
Annals of Mathematics, 169 (2009), 41–78

Regularity of flat level sets
in phase transitions

By Ovidiu Savin

Abstract

We consider local minimizers of the Ginzburg-Landau energy functional∫
1
2
|∇u|2 +

1
4

(1− u2)2dx

and prove that, if the 0 level set is included in a flat cylinder then, in the
interior, it is included in a flatter cylinder. As a consequence we prove a
conjecture of De Giorgi which states that level sets of global solutions of

4u = u3 − u

such that
|u| ≤ 1, ∂nu > 0, lim

xn→±∞
u(x′, xn) = ±1

are hyperplanes in dimension n ≤ 8.

1. Introduction

In this paper we establish further properties of phase transitions that are
similar to the properties of sets with minimal perimeter.

The Ginzburg-Landau model of phase transitions leads to considerations
of local minimizers for the energy functional

(1) J(u,Ω) =
∫

Ω

1
2
|∇u|2 +

1
4

(1− u2)2dx, |u| ≤ 1.

If u is a local minimizer then

(2) 4u = u3 − u.

We explain below some analogies between the theory of phase transitions
and the theory of minimal surfaces.

The rescalings uε(x) = u(ε−1x) are local minimizers for the ε-energy func-
tional

Jε(uε) =
∫
ε

2
|∇uε|2 +

1
4ε

(1− u2
ε)

2dx.
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In [16] Modica proved that as ε→ 0, uε has a subsequence

(3) uεk → χE − χEc in L1
loc

where E is a set with minimal perimeter.
In [8] Caffarelli and Cordoba proved a uniform density estimate for the

level sets of local minimizers uε of Jε. Suppose uε(0) = 0; then

|{uε > 0} ∩Bδ|
|Bδ|

≥ C

for ε ≤ δ, C > 0 universal. In particular, this implies that in (3), the level sets
{uεk = λ} converge uniformly on compact sets to ∂E.

In [19] Modica proved a monotonicity formula for the energy functional,
i.e. J(u,BR)R1−n increases with R.

Let us recall some facts about minimal surfaces (see for example Giusti
[14]). Suppose that E is a set with minimal perimeter in Ω and 0 ∈ ∂E. Then

1) Flatness implies regularity; i.e, if

Ω = {|x′| < 1} × {|xn| < 1}, ∂E ⊂ {|xn| < ε},

and ε ≤ ε0, ε0 small universal, then ∂E is analytic in {|x′| < 1/2}.
The proof uses an “improvement of flatness” lemma due to De Giorgi (see

Chapters 6, 7, 8 from Giusti [14]). More precisely, one can show that, possibly
in a different system of coordinates, ∂E can be trapped in a flatter cylinder

{|y′| ≤ η2} ∩ ∂E ⊂ {|yn| ≤ εη1},

with 0 < η1 < η2 universal. This implies ∂E is C1,α, and therefore analytic by
the elliptic regularity theory.

2) If Ω = Rn, and n ≤ 7 then ∂E is a hyperplane.

3) If Ω = Rn and n = 8 then there exist nonhyperplane minimal sets, for
example Simons cone

x2
1 + x2

2 + x2
3 + x2

4 < x2
5 + x2

6 + x2
7 + x2

8.

If, in addition, we assume that ∂E is a “graph” in some direction, then
∂E is a hyperplane.

4) If Ω = Rn and n ≥ 9 then there exist nonhyperplane minimal graphs
(see [6]).

5) If Ω = Rn and ∂E is a graph in the en direction that has at most linear
growth at ∞ then ∂E is a hyperplane.

It is natural to ask if some of these properties hold for level sets of local
minimizers of (1), or solutions of (2).

In connection to 3) above De Giorgi made the following conjecture in [11]:
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Let u ∈ C2(Rn) be a solution of

4u = u3 − u,

such that
|u| ≤ 1, ∂nu > 0

in whole Rn. Is it true that all the level sets of u are hyperplanes, at least if
n ≤ 8?

The conjecture was proved for n = 2 by Ghoussoub and Gui in [12] and
for n = 3 by Ambrosio and Cabre in [2].

Barlow, Bass and Gui proved in [3] that monotonic solutions in Rn with
Lipschitz level sets are planar in all dimensions.

The main result of this paper is an “improvement of flatness” theorem for
0 level sets of local minimizers (Theorem 2.1). More precisely, if u is a local
minimizer of (1) and {u = 0} is included in a flat cylinder {|x′| < l}×{|xn| < θ}
with θ, l large and θl−1 small then, {u = 0} is included, possibly in a different
system of coordinates, in a flatter cylinder {|x′| < η2l} × {|xn| < η1θ} with
η2 > η1 > 0 universal.

If {uεk = 0} converges uniformly on compact sets to a hyperplane then,
one can apply Theorem 2.1 and conclude that {u = 0} is included in flatter
and flatter cylinders, therefore it is a hyperplane.

This fact allows us to extend some of the minimal surfaces properties listed
above to level sets of local minimizers of (1). In particular, we prove the weak
form of De Giorgi’s conjecture, i.e. we also assume that

(4) lim
xn→±∞

u(x′, xn) = ±1.

The approach of Modica to study local minimizers of Jε uses variational
techniques and the notion of Γ− convergence. More precisely, by co-area for-
mula, one has

Jε(uε,Ω)≥ 1√
2

∫
Ω

(1− u2
ε)|∇uε|dx

=
1√
2

∫ 1

−1
(1− s2)Hn−1({uε = s} ∩ Ω)ds.

Heuristically, we minimize Jε(uε,Ω) if, in the interior of Ω, we take the
level sets {uε = s} to be (almost) minimal and

(5) |∇uε| =
1√
2ε

(1− u2
ε).

Notice that, if Γ is a smooth surface then

(6) uε(x) = tanh
dΓ(x)√

2ε
satisfies (5), where dΓ represents the signed distance to the surface Γ.
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In this paper we use the method of subsolutions and supersolutions to-
gether with the sliding method. Suppose that Γ is a smooth surface and
consider the function given by (6). Then

ε24uε = u3
ε − uε −

ε√
2

(1− u2
ε)
∑ κi

1− dΓκi

where κi represent the principal curvatures of Γ at the point where the distance
is realized.

Heuristically, if Γ has positive (negative) mean curvature then we can find
a supersolution (subsolution) whose 0 level set is Γ.

In a forthcoming paper we use the same techniques to prove similar results
for solutions of

F (D2u) = f(u),

u ∈ C2(Rn), |u| ≤ 1, ∂nu > 0

where F is uniformly elliptic, and F , f are such that there exists a one dimen-
sional solution g which solves the equation in all directions; i.e.,

F (D2g(x · ν) = f(g(x · ν)), ∀ν ∈ Rn, |ν| = 1.

2. Main results

Consider the more general energy functional

(7) J(u,Ω) =
∫

Ω

1
2
|∇u|2 + h0(u)dx, |u| ≤ 1,

with

h0 ∈ C2[−1, 1], h0(−1) = h0(1) = 0, h0 > 0 on (−1, 1),

h′0(−1) = h′0(1) = 0, h′′0(−1) > 0, h′′0(1) > 0.

We say that u is a local minimizer in Ω if, for every open set A ⊂ Ω
relatively compact in Ω,

J(u,A) ≤ J(u+ v,A), ∀v ∈ H1
0 (A).

A local minimizer of (7) satisfies

(8) 4u = h′0(u), |u| ≤ 1.

Our goal is to prove the following theorem for flat level sets of u.

Theorem 2.1 (Improvement of flatness). Let u be a local minimizer of
(7) in {|x′| < l} × {|xn| < l}, and assume that the level set {u = 0} stays in
the flat cylinder

{|x′| < l} × {|xn| < θ}

and contains the point 0.
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Then there exist small constants 0 < η1 < η2 < 1 depending only on n

such that :
Given θ0 > 0 there exists ε1(θ0) > 0 depending on n, h0 and θ0 such that

if
θ

l
≤ ε1(θ0), θ0 ≤ θ,

then
{u = 0} ∩ ({|πξx| < η2l} × {|x · ξ| < η2l})

is included in a cylinder

{|πξx| < η2l} × {|x · ξ| < η1θ}

for some unit vector ξ (πξ denotes the projection along ξ).

We prove Theorem 2.1 by compactness from the following Harnack in-
equality for flat level sets of minimizers.

Theorem 2.2. Let u be a local minimizer of J in the cylinder {|x′| < l}
× {|xn| < l} and assume that

{u = 0} ⊂ {|xn| < θ}, u(0) = 0.

There exists a small universal constant η0 > 0 depending on n and h0 such
that :

Given θ0 > 0 there exists ε0(θ0) > 0 depending on n, h0 and θ0, such that
if

θl−1 ≤ ε0(θ0), θ0 ≤ θ,

then
{u = 0} ∩ {|x′| < η0l} ⊂ {|xn| < (1− η0)θ}.

As a consequence of Theorem 2.1 we prove the following theorems.

Theorem 2.3. Suppose that u is a local minimizer of J in Rn, and n ≤ 7.
Then the level sets of u are hyperplanes.

It is known (see [15]) that monotone solutions of (8) satisfying (4) are
local minimizers.

Theorem 2.4. Let u ∈ C2(Rn) be a solution of

(9) 4u = h′0(u),

such that

(10) |u| ≤ 1, ∂nu > 0, lim
xn→±∞

u(x′, xn) = ±1.

a) If n ≤ 8 then the level sets of u are hyperplanes.
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b) If the 0 level set has at most linear growth at ∞ then the level sets of u
are hyperplanes.

The paper is organized as follows. In Section 3 we prove Theorems 2.3
and 2.4 assuming Theorem 2.1. In Section 4 we introduce some notation and
preliminaries. In Section 5 we show that the 0 level set of u satisfies in some
weak viscosity sense a mean curvature equation at large scale. In Section 6
we show that Theorem 2.2 implies Theorem 2.1 by a compactness argument.
In the remaining part of the paper we prove Theorem 2.2. The proof uses
some ideas of Caffarelli and Cordoba from a paper about regularity of minimal
surfaces (see [9]). Next we explain the strategy of its proof.

Let g0 denote the one dimensional solution of (8), g0(0) = 0, and suppose
that at one point {u = 0} is close to xn = −θ. Then, using a family of sliding
surfaces (see Section 7), we prove that the graph of u is close in the en direction
to the graph of g0(xn + θ) at points that project along en in sets of positive
measure (Section 8). Using an iteration lemma we show that these sets almost
fill in measure the strip {(x′, 0, xn+1) | |xn+1| ≤ 1/2} (Section 9). From this
we obtain a contradiction to the fact that u is a local minimizer and u(0) = 0
(Section 10).

3. Proof of Theorems 2.3 and 2.4

In this section we use Theorem 2.1 to prove Theorems 2.3 and 2.4.
Let Ω ⊂ Rn be an open set and E be a measurable set. The perimeter of

E in Ω is defined as

PΩ(E) = sup
∣∣∣∣∫
E

div g dx
∣∣∣∣ ,

where the supremum is taken over all vector fields g ∈ C1
0 (Ω) with ‖g‖ ≤ 1.

We say that E is a set with minimal perimeter in Ω if, for every open set
A ⊂ Ω, relatively compact in Ω,

PA(E) ≤ PA(F ),

whenever E and F coincide outside a compact set included in A.
We introduce the rescaled energies,

(11) Jε(v,Ω) :=
∫

Ω

ε

2
|∇v|2 +

1
ε
h0(v)dx.

If u is a local minimizer of J(u,Ω), then the rescalings

uε(x) = u(
x

ε
),

are local minimizers for Jε(·, εΩ), and

Jε(uε, εΩ) = εn−1J(u,Ω).
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Now we state two theorems mentioned in the introduction. The first
theorem was proved by Modica in [16].

Theorem 3.1. Let uk be a sequence of local minimizers for the energies
Jεk(·,Ω) with εk → 0. There exists a subsequence ukm such that

ukm → χE − χEc in L1
loc(Ω)

where E is a set with minimal perimeter in Ω. Moreover, if A is an open set,
relatively compact in Ω, such that∫

∂A
|DχE | = 0,

then

(12) lim
m→∞

Jεkm (ukm , A) = PA(E)
∫ 1

−1

√
2h0(s)ds.

The second theorem was proved by Caffarelli and Cordoba in [8].

Theorem 3.2. Given α > −1, β < 1, if u is a minimizer of J in BR and
u(0) ≥ α, then

|{u > β} ∩BR| ≥ CRn

for R ≥ R0(α, β), where C is a constant depending on n and h0.

Next we use Theorem 2.1 to prove the following lemma.

Lemma 3.3. Let u be a local minimizer of J in Rn with u(0) = 0. Suppose
that there exist sequences of positive numbers θk, lk and unit vectors ξk with
lk →∞, θkl−1

k → 0 such that

{u = 0} ∩ ({|πξkx| < lk} × {|x · ξk| < lk}) ⊂ {|x · ξk| < θk}.

Then the 0 level set is a hyperplane.

Proof: Fix θ0 > 0, and choose k large such that θkl−1
k ≤ ε ≤ ε1(θ0). If

θk ≥ θ0 then we apply Theorem 2.1 and obtain the fact that {u = 0} is trapped
in a flatter cylinder. We apply Theorem 2.1 repeatedly until the height of the
cylinder becomes less than θ0.

In some system of coordinates we obtain

{u = 0} ∩
(
{|y′| < l′k} × {|yn| < l′k}

)
⊂ {|yn| ≤ θ′k},

with θ0 ≥ θ′k ≥ η1θ0 and θ′kl
′−1
k ≤ θkl−1

k ≤ ε; hence l′k ≥ ε−1η1θ0.
We let ε→ 0 and then {u = 0} is included in an infinite strip of width θ0.

The lemma is proved since θ0 is arbitrary.
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Proof of Theorem 2.3. The rescalings uε(x) = u(ε−1x) are local mini-
mizers for Jε in Rn. From Theorem 3.1, there exists a sequence εk → 0 such
that

(13) uεk → χE − χEc in L1
loc(Rn)

where E is a set with minimal perimeter.

Claim. {uεk = 0} converges uniformly on compact sets to ∂E.

Assume not; then there exist δ > 0, z0 ∈ Rn, and points

xk ∈ {uεk = 0} ∩B(z0, δ)

with, say, B(z0, 2δ) ⊂ E. By Theorem 3.2, the set {uεk < 0} has uniform
density in B(z0, 2δ) for εk small, which contradicts (13).

Since ∂E is a minimal surface in Rn, n ≤ 7, and 0 ∈ ∂E, we conclude that
∂E is a hyperplane going through the origin. This implies

{uεk = 0} ∩B1 ⊂ {|xn| ≤ δk},

with δk → 0. Rescaling back we find that u satisfies the hypothesis of Lemma 3.3
and the theorem is proved.

Proof of Theorem 2.4. First we prove that a function u satisfying (9),
(10) is a local minimizer in Rn. For this, it suffices to show that in BR, u is
the unique solution of

4v = h′0(v), |v| < 1, v = u on ∂BR.

Since
lim

xn→∞
u(x′, xn) = 1,

we conclude that the graph of u(x′, xn + t) is above the graph of v for large t.
We slide this graph in the en direction until we touch v for the first time. From
the Strong Maximum Principle we find that the first touching point occurs on
∂BR. Since u is strictly increasing in the en direction, we can slide the graph
of u(x′, xn + t) until it coincides with the graph of u; hence u ≥ v. Similarly
we obtain u ≤ v which proves that u is a local minimizer in Rn.

Assume u(0) = 0 and define uε(x) = u(ε−1x). Again we find that (13)
holds for some sequence εk → 0. Moreover, un > 0 implies Ec is a subgraph;
hence ∂E is a quasi-solution in the en direction (see Chapters 16, 17 in Giusti
[14]).

In both cases a) and b) one has that ∂E is a hyperplane and the theorem
follows from Lemma 3.3.
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4. Preliminaries

First we introduce some notation.

Notation.

(e1, . . . , en, en+1) is the Euclidean orthonormal basis in Rn+1.

X = (x, xn+1) = (x′, xn, xn+1) = (x1, x2, . . . , xn−1, xn, xn+1) ∈ Rn+1.

X ∈ Rn+1, x′ ∈ Rn−1, x ∈ Rn, |xn+1| < 1.

B(x, r) is the ball of center x and radius r in Rn.

B(X, r) is the ball of center X and radius r in Rn+1.

graph u = {(x, u(x)), x ∈ Rn}.
dΓ is the signed distance to the surface Γ.

ν is a vector in Rn+1, ξ a vector in Rn.

∠(ν1, ν2) is the angle between the vectors ν1 and ν2.

πνX = X − (X · ν)ν is the projection along ν.

πi is the projection along ei.

Pν is the hyperplane perpendicular to ν going through the origin.

Pi is the hyperplane perpendicular to ei going through the origin.

Constants depending on n, h0 are called universal and we denote them by
C̄i, c̄i, Ci, ci (C̄i, c̄i are constants used throughout the paper).

Preliminaries. In the proof we find, many times, inequalities involving
a strictly increasing function g, and its derivatives g′, g′′. In this cases we
consider s = g as the new variable and we define a new function

h(s) =
1
2

(
dg

dt

)2

.

Now,

g′ =
dg

dt
=
√

2h, g′′ =
d2g

dt2
=

d

dt

√
2h =

dh

ds
= h′

and the inequality involves only h and h′. We can reconstruct g from h (up to
a translation) since

H(s) :=
∫ s

0

1√
2h(ζ)

dζ = g−1(s)− g−1(0).

In particular we define

H0(s) :=
∫ s

0

1√
2h0(ζ)

dζ, g0(t) := H−1
0 (t)
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and we find

g′′0(t) = h′0(g0(t));

thus, g0 is a one-dimensional solution of (8).

5. The limiting equation

In this section we prove the following:

Proposition 5.1 (The limiting equation). Let u be a local minimizer of
J and assume that u(0) = 0. For some δ0 > 0 small, we consider the surfaces

Γ =
{
xn = P (x′) :=

1
2
x′
T
Mx′

}
,(14)

M ∈M(n−1)×(n−1), 4P = trM > δ0‖M‖, ‖M‖ ≤ δ−1
0 .

There exists σ0(δ0) > 0 small, such that if ε ≤ σ0(δ0) then Γ cannot touch
from below {uε = 0} at 0 in a δ0(4P )−

1
2 ε

1
2 neighborhood.

By “Γ touches from below {uε = 0} at 0 in a δ0(4P )−
1
2 ε

1
2 neighborhood”

we understand

{uε = 0} ∩ {xn < P (x′)} ∩ {|x| < δ0(4P )−
1
2 ε

1
2 } = ∅.

Proposition 5.1 says that {uε = 0} satisfies a mean curvature equation in
some weak viscosity sense in which we have to specify the size of the neigh-
borhood around the touching point. The size of the neighborhood depends on
the polynomial P and ε.

If P is fixed and ε→ 0 then the radius of the neighborhood converges to
0. In particular, if {uε = 0} converges uniformly to a surface, then this surface
satisfies in the viscosity sense a mean curvature equation.

One way to interpret the above proposition is the following:
Suppose that P has positive mean curvature and let δ0 be small such that (14)
holds. Consider a spherical neighborhood around 0 such that P separates at
just one point at a distance δ0ε from xn = 0. If r denotes the radius of this
neighborhood then,

‖M‖r2 ≥ 2δ0ε⇒ r2 ≥ δ0‖M‖−1ε ≥ δ2
0(4P )−1ε.

Hence, if ε < σ0(δ0) then P cannot touch from below {uε = 0} at 0 in the
r neighborhood.

We shall prove the following version of Proposition 5.1.



REGULARITY OF FLAT LEVEL SETS IN PHASE TRANSITIONS 51

Lemma 5.2. Let u be a local minimizer of J in {|x′| < l}×{|xn| < l} and
assume that u(0) = 0 and u < 0 below the surface

Γ1 :=
{
xn = P1(x′) =

θ

l2
1
2
x′
T
M1x

′ +
θ

l
ξ · x′

}
,

‖M1‖ < δ−1, |ξ| < δ−1

for some small δ > 0. There exists σ(δ) > 0 small, such that if

θl−1 ≤ σ(δ), θ ≥ δ,

then
trM1 ≤ δ.

Next we show that Proposition 5.1 follows from Lemma 5.2. Assume by
contradiction that for some

ε ≤ σ0(δ0) := σ2

(
δ2

0

4

)
Γ touches {uε = 0} from below at 0 in a δ0(4P )−

1
2 ε

1
2 neighborhood. By

rescaling we find that {
xn =

ε

2
x
′TMx′

}
touches from below {u = 0} at 0 in a δ0(4P )−

1
2 ε−

1
2 neighborhood.

We apply Lemma 5.2 with

l =
δ0

2
(tr M)−

1
2 ε−

1
2 , δ = θ =

δ2
0

4
, M1 = (tr M)−1M, ξ = 0

thus,

Γ1 = {xn =
ε

2
x
′TMx′}.

Since
‖M1‖ = (tr M)−1‖M‖ < δ−1

0 < δ−1,

θl−1 =
δ0

2
(tr M)

1
2 ε

1
2 < ε

1
2 ≤ σ

(
δ2

0

4

)
= σ(δ),

we conclude
δ ≥ trM1 = 1

which is a contradiction.
Before we prove Lemma 5.2 we need to introduce a comparison function.

Using this function and the fact that {u < 0} below Γ1, we are able to bound
u by the above.
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Lemma 5.3 (Comparison function). For l > 0 large, there exists an in-
creasing function gl supported inside (−∞, l/2), gl(0) = 0, gl(s) is constant for
s ≤ −l/2, such that the rotation surface

Ψ(y, l) := {xn+1 = gl(|x− y| − l)}

is, in the viscosity sense, a strict supersolution of (8) everywhere except on the
sphere {|x− y| = l}. Moreover, if Hl = g−1

l there exist universal constants c̄1

small, C̄1 large, such that Hl is defined on (−1 + e−c̄1l, 1), and

H0(s) ≤ Hl(s)−
C̄1

l
log(1− |s|) if |s| < 1− e−c̄1l/2.

Proof. Define hl, Hl (the corresponding functions for gl) as
(15)

hl(s) =
{
h0(s)− h0(sl − 1)− C̄2l

−1
(
(1 + s)2 − sl2

)
if sl − 1 < s < 0

h0(s) + h0(1− sl) + C̄2l
−1
(
(1− s)2 + sl(1− s)

)
if 0 ≤ s < 1,

(16) Hl(s) =
∫ s

0

1√
2hl(ζ)

dζ.

We choose C̄2 large, universal, such that

(17) 4(n− 1)
√
h0(s) < C̄2(1− |s|).

and sl = e−c̄1l with c̄1 small.
For sl − 1 < s ≤ 0 and l large we have

1
2

(h0(s)− h0(sl − 1)) ≤ hl(s).

Hence

Hl(sl − 1)≥−
∫ 0

sl−1
(h0(ζ)− h0(sl − 1))−

1
2 dζ

≥−C1

∫ 0

sl−1
(1 + ζ − sl)−

1
2 (1 + ζ)−

1
2dζ ≥ C2 log sl ≥ −l/2,

if c̄1 is small enough. Moreover, for 0 > gl(t) > sl − 1 we have

g′′l (t) + 2(n− 1)l−1g′l(t) = h′l(s) + 2(n− 1)l−1
√

2hl(s)

< h′0(s)− 2C̄2l
−1(1 + s) + 4(n− 1)l−1

√
h0(s) < h′0(s).

On the domain where gl is constant, i.e. gl = sl − 1, one has

4Ψ(0, l) = 0 < h′0(sl − 1).

We remark that gl is a C1,1 function on (−∞, 0). Its second derivative has
a small jump at Hl(sl − 1) from 0 to h′l(sl − 1). From the above inequalities



REGULARITY OF FLAT LEVEL SETS IN PHASE TRANSITIONS 53

we can conclude that gl(|x| − l) is, in the viscosity sense, a strict supersolution
for |x| < l.

If e−c̄1l/2 − 1 < s ≤ 0, then

h0(s)− hl(s) ≤ h0(sl − 1) + C̄2l
−1(1 + s)2 ≤ C1l

−1(1 + s)2.

Hence

H0(s)−Hl(s) =
∫ 0

s

1√
2hl(ζ)

− 1√
2h0(ζ)

dζ

≤C2

∫ 0

s

h0(ζ)− hl(ζ)

(1 + ζ − sl)
1
2 (1 + ζ)

5
2

dζ ≤ −C̄1l
−1 log(1 + s).

For 0 < s < 1 we have

hl(s) ≤ 2 (h0(s) + h0(1− sl)) ,

and

Hl(1)≤
∫ 1

0
(h0(ζ) + h0(1− sl))−

1
2 dζ

≤C1

∫ 1

0

(
(1− ζ)2 + sl

2
)− 1

2 dζ ≤ −C2 log sl ≤ l/2.

Also,

g′′l (t) + (n− 1)l−1g′l(t) = h′l(s) + (n− 1)l−1
√

2hl(s)

< h′0(s)− C̄2l
−1(1− s+ sl) + 4(n− 1)l−1

√
h0(s) + h0(1− sl) < h′0(s).

Thus, gl(|x| − l) is a strict supersolution for |x| > l. We also remark that
g′l(H(1)) > 0.

If 0 ≤ s < 1− e−c̄1l/2 then

hl(s)− h0(s) ≤ h0(1− sl) + 2C̄2l
−1(1− s)2 ≤ C1l

−1(1− s)2.

Hence,

H0(s)−Hl(s)≤
∫ s

0

1√
2h0(ζ)

− 1√
2hl(ζ)

dζ

≤C2

∫ s

0

hl(ζ)− h0(ζ)
(1− ζ)3

dζ ≤ −C̄1l
−1 log(1− s).

With this the lemma is proved.

Next we construct a strict supersolution which is 0 on a surface Γ with
positive mean curvature.
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Lemma 5.4. Let Γ be such that

Γ =
{
xn = P (x′) =

ε

2
x′
T
Mx′ + σξ · x′

}
∩ {|x′| < σε−1},

trM ≥ δ, ‖M‖ ≤ δ−1, |ξ| ≤ δ−1

for some small δ > 0. There exists σ1(δ) > 0, such that if ε ≤ σ ≤ σ1(δ),
then there is a function gΓ for which gΓ(dΓ) is, in the viscosity sense, a strict
supersolution, where dΓ represents the signed distance to Γ, dΓ > 0 above Γ.
(We consider only the set where the distance dΓ is realized at a point in the
interior of Γ.)

Proof. Define

(18) hΓ(s) = max{0, h0(s) + c1δερ(s)},

where

c1 = 1/2 min
−1/2≤s≤1/2

√
h0(s),

ρ(s) =


−1 if s ≤ −1/2
2s if −1/2 ≤ s ≤ 1/2
1 if 1/2 ≤ s.

Let sδ,ε be the point near −1 for which h0(sδ,ε) = c1δε; hence 1 + sδ,ε ∼ (δε)
1
2 .

Now,

HΓ(sδ,ε) =
∫ sδ,ε

0

1√
2hΓ(ζ)

dζ ≥
∫ 0

sδ,ε

−C1√
(ζ − sδ,ε)(1 + ζ)

≥ C2(δ) log ε,

HΓ(1) =
∫ 1

0

1√
2hΓ(ζ)

dζ ≤
∫ 1

0

C1√
(1− ζ)2 + δε

dζ ≤ −C2(δ) log ε,

HΓ(s) ≤ H0(s).

Thus, gΓ(d) = H−1
Γ (d) is defined for d ≤ HΓ(1) and it is constant for

d ≤ HΓ(sδ,ε).
Let d be the signed distance function to Γ. In an appropriate system of

coordinates

D2d = diag
(
−κ1

1− dκ1
, . . . ,

−κn−1

1− dκn−1
, 0
)

where κi are the principal curvatures of Γ at the point where the distance is
realized.

Notice that |κi| ≤ C3(δ)ε; hence, for |d| ≤ C2(δ) log ε−1 one has
n−1∑
i=1

−κi
1− dκi

≤−
n−1∑
i=1

κi + C(δ)ε2 log ε−1

≤−4P + C1|∇P |2‖D2P‖+ C(δ)ε
3
2

≤−εδ + C(δ)(εσ2 + ε
3
2 ) ≤ −εδ + C4(δ)εσ

1
2 .
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Thus, for gΓ(d) > sδ,ε,

4gΓ(d)≤ g′′Γ(d)− ε(δ − C4(δ)σ
1
2 )g′Γ(d)

=h′Γ(s)− ε(δ − C4(δ)σ
1
2 )
√

2hΓ(s)

≤h′0(s) + ε
(

2c1δχ[−1/2,1/2] − (δ − C4(δ)σ
1
2 )
√

2hΓ(s)
)
.

If σ0(δ) is chosen small enough, then

4gΓ(d) < h′0(gΓ(d)).

On the domain where gΓ is constant, i.e. d ≤ HΓ(sδ,ε), we have

4gΓ = 0 < h′0(sδ,ε).

Since gΓ is a C1,1 function we conclude that gΓ(d) is a strict supersolution in
the viscosity sense and the lemma is proved.

Proof of Lemma 5.2. Assume by contradiction that tr M1 > δ. We apply
Lemma 5.4 to the surface

Γ2 = {xn = P1(x′)− εδ

2
|x′|2} ∩ {|x′| ≤ l}

with ε = θl−2, σ = θl−1 and we find that gΓ2(dΓ2) is a strict supersolution if σ
is small enough.

On the other hand we claim that

(19) u(x) ≤ gl/4(dΓ1) if |x′| ≤ l/2, |xn| ≤ l/2 .

In order to prove this we use Theorem 3.2, choosing α < 0 small such that
h′0 is strictly increasing on [−1, α] and β = 0. Then, there exists C2 universal
such that if u(x) ≥ α then

B(x,C2) ∩ {u > 0} 6= ∅.

If l ≥ 8C2, then

(20) u(x) < α for x ∈ B((0,−l/2), l/4)

Since Ψ((0,−l/2), l/4) is a supersolution of (8) in B((0,−l/2), l/4) and it
is supported inside B((0,−l/2), 3l/8) (see Lemma 5.3), we conclude from the
maximum principle that u is below Ψ((0,−l/2), l/4).

We slide this surface continuously along vectors ν,with ν · en+1 = 0,
ν · en ≥ 0, till we touch the graph of u. Since Ψ((0,−l/2), l/4) is a strict
supersolution everywhere except on the 0 level set, we find that the touching
points can occur only on the 0 level set.

The inequality (19) now follows from the fact that, if σ is small enough,
at each point of Γ1 we have a tangent sphere of radius l/4 from below which
can be obtained from the sphere |x− (0,−l/2)| = l/4 by sliding it continuously
inside the domain {u < 0}.
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Now it suffices to prove that for σ ≤ σ1(δ) we have

(21) gΓ2(dΓ2) > gl/4(dΓ1) on {|x′| = l/2} ∩ {|dΓ1 | ≤ l/4}.

Then we slide gΓ2(dΓ2) from below in the en direction in the cylinder

{|x′| ≤ l/2} × {|xn| ≤ l/2}

till we touch u. By (19), (21) this cannot happen on {|x′| = l/2} therefore
the contact point is an interior point which is a contradiction to the fact that
gΓ2(dΓ2) is a strict supersolution.

We notice that on {|x′| = l/2} ∩ {|dΓ1 | ≤ l/4} we have

dΓ2 ≥ dΓ1 + c1(δ);

thus, in order to prove (21), it suffices to show that

(22) HΓ2(s) < Hl/4(s) + c1(δ).

From (15), (18) we find that for l = θσ−1 ≥ C1(δ) large,

hΓ2(s) ≤ hl/4(s) if s ≤ −1 + c2(δ)l−
1
2

hΓ2(s) ≥ hl/4(s) if s ≥ 1− c2(δ)l−
1
2 .

This implies that the maximum of HΓ2(s)−Hl/4(s) occurs for 1−|s| ≥ c2(δ)l−
1
2 .

For these values of s we have

HΓ2(s) ≤ H0(s) ≤ Hl/4(s) + 4C̄1l
−1 log

l
1
2

c2(δ)
< Hl/4(s) + c1(δ).

With this the lemma is proved.

6. Theorem 2.2 implies Theorem 2.1

The proof is by compactness. Assume by contradiction that there exists
uk, θk, lk, ξk such that uk is a local minimizer of J , uk(0) = 0, the level set
{uk = 0} stays in the flat cylinder

{|x′| < lk} × {|xn| < θk},

θ ≥ θ0, θkl−1
k → 0 as k →∞ for which the conclusion of Theorem 2.1 doesn’t

hold.
Let Ak be the rescaling of the 0 level sets given by

(x′, xn) ∈ {uk = 0} 7→ (y′, yn) ∈ Ak,
y′=x′l−1

k , yn = xnθ
−1
k .

Claim 1. Ak has a subsequence that converges uniformly on |y′| ≤ 1/2 to
a set A∞ = {(y′, w(y′)), |y′| ≤ 1/2} where w is a Holder continuous function.
In other words, given ε, all but a finite number of the Ak’s from the subsequence
are in an ε neighborhood of A∞.
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Proof. Fix y′0, |y′0| ≤ 1/2 and suppose (y′0, yk) ∈ Ak. We apply Theo-
rem 2.2 for the function uk in the cylinder

{|x′ − lky′0| < lk/2} × {|xn − θkyk| < 2θk}

in which the set {uk = 0} is trapped. Thus, there exist a universal constant
η0 > 0 and an increasing function ε0(θ) > 0, ε0(θ) → 0 as θ → 0, such that
{uk = 0} is trapped in the cylinder

{|x′ − lky0| < η0lk/2} × {|xn − θkyk| < 2(1− η0)θk}

provided that 4θkl−1
k ≤ ε0(2θk). Rescaling back we find that

Ak ∩ {|y′ − y′0| ≤ η0/2} ⊂ {|yn − yk| ≤ 2(1− η0)}.

We apply the Harnack inequality repeatedly and we find that

(23) Ak ∩ {|y′ − y′0| ≤ ηm0 /2} ⊂ {|yn − yk| ≤ 2(1− η0)m}

provided that
4θkl−1

k ≤ η
m−1
0 ε0(2(1− η0)mθk).

Since these inequalities are satisfied for all k large we conclude that (23) holds
for all but a finite number of k’s.

There exist positive constants α, β depending only on η0, such that if (23)
holds for all m ≤ m0 then Ak is above the graph

yn = yk − 2(1− η0)m0−1 − α|y′ − y′0|β

in the cylinder |y′| ≤ 1/2.
Taking the supremum over these functions as y′0 varies we obtain that Ak

is above the graph of a Holder function yn = ak(y′). Similarly we obtain that
Ak is below the graph of a Holder function yn = bk(y′). Notice that

(24) bk − ak ≤ 4(1− η0)m0−1

and that ak, bk have a modulus of continuity bounded by the Holder function
αtβ. From the Arzela-Ascoli Theorem we find that there exists a subsequence
akp which converges uniformly to a function w. Using (24) we obtain that bkp ,
and therefore Akp , converge uniformly to w.

Claim 2. The function w is harmonic (in the viscosity sense).

Proof. The proof is by contradiction. Fix a quadratic polynomial

yn = P (y′) =
1
2
y′
T
My′ + ξ · y′, ‖M‖ < δ−1, |ξ| < δ−1

such that4P > δ, P (y′)+δ|y′|2 touches the graph of w, say, at 0 for simplicity,
and stays below w in |y′| < 2δ. Thus, for all k large we find points (yk ′, ykn)
close to 0 such that P (y′)+const touches Ak from below at (yk ′, ykn) and stays
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below it in |y′ − yk ′| < δ. This implies that, eventually, after a translation,
there exists a surface{

xn =
θk
l2k

1
2
x′
T
Mx′ +

θk
lk
ξk · x′

}
, |ξk| < 2δ−1

that touches {uk = 0} at the origin and stays below it in the cylinder |x′| < δlk.
We write the above surface in the form{

xn =
δ2θk

2(δlk)2
x′
T
Mx′ +

δ2θk
δlk

δ−1ξk · x′
}
,

and we contradict Lemma 5.2 since θk ≥ θ0, θkl−1
k → 0 and 4P > δ.

Since w is harmonic, there exist 0 < η1 < η2 small (depending only on n)
such that

|w − ξ · y′| < η1/2 for |y′| < 2η2 .

Rescaling back and using the fact that the Ak converge uniformly to the graph
of w we conclude that for k large enough

{uk = 0} ∩ {|x′| < 3lkη2/2} ⊂ {|xn − θkl−1
k ξ · x′| < 3θkη1/4}.

This is a contradiction to the fact that uk doesn’t satisfy the conclusion of
Theorem 2.1.

7. Construction of the sliding surfaces S(Y,R)

In this section we introduce a family of rotation surfaces in Rn+1 which
we denote by S(Y,R). We say that the point Y is the center of S and R the
radius.

The surfaces S are defined for centers Y in the strip {|yn+1| ≤ 1/4} and
for radius R large. They have the following property:

Suppose that for fixed R, some surfaces S(Y,R) are tangent by the above
to the graph of u. Then the contact points project along en into a set with
measure comparable with the measure of the projection of the centers Y along
en (see Proposition 7.1).

We define S(Y,R) as

S(Y,R) := {xn+1 = gyn+1,R(H0(yn+1) + |x− y| −R)},(25)

|yn+1| ≤ 1/4,

where the function gs0,R, respectively hs0,R, Hs0,R associated with it, are con-
structed below for |s0| ≤ 1/4 and large R. For simplicity of notation we denote
them by g, h, H.

Denote

(26) C̄3 = 1 + 8(n− 1) max
√
h0
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and let ϕ be such that

(27)
1√

2ϕ(s)
=

1√
2h0(s)

− C̄0

R
(s− s0).

where C̄0 is large enough such that the following hold:

ϕ(s) < h0(s)− 2C̄3R
−1, if s ∈ [−3/4,−1/2],(28)

ϕ(s) > h0(s) + 2C̄3R
−1, if s ∈ [1/2, 3/4].

Let sR near −1 be such that h0(sR) = R−1; hence 1 + sR ∼ R−
1
2 . We

define hs0,R : [sR, 1]→ R as

(29) h(s) =


h0(s)− h0(sR)− C̄3R

−1(s− sR) if s ∈ [sR,−1
2 ]

ϕ(s) if s ∈ (−1/2, 1/2)
h0(s) +R−1 + C̄3R

−1(1− s) if s ∈ [1
2 , 1].

For R large, h(s) ≥ c1(1+s)(s−sR) on [sR, 0]; thus h is positive on (sR, 1].
Define

(30) Hs0,R(s) = H0(s0) +
∫ s

s0

1√
2h(ζ)

dζ

and for R large enough

H(sR)≥H0(s0)−
∫ s0

sR

1√
c1(1 + ζ)(ζ − sR)

dζ ≥ −C1 logR,(31)

H(1)≤H0(s0) +
∫ 1

s0

1√
c2(1− ζ)2 +R−1

dζ ≤ C1 logR.

Finally we define gs0,R as

(32) gs0,R(t) =
{
sR if t < H(sR),
H−1(t) if H(sR) ≤ t ≤ H(1).

Next we list some properties of the surfaces S(Y,R):

1) Notice that

h(s) > h0(s)− 2C̄3R
−1 > ϕ(s) if s ∈ [−3/4,−1/2],(33)

h(s) < h0(s) + 2C̄3R
−1 < ϕ(s) if s ∈ [1/2, 3/4].

From (27), (29), (33) we have

H(s) = H0(s)− C̄0

2R
(s− s0)2, if |s| ≤ 1/2,(34)

H(s) > H0(s)− C̄0

2R
(s− s0)2 if 1/2 < |s| < 3/4.
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Let ρs0,R be the function whose graph is obtained from the graph of g0 by
the transformation

(t, s) 7→
(
t− C̄0

2R
(s− s0)2, s

)
for |s| < 3/4.

From (34) we obtain that g = ρ for |s| ≤ 1/2, and g < ρ at all other points
where ρ is defined.

In other words, if S(Y,R) is the rotation surface,

S(Y,R) := {xn+1 = ρyn+1,R(H0(yn+1) + |x− y| −R)},(35)

|yn+1| ≤ 1/4,

then, S(Y,R) coincides with S(Y,R) in the set |xn+1| ≤ 1/2 and stays below
it at all the other points where S is defined.

Notice that S(Y,R) ⊂ {|xn+1| ≤ 3/4} and is defined only in a neighbor-
hood of the sphere |x− y| = R which is the yn+1 level set of S(Y,R).

2) We remark that S(Y,R) is constant sR when

|x− y| ≤ R− 1
2
R

1
3 ≤ R−H0(yn+1) +H(sR),

and grows from sR to 1 when

−1
2
R

1
3 < |x− y| −R ≤ −H0(yn+1) +H(1) <

1
2
R

1
3 .

3) The function g is C1,1 in (−∞, H(−1/2)) ∪ (H(1/2), H(1)) and g′′ has
a small jump from 0 to h′(sR) at H(sR).

If s ∈ (sR,−1/2) ∪ (1/2, 1), then on the s level set we have (see (26))

4S ≤h′(s) + 2(n− 1)R−1
√

2h(s)(36)

≤h′0(s)− C̄3R
−1 + 4(n− 1)

√
h(s)R−1 < h′0(s).

Moreover, from (29), (33) we have

lim
s→−1/2−

H ′(s) < lim
s→−1/2+

H ′(s), lim
s→1/2−

H ′(s) < lim
s→1/2+

H ′(s),(37)

lim
s→1−

H ′(s) <∞

which together with (36) implies that S(Y,R) is, in the viscosity sense, a strict
supersolution for |xn+1| ≥ 1/2. In other words S(Y,R) cannot touch from
above a C2 subsolution at a point X with |xn+1| ≥ 1/2.

g
0

gs0 R,

( 0 0sH  (   ), )0s
.
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4) If |s| < 3/4, then on the s level set of S(Y,R), defined in (35), one has
(see (27))

h′0(s)− C2R
−1 ≤ ϕ′(s)≤4S,(38)

4S ≤ ϕ′(s) +
2(n− 1)

R

√
2ϕ(s)≤h′0(s) + C2R

−1.

This shows that S(Y,R) is an approximate solution of equation (8) with an
R−1 error.

5) From (27), (29) we see that if R1 ≤ R2, then

hs0,R1(s) ≤ hs0,R2(s) if sR1 ≤ s ≤ s0,

hs0,R1(s) ≥ hs0,R2(s) if s0 ≤ s ≤ 1;

thus,

(39) Hs0,R1(s) ≤ Hs0,R2(s)

in the domain where Hs0,R1 is defined.

The next proposition is the key tool in proving Theorem 2.2.

Proposition 7.1 (Measure estimate for contact points). Let u be a C2

subsolution of (8); i.e., 4u ≥ h′0(u), |u| ≤ 1. Let ξ be a vector perpendicular to
en+1 and A be a closed set in Pξ∩{|xn+1| ≤ 1/4}. Assume that for each Y ∈ A
the surface S(Y + tξ, R), R large, stays above the graph of u when t → −∞
and, as t increases, it touches the graph from above for the first time at a point
(contact point). If B denotes the projection of the contact points along ξ in
Pξ, then,

µ̄0|A| ≤ |B|

where µ̄0 > 0 is universal, small and |A| represents the n-dimensional Lebesgue
measure.

Proof. Assume that S(Y,R) touches u from above at the point X =
(x, u(x)). From the discussion above we find |u(x)| < 1/2.

Denote by ν the normal to the surface at X; i.e.

ν = (ν ′, νn+1) =
1√

1 + |∇u|2
(−∇u, 1).

The center Y is given by

(40) Y (X) =
(
x+

ν ′

|ν ′|
σ, xn+1 + ω

)
= F (X, ν),

where

ω=RC̄−1
0 (νn+1|ν ′|−1 −H ′0(xn+1)),(41)

σ=− C̄0

2R
ω2 +H0(xn+1)−H0(xn+1 + ω) +R.
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The function F is smooth defined on

{X ∈ Rn+1 : |xn+1| < 1/2} × {ν ∈ Rn+1 : |ν| = 1, c1 < νn+1 < 1− c1}.
The differential DXY is a linear map defined on TX , the tangent plane at X,
and

(42) DXY = FX(X, ν) + Fν(X, ν)DXν = FX(X, ν)− Fν(X, ν)IIu

where IIu represents the second fundamental form of u at X. Writing the
above formula for the surface S(Y,R) at X, we find

0 = FX(X, ν)− Fν(X, ν)IIS

thus, (42) becomes

(43) DXY = Fν(X, ν)(IIS − IIu).

From (40) and (41), it is easy to check that

(44) ‖Fν(X, ν)‖ ≤ C1R.

Since S touches u by above at X, we find that D2S −D2u ≥ 0. On the other
hand, from (38),

4S ≤ h′0(xn+1) + C2R
−1 ≤ 4u+ C2R

−1

which implies
‖D2S −D2u‖ ≤ C3R

−1

or

(45) ‖IIS − IIu‖ ≤ C4R
−1.

From (43), (44), (45) we conclude

‖DXY ‖ ≤ C5.

The centers Z for whichX ∈ S(Z,R) describe a rotation surface, aroundX.
Note that if S(·, R) is above u, then its center is above this surface. The normal
to the surface at Y (X), which we denote by τ , belongs to the plane spanned
by ν and en+1, and c2 < τ < 1 − c2. Thus, if ξ is perpendicular to en+1, we
have

|τ · ξ| ≤ C6|ν · ξ|.
(Notice that the tangent plane to the surface at Y (X) is the range of Fν(X, ν).)

Let B̃ be the set of contact points, Ã the set of the corresponding centers,
B = πξB̃ and A = πξÃ. Note that πξ is injective on Ã and B̃ by construction.
From above, we know that Ã belongs to a Lipschitz surface. One has

|A| =
∫
Ã
|τ(Y ) · ξ|dY ≤

∫
B̃
|τ(Y ) · ξ||DXY |dX

≤C7

∫
B̃
|ν(X) · ξ|dX = C7|B|

and the proposition is proved.
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8. Extension of the contact set

In this section we prove that the contact set from Proposition 7.1 becomes
larger and larger when possibly we decrease the radius R.

Denote

L=Pn ∩ {|xn+1| ≤ 1/2},
Ql =

{
(x′, 0, xn+1)/ |x′| ≤ l, |xn+1| ≤ 1/2

}
.

Let D̃k, represent the set of points on the graph of u that have from above
a tangent surface S(Y,RC−k), where C is a large universal constant. Suppose
that we have some control on the en coordinate of these sets and denote by
Dk their projections into L.

Recall that S(Y,RC−k) is an approximate solution of equation (8) with a
CkR−1 error. If S(Y,RC−k) touches u from above at X0 then, from Harnack
inequality, the two surfaces stay CkR−1 close to each other in a neighborhood
of X0 (see Lemma 8.1). Thus, denoting

Ek = {Z ∈ L/ dist(Z,Dk) ≤ C1},

we control the en coordinate of a set on the graph of u that projects along en
into Ek.

We want to prove that, in measure, Ek almost covers Ql as k becomes
larger and larger.

In large scale the interface satisfies a mean curvature equation. In Lemma
8.2 we prove that near (large scale) a point Z ∈ Dk we can find a set of
positive measure in Dk+1. Using a covering argument we show that the sets
Ek “almost” cover Ql as k increases.

Next we state and prove two technical lemmas, Lemma 8.1 and Lemma 8.2.
At the end of the section we prove a covering lemma which links the two scales.

Lemma 8.1 (Small scale extension). Suppose that the surface S(Y,R)
touches a solution u from above at X0 = (x0, u(x0)) with

∠

(
∇u
|∇u|

(x0), en

)
≤ π

8
.

Given a constant a > 1 large, there exists C(a) > 0 depending on universal
constants and a such that for each point Z ∈ L∩B(πnX0, a) there exists x with

1) πn(x, u(x)) = Z, |x− x0| ≤ 2a,

2) (x− x0) · ∇u
|∇u|

(x0) ≤ H0(u(x))−H0(u(x0)) + C(a)R−1.

Lemma 8.2 (Large scale extension). Suppose that the surface S(Y0, R)

stays above a C2 subsolution u in the cylinder {|x′| < l} × {|xn| < l}, l > 4R
1
3

and touches the graph of u at (x0, u(x0)) with
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|u(x0)| < 1/2, |x0n| < l/4, |x′0| = q, q < l/4,

∠

(
∇u
|∇u|

(x0), en

)
≤ π

8
.

There exist universal constants C̄4, C̄5, large, c̄2, small, such that if C̄4 ≤ q,
l ≤ Rc̄2 then the set of points (x, u(x)) satisfy the following four properties:

1) |x′| < q/15, |u(x)| < 1/2, |x− x0| < 2q.

2) There exists a surface S(Y,R/C̄5) that stays above u and touches its
graph at (x, u(x)).

3) ∠

(
∇u
|∇u|

(x),
∇u
|∇u|

(x0)
)
≤ C̄4qR

−1.

4) (x− x0) · ∇u
|∇u|

(x0) ≤ C̄4q
2R−1 +H0(u(x))−H0(u(x0)) project along en

into a set of measure greater than c̄2q
n−1.

Remark. The term H0(u(x)) − H0(u(x0)) that appears in property 2 of
Lemma 8.1 and property 4 of Lemma 8.2 represents the distance between the
u(x) level surface and the u(x0) level surface of a one dimensional solution.

Now we state the iteration lemma that links Lemmas 8.2 and 8.1.

Lemma 8.3 (Covering lemma). Let Dk be closed sets, Dk ⊂ L, with the
following properties:

1) D0 ∩Ql 6= ∅, D0 ⊂ D1 ⊂ D2 . . .;

2) If Z0 ∈ Dk ∩Q2l, Z1 ∈ L, |Z1 − Z0| = q and 2l ≥ q ≥ a then,

|Dk+1 ∩ B(Z1, q/10)| ≥ µ1|B(Z1, q) ∩ L|

where a > 1 (large), µ1 (small) are given positive constants and l > 2a.
Denote by Ek the set

Ek := {Z ∈ L/ dist(Z,Dk) ≤ a}.

Then there exists µ > 0 depending on n, µ1 such that

|Ql \ Ek| ≤ (1− µ)k|Ql|.

Proof of Lemma 8.1. Let S(Y,R) be the surface defined in (35). Notice
that S(Y,R) touches u from above at X0. The restrictions

πn|S : S(Y0, R)→ Pn, πn+1|S : S(Y0, R)→ Pn+1

are diffeomorphisms in a 3a neighborhood of X0 for R large. Denote by T the
map

T := πn+1|S ◦ πn
−1
|S : Pn ∩ {|xn+1| < 3/4} → Pn+1.
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In the set

O1 := T (Pn ∩ {|xn+1| < 3/4} ∩ B(πnX0, a+ 2))

we have 0 ≤ S − u, 0 = S(x0) − u(x0). From (38) and the fact that h′0 is
Lipschitz we find

C1(S − u) + C1R
−1 ≥ |4(S − u)|.

The open set

O2 := T (Pn ∩ {|xn+1| < 5/8} ∩ B(πnX0, a+ 1))

satisfies O2 ⊂ O1, dist(O2, ∂O1) ≥ c1, with c1 > 0, universal. From Harnack
inequality, one obtains

(46) sup
x∈O2

(S − u) ≤ C ′(a)R−1.

For each Z ∈ L ∩ B(πnX0, a) we consider the line Z + ten and denote by
X1 its intersection with S(Y,R).

Notice that in O1 we have ∂nS ≥ c2, c2 > 0 universal. From this, (46),
and the continuity of u we find that Z+ ten intersects the graph of u at a point
X2 = (x2, u(x2)) with

|X2 −X1| ≤ C ′′(a)R−1.

Since

(x1 − x0) · ∇u
|∇u|

(x0) ≤ H0(zn+1)−H0(u(x0)) + C2R
−1

we conclude that

(x2 − x0) · ∇u
|∇u|

(x0) ≤ H0(u(x2))−H0(u(x0)) + C(a)R−1

and the lemma is proved.

Proof of Lemma 8.2. The proof consists of two steps. In Step 1 we find
a point that satisfies properties 2–4 and property 1 with q/40 instead of q/15.
In Step 2 we use Proposition 7.1 to extend properties 2–4 from that point to
a set of positive measure.

Before we start, we introduce some notation. For a surface S(Y,R) we
associate its 0 level surface, the n− 1 dimensional sphere

Σ(y, r) =
{
|x− y| = r := R−H0(yn+1)− C̄0

2R
y2
n+1

}
.

We remark that the s level surface of S, |s| < 1/2, is a concentric sphere at a
(signed) distance

(47) H0(s) +O(1)C̄0R
−1, |O(1)| < 1/2
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from Σ(y, r). Also for a point X = (x, xn+1) ∈ S(Y,R), |xn+1| < 1/2 we
associate the point

x̃ = [y, x) ∩ Σ(y, r)

where [y, x) represents the half line from y going through x.
First we prove the lemma in the following situation (this is a rotation of

the above configuration):
The surface S(Y0, R0) stays above the graph of u in the cylinder

{|x′| ≤ 2q} × {|xn| ≤ l/2} and touches it at X0 = (x0, u(x0)), |u(x0)| < 1/2.
Assume

x̃0 ∈ {|x′| = q} ∩ {xn = 0}, y0 = −en
√
r2

0 − q2,

q ≥ c−1
1 large, and q/R0 ≤ c1, c1 small, universal.

Step 1. We prove the existence of a surface S(Y∗, R∗) that stays above u
in the cylinder |x′| ≤ 2q and touches it at (x∗, u(x∗)) such that

Y∗ = Y0 + t∗en, R∗ > R0/C3, x̃∗ ∈
{
xn < C4

q2

R0

}
∩
{
|x′| < q

100

}
where C3, C4 are large universal constants.

From (26), (27), (29) we obtain the existence of C1, C̄3 universal such that

(2hs0,R(s))−1/2|h′s0,R(s)− h′0(s)| ≤ C1R
−1 if |s| < 1/2,(48)

h′s0,R(s) = h′0(s)− C̄3R
−1 if s ∈ (sR,−1/2) ∪ (1/2, 1) ,

C̄3 = 1 + 8(n− 1) max
√
h0.

We consider the function ψ : Rn−1 → R:

ψ(z′) =
1
γ

(|z′|−γ − 1), z′ ∈ Rn−1,

where γ is such that

(49) γ = 4(C1 + 6(n− 2)).

Finally, we choose ω < 1, universal, such that ω−γ−2 = 2. The graph

(50) xn =
q2√
r2

0 − q2
ψ

(
x′

q

)
has by below the tangent sphere Σ(y0, r0) when |x′| = q, and a tangent sphere
of radius rω and center yω when |x′| = ωq, where

rω = ωγ+2
√
r2

0 + q2(ω−2γ−2 − 1) ≥ r0/2.

Let Γ1 denote the graph of Σ(y0, r0) for |x′| > q below xn = 0, Γ2 the
graph of the above function for ωq ≤ |x′| ≤ q and Γ3 the graph of |x−yω| = rω
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when |x′| < ωq, xn > 0. We notice that Γ = Γ1 ∪ Γ2 ∪ Γ3 is a C1,1 surface in
Rn. We define the following surface in Rn+1

Ψ =
{
xn+1 = gy0n+1,R0

(
dΓ +Hy0n+1,R0(0)

)}
,

where dΓ represents the signed distance to the surface Γ (dΓ positive in the
exterior of Γ). Note that Ψ coincides with S(Y0, R0) if dΓ is realized on Γ1.

Claim. The surface Ψ is a supersolution of (8) everywhere except the
set where |xn+1| < 1/2 and dΓ(x) is realized on Γ1 ∪ Γ3.

Proof. Let hy0n+1,R be the corresponding function for gy0n+1,R denoted by
h and g for simplicity. At distance d from Γ we have in an appropriate system
of coordinates

D2g = diag
[
−κ1

1− κ1d
g′, . . . , g′′

]
= diag

[
−κ1

1− κ1d

√
2h(s), . . . , h′(s)

]
where κi represent the principal curvatures of Γ (upwards) at the point where
d is realized.

Case 1. If d is realized at a point on Γ1, then the result follows from the
construction of S(Y,R).

Case 2. If d is realized at a point on Γ2, then

0 ≥ κi ≥ −r−1
ω ≥−3R−1

0 , i = 1, . . . , n− 2,

κn−1≥
γ + 1

2
R−1

0

provided that q/r0 is small. Without loss of generality we assume |d| ≤ R
1
3
0

since otherwise, g is constant. On the −1/2, respectively 1/2, level sets g(d) is
a supersolution from (37). On the other level sets one has

h′ +
n−1∑
i=1

−κi
1− κid

√
2h ≤ h′ +

(
−2

n−2∑
i=1

κi −
κn−1

2

)
√

2h

< h′0 + C1R
−1
0

√
2h+

(
6(n− 2)− γ + 1

4

)
R−1

0

√
2h < h′0(s)

(we used (48) and (49)).

Case 3. If d is realized at a point on Γ3 and |s| > 1/2, then

h′ +
n−1∑
i=1

−κi
1− κid

√
2h ≤ h′0 − C̄3R

−1
0 + 4(n− 1)R−1

0

√
2h < h′0(s),

(by (48)) and the claim is proved.
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Γ1

Γ

Γ2

3

Σ(     )

Σ(     )

y r0

ry

0

ω 1

,

,

We remark that Ψ and S(Y0, R0) coincide outside the cylinder |x′| < 2q.
Next we consider S(Yω, R1) with

R1 = rω +H0(y0n+1) + 5
C̄0

R0
, Yω = (yω, y0n+1).

The sphere Σ(yω, r1) stays at a distance greater than 3C̄0R
−1
0 above Γ3

and stays at a distance greater than 3C̄0R
−1
0 below Γ if |x′| > q(1 + ω)/2 >

ωq + 8C̄1/2
0 . This implies (see (47)):

1) The region of Ψ where |xn+1| < 1/2 and the distance to Γ is realized on
Γ3 is above S(Yω, R1).

2) The region of S(Yω, R1) where |xn+1| < 1/2 and the distance to Σ(yω, r1)
is realized at a point outside {|x′| < q(1 + ω)/2} is above Ψ.

3) S(Yω, R1) is above Ψ outside {|x′| < 2q}.

We slide from below Ψ in the en direction till we touch u for the first
time. This cannot happen at (x0, u(x0)) since Ψ is a strict supersolution in
the viscosity sense at x0 and u ∈ C2 is a subsolution. We conclude that there
exists β > 0 such that the surface Ψ−βen = {X−βen, X ∈ Ψ} touches u at a
point (z, u(z)) with |u(z)| < 1/2 and the distance from z+βen to Γ is realized
on Γ3.

Now we consider the surfaces S(Y0 + ten, R1) and increase t till we touch
for the first time the graph of u. We notice that when Y0 + ten = Yω − βen
then the point (z, u(z)) is above the surface S(Y0 + ten, R1). Thus we can find
0 < t1 < |Y0 − Yω| − β such that S(Y1, R1), Y1 = Y0 + t1en touches u from
above at a point (x1, u(x1)), |u(x1)| < 1/2 in the cylinder |x′| < 2q. Moreover
from the above remarks

x̃1 ∈ {|x′| < q(1 + ω)/2} ∩ {xn < C2q
2R−1

0 }, R1 > R0/3.

We apply the above argument with (x1, u(x1)) and S(Y1, R1) instead of
(x0, u(x0)) and S(Y0, R0) and continue inductively at most a finite number
of times till we find a point (x∗, u(x∗)) with the required properties.

Step 2. Using the result from Step 1, we prove that the set of contact
points (x, u(x)) such that
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1) |x′| < q/40, |u(x)| < 1/2, |x− x0| < 4q/3,

2) in the cylinder {|x′| < 2q}, u is touched by the above at (x, u(x)) by
S(Y,R0/C5), and S(Y,R0/C5) is above S(Y0, R0) outside this cylinder,

3) ∠

(
∇u
|∇u|

(x),
∇u
|∇u|

(x0)
)
< C9

q

R0
and the contact points belong in each

level set to a Lipschitz graph with Lipschitz constant less than C9qR
−1
0 ,

4) (x− x0) · ∇u
|∇u|

(x0) ≤ H0(u(x))−H0(u(x0)) + C9
q2

R0

project along en in a set of measure greater than c2q
n−1, where C5, C9,

c2 are appropriate universal constants.

We slide from below, in the en direction, the surfaces S(Y,R) with

(51) |y′ − x̃′∗| ≤
q

500
, |yn+1| ≤

1
4
, R =

R0

C5
, C5 = 4C4(400)2

till they touch u.
First we show that (x̃′∗, 2C4q

2R−1
0 ) is in the exterior of Σ(y, r). Assume

not; then Σ(y, r) is above xn = 3C4q
2(2R0)−1 in the cylinder |x′ − x̃′∗| ≤

q(100)−2. Now,

x∗ = x̃∗ +
∇u
|∇u|

(x∗)(H0(u(x∗)) +O(1)C̄0C3R
−1
0 ),

∠

(
∇u
|∇u|

(x∗), en

)
≤ qC3R

−1
0 ;

hence
x∗ · en ≤ x̃∗ · en +H0(u(x∗)) + C6(q2R−2

0 +R−1
0 ).

Thus, if q is greater than a large universal constant, x∗ is at a signed
distance less than

H0(u(x∗)) + C6(q2R−2
0 +R−1)− C4q

2(2R0)−1 < H0(u(x∗))− C̄0C5R
−1
0

from Σ(y, r). This implies that x∗ is in the interior of the u(x∗) level surface
of S(Y,R) which is a contradiction.

Since (x̃′∗, 2C4q
2R−1

0 ) is in the exterior of Σ(y, r), we find from (51) that
Σ(y, r) is below xn = 4C4q

2R−1
0 and below xn = 0 outside |x′| < q/50. Thus,

Σ(y, r) is at a distance greater than q2(4R0)−1 in the interior of Σ(y0, r0)
outside {xn > 0} × {|x′| < q/50}.

The s level surface of S(Y0, R0) is at distance greater than (see (39))

Hy0n+1,R0(s)−Hy0n+1,R0(0)

≥ Hy0n+1,R(s)−Hy0n+1,R0(0) ≥ Hy0n+1,R(s)− C̄0

2R0

from Σ(y0, r0).
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The s level surface of S(Y,R) is at a distance less than

Hyn+1,R(s)−Hyn+1,R(0) ≤ Hy0n+1,R(s) +
C̄0C5

R0

from Σ(y, r).
Hence, at the points x for which

dΣ(y,r)(x)− dΣ(y0,r0)(x) ≥ 2C̄0C5R
−1
0 ,

S(Y,R) is above S(Y0, R0). Since S(Y0, R0) is constant outside a R
1
3
0 neighbor-

hood of Σ(y0, r0), we can conclude that, for q greater than a large universal
constant, S(Y,R) is above S(Y0, R0) outside |x′| < q/40. This implies that the
contact points (x, u(x)) have the properties |u(x)| < 1/2,

∠

(
∇u
|∇u|

(x), en

)
< C7

q

R0
, x̃n < 4C4

q2

R0
, |x̃′| < q

40

and, from Proposition 7.1 they project along en in a set of measure greater
than c2q

n−1. We notice that on each level set the contact points belong to a
Lipschitz graph with Lipschitz constant less than 2C7qR

−1
0 . Also, one has

|x− x0| <
4
3
q,

x = x̃+
∇u
|∇u|

(x)
(
H0(u(x)) +O(1)C̄0C5R

−1
0

)
,

xn = x̃n +H0(u(x)) + C8(q2R−2
0 +R−1

0 ).

Thus,

(x− x0) · en≤ 5C4
q2

R0
+H0(u(x))−H0(u(x0)),

(x− x0) · ∇u
|∇u|

(x0)≤C9
q2

R0
+H0(u(x))−H0(u(x0)),

which proves Step 2.

End of proof of Lemma 8.2. In the general case we denote by X1 ∈
S(Y0, R0) the point such that πnX1 = 0 and let

ξ =
x1 − y0

|x1 − y0|
.

The cylinder

{|(x− x1) · ξ| < l/2} × {|πξ(x− x1)| < 2|πξ(x̃0 − x1)|}

is included in {|x′| < l} × {|xn| < l}. Also, |x′0|/2 < |πξ(x̃0 − x1)| < |x′0|3/2,
hence we are in the situation above. The contact points obtained in Step 2
belong in each level set to a Lipschitz graph (in the en direction) with Lipschitz
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constant less than 1. The result follows now by projecting these points along
the en direction. With this the lemma is proved.

Proof of Lemma 8.3. Denote by Fk ⊂ Ek the closed set

Fk = {Z ∈ L/ dist(X,Dk ∩Ql+a) ≤ a} .

We prove that there exists µ(n, µ1) > 0 small, such that

(52) |Ql \ Fk| ≤ (1− µ)k|Ql|.

Let Z ∈ Ql \ Fk, Z1 ∈ Fk be such that |Z − Z1| = dist(Z,Fk) = r. We
claim that for some µ2(n, µ1) > 0

(53) |Fk+1 ∩Ql ∩ B(Z, r)| ≥ µ2|Ql ∩ B(Z, r)|.

Let Z0 ∈ Dk∩Ql+a be the point for which |Z−Z0| = r+a and Z1 belongs
to the segment [Z,Z0].

If 2r ≥ a, let Z2 be such that

|Z − Z2| =
r

2
, B

(
Z2,

r

2

)
∩ L ⊂ Ql.

From property 2 and a+ r/2 ≤ |Z2 − Z0| ≤ 5r we obtain

|Fk+1 ∩Ql ∩ B(Z, r)| ≥
∣∣∣Dk+1 ∩ B

(
Z2,

r

2

)∣∣∣
≥ |Dk+1 ∩ B(Z2, |Z2 − Z0|/10)|

≥µ1

∣∣∣B (Z2,
r

2

)
∩ L
∣∣∣ ≥ µ2|B(Z, r) ∩Ql|.

If 2r < a then, from property 2, there exists a point

Z3 ∈ Dk+1 ∩ B
(
Z,
r + a

10

)
⊂ Ql+a.

Thus,
Ql ∩ B(Z, r) ⊂ Ql ∩ B(Z3, a) ⊂ Fk+1,

which proves (53).
We take a finite overlapping cover of Ql \ Fk with balls B(Z, r). Using

(53) we find a constant µ(µ2, n) > 0 such that

|Fk+1 ∩ (Ql \ Fk)| ≥ µ|Ql \ Fk|;

hence,
|Ql \ Fk+1| ≤ (1− µ)|Ql \ Fk|,

and (52) is proved.
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9. Estimate for the projection of the contact set

In this section we use the results of the previous section and prove the
following:

Lemma 9.1. Let u be a local minimizer of J in {|x′| < 32l}×{|xn| < 32l},
and assume that u(0) = 0, u < 0 if xn < −θ. There exists universal constants
C̄∗, µ̄, c̄4 such that :

Given θ0 > 0, there exists ε0(θ0) > 0 such that if

θl−1 = ε ≤ ε0(θ0), θ ≥ θ0, C̄k∗ ε ≤ c̄4,

then the set of points

(x, u(x)) ∈ {|x′| ≤ l} × {|xn+1| ≤ 1/2}

that satisfy
xn ≤ C̄k∗ θ +H0(u(x))

project along en into a set of measure greater than (1− (1− µ̄)k)|Ql|.

Before we prove Lemma 9.1 we need another lemma that gives us a first
surface S(Y,R) that touches u from above.

Lemma 9.2 (The first touching surfaces). Let u be a local minimizer of
J in {|x′| < 32l} × {|xn| < 32l}, and assume that u(0) = 0, u < 0 if xn < −θ.
Given θ0 > 0, there exists ε1(θ0) > 0 such that if

θl−1 ≤ ε1(θ0), θ ≥ θ0,

then the points (x, u(x)) have the following properties:

1) |x′| < l, |u(x)| < 1/2.

2) There exists a surface S(Y,R0) that stays above u in the cylinder
{|x′| < 16l} × {|xn| < 16l} and touches its graph at (x, u(x)), where

R0 =
l2

32θ
, l > R

1
3
0 .

3) ∠

(
∇u
|∇u|

(x), en

)
≤ lR−1

0 ,

4) xn ≤
θ

4
+H0(u(x)) project along en into a set of measure greater than

c̄3l
n−1, where c̄3 > 0 is small, universal.

Proof of Lemma 9.2. We slide from below surfaces Ψ(y, l) and as in the
proof of (19) we obtain

(54) gl(xn + θ) ≥ u(x) if |x′| < 16l, |xn| < 16l
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where gl ( respectively Ψ(y, l)) is the comparison function (surface) constructed
in Lemma 5.3.

Let R0 = l2(32θ)−1 and notice that lR−1
0 is small and l > R

1
3
0 if ε1(θ0) is

small. Consider the surfaces S(Y,R0) that contain the point (0, 0) with

|y′| ≤ l/16, |yn+1| ≤ 1/4.

Claim. The surfaces S(Y,R0) are above gl(xn+θ) (and therefore above u)
in the region l < |x′| < 16l.

Proof. The 0 level surface of S(Y,R0) is a sphere |x − y| = r, which is
below the hyperplane xn = θ/8. Let d1, d2, denote the signed distance to the
sphere |x− y| = r, respectively to the hyperplane xn = −θ.

If |b| ≤ R
1
3
0 , the sphere |x − y| = r + b is below xn = −2θ + b outside

|x′| < l/2; thus

(55) d1 ≥ d2 + θ, in {|d1| ≤ R
1
3
0 } ∩ {l < |x′| < 16l}.

Now it suffices to show

(56) Hyn+1,R0(s)−Hyn+1,R0(0) ≤ Hl(s) + θ

which implies
gyn+1,R0(d+Hyn+1,R0(0)) ≥ gl(d− θ).

Hence,
gyn+1,R0(d1 +Hyn+1,R0(0)) ≥ gl(d1 − θ) ≥ gl(d2),

or S(Y,R0) is above gl(xn + θ) in the region l < |x′| < 16l.
The proof of (56) is similar to the proof of (22). Notice that

Hyn+1,R0(s)−Hyn+1,R0(0) =
∫ s

0

1√
2hyn+1,R0(ζ)

dζ,(57)

Hyn+1,R0(s)−Hyn+1,R0(0)≤H0(s) +
C̄0

2R0
(58)

≤H0(s) + C1θl
−2 ≤ H0(s) + θ/2

for l large.
From (15), (29) we find that

hyn+1,R0(s) ≤ hl(s), if s ≤ −1 + c1(θ0)l−
1
2 ,

hyn+1,R0(s) ≥ hl(s), if s ≥ 1− c1(θ0)l−
1
2 ,

provided that l ≥ θ0ε1(θ0)−1 ≥ C1(θ0) large. This implies that the maximum
of Hyn+1,R0(s)−Hl(s) occurs for 1− |s| ≥ c1(θ0)l−

1
2 . For these values of s we

have (see Lemma 5.3)

H0(s) ≤ Hl(s) + C̄1l
−1 log

l
1
2

c1(θ0)
< Hl(s) + θ0/2,

which together with (58) proves (56).
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In conclusion, we slide from below surfaces S(Y,R0) in the cylinder
{|x′| ≤ 16l} × {|xn| ≤ 16l} with

|y′| ≤ l/16, |yn+1| ≤ 1/4,

and we touch u for the first time at points (x, u(x)) that satisfy properties 1,
2, 3 of the lemma and

xn≤Hyn+1,R0(u(x))−Hyn+1,R0(0) + θ/8

≤H0(u(x)) +
32C̄0θ

2l2
+ θ/8 ≤ H0(u(x)) + θ/4.

Now the lemma follows from Proposition 7.1.

Proof of Lemma 9.1. Let R0 = l2(32θ)−1 and define D̃k as the set of
points (x, u(x)) with the following properties:

1) |x′| ≤ 16l, |u(x)| < 1/2.

2) The graph of u is touched from above in {|x′| ≤ 16l} × {|xn| ≤ 16l} at
(x, u(x)) by S(Y,Rk) with Rk ≥ R0C̄

−k
6 .

3) ∠

(
∇u
|∇u|

(x), en

)
≤ C̄k6 lR−1

0 .

4) x · en ≤ C̄k6 θ +H0(u(x)) where

C̄6 = max{C̄5, 200C̄4, C(C̄4)}.

Also, we define Dk = πn(D̃k). From Lemma 9.2 we find that if ε ≤ ε1(θ0),
then D0 ∩Ql 6= ∅.

Claim. As long as

8C̄k6 lR
−1
0 ≤ min{c̄2, π}

Dk satisfies property 2 of Lemma 8.3 with a = C̄4.

Proof. Let Zk = πn(xk, u(xk)) ∈ Q2l ∩ Dk and let Z̃ ∈ L, |x′k − z̃′| = q,
2l ≥ q ≥ C̄4. We apply Lemma 8.2 in the cylinder

{|x′ − z̃′| ≤ 8l} × {|xn| ≤ 8l}

and obtain that the points (x, u(x)) with the following four properties project
along en in a set of measure greater than c̄2q

n−1.

1) |x′ − x̃′| ≤ q/15, |u(x)| < 1/2, |x− xk| ≤ 4l.

2) The graph of u is touched from above in {|x′| ≤ 16l × {|xn| ≤ 16l} at
(x, u(x)) by S(Y,Rk+1) with

Rk+1 ≥ RkC̄−1
5 ≥ R0C̄

−k−1
6 .
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3) ∠

(
∇u
|∇u|

(x),
∇u
|∇u|

(xk)
)
≤ 2C̄4C̄

k
6 lR

−1
0 ; hence,

∠

(
∇u
|∇u|

(x), en

)
≤ 2C̄4C̄

k
6 lR

−1
0 + C̄k6 lR

−1
0 ≤ C̄k+1

6 lR−1
0 .

4) (x− xk) ·
∇u
|∇u|

(xk)≤ 4C̄4l
2C̄k6R

−1
0 +H0(u(x))−H0(u(xk))

(x− xk) · en≤ 4C̄k6 l
2R−1

0 + 4C̄4l
2C̄k6R

−1
0 +H0(u(x))−H0(u(xk)).

Thus,
xn ≤ C̄k+1

6 θ +H0(u(x)).

All these points are in D̃k+1 which proves the claim.

Let Ek be the sets defined in Lemma 8.3. From Lemma 8.1 we know that
each point in Ek is the projection of a point (x, u(x)) with |x− xk| ≤ 2C̄4 and

(x− xk) ·
∇u
|∇u|

(xk) ≤ H0(u(x))−H0(u(xk)) + C(C̄4)R−1
k ,

for some point (xk, u(xk)) ∈ D̃k. Thus,

(x− xk) · en ≤ C(C̄4)C̄k6R
−1
0 + 2C̄4C̄

k
6 lR

−1
0 +H0(u(x))−H0(u(xk))

or
xn ≤ C̄k+1

6 θ +H0(u(x)).

We apply Lemma 8.3 and obtain that there exist positive universal con-
stants c̄4, µ̄, small, C̄∗ := C̄2

6 such that if

C̄k∗ ε ≤ c̄4 := 300−1 min{c̄2, π}, ε ≤ ε0(θ0),

then
|Ek ∩Ql| ≥ (1− (1− µ̄)k)|Ql|.

With this the lemma is proved.

10. Proof of Theorem 2.2

We assume that u is a local minimizer of J in the cylinder

{|x′| < 32l} × {|xn| < 32l},

and
u > 0 if xn > θ, u < 0 if xn < −θ, u(0) = 0.

We show that if the 0 level set is close to xn = −θ at a point in |x′| < l/4 then
the energy of u is large and we obtain a contradiction.
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As in (54) (or (19)) we can prove

(59) ρl(xn − θ) ≤ u(x) ≤ gl(xn + θ) in {|x′| < 16l} × {|xn| < 16l},

where ρl is the function similar to gl which rotated gives a subsolution (it is
supported in (−l/2,∞), ρl(0) = 0 and is constant for s ≥ l/2).

Next we apply Lemma 9.2 upside-down and obtain that there exists a
small universal constant c1 such that the points (x, u(x)) with

(60) xn ≥ −
θ

4
+H0(u(x)), |x′| ≤ l

2
, |u(x)| ≤ 1

2

project along en in a set of measure greater than c1l
n−1, provided that θl−1 ≤

ε2(θ0) is small.
On the other hand, from Lemma 9.1 we find universal constants C̄∗, µ̄

such that if

{u = 0} ∩ {|x′| < l/4} ∩ {xn < (−1 + C̄−k0
∗ /4)θ} 6= ∅,(61)

θl−1 ≤ ε3(θ0, k0),

then the set of points (x, u(x)) with

(62) xn ≤ −
θ

2
+H0(u(x)), |x′| ≤ l

2
, |u(x)| ≤ 1

2

project along en in a set of measure greater than (1 − (1 − µ̄)k0)|Ql/2|. We
show that if we choose k0 large, universal such that

(63) c1l
n−1 > 2(1− µ̄)k0 |Ql/2|

and ε small enough, then we obtain a contradiction.
Now, (

1
2
|∇u|2 + h0(u)

)
dx′dxn≥

√
2h0(u)|un|dx′dxn

=
√

2h0(xn+1)dx′dxn+1.

Denote

Al := {|x′| < l} × {|xn| < l}.

Project along en the points (x, u(x)), with |xn| ≤ l. From (60), (62), (63)
we find that there exists a set of measure c1l

n−1/2 included in Ql/2 where these
points project twice. Using also (59) we can find two small universal constants
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c2, c3 > 0 such that

J(u,Al) =
∫
Al

1
2
|∇u|2 + h0(u)dx(64)

≥ωn−1l
n−1

∫ 1−c2

c2−1

√
2h0(xn+1)dxn+1

+
c1

2

(
min
|s|≤1/2

√
2h0(s)

)
ln−1

≥ωn−1l
n−1

∫ 1

−1

√
2h0(s)ds+ c3l

n−1,

where ωn−1 represents the volume of the n− 1 dimensional unit sphere.
Assume by contradiction that there exist numbers lk, θk with

θkl
−1
k → 0, θk ≥ θ0,

and local minimizers uk in A32lk satisfying the hypothesis of Theorem 2.2 and
property (61).

Denote by εk := l−1
k and vk(x) := uk(ε−1

k x). From (64) we obtain

(65) Jεk(vk, A1) = εn−1
k J(uk, Alk) ≥ ωn−1

∫ 1

−1

√
2h0(s)ds+ c3.

On the other hand, as k →∞ we have

vk → χE − χEc in L1
loc(A1),

where E = A1 ∩ {xn > 0}. By Theorem 3.1 one has

lim
k→∞

Jεk(vk, A1) = PA1E

∫ 1

−1

√
2h0(s)ds = ωn−1

∫ 1

−1

√
2h0(s)ds

which contradicts (65).
With this, Theorem 2.2 is proved.
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