holomorphic, then for all p ∈ Σ−α1−
· · · − αg+k−1 − β1 − · · · − βg+k−1, np(φ) ≥ 0; cf. [24, Lemma 3.2]. For the case
where the Heegaard diagram is admissible, it is easy to see that Equation (4)
gives a finite sum; compare [24].
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The relative Alexander grading of two intersection points x and y is defined
by the formula

(5) A(x)−A(y) =

(
n∑
i=1

nzi(φ)

)
−

(
n∑
i=1

nwi(φ)

)
,

where φ ∈ π2(x,y) is any homotopy class from x to y. We find it convenient
to remove the additive indeterminacy in A: there is a unique choice with the
property that

(6)
∑

x∈Tα∩Tβ

TA(x) ≡ ∆K(T ) · (1− T−1)n−1 (mod 2),

where ∆K(T ) is the symmetrized Alexander polynomial which could be made
to work over Z by introducing signs. (These conventions are chosen to be
consistent with those made in Proposition 2.3 below.)

Moreover, there is a relative Maslov grading, defined by

(7) M(x)−M(y) = µ(φ)− 2
n∑
i=1

nwi(φ).

The relative Maslov grading can be lifted to an absolute grading using the
observation that (Σ,α,β,w) is a multiply-pointed Heegaard diagram for S3

(a balanced n-pointed Heegaard diagram in the terminology of [25]), and con-
sequently, if one sets all the Ui = 0, the homology groups of the resulting com-
plex, one obtains a relatively graded group which is isomorphic to H∗(T k−1; F)
(compare [25, Th. 4.5]). The Maslov grading is fixed by the requirement that

(8) H∗(CFK−/{Ui = 0}) ∼= H∗+k−1(T k−1; F).

So far, we have made no reference to the basepoints z. Indeed, the complex
CF−(Σ, α, β,w, z) so far is the chain complex for HF−(S3) for a multi-pointed
Heegaard diagram, in the sense of [25, §4.5].

This complex admits an Alexander filtration defined by the convention that
any element x ∈ Tα∩Tβ has Alexander filtration level A(x), and multiplication
by the variables Ui drops Alexander filtration by one, i.e.

A(Ua1
1 · . . . · U

ak
k · x) = A(x)− a1 − · · · − ak.

Nonnegativity of local multiplicities of pseudo-holomorphic disks ensures that
this function indeed defines a filtration on the complex; i.e., we have an increas-
ing sequence of subcomplexes F−(K,m) ⊂ CFK−(K) indexed by integers m,
which are generated over F[U1, . . . , Uk] by intersection points x with A(x) ≤ m.

In the case where k = 1, the above construction gives the chain homotopy
type of the “knot filtration” on CF−(S3), called CFK−(K), which is a chain
complex over the polynomial algebra F[U ]. In this case, it was shown in [23]
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and [27] that the filtered chain homotopy type of the complex is a knot invari-
ant. Our goal here is to show that this filtered chain homotopy type is also
independent of k.

In practice, it is often more convenient to consider the simpler complex
C(Σ,α,β,w, z) generated by intersection points of Tα and Tβ with coefficients
in F, endowed with the differential

∂x =
∑

y∈Tα∩Tβ

∑
{φ∈π2(x,y)

∣∣ µ(φ) = 1,
nwi (φ) = nzi (φ) = 0 ∀i = 1, . . . , n }

#
(
M(φ)

R

)
· y.

For this complex, the function A defines an Alexander grading which is pre-
served by the differential. One can think of C(Σ,α,β,w, z) as obtained from
CFK−(Σ,α,β,w, z) by first setting all the Ui = 0, and then taking the graded
object associated to the Alexander filtration.

The following proposition shows how to extract the usual knot Floer ho-
mology from the above variants using multiple basepoints. The result is an
adaptation of the results from [25, §6.1], but we sketch the proof here for the
reader’s convenience.

Proposition 2.3. Let (Σ,α,β,w, z) be a 2k-pointed Heegaard diagram
compatible with a knot K. Then, the filtered chain homotopy type of
CFK−(Σ,α,β,w, z), thought of as a complex over F[U ] where U can be any
Ui, agrees with the filtered chain homotopy type of CFK−(K). Moreover, we
have an identification

(9) H∗(C(Σ,α,β,w, z), ∂) ∼= ĤFK(K)⊗ V ⊗(k−1),

where V is the two-dimensional vector space spanned by two generators, one
in bigrading (−1,−1), another in bigrading (0, 0).

We first establish the following:

Lemma 2.4. Let k be an integer greater than one. After a series of
isotopies, handleslides and stabilizations, any 2k-pointed Heegaard diagram
(Σ,α,β,w, z) compatible with a knot K, can be transformed into one with
the following properties:
• there are curves α1 ∈ α and β1 ∈ β which bound disks A1 and B1 in Σ;

• A1 ∩B1 contains the basepoint w1;

• α1 and β1 meet transversally in a pair of points;

• α1 is disjoint from all βj with j 6= 1, and β1 is disjoint from all αj with
j 6= 1.

Proof. Start from a 2k pointed Heegaard diagram (Σ,α,β,w, z) compat-
ible with K. Let A1 be the component of Σ−α1−· · ·−αg+k−1 which contains
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α

w1
z

2
w2

z

11 β

1

Figure 5: Local picture near w1. We denote αi by dashed and βj by solid
lines. The basepoint w2 can be connected to z2 by an arc which crosses β1,
and possibly a collection of other β-circles (but no α-circles).

w1 ∈ w, and B1 be the component of Σ − β1 − · · · − βg+k−1 containing w1.
In particular, if z1, z2 ∈ z are contained inside A1 and B1 respectively, then
z1 6= z2 (since otherwise the basepoints w1 and z1 would determine a closed,
unknotted component of K and since K is a knot, we could conclude that K
is the unknot and k = 1). After a sequence of handleslides amongst the α and
β which do not cross any of the basepoints w, z, we can reduce to the case
where A1 and B1 are both disks. Let α1 and β1 denote the boundaries of A1

and B1 respectively.
Note that, since z1 = A1 ∩ z and z2 = B2 ∩ z and z1 6= z2, the intersection

A1∩B1 does not contain any zi ∈ z. In fact, the various arcs A1∩β1 divide A1

into a collection of planar regions, one of which contains w1, another of which
contains z1. All the other regions have no basepoints in them, and we call
these unmarked regions. We can perform finger moves to eliminate all of the
unmarked bigons in A1, by which we mean unmarked regions in A1 −A1 ∩ β1

whose closure meets β1 in a single component in A1. Note that this might
involve also cancelling intersection points betweeen α1 with βj for some j 6= 1
(see Figure 6). After doing this, A1 − A1 ∩ β1 consists of one region which is
a bigon marked with w1, another which is a bigon marked with z1, and some
unmarked regions which are all rectangles (i.e. their boundary meets β1 in two
components).

Now, A1 ∩B1 consists of a bigon marked with w1 and a (possibly empty)
collection of unmarked rectangles. We can reduce the number of unmarked
rectangular regions in A1∩B1 by a stabilization, followed by four handleslides,
as illustrated in Figure 7.

Finally, by performing handleslides of the additional αi and βj over α1

and β1 respectively (followed by some isotopies), we can arrange for the circles
α1 and β1 to be disjoint from all the other αi and βj .

Proof of Proposition 2.3. We use induction on k. In the case where k = 1,
there is nothing to prove.
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Figure 6: Finger moves. The circle α1 is indicated by the dashed line. It
bounds the disk A1, which contains the basepoint w1 (indicated by the hollow
dot) and the basepoint z1 (indicated by the dark dot). Other arcs belong to
various β-circles, which divide A1 into planar regions, with β1 arcs denoted by
the thicker lines and other βj (with j 6= 1) by thinner ones. Performing the
finger move on α1 as indicated by the arrows, we can reduce the number of
unmarked bigon regions in A1 −A1 ∩ β1.

H H

H

H

H H

Figure 7: Reducing rectangles in A1∩B1. The dashed circle represents α1, thick
lines represent arcs from β1, the thin arcs represent arcs from the other βj (with
j 6= 1), and the shaded regions represent A1∩B1. We eliminate the rectangular
region in A1 ∩ B1 by first stabilizing as in the second picture, introducing a
new handle, represented by the two circles marked with H, along with the new
dashed α-circle α2, and the new β-circle β2 indicated in the second picture by
the thin arc running through the handle. Handlesliding α1 over α2 twice, we
obtain the third picture. Handlesliding β1 over β2 twice, we end up with the
fourth picture, which has one fewer (rectangular) component in A1 ∩B1.
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When k > 1, using Lemma 2.4 we can reduce to the case where our
diagram

(Σ,α,β,w, z)

= (Σ, {α1, . . . , αg+k−1}, {β1, . . . βg+k−1}, {w1, . . . , wk}, {z1, . . . , zk}),

has the special form in Figure 5. Note that under all the Heegaard moves
used in Lemmaa 2.4, the filtered chain homotopy type of the associated chain
complex remains invariant, as in [24], [23], [27].

We can de-stabilize the original diagram to get a k − 1-pointed Heegaard
diagram

(Σ, {α2, . . . , αg+k−1}, {β2, . . . , βg+k−1}, {w2, . . . , wk}, {z2, . . . , zk})

for the same knot. Let C ′ denote its corresponding filtered Heegaard Floer
complex

CFK−(Σ, {α2, . . . , αg+k−1}, {β1, . . . , βg+k−1}, {w2, . . . , wk}, {z2, . . . , zk}),

thought of as a module over the polynomial algebra F[U2, . . . , Uk]. It is gen-
erated by the corresponding intersection points X ′ of the tori T′α and T′β in
Symg+k−2(Σ).

The set of generators X of the complex CFK−(Σ,α,β,w, z) has the form
X ′×{x, y}, where x and y are the two points of intersection of α1 and β1. Let
Cx be the subgroup of C generated by intersection points of type X ′×{x} and
Cy be the subgroup generated by those of type X ′ × {y}.

It is shown in the proof of [25, Prop. 6.5] that for a suitable choice of
complex structure on Σ, the chain complex CFK−(Σ,α,w, z) is identified with
the mapping cone of the chain map

(10) U1 − U2 : C ′[U1] −→ C ′[U1].

Here the domain is identified with Cx and the range with Cy. Specifically,
under the natural identifications of groups Cx ∼= C ′[U1], Cy ∼= C ′[U1], we have
that the differential of C is identified with the matrix(

∂′ U1 − U2

0 ∂′

)
,

where here the variable U2 corresponds to the basepoint w2 which lies in the
same Σ − α1 − · · · − αg+k−1-component as z2. In this mapping cone, the
Alexander filtration of a generator in C ′[U1] thought of as supported in Cx is
one higher than the Alexander filtration of the corresponding element, thought
of as supported in Cy.

Let us say a few more words about the identification of CFK−(Σ,α,β,w,z)
with the mapping cone used above, referring the interested reader to [25,
Prop. 6.5] for more details. Think of Σ as formed by the connected sum
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of Σ′ with a genus zero surface S containing both α1 and β1. Fixing con-
formal structures on Σ′ and the sphere, we obtain a one-parameter family
of conformal structures on Σ by inserting a connected sum tube isometric to
[0, T ] × S1, and allowing T to vary. When T is sufficiently large, the chain
complex CFK−(Σ,α,w, z) can be identified with the mapping cone of

U1 − f : C ′[U1] −→ C ′[U1],

where f is a map which counts points in a fibered product of moduli spaces
of disks coming from Σ and S, fibered over a nontrivial symmetric product
of the disk, where the maps are obtained as the preimage of the connected
sum points p and q in Σ′ and S. (The term U1 fits into this picture formally
as the fibered product over the empty symmetric product.) To understand f

(and identify it with U2), we must consider a second parameter s in the space
of conformal structures on Σ, which is given by moving the connected sum
point q in S. Indeed, it will be useful to move the connected sum point q ∈ S
towards α1 (so that as s 7→ ∞, q limits onto α1). In fact, for q sufficiently
close to α1 (i.e. s sufficiently large), the only nonempty moduli space which
contributes to this fiber product consists of holomorphic disks in Symg+k−2(Σ)
with Maslov index equal to two which carry some fixed point m in the disk
(whose distance to the α-boundary of the disk goes to zero as s 7→ ∞) into
q × Symg+k−3. When m is sufficiently close to the α-boundary, the count
of these disks is identified with the count of Maslov index two α-boundary
degenerations for Σ with local multiplicity 1 at the connected sum point p.
The contribution of these boundary degenerations is given by multiplication
by U2. This gives the identification of CFK−(Σ,α,β,w, z) with the mapping
cone of Equation (10). (Note that we broke the symmetry in the construction
by moving q towards α1 rather than β1. If we moved q towards β1 instead, we
would identify CFK−(Σ,α,β,w, z) with the mapping cone of U1 − Uk.)

For the second assertion of the proposition, view all the Ui as being set to
zero. The above argument shows that

C(Σ,α,β,w, z) ∼= C(Σ′,α′,β′,w′, z′)⊗ V ;

hence a corresponding identification holds on the level of homology. Iterating
this until we remain with two basepoints, we obtain the stated identification.

It is perhaps more traditional to consider the filtration of ĈF(S3) (rather
than CF−). This filtration is induced from the filtration of CF−(S3) by setting
U = 0. According to Proposition 2.3, this filtration is obtained as the induced
filtration of CFK−(Σ,α,β,w, z)/U1.

2.1. Modifications for links. Recall that knot Floer homology has a gen-
eralization to the case of oriented links ~L. For an `-component, oriented link
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~L in the three-sphere, this takes the form of a multi-graded theory

ĤFL(~L) =
⊕

d∈Z,h∈H
ĤFLd(~L, h),

where H ∼= H1(S3 − ~L) ∼= Z`, with the latter isomorphism induced by an
ordering of the link components. Now we sketch the changes to be made to
the above discussion for the purposes of understanding link Floer homology
for Heegaard diagrams with extra basepoints. Here,“extra” means more than
twice `.

Suppose now that (Σ,α,β,w, z) is a Heegaard diagram compatible with
an oriented link ~L in the sense of Definition 2.1.

We find it convenient to label the basepoints keeping track of which link
component they belong to. Specifically, suppose L is a link with ` components,
and for i = 1, . . . , `, we choose ki basepoints to lie on the ith component. Let
S be the index set of pairs (i, j) with i = 1, . . . , ` and j = 1, . . . , ki. Now we
have basepoints {zi,j}(i,j)∈S and {wi,j}(i,j)∈S .

We can now form the chain complex CFL−(Σ,α,β,w, z) defined over
F[{Ui,j}(i,j)∈S ] analogous to the previous version, generated by intersection
points of Tα ∩ Tβ, with differential

∂−x =
∑

y∈Tα∩Tβ

∑
{φ∈π2(x,y)

∣∣µ(φ)=1}

#
(
M(φ)

R

)
·

 ∏
(i,j)∈S

U
nwi,j (φ)

i,j

 · y.
This complex has a relative Maslov grading, as before. It also has a relative

Alexander grading which in this case is an `-tuple of integers

A : Tα ∩ Tβ −→ Z`,

determined up to an overall additive constant by the formula

A(x)−A(y) =

 k1∑
j=1

(nz1,j (φ)− nw1,j (φ)), . . . ,
k∑̀
j=1

(nz`,j (φ)− nw`,j (φ))

 .

The indeterminacy in this case is a little more unpleasant to pin down (i.e.
one must go beyond the multi-variable Alexander polynomial, which can be
identically zero), but it can be done using Proposition 2.5.

The complex CFL−(Σ,α,β,w, z) inherits an Alexander filtration induced
by the Alexander multi-grading of Tα∩Tβ, and the convention that Ui,j drops
the multi-grading by the ith basis vector. In the case where k = `, the filtered
chain homotopy type of CFL−(Σ,α,β,w, z) was shown to be a link invariant
in [25]; it is the link filtration CFL−(~L).
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The analogue of C(Σ,α,β,w, z) can be defined as well. It is generated
by intersection points of Tα and Tβ over F, endowed with the differential

∂x =
∑

y∈Tα∩Tβ

∑
{φ∈π2(x,y)

∣∣ µ(φ) = 1,
nwi,j (φ) = nzi,j (φ) = 0 ∀(i, j) ∈ S }

#
(
M(φ)

R

)
· y.

This differential drops Maslov grading by one and preserves the Alexander
multi-grading. Hence the homology groups H∗(C(Σ,α,w, z)) inherit a Maslov
grading and an Alexander multi-grading.

Proposition 2.5. Let (Σ,α,β,w, z) be a 2k-pointed admissible Heegaard
diagram compatible with an oriented link ~L, with ki pairs of basepoints corre-
sponding to the ith component of ~L. Then, there is a filtered chain homotopy
equivalence CFL−(Σ,α,β,w, z) with the usual link filtration CFL−(~L), viewed
as a chain complex over F[{Ui,j}(i,j)∈S ]. Moreover, there are (relative) multi-
graded identifications

H(Σ,α,β,w, z) ∼= ĤFL(~L)⊗
⊗̀
i=1

V
⊗(ki−1)
i ,

where Vi is the two-dimensional vector space spanned by one generator in
Maslov and Alexander gradings zero, and another in Maslov grading −1 and
Alexander grading corresponding to minus the ith basis vector.

Proof. This follows as in the proof of Proposition 2.3, with extra care
taken to ensure that all Heegaard diagrams remain admissible while performing
Heegaard moves, as in [24, Prop. 7.2].

3. Proof of Theorem 1.1 and its generalizations

The reader will have noticed by now that the toroidal grid diagrams from
the introduction are a special case of the multiply-pointed Heegaard diagrams
from Section 2. The Heegaard surface is the torus T , the α-circles are the hor-
izontal circles, and the β-circles are the vertical ones. The basepoints {wi}ni=1

are the white dots, and {zi}ni=1 are the black ones. Since for each i and j, αi
and βj intersect in the single point (i, j), we see that the generators X are the
intersection points of Tα with Tβ in Symn(T ). In our coordinate system, these
generators can be thought of as graphs of permutations on n letters. To apply
the results from Section 2, we must verify the following:

Lemma 3.1. The Alexander grading of generators X, as specified by the
Heegaard diagram given by the grid diagram (characterized by Equations (5)
and (6)) coincides with the function A : X −→ Z defined in the introduction
(Equation (2)).
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Proof. Let A′ denote the Alexander grading of generators specified by the
Heegaard diagram, and let A denote the function defined in the introduction.
Our aim is to show that A = A′.

Recall that the Alexander grading A′ is determined up to an overall ad-
ditive constant by the formula

A′(x)−A′(y) =

(
n∑
i=1

nzi(φ)

)
−

(
n∑
i=1

nwi(φ)

)
,

where φ ∈ π2(x,y) is any homology class connecting x to y. The right-hand
side of this equation can be interpreted as the oriented intersection number of
the knot K with the two-chain associated to φ, or alternatively as the linking
number of K with γx,y = ∂D(φ) (which we think of now as an embedded
curve in the three-sphere supported near its Heegaard torus). We can also
think of this linking number as the intersection number of a Seifert surface for
K with γx,y. Deforming γx,y (without changing its intersection number with
the Seifert surface for K) so that the horizontal segments are far under the
Heegaard surface, and the vertical ones are far above it (so that each xi ∈ x
is the projection of an arc in γx,y which points vertically downwards, while
each yi ∈ y is the projection of an arc in γx,y which points vertically upwards),
we can arrange that all the intersection points of γx,y with the Seifert surface
occur in the arcs over xi and yi. Thus, we have established that for any two
generators x,y ∈ X,

(11) A(x)−A(y) = A′(x)−A′(y),

or equivalently, that there is some κ with the property that for any generator
x ∈ X, A(x) = A′(x) + κ.

The proof that κ = 0 is elementary, albeit tedious. We sketch it here,
leaving the details as an exercise for the interested reader; compare also [16].
One first checks that κ is a knot invariant, by verifying that it is unchanged by
vertical and horizontal rotations of the toroidal grid diagram, as well as by the
Reidemeister moves from [4] (see also [3]), which relate any two planar grid
diagrams of the same knot. Then it suffices to show that the rational function
of T determined by the expression

Q(K) =
∑

x∈X T
A(x)

(1− T−1)n−1
,

which we know is T κ · ∆K(T ), is actually a symmetric Laurent polynomial
in T . This can be done, for example, by verifying that it agrees with the
symmetrized Alexander polynomial modulo two, using the skein relation:

Q(K+)−Q(K−) ≡ (T
1
2 − T−

1
2 ) ·Q(K0) (mod 2).

The skein relation for Q can be verified readily by realizing the skein moves in
grid position. Finally, a straightforward calculation in a 2× 2 diagram shows
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that Q(K) = 1 when K is the unknot. It follows that Q(K) is the symmetrized
Alexander polynomial modulo two, and in particular that Q is symmetric.

Lemma 3.2. The Maslov grading of generators X, as specified by the
Heegaard diagram (T , {α1, . . . , αn}, {β1, . . . , βn}, {w1, . . . , wn}, {z1, . . . , zn})
and characterized by Equations (7) and (8), coincides with the function M : X
−→ Z defined in the introduction (characterized by Equation (3) and the nor-
malization that M(x0) = 1− n).

Proof. For φ ∈ π2(x,y), we claim that its Maslov index µ(φ) is given by
the formula

(12) µ(φ) = Px(D(φ)) + Py(D(φ)).

This is a particular case of Lipshitz’s formula for the Maslov index in an
arbitrary Heegaard diagram [14]. However, for domains on a grid diagram, we
can also give an elementary proof as follows.

Let µ′(φ) denote the quantity on the right-hand side of Equation (12).
First, note that µ′(φ) = 1 when the domain D(φ) associated to a homology
class φ ∈ π2(x,y) is a rectangle r in the torus which contains none of the
components of x in its interior. In this case we also have µ(φ) = 1, because
the moduli space of complex structures on a disk with four marked points on
the boundary is one-dimensional.

Next, consider the natural map given by juxtaposition of flow lines:

∗ : π2(x,y)× π2(y, z)→ π2(x, z).

The Maslov index is additive under this operation, i.e. µ(φ1 ∗φ2) = µ(φ1)
+ µ(φ2). We claim that the same is true for µ′. Indeed, the relation

Px(D(φ1)) + Py(D(φ1)) + Py(D(φ2)) + Pz(D(φ2))

= Px(D(φ1 ∗ φ2)) + Pz(D(φ1 ∗ φ2))

is equivalent to

(13) Px(D(φ2))− Py(D(φ2)) = Py(D(φ1))− Pz(D(φ1)).

Let γNEx,y , γ
NW
x,y , γSWx,y , γ

SE
x,y denote small translates of the curve γx,y =

∂D(φ1) on the torus, in the four diagonal directions. As in the proof of
Lemma 3.1, we deform these curves by pushing their horizontal arcs under
the Heegaard surface and their vertical arcs above the Heegaard surface; thus
we can think of them as embedded curves in the three-sphere. The left-hand
side of Equation (13) is then the average of the intersection numbers of the sur-
face D(φ2) with each of γNEx,y , γ

NW
x,y , γSWx,y , γ

SE
x,y. Alternatively, it can be viewed

as the average linking number of γy,z = ∂D(φ2) with these four curves. The
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Figure 8: Fixing the Maslov grading. Handleslide the vertical circles from left
to right, to obtain the smaller null-homotopic circles β′i encircling the various
wi. There is a collection of triangles connecting the generator x0, indicated
here with the darkly shaded circles, with the bottom-most generator of Tα∩T′β,
indicated here with the lightly shaded circles.

right-hand side of (13) has a similar interpretation. Since the linking num-
ber is symmetric, the two sides are equal. Therefore, µ′ is additive under
juxtaposition of flow lines.

Now, given an arbitrary pair x,y ∈ X, it is easy to construct a sequence
of generators x1, . . . ,xm ⊂ X with x = x1, y = xm, and φi ∈ π2(xi,xi+1)
with the property that D(φi) is a rectangle with no components of xi in its
interior. It follows that if we let ψ = φ1 ∗ · · · ∗ φm, then M(ψ) = M ′(ψ). The
alpha curves cut the torus into n annuli {Ai}ni=1, and similarly the beta curves
cut it into annuli {Bi}ni=1. The homology classes ψ and φ differ by adding or
subtracting some number of copies of annuli Ai or Bj (thought of as elements
of π2(x,x)), for which µ(Ai) = µ′(Ai) = 2 (because Ai can be decomposed as
a juxtapositon of two rectangles). It follows that µ(φ) = µ(φ′).

We have verified Equation (12). It follows now that the relative Maslov
grading from Equation (7) specializes to Equation (3).

We can lift from the relative to the absolute Maslov grading by performing
handleslides on the β-circles in our diagram which now are allowed to cross
the zi, to reduce to a diagram which has 2n−1 intersection points in Tα ∩ T′β,
and for which all the differentials in the chain complex vanish; indeed, it is
identified with the homology of an n− 1-dimensional torus. The handleslides
are performed by successively handlesliding βi over βi+1 for i = 1, . . . , n − 1,
as pictured in Figure 8. Now it is easy see that the generator x0 from the
introduction can be connected to the bottom-most generator of the new chain
complex by a collection of (Maslov index zero) triangles. According to (8), the
grading of x0 should be 1− n.

We can now turn to the following:
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Proof of Theorem 1.1. The fact that the Alexander and Maslov gradings
are identified has been verified in Lemmas 3.2 and 3.1 above. It remains to
identify the differentials.

The circles α1, . . . , αn and β1, . . . , βn cut up T into n2 squares Di,j with
1 ≤ i, j ≤ n. According to [24, Prop. 2.15], homology classes of Whitney disks
φ ∈ π2(x,y) are determined by their underlying two-chain

D(φ) =
∑
i,j

aijDi,j ,

where here ai,j = npi,j (φ) for some point pi,j ∈ Di,j . Indeed, if x and y
correspond to permutations σ and τ , then these induced two-chains are the
ones that satisfy the property for all i = 1, . . . , n that

∂(∂D(φ) ∩ αi) = (i, τ(i))− (i, σ(i)).

To understand the differential, we must count holomorphic disks inM(φ)
with µ(φ) = 1. First, we classify all nonnegative homology classes φ with
Maslov index one.

Let D = D(φ). First observe that if ∂D is 0 on (n − 1) α circles, then it
is in fact 0 on all the α circles, and D is generated by the annular regions cut
out by the β circles. Now, if such a thing happens then x = y, and its Maslov
index is even.

Thus we can assume that ∂D is nonzero on at least two α circles (say αj1
and αj2) and similarly nonzero on at least two β circles (βi1 and βi2). It follows
that there are permutations σ and τ such that

Px(D)≥ p(i1,σ(i1))(D) + pi2,σ(i2)(D) ≥ 1/2,

Py(D)≥ p(i1,τ(i1))(D) + pi2,τ(i2)(D) ≥ 1/2.

Since µ(φ) = Px(D) + Py(D) = 1, equality must hold throughout. It follows
that ∂D is nonzero precisely on αj1 , αj2 , βi1 and βi2 , and D is one of the two
rectangles with four vertices (i1, j1), (i1, j2), (i2, j1), and (i2, j2). Without
loss of generality, assume σ(i1) = j1 and σ(i2) = j2. Then τ(i1) = j2 and
τ(i2) = j1, and it agrees with σ on the rest of the values. Also for the Maslov
index requirement, (i, σ(i)) = (i, τ(i)) does not lie in the interior of D for any
other i.

Thus, we have established that the only φ ∈ π2(x,y) with nonnegative
local multiplicities and Maslov index equal to one are those whose underlying
domain r is a rectangle of the form r ∈ Rx,y with Px(r)+Py(r) = 1. Moreover,
we claim that in this case, the number of pseudo-holomorphic representatives
of r is odd. In fact, this can be seen by elementary complex analysis, using a
(classical) complex structure on the symmetric product of T , where one shows
that in fact the moduli space consists of a single representative. Indeed, for
this choice, the moduli spaceM(r)/R can be seen to correspond to involutions
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of r (with the complex structure it inherits from T ) which switch opposite
sides of the rectangle. It is a simple exercise in conformal geometry that for
any rectangle, there is a unique such involution.

We have completed the verification that the complex C(Γ) from the in-
troduction coincides with the Heegaard Floer complex C(T ,α,β,w, z) in the
notation of Section 2. Theorem 1.1 now follows directly from Proposition 2.3
(Equation (9)).

3.1. Other variants. There are other variants of Theorem 1.1, which
should be clear from the constructions thus far. We state several of them for
completeness.

Label the white dots {w1, . . . , wn}, and let nwi(r) denote the local mul-
tiplicity of r at wi. Consider the chain complex C−(Γ) over the algebra
F[U1, . . . , Un] also generated by X, endowed with the differential

∂−x =
∑
y∈X

∑
r∈Rx,y

{
1 if Px(r) + Py(r) = 1
0 otherwise

}
U
nw1 (r)
1 · . . . · Unwn (r)

n · y,

thought of as a filtered chain complex where the filtration level of each gen-
erator x ∈ X is its Alexander grading, and multiplication by the variable Ui
drops filtration level by one.

Theorem 3.3. Fix a grid presentation Γ of a knot K, with grid num-
ber n. The filtered chain homotopy type of K coincides with the filtered chain
homotopy type of the knot filtration CF−(S3,K).

Proof. The proof of Theorem 1.1 identifies the filtered chain complex
C−(Γ) with the complex denoted CFK−(T ,α,β,w, z) in Section 2 which, by
Proposition 2.3, is identified with CFK−(K).

The other filtrations CFK∞(S3,K) and CFK+(S3,K) from [23] can be
extracted from this information.

We call attention to another other construction, which gives a concordance
invariant τ(K) for knots [21], [27]. This is a homomorphism from the smooth
concordance group of knots to the integers, which can be used to bound the
four-ball genus of knots, giving an alternate proof of the theorem of Kronheimer
and Mrowka [13] confirming Milnor’s conjecture for the unknotting numbers
of torus knots. This feature underscores its similarity with Rasmussen’s con-
cordance invariant s(K) [28] from Khovanov homology [12]. However, these
two invariants are known to be linearly independent [11].

Recall that the filtration CFK−(K) of CF−(S3) also induces a filtration
{F̂m(S3)}m∈Z of ĈF(S3) = CF−(S3)/U ·CF−(S3). The concordance invariant
τ(K) is by definition the minimal m ∈ Z with the property that the map

H∗(F̂m(S3)) −→ ĤF(S3) ∼= F
is nontrivial.
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We have a corresponding chain complex Ĉ(Γ) = CF−(Γ)/U1 ·CF−(Γ), i.e.
whose differential is given by

∂̂x =
∑
y∈X

∑
r∈Rx,y

{
1 if Px(r) + Py(r) = 1 and nw1(r) = 0
0 otherwise

}
U

nw2 (r)
2 ·. . .·Unwn (r)

n ·y.

This is equipped with subcomplexes F̂ (K,m) ⊂ Ĉ(Γ), generated by ele-
ments Ua2

2 · . . . · Uann · x with integral ai ≥ 0, and

A(x)− a2 − · · · − an ≤ m.

Corollary 3.4. The concordance invariant τ(K) is the minimal m for
which the map induced on homology

i∗ : H∗(F̂(K,m)) −→ H∗(Ĉ(Γ))

is nontrivial.

Proof. Theorem 3.3 actually gives an identification of the filtered chain
homotopy type of ĈFK(K) with Ĉ(Γ). The result then follows from the defi-
nition of τ(K).

Consider now the case of link Floer homology. In order to use the Heegaard
diagram associated to a grid diagram to calculate link Floer homology, we must
verify that it is admissible.

Lemma 3.5. The diagram

(T , {α1, . . . , αn}, {β1, . . . , βn}, {w1, . . . , wn}, {z1, . . . , zn})

is admissible.

Proof. The formal differences Ai−Bi span the space of periodic domains.
Drawing T as a square, with equally spaced vertical and horizontal circles, it
follows that the total signed area of any periodic domain is zero. Clearly, a
nonzero region with this property must have both positive and negative local
multiplicities.

For the case of links, we number our dots {wi,j}(i,j)∈S and {zi,j}(i,j)∈S
where S is the index set consisting of (i, j) with i = 1, . . . , ` and j = 1, . . . , ni,
and the dots wi,j and zi,j lie on the ith component of ~L.

In this case, the Alexander grading is an `-tuple of integers. It is uniquely
characterized by the property that for x,y ∈ X, the ith component of the
Alexander grading is the winding number of γx,y about the sum of the black
dots in {zi,j}(i,j)∈S minus its winding number around {wi,j}(i,j)∈S . Again,
this can be more succinctly recorded by placing (minus one time) a vector of
winding numbers at each vertex, and defining A(x) as the sum of these local
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4

4
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1 2 3 4

Figure 9: Grid presentation of the Hopf link.

contributions at each intersection point in x. This can then be renormalized
to be symmetric.

Once again, we have the chain complex C(Γ) as defined in the introduc-
tion, which now inherits an `-tuple of Alexander gradings and a single Maslov
grading. There is also a refinement, C−(Γ), which is freely generated by X

over F[{Ui,j}(i,j)∈S ], endowed with the differential

∂−x =
∑
y∈X

∑
r∈Rx,y

{
1 if Px(r) + Py(r) = 1
0 otherwise

}
·

 ∏
(i,j)∈S

U
nwi,j (r)

i,j

 .

Theorem 3.6. There are multi-graded identifications

H∗(C(Γ), ∂) ∼= ĤFL(~L)⊗
⊗̀
i=1

V
⊗(ni−1)
i ,

where Vi is the two-dimensional vector space spanned by two generators, one
in zero Maslov and Alexander multigradings, and the other in Maslov grading
negative one and Alexander multi-grading corresponding to minus the ith basis
vector. More generally, the multi-filtered chain homotopy type of CFL−(S3, ~L)
is identified with the multi-filtered chain homotopy type of C−(Γ).

Proof. This follows from the proof of Theorem 1.1, combined with Propo-
sition 2.5.

4. Examples

We give a few elementary illustrations of our results.

4.1. Hopf link. Consider the grid presentation Γ for the Hopf link with
grid number n = 4, shown in Figure 9.
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(2134) (1243) (2413) (3142) (4312) (3421)(1324) (4231)

(3412)(1234)

(2143) (4321)

Figure 10: Part of the chain complex for the Hopf link. This complex appears
in Alexander bigrading (−1

2 ,−
1
2). Its homology has rank four.

The generators of the chain complex C(Γ) are in one-to-one correspon-
dence with permutations σ of the set {1, 2, 3, 4}. For conciseness, we write the
generator consisting of the intersections of the ith horizontal circle with the
σ(i)th vertical circle as

(
σ(1)σ(2)σ(3)σ(4)

)
.

There are eight empty squares in the grid. Each of them produces dif-
ferentials between generators that differ by a transposition, according to the
recipe:

(1 2 ∗ ∗) (∗ 2 3 ∗) (∗ ∗ 3 4) (1 ∗ ∗ 4)
↓ ↓ ↓ ↓

(2 1 ∗ ∗) (∗ 3 2 ∗) (∗ ∗ 4 3) (4 ∗ ∗ 1)

(3 4 ∗ ∗) (∗ 4 1 ∗) (∗ ∗ 1 2) (3 ∗ ∗ 2)
↓ ↓ ↓ ↓

(4 3 ∗ ∗) (∗ 1 4 ∗) (∗ ∗ 2 1) (2 ∗ ∗ 3).

The result is that there are sixteen differentials in (C(Γ), ∂). They con-
nect twelve of the 24 generators, as shown schematically in Figure 10. Each
of the other twelve generators is not connected by differentials to any other
generators. Therefore, the homology of our complex has total rank 4+12 = 16.

The Alexander bigrading of the generators is computed using the adapta-
tion for links of Equation (2). For example,

A(3214) =
(1

2
,
1
2

)
, A(2143) =

(
−1

2
,−1

2

)
.

To compute the Maslov gradings, we start with the canonical generator
(2143), which has M = −3. Then, we relate each of the other generators to
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the canonical one by a sequence of transpositions. Whenever two generators
x and y differ by a transposition, if a two-chain D has boundary γx,y, then
D consists of two points and a rectangle, and it is straightforward to apply
Equation (3). For example,

M(2134) = M(2143) + 1 = −2, M(2314) = M(2134) + 1 = −1, etc.

The result is that

H∗(C(Γ), ∂) =
(
V ⊗2

1 ⊗ V ⊗2
2

)[1
2
,
1
2

]
.

Here, the notation [i, j] denotes an upward shift in Alexander bigrading,
i.e. if V is a bigraded vector space, then (V [i, j])x,y = Vx−i,y−j . The link Floer
homology of ~H is (V1 ⊗ V2)[12 ,

1
2 ], cf. [25]. This confirms that

H∗(C(Γ), ∂) = ĤFL( ~H)⊗ V1 ⊗ V2.

4.2. The trefoil. Consider the grid presentation of the trefoil knot shown
in Section 1. There are 120 generators of the chain complex. A quick glance
at Figure 1 reveals 15 rectangles containing no black or white dot: fifteen
1 × 1, five 2 × 1, and five 1 × 2. Each rectangle gives rise to 3! = 6 different
differentials. With a little computer assistance or a great deal of patience,
one finds that the homology of this complex has rank 48. Indeed, with the
conventions used in Subsection 4.1, one finds that the generators correspond
to permutations (listed in increasing Alexander grading):

(23451) (13452) (23415) (23541) (24351) (32451) (13542) (14352)
(24153) (24315) (25413) (32415) (32541) (35421) (42351) (43152)
(43521) (15342) (15423) (25143) (31542) (32514) (35241) (41352)
(42153) (42315) (43125) (45321) (52341) (52413) (54312) (15243)
(15324) (31524) (41325) (42135) (51342) (51423) (52143) (52314)
(54132) (54213) (15234) (41235) (51243) (51324) (52134) (51234).

These generators have Alexander gradings between −5 and 1. There are
1, 5, 11,
14, 11, 5, 1 generators in gradings −5,−4,−3,−2,−1, 0, 1, respectively. The
knot Floer homology group for the left-handed trefoil T is nontrivial in only
three Alexander-Maslov bigradings: (−1, 0), (0, 1), and (1, 2). It has rank one
in these three bigradings. Considering Maslov gradings as well, one verifies
that

H∗(C(Γ)) ∼= ĤFK(T )⊗ V ⊗4.
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