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On Serre’s conjecture for 2-dimensional
mod p representations of Gal(Q̄/Q)

By Chandrashekhar Khare* and Jean-Pierre Wintenberger

Abstract

We prove the existence in many cases of minimally ramified p-adic lifts of
2-dimensional continuous, odd, absolutely irreducible, mod p representations
ρ̄ of the absolute Galois group of Q. It is predicted by Serre’s conjecture that
such representations arise from newforms of optimal level and weight.

Using these minimal lifts, and arguments using compatible systems, we
prove some cases of Serre’s conjectures in low levels and weights. For instance
we prove that there are no irreducible (p, p) type group schemes over Z. We
prove that a ρ̄ as above of Artin conductor 1 and Serre weight 12 arises from
the Ramanujan Delta-function.

In the last part of the paper we present arguments that reduce Serre’s
conjecture to proving generalisations of modularity lifting theorems of the type
pioneered by Wiles.

1. Introduction

Consider an absolutely irreducible, 2-dimensional, odd representation
ρ̄ : Gal(Q̄/Q)→ GL2(F) with F a finite field of characteristic p, and Gal(Q̄/Q)
the absolute Galois group of Q. By odd we mean that det(ρ̄(c)) = −1 for a
complex conjugation c ∈ Gal(Q̄/Q). We say that such a representation is of
Serre type or S-type. We abbreviate Gal(Q̄/Q) to GQ.

In [43], Serre defines for an S-type representation ρ̄ two invariants: the
level N(ρ̄) which is the (prime to p) Artin conductor of ρ̄, and (Serre) weight
k(ρ̄). Serre has conjectured in [43] that such a ρ̄ arises from (with respect to
some fixed embedding ιp : Q ↪→ Qp) a newform f of weight k(ρ̄) and level
N(ρ̄). We fix embeddings ιp : Q ↪→ Qp for all primes p hereafter, and when we
say (a place above) p, we will mean the place induced by this embedding. By
arises from f we mean that there is an integral model ρ : GQ → GL2(O) of
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the p-adic representation ρf associated to f , such that ρ̄ is isomorphic to the
reduction of ρ modulo the maximal ideal of O. For brevity we refer to this as
the S-conjecture.

The main technique which is presented in this paper results in the reduc-
tion of proving this conjecture to proving a certain modularity lifting conjecture
that we formulate below.

We say that ρ̄ : GQ → GL2(F) is modular if either it is absolutely irre-
ducible and isomorphic to the reduction of (an integral model of) ρf modulo
the maximal ideal of O for some newform f as above, or it is reducible over
Fp and odd.

Modularity lifting conjecture (MLC). Let ρ : GQ → GL2(O) be a
continuous, absolutely irreducible, p-adic representation that is odd (det(ρ(c)) =
−1), ramified at finitely many primes, and de Rham at p with Hodge-Tate
weights (k − 1, 0) with k ≥ 2. Assume that the reduction of ρ is modular.
Then ρ is isomorphic to an integral model of a p-adic representation ρf aris-
ing from a newform f . (The oddness and modularity hypotheses are expected
to be superfluous; see [21].)

The first cases of MLC were proved by Wiles, Taylor-Wiles [55], [54]. In
their work the conditions at p imposed on ρ were much more stringent than
in the conjecture above. There is important work of Kisin [30] that makes
serious inroads into allowing more complicated behavior at p of ρ as in the
MLC. He proves this conjecture assuming that ρ is potentially crystalline with
Hodge-Tate weights (0, 1), p > 2, and ρ̄|Q(µp), the restriction of ρ̄ to GQ(µp), is
irreducible.

The ideas of this paper also lead to unconditional proofs of the S-conjecture
in low levels and low weights.

The main results of this paper are:

(1) Liftings of ρ̄, with 2 ≤ k(ρ̄) ≤ p+1, to minimally ramified representations
ρ (see Theorem 3.3) when p > 2 and k(ρ̄) 6= p, and ρ̄|Q(µp) absolutely
irreducible. These lifts have the property that their conductor N(ρ) =
N(ρ̄), and they are crystalline at p of Hodge-Tate weight (0, k(ρ̄) − 1).
This is predicted by the S-conjecture as if a S-type representation arises
from a newform f in Sk(ρ̄)(Γ1(N(ρ̄))), then it has a p-adic lifting ρ = ρf
that has conductor N(ρ) = N(ρ̄) and is crystalline at p of Hodge-Tate
weights (0, k(ρ̄)− 1).

(2) Proof of the S-conjectures in low levels and weights (see Theorem 5.2,
5.4 and 5.6). In Theorems 5.2, 5.4 we verify that S-type ρ̄ of certain
invariants N(ρ̄), k(ρ̄) do not exist. This is predicted by the S-conjecture
as the corresponding space of cusp forms Sk(ρ̄)(Γ1(N(ρ̄))) is 0.

(3) The reduction of the S-conjecture to the modularity lifting conjecture.
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The deduction of the second and third results from the first is based on:
(i) Known cases of the modularity lifting conjecture as in [55], [54], [45],

[46], for (1) implies (2).
(ii) The potential version of Serre’s conjecture (potential modularity)

proved by Taylor in [51], [50].
(iii) A result of Dieulefait [19] that makes the minimal lifting ρ part of

a compatible system using (ii) and Brauer’s theorem following a method of
Taylor (see Theorem 6.6 of [50] and 5.3.3 of [53]) (see also [56]).

(iv) Results of Fontaine, Brumer-Kramer and Schoof [20], [11], [39] which
determine semistable abelian varieties over Q of small conductor.

We say a word about our proof of minimal liftings (see Theorem 3.3 and
its proof) and its background. These are deduced from proving that a certain
deformation ring RQ is finite, flat over Zp.

(a) The finiteness follows from combining Taylor’s potential modularity
result with modularity lifting results over totally real fields that are proved by
Fujiwara [22].

(b) After this the flatness follows from arguments of Böckle that present
RQ in a way so that the number of relations is bounded above by the number
of generators [7].

This argument for producing minimal liftings has been suggested in Re-
mark in §5.2 of [27]. The basic principle we exploit here when producing
liftings, of proving a finiteness property of a deformation ring, and hence by
obstruction theory arguments its flatness, goes back at least to de Jong’s pa-
per [16] which is in the setting of function fields. Our proof of Theorem 3.3
proceeds by observing the relevance of the principle in the present context as
results stemming from Wiles’ breakthrough [55] allow one to prove finiteness
of RQ as in (a) above. The base change arguments used in [16] also influence
the work here.

The work of Ramakrishna is an important percursor to this work. In [34]
he has produced liftings for odd and even ρ̄ to Witt vectors. (For the lifts
we produce in Theorem 3.3, their rationality cannot be controlled.) But his
lifts are not in general minimally ramified. His ingenious method is purely
Galois cohomological, while our methods are more indirect and work only in
the odd case.

We end by proposing an inductive approach to the S-conjecture. There
are two types of induction involved, one on the number of primes ramified in
the residual representation (see Theorem 6.2), and the other on the residual
characteristic p of the representation (see Theorem 6.1). For the induction we
need a starting point and that is provided by results of Tate and Serre, [47]
and [42] page 710. They prove the conjecture for ρ̄ of S-type with N(ρ̄) = 1
in residue characteristics 2 and 3.
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We use at many places in the arguments of this paper ideas or themes that
we have learnt from Serre’s work. His conjectures in [43] have been a great
source of inspiration for people in the field. At a more technical level the work
here is influenced by his specification of the weight in [43], and his results on
relation between changing weight and p-part of the level, see Théorème 11 of
[41]. Further his proof of the level one case of his conjectures for p = 3 provides
us the toe-hold (“prise d’ongle”) in our proposed attack on his conjecture.

Note added in revision. Dieulefait has independently noticed that ex-
istence of minimal liftings implies the S-conjecture for ρ̄ of weight 2 and
small level. He had sought to deduce the existence of minimal lifts from
Taylor’s potential modularity result. We refer the interested reader to his paper
arXiv:math/0412099v1, and its subsequent versions available at http://lanl.
arxiv.org/abs/math/0412099.

A version of the present paper was circulated in December 2004 (see
arXiv:math/0412076v1). (As some of the results of this earlier version are
referred to in the literature we indicate when appropriate below the earlier
numbering of these results.) At the time of this revision in the summer of
2007, many developments have overtaken some of the work of this paper. These
developments grow out of the seeds sown here.

The S-conjecture in the level one case was proven in [25] using the broad
strategy outlined here. The main innovation of [25] was to modify the strategy
in a way that only known cases of the modularity lifting conjecture sufficed.
This was accomplished by using various liftings of a given S-type ρ̄, an idea that
in a nascent form was introduced in this paper to deduce some higher weight
cases from the weight 2 case (see Theorems 5.4, 5.2). The various liftings
are produced using the basic method of the proof of Theorem 3.3 which is
developed still further in [28], [29] to produce liftings of ρ̄ with every possible
inertial behavior at primes away from p. The key idea of induction on the
prime p introduced in Theorem 6.1 is crucial in [25].

Subsequently in [28] and [29], the authors proved the S-conjecture for (i)
p > 2, N(ρ̄) odd, and (ii) p = 2, k(ρ̄) = 2, using the work of [25] and the
killing ramification idea in the proof of Theorem 6.2. The general case was
reduced to proving the modularity lifting conjecture when p = 2, k = 2 and
ρ has nonsolvable image. This has been proven by Kisin [31], extending the
results of [30] which were for p > 2 to the case of p = 2, thus finally proving
the S-conjecture.

Although the MLC seemed a distant goal at the end of 2004, there have
been rapid strides taken towards it by Kisin, Emerton and others using the
p-adic Langlands program of Breuil, and important developments in it due to
Colmez and others. The approach presented here to the S-conjecture assum-
ing the MLC is very direct, as compared to the winding route taken in the
subsequent papers. Because of the progress towards the MLC it might get
converted from a blueprint into an actual proof.
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1.1. Notation and terminology. For F a field, Q ⊂ F ⊂ Q, we write GF
for the Galois group of Q/F . For λ a prime/place of F , we mean by Dλ (resp.,
Iλ) a decomposition (resp., inertia) subgroup of GF at λ. We fix embeddings
ιp, ι∞ of Q in its completions Qp and C. Denote by χp the p-adic cyclotomic
character, and ωp the Teichmüller lift of the mod p cyclotomic character χp
(the latter being the reduction mod p of χp). By abuse of notation we also
denote by ωp the `-adic character ι`ι−1

p (ωp) for any prime `: this should not
cause confusion as from the context it will be clear where the character is
valued. For a number field F we denote the restriction of a character of GQ to
GF by the same symbol. We denote by AF the adeles of F .

Consider a totally real number field F . Recall that in [48], [49], 2-dimen-
sional p-adic representations ρπ of GF are associated to cuspidal automorphic
representations π of GL2(AF ) that are discrete series at infinity of weight
(k, . . . , k), k ≥ 2. For a place v above p we say that the local component
πv at v of π is ordinary if the corresponding eigenvalue of the Hecke operator
(Tv or Uv) acting on the representation space of πv is a unit (with respect to the
chosen embedding ιp). If πv is ordinary, so is ρπ|Dv in the sense of Definition
3.1 below.

We say that ρ : GF → GL2(O), with O the ring of integers of a finite
extension of Qp, is modular if it is isomorphic to (an integral model of) such a
ρπ, and a compatible system of 2-dimensional representations of GF is modular
if one member of the system is modular. We say that ρ̄ : GF → GL2(F), with
F a finite field of characteristic p, is modular if either it is irreducible and
isomorphic to the reduction of (an integral model of) such a ρπ modulo the
maximal ideal of O, or it is reducible and totally odd (i.e., det(ρ̄(c)) = −1
for all complex conjugations c ∈ GF ). We denote by Ad0(ρ̄) the trace zero
matrices of M2(F) and regard it as a GF -module via the composition of ρ̄ with
the conjugation action of GL2(F) on M2(F).

1.2. Acknowledgements. The first author would like to express his thanks
to Gebhard Böckle and Ravi Ramakrishna from whom he picked up some of
the art of deforming Galois representations. He would also like to thank the
second author for the invitation to visit Strasbourg, and the Department of
Mathematics at Strasbourg for its hospitality during the time when some of
the work of this paper was done.

We both would like to thank G. Böckle, L. Berger, C. Breuil, H. Carayol,
R. Schoof and J.-P. Serre for helpful conversations/correspondence in the course
of this work. We would like to thank the referee for his detailed and helpful
comments. We would like to thank Ravi Ramakrishna for helpful feedback on
the revision.

2. Taylor’s potential modularity result

The following result of Taylor, proving a potential version of Serre’s conjec-
ture, is important for the work of this paper. We just indicate the adjustments
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needed in the arguments in Taylor’s papers [51] and [50] to derive the result in
the form we state it. Note that Theorem 2.1 was Proposition 2.5 in an earlier
version of the paper.

Theorem 2.1 (Taylor). Assume ρ̄ is of S-type in odd residue character-
istic, such that ρ̄|Q(µp) is irreducible, 2 ≤ k(ρ̄) ≤ p + 1, and k(ρ̄) 6= p. Then
there is a totally real field F that is Galois over Q of even degree, unramified
above p, and even split above p if ρ̄|Dp is irreducible, im(ρ̄) = im(ρ̄|GF ), and
ρ̄|GF (µp) absolutely irreducible such that :

(i) ρ̄|GF arises from a cuspidal automorphic representation π of GL2(AF )
that is unramified at all finite places, and is discrete series of weight k(ρ̄) at
the infinite places. If ρ̄ is ordinary at p, then for all places v above p, πv is
ordinary (in the sense defined in §1.1).

(ii) ρ̄|GF also arises from a cuspidal automorphic representation π of
GL2(AF ) that is unramified at all finite places not above p, and such that
πv, at all places v above p, is of conductor dividing v (and is unramified if ρ̄ is
finite flat at v), and is of weight 2 at the infinite places. Further πv is ordinary
at all places v above p in the case when ρ̄ is ordinary at p.

Proof. This is proved in [25], but the proof there relies on some arguments
which appeared in a first version of the present article. We thus present these
arguments repeating also parts of the proof in [25] for intelligibility.

The property that im(ρ̄) = im(ρ̄|GF ) is ensured if F is linearly disjoint
from the fixed field of kernel of ρ̄. We use the refinement of Moret-Bailly’s
theorem (see Theorem G of [51]) given in Proposition 2.1 of [23] to ensure that
the number fields we consider below (F ′′, E, F ) have this property. In the case
when the projective image of ρ̄ is dihedral, we ensure that these fields are split
at a prime which splits in the field cut out by the projectivisation of ρ̄, but
which is inert in the quadratic subfield of Q(µp). This ensures that ρ̄|GF (µp) is
irreducible for all the number fields (F ′′, E, F ) considered below.

The supersingular case is covered in [50] explicitly (see Theorem 5.7 of
[50]) for p > 3 and it is explained in [25] how to extend this to the case p = 3.

The ordinary case may be deduced from the arguments of [51] although
not explicitly there. Thus we treat below only the case when ρ̄ is ordinary.

Let us borrow for a moment the notations of Taylor [51], even if it con-
tradicts the notations of this paper.

Thus ρ̄ is now a mod ` representation. Suppose ρ̄|I` is of the form(
χ
k(ρ̄)−1
` ∗

0 1

)
.

There is a real quadratic extension F ′′ of Q (disjoint from the fixed field of
the kernel of ρ̄) in which ` is unramified and inert such that χ⊗ρ̄|GF ′′ restricted
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to a decomposition D at the place of F ′′ above ` is of the form(
χ|−1
D χ` ∗
0 χ|D

)
,

for some mod ` character χ of GF ′′ such that χ−2|I = χ`
k(ρ̄)−2|I , with I an

inertia subgroup at the place above ` of F ′′.
Applying Moret-Bailly’s theorem as in [51] to χ⊗ ρ̄|GF ′′ , and after a twist,

we get an abelian variety A with the following properties:

– A is defined over a totally real field E, unramified above p, that con-
tains F ′′.

– The abelian variety A is of Hilbert-Blumenthal type with multiplication
by the real field M .

– There is a prime λ of M above ` such that the restriction of ρ̄ to GE
is isomorphic to the GE-representation on A[λ], the points of A killed
by λ.

– The compatible system of GE-representations attached to A arises from a
cuspidal automorphic representation πA of GL2(AE) of parallel weight 2.

Let x a place of E above `. We use Lemma 1.5 of [51] to get the needed
information for (πA)x, namely we will prove that it is ordinary (with respect to
the place λ of M). Let n = `−k(ρ̄)+1 if k(ρ̄) 6= 2 and n = 0 if k(ρ̄) = 2. Note
that n is as in Lemma 1.5 of [51]. Note that as we are assuming k(ρ̄) 6= `, we
have n 6= 1 and Lemma 1.5 applies. We have 0 ≤ n < `− 1, and we are in the
situation of the proof of Lemma 1.5 of [51, p. 137]. For a place x of E above l,
the λ-adic representation arising from A when restricted of the decomposition
group Gx is of the form: (

ε`χ1 ∗
0 χ2

)
,

with χ2 unramified and the restriction of χ1 to the inertia subgroup Ix of Gx
is ω−n` , ε` being the `-adic cyclotomic character. We know by the proof of
Lemma 1.5 that A has mutiplicative reduction over Ex or good reduction over
Ex(ζ`). Furthermore, there is a prime ℘ of M above p 6= ` such that the action
of Gx on A[℘] has the form ψ1 ⊕ψ2, with ψ2 unramified and the restriction of
ψ1 to Ix is ω−n` abusing notation as signalled in Section 1.1.

In the case n = 0 (k(ρ̄) = ` + 1 or 2), we see by looking at the Tate
module T℘(A) that A has semistable reduction over Ex. If k(ρ̄) = ` + 1,
A has mutiplicative reduction at all x over ` and (πA)x is Steinberg. When
k(ρ̄) = 2, and χ1χ

−1
2 6= 1, Taylor finds, for a place v of F above `, an abelian

variety Av over Fv with ordinary good reduction. The theorem of Moret-
Bailly [33] produces for us an abelian variety A with good reduction at all
primes x of E above ` such that the restriction of ρ̄ to GE is isomorphic to the
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GE-representation on A[λ]. We see that, if we choose A like this, A has good
ordinary reduction at x and (πA)x is unramified.

If k(ρ̄) = 2 and χ1χ
−1
2 = 1, we are in the case χ2

v = 1 of the proof of Lemma
1.2 of Taylor. But, as the restriction of ρ̄ to Gv comes from a finite flat group
scheme over the ring of integers of Fv, we can choose the abelian variety Av that
figures in Lemma 1.2 to have good ordinary reduction, by the same arguments
as Taylor uses when χ2

v 6= 1. This is because the class in H1(Gv, OM/λ(ε)) of
the extension defined by ρ̄|Gv comes from units by Kummer theory. (See also
proof of Theorem 6.1 of [29] for more details.) Then, as above, we can choose
A with good ordinary reduction at all places x of E above `. Then (πA)x is
unramified at these places.

Suppose now n 6= 0. Then, looking at the Tate module T℘(A), we see
that the abelian variety A has good reduction over Ex(ζ`). Let A[λ]0 and
A[λ]et be the connected and étale components of the λ-kernel of the reduction
at x of the Néron model of A over Ex(ζ`). Let Tλ(A), T 0

λ (A) and T et
λ (A)

be the corresponding Tate-modules and let D, D0 and Det the corresponding
Dieudonné modules. We have D = D0⊕Det. Taylor proves in Lemma 1.5 that
Ix acts on Lie(A[λ]0) by multiplication by ω−n` and trivially on A[λ]et. As the
action of Ix on D factors through Gal(Ex(ζ`)/Ex), it follows that Ix acts on
D by multiplication by ω−n` on D0 and trivially on Det. By the appendix B
in Conrad-Diamond-Taylor [14] it follows that the action of the Weil-Deligne
group WDx on the compatible system of Galois representations attached to
A factors through the Weil group. Further this has the form η1 ⊕ η2, with η2

unramified and η2(Frobx) a λ-adic unit, and the restriction of η1 to Ix is ω−n` .
It follows that (πA) is ordinary at x.

We revert now to the notation of the present paper, i.e., ` is now p.
To summarise we get that there exists a totally real number field E/F ′′

(disjoint from the fixed field of the kernel of ρ̄|GF ′′ ), unramified at the places
above the place of E above p, and an abelian variety A over E with endomor-
phisms by some number field M with [M : Q] = dim(A) with the following
properties. Firstly, the mod p representation (with respect to the embed-
ding ιp) that arises from A is isomorphic to ρ̄|GE . Secondly, at places ℘ of E
above p, the abelian variety A has

– good ordinary reduction over E℘(ζp) if 2 < k(ρ̄) < p+ 1,

– good ordinary reduction over E℘ if k(ρ̄) = 2 ,

– semistable reduction over E℘ if k(ρ̄) = p+ 1.

Further A arises from a cuspidal automorphic representation πA of
GL2(AE), in the sense that the compatible systems they give rise to are isomor-
phic, and πA,v is ordinary at all places v above p. The conductor of πA,v divides
v, and πA,v is unramified if ρ̄ is finite flat at v, for all places v above p. The
cuspidal automorphic representation πA is of weight 2 at the infinite places.
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Now using the main theorem of [45], we construct a totally real, solvable
extension F/E that is unramified at places above p, Galois over Q and such that
ρ̄|GF arises (with respect to ιp) from a cuspidal automorphic representation π

of GL2(AF ) that is:

– unramified at all finite places not above p,

– πv is ordinary at all places v of F above p of conductor dividing v (and
is unramified if ρ̄ is finite flat at v),

– and is of weight 2 at the infinite places.

This proves part (ii) of the theorem when ρ̄ is ordinary at p.
Part (i) in the ordinary case follows from this using Corollary 3.5 of [24].

3. Lifts of mod p Galois representations

3.1. Minimal lifts. Let p an odd prime. Let ρ̄ : GQ → GL2(Fp) be an
S-type representation. We assume that the Serre weight k(ρ̄) is such that
2 ≤ k(ρ̄) ≤ p + 1, k(ρ̄) 6= p and ρ̄|Q(µp) is absolutely irreducible. Note that
there is always a twist of ρ̄ by some power of the mod p cyclotomic character
χp that has weights between 2 and p+ 1.

We make a definition that helps fix some terminology.

Definition 3.1. Let E,F be finite extensions of Qp, and O the ring of
integers of E.

1. Suppose V is a 2-dimensional continuous representation with coeffi-
cients in E ofGF . We say that V is of weight k if for all embeddings ι : E ↪→ Cp,
V ⊗E Cp = Cp ⊕ Cp(k − 1) as GF -modules.

2. Suppose V is a continuous representation, with V a free rank 2 module
over a complete Noetherian local O-algebra R. We say that V is ordinary if
there is a free, rank one submodule W of V that is GF stable, such that V/W
is free of rank one over R with trivial action of the inertia IF of GF and the
action of an open subgroup of IF on W is by χap, for a a rational integer ≥ 0.
If ρ : GF → GL2(E) is a continuous p-adic representation, with E a finite
extension of Qp, we say that ρ is ordinary if an integral model of ρ is ordinary.

Let F ⊂ Fp be a finite field such that the image of ρ is contained in GL2(F),
and let W be the Witt vectors W (F). By a lift of ρ, we mean a continuous
representation ρ : GQ → GL2(O), where O is the ring of integers of a finite
extension of the field of fractions of W , such that the reduction of ρ modulo
the maximal ideal of O is isomorphic to ρ.

Let ρ be such a lift and let ` be a prime. One says that ρ is minimally
ramified at ` if it satisfies the following conditions:
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– When ` 6= p, it is minimally ramified at ` in the terminology of [18]. In
particular, if ρ is unramified at `, ρ is unramified at `. More generally,
when the image of I` is of order prime to p, ρ(I`) is isomorphic to its
reduction ρ̄(I`).

– When ` = p: If k(ρ) 6= p+1, ρ is minimally ramified at p if ρ is crystalline
of weights (0, k(ρ)− 1). If k(ρ) = p+ 1, ρ is minimally ramified of semi-
stable type if ρ is semi-stable non-crystalline of Hodge-Tate weights (0, 1);
ρ is minimally ramified of crystalline type if ρ is crystalline of Hodge-Tate
weights (0, p).

We say that a lift ρ of ρ̄ is minimal, or minimally ramified, if it is minimally
ramified at all primes `.

The determinant of ρ̄ is χpk(ρ̄)−1ε where ε is a character of conductor prime
to p ([43]). For ` 6= p, the restriction to I` of the determinant of a minimal
lift of ρ̄ is the Teichmuller lift ([18]). A semi-stable representation of Ip of
Hodge-Tate weights (0, k−1) has determinant χk−1

p . So we see that a minimal

lift of ρ̄ (of crystalline type if k(ρ̄) = p+ 1) has determinant χk(ρ̄)−1
p ε̂, where ε̂

is the Teichmüller lift of ε. If k(ρ̄) = p + 1, a minimal lift of semi-stable type
has determinant χpε̂.

Let us make a few comments on the condition for ` = p, k(ρ̄) = p+ 1. Let
χp : GQ → Z∗p be the p-adic cyclotomic character and χp its reduction modulo
p. If k(ρ̄) = p+ 1, the restriction of ρ̄ to the decomposition group Dp is of the
form: (

χpε η

0 ε

)
,

where ε is an unramified character, and η is a “très ramifié” 1-cocycle, which
corresponds via Kummer theory to an element of Q∗p ⊗ F whose image by the
map defined by the valuation of Qp is a nonzero element of F.

The lifting ρ is minimally ramified of semi-stable type if the restriction of
ρ to Ip is of the form: (

χp ∗
0 1

)
.

As Kummer theory easily shows, this implies that the restriction of ρ to the
decomposition group Dp is of the form:(

χpε̂ ∗
0 ε̂

)
,

where ε̂ is an unramified character lifiting ε. This is Proposition 6.1 of [17].
The lifting ρ is minimally ramified of crystalline type if the restriction of

ρ to Ip is of the form: (
χpp ∗
0 1

)
.



SERRE’S CONJECTURE: LOW LEVELS AND WEIGHTS 239

Indeed, by Bloch and Kato (3.9 of [6]), we know that such p-adic repre-
sentations are exactly the crystalline reducible representations of Dp of Hodge-
Tate weights (0, p) .

We record a result of Berger-Li-Zhu that we need several times later.

Proposition 3.2 (Berger-Li-Zhu). Let E be a finite extension of Qp.
(i) A reduction of an irreducible crystalline representation ρ : Dp →

GL2(E) of Hodge-Tate weights (0, p) is isomorphic to an unramified twist of
indQp

Qp2 (ω2), where Qp2 is the quadratic unramified extension of Qp and ω2 is

the fundamental character of level 2. In particular, it is not isomorphic to a
très ramifiée representation.

(ii) A reducible crystalline representation ρ : Dp → GL2(E) of Dp of
Hodge-Tate weights (0, p) is ordinary and the semisimplification of ρ|Ip is χpp⊕1.
The reduction of (an integral model of ) ρ is ordinary and has Serre weight
either 2 or p+ 1.

Proof. This follows from Corollary 4.1.3. and Proposition 4.1.4. of [4].

One of the main results of the paper is:

Theorem 3.3. Let ρ : GQ → GL2(F) be of S-type, of residue character-
istic p > 2, and such that ρ̄|Q(µp) is absolutely irreducible. We suppose that
2 ≤ k(ρ̄) ≤ p+1 and k(ρ̄) 6= p. Then ρ̄ has a lift ρ which is minimally ramified
at every `, and if the Serre weight is k(ρ) = p + 1, one can impose that ρ be
either of crystalline type (of weight p+ 1) or of semi-stable type (of weight 2).

We deduce this at the end of this section from the flatness of a certain
deformation ring that we first define.

For the proof of the theorem, we have to consider minimally ramified
deformations GQ → GL2(R) of ρ. Here R is a complete Noetherian local
W -algebra (CNLW -algebra), with an isomorphism of R/MR with F withMR

the maximal ideal of R (W is as above the Witt ring W (F)). A deformation of
ρ̄ is a continuous representation γ : GQ → GL2(R) such that γ mod MR is ρ̄,
where we take γ up to conjugation by matrices that are 1 mod MR. We say
that the deformation is minimally ramified, if:

– for ` 6= p, γ is minimal in the sense of [18];

– if k(ρ̄) < p, the restriction of γ to Dp comes from a Fontaine-Laffaille
module (for the precise definition, see Section 2 of [35]);

– if k(ρ̄) = p+ 1, the restriction of γ to Ip is of the form:(
χk−1
p ∗
0 1

)
,



240 C. KHARE AND J-P. WINTENBERGER

with k = p + 1 if we are in the crystalline type, and k = 2 if we are in
the semi-stable type.

The condition of being minimally ramified is a deformation condition in
the sense of [32], and hence the minimally ramified deformation problem has
a universal object. More precisely, if k(ρ̄) 6= p + 1, there exists a universal
minimally ramified deformation ρuniv : GQ → GL2(Runiv); if k(ρ̄) = p + 1, we
have two universal rings Runiv,ss and Runiv,crys. The determinant of ρuniv is
χk−1
p ε̂, with k = k(ρ̄) except in the case k(ρ̄) = p+ 1 and we are in the case of

semi-stable type, and then k = 2.
Define for each `, the W -algebra R` of versal deformations of ρ|D` which

are minimally ramified (if k(ρ̄) = p + 1, we have to consider the two W -
algebras Rp,crys and Rp,ss) and such that the determinant is the restriction to
D` of χk−1

p ε̂, with k = k(ρ̄) except in the case k(ρ̄) = p + 1 and we are in the
case of semi-stable type, and then k = 2.

We have the following result of Böckle that is very important for our needs:

Proposition 3.4. The W -algebra Runiv (resp. Runiv,crys, Runiv,ss) has a
presentation as a CNL W -algebra as

W [[X1, . . . , Xr]]/(f1, . . . , fs)

with r ≥ s.

Proof. We may deduce this from the method of Böckle (see for instance
Proposition 1 in appendix to [26]) if we know that the W -algebras R` for all
primes ` are flat, complete intersections of relative dimension

dimκ(H0(D`, ad0(ρ)) + ε`

with ε` = 0 if ` 6= p and εp = 1. Except in the case of k(ρ̄) = p + 1 and R` is
Rp,crys, this property of R` follows from the work of Ramakrishna ([34]) and
Taylor ([52]). (The previous sentences are justified in greater detail in §3 of
[25].) For R` = Rp,crys in the case when k(ρ̄) = p+1, it is proved by Böckle (see
also Proposition 3.5) that Rp,crys is a relative complete intersection of relative
dimension 1 (Remark 7.5 (iii) of [8]).

For the convenience of the reader we give a proof of this result of Böckle
(Remark 7.5 (iii) of [8]) used above. The following proposition is Proposition
2.3 of an earlier version.

Proposition 3.5. In the case k(ρ̄) = p + 1, the W -algebra Rp,crys is
formally smooth of dimension 1.

Proof. We owe the following succinct proof to the referee. By a standard
calculation, the tangent space of Rp,crys/(p) is of dimension 1 over F. Thus
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Rp,crys is a quotient of W [[T ]], and hence it suffices to show that for each
très ramifié η ∈ H1(Dp,F(χp)) there are infinitely many unramified µ : Dp →
1 + pW such that η is in the image of the map from H1(Dp,W (χppµ)) induced
by reduction mod p. This image is the same as that of H1(Dp,W/p

2(χppµ)) (in
particular it depends only on µ mod p2). By Tate duality it is the orthogo-
nal complement of the image of the connecting homomorphism H0(Dp,F) →
H1(Dp,F) defined by the extension W/p2(χ1−p

p µ−1). The different choices of
µ mod p give precisely the ramified lines in H1(Dp,F), and their orthogonal
complements are precisely the très ramifié lines in H1(Dp,F(χp)).

We will prove below that Runiv is finite as a Zp-module, or equivalently
that Runiv/(p) is finite. The following criterion for this finiteness is very useful
and is inspired by Lemma 3.15 of [16]. Note that this was Lemma 2.4 in an
earlier version of the paper.

Lemma 3.6. Let κ be a finite field of characteristic p, G a profinite group
satisfying the p-finiteness condition (Chapter 1 of Mazur [32]) and η : G →
GLN (κ) be an absolutely irreducible continuous representation. Let FN (κ) be
a subcategory of deformations of η in κ-algebras which satisfy the conditions
of 23 of [32]. Let ηF : G → GLN (RF ) be the universal deformation of η in
FN (κ). Then RF is finite if and only if ηF (G) is finite.

Proof. It is clear that if RF is finite, ηF (G) is finite. Let us suppose that
ηF (G) is finite. As η is absolutely irreducible, a theorem of Carayol says that
RF is generated by the traces of the ηF (g), g ∈ G ([13]). As ηF (G) is finite,
for each prime ideal ℘ of RF , the images of these traces in the quotient RF/℘
are sums of roots of unity, and there is a finite number of them. We see that
RF/℘ is a finite extension of κ. It follows that the noetherian ring RF is of
dimension 0, and so is finite.

3.2. Flatness of minimal deformation ring. We deduce Theorem 3.3 from
the following theorem as we explain at the end of this section.

Theorem 3.7. Let ρ̄ as in Theorem 3.3, i.e., of S-type, of residue char-
acteristic p > 2, and such that ρ̄|Q(µp) is absolutely irreducible, with 2 ≤ k(ρ̄) ≤
p+ 1 and k(ρ̄) 6= p. Then Runiv (if k(ρ̄) 6= p+ 1) and Runiv,crys and Runiv,ss (if
k(ρ̄) = p+ 1) are finite, flat W -modules, and complete intersections over W .

Proof. From now on we denote by Runiv the deformation ring we consider.
We prove in Proposition 3.8 below that Runiv is a finitely generated W -module.
From this we deduce from Proposition 3.4, using its notation, that s = r

and the sequence f1, . . . , fs, p is regular. Thus Runiv is a finite flat complete
intersection over W .

Proposition 3.8. Runiv/pRuniv is of finite cardinality.
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Proof. By Lemma 3.6 it will suffice to prove that ρuniv mod p, which we
denote by ρuniv, has finite image.

We have need for the following lemma (see also Lemma 2.12 of [16]):

Lemma 3.9. For each ` 6= p, ρuniv is finitely ramified at `. In fact, the
order of ρuniv(I`) is the same as that of ρ̄(I`).

Proof. The only case that needs argument is when the restriction of ρ̄ to
I` is of type:

ξ ⊗
(

1 φ

0 1

)
,

with φ a ramified character. The minimality condition implies that the restric-
tion of ρuniv to I` is of the form:

ξ̃ ⊗
(

1 φ̃

0 1

)
,

with ξ̃ being the Teichmüller lift of ξ. The morphism φ̃ is tamely ramified, so
its image is cyclic. As Runiv/pRuniv is a Fp-algebra, pφ̃ = 0 and φ̃ has image
of order p.

We return to the proof of Proposition 3.8, and show that ρuniv has finite
image.

Choose F as in Theorem 2.1. We show that ρuniv|GF has finite image for
this choice of F , which clearly implies that ρuniv has finite image.

Let ρuniv,F : GF → GL2(Runiv,F ) be the universal, minimally ramified
W -deformation of the restriction of ρ to GF : this is unramified at every prime
of F of residual characteristic 6= p, and for primes above p, we take the same
conditions as we have taken to define ρuniv (and their variants for the 2 de-
formation rings when k(ρ̄) = p + 1). We demand that determinant of this
deformation is the restriction to GF of ε̂χk(ρ̄)−1

p in the case when we consider
crystalline lifts above p and otherwise ε̂χp. Because of Lemma 3.9, there is a
morphism of CNLW algebras φ : Runiv,F /(p) → Runiv/(p) such that ρuniv|GF
is φ ◦ ρuniv,F . Thus it will be enough to prove that ρuniv,F has finite image.

From Fujiwara’s generalisation in Theorem 0.2 of [22] of R = T theorems
of [55] to the case of totally real fields in the ordinary case, and Theorem 3.2
of [50] in the supersingular case we deduce from Theorem 2.1 that Runiv,F can
be identified with a certain Hecke algebra TF , known to be finite, flat as a
Zp-module. We may apply the results of [22] and [50] as we are excluding
weight p, in weight p + 1 all our lifts are ordinary, ρ̄|F (µp) is absolutely irre-
ducible, and in the supersingular case we assume that p splits in F . Note that
we are allowing p = 3 as it is explained in [25] how to extend the results of [50]
to this case. From this it follows that ρuniv,F has finite image.
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3.3. Proof of Theorem 3.3. We denote the deformation rings in Theorem
3.7 by Runiv. We deduce that there is a (minimal) prime ideal ℘ of Runiv that
does not contain p, and Runiv/℘ is a CNLW -algebra that can be embedded in
O for the ring of integers of a finite extension of Qp that contains W . The
corresponding CNLW -algebra morphism Runiv → O gives a minimal lifting
ρ : GQ → GL2(O) of the desired kind of ρ̄.

4. Compatible system lifts of mod p Galois representations

Let F ⊂ Q be a number field and let ρ : GF → GLd(Q`) be a (continuous)
Galois representation. We consider only ρ that are unramified outside a finite
set of primes of F . Such a representation defines for every prime q 6= ` of F
a representation of the Weil-Deligne group WDq with values in GLd(Q`), well
defined up to conjugacy.

For a number field E, we call an E-rational, 2-dimensional compatible
system of Galois representations (ρι) of GF the data of:

(i) for each rational prime ` and each embedding ι : E ↪→ Q` , a continuous,
semisimple representation ρι : GF → GL2(Q`):

(ii) for each prime q of F , a F -semisimple (Frobenius semisimple) rep-
resentation rq of the Weil-Deligne group WDq with values in GL2(E) such
that:

a) rq is unramified for all q outside a finite set,

b) for each rational prime `, each prime q of F of characteristic different
from ` and each ι : E ↪→ Q`, the Frobenius-semisimple Weil-Deligne
parameter WDq → GL2(Q`) associated to ρι|Dq is conjugate to rq (via
the embedding E ↪→ Q`)).

(iii) for each prime λ of F above a rational prime ` > 2, at which rλ
is unramified, and for every embedding ι : E ↪→ Q`, the restriction of ρι
to the decomposition group Dλ is crystalline and there are two integers a, b
independent of λ, a ≤ b, such that ρι has Hodge-Tate (HT) weights (a, b).

If λ is the place of E associated with ι, we also denote a compatible system
by (ρλ).

The primes of F such that rq is unramified are called the unramified primes
of the compatible system. The restriction to Iq ×Ga of rq is called the inertial
WD parameter at q. The parameter is said to be unramified if this restriction
is trivial. We refer to a, b, as the weights of the compatible system and when
b ≥ 0, a = 0 we say that ρι and the compatible system (ρλ), is of weight b+ 1.

When we say that for some number field E, an E-rational compatible
system (ρι) of 2-dimensional representations of GQ lifts ρ̄ we mean that the
residual representation arising from ριp is isomorphic to ρ̄. We say that a
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compatible system (ρι) is odd if ρι is odd for every ι. For a prime ` we
abuse notation and denote by ρ` the `-adic representation ρι for ι the chosen
embedding above `, and by ρ̄` a reduction of ρ`. We say that a compatible
system (ρι) is irreducible if all the ρι are (absolutely) irreducible.

We recall a standard definition:

Definition 4.1. We say an S-type ρ̄ is semi-stable if ρ̄(I`) is of p-power
order for ` 6= p and k(ρ̄) = 2 or p+ 1.

The following theorem is proved using a method of Taylor, Theorem 6.6
of [50] and 5.3.3 of [53], and a refinement of Dieulefait [19] (see also [56]).

Theorem 4.2. Let ρ̄ be a S-type representation in odd residue character-
istic p, such that 2 ≤ k(ρ̄) ≤ p+ 1, k(ρ̄) 6= p and such that ρ̄|Q(µp) is absolutely
irreducible.

(i) There is an irreducible compatible system (ρλ) that lifts ρ̄ such that
ρp is a minimal lift of ρ̄ which is crystalline of weight k(ρ̄) at p. The WD
parameter of the compatible system (ρλ) is unramified at p, and for all primes
` > 2 not ramified in ρ, ρλ for λ above ` is crystalline at ` of weight k(ρ̄), i.e.,
of HT weights (0, k(ρ̄)− 1).

(ii) Assume further that ρ̄ is semistable, and that either N(ρ̄) 6= 1 or
k(ρ̄) = p + 1. Then there is an irreducible compatible system (ρλ) that lifts ρ̄
such that ρp is a minimal lift of ρ̄ which at p is crystalline of weight 2 when
k(ρ̄) = 2, and semistable of weight 2 if k(ρ̄) = p + 1. Further there is a
number field E and an abelian variety A over Q of dimension [E : Q] and
an embedding OE ↪→ End(A/Q) such that (ρλ) arises from A. The abelian
variety A has multiplicative reduction exactly at the primes dividing the prime
to p part of the Artin conductor of ρ̄, and also p when k(ρ̄) = p+ 1, and at all
other places has good reduction.

Proof. We start by remarking that much of the proof below can now also
be found in the proof of Theorem 5.1 of [25].

The fact that there is a p-adic lift ρp as asserted follows from Corollary
3.3. Consider ρ̄|GF with F as in Taylor’s Theorem 2.1.

The existence of a cuspidal automorphic representation π′ of GL2(AF )
that gives rise to ρ̄|F as in Theorem 2.1, and the modularity lifting results in
Theorem 5.1 of [46] and Therorem 3.3 of [50], yield that ρ|GF arises from a
holomorphic, cuspidal automorphic representation π of GL2(AF ) with respect
to the embedding ιp. The cuspidal automorphic representation π gives rise by
[48] to an irreducible compatible system (ρπ,ι): see the arguments below for
justification of property (iii) of our definition of compatibility, and Proposi-
tion 3.1 of [49] for the irreducibility.
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Let G = Gal(F/Q). Using Brauer’s theorem we get subextensions Fi of
F such that Gi = Gal(F/Fi) is solvable, characters χi of Gi (that we may also
regard as characters of GFi) with values in Q (that we embed in Qp using ιp),
and ni ∈ Z such that 1G =

∑
Gi
niIndGGiχi. Using the base change results of

Arthur-Clozel in [2], we get holomorphic cuspidal automorphic representations
πi of GL2(AFi) such that if ρπi,ιp is the representation of GFi corresponding to
πi w.r.t. ιp, then ρπi,ιp = ρ|GFi . Thus ρ =

∑
Gi
niIndGQ

GFi
χi ⊗ ρπi,ιp .

Now for any prime ` and any embedding ι : Q → Q`, we define the
virtual representation ρι =

∑
Gi
niIndGQ

GFi
χi ⊗ ρπi,ι of GQ with the χi’s now

regarded as `-adic characters via the embedding ι. We check that ρι is a
true representation by computing its inner product in the Grothendieck group
of Q`-valued (continuous, linear) representations of GQ. We claim that this
is independent of ι. This is because, as the IndGQ

GFi
χi ⊗ ρπi,ι are semisimple,

the value of the inner product is the dimension of End(ρι) as a Q`-vector
space. Using Mackey’s formula, and the fact that the compatible system is
irreducible on restriction to GF , we see that this dimension is independent of
ι. As for ι = ιp this dimension is 1 we see that (±1)ρι is a true, irreducible
representation. As the dimension of ρι is independent of ι i.e. is 2, we see that
ρι is a true representation.

The representations ρι together constitute the compatible system (ρλ) we
seek as we proceed to justify. As (ρπi,ι) satisfies property (ii) of our definition
of compatibility, so does (ρι =

∑
Gi
niIndGQ

GFi
χi ⊗ ρπi,ι) (see proof of Theorem

6.6 of [50]). As (ρλ|GF ) is irreducible as remarked above, so is (ρλ). The
properties at p of the compatible system follow from the construction.

We now prove (ρλ) satisfies property (iii) of our definition of compatibility.
By Arthur-Clozel solvable base change ([2]), we know that for each F ′ ⊂ F

such that F/F ′ has solvable Galois group, the restriction of ρ to GF ′ comes
from an automorphic representation πF ′ of GL2(AF ′). One uses following [19],
that for F ′ ⊂ F such that F/F ′ has solvable Galois group, the system (ρλ)
restricted to GF ′ comes from πF ′ . Let q be a prime number. Let Q be a prime
of F above q and let F (Q) be the subfield of F fixed by the decomposition
group ⊂ Gal(F/Q) at Q. We know that the restriction of (ρλ) to GF (Q) comes
from πF (Q). We deduce the finer properties required by applying to πF (Q):

– if we are in the case (i) and λ is above q 6= 2, the theorems of Breuil
([9]) and Berger ([3]) to get that ρ is crystalline at q;

– if we are in the case (ii), the theorem of Saito ([38]) because we know
that πF (Q) is Steinberg at one prime of F (Q) (note that if ρ is unramified
outside p, ρ is semistable not crystalline of weight 2 at p, and it follows from
[9] and [3] that πF (Q) is not unramified at primes above p).

The existence of the abelian variety in part (ii) follows from the arguments
used for Corollary E, or Corollary 2.4, of [51] which use results of Carayol and
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Blasius-Rogawski ([12], [5]). By [12], we know that there exists an abelian
variety B over F , a number field E with [E : Q] = dim(B), an embedding E ↪→
End(B)Q, and an embedding τ : E ↪→ Qp such that the restriction of ρ to GF is
isomorphic to the Galois representation on the factor of Qp ⊗Qp Vp(B) defined
by τ . Let A′ be the abelian variety over Q obtained from B by Weil-restriction.
The embedding E ↪→ End(B)Q defines an embedding E ↪→ End(A′)Q. The
Tate-module Vp(A′) is the Galois module obtained from Vp(B) by induction
from GF to GQ. The Frobenius reciprocity formula implies that ρ appears
with multiplicity 1 in the factor of Qp ⊗Qp Vp(A

′) defined by τ . As in [51], it
follows from Faltings’ proof of the Tate conjecture for abelian varieties that
there exists an abelian subvariety A ⊂ A′, defined over Q, stable by the action
of E, a finite extension E′ of E with [E′ : Q] = dim(A) and an embedding
E′ ↪→ End(A)Q extending the embedding E ↪→ End(A)Q, an embedding τ ′ of
E′ in Qp, such that ρ is isomorphic to the Galois representation on the factor
of Qp ⊗Qp Vp(A) defined by τ ′. We have End(A)Q = E′. The Galois module
Qp⊗QpVp(A) is the direct sum of the Galois submodules of dimension 2 over Qp

defined by the different embeddings of E′ in Qp. It follows from compatibility
that A has semistable reduction at all primes and has multiplicative reduction
exactly at those primes 6= p which are ramified in ρ and at p if and only if
k(ρ̄) = p+ 1.

5. Low levels and weights

Theorem 4.2 when combined with modularity lifting results in [55], [45]
and [46], and the theorems of Fontaine, [20], together with their generalisations
due to Brumer and Kramer, and Schoof, [11], [39], has a number of corollaries.

We state a special case of the results of [45], [46] that we need repeatedly
in this section.

Theorem 5.1 (Skinner-Wiles). Let ρ : GQ → GL2(E) be a continuous,
absolutely irreducible, p-adic representation with p > 2 that is ramified at
finitely many primes, and ordinary at p in the sense of Definition 3.1. Assume
that the HT weights of ρ are (0, k − 1) with k ≥ 2. Assume that a reduction
ρ̄ of (an integral model of ) ρ is modular and is such that det(ρ̄)|Ip = χap for
some odd integer a. Then ρ arises from a newform f of weight k.

Proof. We need only to remark that the Dp-distinguished hypothesis of
[45], [46] on ρ follows from our assumption on the determinant of ρ̄.

Remark. The hypothesis on the determinant of ρ̄ of Theorem 5.1 is sat-
isfied if: (i) det(ρ̄) is unramified outside p, and (ii) ρ̄ is odd. The residual
representations we consider in this section thus satisfy the hypothesis of The-
orem 5.1. This will be used without further comment.
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Part (i) of the following theorem follows immediately from Theorem 3.3
and the result of [19].

Theorem 5.2. (i) There is no S-type ρ̄ with N(ρ̄) = 1, k(ρ̄) = 2.
(ii) Assume p > 2. There is no semistable ρ̄ with (prime to p) Artin

conductor N(ρ̄) = q = 2, 3, 5, 7, or 13 and k(ρ̄) = 2.
(iii) For p = 3, 5, 7, 13 there is no Serre type ρ̄ that is unramified outside

p and such that k(ρ̄) = p+ 1.

Proof. We assume throughout for p > 2 that ρ̄|Q(µp) is irreducible as
otherwise we are done by known cases of the S-conjecture. Namely we know
in this case that ρ̄ has projectively dihedral image, and thus by a result of
Hecke is modular (see remark in Section 5.1 of [43]). Then results of [36], [17]
prove that it arises from Sk(ρ̄)(Γ1(N(ρ̄))).

Let us prove (i). The case p = 2 is taken care of by [47] which proves
that there is no S-type ρ̄ with N(ρ̄) = 1 and the characteristic of ρ̄ is 2. For
p ≥ 3, consider a S-type ρ̄ with N(ρ̄) = 1, k(ρ̄) = 2. We use Theorem 4.2 (i) to
get an irreducible compatible system lift (ρλ) of ρ̄. This contradicts the main
theorem of [19] or the arXiv version (see arXiv:math/0406576v1) of [56]. For
instance, the latter considers the 7-adic representation ρ7, and uses arguments
of [20] to show that ρ7 is reducible. Thus no such ρ̄ exists.

Consider a S-type ρ̄ as in the statement of (ii). We use Theorem 4.2 (ii)
to get a compatible lift (ρλ) of ρ̄ (of weight 2) which arises from an abelian
variety A with good reduction outside q and semistable reduction at q. The
results Brumer-Kramer and Schoof, [11] and [39], yield that A is zero which is
a contradiction.

Consider a S-type ρ̄ as in the statement of (iii). We use Theorem 4.2 (ii)
to get a compatible lift (ρλ) of ρ̄ (of weight 2) which arises from an abelian
variety A with good reduction outside p and semistable reduction at p. The
results of Brumer-Kramer and Schoof, [11] and [39], yield that A = 0.

Corollary 5.3. If p is odd then the only (p, p)-type finite flat group
schemes over Z are Z/pZ⊕ Z/pZ, Z/pZ⊕ µp or µp ⊕ µp.

For p = 2, see Abrashkin [1], or Remarque (3) in Section 4.5 of [43].

Proof. After Theorem 5.2 (i) this follows from Serre’s arguments in Section
4.5 of [43].

In fact using our methods we can also rule out the existence of some higher
weight ρ̄ in accordance with the predictions of Serre.

Theorem 5.4. There is no S-type ρ̄ in residue characteristic p with N(ρ̄)
= 1 such that 2 ≤ k(ρ̄) ≤ 8, or k(ρ̄) = 14 where in the latter case we assume
p 6= 11.
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Proof. The case k(ρ̄) = 2 is done in Theorem 5.2. We may assume that
p > 2 because of [47]. We may assume as before that ρ̄|Q(µp) is irreducible as
otherwise we are done by known cases of the S-conjecture.

• k(ρ̄) = 4: Let p be a prime > 2, and ρ̄ be an S-type representation in
characteristic p with N(ρ̄) = 1, k(ρ̄) = 4. We use Theorem 4.2 (i) to
get a compatible system (ρλ), of weight 4. Consider ρ3, and the residual
representation ρ̄3. If ρ̄3 is irreducible, then as by Proposition 3.2 we get
that k(ρ̄3) = 2 or 4, this contradicts Theorem 5.2. Hence ρ̄3 is reducible,
and thus by Proposition 3.2, ρ3 is ordinary. Then by Theorem 5.1, and
known properties of p-adic representations ρf associated to newforms f
due to [12] and [37], we get that (ρλ) arises from S4(SL2(Z)) = 0, a
contradiction. Thus there is no S-type ρ̄ with N(ρ̄) = 1, k(ρ̄) = 4.

• k(ρ̄) = 6: We may assume now that p > 3. This is because up to twist a
S-type ρ̄ in characteristic 3 has weight ≤ 4. After this the argument is
identical to the case k(ρ̄) = 4, but using ρ̄5 instead of ρ̄3.

• k(ρ̄) = 8: We may assume now by an identical argument that p > 5, and
the rest of the argument is identical.

• k(ρ̄) = 14: We may assume now that p > 7 by an identical argument,
and as we are assuming p 6= 11 in this case, we may in fact assume that
p ≥ 13. After this the argument is identical.

Remark. As noted in the introduction the technique used implicitly in the
proof above of considering two different compatible systems that lift a given
residual representation has been developed and used in [25] in the proof of the
level one case of Serre’s conjecture.

The following corollary is immediate. The cases p = 2, 3 are due to Tate
and Serre, [47] and [42], and the case p = 5 is done in [10] under the GRH.
Note that this was Corollary 4.4 in an earlier version of the paper.

Corollary 5.5. For the primes p = 2, 3, 5, 7 there are no S-type ρ̄ in
characteristic p with N(ρ̄) = 1.

We now prove a case of the S-conjecture for ρ̄ with given invariants
N(ρ̄), k(ρ̄) in a case when a S-type ρ̄ of these invariants is known to exist.

Theorem 5.6. Let ρ̄ be of S- type, with N(ρ̄) = 1, k(ρ̄) = 12. Then ρ̄

arises from the Ramanujan ∆ function.

Proof. Using Corollary 5.5 we may assume that p ≥ 11. We may assume as
before that ρ̄|Q(µp) is irreducible as otherwise we are done by known cases of the
S-conjecture. Using Theorem 4.2, we get a compatible system (ρλ) that lifts
ρ̄ and such that ρp is crystalline of Hodge-Tate weight (0, 11). Consider ρ11,
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which is unramified outside 11 and crystalline at 11 of weight 12, and a residual
representation ρ̄11.

Firstly ρ11 is ordinary at 11 as otherwise by Proposition 3.2, ρ̄11 is of
S-type (as ρ̄11|D11 is irreducible) and k(ρ̄11) = 2. This contradicts Theorem 5.2.
If ρ̄11 is reducible, as ρ11 is ordinary at 11, by Theorem 5.1, (ρλ), and hence ρ̄
arises from the unique newform ∆ of S12(SL2(Z)). Otherwise ρ̄11 is of S-type,
N(ρ̄) = 1, k(ρ̄11) = 2 or 12 and hence by Theorem 5.2, k(ρ̄11) = 12 and is très
ramifiée at 11. Note that ρ̄11|Q(µ11) is irreducible as otherwise some twist of
ρ̄11 would have weight 6 which contradicts Theorem 5.4 for instance.

We may apply Theorem 3.3 to ρ̄11 and get another lift ρ′11 of ρ̄11, which
is unramified outside 11 and semistable at 11 of weight 2. By Theorem 4.2 ρ′11

arises from an abelian variety A defined over Q with good reduction outside
11 and multiplicative reduction at 11. By [39] such an abelian variety A is
isogenous to a power of J0(11). The Galois representation on points of order
11 of the elliptic curve J0(11) is absolutely irreducible, is ordinary at 11, and
is isomorphic to the representation modulo 11 associated to ∆ (see Section 3.5
of [40]), and consequently ρ̄11 itself arises from ∆. Thus by Theorem 5.1, ρ11

arises from S12(SL2(Z)) and hence ρ̄ arises from the ∆ function.

Remark. For finitely many primes p there may be no ρ̄ of S-type in
characteristic p with N(ρ̄) = 1, k(ρ̄) = 12. These primes are p = 2, 3, 5, 7, 691,
as follows from Theorem 5.6 and [40].

6. MLC implies the S-conjecture

6.1. Level one case of the S-conjecture by induction on the prime p. By
the level one case of the S-conjecture we mean the S-conjecture for S-type ρ̄
with N(ρ̄) = 1. We reduce this to restricted versions of the MLC that are a
little beyond the modularity lifting theorems that are known.

Consider a S-type ρ̄ in residue characteristic p and such that N(ρ̄) = 1.
By the result of Tate we may assume p > 2. By twisting we may assume that
the Serre weight k(ρ̄) ≤ p + 1. Note that k(ρ̄) 6= p. Using Theorem 4.2 we
get a compatible system (ρλ) that lifts ρ̄. Applying Theorem 5.2 to a residual
representation ρ̄3 arising from this system, we get that it is reducible. Thus if
we assume the MLC, we conclude that ρ3 is modular and hence so is ρ̄. We
refine this argument a little.

Theorem 6.1. Assume the MLC in the restricted version that we con-
sider only ρ in it that are crystalline at p of HT weights (0, k) with k < 2p.
Then the level one case of the S-conjecture is true.

Proof. We prove the theorem by induction on the prime p, the case
p = 2, 3 being known. We may assume as before that ρ̄|Q(µp) is irreducible as
otherwise we are done by known cases of the S-conjecture.
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Suppose the level one S-conjecture conjecture is proven for a prime pn > 2.
We want to prove it for the next prime pn+1. Thus assume we have a S-type
mod pn+1 representation ρ̄ of Gal(Q̄/Q) which by twisting we can assume has
Serre weight k(ρ̄) ≤ pn+1 + 1, and such that N(ρ̄) = 1.

Use Theorem 4.2 to get a compatible system (ρλ) that lifts ρ̄ such that
ρpn+1 is unramified outside pn+1 and crystalline at pn+1 of weight k(ρ̄). We
also get that ρpn is unramified outside pn and crystalline at pn of Hodge-Tate
weights(0, k(ρ̄) − 1). By Bertrand’s postulate, pn+1 ≤ 2pn − 1, and by the
induction hypothesis a residual representation ρ̄pn is modular. Thus by the
restricted version of the MLC in the statement of the theorem, ρpn arises from
Sk(ρ̄)(SL2(Z)), and hence so does ρ̄.

Remark. A modification of this strategy is used to prove the level one case
of the S-conjecture in [25].

6.2. Killing ramification. The process of killing ramification is the follow-
ing. Suppose you wish to prove that a compatible system (ρλ) is modular. Let
λ0 be above a prime of ramification of (ρλ). One applies the theorem 4.2 to a
cyclotomic twist of ρ̄λ0 to get a compatible system (ρ′λ′) whose set of ramifica-
tion primes is smaller than the set of ramification primes of (ρλ). If one knows
by induction modularity of (ρ′λ′), one gets modularity of ρ̄λ0 , hence modularity
of (ρλ) if one has the needed modularity lifting theorem. We give an example
of a more precise statement:

Theorem 6.2. Assume the MLC and assume Theorem 3.3 holds also if
k(ρ̄) = p. Also assume that the compatible systems (ρλ) of Theorem 4.2 (i) are
such that ρλ is de Rham of weight k(ρ̄) for all λ. Then the S-conjecture is true
for ρ̄ in characteristic p > 2, and with N(ρ̄) odd.

Proof. We may assume as before that ρ̄|Q(µp) is irreducible as otherwise
we are done by known cases of the S-conjecture.

Consider a S-type ρ̄ as in the statement, and assume as we may that
2 ≤ k(ρ̄) ≤ p + 1. The proof is by induction on the cardinality of the set of
prime divisors of N(ρ̄) for the type of ρ̄ in the statement. The case of N(ρ̄) = 1
is dealt with in Theorem 6.1.

Let q be a prime divisor of N(ρ̄). Use Theorem 4.2 (i) to get a compatible
system (ρλ) that lifts ρ̄. Consider a residual representation ρ̄q arising from this
system. Observe that N(ρ̄q) is divisible by at least one prime fewer than N(ρ̄).
Thus by the inductive hypothesis, we deduce that ρ̄q is modular, and then by
the MLC we see that ρq, and hence (ρλ) and ρ̄, arises from a newform.

Remark. The idea of the proof above is a key component of the proof
of the odd conductor case of the S-conjecture in [28], [29]. The superfluous
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restriction to p > 2 and N(ρ̄) odd is because Theorem 3.3 is stated only for
p > 2.
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