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Inverse Littlewood-Offord theorems

and the condition number of
random discrete matrices

By Terence Tao and Van H. Vu*

Abstract

Consider a random sum η1v1 + · · · + ηnvn, where η1, . . . , ηn are indepen-
dently and identically distributed (i.i.d.) random signs and v1, . . . , vn are inte-
gers. The Littlewood-Offord problem asks to maximize concentration probabil-
ities such as P(η1v1+· · ·+ηnvn = 0) subject to various hypotheses on v1, . . . , vn.
In this paper we develop an inverse Littlewood-Offord theory (somewhat in the
spirit of Freiman’s inverse theory in additive combinatorics), which starts with
the hypothesis that a concentration probability is large, and concludes that
almost all of the v1, . . . , vn are efficiently contained in a generalized arithmetic
progression. As an application we give a new bound on the magnitude of the
least singular value of a random Bernoulli matrix, which in turn provides upper
tail estimates on the condition number.

1. Introduction

Let v be a multiset (allowing repetitions) of n integers v1, . . . , vn. Consider
a class of discrete random walks Yµ,v on the integers Z, which start at the origin
and consist of n steps, where at the ith step one moves backwards or forwards
with magnitude vi and probability µ/2, and stays at rest with probability 1−µ.
More precisely:

Definition 1.1 (Random walks). For any 0 ≤ µ ≤ 1, let ηµ ∈ {−1, 0, 1}
denote a random variable which equals 0 with probability 1− µ and ±1 with
probability µ/2 each. In particular, η1 is a random sign ±1, while η0 is iden-
tically zero. Given v, we define Yµ,v to be the random variable

Yµ,v :=
n∑
i=1

ηµi vi
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where the ηµi are i.i.d. copies of ηµ. Note that the exact enumeration v1, . . . , vn
of the multiset is irrelevant. The concentration probability Pµ(v) of this random
walk is defined to be the quantity

(1) Pµ(v) := max
a∈Z

P(Yµ,v = a).

Thus we have 0 < Pµ(v) ≤ 1 for any µ,v.

The concentration probability (and more generally, the concentration
function) is a central notion in probability theory and has been studied exten-
sively, especially by the Russian school (see [21], [19], [18] and the references
therein).

The first goal of this paper is to establish a relation between the magnitude
of Pµ(v) and the arithmetic structure of the multiset v = {v1, . . . , vn}. This
gives an answer to the general question of finding conditions under which one
can squeeze large probability inside a small interval. We will primarily be
interested in the case µ = 1, but for technical reasons it will be convenient to
consider more general values of µ. Generally, however, we think of µ as fixed,
while letting n become very large.

A classical result of Littlewood-Offord [16], found in their study of the
number of real roots of random polynomials, asserts that if all of the vi’s
are nonzero, then P1(v) = O(n−1/2 log n). The log term was later removed by
Erdős [5]. Erdős’ bound is sharp, as shown by the case v1 = · · · = vn 6= 0. How-
ever, if one forbids this special case and assumes that the vi’s are all distinct,
then the bound can be improved significantly. Erdős and Moser [6] showed
that under this stronger assumption, P1(v) = O(n−3/2 lnn). They conjectured
that the logarithmic term is not necessary and this was confirmed by Sárközy
and Szemerédi [22]. Again, the bound is sharp (up to a constant factor), as
can be seen by taking v1, . . . , vn to be a proper arithmetic progression such
as 1, . . . , n. Later, Stanley [24], using algebraic methods, gave a very explicit
bound for the probability in question.

The higher dimensional version of Littlewood-Offord’s problem (where
the vi are nonzero vectors in Rd, for some fixed d) also drew lots of attention.
Without the assumption that the vi’s are different, the best result was obtained
by Frankl and Füredi in [7], following earlier results by Katona [11], Kleitman
[12], Griggs, Lagarias, Odlyzko and Shearer [8] and many others. However,
the techniques used in these papers did not seem to yield the generalization
of Sárközy and Szemerédi’s result (the O(n−3/2) bound under the assumption
that the vectors are different).

The generalization of Sárközy and Szemerédi’s result was obtained by
Halász [9], using analytical methods (especially harmonic analysis). Halász’
paper was one of our starting points in this study.
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In the above two examples, we see that in order to make Pµ(v) large, we
have to impose a very strong additive structure on v (in one case we set the vi’s
to be the same, while in the other we set them to be elements of an arithmetic
progression). We are going to show that this is the only way to make Pµ(v)
large. More precisely, we propose the following phenomenon:

If Pµ(v) is large, then v has a strong additive structure.

In the next section, we are going to present several theorems supporting
this phenomenon. Let us mention here that there is an analogous phenomenon
in combinatorial number theory. In particular, a famous theorem of Freiman
asserts that if A is a finite set of integers and A+A is small, then A is contained
efficiently in a generalized arithmetic progression [28, Ch. 5]. However, the
proofs of Freiman’s theorem and those in this paper are quite different.

As an application, we are going to use these inverse theorems to study
random matrices. Let Mµ

n be an n by n random matrix, whose entries are
i.i.d. copies of ηµ. We are going to show that with very high probability,
the condition number of Mµ

n is bounded from above by a polynomial in n

(see Theorem 3.3 below). This result has high potential of applications in
the theory of probability in Banach spaces, as well as in numerical analysis
and theoretical computer science. A related result was recently established by
Rudelson [20], with better upper bounds on the condition number but worse
probabilities. We will discuss this application with more detail in Section 3.

To see the connection between this problem and inverse Littlewood-Offord
theory, observe that for any v = (v1, . . . , vn) (which we interpret as a column
vector), the entries of the product Mµ

nv are independent copies of Yµ,v. Thus
we expect that vT is unlikely to lie in the kernel of Mµ

n unless the concentration
probability Pµ(v) is large. These ideas are already enough to control the
singularity probability of Mµ

n (see e.g. [10], [25], [26]). To obtain the more
quantitative condition number estimates, we introduce a new discretization
technique that allows one to estimate the probability that a certain random
variable is small by the probability that a certain discretized analogue of that
variable is zero.

The rest of the paper is organized as follows. In Section 2 we state our
main inverse theorems. In Section 3 we state our main results on condition
numbers, as well as the key lemmas used to prove these results. In Section 4,
we give some brief applications of the inverse theorems. In Section 7 we prove
the result on condition numbers, assuming the inverse theorems and two other
key ingredients: a discretization of generalized progressions and an extension
of the famous result of Kahn, Komlós and Szemerédi [10] on the probability
that a random Bernoulli matrix is singular. The inverse theorems is proven
in Section 6, after some preliminaries in Section 5 in which we establish basic
properties of Pµ(v). The result about discretization of progressions are proven
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in Section 8. Finally, in Section 9 we prove the extension of Kahn, Komlós and
Szemerédi [10].

We conclude this section by setting out some basic notation. A set

P = {c+m1a1 + · · ·+mdad|Mi ≤ mi ≤M ′i}

is called a generalized arithmetic progression (GAP) of rank d. It is convenient
to think of P as the image of an integer box

B := {(m1, . . . ,md)|Mi ≤ mi ≤M ′i}

in Zd under the linear map

Φ : (m1, . . . ,md) 7→ c+m1a1 + · · ·+mdad.

The numbers ai are the generators of P . In this paper, all GAPs have ra-
tional generators. A GAP is proper if Φ is one to one on B. The product∏d
i=1(M ′i −Mi + 1) is the volume of P . If Mi = −M ′i and c = 0 (so P = −P )

then we say that P is symmetric.
For a set A of reals and a positive integer k, we define the iterated sumset

kA := {a1 + · · ·+ ak|ai ∈ A}.

One should take care to distinguish the sumset kA from the dilate k ·A, defined
for any real k as

k ·A := {ka|a ∈ A}.

We always assume that n is sufficiently large. The asymptotic notation
O(), o(), Ω(), Θ() is used under the assumption that n → ∞. Notation such
as Od(f) means that the hidden constant in O depends only on d.

2. Inverse Littlewood-Offord theorems

Let us start by presenting an example when Pµ(v) is large. This example
is the motivation of our inverse theorems.

Example 2.1. Let P be a symmetric generalized arithmetic progression of
rank d and volume V ; we view d as being fixed independently of n, though V

can grow with n. Let v1, . . . , vn be (not necessarily different) elements of V .
Then the random variable Yµ,v =

∑n
i=1 ηivi takes values in the GAP nP which

has volume ndV . From the pigeonhole principle it follows that

Pµ(v) ≥ n−dV −1.

In fact, the central limit theorem suggests that Pµ(v) should typically be of
the order of n−d/2V −1.
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This example shows that if the elements of v belong to a GAP with small
rank and small volume then Pµ(v) is large. One might hope that the inverse
also holds, namely,

If Pµ(v) is large, then (most of ) the elements of v belong to a GAP with
small rank and small volume.

In the rest of this section, we present three theorems, which support this
statement in a quantitative way.

Definition 2.2 (Dissociativity). Given a multiset w = {w1, . . . , wr} of
real numbers and a positive number k, we define the GAP Q(w, k) and the
cube S(w) as follows:

Q(w, k) := {m1w1 + · · ·+mrwr| − k ≤ mi ≤ k},
S(w) := {ε1w1 + · · ·+ εrwr|εi ∈ {−1, 1}}.

We say that w is dissociated if S(w) does not contain zero. Furthermore, w is
k-dissociated if there do not exist integers −k ≤ m1, . . . ,mr ≤ k, not all zero,
such that m1w1 + · · ·+mrwr = 0.

Our first result is the following simple proposition:

Proposition 2.3 (Zeroth inverse theorem). Let v = {v1, . . . , vn} be such
that P1(v) > 2−d−1 for some integer d ≥ 0. Then v contains a subset w of
size d such that the cube S(w) contains v1, . . . , vn.

The next two theorems are more involved and also more useful. In these
two theorems and their corollaries, we assume that k and n are sufficiently
large, whenever needed.

Theorem 2.4 (First inverse theorem). Let µ be a positive constant at
most 1 and let d be a positive integer. Then there is a constant C=C(µ, d)≥1
such that the following holds. Let k ≥ 2 be an integer and let v = {v1, . . . , vn}
be a multiset such that

Pµ(v) ≥ C(µ, d)k−d.

Then there exists a k-dissociated multiset w = {w1, . . . , wr} such that

(1) r ≤ d− 1 and w1, . . . , wr are elements of v;

(2) The union
⋃
τ∈Z,1≤τ≤k

1
τ · Q(w, k) contains all but k2 of the integers

v1, . . . , vn (counting multiplicity).

This theorem should be compared against the heuristics in Example 2.1
(setting k equal to a small multiple of

√
n). In particular, note that the GAP

Q(w, k) has very small volume, only O(kd−1).
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The above theorem does not yet show that most of the elements of v
belong to a single GAP. Instead, it shows that they belong to the union of a
few dilates of a GAP. One could remove the unwanted 1

τ factor by clearing
denominators, but this costs us an exponential factor such as k!, which is often
too large in applications. Fortunately, a more refined argument allows us to
eliminate these denominators while losing only polynomial factors in k:

Theorem 2.5 (Second inverse theorem). Let µ be a positive constant at
most one, ε be an arbitrary positive constant and d be a positive integer. Then
there are constants C = C(µ, ε, d) ≥ 1 and k0 = k0(µ, ε, d) ≥ 1 such that the
following holds. Let k ≥ k0 be an integer and let v = {v1, . . . , vn} be a multiset
such that

Pµ(v) ≥ Ck−d.

Then there exists a GAP Q with the following properties:

(1) The rank of Q is at most d− 1;

(2) The volume of Q is at most k2(d2−1)+ε;

(3) Q contains all but at most εk2 log k elements of v (counting multiplicity);

(4) There exists a positive integer s at most kd+ε such that su ∈ v for each
generator u of Q.

Remark 2.6. A small number of exceptional elements cannot be avoided.
For instance, one can add O(log k) completely arbitrary elements to v, and
decrease Pµ(v) by a factor of k−O(1) at worst.

For the applications in this paper, the following corollary of Theorem 2.5
is convenient.

Corollary 2.7. For any positive constants A and α there is a positive
constant A′ such that the following holds. Let µ be a positive constant at
most one and assume that v = {v1, . . . , vn} is a multiset of integers satisfying
Pµ(v) ≥ n−A. Then there is a GAP Q of rank at most A′ and volume at most
nA
′

which contains all but at most nα elements of v (counting multiplicity).
Furthermore, there exists a positive integer s ≤ nA

′
such that su ∈ v for each

generator u of Q.

Remark 2.8. The assumption Pµ(v) ≥ n−A in all statements can be re-
placed by the following more technical, but somewhat weaker, assumption that∫ 1

0

∏
i=1

|(1− µ) + µ cos 2πviξ| dξ ≥ n−A.

The right-hand side is an upper bound for Pµ(v), provided that µ is sufficiently
small. Assuming that Pµ(v) ≥ n−A, what is actually used in the proofs is the
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consequence ∫ 1

0

∏
i=1

|(1− µ) + µ cos 2πviξ|dξ ≥ n−A.

(See §5 for more details.) This weaker assumption is useful in applications (see
[27]).

The vector versions of all three theorems hold (when the vi’s are vectors
in Rr, for any positive integer r), thanks to Freiman’s isomorphism principle
(see, e.g., [28, Ch. 5]). This principle allows us to project the problem from Rr

onto Z. The value of r is irrelevant and does not appear in any quantitative
bound. In fact, one can even replace Rr by any torsion free additive group.

In an earlier paper [26] we introduced another type of inverse Littlewood-
Offord theorem. This result showed that if Pµ(v) was comparable to P1(v),
then v could be efficiently contained inside a GAP of bounded rank (see [26,
Th. 5.2] for details).

We shall prove these inverse theorems in Section 6, after some combina-
torial and Fourier-analytic preliminaries in Section 5. For now, we take these
results for granted and turn to an application of these inverse theorems to
random matrices.

3. The condition number of random matrices

If M is an n× n matrix, we use

σ1(M) := sup
x∈Rn

,‖x‖=1

‖Mx‖

to denote the largest singular value of M . Tthis parameter is also often called
the operator norm of M . Here ‖x‖ denotes the Euclidean magnitude of a
vector x ∈ Rn. If M is invertible, the condition number c(M) is defined as

c(M) := σ1(M)σ1(M−1).

We adopt the convention that c(M) is infinite if M is not invertible.
The condition number plays a crucial role in applied linear algebra and

computer science. In particular, the complexity of any algorithm which re-
quires solving a system of linear equations usually involves the condition num-
ber of a matrix; see [1], [23]. Another area of mathematics where this parameter
is important is the theory of probability in Banach spaces (e.g. see [15], [20]).

The condition number of a random matrix is a well-studied object (see
[3] and the references therein). In the case when the entries of M are i.i.d.
Gaussian random variables (with mean zero and variance one), Edelman [3],
answering a question of Smale [23] showed
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Theorem 3.1. Let Nn be an n × n random matrix, whose entries are
i.i.d. Gaussian random variables (with mean zero and variance one). Then
E(ln c(Nn)) = lnn+ c+ o(1), where c > 0 is an explicit constant.

In application, it is usually useful to have a tail estimate. It was shown
by Edelman and Sutton [4] that

Theorem 3.2. Let Nn be a n by n random matrix, whose entries are i.i.d.
Gaussian random variables (with mean zero and variance one). Then for any
constant A > 0,

P(c(Nn) ≥ nA+1) = OA(n−A).

On the other hand, for the other basic case when the entries are i.i.d.
Bernoulli random variables (copies of η1), the situation is far from being settled.
Even to prove that the condition number is finite with high probability is a
nontrivial task (see [13]). The techniques used to study Gaussian matrices rely
heavily on the explicit joint distribution of the eigenvalues. This distribution
is not available for discrete models.

Using our inverse theorems, we can prove the following result, which is
comparable to Theorem 3.2, and is another main result of this paper. Let Mµ

n

be the n by n random matrix whose entries are i.i.d. copies of ηµ. In particular,
the Bernoulli matrix mentioned above is the case when µ = 1.

Theorem 3.3. For any positive constant A, there is a positive constant
B such that the following holds. For any positive constant µ at most one and
any sufficiently large n

P(c(Mµ
n ) ≥ nB) ≤ n−A.

Given an invertible matrix M of order n, we set σn(M) to be the smallest
singular value of M :

σn(M) := min
x∈Rn

,‖x‖=1
‖Mx‖.

Then
c(M) = σ1(M)/σn(M).

It is well known that there is a constant Cµ such that the largest singular
value of Mµ

n is at most Cµn1/2 with exponential probability 1− exp(−Ωµ(n))
(see, e.g. [14]). Thus, Theorem 3.3 reduces to the following lower tail estimate
for the smallest singular value of σn(M):

Theorem 3.4. For any positive constant A, there is a positive constant
B such that the following holds. For any positive constant µ at most one and
any sufficiently large n

P(σn(Mµ
n ) ≤ n−B) ≤ n−A.
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Shortly prior to this paper, Rudelson [20] proved the following result.

Theorem 3.5. Let 0 < µ ≤ 1. There are positive constants c1(µ), c2(µ)
such that the following holds. For any ε ≥ c1(µ)n−1/2,

P(σn(Mµ
n ) ≤ c2(µ)εn−3/2) ≤ ε.

In fact, Rudelson’s result holds for a larger class of matrices. The descrip-
tion of this class is, however, somewhat technical. We refer the reader to [20]
for details.

It is useful to compare Theorems 3.4 and 3.5. Theorem 3.5 gives an
explicit dependence between the bound on σn and the probability, while the
dependence between A and B in Theorem 3.4 is implicit. Actually our proof
does provide an explicit value for B, but it is rather large and we make no
attempt to optimize it. On the other hand, Theorem 3.5 does not yield a
probability better than n−1/2. In many applications (especially those involving
the union bound), it is important to have a probability bound of order n−A

with arbitrarily given A.
The proof of Theorem 3.4 relies on Corollary 2.7 and two other ingredients,

which are of independent interest. In the rest of this section, we discuss these
ingredients. These ingredients will then be combined in Section 7 to prove
Theorem 3.4.

3.1. Discretization of GAPs. Let P be a GAP of integers of rank d and
volume V . We show that given any specified scale parameter R0, one can
“discretize” P near the scale R0. More precisely, one can cover P by the sum
of a coarse progression and a small progression, where the diameter of the small
progression is much smaller (by an arbitrarily specified factor of S) than the
spacing of the coarse progression, and that both of these quantities are close
to R0 (up to a bounded power of SV ).

Theorem 3.6 (Discretization). Let P ⊂ Z be a symmetric GAP of rank
d and volume V . Let R0, S be positive integers. Then there exists a scale R ≥ 1
and two GAPs Psmall, Psparse of rational numbers with the following properties.

• (Scale) R = (SV )Od(1)R0.

• (Smallness) Psmall has rank at most d, volume at most V , and takes
values in [−R/S,R/S].

• (Sparseness) Psparse has rank at most d, volume at most V , and any two
distinct elements of SPsparse are separated by at least RS.

• (Covering) P ⊆ Psmall + Psparse.
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This theorem is elementary but is somewhat involved. The detailed proof
will appear in Section 8. Here, we give an informal explanation, appealing
to the analogy between the combinatorics of progressions and linear algebra.
Recall that a GAP of rank d is the image Φ(B) of a d-dimensional box under
a linear map Φ. This can be viewed as a discretized, localized analogue of the
object Φ(V ), where Φ is a linear map from a d-dimensional vector space V
to some other vector space. The analogue of a “small” progression would be
an object Φ(V ) in which Φ vanished. The analogue of a “sparse” progression
would be an object Φ(V ) in which the map Φ was injective. Theorem 3.6 is
then a discretized, localized analogue of the obvious linear algebra fact that
given any object of the form Φ(V ), one can split V = Vsmall +Vsparse for which
Φ(Vsmall) is small and Φ(Vsparse) is sparse. Indeed one simply sets Vsmall to
be the kernel of Φ, and Vsparse to be any complementary subspace to Vsmall

in V . The proof of Theorem 3.6 follows these broad ideas, with Psmall be-
ing essentially a “kernel” of the progression P , and Psparse being a kind of
“complementary progression” to this kernel.

To oversimplify, we shall exploit this discretization result (as well as the
inverse Littlewood-Offord theorems) to control the event that the singular value
is small, by the event that the singular value (of a slightly modified random
matrix) is zero. The control of this latter quantity is the other ingredient of
the proof, to which we now turn.

3.2. Singularity of random matrices. A famous result of Kahn, Komlós
and Szemerédi [10] asserts that the probability that M1

n is singular (or equiv-
alently, that σn(M1

n) = 0) is exponentially small:

Theorem 3.7. There is a positive constant ε such that

P(σn(M1
n) = 0) ≤ (1− ε)n.

In [10] it was shown that one can take ε = .001. Improvements on ε are
obtained recently in [25], [26]. The value of ε does not play a critical role in
this paper.

To prove Theorem 3.3, we need the following generalization of Theo-
rem 3.7. Note that the row vectors of M1

n are i.i.d. copies of X1, where
X1 = (η1

1, . . . , η
1
n) and η1

i are i.i.d. copies of η1. By changing 1 to µ, we can
define Xµ in the obvious manner. Now let Y be a set of l vectors y1, . . . , yl in
Rn and Mµ,Y

n be the random matrix whose rows are Xµ
1 , . . . , X

µ
n−l, y1, . . . , yl,

where Xµ
i are i.i.d. copies of Xµ.

Theorem 3.8. Let 0 < µ ≤ 1, and let l be a nonnegative integer. Then
there is a positive constant ε= ε(µ, l) such that the following holds. For any
set Y of l independent vectors from Rn,

P(σn(Mµ,Y
n ) = 0) ≤ (1− ε)n.
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Corollary 3.9. Let 0 < µ ≤ 1. Then there is a positive constant ε =
ε(µ) such that the following holds. For any vector y ∈ Rn, the probability that
there are w1, . . . , wn−1, not all zeros, such that

y = Xµ
1w1 + . . . Xµ

n−1wn−1

is at most (1− ε)n.

We will prove Theorem 3.10 in Section 9 by using the machinery from [25].

4. Some quick applications of the inverse theorems

The inverse theorems provide effective bounds for counting the number
of “exceptional” collections v of numbers with high concentration probability;
see [26] for a demonstration of how such bounds can be used in applications. In
this section, we present two such bounds that can be obtained from the inverse
theorems developed here. In the first example, let ε be a positive constant and
M be a large integer, and consider the following question:

How many sets v of n integers with absolute values at most M are there
such that P1(v) ≥ ε?

By Erdős’ result, all but at most O(ε−2) of the elements of v are nonzero.
Thus we have the upper bound

(
n
ε−2

)
(2M+1)O(ε−2) for the number in question.

Using Proposition 2.3, we can obtain a better bound as follows. There are only
MO(ln ε−1) ways to choose the generators of the cube. After the cube is fixed,
we need to choose O(ε−2) nonzero elements inside it. As the cube has volume
O(ε−1), the number of ways to do this is (1

ε )
O(ε−2). Thus, we end up with a

bound

MO(ln ε−1)

(
1
ε

)O(ε−2)

which is better than the previous bound if M is considerably larger than ε−1.
For the second application, we return to the question of bounding the sin-

gularity probability P(σn(M1
n) = 0) studied in Theorem 3.7. This probability

is conjectured to equal (1/2 + o(1))n, but this remains open (see [26] for the
latest results and some further discussion). The event that M1

n is singular is
the same as the event that there exists some nonzero vector v ∈ Rn such that
M1
nv = 0. For simplicity, we use the notation Mn instead of M1

n in the rest of
this section. It turns out that one can obtain the optimal bound (1/2 + o(1))n

if one restricts v to some special set of vectors.
Let Ω1 be the set of vectors in Rn with at least 3n/ log2 n coordinates.

Komlós proved the following:

Theorem 4.1. The probability that Mnv = 0 for some nonzero v ∈ Ω1 is
(1/2 + o(1))n.
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A proof of this theorem can be found in Bollobás’ book [2].
We are going to consider another restricted class. Let C be an arbitrary

positive constant and let Ω2 be the set of integer vectors in Rn where the
coordinates have absolute values at most nC . Using Theorem 2.4, we can
prove

Theorem 4.2. The probability that Mnv = 0 for some nonzero v ∈ Ω2 is
(1/2 + o(1))n.

Proof. The lower bound is trivial so we focus on the upper bound. For
each nonzero vector v, let p(v) be the probability that X · v = 0, where X is
a random Bernoulli vector. From independence we have P(Mnv = 0) = p(v)n.
Since a hyperplane can contain at most 2n−1 vectors from {−1,+1}n, p(v) is
at most 1/2. For j = 1, 2, . . . , let Sj be the number of nonzero vectors v in Ω2

such that 2−j−1 < p(v) ≤ 2−j . Then the probability that Mnv = 0 for some
nonzero v ∈ Ω2 is at most

n∑
j=1

(2−j)nSj .

Let us now restrict the range of j. Note that if p(v) ≥ n−1/3, then by Erdős’s
result (mentioned in the introduction) most of the coordinates of v are zero. In
this case, by Theorem 4.1 the contribution from these v is at most (1/2+o(1))n.
Next, since the number of vectors in Ω2 is at most (2nC + 1)n ≤ n(C+1)n, we
can ignore those j where 2−j ≤ n−C−2. Now it suffices to show that∑

n−C−2≤2−j≤n−1/3

(2−j)nSj = o((1/2)n).

For any relevant j, we can find an integer d = O(1) and a positive number
ε = Ω(1) such that

n−(d−1/3)ε ≤ 2−j < n−(d−2/3)ε.

Set k := nε. Thus 2−j � k−d and we can use Theorem 2.4 to esti-
mate Sj . Indeed, by invoking this theorem, we see that there are at most(
n
k2

)
(2nC + 1)k

2
= nO(k2

) = no(n) ways to choose the positions and values of
exceptional coordinates of v. Furthermore, there are only (2nC+1)d−1 = nO(1)

ways to fix the generalized progression P := Q(w, k).
Note that the elements of P are polynomially bounded in n. Such integers

have only no(1 divisors. Thus, if P is fixed any (nonexceptional) coordinate
of v has at most |P |no(1) possible values. This means that once P is fixed,
the number of ways to set the nonexceptional coordinates of v is at most
(no(1)|P |)n = (2k + 1)(d−1+o(1))n. Putting these together,

Sj ≤ nO(k2)k(d−1+o(1))n.
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As k = nε and 2−j ≤ n−(d−2/3)ε, it follows that

2−jnSj ≤ no(n)n−εn/3 = o

(
1

log n

)
2−n.

Since there are only O(log n) relevant j, we can conclude the proof by summing
the bound over j.

5. Properties of Pµ(v)

In order to prove the inverse Littlewood-Offord theorems in Section 2,
we shall first need to develop some useful tools for estimating the quantity
Pµ(v). Note that the tools here are only used for the proof of the inverse
Littlewood-Offord theorems in Section 6 and are not required elsewhere in the
paper.

It is convenient to think of v as a word, obtained by concatenating the
numbers vi:

v = v1v2 . . . vn.

This allows us to perform several operations such as concatenating, truncating
and repeating. For instance, if v = v1 . . . vn and w = w1 . . . wm, then

Pµ(vw) = max
a∈Z

( n∑
i=1

ηµi vi +
m∑
j=1

ηµn+jwj = a
)

where ηµk , 1 ≤ k ≤ n + m are i.i.d. copies of ηµ. Furthermore, we use vk to
denote the concatenation of k copies of v.

It turns out that there is a nice calculus concerning the expressions Pµ(v),
especially when µ is small. The core properties are summarized in the next
lemma.

Lemma 5.1. The following properties hold.

• Pµ(v) is invariant under permutations of v.

• For any words v,w

(2) Pµ(v)Pµ(w) ≤ Pµ(vw) ≤ Pµ(v).
• For any 0 < µ ≤ 1, any 0 < µ′ ≤ µ/4, and any word v,

(3) Pµ(v) ≤ Pµ′(v).
• For any number 0 < µ ≤ 1/2 and any word v,

(4) Pµ(v) ≤ Pµ/k(vk).
• For any number 0 < µ ≤ 1/2 and any words v,w1, . . . ,wm,

(5) Pµ(vw1 . . .wm) ≤
( m∏
j=1

Pµ(vwm
j )
)1/m

.
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• For any number 0 < µ ≤ 1/2 and any words v,w1, . . . ,wm, there is an
index 1 ≤ j ≤ m such that

(6) Pµ(vw1 . . .wm) ≤ Pµ(vwm
j ).

Proof. The first two properties are trivial. To verify the rest, note that
from Fourier analysis

(7) P(η(µ)
1 v1 + · · ·+ η(µ)

n vn = a) =
∫ 1

0
e−2πiaξ

n∏
j=1

(1− µ+ µ cos(2πvjξ)) dξ.

When 0 < µ ≤ 1/2, the expression 1 − µ + µ cos(2πvjξ)) is positive, and
thus

(8) Pµ(v) = P(Yµ,v = 0) =
∫ 1

0

n∏
j=1

(1− µ+ µ cos(2πvjξ)) dξ.

To prove (3), note that for any 0 < µ ≤ 1, 0 < µ′ ≤ µ/4 and any θ we
have the elementary inequality

|(1− µ) + µ cos θ| ≤ (1− µ′) + µ′ cos 2θ.

Using this,

Pµ(v) ≤
∫ 1

0

n∏
j=1

|(1− µ+ µ cos(2πvjξ))| dξ

≤
∫ 1

0

n∏
j=1

(1− µ′ + µ′ cos(4πvjξ)) dξ

=
∫ 1

0

n∏
j=1

(1− µ′ + µ′ cos(4πvjξ))dξ

= Pµ′(v)

where the next to last equality follows by changing ξ to 2ξ and considering the
periodicity of cosine.

Similarly, observe that for 0 < µ ≤ 1/2 and k ≥ 1,

(1− µ+ µ cos(2πvjξ)) ≤
(

1− µ

k
+
µ

k
cos(2πvjξ)

)k
.

From the concavity of log(1 − t) when 0 < t < 1, log(1 − t) ≤ k log(1 − t
k ).

The claim follows by exponentiating this with t := µ(1 − cos(2πvjξ))), which
proves (4).

Finally, (5) is a consequence of (8) and Hölder’s inequality, while (6)
follows directly from (5).



INVERSE LITTLEWOOD-OFFORD AND CONDITION NUMBER 609

Now we consider the distribution of the equal-steps random walk ηµ1 +
· · ·+ ηµm = Yµ,1m . Intuitively, this random walk is concentrated in an interval
of length O((1+µm)1/2) and has a roughly uniform distribution in the integers
in this interval (though when µ is close to 1, parity considerations may cause
Yµ,1m to favor the even integers over the odd ones, or vice versa); compare with
the discussion in Example 2.1. The following lemma is a quantitative version
of this intuition.

Lemma 5.2. For any 0 < µ ≤ 1 and m ≥ 1

(9) Pµ(1m) = sup
a

P(ηµ1 + · · ·+ ηµm = a) = O((µm)−1/2).

In fact, we have the more general estimate

(10) P(ηµ1 +· · ·+ηµm = a) = O((τ−1+(µm)−1/2)P(ηµ1 +· · ·+ηµm ∈ [a−τ, a+τ ])

for any a ∈ Z and τ ≥ 1.
Finally, if τ ≥ 1 and if S is any τ -separated set of integers (i.e. any two

distinct elements of S are at least τ apart) then

(11) P(ηµ1 + · · ·+ ηµm ∈ S) ≤ O(τ−1 + (µm)−1/2).

Proof. We first prove (9). From (3) we may assume µ ≤ 1/4, and then
by (8)

Pµ(1m) =
∫ 1

0
|1− µ+ µ cos(2πξ)|m dξ.

Next we use the elementary estimate

1− µ+ µ cos(2πξ) ≤ exp(−µ‖ξ‖2/100),

where ‖ξ‖ denotes the distance to the nearest integer. This implies that
Pµ(1m) is bounded from above by

∫ 1
0 exp(−µm‖ξ‖2/100)dξ, which is of or-

der O((µm)−1/2). To see this, note that for ξ ≥ 1000(µm)−1/2 the function
exp(−µm‖ξ‖2/100) is quite small and its integral is negligible.

Now we prove (10). We may assume that τ ≤ (µm)1/2, since the claim
for larger τ follows automatically. By symmetry we can take a ≥ 2.

For each integer a, let ca denote the probability

ca := P(η(µ)
1 + · · ·+ η(µ)

m = a).

Direct computation (letting i denote the number of η(µ) variables which equal
zero) yields the explicit formula

ca =
m∑
j=0

(
m

j

)
(1− µ)j(µ/2)m−j

(
m− j

(a+m− j)/2

)
,

with the convention that the binomial coefficient
(
a
b

)
is zero when b is not an

integer between 0 and a. This in particular yields the monotonicity property
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ca ≥ ca+2 whenever a ≥ 0. This is already enough to yield the claim when
a > τ , so it remains to verify the claim when a ≤ τ . Now the random variable
ηµ1 + · · · + ηµm is symmetric around the origin and has variance µm, so from
Chebyshev’s inequality we know that∑

0≤a≤2(µm)1/2

ca = Θ(1).

From (9) we also have ca = O((µm)−1/2) for all a. From this and the
monotonicity property ca ≥ ca+2 and the pigeonhole principle we see that
ca = Θ((µm)−1/2) either for all even 0 ≤ a ≤ (µm)1/2, or for all odd 0 ≤ a ≤
(µm)1/2. In either case, the claim (10) is easily verified. The bound in (11)
then follows by summing (10) over all a ∈ S and noting that

∑
a ca = 1.

One can also use the formula for ca to prove (9). The simple details are
left as an exercise.

6. Proofs of the inverse theorems

We now have enough machinery to prove the inverse Littlewood-Offord
theorems. We first give a quick proof of Proposition 2.3:

Proof of Proposition 2.3. Suppose that the conclusion failed. Then
an easy greedy algorithm argument shows that v must contain a dissociated
subword w = (w1, . . . , wd+1) of length d+ 1. By (2),

2−d−1 < P1(v) ≤ P1(w).

On the other hand, since w is dissociated, all the sums of the form η1w1 + · · ·
+ ηd+1wd+1 are distinct and so P1(w) ≤ 2−d−1, yielding the desired contradic-
tion.

To prove Theorem 2.4, we modify the above argument by replacing the
notion of dissociativity by k-dissociativity. Unfortunately this makes the proof
somewhat longer:

Proof of Theorem 2.4. We construct an k-dissociated tuple (w1, . . . , wr)
for some 0 ≤ r ≤ d− 1 by the following algorithm:

• Step 0. Initialize r = 0. In particular, (w1, . . . , wr) is trivially k-dissoci-
ated. From (4) we have

(12) Pµ/4d(vd) ≥ Pµ/4(v) ≥ Pµ(v).

• Step 1. Count how many 1 ≤ j ≤ n there are such that (w1, . . . , wr, vj)
is k-dissociated. If this number is less than k2, halt the algorithm. Oth-
erwise, move on to Step 2.
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• Step 2. Applying the last property of Lemma 5.1, we can locate a vj
such that (w1, . . . , wr, vj) is k-dissociated, and

(13) Pµ/4d(vd−rwk
2

1 . . . wk
2

r ) ≤ Pµ/4d(vd−r−1wk
2

1 . . . wk
2

r v
k2

j ).

Then set wr+1 := vj and increase r to r+1. Return to Step 1. Note that
(w1, . . . , wr) remains k-dissociated, and (12) remains true.

Suppose that we terminate at some step r ≤ d − 1. Then we have an
r-tuple (w1, . . . , wr) which is k-dissociated, but such that (w1, . . . , wr, vj) is
k-dissociated for at most k2 values of vj . Unwinding the definitions, this shows
that for all but at most k2 values of vj , there exists τ ∈ [1, k] such that
τvj ∈ Q(w, k), proving the claim.

It remains to show that we must indeed terminate at some step r ≤ d− 1.
Assume (for a contradiction) that we have reached step d. Then there exists a
k-dissociated tuple (w1, . . . , wd), and by (12), (13),

Pµ(v) ≤ Pµ/4d(wk
2

1 . . . wk
2

d ) = P(Yµ/4d,wk21 ...wk
2
d

= 0).

Let Γ ⊂ Zd be the lattice

Γ := {(m1, . . . ,md) ∈ Zd : m1w1 + · · ·+mdwd = 0}.

By using independence we can write

(14) Pµ(v) ≤ P(Yµ/4d,wk21 ...wk
2
d

= 0) =
∑

(m1,...,md)∈Γ

d∏
j=1

P(Yµ/4d,1k2 = mj).

Now we use a volume packing argument. From Lemma 5.2,

P(Yµ/4d,1k2 = m) = Oµ,d

1
k

∑
m′∈m+(−k/2,k/2)

P(Yµ/4d,1k2 = m′)


and hence from (14),

Pµ(v) ≤ Oµ,d

(
k−d

∑
(m1,...,md)∈Γ ∑
(m′1,...,m

′
d)∈(m1,...,md)+(−k/2,k/2)d

d∏
j=1

P(Yµ/4d,1k2 = m′j)

)
.

Since (w1, . . . , wd) is k-dissociated, all the (m′1, . . . ,m
′
d) tuples in

Γ + (−k/2, k/2)d

are different. Thus, we conclude

Pµ(v) ≤ Oµ,d

(
k−d

∑
(m1,...,md)∈Zd

d∏
j=1

P(Yµ/4d,1k2 = mj)

)
.
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But from the union bound

∑
(m1,...,md)∈Zd

d∏
j=1

P(Yµ/4d,1k2 = mj) = 1,

and so
Pµ(v) ≤ Oµ,d(k−d).

To complete the proof, set the constant C = C(µ, d) in the theorem to be
larger than the hidden constant in Oµ,d(k−d).

Remark 6.1. One can also use the Chernoff bound and obtain a shorter
proof (avoiding the volume packing argument) but with an extra logarithmic
loss in the estimates.

Finally we perform some additional arguments to eliminate the 1
τ dilations

in Theorem 2.4 and obtain our final inverse Littlewood-Offord theorem. The
key will be the following lemma.

Given a set S and a number v, the torsion of v with respect to S is the
smallest positive integer τ such that τv ∈ S. If such τ does not exists, we say
that v has infinite torsion with respect to S.

The key new ingredient will be the following lemma, which asserts that
adding a high torsion element to a random walk reduces the concentration
probability significantly.

Lemma 6.2 (Torsion implies dispersion). Let 0 < µ ≤ 1 and consider a
GAP Q := {

∑d
i=1 xiWi|−Li ≤ xi ≤ Li}. Assume that Wd+1 has finite torsion

τ with respect to 2Q. Then there is a constant Cµ depending only on µ such
that

Pµ(WL1
1 . . .WLd

d W τ2

d+1) ≤ Cµτ−1Pµ(WL1
1 . . .WLd

d ).

Proof. Let a be an integer such that

Pµ(WL1
1 . . .WLd

d W τ2

d+1) = P

(
d∑
i=1

Wi

Li∑
j=1

ηµj,i +Wd+1

τ2∑
j=1

ηµj,d+1 = a

)
,

where the ηµj,i are i.i.d. copies of ηµ. It suffices to show that

P

 d∑
i=1

Wi

Li∑
j=1

ηµj,i +Wd+1

τ2∑
j=1

ηµj,d+1 = a

 = Oµ(τ−1)Pµ(WL1
1 . . .WLd

d ).

Let S be the set of all m ∈ [−τ2, τ2] such that Q + mWd+1 contains a.
Observe that in order for

∑d
i=1Wi

∑Li
j=1 η

µ
j,i+Wd+1

∑τ2

j=1 η
µ
j,d+1 to equal a, the
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quantity
∑k

j=1 η
µ
j,d+1 must lie in S. By the definition of Pµ(WL1

1 . . .WLd
d ) and

Bayes identity, we conclude

P

(
d∑
i=1

Wi

Li∑
j=1

ηµj,i +Wd+1

τ2∑
j=1

ηµj,d+1 = a

)

≤ Pµ(WL1
1 . . .WLd

d )P

(
τ2∑
j=1

ηµj,d+1 ∈ S

)
.

Consider two elements x, y ∈ S. By the definition of S, (x−y)v ∈ Q−Q =
2Q. From the definition of τ , |x− y| is either zero or at least τ . This implies
that S is τ -separated and the claim now follows from Lemma 5.2.

The following technical lemma is also needed.

Lemma 6.3. Consider a GAP Q(w, L). Assume that v is an element with
(finite) torsion τ with respect to Q(w, L). Then

Q(w, L) +Q(v, L′) ⊂ 1
τ
·Q(w, L(L′ + τ)).

Proof. Assume w = w1 . . . wr. We can write v as 1
τ

∑r
i=1 aiwi, where

|ai| ≤ L. An element y in Q(w, L) +Q(v, L′) can be written as

y =
r∑
i=1

xiwi + xv

where |xi| ≤ L and |x| ≤ L′. Substituting v,

y =
r∑
i=1

xiwi + x
1
τ

r∑
i=1

aiwi =
1
τ

r∑
i=1

wi(τxi + xai),

where |τxi + xai| ≤ τL+ L′L. This concludes the proof.

Proof of Theorem 2.5. We begin by running the algorithm in the proof
of Theorem 2.4 to locate a word w of length at most d − 1 such that the set⋃

1≤τ≤k
1
τ ·Q(w, k) covers all but at most k2 elements of v. Set v[0] to be the

word formed by removing the (at most k2) exceptional elements from v which
do not lie in

⋃
1≤τ≤k

1
τ ·Q(w, k).

By increasing the constant k0 in the assumption of the theorem, we can
assume, in all arguments below, that k is sufficiently large, whenever needed.

By (2) and (3)
(15)

Pµ/4d(v[0]wk2
) ≥ Pµ/4d(vwk2

) ≥ Pµ/4d(v)Pµ/4d(vwk2
) ≥ k−dPµ/4d(vwk2

).

In the following, assume that there is at least one nonzero entry in w;
otherwise the claim is trivial.
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Now we perform an additional algorithm. Let K = K(µ, d, ε) > 2 be a
large constant to be chosen later.

• Step 0. Initialize i = 0 and set Q0 := Q(w, k2) and v[0] as above.

• Step 1. Count how many v ∈ v[i−1] having torsion at least K with re-
spect to 2Qi−1. (We need to have the factor 2 here in order to apply
Lemma 6.2.) If this number is less than k2, halt the algorithm. Other-
wise, move on to Step 2.

• Step 2. Locate a multiset S of k2 elements of v[i−1] with torsion at least
K with respect to 2Qi−1. Applying (6), we can find an element v ∈ S
such that

Pµ/4d(v[i−1]wk2
W

τ2
1

1 . . .W
τ2
i−1

i−1 ) ≤ Pµ/4d(v[i]wk2
W

τ2
1

1 . . .W
τ2
i−1

i−1 v
k2

)

where v[i] is obtained from v[i−1] by deleting S.
Let τi be the torsion of v with respect to 2Qi−1. Since every element of
v[0] has torsion at most k with respect to Q0, K ≤ τi ≤ k. We then set
Wi := v, Qi := Qi−1 +Q(Wi, τ

2
i ), increase i to i+1 and return to Step 1.

Consider a stage i of the algorithm. From construction and induction
and (15), we have a word W1 . . .Wi with

Pµ/4d(v[i]wk2
W

τ2
1

1 . . .W
τ2
i

i ) ≥ P(v[0]wk2
) ≥ k−dP(wk2

).

On the other hand, by applying Lemma 6.2 iteratively,

Pµ/4d(wk2
W

τ2
1

1 . . .W
τ2
i

i ) ≤ Pµ/4d(wk2
)

i∏
j=1

(Cµτ−1
j ).

It follows that
∏i
j=1(Cµτ−1

j ) ≥ k−d, or equivalently
∏i
j=1(C−1

µ τj) ≤ kd. Recall
that τj ≥ K. Thus by setting K sufficiently large (compared to Cµ, d and 1/ε),
we can guarantee that

(16)
i∏

j=1

τj ≤ kd+ε/2d

where ε is the constant in the assumption of the theorem. It also follows that
the algorithm must terminate at some stage D ≤ logK kd+ε/2d ≤ (d+1) logK k.

Now look at the final set QD. Applying Lemma 6.3 iteratively,

QD ⊂

(
D∏
j=1

1
τj

)
·Q(w, LD)

where L0 := k2 and

(17) Li := Li−1(τi + τ2
i ) ≤ (1 + 1/K)Li−1τ

2
i .

We now show that the GAP Q := 1
K! ·(2K!)Q(w, LD) = 1

K! ·Q(w, 2K!LD)
satisfies the claims of the theorem.
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• (Rank) We have rank(Q) = rank(Q(w, LD)) = rank(Q0) = r ≤ d − 1, as
shown in the proof of the previous theorem.

• (Volume) We have Vol(Q) = (2K!)rVol(Q(w, LD)) = O(Vol(Q(w, LD))).
On the other hand, by (16) and (17)

Vol(Q(w, LD)) = (2LD + 1)r ≤ (3LD)r =O

((
k2

D∏
j=1

(1 + 1/K)τ2
j

)r)

=O

((
k2+2(d+ε/2d)(1 +K)D

)r)
.

By definition, D ≤ logK kd+ε/2d < log k, given that K is sufficiently large
compared to d. Thus (1 + 1/K)D ≤ exp(D/K) ≤ k1/K which implies
that

Vol(Q(w, LD)) = O(kr(2+2(d+ε/2d)+1/K)) = o(k2(d2−1)+ε)

provided that r ≤ d − 1 and K is sufficiently large compared to d and
1/ε. (The asymptotic notation here is used under the assumption that
k →∞.)

• (Number of exceptional elements) At each stage in the second algorithm,
we discard a set of k2 elements; thus all but Dk2 ≤ (d + 1)k2 logK k)
elements of v[0] have torsion at most K with respect to 2QD. As QD ⊂
Q(w, LD) and v\v[0] ≤ k2, it follows that all but at most

(d+ 1)k2 logK k + k2

elements of v have torsion at most K with respect to

2Q(w, LD) = Q(w, 2LD).

By setting K sufficiently large compared to d and 1/ε, we can guarantee
that

(d+ 1)k2 logK k + k2 ≤ εk2 log k.

To conclude, note that any element with torsion at most K with respect
to Q(w, 2LD) belongs to Q := 1

K! · Q(w, 2K!LD). Thus, Q contains all
but at most εk2 log k elements of v.

• (Generators) The generators of 1
K! · Q(w, 2K!LD) are 1

K!
QD
j=1 τj

wi, 1 ≤

i ≤ r. Since wi ∈ v and
∏D
j=1 τj ≤ kd+ε/2d = o(kd+ε), the claim about

generators follows.

The proof is complete.
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7. The smallest singular value

In this section, we prove Theorem 3.4, modulo two key results, Theo-
rem 3.6 and Corollary 3.9, which will be proved in later sections.

Let B10 be a large number (depending on A) to be chosen later. Suppose
that σn(Mµ

n ) < n−B. This means that there exists a unit vector v such that

‖Mµ
n v‖ < n−B.

By rounding each coordinate v to the nearest multiple of n−B−2, we can
find a vector ṽ ∈ n−B−2 · Zn of magnitude 0.9 ≤ ‖ṽ‖ ≤ 1.1 such that

‖Mµ
n ṽ‖ ≤ 2n−B.

Thus, writing w := nB+2ṽ, we can find an integer vector w ∈ Zn of magnitude
0.9nB+2 ≤ ‖w‖ ≤ 1.1nB+2 such that

‖Mµ
nw‖ ≤ 2n2.

Let Ω be the set of integer vectors w ∈ Zn of magnitude 0.9nB+2 ≤ ‖w‖ ≤
1.1nB+2. It suffices to show the probability bound

P(there is some w ∈ Ω such that ‖Mµ
nw‖ ≤ 2n2) = OA,µ(n−A).

We now partition the elements w = (w1, . . . , wn) of Ω into three sets:

• We say that w is rich if

Pµ(w1 . . . wn) ≥ n−A−10

and poor otherwise. Let Ω1 be the set of poor w’s.

• A rich w is singular w if fewer than n0.2 of its coordinates have absolute
value nB−10 or greater. Let Ω2 be the set of rich and singular w’s.

• A rich w is nonsingular w, if at least n0.2 of its coordinates have absolute
value nB−10 or greater. Let Ω3 be the set of rich and nonsingular w’s.

The desired estimate follows directly from the following lemmas and the union
bound.

Lemma 7.1 (Estimate for poor w).

P(there is some w ∈ Ω1 such that ‖Mµ
nw‖ ≤ 2n2) = o(n−A).

Lemma 7.2 (Estimate for rich singular w).

P(there is some w ∈ Ω2 such that ‖Mµ
nw‖ ≤ 2n2) = o(n−A).

Lemma 7.3 (Estimate for rich nonsingular w).

P(there is some w ∈ Ω3 such that ‖Mµ
nw‖ ≤ 2n2) = o(n−A).
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Remark 7.4. Our arguments will show that the probabilities in Lemmas
7.2 and 7.3 are exponentially small.

The proofs of Lemmas 7.1 and 7.2 are relatively simple and rely on well-
known methods. We delay these proofs to the end of this section and focus on
the proof of Lemma 7.3, which is the heart of the matter, and which uses all
the major tools discussed in previous sections.

Proof of Lemma 7.3. Informally, the strategy is to use the inverse
Littlewood-Offord theorem (Corollary 2.7) to place the integers w1, . . . , wn
in a progression, which we then discretize using Theorem 3.6. This allows us
to replace the event ‖Mµ

nw‖ ≤ 2n2 by the discretized event Mµ,Y
n = 0 for a

suitable Y , at which point we apply Corollary 3.9.
We turn to the details. Since w is rich, we see from Corollary 2.7 that

there exists a symmetric GAP Q of integers of rank at most A′ and volume at
most nA

′
which contains all but bn0.1c of the integers w1, . . . , wn, where A′ is

a constant depending on µ and A. Also the generators of Q are of the form
wi/s for some 1 ≤ i ≤ n and 1 ≤ s ≤ nA′ .

Using the description of Q and the fact that w1, . . . , wn are polynomially
bounded (in n), it is easy to derive that the total number of possible Q is
nOA′ (1). Next, by paying a factor of(

n

bn0.1c

)
≤ nbn0.1c = exp(o(n))

we may assume that it is the last bn0.1c integers wm+1, . . . , wn which possibly
lie outside Q, where we set m := n − bn0.1c. As each of the wi has absolute
value at most 1.1nB+2, the number of ways to fix these exceptional elements
is at most (2.2nB+2)n

0.1
= exp(o(n)). Overall, it costs a factor of at most

exp(o(n)) to fix Q and the positions and values of the exceptional elements
of w.

Once we have fixed wm+1, . . . , wn, we can then write

Mnw = w1X
µ
1 + · · ·+ wmX

µ
m + Y,

where Y is a random variable determined by Xµ
i and wi, m < i ≤ n. (In this

proof we think of Xµ
i as the column vectors of the matrix.) For any number y,

let Fy be the event that there exists w1, . . . , wm in Q, where at least one of the
wi has absolute value larger or equal nB−10, such that

|w1X
µ
1 + · · ·+ wmX

µ
m + y| ≤ 2n2.

It suffices to prove that
P(Fy) = o(n−A)

for any y. Our argument will in fact show that this probability is exponentially
small.
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We now apply Theorem 3.6 to the GAP Q with R0 := nB/2 and S := n10

to find a scale R = nB/2+OA(1) and symmetric GAPs Qsparse, Qsmall of rank at
most A′ and volume at most nA

′
such that:

• Q ⊆ Qsparse +Qsmall.

• Qsmall ⊆ [−n−10R,n−10R].

• The elements of n10Qsparse are n10R-separated.

Since Q (and hence n10Q) contains w1, . . . , wm, we can write

wj = wsparse
j + wsmall

j

for all 1 ≤ j ≤ m, where wsparse
j ∈ Qsparse and wsmall

j ∈ Qsmall. In fact, this
decomposition is unique.

Suppose that the event Fy holds. Writing Xµ
i = (ηµi,1, . . . , η

µ
i,n) (where ηµi,j

are i.i.d. copies of ηµ) and y = (y1, . . . , yn),

w1η
µ
i,1 + · · ·+ wmη

µ
i,m = yi +O(n2)

for all 1 ≤ i ≤ n. Splitting the wj into sparse and small components and
estimating the small components using the triangle inequality, we obtain

wsparse
1 ηµi,1 + · · ·+ wsparse

m ηµi,m = yi +O(n−9R)

for all 1 ≤ i ≤ n. Note that the left-hand side lies in mQsparse ⊂ n10Qsparse,
which is known to be n10R-separated. Thus there is a unique value for the
right-hand side, denoted as y′i, which depends only on y and Q such that

wsparse
1 ηi,1 + · · ·+ wsparse

m ηi,m = y′i.

The point is that now we have eliminated the O() errors, and thus have essen-
tially converted the singular value problem to the zero determinant problem.
Note also that since one of the w1, . . . , wm is known to have magnitude at least
nB−10 (which will be much larger than n10R if B is chosen large depending
on A), we see that at least one of the wsparse

1 , . . . , wsparse
n is nonzero.

Consider the random matrix M ′ of order m × m + 1 whose entries are
i.i.d. copies of ηµ and let y′ ∈ Rm+1 be the column vector y′ = (y′1, . . . , y

′
m+1).

We conclude that if the event Fy holds, then there exists a nonzero vector
w ∈ Rm such that M ′w = y′. But from Corollary 3.9, this holds with the
desired probability

exp(−Ω(m+ 1)) = exp(−Ω(n)) = o(n−A)

and we are done.

Proof of Lemma 7.1. We use a conditioning argument, following [20]. (An
argument of the same spirit was used by Komlós to prove the bound O(n−1/2)
for the singularity problem [2].)



INVERSE LITTLEWOOD-OFFORD AND CONDITION NUMBER 619

Let M be a matrix such that there is w ∈ Ω1 satisfying ‖Mw‖ ≤ 2n2.
Since M and its transpose have the same spectral norm, there is a vector w′

which has the same norm as w such that ‖w′M‖ ≤ 2n2. Let u = w′M and Xi

be the row vectors of M . Then

u =
n∑
i=1

w′iXi

where w′i are the coordinates of w′.
Now we think of M as a random matrix. By paying a factor of n, we can

assume that w′n has the largest absolute value among the w′i. We expose the
first n−1 rows X1, . . . , Xn−1 of M . If there is w ∈ Ω1 satisfying ‖Mw‖ ≤ 2n2,
then there is a vector y ∈ Ω1, depending only on the first n− 1 rows such that( n−1∑

i=1

(Xi · y)2
)1/2

≤ 2n2.

Now consider the inner product Xn · y. We can write Xn as

Xn =
1
w′n

(
u−

n−1∑
i=1

w′iXi

)
.

Thus,

|Xn · y| =
1
‖w′n‖

|u · y −
n−1∑
i=1

w′iXi · y|.

The right-hand side, by the triangle inequality, is at most

1
‖w′n‖

(‖u‖‖y‖+ ‖w′‖
( n−1∑
i=1

(Xi · y)2)1/2
)
.

By assumption ‖w′n‖ ≥ n−1/2‖w′‖. Furthermore, as ‖u‖ ≤ 2n2, ‖u‖‖y‖ ≤
2n2‖y‖ ≤ 3n2‖w′‖ as ‖w′‖ = ‖w‖, and both y and w belong to Ω1. (Any two
vectors in Ω1 have roughly the same length.) Finally (

∑n−1
i=1 (Xi ·y)2)1/2 ≤ 2n2.

Putting all these together,

|Xn · y| ≤ 5n5/2.

Recall that y is fixed (after we expose the first n − 1 rows) and Xn is a copy
of Xµ. The probability that |Xµ · y| ≤ 5n5/2 is at most (10n5/2 + 1)Pµ(y). On
the other hand, y is poor, and so Pµ(y) ≤ n−A−10. Thus, it follows that

P(there is some w ∈ Ω1 such that ‖Mµ
nw‖ ≤ 2n2)

≤ n−A−10(10n5/2 + 1)n = o(n−A),

where the extra factor n comes from the assumption that w′n has the largest
absolute value. This completes the proof.
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Proof of Lemma 7.2. We use an argument from [15]. The key point will
be that the set Ω2 of rich nonsingular vectors has sufficiently low entropy so
that one can proceed using the union bound.

A set N of vectors on the n-dimensional unit sphere Sn−1 is said to be an
ε-net if for any x ∈ Sn−1, there is y ∈ N such that ‖x − y‖ ≤ ε. A standard
greedy argument shows the following:

Lemma 7.5. For any n and ε ≤ 1, there exists an ε-net of cardinality at
most O(1/ε)n.

Next, a simple concentration of measure argument shows

Lemma 7.6. For any fixed vector y of magnitude between 0.9 and 1.1

P(‖Mµ
n y‖ ≤ n−2) = exp(−Ω(n)).

It suffices to verify this statement for the case |y| = 1. Note that

‖Mµ
n y‖2 =

n∑
i=1

(Xi · y)2 =
n∑
i=1

Zi

where Zi = (Xi · y)2. The Zi are i.i.d. random variables with expectation µ

and bounded variance. Thus
∑n

i=1 Zi has mean Ω(n) and the claimed bound
follows from Chernoff’s large deviation inequality (see, e.g., [28, Ch. 1]). (In
fact, one can replace the n−2 by cn1/2 for some small constant c, but this
refinement is not necessary.)

For a vector w ∈ Ω2, let w′ be its normalization w′ := w/‖w‖. Thus, w′

is a unit vector with at most n0.2 coordinates with absolute values larger or
equal n−10. Let Ω′2 be the collection of those w′ with this property.

If ‖Mw‖ ≤ 2n2 for some w ∈ Ω2, then ‖Mw′‖ ≤ 3n−B , as ‖w‖ ≥ 0.9nB+2.
Thus, it suffices to give an exponential bound on the event that there is w′ ∈ Ω′2
such that ‖Mµ

nw′‖ ≤ 3n−B.
By paying a factor

(
n
n0.2

)
= exp(o(n)) in probability, we can assume that

the large coordinates (with absolute value at least n−10) are among the first
l := n0.2 coordinates. Consider an n−3-net N in Sl−1. For each vector y ∈ N ,
let y′ be the n-dimensional vector obtained from y by letting the last n − l
coordinates be zeros, and let N ′ be the set of all such vectors obtained. These
vectors have magnitude between 0.9 and 1.1, and from Lemma 7.5, |N ′| ≤
O(n3)l.

Now consider a rich singular vector w′ ∈ Ω2 and let w
′′

be the l-dimen-
sional vector formed by the first l coordinates of this vector. Since the remain-
ing coordinates are small, ‖w′′‖ = 1 +O(n−9.5). There is a vector y ∈ N such
that

‖y − w′′‖ ≤ n−3 +O(n−9.5).
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It follows that there is a vector y′ ∈ N ′ such that

‖y′ − w′‖ ≤ n−3 +O(n−9.5) ≤ 2n−3.

For any matrix M of norm at most n,

‖Mw′‖ ≥ ‖My′‖ − 2n−3n = ‖My′‖ − 2n−2.

It follows that if ‖Mw′‖ ≤ 3n−B for some B ≥ 2, then ‖My′‖ ≤ 5n−2. Now
take M = Mµ

n . For each fixed y′, the probability that ‖My′‖ ≤ 5n−2 is at most
exp(−Ω(n)), by Lemma 7.6. Furthermore, the number of y′ is subexponential
(at most O(n3)l = O(n)3n.2 = exp(o(n))). Thus the claim follows directly by
the union bound.

8. Discretization of progressions

The purpose of this section is to prove Theorem 3.6. The arguments here
are elementary (based mostly on the pigeonhole principle and linear algebra,
in particular Cramer’s rule) and can be read independently of the rest of the
paper.

We shall follow the informal strategy outlined in Section 3.1. We begin
with a preliminary observation, which asserts the intuitive fact that progres-
sions do not contain large lacunary subsets.

Lemma 8.1. Let P ⊂ Z be a symmetric generalized arithmetic progression
of rank d and volume V , and let x1, . . . , xd+1 be nonzero elements of P . Then
there exist 1 ≤ i < j ≤ d+ 1 such that

C−1
d V −1|xi| ≤ |xj | ≤ CdV |xi|

for some constant Cd > 0 depending only on d.

Proof. We may order |xd+1| ≥ |xd| ≥ · · · ≥ |x1|. If we write

P = {m1v1 + · · ·+mdvd : |mi| ≤Mi for all 1 ≤ i ≤ d}

(so that V = Θd(M1 . . .Md)), then each of the x1, . . . , xd+1 can be written as
a linear combination of the v1, . . . , vd. Applying Cramer’s rule, we conclude
that there exists a nontrivial relation

a1x1 + · · ·+ ad+1xd+1 = 0

where a1, . . . , ad+1 = Od(V ) are integers, not all zero. If we let j be the largest
index such that aj is nonzero, then j > 1 (since x1 is nonzero) and in particular,
we conclude that

|xj | = O(|ajxj |) = Od(V |xj−1|)

from which the claim follows.
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Proof of Theorem 3.6. We can assume that R0 is very large compared to
(SV )Od(1) since otherwise the claim is trivial (take Psparse := P and Psmall :=
{0}). We can also take V ≥ 2.

Let B = Bd be a large integer depending only on d to be chosen later. The
first step is to subdivide the interval [(SV )−B

B+2
R0, (SV )B

B+2
R0] into Θ(B)

overlapping subintervals of the form [(SV )−B
B+1

R, (SV )B
B+1

R], with every
integer being contained in at most O(1) of the subintervals. From Lemma 8.1
and the pigeonhole principle we see that at most Od(1) of the intervals can
contain an element of (SV )B

B

P (which has volume O((SV )Od(BB)). If we let
B be sufficiently large, we can thus find an interval [(SV )−B

B+1
R, (SV )B

B+1
R]

which is disjoint from (SV )B
B

P . Since P is symmetric, this means that every
x ∈ (SV )B

B

P is either larger than (SV )B
B+1

R in magnitude, or smaller than
(SV )−B

B+1
R in magnitude.

Having located a good scale R to discretize, we now split P into small
(� R) and sparse (� R-separated) components. We write P explicitly as

P = {m1v1 + · · ·+mdvd : |mi| ≤Mi for all 1 ≤ i ≤ d}
so that V = Θd(M1 . . .Md) and more generally

kP = {m1v1 + · · ·+mdvd : |mi| ≤ kMi for all 1 ≤ i ≤ d}
for any k ≥ 1. For any 1 ≤ s ≤ B, let As ⊂ Zd denote the set

As := {(m1, . . . ,md) : |mi| ≤ V BsMi for all 1 ≤ i ≤ d;

|m1v1 + · · ·+mdvd| ≤ (SV )−B
B+1

R}.
Roughly speaking, this space corresponds to the kernel of Φ as discussed in
Section 3.1; the additional parameter s is a technicality needed to compensate
for the fact that boxes, unlike vector spaces, are not quite closed under dila-
tions. We now view As as a subset of the Euclidean space Rd. As such it spans
a vector space Xs ⊂ Rd. Clearly

X1 ⊆ X2 ⊆ · · · ⊆ XB.

Therefore if B is large enough, by the pigeonhole principle (applied to the
dimensions of these vector spaces) we can find 1 ≤ s < B such that we have
the stabilization property Xs = Xs+1. Let the dimension of this space be r;
thus 0 ≤ r ≤ d.

There are two cases, depending on whether r = d or r < d. Suppose first
that r = d (so the kernel has maximal dimension). Then by definition of As
we have d “equations” in d unknowns,

m
(j)
1 v1 + · · ·+m

(j)
d vd = O((SV )−B

B+1
R) for all 1 ≤ j ≤ d,

where m(j)
i = O(MiV

Bs) and the vectors (m(j)
1 , . . . ,m

(j)
d ) ∈ As are linearly

independent as j varies. Using Cramer’s rule we conclude that

vi = Od((SV )Od(Bs)(SV )−B
B+1

R) for all 1 ≤ j ≤ d
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since all the determinants and minors which arise from Cramer’s rule are in-
tegers that vary from 1 to Od(V Od(B)) in magnitude. Since Mi = O(V ) for
all i, we conclude that x = Od(V Od(Bs)(SV )−B

B+1
R) for all x ∈ P , which by

construction of R (and the fact that s < B) shows that

P ⊂ [−(SV )−B
B+1

R, (SV )−B
B+1

R]

(if B is sufficiently large). Thus in this case we can take Psmall = P and
Psparse = {0}.

Now we consider the case when r < d (so the kernel is proper). In this
case we can write Xs as a graph of some linear transformation T : Rr → Rd−r:
after permutation of the coordinates, we have

Xs = {(x, Tx) ∈ Rr ×Rd−r : x ∈ Rr}.

The coefficients of T form an r × d − r matrix, which can be computed
by Cramer’s rule to be rational numbers with numerator and denominator
Od((SV )Od(Bs)); this follows from Xs being spanned by As, and on the inte-
grality and size bounds on the coefficients of elements of As.

Let m ∈ As be arbitrary. Since As is also contained in Xs, we can write
m = (m[1,r], Tm[1,r]) for some m[1,r] ∈ Zr with magnitude Od((SV )Od(Bs)). By
definition of As, we conclude that

〈mr, v[1,r]〉Rr + 〈Tmr, v[r+1,d]〉Rd−r = O((SV )−B
B+1

R)

where v[1,r] := (v1, . . . , vr), v[r+1,d] := (vr+1, . . . , vd), and the inner products on
Rr and Rd−r are the standard ones. Thus

〈mr, v[1,r] + T ∗v[r+1,d]〉Rr = O((SV )−B
B+1

R)

where T ∗ : Rd−r → Rr is the adjoint linear transformation to T . Now since A
spans X, the m[1,r] will linearly span Rr as we vary over all elements m of A.
Thus by Cramer’s rule we conclude that

(18) v[1,r] + T ∗v[r+1,d] = Od(V Od(Bs)(SV )−B
B+1

R).

Write (w1, . . . , wr) := T ∗v[r+1,d]; thus w1, . . . , wr are rational numbers.
Then construct the symmetric generalized arithmetic progressions Psmall and
Psparse explicitly as

Psparse := {m1w1 + · · ·+mrwr +mr+1vr+1

+ · · ·+mdvd : |mi| ≤Mi for all 1 ≤ i ≤ d}

and

Psmall := {m1(v1 + w1) + · · ·+mr(vr + wr) : |mi| ≤Mi for all 1 ≤ i ≤ d}.

It is clear from construction that P ⊆ Psparse + Psmall, and that Psparse and
Psmall have rank at most d and volume at most V . Now from (18),

vi + wi = Od((SV )Od(Bs)(SV )−B
B+1

R)
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and hence for any x ∈ Psmall,

x = Od((SV )Od(Bs)(SV )−B
B+1

R).

By choosing B large enough we conclude that

|x| ≤ R/S

which gives the desired smallness bound on Psmall.
The only remaining task is to show that SPsparse is sparse. It suffices

to show that SPsparse − SPsparse has no nonzero intersection with [−RS,RS].
Suppose for contradiction that this failed. Then we can find m1, . . . ,md with
|mi| ≤ 2SMi for all i and

0 < m1w1 + · · ·+mrwr +mr+1vr+1 + · · ·+mdvd < RS.

Let Q be the least common denominator of all the coefficients of T ∗, then
Q = Od((SV )Od(Bs)). Multiplying the above equation by Q, we obtain

0<m1Qw1 + · · ·+mrQwr +mr+1Qvr+1 + · · ·+mdQvd

<O(RSV Od(Bs)) < (SV )B
B+1

R.

Since (w1, . . . , wr) = T ∗v[r+1,r+d], the expression between the inequality signs
is an integer linear combination of vr+1, . . . , vd, with all coefficients of size
Od((SV )Od(Bs)), for example

m1Qw1 + · · ·+mrQwr +mr+1Qvr+1 + · · ·+mdQvd = ar+1vr+1 + · · ·+ advd.

In particular, this expression lies in (SV )B
B

P (again taking B to be suffi-
ciently large). Thus by construction of R, we can improve the upper bound of
(SV )B

B+1
R to (SV )−B

B+1
R:

(19) 0 < ar+1vr+1 + · · ·+ advd < (SV )−B
B+1

R.

Taking B to be large, this implies that (0, . . . , 0, ar+1, . . . , ad) lies in Xs+1,
which equals Xs. But Xs was a graph from Rr to Rd−r, and thus ar+1 =
· · · = ad = 0, which contradicts (19). This establishes the sparseness.

9. Proof of Theorem 3.10

Let Y = {y1, . . . , yl} be a set of l independent vectors in Rn. Re-
call that Mµ,Y

n denote the random matrix with row vectors Xµ
1 , . . . , X

µ
n−l,

y1, . . . , yl, where Xµ
i are i.i.d. copies of Xµ = (ηµ1 . . . , η

µ
n).

Define δ(µ) := max{1− µ, µ/2}. It is easy to show that for any subspace
V of dimension d,

(20) P(Xµ ∈ V ) ≤ δ(µ)d−n.
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In the following, we use N to denote the quantity (1/δ(µ))n. As 0 < µ ≤ 1,
δ(µ) > 0 and thus N is exponentially large in n. Thus it will suffice to show
that

P(Mµ,Y
n singular ) ≤ N−ε+o(1)

for some ε = ε(µ, l) > 0, where the o(1) term is allowed to depend on µ, l,
and ε. We may assume that n is large depending on µ and l since the claim is
trivial otherwise.

Note that if Mµ,Y
n is singular, then the row vectors span a proper sub-

space V . To prove the theorem, it suffices to show that for any sufficiently
small positive constant ε∑

V,V proper subspace

P(Xµ
1 , . . . , X

µ
n−l, y1, . . . , yl span V ) ≤ N−ε+o(1).

Arguing as in [25, Lemma 5.1], we can restrict ourselves to hyperplanes.
Thus, it is enough to prove∑

V,V hyperlane

P(Xµ
1 , . . . , X

µ
n−l, y1, . . . , yl span V ) ≤ N−ε+o(1).

We may restrict our attention to those hyperplanes V which are spanned
by their intersection with {−1, 0, 1}n, together with y1, . . . , yl. Let us call such
hyperplanes nontrivial. Furthermore, we call a hyperplane H degenerate if
there is a vector v orthogonal to H and at most log log n coordinates of v
are nonzero. Following [25, Lemma 5.3], it is easy to see that the number of
degenerate nontrivial hyperplanes is at most No(1). Thus, their contribution
in the sum is at most

No(1)δ(µ)n−l = N−1+o(1)

which is acceptable. Therefore, from now on we can assume that V is nonde-
generate.

For each nontrivial hyperplane V , define the discrete codimension d(V ) of
V to be the unique integer multiple of 1/n such that

(21) N−
d(V )
n
− 1
n2 < P(Xµ ∈ V ) ≤ N−

d(V )
n .

Thus d(V ) is large when V contains few elements from {−1, 0, 1}n, and con-
versely.

Let BV denote the event that Xµ
1 , . . . , X

µ
n−l, y1, . . . , yl span V . We denote

by Ωd the set of all nondegenerate, nontrivial hyperplanes with discrete codi-
mension d. It is simple to see that 1 ≤ d(V ) ≤ n2 for all nontrivial V . In
particular, there are n2 = No(1) possible values of d, so to prove our theorem
it suffices to show that

(22)
∑
V ∈Ωd

P(BV ) ≤ N−ε+o(1)

for all 1 ≤ d ≤ n2.
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We first handle the (simpler) case when d is large. Note that if

Xµ
1 , . . . , X

µ
n−l, y1, . . . , yl span V,

then some subset of n − l − 1 vectors Xi together with the yj ’s already span
V (since the yj ’s are independent). By symmetry, we have∑

V ∈Ωd

P(BV )

≤ (n− l)
∑
V ∈Ωd

P(Xµ
1 , . . . , X

µ
n−l−1, y1, . . . , yl span V )P(Xµ

n−l ∈ V )

≤ nN−
d

n

∑
V ∈Ωd

P(Xµ
1 , . . . , X

µ
n−l−1, y1, . . . , yl span V )

≤ nN−
d

n = N−
d

n
+o(1).

This disposes of the case when d ≥ εn. It remains to verify the following
lemma.

Lemma 9.1. For all sufficiently small positive constant ε, the following
holds. If d is any integer multiple of 1/n such that

(23) 1 ≤ d ≤ (ε− o(1))n,

then ∑
V ∈Ωd

P(BV ) ≤ N−ε+o(1).

Proof. For 0 < µ ≤ 1 we define the quantity 0 < µ∗ ≤ 1/8 as follows. If
µ = 1 then µ∗ := 1/16. If 1/2 ≤ µ < 1, then µ∗ := (1− µ)/4. If 0 < µ < 1/2,
then µ∗ := µ/4. We will need the following inequality, which is a generalization
of [25, Lemma 6.2].

Lemma 9.2. Let V be a nondegenerate nontrivial hyperplane. Then

P(Xµ ∈ V ) ≤
(

1
2

+ o(1)
)

P(Xµ∗ ∈ V ).

The proof of Lemma 9.2 relies on some Fourier-analytic ideas of Halász [9]
(see also [10], [25], [26]) and is deferred until the end of the section. Assuming
it for now, we continue the proof of Lemma 9.1.

Let us set γ := 1
2 ; this is not the optimal value of this parameter, but will

suffice for this argument.
Let AV be the event that Xµ∗

1 , . . . , X µ∗

(1−γ)n, X
µ
1 , . . . , X

µ
(γ−ε)n are linearly

independent in V , where Xµ∗

i ’s are i.i.d. copies of Xµ∗ and Xµ
j ’s are i.i.d. copies

of Xµ.
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Lemma 9.3.

P(AV ) ≥ N (1−γ)−(1−ε)d+o(1).

Proof. Note that the right-hand side on the bound in Lemma 9.3 is
the probability of the event A′V that Xµ∗

1 , . . . , Xµ∗

(1−γ)n, X
µ
1 , . . . , X

µ
(γ−ε)n belong

to V . Thus, by Bayes’ identity it is sufficient to show that

P(AV |A′V ) = No(1).

From (21),

(24) P(Xµ ∈ V ) = (1 +O(1/n))δ(µ)d

and hence by Lemma 9.2

(25) P(Xµ∗ ∈ V ) ≥ (2 +O(1/n))δ(µ)d.

On the other hand, by (20)

P(Xµ∗ ∈W ) ≤ (1− µ∗)n−dim(W )

for any subspace W . Thus by Bayes’ identity, we have the conditional proba-
bility bound

P(Xµ∗ ∈W |X(µ∗) ∈ V )

≤ (2 +O(1/n))−1δ(µ)−d(1− µ∗)n−dim(W ) ≤ δ(µ)−d(1− µ∗)n−dim(W ).

When dim(W ) ≤ (1 − γ)n, the bound is less than one when ε is sufficiently
small, thanks to the bound on d and the choice γ = 1

2 .
Let Ek be the event that Xµ∗

1 , . . . , Xµ∗

k are linearly independent. The
above estimates imply that

P(Ek+1|Ek ∧A′V ) ≥ 1− δ(µ)−d(1− µ∗)n−k

for all 0 ≤ k ≤ (1− γ)n. Thus applying Bayes’ identity repeatedly, we obtain

P(E(1−γ)n|A′V ) ≥ N−o(1).

To complete the proof, observe that since

P(Xµ ∈W ) ≤ δ(µ)n−dim(W )

for any subspace W , it follows that by (24),

P(Xµ ∈W |Xµ ∈ V ) ≤ (1 +O(1/n))δ(µ)−dδ(µ)n−dim(W ).

Let us assume E(1−γ)n and denote by W the (1−γ)n-dimensional subspace
spanned by Xµ∗

1 , . . . , Xµ∗

(1−γ)n. Let Uk denote the event that Xµ
1 , . . . , X

µ
k ,W are

liearly independent. We have

pk = P(Uk+1|Uk ∧A′V )

≥ 1− (1 +O(1/n))δ(µ)−dδ(µ)n−k−(1−γ)n ≥ 1− 1
100

δ(µ)−(γ−ε)n+k
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for all 0 ≤ k < (γ − ε)n, thanks to (23). Thus by Bayes’ identity we obtain

P(AV |A′V ) ≥ No(1)
∏

0≤k<(γ−ε)n

pk = No(1)

as desired.

Now we continue the proof of the theorem. Fix V ∈ Ωd. Since AV and
BV are independent, by Lemma 9.3,

P(BV ) =
P(AV ∧BV )

P(AV )
≤ N−(1−γ)+(1−ε)d+o(1)P(AV ∧BV ).

Consider a set

Xµ∗

1 , . . . , Xµ∗

(1−γ)n, X
µ
1 , . . . , X

µ
(γ−ε)n, X

µ
1 , . . . , X

µ
n−l

of vectors satisfyingAV∧BV . Then there exists εn−l−1 vectorsXµ
j1
, . . . ,Xµ

jεn−l−1

inside Xµ
1 , . . . , X

µ
n−l, which together with

Xµ∗

1 , . . . , Xµ∗

(1−γ)n, X
µ
1 , . . . , X

µ
(γ−ε)n, y1, . . . , yl,

span V . Since the number of possible indices j1, . . . , jεn−l−1 is
(

n−l
εn−l−1

)
= 2(h(ε)+o(1))n (with h being the entropy function), by conceding a factor of

2(h(ε)+o(1))n = Nah(ε)+o(1),

where a = log1/δ(µ) 2, we can assume that ji = i for all relevant i. Let CV be
the event that

Xµ∗

1 , . . . , Xµ∗

(1−γ)n, X
µ
1 , . . . , X

µ
(γ−ε)n, X

µ
1 , . . . , X

µ
εn−l−1, y1, . . . , yl span V.

Then we have

P(BV ) ≤ N−(1−γ)+(1−ε)d+ah(ε)+o(1)P
(
CV ∧ (Xµ

εn, . . . , X
µ
n−l in V )

)
.

On the other hand, CV and the event (Xεn, . . . , Xn in V ) are independent, so

P
(
CV ∧ (Xµ

εn, . . . , X
µ
n−l in V )

)
= P(CV )P(Xµ ∈ V )(1−ε)n+1−l.

Putting the last two estimates together we obtain

P(BV ) ≤ N−(1−γ)+(1−ε)d+ah(ε)+o(1)N−((1−ε)n+1−l)d/nP(CV )

= N−(1−γ)+ah(ε)+(l−1)ε+o(1)P(CV ).

Since any set of vectors can only span a single space V , we have
∑

V ∈Ωd
P(CV )

≤ 1. Thus, by summing over Ωd,∑
V ∈Ωd

P(BV ) ≤ N−(1−γ)+ah(ε)+(l−1)ε+o(1).

With the choice γ = 1
2 , we obtain a bound of N−ε+o(1) as desired, by choosing

ε sufficiently small. This provides the desired bound in Lemma 9.1.
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9.1. Proof of Lemma 9.2. To conclude, we prove Lemma 9.2. Let v =
(a1, . . . , an) be the normal vector of V and define

Fµ(ξ) :=
n∏
i=1

((1− µ) + µ cos 2πaiξ).

From Fourier analysis (cf. [25])

P(Xµ ∈ V ) = P(Xµ · v = 0) =
∫ 1

0
Fµ(ξ)dξ.

The proof of Lemma 9.2 is based on the following technical lemma.

Lemma 9.4. Let µ1 and µ2 be a positive numbers at most 1/2 such that
the following two properties hold for for any ξ, ξ′ ∈ [0, 1]:

(26) Fµ1(ξ) ≤ Fµ2(ξ)4

and

(27) Fµ1(ξ)Fµ1(ξ′) ≤ Fµ2(ξ + ξ′)2.

Furthermore,

(28)
∫ 1

0
Fµ1(ξ) dξ = o(1).

Then

(29)
∫ 1

0
Fµ1(ξ) dξ ≤ (1/2 + o(1))

∫ 1

0
Fµ2(ξ) dξ.

Proof. Since µ1, µ2 ≤ 1/2, Fµ1(ξ) and Fµ2(ξ) are positive for any ξ. From
(27) we have the sumset inclusion

{ξ ∈ [0, 1] : Fµ1(ξ) > α}+ {ξ ∈ [0, 1] : Fµ1(ξ)α} ⊆ {ξ ∈ [0, 1] : Fµ2(ξ) > α}

for any α > 0. Taking measures of both sides and applying the Mann-Kneser-
Macbeath “α+ β inequality” |A+B| ≥ min(|A|+ |B|, 1) (see [17]), we obtain

min(2|{ξ ∈ [0, 1] : Fµ1(ξ) > α}|, 1) ≤ |{ξ ∈ [0, 1] : Fµ2(ξ) > α}|.

But from (28) we see that |{ξ ∈ [0, 1] : Fµ2(ξ) > α}| is strictly less than 1 if
α > o(1). Thus we conclude that

|{ξ ∈ [0, 1] : Fµ1(ξ) > α}| ≤ 1
2
|{ξ ∈ [0, 1] : Fµ2(ξ) > α}|

when α > o(1). Integrating this in α, we obtain∫
[0,1]:Fµ1 (ξ)>o(1)

Fµ1(ξ) dξ ≤ 1
2

∫ 1

0
Fµ2(ξ) dξ.
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On the other hand, from (26) we see that when Fµ1(ξ) ≤ o(1), then Fµ1(ξ) =
o(Fµ1(ξ)1/4) = o(Fµ2(ξ)), and thus∫

[0,1]:Fµ1 (ξ)≤o(1)
Fµ1(ξ) dξ ≤ o(1)

∫ 1

0
Fµ2 dξ.

Adding these two inequalities we obtain (29) as desired.

By Lemma 5.1

P(Xµ · v = 0) ≤ Pµ(v) ≤ Pµ/4(v) =
∫ 1

0
Fµ/4(ξ)dξ.

It suffices to show that the conditions of Lemma 9.4 hold with µ1 = µ/4
and µ2 = µ∗ = µ/16. The last estimate

∫ 1
0 Fµ1(ξ) dξ ≤ o(1) is a simple

corollary of the fact that at least log logn among the ai are nonzero (instead of
log log n, one can use any function tending to infinity with n), so we only need
to verify the other two. Inequality (26) follows from the fact that µ2 = µ1/4
and the proof of the fourth property of Lemma 5.1.

To verify (27), it suffices to show that for any µ′ ≤ 1/2 and any θ, θ′

((1− µ′) + µ′ cos θ)((1− µ′) + µ′ cos θ′) ≤ ((1− µ′/4) +
µ′

4
cos(θ + θ′)2.

The left-hand side is bounded from above by ((1 − µ′) + µ′ cos θ+θ
′

2 )2, due to
convexity. Thus, it remains to show that

(1− µ′) + µ′ cos
θ + θ′

2
≤
(

1− µ′

4

)
+
µ′

4
cos(θ + θ′)

since both expressions are positive for µ′ < 1/2. By defining x := cos θ+θ
′

2 , the
last inequality becomes

(1− µ′) + µ′x ≤
(

1− µ′

4

)
+
µ′

4
(2x2 − 1)

which trivially holds. This completes the proof of Lemma 9.2.
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